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Abstract

Software has been studied at a variety of granularities. Code, classes, groups of classes,
programs and finally large scale applications have been examined in detail. What lies be-
yond is the study of software collections that group together many individual applications.
Collecting software and distributing it via a central repository has been popular for a while
in the open source world, and only recently caught on commercially with Apples Mac app
store and Microsofts Windows store. In many of these software collections, there is nor-
mally a complex process that must be followed in order to fully integrate new applications
into the system. Moreover, in the case of open source software collections, applications
frequently rely on each other for functionality and their interactions can be complex. We
know that there are thousands of applications in these software collections that people
depend on worldwide, but research in this area has been limited compared to other areas
and granularities of software. In this thesis, we explore the evolution and architecture of a
large open source software collections by using Debian as a case study.

Debian is a software collection based off the Linux kernel with a large number of pack-
ages spread over multiple hardware platforms. Each package provides a particular service
or application and is actively maintained by one or more developers. This thesis inves-
tigates how these packages evolve through time and their interactions with one another.
The first half of the thesis describes the life cycle of a package from inception to end by
carrying out a longitudinal study using the Ultimate Debian Database (UDD)[29]. The
birth of packages is examined to see how Debian is growing. Conversely, package death is
also analyzed to determine the lifespan of these packages. Moreover, four different pack-
age attributes are examined. They are package age, package bugs, package maintainers
and package popularity. These four attributes combine to give us the overall biography of
Debian packages. Debians architecture is explored in the second part of the thesis, where
we analyze how packages interact with each other by examining the package dependencies
in detail. The dependencies within Debian are extensive, which makes for an interesting
architecture, but they are complex to analyze. This thesis provides a close look at the
layered pattern. This pattern categorizes each package into one of five layers based on
how they are used. These layers may also be visualized to give a concise view of how an
application is structured. Using these views, we define five architectural subpatterns and
anti-subpatterns which can aid developers in creating and maintaining packages.
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Chapter 1

Introduction

This thesis investigates the evolution and architecture of open source software collections.
We use Debian as a case study to describe how it has grown and changed over a 12 year time
span. In addition, the architecture of Debian is presented through a number of patterns
that encapsulate how the software within this collection interacts with each another.

We define a software collection as a large number of independently developed products
that are engineered to work together. In the open source world, these collections take
the form of software distributions which group thousands of applications and libraries into
one integrated system. Examples include Red Hat Linux, Ubuntu, FreeBSD and Debian.
Software packages found within these distributions are normally developed externally, while
a different set of people involved with the distribution integrates the software with the rest
of the distribution. Software collections are constantly changing, evolving and growing.
New features get added to existing applications and new software is always waiting to be
included. In the case of free and open source software collections, it is up to the people
on the distribution team to take the original source code and package it in a way that it
seamlessly integrates into the collection. For the majority of software found in an open-
source software collection, the people who do the packaging are not those who wrote the
software; however, communication between the two parties is encouraged. A software
collection is defined through its packages. Therefore, to study the evolution of software
collections is to study how packages come and go. In the first half of the thesis we explore
the life and death of packages to gain insight into how software collections change through
time.

The second half of the thesis is about the architecture of open source software col-
lections. Before software architectures were documented and studied in detail, they were



used implicitly. Even when software is mainly built in an informal manner, good develop-
ers often adopted architectural patterns. Over time, these patterns become more explicit
as people recognized similarities between how software is developed [35]. The same phe-
nomenon is occurring in the packaging of open source software. Developers doing the
packaging and maintaining are following implicit rules when it comes to integrating new or
updated software into a software collection. This thesis takes a step towards formalizing
those rules. For small applications, this task is simple; however, for larger applications,
the packaging process can be very complex. This complexity can lead to bugs which can
render the distribution unusable. Debian maintains a bug tracking system in order to fix
packaging related bugs. In the past 10 years, there have been over 500,000 bug reports.
Learning about how the packages are structured in a software collection will not dramati-
cally reduce the number of packaging related bugs overnight, but an understanding of how
packages interact with one another is expected to help.

Software architecture can be defined as elements from which systems are built, inter-
actions among those elements, together with patterns that guide their composition [13].
In this thesis, we explore the software architecture at a granularity higher than individual
systems. Packages are the elements that interact with one another to form the basis of
software collections. The most apparent method of package interaction is through their
specified dependencies. Packages commonly require the installation of other packages in
order to run. These dependencies are listed in the package’s corresponding control file and
can come in a variety of flavors (explained in Chapter 3).

While there are a large number of open software collections that could be studied, we
chose to examine Debian from an architectural point of view. Debian is a prime candidate
to study since it is one of the largest and most mature software collections [28]. Moreover,
to upload packages onto Debian, developers must go through an extensive certification
process [18]. This is done to ensure uploaded packages will be of sufficient quality and to
restrict upload privileges to only those developers who have proven their ability. These
points make Debian a good representation of open sourced software collections and gives
us some confidence to generalize our findings across other software collections.

1.1 Contributions

This thesis contributes to the body of knowledge of open source software collections and
especially Debian. In Chapter 4, we expand upon existing work in software evolution to
look at how Debian as evolved. Similar to other papers on evolution, the value lies in
our observations. We extract facts and patterns about the system which have not been



documented before. The information obtained forms a base from which numerous other
research questions can arise. Software collection policy makers may also use the observed
trends to adjust certain policies to optimize the quality and quantity of incoming packages.
In Chapter 5, we explore and document Debian’s architecture. We analyze how packages
interact with each other by examining the package dependencies in detail. Much related
work has been done to model and visualize software package dependencies. But to the
best of our knowledge, our work is the first to analyze the architecture of an open-source
software collection. Knowing the architecture of a software system aids in understanding
as it provides a high-level overview of the system. We also document a set of packaging
patterns and anti-patterns, which could be helpful for inexperienced developers looking to
do software packaging. Mining this software repository and analyzing the data provides
insight into the concept of an immensely sized software collection.

1.2 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents the related work in
the areas of software evolution, software architecture and the various work done regarding
software collections. Chapter 3 provides background information on Debian and definitions
on the key terms used in this thesis. Chapters 4 and 5 present the core of the research,
where Chapter 4 discusses the evolutionary aspects of Debian and Chapter 5 explains
Debian’s architecture. Chapter 6 presents some threats to validity along with future work.
Finally, Chapter 7 provides the conclusion to this thesis.



Chapter 2

Related Work

Software evolution studies have been performed on a variety of systems in different contexts.
Some of the first few empirical studies were carried out by Lehman on IBM’s OS360
and other large industrial systems. He initially formulated three “Laws of Evolution”:
continuing change, increasing complexity and self-regulation. Later, the set of laws were
expanded upon and now include eight laws [25][24]. These laws were meant for E-type
systems which are described as monolithic systems produced by a team within a company.
Open source software does not generally fit into this E-type mold and so others studies
needed to be done to see how open source software evolves. Godfrey and Tu used Linux to
explore the evolution of a large scale open source software project [16]. Instead of growing
slowly like a typical large complex system, they discovered Linux is growing at a super
linear rate. Other studies in this area have had similar findings [22][31][36]; more recently
Deshpande and Riehle looked at 5000 active open source software projects to find that
many grow at an exponential rate, which is even faster than previously thought [11].

Due to the immense size and open nature of Debian, there are a number of studies
pertaining to this Linux distribution. For example, Boender, Di Cosmo, Vouillon, Durak
and Mancinelli present some tools that aim at helping distribution editors with maintaining
the huge package bases associated with these distributions. They aim to improve the quality
by detecting errors and inconsistencies in an effective, fast and automatic way [7]. Others
look for ways to detect failures more quickly to improve the overall quality of the system
through the package management system [1][40]. The first major study on the state of
Debian was performed by J. M. Gonzalez-Barahona et al in 2001 on Debian 2.2 [17]. The
entire release was downloaded and analyzed. It was discovered that this version of Debian
contained roughly 60,000,000 source lines of code (SLOC). Using the COCOMO model,
they estimated that the cost of development was close to 2 billion dollars USD taking up

4



170,000 person-months. At the time, this was twice as large as Red Hat 7.1 and also larger
than the latest Microsoft operating system. Programming languages were also analyzed
and they found that over 70% of SLOC were written in C, followed by 10% in C++, 5%
in LISP and 5% were Shell scripts. The remaining 10% were comprised of a large variety
of different languages. Since then, Debian has grown tremendously.

Follow up papers measuring Debian 3.0, 3.1, 4.0 and 5.0 were subsequently written by
J.J Amor [5][3][4]. These case studies are similar in nature and employed techniques and
methodologies much like those of Gonzalez-Barahona [17]. These studies give a snapshot
of the size of Debian for its major releases. They provide some notion that Debian is
growing rapidly, but do not attempt to chart this growth in these papers. In a subsequent
study titled “Macro-level software evolution”, the results from these papers were combined
to perform a longitudinal analysis of the size of Debian [18]. The authors concluded that
the SLOC of Debian doubles every two years and noted that this growth is mainly due
to the influx of new packages rather than existing packages getting larger. They also
believed the growth may pose a significant risk if continued because the number of Debian
developers is limited. To the best of our knowledge, the work done by Robles, Gonzalez-
Barahona, Miehlmayr and Amor in MSR 2006 [33] and the subsequent journal publication
in Empirical Software Engineering [18] are the only longitudinal studies done on a software
collection. In their work, they only focused on the increasing rate of uploaded packages
and the change in programming languages over time. Our study not only tracks the rate
of incoming packages, but also removed packages, incoming/outgoing package maintainers,
package lifespan, package bugs and package popularity. By examining these additional
package attributes, we get more information on how the Debian distribution is evolving.

The idea of using packages to explore the architecture of large open source software
collections has not been explored in great detail. However, ideas and techniques presented
in other papers are used to as a springboard for our study. To start, let us look at the work
done in the software architecture field. There are numerous books that describe the concept
of architecture and architectural patterns developers can employ [35][6][8]. These books
are centered on a select number of architectural patterns where they present modeling
techniques, design, implementation and deployment. These books resulted from research
done in the late 80s and early 90s. In this thesis, we provide a set of patterns based on
how packages are structured. More recent research in software architecture has progressed
to support emerging technologies such as the cloud [26] and mobile development [34][39].
This illustrates the fact that while general software architecture has been well documented,
architecture of newer technologies and systems are always being discovered.

Package dependencies are especially interesting due to their complex interactions and
size. The study of dependencies is not the same as the study of architecture; however, the



two areas are closely related and we make use of Debian’s dependencies in order to define its
architecture. There has been a bit of work done in the field of package dependencies and one
such study is from German, where he defines some metrics to quantify the dependencies
of a given software application [14]. Another research paper in this area comes from
German, Gonzalez-Barahona and Robles. In this work, they create a framework to model,
extract, study and visualize application dependencies [15]. They introduce the notion of
an inter-dependency graph (IDG) and apply it to Debian. The IDG is similar to the
GIMP dependency graph in Figure 5.2, but their graph contains more information about
the application. For example, depending on the type of package, nodes can be represented
as circles, squares or diamonds. Similarly, they use a different set of edges to represent
different dependencies (eg. optional vs required). Their dependency graphs are more
detailed and convey more the information found in the control file. Abate, Boender,
Cosmo and Zacchiroli introduce the novel notion of strong dependencies between software
components. They argue that there is a different dependency graph to be studied to grasp
meaningful relationships between packages [2]. A strong dependency graph represents the
semantics of inter-package relationships, in which an edge between two packages is drawn
only if the first cannot be installed without installing the second. One of the key use-cases
for strong dependencies is to compute package sensitivity. They state that the higher the
sensitivity of a package, the higher the minimum number of packages will be potentially
affected by a change. Therefore the study of strong dependency and sensitivity directly
helps with quality assurance and evaluation of upgrade risks. This idea is further expanded
upon in a follow up paper [1].

Other studies have used network theory to help explain package dependencies in open
source software collections [37]. Complex networks are an emerging research area in fields
such as biology and sociology, but not generally used in software engineering. One can
define a complex network as a graph with non-trivial topological features (features that
do not exist in simple networks such as lattices or random graphs) [41]. LaBelle and
Wallingford modeled Debian and BSD each as an unweighted simple graph G = (V, E)
and then proceeded to analyze the resulting properties [23]. They concluded that software
collections share properties typical to other real-world networks. In particular, they noticed
a small-world effect, which means short geodesic path lengths and high clustering. The
same small-world conclusion was reached by Sousa, Menezes and Penna in their study of
Debian [10]. Packages are the building blocks in the majority of open source software
collections and their interactions are defined by dependencies. Much of the work package
dependencies gives a vague sense of architecture, but none of them go deeply into this
topic. In our work, we leverage the previous research done on package dependencies to
define a set of patterns that can be used to help explain the architecture of Debian.



Chapter 3

Background Information on Debian

Debian’s purpose is to collect software packages and take them through a monitored ma-
turing process. Users can choose to install different versions of packages with known levels
of reliability. Debian started as a project in August 1993 by Ian Murdock because he felt
there was a need for a distribution to be maintained in an open manner similar in spirit to
Linux and GNU. His thoughts and reasoning behind establishing Debian are documented
in the Debian Manifesto [28]. At the time, Softlanding Linux System (SLS) was the most
popular distribution, but was bug-ridden and hard to maintain. Murdock wanted to im-
prove this practice by designing Debian to be an open and modular system to ensure a high
standard. This idea for free high quality software was further established in 1996 by Bruce
Perens who replaced Murdock as project leader. During his tenure, he introduced the
Debian Social Contract and the Debian Free Software Guidelines [30]. These documents
describe the moral agenda of Debian and how developers should act when contributing to
the project. The values of openness and quality were the foundation on which Debian was
built. As a result, the processes for maintaining and releasing software packages within
Debian reflect their core beliefs.

3.1 Debian Packages

For Debian to be as successful as it is today, volunteers have been tasked with the job of
taking open source software and packaging it. The packaging process integrates each new
package with Debian’s existing infrastructure and enables simple installation for potential
users. Packages in Debian come in two flavors: source and binary. A source package can
generate one or more binary packages. The sources are what Debian developers work with
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and upload, while the binary packages are meant for the end user to download and install
(Figure 3.1). Only the binary packages have relations and dependencies to and from other
binaries. For the term packages, we generally refer to source packages in Chapter 4 when
exploring Debian’s evolution. In Chapter 5, we shift our focus to binaries when conducting
research on Debian’s architecture and so the term package will refer to binary packages.

To help with the task of packaging software, Debian has (an implementation of) a
package management system. All package management systems contain three main parts:
the package format specification, the package handler and the manager itself. In Debian’s
case, packages are specified in a .DEB format, the package handler is called dpkg and the
package manager is called APT. Other package management systems are made up of other
tools with their own strengths and weaknesses, but all accomplish the task of package
maintenance. Although package managers are powerful, they are unable to automatically
detect conflicts and dependencies to and from packages. This information must be manually
specified in the control file stored in the DEB file.

The control file is the metadata that is associated with each package. It includes the
inter-relationships describing the static requirements for the package to run. Requirements
are listed in terms of other packages with possible restrictions on the version number. The
list below summarizes the different relations between packages that can be specified.

e Depends: Packages specified under the depends field are absolute dependencies and
therefore must be installed. Otherwise, the depending package will not be usable.

e Recommends: At times, a package may require another. The software to be installed
could work, but not without limitations in functionality.

e Suggests: The software could be enhanced by the presence of other packages. For
example, a package containing higher resolution fonts is suggested.

e FEnhances: Similar to Suggests but works in the opposite direction. It is used to
declare that a package can enhance the functionality of another package.

e Provides: The package may provide the functionality of another.

e Conflicts: Packages listed in this field cannot coexist with the package declaring the
conflict.

e Replaces: A package may supercede parts of another package. Installed packages
cannot be overwritten unless explicitly stated in this field. In certain situations such
as when newer packages are renamed or when monolithic packages are split up, the
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older version must be replaced. Most often, this field is used in conjunction with the
Conflicts relation.

The interaction between packages can be complex with a variety of different relations.
This thesis will focus on the depends relation. The depends relation is by far the most com-
mon relationship and arguably the most important. The ability to manage dependencies
is the basis of Debian and we explore it further in this thesis.

3.2 Lifecycle of Debian Packages

In order to explain the lifecycle of a source package, the process in which packages get
uploaded and moved around in Debian must first be understood (Figure 3.2). Free and
open source software is created to be used on a variety of platforms by people whom Debian
calls the upstream developers. The people who package the software for Debian are called
maintainers and are usually not a part of upstream development. Maintainers take the
upstream source and through a series of steps create a Debian source. Each individual
package that a maintainer creates can be identified through the package name and version.
The version of a Debian source consists of the upstream version followed by a hyphen and
then the Debian version. For instance, package ABC 1.0-1 is the first Debian release of
ABC. If the package has a bug which gets fixed, then the new version will be ABC 1.0-2
since the upstream source stays the same. If the upstream source later gets updated to
version 1.1 then a new package is released labeled ABC 1.1-1. We consider every unique
package name and version to be an individual package with its own time of upload (birth)
and removal time (death). Packages with the same name, but different versions will be
defined as a package family in order to distinguish between the two concepts. For example,
package ABC 1.0-1 and ABC 2.0-1 are considered two separate packages, but belong to
the same package family.

Once the maintainer has done the necessary work to transform the upstream source into
a Debian source and binary, the package can now be uploaded onto the Debian servers so
that users throughout the world can download and install this particular piece of software.
While anybody is able to create a package, only select members of the Debian community
have upload rights. These people are the Debian developers, who have gone through a
lengthy application process to achieve this title.

The Debian repository consists of three main distributions called: unstable, testing
and stable. See Figure 3.2. When a package first gets uploaded, it will appear in the
unstable distribution. After 10 days without any release critical bugs, it will low down
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into the testing distribution. The package does not get deleted from unstable, but rather a
pointer to the package is made in testing. After a period of roughly 1.5 years, the testing
distribution becomes frozen. In this state, no new packages from unstable can flow into
testing unless they include release critical bug fixes. These bug fixes are manually checked
by the release team to make sure no other bugs are introduced. Around six months later
and once the count of release critical bugs reaches zero; the frozen testing distribution will
be released as stable. At this point, a new version of testing will be forked from unstable
and the community will once again start working towards the next stable release.

The distribution that Debian recommends its users install is the stable distribution,
since it is the most mature with the smallest number of bugs. The down side is that the
packages found in stable can be quite outdated and so users who prefer up-to-date software
and do not mind the occasional bug choose to install the unstable distribution. The testing
distribution is less buggy than unstable, but when a package in testing does break, it could
take weeks or even months before there is a solution available. This situation occurs when
the unstable version is continually replaced. The ten day grace period is never reached and
the latest version never gets to opportunity to move out of testing.

11
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Chapter 4

Life and Death of Software Packages

In this chapter, we explore source packages from their inception to when they are removed
or replaced. By studying the life and death of all the packages involved with the Debian
software collection, we are able to get a sense of how the system is evolving. Figure 4.1
overviews the different stages a package goes through once it gets uploaded to the Debian
repository. Each package starts out in the unstable repository and if there are no issues, it
will proceed to testing and then finally stable. At any point in time, a package could get
removed or replaced which would signal death. Besides studying the lifecycle of packages in
detail, we also examine different attributes that are produced during a package’s lifespan.
These are: maintainer information, bugs, age and popularity. Looking at the attributes
for each individual package does not tell us much about the software collection, but when
exploring the attributes through the entire set of all uploaded packages, we learn a lot
about how the collection is changing. For example, we can determine the number of new
maintainers that join and contribute to Debian on a yearly basis. Or, the rate of incoming
bug reports compared to previous years. Studying the evolution of Debian opens the doors
to many other research questions. It can also determine weaknesses that can be addressed
by those in charge of the collection.
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4.1 Methodology

This study was performed using the Ultimate Debian Database (UDD) [29]. The UDD
was created to solve the intrinsic difficulty in correlating distribution data to package and
maintainer metrics. The authors of the UDD proposed it has a QA tool for maintainers
and also as a research tool for those who wish to data mine Debian. Currently, only a
couple other studies have made use of the UDD [21][9], as explained in Chapter 2. Java
code was written to extract the content from the database and to perform the necessary
processing on the data. The results from this thesis come from the version of the UDD
downloaded on February 1, 2012.

4.2 Birth of Packages

Debian is a large distribution with over 22,000 source package families available for down-
load in its current stable distribution. But on a package to package basis, how many are
being uploaded into Debian yearly? We define the birth of a package as any new package
uploaded onto Debian; this includes both updates to an existing package or a new package
that has never appeared before. Figure 4.2 summarizes our findings where we noticed that
since 2004, the number of packages being uploaded (added to Debian) per year have stabi-
lized at around 30,000. Since 2001, there have been at least 25,000 packages uploaded /year.
This means that the birth rate of new packages within Debian has been roughly the same
for the past 10 years.

An important point in Figure 4.2 is the big jump in upload activity from 2000-2001
when package uploads went from just over 10,000 to 25,000. We hypothesize that this
increase is the result of a couple of factors that occurred in late 2000. Firstly, Debian
made major changes to the archive and release management software. New “package tools”
were introduced to help developers with the packaging process. The testing distribution
was introduced for a relatively stable staging area for the next stable release. Secondly,
developers began holding an annual conference called DebConf with talks and workshops
for developers and technical users. We conjecture that this conference attracted a number
of new people who then contributed to Debian.

Figure 4.4 breaks down the numbers in Figure 4.2 by using a more fine-grained time
scale. Each column represents one month rather than one year. By presenting the data
in this fashion, we learn more about when developers are uploading packages. Certain
periods of time produce a greater number of new packages than others. Figure 4.4 exhibits
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noticeable hills and valleys: periods where upload activity are higher or lower than average.
At a quick glance, there does not seem to be any pattern as to why this occurs. Upon
closer inspection, there does appear to be a correlation between the hills and valleys to
Debian’s release cycle; see the lines that point to valleys in Figure 4.4. Each dip in the
graph occurs when Debian’s testing distribution is frozen. This is when no new packages
from unstable can enter testing and thus will not be in the next stable distribution. When
the new stable version of Debian is released, the number of new packages arriving into the
system shoots back up.

Development of software upstream is independent of Debian, yet when Debian is frozen,
the upload rate of new packages is about half as much the usual rate (Figure 4.4). We are
not quite sure why this is the case, but developers could feel less motivated by the fact
that any new packages they create will not make it into the testing and stable distribution
for a long time. Another explanation could be that developers are spending their time
fixing bugs during this freezing period and therefore are too busy to create new packages.
Further research may determine more precisely the source of these hills and valleys.

Figures 4.2 and 4.4 show the total number of individual packages uploaded. We now
ask: What is the percentage split between new package family births and package births
that are updates to a pre-existing one? New package families in Debian are graphed in
Figure 4.3. It appears that Debian is receiving an ongoing influx of new package families.
Comparing the numbers to Figure 4.2, we determine that 7.5% of all uploaded packages are
new ones, while the other 92.5% are updates to a pre-existing package. In the most recent
year, there were over 2800 new package families that entered Debian. This represents a
49% increase over the average rate of 1885 new packages per year. The year before that,
only 1791 new packages were uploaded, so it makes it difficult to predict how many new
packages to expect next year. But over the past three years, the rate of new incoming
package families has been increasing. This means the selection of packages that a Debian
user can install from is increasing.
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4.3 Death of Packages

Software is not usually immortal and thus does not tend to live on forever. Rather, software
is constantly changing; it can be an updated version with bug fixes and new features, or a
brand new piece of software that renders an older one obsolete. Therefore, package death
can occur in two ways in Debian: First, through a forced removal by the ftp master, or
secondly through replacement when a newer version is uploaded.

We will first examine package death through forced removal. Packages are not removed
from Debian unless there is a request with a stated purpose. These requests normally
come from the maintainers of the package or the QA team for reasons such as bugs, lack of
commitment to the package or obsolescence. In addition, there is a script called auto-cruft
which automatically sends a removal request if it notices an anomaly in the system in
terms of dependencies or naming. These motives are documented and the removal is done
by the ftp master.

Figure 4.5 presents the number of source package deaths (through removal) per year
for the three main distributions (unstable, testing and stable). The number of packages
removed appears to be fairly steady on a yearly basis. One would assume that as more
packages accumulate in the system, we should see an increase in the removal of older and
obsolete packages. However, the data suggests otherwise. This means that for the most
part, once a package gets uploaded to Debian, there is small chance of it being completely
removed outright from the system. In other words, packages have the potential to live
very long. Table 4.1 shows the breakdown of where source packages were removed. The
majority of source deaths occur in the unstable distribution which means once a package
flows into testing and stable, the chance of it being removed is very slim.

Besides an obvious removal from the system, software packages are also considered to
die when a newer version is updated. We noted earlier that 92.5% of all new package
uploads are replacing an older version. While packages have the potential to live for a long
time; this does not happen often since the packages are constantly being replaced by newer
versions. For example in 2011, if we subtract the number of new package family uploads
to the total number of uploads, we discover that 30,077 packages were replaced that year.
This means that 30,077 older packages were deleted and removed from Debian. Are certain
package families skewing this number with very rapid releases or are all packages updated
at a fairly regular interval? We will take a look at this in the next section which discusses
package age.
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Table 4.1: Breakdown of Package Deaths by Removal From 2001-2011

Debian distribution | Number of removed packages
Stable 115

Testing 64

Unstable 8908
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4.4 Package Biography

4.4.1 Package Age

With the information of when packages enter and exit the system, one useful attribute to
come from the data is package age. The age of a package is one of the four attributes that
helps tell the story of each individual package. Examining the entire set of all packages
helps us to learn about how Debian evolves.

Package Lifespan

A long life span could mean that the package is mature and stable, while a shorter life span
can signify that a package is gaining new features and therefore less stable. Figure 4.6 takes
all the packages uploaded since 1998 and displays them in descending order according to
how long they live. Figure 4.6 shows that many packages have a very short lifespan. For
example, 23172 or 7.01% of all packages get replaced /removed (die) after only one day and
12485 (3.78%) are gone after two days. For this reason, we say Debian source packages
have a high infant mortality rate. Almost half of all packages die within their first month
of existence. This suggests that developers are very aggressive in releasing software with
minimal time spent testing. Table 4.2 provides an overview of the age on all the packages
that have died in Debian. It reveals that 88.15% of packages live less than one year. We
conclude that a number of Debian source packages have very short lifespans.

It follows that, Debian packages are updated quickly. It could mean that packages
get frequent updates from the upstream developers. It could also mean that packages
are found to be buggy and a fix is uploaded immediately. Either way, this is a sign
that rapid development is occurring. The one risk of such fast package turnover is the
introduction of system breaking bugs; which can render the system inoperable and unable
to boot. However, users of Debian unstable are prepared for this possibility and the stable
distribution almost completely mitigates this risk with its extensive testing period.

Current Package Age

The above section explored the lifespan of every source package to be uploaded onto Debian.
What about the packages in Debian today? The population pyramids in Figures 4.7 and 4.8
present the age of packages within the three different Debian distributions as of February
1st 2012. Figure 4.7 compares the age of packages in testing to unstable. At first glance,
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Table 4.2: Lifespan of all source packages

Age (years) 0-1 2-3 34 | 45 5-6 6-7 | T7-8
Package Count 291005 | 20485 | 7160 | 3590 | 1711 | 1354 | 970
Percentage of total (%) | 88.15 | 6.2 | 2.17 | 1.09 | 0.52 | 0.41 | 0.29
Age (years) 8-9 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 13-14
Package Count 818 881 762 654 189 430 125
Percentage of total (%) | 0.25 027 | 0.23 | 0.2 | 0.06 | 0.13 | 0.04
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unstable and testing seem nearly identical. However, there is a difference near the bottom
which shows that a greater percentage of unstable packages are younger than those in
testing. This makes sense since testing should mirror unstable closely when it is not in
its frozen state. Moreover, only packages that reach 10 days old will be made available to
testing. This explains why unstable contains a greater percentage of very young packages.

The shape of the population pyramid resembles a triangle with a wide base and a
narrow top. This indicates that the population is quite young and coincides with the data
regarding package lifespan. While we know that most packages have a very short life, this
does not mean that all the packages are constantly being updated. In fact, the population
pyramid tells us that 11% of packages in unstable are younger than one month. Comparing
this dataset with the data on package lifespan, we now know that Debian developers update
a particular package many times over a short time interval. After the rapid updates, there
will be an extended break before the package gets updated again. It is plausible to assume
that a developer might try to get the latest upstream version onto Debian as soon possible
while spending the next couple of days improving how the package is organized and fixing
any bugs that may appear.

The contractions and expansions in the population pyramid correlate with when uploads
occur. In Figure 4.4, we noticed that there are fewer package uploads when Debian is
gearing up for its next stable release. One major contraction from the bottom occurs on
February of 2011, which was when Debian 6.0 was released. Another contraction came
February 2009 when Debian 5.0 was introduced. This figure once again shows that Debian
developers do not like to upload packages when the testing distribution is frozen. For the
packages that were uploaded during this time, there is a good chance that it has been
updated more recently. For these reasons, not many packages introduced from this time
period remain.

Figure 4.8 shows the current age distribution of packages in stable compared to testing.
Unlike how packages flow from unstable to testing, stable only gets released approximately
every two years. Since the stable distribution was released one year ago from when we
gathered the data, it makes sense that all packages are at least one year old. Packages
in stable are not as up to date as those in testing and unstable. Installing the stable
distribution of Debian means that as time goes on, the distribution will become more and
more out of date. Even installing stable on the first day of release does not guarantee
the latest packages because the frozen period prohibits new packages from entering. In
contrast, the unstable distribution contains mainly new packages that are up to date with
the latest features from the upstream developers. Figure 4.8 does a good job visualizing
the central difference between testing and stable as it shows exactly how much older the
packages in stable are compared to testing.
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4.4.2 Debian Package Maintainers

Package age is just one part of the package biography; another attribute that we examine
are the people who maintain the packages: the Debian developers or maintainers. There
have been a number of studies regarding maintainers. One paper looks at how volunteer
work affects quality assurance using Debian as a case study [27]. Another one performed by
Robles, Gonzalez-Barahona and Michlmayr examines how Debian developers differ when
compared to developers in a corporate environment [32]. They concluded that there are
no formal ways of forcing a developer to assume any given task, but voluntary efforts seem
to be quite stable. The mean life of volunteers in Debian was found to be larger than in
many software companies, which has a clear impact on the maintenance of the software.

All Debian packages must have the name and email contact of its maintainer embedded
in the package metadata. Most maintainers use their @debian email address when creating
a package; so we assume that each unique email recorded maps to a separate maintainer. In
order for Debian to grow and sustain itself, there must be a healthy number of developers
working on the system. Figure 4.9 charts the number of new maintainers on a yearly basis.
There is an average of 360 new maintainers per year over the last ten years. The number
of new maintainers seems to be trending down; but it is hard to draw conclusions on the
consequences of this type of downward movement. We know that the number of packages
being uploaded annually is relatively steady and there are no sharp declines in maintainer
activity. Therefore no apparent negative consequences are seen, but if this trend continues
into the future, then we know that Debian is having a problem attracting new developers.
Moreover, 2001 was a good year for Debian with an explosion in package upload counts
(Figure 4.2). To facilitate the man power required to produce so many packages, there was
also a huge influx of maintainers to Debian that same year. This is evident in Figure 4.9,
which shows that the count for 2001 more than doubled the previous year’s new maintainer
count.

We have the data for the rate of new incoming maintainers, but what about the rate
of maintainers leaving Debian? This is a more difficult question to answer since Debian
developers are all volunteers and are not required to declare retirement. Thus we try to
answer this question from the perspective of maintainer inactivity. Figure 4.10 shows that
within the past year, 1793 developers created and uploaded a package. We will assume
that these are the active developers of Debian. In the year before that, 372 developers
became inactive since the last package they uploaded was over a year ago. This type of
measurement is not precise because there is no telling when a developer might become
active again, but they do give a good idea of the number of maintainers who stop working
on new packages. Over the past ten years, the average number of maintainers who have
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Figure 4.9: New Incoming Debian Maintainers

become inactive per year is 290. Comparing this with the influx of new maintainers, we
have a net gain of 70 maintainers each year.

We know that there is an increasing base of active Debian maintainers, yet the number
of packages produced per year has been quite stable. There is no discernable correlation
between maintainer count and upload count. In order to figure out why, we take a closer
look at the number of packages each maintainer uploads in Figure 4.11. The graph in
Figure 4.11 is very top heavy; a small number of maintainers upload a tremendous number
of packages. Figure 4.12 offers a zoomed view of the number of package uploads performed
by just 1% of the Debian developer population. This group of 49 maintainers is a fraction
of the nearly 4900 maintainers that have contributed to Debian, yet they account for over
27% of all uploaded packages. With such a high amount of activity, these maintainers are
likely a team of people working together to produce the packages. The maintainer team
working on the Perl packages is the busiest with 9996 packages uploaded. It would be
interesting as future work to study how these groups function to see how and why they
update packages at such a rapid pace.
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4.4.3 Packaging Bugs

During a package lifespan, another key attribute from the package are bug reports. Bug
reports are handled through the Debian bug tracking system (BTS). The BTS consists of
a set of scripts which maintains a massive database. As of February 2012, there have been
over 630,000 bugs filed. The primary purpose of the BTS is to get packaging bugs noticed
and fixed. If a bug has an upstream error, then it will get forwarded to the upstream
developers who wrote the source code. Surprising, only 35,000 of the 630,000 bug reports
have been forwarded which means the remaining 595,000 bugs are related to the Debian
version. Figure 4.13 provides a look at the bugs reported per year. We noticed that since
2004, there has been a decline in bugs reported per year. A downward trend could just
mean that less bugs are being reported, but it could also signify that developers are getting
more experienced with creating packages and are producing higher quality packages overall.

The BTS automatically archives all fixed bugs if there is no longer any activity within
the bug report after 28 days. Currently, 547,000 of the 630,000 bug reports are archived
and cannot be opened again. Unfortunately the UDD loses some of the bug report data
once it gets archived. More specifically, we are no longer able to tell from which distribution

29



70000

60000

50000

40000

30000

Bugs Reported

20000

10000

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Year

Figure 4.13: Bug Reports by Year

the bug report was filed for. The active bug reports still contain this piece of information
and so we can chart the number of bugs across the three distributions. It is widely believed
that the stable release of Debian is solid while unstable is more suitable for those who don’t
mind some instability in their system. Figure 4.14 provides the numbers of the active bug
reports based on which distribution they are affecting. It is surprising to see that there is
not a larger difference between the three distributions. One explanation could be that we
are not using the archived bug reports. We know that the lifespan of unstable packages
are usually quite short and that could also be the case for bugs that only affect unstable.
This would mean that all of these reports that affect unstable would have already been
archived because a newer version of the package would have replaced the older version.
This is only a hypothesis, but could offer some insight into why the number of active bug
reports is similar across the different distributions.
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4.4.4 Package Popularity

The people at Debian like to keep track of the more popular package families so that they
can include them on physical media to distribute to users. The method they use to gauge
popularity is through the popularity contest package that users are asked to install. This
package works by running a daily cron job that records new package installations, recently
used packages and recently updated packages. The data is then uploaded onto the Debian
servers once a week. Unfortunately only the present popularity data is available and we
were unable to obtain the historical popularity information on the package families. It
would have been interesting to chart any rises and falls in popularity compared to factors
such as updates and bugs. Regardless, the data on the current popularity of packages is
still valuable.

There have been two published papers that analyze package popularity in great detail
in order to try to relate it to bug count. The first, performed by Davies, Zhang, Nussbaum
and German wanted to determine a relation between bugs and popularity, but were unable
to do so [9]. However, they remain optimistic that a correlation can be identified through
future work. In a separate study, Herraiz, Shihab, Nguyen, and Hassan concluded that
only very popular packages contain a high level of defects and that there is a popularity
bias; defects will only be discovered if people use the software [21].
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Figure 4.15: Popularity vs. Upload Count

We try to make use of popularity from a different angle by trying to correlate it to
package updates. Figure 4.15 shows that there is some correlation between the number of
times a package is updated and its usage count. A calculation of the Spearman correlation
coefficient gives a value of 0.37 which means that there is some positive association between
the two, but a deeper analysis needs to be completed before we can make firm conclusions.
A previous study shows that Debian bugs highly correlate with package updates [9], which
makes sense because new code often means new defects. This creates an interesting dy-
namic between popularity, updates and bugs. Could it be that it is not always popularity
that is causing higher bug counts, but rather the frequent updates? More work needs to
be done to determine how these three variables relate to each other and whether we can
identify a cause and effect rather than merely discover the existence of a correlation.
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4.5 Summary

In this chapter we examine the evolution of Debian as an example of a large scale software
collection. A longitudinal study was performed in order to analyze the life and death of
Debian source packages. By looking at software collections from the perspective of their
individual parts (package biography) and their behavior over time, we gain an understand-
ing of how the collection evolves as a whole. With the birth rate of packages, we noticed
that they have been stable at around 30,000 package uploads per year. Apparently, Debian
developers are conscious of when the next stable release will occur and will shy away from
creating new packages when the testing distribution is frozen. When examining package
death, we observe that the majority of packages do not get removed outright, but instead
are replaced by a newer version. The average life span of a package is short with a high
chance of infant mortality. The large number of incoming and outgoing packages suggests
that Debian is evolving at a very rapid pace. Packages are consistently getting updated
and each day brings numerous changes to the system as a whole. However, this can be the
cause of defects which creates system instability. To solve this problem, Debian releases a
stable version every two years which is free of all known release critical bugs. To help us
further understand the evolution of this vast software collection, we review four attributes
resulting from the lifespan of source packages. These are package age, package maintain-
ers, package bugs and package popularity. Package age tells us that of all the packages
uploaded to Debian; over 88% do not live to be more than one year old. We also looked
at the age of packages in unstable, testing and stable distributions separately and found
that testing mirrors unstable except for the very new packages. While packages in stable
remain old until a new release is made. Investigating the people who upload and maintain
packages reveals that the number of active maintainers grows every year. It also reveals the
fact that a large volume of package uploads belong to a very small subset of maintainers.
Packaging bugs were shown to be on the decline since 2004. Finally, we learn that package
popularity has a small correlation with update rate. Popularity plays a role in how the
individual parts of a software collection evolve, which in turn affects how the collection as
a whole evolves. In this chapter, we present numerous trends about the Debian software
collection. We learn that software collections grow in size regardless of how large they have
already become and existing packages are constantly updated to provide the user with the
latest software.
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Chapter 5

Architecture of Debian

The previous chapter explored the evolution of Debian by examining source packages.
This chapter will look at how the binary packages interact with each other to understand
the architecture of Debian. Binary packages contain dependencies on other binaries; this
is how we determine the interactions among packages. To effectively describe Debian’s
architecture, we came up with a set of patterns that can be used to classify the packages.
Figure 5.1 gives an overview of the different package patterns. At first, packages can either
be classified as part of the layered pattern or the hermit pattern depending on the number
of incoming and outgoing dependencies. Once found to be a part of the layered pattern,
the package can be further classified into a specific layer. Two automatic classification
techniques are also presented to provide the number of packages belong to each pattern
and layer.

Packages that belong to the application layer are different from the other layers. The
dependencies among packages within this layer can provide a lot of information about how
a particular application is structured. The different ways of structuring applications is
described through five subpatterns. These subpatterns are design choices made by package
maintainers. By introducing these patterns, we can provide inexperienced maintainers
with information about patterns to use and ones to avoid. Finally, this chapter will also
explore other ways that packages can interact with each other. At the code level, research
by others has been done to show that release history can help identify coupling among
software elements [12]. We extend this idea to software collections to see if there are
hidden coupling among packages that are not already expressed as dependencies.
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5.1 Visualizing Debian Packages

Debian is a huge system filled with a large number of packages. The nature of the de-
pendencies in Debian lends itself well to visualizations in the following way. Each package
represents a node in a graph and each dependency represents an arrow to produce a di-
rected graph. Drawing the directed graph helps to create a firm intuition of how Debian
packages interact with each other. To manually draw and organize over 30,000 packages
with 120,000 dependencies is close to impossible and so we relied on software to help with
the visualization. We take the dependency data from each package and then consolidate
the data into a single file. The data was fed into LSEdit from the SWAG lab at the
University of Waterloo. LSEdit is a graph visualization tool for viewing, manipulating,
querying, laying out and clustering of large graphs [38]. However, due to the sheer volume
of packages and dependencies; the output was incomprehensible.

After this unsuccessful attempt at visualizing Debian, we decided to scale down and
look at individual applications and their dependencies. A tool called debtree developed by
Frans Pop extracts all the dependencies for a particular package then then outputs a graph.
These graphs are large and messy, but much more manageable than trying to look at the
entire set of packages at once. Figure 5.2 is an example of a directed graph illustrating the
dependencies required for the photo editor GIMP. The top most node is the GIMP package.
It has dependencies to a set of packages where the names also begin with GIMP. This leads
us to suspect that these packages have a close relation with GIMP’s functionality. At the
bottom of the graph, common packages such fontconfig or x11-common show up. At first,
the graph seems extremely large and difficult to decipher, but looking up the functionality
of each package involved provides insight into why these packages are required to run
GIMP. Visualizing packages and detailing the functionality of their dependencies allows
us to understand the inner workings of what makes the package run. This procedure
was applied to a variety of other packages. After examining 20 other packages in detail,
we noticed they all shared one of two basic architectural patterns (explained in the next
sections).

5.2 The Layered Pattern

From Figure 5.1, we see that packages can be classified into the layered pattern or hermit
pattern. Packages that belong to the layered pattern are the individual pieces that con-
tribute to the overall application. We found that it is possible to sort a package contained
in the layered pattern into one of five layers: metapackage, application, application library,
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Figure 5.2: Dependency Graph of the GIMP Package
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specific purpose library and general purpose library (Figure 5.3). The arrows in Figure 5.3
represent the allowed dependencies between each of the layers. We will proceed to describe
how these groups are layered. At the top we have the metapackage layer; which only exists
for the very large applications. A metapackage depends on a collection of applications in
the same software suite such as a desktop GUI like gnome, or a game collection pack. A
metapackage is a package which doesn’t have any files to install, but depends on other files
to make sure they are installed. Since metapackages are the top layer, they normally do
not get referenced by any other package.

Packages that belong to the application layer are normally individual applications that
end users would use. Application packages can possibly have dependencies to each of the
three layers below it. Just below the application level are application libraries.

These are application specific libraries that are mainly suited to be referenced by the
associated application packages. When Debian maintainers are packaging software, a cou-
ple of factors will motivate them to split up the application level package into one or more
application library packages. For instance when there are multiple applications in the same
software suite, often there will be shared functionality. Instead of duplicating this func-
tionality into various application packages, maintainers can opt to create separate library
packages that are installed separately. Another reason why maintainers want to create an
application library is if they feel it might be of some use to other packages. There may
be API calls or other functionality that new packages can build upon. Next in the hier-
archy are specific purpose libraries. These are widely used libraries that provide a specific
functionality. For example if the application uses XML, it is likely to reference a package
called 1ibxml2 in order to parse XML documents.

At the bottom layer we have general purpose libraries. These are the packages that
provide the basic functionality required by various applications and may be referenced by
the many other packages. Packages such as 1ibc6 which contains the standard C libraries
or fontconfig which provide system-wide font configurations are examples of general purpose
libraries.

In order to more fully illustrate the layered pattern of Debian packages, the popular
application Open Office will be used as an example. Open Office is an office productivity
suite similar to Microsoft Office. When one installs the openoffice.org package, there
are 43 other packages that must be installed to satisfy 165 dependencies between them.
Listing all the dependencies and classifying each of the packages based on the layered
pattern would be too lengthy. Instead, we will use Open Office to provide examples of
packages that fit in each layer as shown in Figure 5.4.

At the metapackage level, we have openoffice.org. This package contains (depends
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on) the entire office productivity suite. Some examples of the dependencies from openoffice.org
are Writer, Draw and Calc. Writer is a word processor similar to Microsoft Word, Draw

is a paint too used to create graphics and Calc is spreadsheet application. Each is shown

in Figure 5.4 in the second layer. These application packages depend on libwpd8c2a,
1ibwpg-0.1-1 and 1ibhyphen0. Libwpd8c2a helps handle the wordperfect format, 1ibwpg-0.1-1
imports/converts wordperfect graphics and 1ibhyphen0 is a hyphenation and justification
library. For the specific purpose libraries, we have 1ibcurl3-gnutls which is a portable
multi-protocol file transfer library, 1ibhunspell-1.2-0 which is a spell checker with a mor-
phological analyzer and 1ibgstreamer0.10-0 which is a media streaming framework that

can process sound and video. In general, the application libraries are the packages which are

only referenced by their associated application level package, while specific purpose libraries

can be referenced by a larger number of applications. For example, 1ibhunspell-1.2-0

is also used by the package “mine”, a comprehensive text editor.

The general purpose libraries normally deal with lower level complexity and are widely
depended upon. In the Open Office example, we have 1ibc6 which contains the standard
C functions. Libuuidl generates 128-bit unique ids and z1liblg is a compression zipping
library. This example using openoffice.org provides a deeper look into the content and
role of each layer.

5.3 The Hermit Pattern

Besides the five package layers, there is an additional group of packages that do not fit
the layered model. We label these as the hermit packages. For a package to be classified
as a hermit, it must have no dependencies to other packages nor dependencies from any
package. Many packages that belong to this group contain only data or text. However,
it could also be the case that the package is a lightweight application. In fact, a good
number of packages in Debian do not contain a single dependency or reference. Hermits
are isolated packages that do not interact with other the other packages of the system. For
example, the package openoffice.org-dev-doc is a hermit as it contains no dependencies
or references. This package is merely documentation on how to use the openoffice.org
SDK.
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Figure 5.4: Layered Patterns of Open Office
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5.4 Automatic Classification of Package Layers

We have described the layered pattern and the hermit pattern to show how packages are
organized. Now we will explore the overall composition of Debian. In order to tackle this
problem, we investigate the hermits and the five layers in more detail; more specifically,
the makeup of each layer and how they interact with one another. We take the entire set
of Debian packages and assign each package to a layer or as a hermit. Doing so provides
an overview of Debian’s structure. For instance, if the majority of packages are general
and specific purpose libraries, we could categorize Debian as a bottom heavy software
collection. Alternatively, if we discover that most packages are at the application level,
then Debian would be more of a top heavy software collection.

In Figure 5.4 we manually classified packages into one of the five layers by using the
description of the packages. But to classify over 30,000 packages by hand is not feasible and
so we sought out a way to accomplish this task automatically. Throughout the process of
manually classifying, we noticed many of the same general purpose libraries were referenced
over and over again. At the same time, packages at the application library level and above
were seldom referenced. This observation led to the counting of the In, Out, Transitive In
and Transitive Out degree of all the Debian packages. The In degree of a package is the
number of other packages that directly depend on it. The Out degree counts the number of
direct dependencies to packages. Transitive In counts the number of packages that directly
or indirectly depends on it. For example, if Package A depends on Package B and Package
B depends on Package C, then Package C would have an In degree of 1, but a Transitive
In count of 2. Transitive Out refers to the total count of packages that are required to
be installed in order to satisfy all dependencies. Now that we have the list of all packages
along with their In, Out, Transitive In and Transitive Out count, we use two methods to
classify the packages. The first method is through simple sorting and filtering. This is an
ad-hoc procedure with the following steps:

1. General Purpose Libraries:

We first sort the list of packages based on the Transitive In count since we observe that
general purpose libraries are widely referenced. At around the 500 count, packages
no longer resemble general purpose packages and so we decide to set the threshold at
this point. Table 5.1 lists a few examples of Transitive In counts for general purpose
libraries. Libc6 has a count of 19,724, 1ibuuidl is 595 and z1iblg is 11056. When
sorting all the packages based on Transitive In count, we notice that the high counts
are all general purpose libraries. At around the 500 count, the packages we inspected
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no longer seem to function as a general purpose library, therefore we set the threshold
at this number.

2. Hermits:

Now, we begin to identify hermits. These are the isolated packages and so packages
with a combined In and Out degree of 1 were tagged. We set the threshold of the
In and Out degree to 1 instead of 0 is because small lightweight applications still
depend on the standard C libraries in order to run. These applications with the single
dependency are still considered hermits since there is no meaningful dependency
structure.

3. Metapackage and Application Level:

With the hermits out of the way, the packages that have an In count of less than 5
and a Transitive Out count of greater than 30 will be considered a part of the meta-
package layer or application layer. Applications normally tend to have few references,
but depend upon many other packages. Metapackages and applications are at the
top layer and therefore depend on application, specific and general purpose libraries
to function. Hence, these top layer packages will always have a larger Transitive
Out count than library packages. We also decide to combine the metapackage and
application level packages as one group because metapackages are not encountered as
often. Moreover, it is almost impossible to distinguish the difference between these
two groups based on the In/Out degree.

4. Specific Purpose Libraries

To filter for specific purpose libraries, we look for packages with an In degree of
greater than 15 or a Transitive In count of over 100. From applying our previous
three steps, the packages we are left with now also have a Transitive In count of
less than 500 and a Transitive out count of less than 30. This fits the description
of a specific purpose library because they are less often referenced than by general
purpose libraries and normally has a small Out degree.

5. Application Libraries

The remaining packages are now labelled as Application libraries. These packages
have an In degree of less than 15 and a Transitive Out degree of less than 30.
Application libraries tend to have small In and Qut degrees due to their limited use.

Overall, the described procedure is ad-hoc and only done to provide an estimation
of the size of each package layer. Table 5.1 summarizes the In, Out, Transitive In and
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Transitive Out degree count for the packages listed in Figure 5.4. Most of the manually
classified packages also appear to be classified to the same layer using the ad-hoc method.
The exceptions are openoffice.org-writer and libhunspell-1.2-0 which is labelled
as “incorrect” in Table 5.1. Both openoffice.org-writer and 1ibhunspell-1.2-0 were
mistaken as application libraries. From the Open Office package examples, the ad-hoc
method was able to correctly classify 10 out of the 12 packages giving us an accuracy of
83.3%. Manually identifying package layers and comparing it to our auto classification
techniques is one way to validate our algorithms. We can also tweak and refine our ad-
hoc algorithm if we knew the correct layer every package belonged to. Since manually
identifying package layers is time consuming and the accuracy of our algorithms is not
critical, there was not a significant amount of manual identification done.

Our second technique used to group the packages was to apply a clustering algorithm
to the entire set of Debian packages. Weka is an open source tool that contains a collection
of machine learning algorithms [20]. We use one of its available clustering algorithms help
us classify packages into layers or as hermits. The k-means algorithm was selected to
perform the clustering. K-means clustering is an unsupervised machine learning algorithm
for partitioning a dataset into k separate clusters where instances (of the dataset) in each
cluster are similar to each other [19]. The similarity measure in this particular algorithm
is defined as the Euclidean distance between two instances. In our case, each instance
consists of the In, Out, Transitive In and Transitive Out degree. The reason why we chose
k-means is because it is a simple and efficient algorithm to find the different behaviors
(clusters) in a dataset. The use of this algorithm is able to effectively group different
packages together based on their In, Out, Transitive In and Transitive Out degree. There
are other algorithms and techniques to consider, but the simplicity and power makes k-
means an attractive choice. We set the cluster number parameter to 5 to correspond to the
number of layers and then we let the algorithm run. The result of the k-means clustering
with 5 clusters is shown in Table 5.2. The output produced from k-means is 5 clusters
of packages that the algorithm deems to be most similar to one another. Weka does not
output which cluster a package belongs to. Therefore to extract the cluster that k-means
assigns to each package, some modifications to the source code had to be made. The added
source code prints out all the package instances and their corresponding cluster in a text

file.

From examining the connectivity of the packages in each cluster, we notice a common
theme in each cluster similar to our ad-hoc procedure. Using a similar style of reasoning to
the ad-hoc method, package layers are assigned to clusters as follows. Packages that have
a high Transitive In degree were clustered together and we therefore labeled this cluster as
the layer for general purpose libraries. The cluster where the majority of packages exhib-
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ited zero or very little connectivity is labeled as the hermits. Application layer packages
were matched up with the cluster that had a mostly high Transitive Out counts and a low
Transitive In count. The two remaining clusters were chosen to be either the application li-
braries or specific purpose libraries. The cluster with the higher Out/Transitive Out counts
and lower In/Transitive In was labeled the application library layer. The cluster with the
opposite characteristic was labeled as the specific purpose libraries. The characteristics of
the clusters output by the k-means algorithm were each notably different, and thus made
it easy to have each cluster represent a layer.

The numbers in Table 5.2 reveal Debian’s composition in terms of package patterns (and
layers). The most striking aspect is that over half of the packages in Debian are hermits.
These are packages which are isolated from the rest of the group and do not contain any
meaningful dependencies. On the other hand, the other half of Debian participates in a
top heavy layered pattern. Of the packages that belong to the layered pattern, a majority
are a part of the application level layer. This suggests that Debian contains a high number
of application software as opposed to supporting packages. While library files are often
referenced in Debian, there are not a large number of them.

Interestingly, the ad-hoc method and the k-means clustering produced similar results as
seen in Table 5.2. However, one difference lies in the specific purpose library count as there
are nearly 10 times more found with the ad-hoc procedure. The way that the clustering
algorithm works could explain why the k-means cluster that represents the specific purpose
libraries is small in size. The algorithm clusters similar packages together, therefore many
of the specific purpose libraries that we found in the ad-hoc method were considered to be
more similar to the packages in the other clusters. Regardless, this breakdown provides an
estimate of the composition of Debian and the kind of packages available to the user.

5.5 Application Subpatterns

Dependencies from the application packages on certain libraries are linked automatically;
saving the Debian maintainer time from having to specify them manually. Scripts can be
used to detect the set of packages required to fulfill the library dependencies of a program
[28]. The minimum set of Debian packages to satisfy the requirements are found by using
the list dynamic dependency (1dd) command in Linux. The Shlibs scripts in Debian creates
managed maps to translate the output into a list of dependencies. The dependencies from
the applications to the specific and general purpose libraries are not as interesting to study
as dependencies within the layers themselves because they are more a product of the code
and less a product of the maintainer’s design. For instance, dependencies between the
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Table 5.1: In, Out, Transitive In and Transitive Out Degree Example

Package Name Out In | T. Out | T. In | Ad-hoc Classification
Application

openoffice.org-writer 11 28 122 44 | application lib. (incorrect)
openoffice.org-draw 8 2 121 20 | Application
openoffice.org-calc 8 1 125 17 | application

Application Library

libwpd8c2a 3 12 4 71 | application library
libhyphen0 1 2 3 85 | application library
libwpg-0.1-1 3 6 4 33 | application library
Specific Purpose Lib

libcurl3-gnutls 7 101 26 312 | specific purpose library
libhunspell-1.2-0 3 7 4 500 | application lib. (incorrect)
libgstreamer0.10-0 3 84 8 370 | specific purpose library
General Purpose Lib

libc6 1110414 2 | 19724 | general purpose library
libuuid1 2 76 17 595 | general purpose library
zliblg 1] 1638 3 | 11056 | general purpose library

Table 5.2: Debian’s Package Composition

Package Group

Ad-hoc method

k-means clustering

Hermit
Application Level
Application Library
Specific Purpose Library
General Purpose Library

11483 (50.9%)
6225 (27.6%)
2016 (8.9%)
2602 (11.5%)
233 (1.0%)

12473 (55.3%)
8240 (36.5%)
1426 (6.3%)
276 (1.2%)
145 (0.6%)
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metapackage and application levels reveal how a particular application is packaged for
Debian. Trying to find patterns of design through the dependency text is difficult; thus
making some form of visualization necessary. We previously tried visualizing Debian’s
dependencies, but dependency graphs such as GIMP from Figure 5.2 make us doubt the
utility in doing so. However, we hypothesize that the visualization would be more effective
if we only visualize dependencies to and from the application layer. A large number of
dependencies are ones to the library packages. Without these dependencies interfering in
the visualization, the dependency graph will appear much less cluttered. Unfortunately
there is no way to display all the dependency graphs of the application layer packages in
this thesis due to the sheer number of them. Instead, we describe the trends and patterns in
packaging design from the study of these dependency graphs. We noticed that a majority
of packaged applications follow a good design principle since they allow for customizable
installations and efficient updates. However, there were also few poorly designed packages
that caught our attention. In the latest unstable release of Debian, we have noticed that
some of these packages no longer exist and have been replaced by packages that are designed
differently.

The layered and the hermit pattern describe how packages are structured in relation
to the overall software collection. In contrast, the patterns described in this section deal
with only those at the application level (Figure 5.1). These patterns are the manifestation
of how the Debian maintainer designed and laid out the particular application. Hence,
we will call these subpatterns and anti-subpatterns. Subpatterns are general solutions
to packaging software, while anti-subpatterns demonstrate the weaker methods used to
package software.

5.5.1 Application Subpattern: Commons

The first of the five application subpatterns we present is the Commons pattern. This
pattern occurs when the maintainer factors out parts from one or more packages that are
reused. For example in Figure 5.5, xpilot-ng is an application with two different clients
called xpilot-ng-client-x11 and xpilot-ng-client-sdl. Instead of duplicating code
in each of the clients and related packages, it is factored out into a separate package called
xpilot-ng-common. Saving space is important and sometimes necessary for embedded or
other low resource machines. Often times, these package names end in “common”, hence
we label this the Commons pattern. Figure 5.6 demonstrates the same pattern in a different
context. Abiword-common factors out the “architecture independent” parts from abiword.
This means that abiword-common does not need to be compiled separately for each of the
different chipsets and thus saving Debian the extra costs associated with distributing and
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Figure 5.5: Commons Subpattern Example 1

Figure 5.6: Commons Subpattern Example 2

storing more data. The idea behind the commons pattern is similar to creating a library
package, but on a smaller scale. For instance, library packages are normally intended for
a wider audience and require special packaging practices to make sure their effects on all
dependent packages are error free [28].

5.5.2 Application Subpattern: Modular

Another subpattern identified is the modular subpattern. In this pattern, the application
is split into multiple parts, where each part is largely independent from one another. When
there are frequent updates to the application, Debian maintainers need to make sure that
the new additions to the application can be applied individually. Figure 5.7 illustrates
the dependency graph of a turn-based tactical strategy game called Wesnoth. Each of the
packages that wesnoth-all depends on represents a single campaign (game level). When
the game is updated with a new campaign, the package containing the campaign will be
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Figure 5.7: Modular Subpattern

installed without much modification to the existing Wesnoth packages. If Wesnoth was
not modularized, each update would delete the existing version of Wesnoth. The updated
version would install the exact same files again but with the extra campaign included. In
general, it is important for maintainers to modularize the application they are packaging
whenever possible.

5.5.3 Application Anti-Subpattern: Spaghetti

It is uncommon to see the dependency graph of an application layer package get as cluttered
as the example in Figure 5.8. A graph such as this one with many inter dependencies is
not common, but does occur occasionally. This design constitutes as an anti-subpattern
because it is one that developers should avoid. When this spaghetti-like pattern occurs,
the high number of interlacing dependencies make it is hard to see why particular packages
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are referenced. This makes managing dependencies difficult because the maintainer needs
to have a good understanding of the functionality of each package. Maintainers do not
initially plan to have spaghetti dependencies. But over time the structure of the package
may evolve to this cluttered state through a series of updates and revisions. At some point,
the maintainers may need to restructure the packages.

5.5.4 Application Anti-Subpattern: Fully Connected

Dependency graphs in which all the packages of the application reference one another
are usually not good design. The packages of phpgroupware in Figure 5.9 constitute an
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Figure 5.9: Fully Connected Anti-Subpattern

example that exhibits full connectivity. If every package in the application depends on every
other package, it should just remain as a single package. From the package description,
each phpgroupware application package has a unique function and it appears that this
application is modular; however, the dependencies render this modularization unsatisfying
because the installation of one package requires the installation of the rest. When the
dependency graph is completely connected as the one in Figure 5.9, it may serve as a
warning that a redesign is appropriate. Splitting up an application into multiple parts in
this case is unnecessary and may cause confusion to future maintainers.

5.5.5 Application Anti-Subpattern: Monolith

There is one more anti-subpattern that we address, but it cannot be visualized like the
others, which makes it difficult to recognize. This is the Monolith subpattern and it applies
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to large application level packages. From the Commons and the Modular subpatterns;
splitting up a larger package into smaller ones is a good idea and leads to an improved
structure. Large stand-alone packages goes against this philosophy and is therefore why it
is an anti-subpattern. However, not every stand-alone package is a Monolith, since there
are many Debian packages that are lightweight and small. Applying the Commons or
the Modular pattern to these small packages would not yield any significant returns and
thus the package should remain on its own. For larger scale applications, splitting up
the package should be the job of the maintainer. It is not good practice to keep a large
application as one monolithic binary package. While monoliths are difficult for people not
involved with the package to notice, the maintainers in charge of the package should know
when Monolith anti-subpattern presents itself.

5.6 Correlation By Package Co-Change Analysis

System architecture is an extensive topic and the more we know about how the elements
interact with one another, the better our understanding of it will be. So far in our analysis
of Debian’s architecture, we have focused our efforts on the written dependencies in the
package control file. There is a possibility that software collections contain hidden de-
pendencies between its packages that are not documented. Co-change analysis via release
history is another method that has been shown in the past to unravel system architecture.
Zimmermann, Diehl and Zeller describe how revision history can tell us which parts of
the system are coupled by common changes [42]. The idea is that common changes of
entities indicate evolutionary dependencies. Whenever Part A is altered, Part B is altered
as well. The more frequently entities change at the same time, the stronger the coupling.
The information about how and why a system evolves is rooted in the revision history.
Using revision history as additional knowledge source allows for an improved assessment
of software architecture. Along the same lines, Gall, Hajek and Jazayeri pointed out that
there are hidden dependencies within software [12]. These dependencies are not exposed
by code or documentation, but rather through a software developer’s intuition and knowl-
edge. The dependencies are expressed when the developer makes changes to the entities
he or she is working with. More specifically, when a change of a certain type to one entity
is committed, corresponding changes are always made to another set of entities. They
call these dependencies logical dependencies, rather than the syntactic dependencies found
in code. All syntactic dependencies are logical ones, but finding the logical dependencies
which are not syntactic is what we are after.

The paper by Gall, Hajek and Jazayeri detected more coarse-grained coupling, while the

52



paper by Zimmermann, Diehl and Zeller looked into more fine-grained coupling. Instead of
just examining changes in the file, they also extract the functions, methods and attributes
changed. Instead of just solely looking at the date of the file changed/uploaded, they also
took into account the author, location, content and rationale. This finer-grained analysis
allowed them to better understand the commonalities and anomalies between the software
elements. Using these attributes as input into their ROSE prototype, they were able to
test it on a number of different systems. For example, the GCC compiler contained 92,948
program entities and was found to have 3,424,012 dependencies.

We explore something similar for Debian. The dependencies found within the control
files provide insight into the structure of Debian, but are there hidden dependencies that
enable us to gain more knowledge about Debian’s architecture? We answer this question
by applying the data found in the package release history. We are able to access this data
via the Ultimate Debian Database. Using the UDD, we are able to get release history as
far back as August 1998. We extract the data for each package uploaded onto the Debian
server from August 1998 to February 2012. In total, there were 354,668 entries and 25,674
unique source packages.

Similar to the studies described above, we use the concept of co-change in order to
determine coupling between packages. Our algorithm for determining coupling between
Debian packages lacks the data required to perform a more fine grain analysis like the
study done by Zimmermann, Diehl and Zeller. But our analysis should give us an idea
on the effectiveness of using release history to determine package coupling. Figure 5.10
illustrates how we implemented our co-change analysis. In this example, we have the
release history for four different packages: A-1, A-2, B-1 and C-1. A-1 and A-2 are coupled
together, but currently unbeknownst to us. We loop through all the packages and place a
one hour time window on each. This means that packages that are uploaded 30 minutes
ahead and before the current package will be grouped together. In Figure 5.10 the package
A-2 groups together A-1 and B-1. Now all other occurrences of A-2 are searched for and
their groupings based on the one hour time window are also noted. Once that is complete,
the common packages between all the groupings are related by co-change to the current
package we are examining. For package A-2, the only other co-changed package to appear
in all the groupings is A-1. This procedure is repeated for all other packages to give us a
list of co-changed groupings.

The example provided is very basic and when applied to the set of Debian packages
yields far too many co-change dependencies. In order to get more useful results, certain
thresholds need to be in place. The first threshold we can change is the timing window.
A larger the window provides a greater number of coupled packages, but lower accuracy.
On the other hand, if the window is too small, then we will miss a number of correlated
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Figure 5.10: Package Co-Change Example

packages. In the end, we decided to go with a window of one hour to give 30 minutes for
each package upload. Certain source packages are quite large and can take a long time to
upload. If we made the window any smaller, then we would have missed these correlations.
The second threshold we change is the minimum occurrence number. In Figure 5.10, only
2 version of A-2 were uploaded. Are two occurrences enough to say that the packages
are correlated? In order to ensure that the grouping is not a coincidence, we were set
the minimum occurrence number to 4. The last threshold deals with the matching ratio
between the different groupings. Do all groupings need to contain the package in order
for it to count as a correlation? Or can we set a threshold that will identify package
correlation? For instance, if package D-1 has an occurrence of 15 and package D-2 was
found in 13 of those occurrences, can we say that these two packages are correlated? Setting
the matching ratio at 100% match greatly reduces the number of correlation because there
are times when correlated packages are not always uploaded at the same time. We decided
to go with a 75% match since that ensures some correlation, but also gives some leeway for
the times where the packages are not uploaded together. The purpose of performing co-
change analysis was to see if there were any hidden dependencies in Debian and how would
it affect our view of Debian’s architecture. Therefore, the method we used to determine
these thresholds was through observation and testing. While a more mathematical and
scientific approach could have been done, we do not believe it would have affected our
conclusions on the effectiveness of co-change analysis for Debian.



5.6.1 Results From Co-Change Analysis

Overall, we discover that there were 202 source packages that had some form of corre-
lation with other source packages by co-change analysis. This is a very small number
considering we analyzed 25674 unique source packages (package families). This equates
to just 0.787% of source packages having a co-change correlation. Since there are such
a small number of correlated source packages, it is difficult to use this limited amount
of information to further help further discover the architecture of Debian. The use of
revision history helped to identify many dependencies in regular software projects. How-
ever, when it comes to software collections, it is not as effective. This is an interesting
fact since it suggests that source packages are rarely worked on simultaneously. Rather,
Debian maintainers focus their efforts only on one source at a time. For the source pack-
ages where a co-change correlation was found, what kind of packages are they? We will
provide a couple examples of source packages that were discovered from the completed
analysis. For instance, Pdlzip and clzip were found to be correlated through co-change
analysis. Both are lossless data compressors based on the LZMA algorithm. The binaries
they produce have no dependencies on each other or through any other package. Pdlzip
is the public domain version and contains a simpler implementation, while clzip is the
C language version of 1zip intended for embedded devices. These two source packages
are evidently related, and we would not have known without doing the co-change analysis.
Another example is with ruby-actionpack-2.3 which helps with web request routing and
ruby-actionmailer-2.3 which is a framework for designing email service layers. In this
case, the binaries from ruby-actionmailer-2.3 are dependent on ruby-actionpack-2.3.
Therefore the co-change analysis did not expose a new correlation. Among the 202 source
packages we found to have a co-change correlation, not all of them revealed new hidden
dependencies. Overall, the number of co-changed correlated packages is minimal and not
high enough to impact our current understanding of Debian’s architecture.
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5.7 Summary

The goal of this chapter is to determine the architecture of open-source software collec-
tions. There is a huge user base of open-source software and the number of new packages
available is growing at a staggering rate. Yet amidst this popularity, there is an insufficient
understanding on the types packages uploaded and how they interact with each other. In
this chapter, we present the notion that packages either exist in isolation as hermits or be-
long to one of five layers in a layered pattern. These layers are: metapackage, application,
application library, specific purpose library and general purpose library. Within Debian,
over half of the packages are hermits, and therefore have no major dependencies on other
packages. The other half partakes in a top heavy layered pattern. This means that the
majority of packages are grouped into the application layer, with fewer at the library level.

The many interactions between each of the layers are what cause such a large depen-
dency graph as seen in Figure 5.2. Classifying packages into their layers and only visualizing
the dependencies within each layer allows for more comprehensible graphs. The visualiza-
tion of packages in the application layer can be important because we get concise graphs
that display how the application is organized. In this visualization, the automatic depen-
dencies to the low-level libraries are removed and what remains is the packaging design
from the developer who created the packages. We present the package design principles
in the form of two subpatterns and three anti-subpatterns: commons, modular, spaghetti,
fully connected and monolith. Experienced package maintainers are aware of the best prac-
tices when packaging software. But by documenting these patterns, we hope to help new
developers produce higher quality packages that are less prone to bugs and more readily
upgradable.

We also conclude that the ways developers work with and upload source packages are
fundamentally different than with pure source code. When source code is committed to a
repository, there is usually logical coupling occurring between files which can provide insight
into the system architecture. However with Debian, we noticed a very sparse amount of
coupling among packages. Using the techniques devised in this thesis, the conclude that the
recorded dependency information in the control file is currently the only reliable method
to determine package correlation.
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Chapter 6

Threats to Validity and Future Work

In Chapter 4, our work relied on the UDD as a source of information; mistakes within
the UDD could affect the internal validity of our study. In the study of Debian package
bugs by Davis, Zhang, Nussbaum and German, they noticed certain inconsistencies such
as missing package data and missing bug reports [9]. They calculated the percent missing
to be 0.7%. While this is a small value and should not affect our results, it is something
to be aware of. Furthermore, we noticed columns in the archived_bugs table provided
the wrong information; the affects_stable, affects_testing and affects_unstable columns were
all recorded as 'FALSE’ which is not true. There were also some discrepancies with the
package upload dates. A small number of them had a date in the 1970s when Debian did
not exist and others had a date set in the far future. These far-fetched dates comprised
around 0.03% of our overall package data and were filtered out from our results. Though
these issues may be cause for concern, the size of the UDD is enormous and other small
inaccuracies should have a minimal effect on our results. As for external validity, we cannot
generalize the trends found in Debian for every type of software collection. However, based
on a quick survey of the amount of software available in other large software systems, we
know that they also grow at a very fast pace.

One of our main concerns from the work done in Chapter 5 is that there may be
more architectural package patterns than described. As mentioned, the layered pattern
was discovered by closely examining 20 different applications. There is a possibility that
there are other ways in which packages are organized. There may also be some bias
which can cause the dismissal of other package patterns. One way to solve this issue is to
gather another group of people to survey the applications within the software collection.
An alternate method we would like to implement in the future is to do interviews with
experienced Debian developers to get their insight into common patterns they use when

57



creating packages. Another threat to validity is our method of classifying the Debian
packages according to the layered pattern. We presented an ad-hoc and a k-means solution
which we believe did a reasonable job at giving an estimate on the type of packages that are
found in Debian. However, misclassifications were found, so it was not entirely accurate.
For future work, we would like to define training and testing sets in order to verify the
accuracy of our classification. With this in place, we can further refine our algorithm to
produce better results.

Lastly, we would like to address the external validity of our study. The large size and
high popularity of Debian makes it an important open source software collection. However,
this does not mean the evolution and package patterns found in Debian translate to other
software collections. From our knowledge of the other Linux distributions, we expect there
is a high chance that the others are structured similarly. Based on a quick survey of the
amount of software available in other large software systems, we know that they also grow
at a very fast pace and therefore might have the same evolutionary pattern as Debian. But
nothing is confirmed until we mine the software repositories of other software collections.
For future work, we want to address this issue of our study and explore the evolution and
architecture of other software collections and compare them to Debian. We would apply
the same techniques presented here on data from other software collections. By noting
similarities and differences, we hope to gain a better understanding of how large scale
software collections evolve and its architecture.

In a different direction, we would also like to explore Debian at a deeper level. Instead
of focusing on evolution and architecture distinctly, we would explore the evolution of
architecture. We would try to discover how Debian’s package composition changes as
the system evolves. Do packages gain more dependencies? How often do packages get
restructured and at what rate do the anti-subpatterns get resolved? Studying the evolution
of dependencies and packaging patterns can tell us more about Debian and how software
collections are structured.
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Chapter 7

Conclusions

Debian is one of the largest coordinated software collections, because of this, there is value
in improving the techniques and processes used to maintain it. Insight into the growth and
organization of this particular software collection can be beneficial to all those involved
with these types of systems. This thesis offers a first step for improvement of software
collections by observing the current state of Debian and how it has reached this point.
Our study targets packages from life to death and their attributes to see how the software
collection is affected. The facts that we learned with this longitudinal study are as follows:

e The number of package uploads has been relatively stable at around 30,000 per year,
but when the testing distribution is frozen, the rate of uploads drops significantly.
e Most packages are superceded by newer versions rather than being removed outright.

e The average lifespan of a package is short with 88% of all packages not lasting longer
than one year.

e There are an average of 360 new Debian Developers that help contribute to the
system each year.

e A majority of package uploads are performed by a small subset of Debian Developers.
e Packaging bugs are on the decline since 2004.

e Package popularity mildly correlates with its update rate.
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In addition to exploring the evolution of a software collection, this thesis also describes
its architecture. By using binary package dependencies, we derive patterns from the inter-
action of these elements. We discover the following traits about Debian:

e Packages either belong to a layered pattern or exist in isolation as hermits.

e The layered pattern contains five layers based on where they fit along a dependency
tree graph.

e The In, Out, Transitive In and Transitive Out degree can be used to help identify
which layer a package belongs to.

e Using an ad-hoc or a clustering auto-classification technique, we learn that around
half of the packages in Debian are hermits. For those packages that belong to the
layered pattern, the majority are application packages.

e Dependencies among application packages can be visualized to see how a maintainer
designed the packaging of a particular application.

e Five application subpatterns are defined based off of the application level visualiza-
tions.

e There is no significant correlation between upload history and logical coupling be-
tween packages.

Overall, the data gathered in this thesis can be useful to two groups of people: (1)
software collection contributors and (2) researchers:

1. Software collection contributors:

A subset of Debian developers are in an administrative role and make decisions re-
garding policies and procedures. They could review our observations to see if they
are in line with their vision for Debian. For instance, they may not like seeing a
slowdown in package uploads when “testing is frozen”. They may choose to imple-
ment a new process to encourage more uploads during this period of time. There
could also be a case where the policy makers feel that the extremely short lifespan
of packages is harmful for users and request that maintainers more thoroughly test
their packages before officially uploading them.
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2. Researchers:

The data provided in this study is substantial and can it provide a springboard for
many other research topics. There are a number of questions researchers can try to
answer after learning about the information presented in this study. Some examples
could include:

e Which packages have lived for over 15 years and why? What role do they play
within the software collection?

e What type of package families are updated rapidly? Can we predict them and/or
slow them down?

As a software collection grows even larger, it becomes increasingly important to see
how it has reached its current state and how the elements in the system are interacting
with each other. Doing so allows for necessary adjustments to better accommodate
the growth. Once this work is applied to other various software collections, strengths
and weaknesses of each collection can be determined and backed up with empirical
data. Policy makers can use this data to further improve how their software collection
functions.
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