
Entanglement in Non-inertial

Frames

by

David Cecil Murphy Ostapchuk

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Science

in

Physics

Waterloo, Ontario, Canada, 2008

c© David Cecil Murphy Ostapchuk 2008



I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

David Cecil Murphy Ostapchuk

I understand that my thesis may be made electronically available to the public.

David Cecil Murphy Ostapchuk

ii



Abstract

This thesis considers entanglement, an important resource for quantum infor-

mation processing tasks, while taking into account the theory of relativity. Not

only is this a more complete description of quantum information, but it is

necessary to fully understand quantum information processing tasks done by

systems in arbitrary motion.

It is shown that accelerated measurements on the vacuum of a free Dirac

spinor field results in an entangled state for an inertial observer. The physical

mechanism at work is the Davies-Unruh effect. The entanglement produced

increases as a function of the acceleration, reaching maximal entanglement in

the asymptotic limit of infinite acceleration.

The dynamics of entanglement between two Unruh-DeWitt detectors, one

stationary and the other undergoing non-uniform acceleration, was studied

numerically. In the ultraweak coupling limit, the entanglement decreases as a

function of time for the parameters considered and decreases faster than if the

moving detector had had a uniform acceleration.
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Notation and Conventions

The units used are such that ~ = c = 1

Metric signature: −+++

The Minkowski metric is denoted: ηµν = diag(−1, 1, 1, 1)

An arbitrary metric is denoted: gµν

Three vector: x

Four vector: x

Operator: Ô

Greek indices run from 0 to 3

Latin indices run from 1 to 3 (spatial components)

Repeated indices denote summation unless otherwise noted (Einstein summa-

tion convention)

Comma denotes partial differentiation: ∂µxν = xν,µ

The symmetric part of a tensor is denoted: T(µν)

Fourier transform convention:

f(k) = F [f(x)] =
1

(2π)3/2

∫
d3x e−ik·xf(x)

f(x) = F−1[f(k)] =
1

(2π)3/2

∫
d3k eik·xf(k)

x



Chapter 1

Introduction

The rapidly developing field of quantum information theory exploits the idea

that information is physical [1]. While this idea is simple, it has profound

consequences. Research in the past several decades has shown that performing

information processing using quantum mechanical systems can lead to novel

and powerful new computational techniques. Such quantum computers are in

some cases significantly more powerful than their classical counterparts. In

particular, by an algorithm due to Shor, quantum computers can find the prime

factorization of an integer exponentially faster than the best known classical

algorithms [2]. This has important consequences for the security of certain

widely used cryptosystems [3]. Searching unstructured databases is also more

efficient on a quantum computer, achieving a quadratic speedup using Grover’s

algorithm [4]. These algorithms, in addition to many others [5], make the

prospect of building a quantum computer very desirable from a practical point

of view.

However, all of these results have been within the framework of non-

relativistic quantum mechanics. If the notion that information is physical

is to be taken seriously, it must be described in the same way that nature is.

An indispensable component of any complete theoretical model is the theory

of relativity and therefore, understanding information within this context is

important from a fundamental point of view. Moreover, it is necessary to fully

understand information processing tasks performed by systems in arbitrary

motion.

An important resource for quantum communication and computation is

entanglement. Entanglement is a property of multipartite quantum systems,

each of which could be in a separate frame of reference. It was recently found
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that in non-inertial frames, entanglement is a relative quantity [6, 7, 8, 9]. This

thesis extends previous work by considering non-uniform accelerations and the

generation of entanglement as a result of particle detection by a uniformly

accelerating observer.

This thesis is organized as follows. In Chapter 2, several concepts from

quantum field theory in curved spacetime are reviewed. While introduced

in the context of an arbitrary curved spacetime, these techniques are also

required when considering non-inertial frames in flat spacetime, as is done in

this thesis. Chapter 3 introduces entanglement in more detail, describing the

two methods of quantifying entanglement that are employed in this thesis. The

findings of previous studies of relativistic quantum information are summarized

in Chapter 4.

Chapter 5 considers entanglement and the Davies-Unruh effect [10, 11],

which states that an accelerating observer would perceive a thermal bath in

the state that an inertial observer would describe as the vacuum. In particular,

it is shown that if the accelerating observer detects one of these particles, the

resulting state is entangled in the inertial frame of reference. This effect was

known for scalar fields [12] and is generalized to spinor fields here.

Chapter 6 studies the dynamics of entanglement between two model particle

detectors called Unruh-DeWitt detectors. One detector is taken to be stationary

while the other starts inertial and smoothly transitions to a uniform acceleration.

This model was studied in [13] where the non-inertial detector had a uniform

acceleration. For the parameters considered, it was found numerically that the

entanglement between the detectors decreased faster for the case of non-uniform

acceleration than for uniform acceleration. In the uniform acceleration case, a

set of parameters is also found where the entanglement between the detectors

increases as a function of time. Finally, conclusions and prospects for future

work are discussed in Chapter 7.

2



Chapter 2

Quantum Field Theory

In this chapter, quantum field theory in curved spacetime is introduced. Par-

ticular emphasis is placed on the particle interpretation of quantum fields and

the additional considerations that curved spacetime bring in this regard. An

example is the Davies-Unruh effect, which is used in Chapter 5.

Two types of fields are considered: the Klein-Gordon field, which is used in

Chapter 6, and the Dirac field, which is used in Chapter 5. The main reference

for this chapter is [14].

2.1 The Klein-Gordon Field

In classical field theory, the Klein-Gordon field Φ(x) is a (real valued) scalar

field governed by the Lagrange density

LKG(x) = −1

2

√
−g(x)

[
∇µΦ(x)∇µΦ(x) +m2Φ2(x)

]
.

The parameter m is interpreted as a mass, as will be seen in Section 2.1.2. This

Lagrangian is said to be minimally coupled to the gravitational action because it

only couples through the metric. More generally, there could be other couplings

to gravity such as RΦ2(x) where R is the Ricci scalar. These additional

couplings are beyond the scope of this thesis (where only flat spacetimes are

considered) and the interested reader is directed to [14].

The action

SKG =

∫
d4xLKG(x) = −1

2

∫ √
−g(x)d4x

[
∇µΦ(x)∇µΦ(x) +m2Φ2(x)

]
gives rise to the equation of motion (free Klein-Gordon equation)(

�2 −m2
)
Φ(x) = 0, (2.1)

3



where �2 = ∇µ∇µ is the d’Alembertian operator. The Klein-Gordon inner

product, defined on the solution space of the Klein-Gordon equation, is

(
φ1(x), φ2(x)

)
= −i

∫
d3x

[
φ1(x)

(
nµ∂µφ

∗
2(x)

)
−
(
nµ∂µφ1(x)

)
φ∗2(x)

]
,

where the integration is over a spacelike hypersurface with unit normal nµ.

By virtue of Gauss’s theorem and the Klein-Gordon equation, this quantity is

conserved and independent of the hypersurface chosen.

The energy-momentum tensor can be obtained in the usual way of varying

the action with respect to the metric, giving

Tµν = ∇µΦ(x)∇νΦ(x)− gµν
1

2

[
∇αΦ(x)∇αΦ(x) +m2

(
Φ(x)

)2]
.

The conjugate momentum to the field is given by

Π(x) =
∂LKG

∂
(
nµΦ,µ(x)

) =
√
−g(x)nµ∇µΦ(x), (2.2)

where nµ is a timelike unit vector. The transition to the quantum theory

makes use of the Hamiltonian formalism which treats time separately from

space. The coordinates used for the remainder of the section will be such that

nµ = (1, 0, 0, 0) and the timelike coordinate will be denoted by t. In these

coordinates, the Hamiltonian is

HKG =

∫
d3x

√
−g(x)T00

=

∫
d3x

√
−g(x)

{
∇0Φ(x)∇0Φ(x)

− g00
1

2

[
∇αΦ(x)∇αΦ(x) +m2

(
Φ(x)

)2]}
.

2.1.1 Quantum Theory in the Heisenberg Picture

The quantum field theory is constructed by promoting the dynamical variables

Φ(x) and Π(x) to be Hermitian operators on a Hilbert space and enforcing the

equal time commutation relations[
Φ̂(t,x), Π̂(t,x′)

]
= i~δ3(x− x′), (2.3)[

Φ̂(t,x), Φ̂(t,x′)
]

=
[
Π̂(t,x), Π̂(t,x′)

]
= 0. (2.4)

4



The Hilbert space these operators act on is the space of quantum states of the

field.

Since the Hamiltonian is a function of Φ̂(x) and Π̂(x), it too becomes an

operator. The Hamiltonian is related to the dynamics of an operator Ô through

the Heisenberg equation of motion

i~
∂

∂t
Ô = [Ô, Ĥ].

In particular,

∂

∂t
Φ̂(x) =

1√
−g(x)

Π̂(x), (2.5)

∂

∂t
Π̂(x) = ∇i∇iΦ̂(x)−m2Φ̂(x), (2.6)

which are the operator valued versions of Equations (2.1) and (2.2). To solve

the quantum field theory, Φ̂(x) must be obtained such that it is Hermitian,

satisfies the canonical commutation relations, and solves the operator valued

Klein-Gordon equation. This can be simplified by expanding the field as

Φ̂(x) =

∫
d3k

[
uk(x)âk + u∗k(x)â†k

]
.

Such an expansion is called a mode expansion. The functions uk(x) are called

mode functions and the operators âk are called mode operators. The mode

operators are further divided into the annihilation operators âk and the creation

operators â†k. This expansion satisfies Hermiticity by construction. Taking the

mode operators to be constant, Equations (2.5) and (2.6) imply that the mode

functions must satisfy Equation (2.1). Finally, if the set of mode functions is

complete and normalized to(
uk(x), uk′(x)

)
= −

(
uk(x)∗, uk′(x)

∗) = δ3(k − k′),(
uk(x), uk′(x)

∗) = 0,

then the canonical commutation relations (2.3) are satisfied if the mode opera-

tors satisfy

[âk, â
†
k′ ] = δ3(k − k′). (2.7)

The mode expansion reduces the problem of solving the quantum field

theory to finding a complete set of solutions to the complex number valued

Klein-Gordon equation.

5



2.1.2 Particle Interpretation of the Field

A convenient basis for the Hilbert space can be constructed from the mode

operators. This basis is called the Fock basis and its elements are called Fock

states. First, there is a vector |0〉 such that

âk |0〉 = 0

for all k. This vector is called the vacuum state of the mode expansion. From

this state, the rest of the basis is constructed by successive applications of the

creation operators

|nk〉 =
1√
nk!

(â†k)nk |0〉 ,

where the prefactor is required for normalization. A general Fock state takes

the form

|nk1 , nk2 , . . . 〉 =
1√

nk1 !nk2 ! · · ·
(â†k1

)nk1 (â†k2
)nk2 · · · |0〉 .

The action of the mode operators on a Fock state is

â†k |nk〉 =
√
nk + 1 |(n+ 1)k〉 ,

âk |nk〉 =
√
nk |(n− 1)k〉 .

From the above relations, it can be seen that the Fock states are eigenstates of

the Hermitian operators n̂k = â†kâk with eigenvalues nk. These operators are

called the number operators and the positive integers nk is called the occupation

numbers of mode k. This justifies classifying the mode operators as either

creation or annihilation operators as they create or destroy quanta, respectively.

In spacetimes that possess time translation symmetry, the Fock states have

a nice physical interpretation. In this case there exists a timelike solution to

Killing’s equation1

2∇(µKν) = 0.

The vector Kµ is called a Killing vector and can be used to define a preferred

set of modes. These modes are the eigenfunctions of Kµ

Kµ∂µuk(x) = −iωkuk(x),

Kµ∂µu
∗
k(x) = iωku

∗
k(x),

1Or, more naturally, LKgµν = 0 where LK is the Lie derivative with respect to Kµ.

6



where ωk > 0. The modes whose eigenvalues are −iωk are called positive

frequency modes whereas the ones whose eigenvalues are iωk are called negative

frequency modes. In the coordinate system where Kµ∂µ = ∂t, the Klein-Gordon

equation implies that the uk(x) are eigenfunctions of ∇i with eigenvalue ik,

the magnitude of which is

|k|2 = ω2
k −m2.

In this mode expansion the momentum operator takes the form

P̂ =

∫
d3x T̂0i =

∫
d3k kâ†kâk,

which is a sum of the number operators. As a result, its eigenstates are the

Fock states. Their momentum can be read off from the eigenvalue equation

P̂ |nk1 , nk2 , . . . 〉 =

[∑
i

nkiki

]
|nk1 , nk2 , . . . 〉 .

In particular, the vacuum state has no momentum. Now consider the Hamilto-

nian, which in these modes is expressed as

ĤKG =

∫
d3x T̂00 =

∫
d3k

ωk

2

[
âkâ

†
k + â†kâk

]
=

∫
d3k ωk

[
â†kâk +

1

2
[ak, a

†
k]

]
.

By Equation (2.7), the second term is divergent. Fortunately, while infinite,

this term is constant and since only energy differences can be measured, the

energy scale can be shifted so this term is eliminated. This is achieved by

subtracting off the divergent term so that the Hamiltonian becomes

ĤKG =

∫
d3k ωkâ

†
kâk.

Again, the presence of the number operator indicates that the Fock states are

also eigenstates of the Hamiltonian. Their energy is given by the eigenvalue

equation

ĤKG |nk1 , nk2 , . . . 〉 =

[∑
i

nkiωki

]
|nk1 , nk2 , . . . 〉 .

The ground state is the vacuum, having zero energy.

Notice that the energy and momentum of the Fock states satisfy

ω2
k = |k|2 +m2,

7



which, if m is interpreted as a mass, is the usual relation from classical relativity.

With this as motivation, the Fock states are interpreted as describing particles.

The Fock state |nk〉 describes a state of nk particles each with energy ωk,

momentum k, and mass m. However, unlike classical particles, which are

localized objects, these particles, being states of definite momentum, are

completely de-localized. Each of these particles is identical and since the mode

operators commute,

|nk1 , nk2〉 = |nk2 , nk1〉 .

That is, they obey Bose-Einstein statistics. The Klein-Gordon field describes

particles of spin-0.

It is important to note that particles, being an interpretation of field

excitations, play a secondary role here. The fundamental objects in quantum

field theory are the fields. For example, although the vacuum is interpreted as

the state of “no particles” it does not mean that nothing is there. The field

is there and in general, a measurement of the field amplitude would not be

zero due to quantum fluctuations. This is especially important because the

construction of the particle interpretation relies on the spacetime having a

time symmetry. In general spacetimes, this is not the case and there will be no

preferred set of modes [15].

To see the consequences of this, consider two complete sets of modes {uk, u
∗
k}

and {vk, v
∗
k} with associated mode operators âk and b̂k. By completeness and

orthonormality, the two sets of mode functions are related by

vk(x) =

∫
d3k′ [αkk′uk′(x) + βkk′u

∗
k′(x)] ,

where αkk′ =
(
vk(x), uk′(x)

)
and βkk′ = −

(
vk(x), u∗k′(x)

)
. This is called a

Bogoliubov transformation [14] and the complex numbers αkk′ and βkk′ are

called Bogoliubov coefficients. The inverse transformation is given by

uk =

∫
d3k′ [α∗k′kvk′(x)− βk′kv

∗
k′(x)] .

These induce the following transformations on the mode operators

âk =

∫
d3k′

[
αk′kb̂k′ + β∗k′kb̂

†
k′

]
, (2.8)

b̂k =

∫
d3k′

[
α∗kk′ âk′ − β∗kk′ â

†
k′

]
. (2.9)

8



As a consequence of the commutation relations of the mode operators, the

Bogoliubov coefficients must satisfy(
α β

β∗ α∗

)(
α† −βT

−β† αT

)
=

(
1 0

0 1

)
,

where these are to be interpreted as block matrices.

From Equations (2.8) and (2.9), it can be seen that the Fock bases associated

with these two mode expansions are different. This leads to two different

particle interpretations of the field. In particular, according to the particle

interpretation based on the uk(x) modes, particles are present in the vacuum

of the vk(x) mode expansion |0〉v. The average number of particles present is

given by

〈0| a†kak |0〉v v =

∫
d3k′ |βkk′|2.

In this sense, there is no absolute notion of particles in quantum field theory.

Like simultaneity, a particle interpretation is associated with an observer.

Even in spacetimes that do possess time translation symmetry, the preferred

choice of mode functions may still not be uniquely determined. In different

regions of the spacetime, there could be different timelike Killing vectors.

Observers moving along the orbits of these two different Killing vectors would

have different particle interpretations of the field. The simplest example of

this is the case of uniformly accelerating observers in Minkowski space. Those

observers would detect a thermal bath with a temperature proportional to

their acceleration in the state that inertial observers would describe as the

vacuum [10, 11]. This is known as the Davies-Unruh effect [16] and is discussed

in Chapter 5.

If one wants to talk about particles in a general spacetime, an operational

notion of particle is needed. This is achieved by considering a quantum system

that acts as a particle detector. The detector interacts with the field and if it

becomes excited, it is said to have detected a particle. In this way, a particle

is what a particle detector detects. In general, there is no direct relationship

between the number operators of a mode expansion and the number of particles

a detector would detect. Only when the spacetime admits a timelike Killing

vector do they coincide. The study of particle detectors in the context of

quantum field theory in curved spacetime was first undertaken by Unruh [11]

and later expanded by DeWitt [17]. The model they considered is called an

Unruh-DeWitt detector and is introduced in Appendix C. The dynamics of
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entanglement between two Unruh-DeWitt detectors interacting with a massless

Klein-Gordon field is studied in Chapter 6.

2.2 The Dirac Field

The Dirac field Ψ(x) is a four component spinor valued field described by the

Lagrange density (with minimal coupling to the gravitational action)

LD =
√
−g(x)

{
i

2

[
Ψ̄(x)γµ

(
∇µΨ(x)

)
−
(
∇µΨ̄(x)

)
γµΨ(x)

]
−mΨ̄(x)Ψ(x)

}
,

where m is interpreted as a mass and γµ are the Dirac matrices. These are

4× 4 matrices that satisfy

{γµ, γν} = 2gµν .

Here, the covariant derivative ∇µ is defined as

∇µ = ∂µ = Γµ,

where Γµ is the spin connection given by

Γµ =
1

4
γν(∂µγ

ν + Γνρµγ
ρ)

and Γνρµ are the usual Christoffel symbols. An overbar denotes the Dirac adjoint,

defined as

Ψ̄(x) = Ψ†(x)γ̃0.

Here, γ̃0 is the zeroth component of γ̃µ, which are 4× 4 matrices defined by

{γ̃µ, γ̃ν} = 2ηµν .

The γ̃µ are related to γµ by γµ = V µ
α γ̃α where V µ

α is a vierbein field. The

vierbein formalism is natural when describing higher spins in curved spacetime.

However, it is beyond the scope of this thesis and the interested reader is

directed to [14] for more information.

The equation of motion (free Dirac equation) is

[iγµ∇µ −m] Ψ(x) = 0,

which follows from the action

SD =

∫
d4xLD(x).

10



The Dirac inner product, defined on the solution space of the Dirac equation, is(
ψ1(x), ψ2(x)

)
=

∫
d4xnµψ̄1(x)γ

µψ2(x),

where the integration is over a spacelike hypersurface with unit normal nµ.

Varying the action with respect to the metric results in the energy-momentum

tensor

Tµν =
i

2

[
Ψ̄(x)γ(µ

(
∇ν)Ψ(x)

)
−
(
∇(µΨ̄(x)

)
γν)Ψ(x)

]
.

2.2.1 Quantum Theory in the Heisenberg Picture

The Dirac field is quantized by promoting the dynamical variable Ψ(x) to

be a Hermitian operator on the Hilbert space of the quantum states of the

field. Similar to the Klein-Gordon field, the quantum field theory is solved by

expanding the field operator in a complete set modes

Ψ̂(x) =
∑
s

∫
d3k

[
âk,sψ

+
k,s(x) + b̂†k,sψ

−
k,s(x)

]
,

where s ∈ {↑, ↓} is an index related to the spinor nature of the field. The mode

functions ψ±k,s(x) satisfy the spinor valued Dirac equation and are normalized

to (
ψ+

k,s(x), ψ
+
k′,s′(x)

)
= −

(
ψ−k,s(x), ψ

−
k′,s′(x)

)
= δss′δ

3(k − k′),(
ψ±k,s(x), ψ

∓
k′,s′(x)

)
= 0.

However, unlike the Klein-Gordon equation, the mode operators must satisfy

the anticommutation relations

{âk,s, â
†
k′,s′} = {b̂k,s, b̂†k′,s′} = δss′δ

3(k − k′),

with all other anticommutators vanishing. This ensures that the energy of

the field has a lower bound and that causality is obeyed (see §3.5 in [18] for a

discussion of this in the context of Minkowski space quantum field theory).

2.2.2 Particle Interpretation of the Field

Constructing the Fock basis of a mode expansion follows the same procedure

as for the Klein-Gordon field. The vacuum state is defined by

âk,s |0〉 = b̂k,s |0〉 = 0
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for all k and s. The Dirac field has two different types of quanta. When the

mode functions are divided into positive and negative frequency by a timelike

Killing vector Kµ, the Fock states created by a†k,s can be interpreted as particles

and the states created be b†k,s can be interpreted as antiparticles. These particles

have mass m and spin-1/2. The index s labels the spin state as being up or

down with respect to some axis. Since mode operators anticommute,(
a†k,s
)2

=
(
b†k,s
)2

= 0

and so there is only one excitation per mode. This is known as the Pauli

Exclusion Principle.

Like the Klein-Gordon field, the Dirac field describes identical particles.

However, due to the anticommutation relations of the modes, the Fock states

are antisymmetric

|1k1,s1 , 1k2,s2〉 = − |1k2,s2 , 1k1,s1〉

and so the quanta of the Dirac field obey Fermi-Dirac statistics.

When the spacetime does not possess a timelike Killing vector, there is no

preferred set of modes. However, like the Klein-Gordon field, all possible sets

of modes are related by a Bogoliubov transformation. For example, two sets of

modes {ψ±k,s(x)} and {χ±k,s(x)} with corresponding mode operators {âk,s, b̂
†
k,s}

and {ĉk,s, d̂†k,s}, are related by

âk =

∫
d3k′

[
αkk′ ĉk′ + β∗kk′ d̂

†
k′

]
,

b̂k =

∫
d3k′

[
αkk′ d̂k′ + β∗kk′ ĉ

†
k′

]
,

ĉk =

∫
d3k′

[
α∗kk′ âk′ + β∗kk′ b̂

†
k′

]
,

d̂k =

∫
d3k′

[
α∗kk′ b̂k′ + β∗kk′ â

†
k′

]
,

where αkk′ =
(
ψ+

k (x), χ+
k′(x)

)
and βkk′ =

(
ψ+

k (x), χ−k′(x)
)

and the spin degree

of freedom has been suppressed for ease of notation. However, the fermionic

Bogoliubov coefficients must satisfy(
α β

β∗ α∗

)(
α† βT

β† αT

)
=

(
1 0

0 1

)
to be consistent with the anticommutation relations.
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Chapter 3

Entanglement

Given two quantum systems A, whose state space is HA, and B, whose state

space is HB, the composite system’s state space H is obtained by taking the

tensor product of the two individual state spaces

H = HA ⊗HB.

That is, if system A is in state |ψA〉 and B is in state |ψB〉, then the state

of the composite system is |ψ〉 = |ψA〉 |ψB〉 where it is understood that the

two vectors are multiplied using the tensor product. Such states are called

product states. However, not all states in H are of this form. States of the

composite system that cannot be written as a tensor product of states in the

individual Hilbert spaces are called entangled states. Physically, this means

that there are global properties of the composite system that are well defined

but the corresponding individual properties are not. It is only after one of

the subsystems is measured that the properties of both subsystems become

well defined. The measurement outcomes of the individual systems will be

correlated in a manner consistent with the global properties.

An example of an entangled state is the spin singlet state of two spin-1/2

particles
1√
2

(
|↑↓〉 − |↓↑〉

)
,

where |↑〉 means a spin up state and |↓〉 means spin down. Here, the spin state

of the composite system is well defined (it is zero), while each subsystem is

not in a definite spin state. If the first subsystem is measured, it has equal

probability of being up or down. With knowledge of the measurement result,

it is then possible to predict the state of the other spin without measuring
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it because the total spin is zero. The results of spin measurements on the

subsystems are always anti-correlated in this case.

These correlations are one of the most interesting properties of entanglement.

The ability to predict the measurement outcome is independent of the separation

of the two subsystems. So, while the systems might be lightyears apart, after

a measurement is made on one subsystem, that experimenter can predict the

outcome of measurements on the other. However, such measurements cannot

be used to send signals faster than the speed of light since the act of measuring

one subsystem cannot change the probabilities of measurement outcomes on

the other. It is only after there is classical communication that the correlations

will be apparent. This is known as the no-signaling theorem. For example,

suppose two experimenters, Alice and Bob, shared a spin singlet state. If

Alice measured the spin of her system and determined it was spin up, then

she would know immediately that a measurement of Bob’s system would yield

spin down. However, Bob, who is ignorant of Alice’s measurement, would

still attribute a 50% probability to either outcome of a spin measurement.

Regardless, when Alice and Bob compare their measurement results, they

would find them anti-correlated.

Entanglement is inherently quantum mechanical and cannot be reproduced

in classical physics. It is also of great interest to the field of quantum information

and computation because it enables certain tasks that are not possible, or at

least not efficient, without quantum mechanics. Examples include quantum

state teleportation, superdense coding, and various other quantum information

processing tasks [3]. In light of this, entanglement is viewed as a resource,

like energy or time, and as such, it is natural to quantify it. Quantifying

entanglement is an active field of research with many techniques, only a few of

which will be presented here.

3.1 Entanglement Entropy

The simplest type of entanglement is that of a pure bipartite system of finite

dimension. This is the type of entanglement encountered in Chapter 5. In

this case, when one of the subsystem’s degrees of freedom are ignored (traced

out) the other subsystem’s state is mixed. Since the global state is pure, this

mixing must have been due to the entanglement. The amount of mixing in

the reduced state of subsystem a, described by the density matrix ρa, can be
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quantified by the von Neumann entropy1, defined as

S(ρa) = −Tr(ρa log2 ρa).

Equivalently, it can be expressed in terms of the eigenvalues λi of ρa as

S(ρa) = −
∑
i

λi log2 λi.

The more mixed the reduced state is, the more information was lost by ne-

glecting the other subsystem, implying stronger correlations between them.

Entanglement can then be quantified by the the von Neumann entropy of the

reduced state. This is called the entanglement entropy.

If the state is a product state, then the reduced state is pure. In this case,

the entanglement entropy is zero, as expected. States where each subsystem is

maximally mixed, such as the spin singlet state, are called maximally entangled

states. For these states, the entanglement entropy achieves its maximal value

of log2(n) where n is the dimension of the space.

The entanglement entropy fails to be a good measure of entanglement for

mixed states. This is because there are two contributions to the entanglement

entropy, one from the mixing and the other from any entanglement present.

These two sources of entropy cannot be separated. Similarly, the entanglement

entropy is also not appropriate to quantify entanglement in systems made

up of more than two subsystems. To see why this is the case, consider a

tripartite system. If the first subsystem is traced out, the remaining bipartite

system could be mixed. Again, the entropy cannot be solely attributed to the

entanglement.

3.2 Sigma

This section introduces the method used to quantify entanglement in Chapter 6.

The entanglement encountered there is between two harmonic oscillators in a

Gaussian state. Simon proved that a necessary and sufficient condition for a

Gaussian state to be entangled is that the the quantity

Σ(t, τ) = det

(
VPT + i

~
2
M

)
1The von Neumann entropy is the quantum mechanical analogue of the Gibbs entropy

from classical thermodynamics (or equivalently, the Shannon entropy from information
theory).
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is negative [19], where

M =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 ,

and

V = 〈Rµ,Rν〉 =
1

2
〈(RµRν +RνRµ)〉 .

V is the symmetric two point correlation matrix and Rµ = (Q̂B, P̂B, Q̂A, P̂A).

The operators Q̂ and P̂ are the phase space operators of the subsystem indicated

by their subscript. The partial transpose is taken by a time reversal in the

phase space [19]. That is, VPT = ΛVΛ where

Λ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

This is the continuous variable analogue of the Peres-Horodecki separability

criterion [20, 21]2

Entanglement is then quantified by the numerical value of Σ; the smaller

the number, the more entangled the state is. This quantity behaves similarly

to the logarithmic negativity [22, 23], which is another method that can be

used to quantify entanglement. The motivation for using Σ over other methods

is that it was used in [13], which studied a similar model to that studied in

Chapter 6. It was used in their case because it was possible to get an analytic

expression for Σ in the ultraweak coupling limit. To facilitate comparison to

those results, the same method is used here.

2The Peres-Horodecki criterion is a necessary condition. However, it is also sufficient for
Hilbert spaces of dimension 2 × 2 and 2 × 3 [21] and, in the continuous variable case, for
Gaussian states [19].
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Chapter 4

Previous Work

While the study of relativistic quantum information is young, there have been

many interesting results [24]. Many of these focus on the relative nature

of entanglement. In particular, it has been shown that entanglement can

be transferred between different degrees of freedom, such as between spin

and momentum, by Lorentz transformations [25, 26, 27, 28, 29]. As a result,

the amount of entanglement available for quantum information processing by

detectors sensitive to a single degree of freedom can change (for better or worse).

Despite this, the overall entanglement of the state remains unchanged and in

this sense, entanglement is an invariant quantity for inertial observers [30].

However, in non-inertial frames the situation is quite different. Alsing

and Milburn found that the fidelity of teleportation between two observers

in relative uniform acceleration decreases as a function of acceleration [6, 7].

From this, they concluded that entanglement is degraded in non-inertial frames

due to the Davies-Unruh effect. While their analysis made use of cavities,

whose boundary conditions are not compatible with those of the Davies-Unruh

effect [31], their general conclusion still holds. This was shown explicitly by

Fuentes-Schuller and Mann who considered two entangled modes of a free scalar

field as viewed by two observers in relative uniform acceleration [8]. While the

state appears maximally entangled in the inertial frame, it is less entangled

from the point of view of the accelerating observer. The entanglement in that

frame degrades as a function of the acceleration and in the limit of infinite

acceleration, completely disappears. This is contrasted to a spinor field where

even in the limit of infinite acceleration, the state is still entangled [9]. This loss

of entanglement is the result of the communication horizons experienced by the

accelerating observer and can be understood as a redistribution of entanglement
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between the accessible and inaccessible regions of spacetime [32].

One limitation of the previous studies is that there is no dynamics. In

particular, entanglement is always present for finite accelerations in both scalar

and spinor fields. It is known that even when there is no relativistic motion,

entanglement can experience “sudden death”. That is, vacuum fluctuations can

cause two quantum systems to disentangle after a finite time [33], even if they

are completely isolated from each other. To study this effect in a relativistic

framework, Lin, Chou, and Hu considered a model consisting of two Unruh-

DeWitt detectors, one inertial and the other uniformly accelerating, interacting

with a massless Klein-Gordon field. The detectors are taken to be initially in

an entangled Gaussian state while the field is in the Minkowski vacuum state.

They find that the interaction with the field does induce disentanglement of the

detectors. They also considered the dynamics of entanglement in two different

time slicings, the proper times of each detector. In the ultraweak coupling limit,

the disentanglement time in Minkowski slicing is insensitive to the acceleration

of the other detector to leading order. In Rindler slicing however, they find that

the disentanglement time is proportional to the reciprocal of the magnitude of

the acceleration. The same model is studied in Chapter 6 except that a more

realistic non-inertial trajectory is considered where the detector starts inertial

and smoothly transitions to a uniform acceleration.

On the other hand, non-inertial frames are one way to access the entangle-

ment naturally present in the vacuum. Reznik provided an operational notion of

vacuum entanglement by considering two Unruh-DeWitt detectors interacting

with a field in its vacuum state. He found that while the detectors remained

causally disconnected, they can become entangled due to their interaction with

the field. Since their interaction is local, the entanglement must have been

extracted from the vacuum. This is a feature of both Klein-Gordon fields [34]

and Dirac fields [35] and was demonstrated not only for detectors undergoing

uniform acceleration but also for inertial detectors. Taking this further, van

Enk and Rudolph [36] considered what types of quantum information protocols

were possible using the vacuum as a resource. They considered two causally

disconnected, uniformly accelerating observers moving through the vacuum

of a Klein-Gordon field. Using only the entanglement present in the vacuum,

they concluded that in general, protocols that resulted in classical information

such as coin tossing and key distribution were possible, but noise due to the

Davies-Unruh effect hinders protocols where the goal is quantum information,

such as teleportation.
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Along the same lines, Han, Olson, and Dowling considered the effects of

projective measurements on the vacuum of a Klein-Gordon field by a uniformly

accelerating observer [12]. Due to the Davies-Unruh effect, this observer has

a nonzero probability of detecting a particle and after such a detection, the

field is left in a state that is entangled in an inertial frame of reference. With

further processing, the inertial observer can extract a Bell state. Recently,

an experimental setup to generate entangled photons using the Davies-Unruh

effect was proposed by Schültzhold, Schaller, and Habs [37]. Their process

involves shooting electrons at ultra-relativistic speeds into an oscillating electric

field, such as a laser. Chapter 5 of this thesis extends the work of extracting

entanglement from the vacuum by generalizing the effect of Han et al to Dirac

fields.
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Chapter 5

Generation of Entanglement in

the Fermionic Unruh Effect

In this chapter, the generation of entanglement between different modes of

a Dirac spinor field due to measurements on the vacuum by an accelerating

observer is studied. As a result of the Davies-Unruh effect [10, 11], the

accelerating observer will perceive a Fermi-Dirac distribution of particles and

antiparticles in what an inertial observer would describe as the vacuum state.

It is shown here that if one of these particles is detected, an entangled state

is produced in the inertial reference frame. It is found that entanglement is

always produced and that larger accelerations produce more entanglement as

quantified by the entanglement entropy. In the asymptotic limit of infinite

acceleration, a maximally entangled Bell state is produced. A similar effect

holds for scalar fields [12]; however, further processing is required to extract a

Bell state, even in the asymptotic limit of infinite acceleration.

5.1 The Davies-Unruh Effect

The Davies-Unruh effect for a Dirac spinor field Ψ(x) of mass m is a consequence

of two inequivalent quantization schemes [15]. For an inertial observer in

flat spacetime, the appropriate metric is the Minkowski metric gµν = ηµν =

diag(1,−1,−1,−1). Since this metric is static, the field can be quantized

in a straightforward manner by expanding it in terms of a complete set of

positive and negative frequency modes (suppressing henceforth the spin degree
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of freedom for ease of notation)

Ψ̂(x) =

∫
dk
(
âk ψ

+
k (x) + b̂†k ψ

−
k (x)

)
,

and imposing the canonical anticommutation relations on the mode operators

{âk, â†k′} = {b̂k, b̂†k′} = δ(k − k′), with all other anticommutators vanishing.

Here, the modes are labelled by k, which is shorthand for the wavevector k.

The key element here is the division of the modes into positive and negative

frequency, which is done according to the Minkowski timelike Killing vector ∂t.

The operators âk and b̂†k are then interpreted as particle annihilation operators

and antiparticle creation operators, respectively. With this interpretation, a

Fock space can be constructed in the usual manner.

Now consider an observer moving through flat spacetime with uniform

acceleration a in the z direction. This observer will experience communication

horizons that divide the spacetime into four regions denoted I, II, F , and P

(see Fig. 5.1). The observer will be confined to region I, which is causally

disconnected from region II. The appropriate coordinates to describe his motion

are the Rindler coordinates η and ξ (see Appendix A). In these coordinates, their

trajectory is the line ξ = 0, which can be expressed in Minkowski coordinates

as

at = sinh(aη), az = cosh(aη),

where η is the observer’s proper time.

The quantum field theory for the Rindler observer is constructed by expand-

ing the field in terms of the complete set of positive and negative frequency

Rindler modes

Ψ̂(x) =

∫
dk
(
ĉIk ψ

I+
k (x) + d̂I†k ψ

I−
k (x) + ĉIIk ψ

II+
k + d̂II†k ψII−k (x)

)
,

and imposing the canonical anticommutation relations on the mode operators

{ĉIk, ĉ
I†
k′} = {d̂Ik, d̂

I†
k′} = δ(k − k′),

{ĉIIk , ĉ
II†
k′ } = {d̂IIk , d̂

II†
k′ } = δ(k − k′),

with all other anticommutators vanishing.

There are two types of Rindler modes that reflect the causal structure of

Rindler spacetime: the modes ψI±k (x) have support in region I, whereas the

modes ψII±k (x) have support in region II. Each type is divided into positive
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Figure 5.1: Spacetime is naturally divided into four regions denoted I, F , II,

P for a uniformly accelerating observer. The line ξ = 0 is the worldline of the

observer and η is his proper time.

and negative frequency according to the Rindler timelike Killing vector in the

appropriate region. In region I this is given by ∂η, however, in region II it

is ∂−η where the minus sign ensures it is future pointing. The operators ĉIk
and d̂I†k respectively annihilate a particle and create an antiparticle in region I

while ĉIIk and d̂II†k respectively annihilate and create particles and antiparticles

in region II.

5.1.1 The Bogoliubov Transformation

These two quantizations are not equivalent [15]. Making the single mode

approximation, in which the Rindler observer’s particle detector is sensitive

to a narrow bandwidth centered about the perpendicular components of the

wavevector k⊥ (which is the same for a Minkowski observer) [6, 7, 9], the mode

operators are related by the following Bogoliubov transformation(
âk
b̂†−k

)
=

(
cos rk −e−iφk sin rk

eiφk sin rk cos rk

)(
ĉIk
d̂II†−k

)
. (5.1)

The parameter rk is defined by

cos rk = [2 cosh(πωk/a)]
−1/2 exp(πωk/2a), (5.2)
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and ωk =
√
k2 +m2 is the frequency of the mode. This transformation can

also be expressed as (
âk
b̂†−k

)
= S+(rk)

(
ĉIk
d̂II†−k

)
S†+(rk), (5.3)

where the unitary operator S+(rk) is the two mode squeezing operator [38]

S+(rk) = exp
[
rk
(
ĉI†k d̂

II†
−ke

−iφk + ĉIk d̂
II
−ke

iφk
)]
.

Similarly, if the Rindler observer’s antiparticle detector is sensitive to a

narrow bandwidth centered about the wavevector −k⊥ then(
b̂k
â†−k

)
=

(
cos rk e−iφk sin rk

−eiφk sin rk cos rk

)(
d̂Ik
ĉII†−k

)
. (5.4)

This can also be expressed as a squeezing transformation(
b̂k
â†−k

)
= S−(rk)

(
d̂Ik
ĉII†−k

)
S†−(rk), (5.5)

where in this case, the squeezing operator is given by

S−(rk) = exp
[
−rk

(
d̂I†k ĉ

II†
−ke

−iφk + d̂Ik ĉ
II
−ke

iφk
)]
.

In all the above transformations, the phase φk can be absorbed into the

definitions of the mode operators and will be done so from now on using the

sign conventions of [9].

5.1.2 Transformation of the Vacuum

The Minkowski particle vacuum in mode k is defined by

âk |0k〉+ = 0.

Applying the Bogoliubov transformation in the form of Equation (5.3) to the

mode operator and then acting with S+ on both sides yields

ĉIk
(
S+(rk) |0〉+

)
= 0.

Therefore, the state in the brackets is the Rindler vacuum |0〉R. As a result,

the Minkowski vacuum, expressed in the Rindler Fock basis, is

|0k〉+ = S†+ |0〉R = cos rk exp
(
tan(rk) ĉ

I†
k d̂

II†
−k
)
|0k〉+I |0−k〉

−
II , (5.6)
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where the +/− superscripts denote particle/antiparticle. A formal expression

for the total Minkowski particle vacuum is obtained by using Eq. (5.6) for each

mode

|0〉+ = N
∏
k

exp
(
tan(rk) ĉ

I†
k d̂

II†
−k
)
|0k〉+I |0−k〉

−
II , (5.7)

where N =
∏

k cos rk. By an analogous argument, the Minkowski antiparticle

vacuum in mode k can be expressed in the Rindler Fock basis as

|0k〉− = cos rk exp
(
− tan(rk) d̂

I†
k ĉ

II†
−k
)
|0k〉−I |0−k〉

+
II .

Formally, the total Minkowski antiparticle vacuum is then

|0〉− = N
∏
k

exp
(
− tan(rk) d̂

I†
k ĉ

II†
−k,
)
|0k〉−I |0−k〉

+
II .

While the Minkowski observer would say the field is in the vacuum state,

the state according to the Rindler observer is

ρIk = TrII
(
|0〉++〈0|

)
,

where region II has been traced out since it is causally disconnected from the

observer. The expectation value of the particle number operator is then

TrI
(
ĉI†k ĉ

I
kρ

I
k

)
= sin2(rk) =

1

1 + eωk/kBT
,

which is a Fermi-Dirac distribution at temperature

T =
a

2πkB

and kB is Boltzmann’s constant. This is the phenomenon known as the Davies-

Unruh effect.

5.2 Detection of a Single Particle

What are the consequences of detecting one of these particles? Suppose

two observers, Alice, an inertial observer, and Rob, a uniformly accelerating

observer, are moving through the field Ψ̂(x). When the field is in the vacuum

state as described by Alice, Rob would describe the state as the thermal

state (5.7) due to the Davies-Unruh effect. Now suppose Rob performs the

measurement represented by the Hermitian operator ĉI†k ĉ
I
k and detects one
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particle. Immediately after his measurement, the state will be the projection

of (5.7) onto the single particle state in region I. This can be written succinctly

as

|ψ+(k)〉 = PkN
∏
k′

exp
(
tan(rk′) ĉ

I†
k′ d̂

II†
−k′
)
|0k′〉+I |0−k′〉

−
II ,

where the operator Pk is defined as

Pk = sec(rk)ĉ
I†
k d̂

II†
−k exp

(
− tan(rk) ĉ

I†
k d̂

II†
−k
)
.

Applying the Bogoliubov transformation (5.1), the state can be simplified to

|ψ+(k)〉 =
(
sin(rk) + cos(rk) â

†
k b̂

†
−k
)
|0〉 , (5.8)

from which it is seen that from Alice’s perspective, the state is a superposition

of the vacuum (i.e., no particle emission) and pair production at energy ωk.

This state is entangled in the occupation number of the particle mode k and

the antiparticle mode −k.

5.2.1 Entanglement

To study the entanglement properties of this state it is convenient to work in

the basis {∣∣0̃〉+ , ∣∣1̃〉+ , ∣∣0̃〉− , ∣∣1̃〉−} ,
where

∣∣0̃〉± = |0±k〉± and
∣∣1̃〉± = |1±k〉±. The state can then be represented by

the density matrix

ρ(k) =


sin2(rk) 0 0 sin(rk) cos(rk)

0 0 0 0

0 0 0 0

sin(rk) cos(rk) 0 0 cos2(rk)

 .

The entanglement of this state is quantified by the entanglement entropy,

defined in Chapter 3. To find the entanglement entropy of (5.8), the particle

states are traced out resulting in the the reduced density matrix

ρ−(k) = Tr+ ρ(k) =

(
sin2(rk) 0

0 cos2(rk)

)
.

From which the entropy is calculated to be

S
(
ρ−(k)

)
= log2

(
csc2(rk)

)
+ cos2(rk) log2

(
tan2(rk)

)
.
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Figure 5.2: Entanglement entropy of the produced state (5.8) as a function of

rk. Larger accelerations produce more entanglement reaching the maximum of

1 when rk = π/4.

Recalling that rk is defined by Equation (5.2), it can be seen that the entangle-

ment entropy is nonzero regardless of the frequency detected or the (nonzero)

acceleration of the observer. Therefore, the state always contains distillable

entanglement with larger accelerations producing more entanglement, as illus-

trated in Figure 5.2. Expressed in terms of the acceleration of the observer and

energy of the particle, the entanglement entropy is

S(a, ωk) = log2

[
2 cosh

(πω
a

)]
− πωk

a
tanh

(πωk
a

)
,

which is plotted in Figure 5.3.

Note that in order for Alice to use this state in a quantum information

processing task, she must know Rob’s acceleration and the momentum of the

particle detected. Rob can communicate these parameters to Alice classically

since he can always signal to her despite there being a point where he can

no longer receive signals from her. It is interesting to note that if Alice does

not know Rob’s acceleration, she may be able to deduce it from the resulting

quantum state. Studying exactly what information can be extracted from these

states would make for an interesting future problem.
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Figure 5.3: Entanglement entropy of the produced state (5.8) as a function of

ωk/a. Entanglement arbitrarily close to maximal can be generated for finite

acceleration by detecting sufficiently low energy modes.

In the limit ωk/a→ 0, rk = π/4 and the state approaches the maximally

entangled Bell state

lim
ωk/a→0

|ψ+(k)〉 =
1√
2
(
∣∣0̃〉+ ∣∣0̃〉− +

∣∣1̃〉+ ∣∣1̃〉−),

which has an entanglement entropy of 1. This limit corresponds physically to

the asymptotic limit of infinite acceleration. However, whenever ωk � a, the

state is approximately

|ψ+(k)〉 ≈
√

2

[(
1

2
− πωk

4a
− π2ω2

k

16a2

) ∣∣0̃〉+ ∣∣0̃〉−
+

(
1

2
+
πωk
4a

− π2ω2
k

16a2

) ∣∣1̃〉+ ∣∣1̃〉−] ,
which has an entanglement entropy of

S(a, ωk) ≈ 1− π2

2 ln(2)

ω2
k

a2
+O

(
ω4
k

a4

)
.

In the case of massless fermions, entanglement arbitrarily close to maximal can

be generated for finite acceleration by detecting sufficiently low energy modes.
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However, this is not true in the massive case where the rest mass energy is a

lower bound to the energy that can be detected. In this case, accelerations at

least much greater than the rest mass energy are required to approximate a

Bell state.

5.3 Detecting Many Particles

While the above analysis is conditioned on Rob detecting a single particle

in mode k, it generalizes to other measurement outcomes. If he had instead

detected an antiparticle in mode k, the resulting state would be

|ψ−(k)〉 = AkN
∏
k′

exp
(
− tan(rk′) d̂

I†
k′ ĉ

II†
−k′
)
|0k′〉−I |0−k′〉

+
II ,

where the operator Ak is defined as

Ak = − sec(rk)d̂
I†
rk
ĉII†r−k exp

(
tan(rk)d̂

I†
rk
ĉII†r−k

)
.

Upon applying the Bogoliubov transformation (5.4) this simplifies to

|ψ−(k)〉 =
(
sin(rk)− cos(rk)b̂

†
k â

†
−k
)
|0〉 ,

which also approaches a Bell state in the asymptotic limit of infinite acceleration.

Noting that the operators Pk and Ak′ only contain an even number of mode

operators, they will commute. Therefore, the state after the detection of an

arbitrary number of particles or antiparticles will be the product of the states

|ψ±(k)〉 for each mode detected. Physically, this would be a superposition of all

possible pair productions including no pair production; in the asymptotic limit

of infinite acceleration, this approaches a product of Bell states. Regardless of

the acceleration, given this state, Alice could use it as a resource in quantum

information processing tasks.
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Chapter 6

Entanglement of Non-inertial

Detectors

In this chapter the dynamics of two entangled Unruh-Dewitt detectors interact-

ing with a massless Klein-Gordon field are investigated. One detector is taken

to be stationary while the other is undergoing non-uniform acceleration. The

trajectory of the moving detector is initially inertial and smoothly transitions

to a uniform acceleration, thus offering a more physical situation than the

previous studies of entanglement in non-inertial frames. This model was studied

in [13], where one detector was taken to have uniform acceleration.

The dynamics of the entanglement between the detectors is described in

the time slicings of each observer. The calculations involved in quantifying the

entanglement were performed numerically using the techniques described in

Appendix D. It is found that in the ultraweak coupling limit, the entanglement

decreases as a function of time for all parameters considered. In the case where

one detector is uniformly accelerating, there are parameters where the entangle-

ment can increase or decrease as a function of the accelerating detector’s proper

time. It is observed that in the parameter range considered, entanglement

decreases more rapidly for the detector with non-uniform acceleration than one

with uniform acceleration, however, it is not as rapid as two inertial detectors.

An overview of Unruh-DeWitt detector theory is given in Appendix C. The

trajectory with non-uniform acceleration is naturally described in Costa-Villalba

coordinates, which are introduced in Appendix B. To facilitate comparison

between this trajectory and one with a uniform acceleration, Rindler coordinates

are also used and their definition can be found in Appendix A.
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Figure 6.1: The trajectories of the two detectors. Detector A is carried by

Alice who is stationary at position 1/b while detector B is carried by Rob, who

has a non-uniform acceleration.

6.1 Two Unruh-DeWitt Detectors

The model considered here consists of two Unruh-Dewitt detectors, each inter-

acting with the field through the Lagrangian (C.2) but not directly interacting

with each other. The first detector is carried by “Alice” and its variables

are denoted with the subscript A. The second is carried by “Rob” and its

variables are denoted with the subscript B. Both detectors are considered to

be identical (same mass, natural frequency, etc.) and the same cutoffs are

performed for each so that they have the same renormalized frequency and

damping coefficient. Alice is taken to be on the trajectory

zµA(t) =

[
t,

1

b
, 0, 0

]
,

while Rob’s trajectory is taken to be

zµB(τψ) =

[
1

a
sinh(aτψ)− ψ

2a
exp(−aτψ),

1

a
cosh(aτψ)− ψ

2a
exp(−aτψ), 0, 0

]
.

(6.1)

If ψ = 1, then Rob’s trajectory is that of a Costa-Villalba observer with ζ = 0

and w = a. This observer is inertial in the asymptotic past but smoothly
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accelerates to an asymptotic acceleration of a as can be seen in Figure 6.1. The

evolution is parameterized by τψ = υ which can be related to the observer’s

proper time through Equation (B.3). Studying the dynamics of entanglement

for this observer is the primary interest in this chapter. To highlight the

differences due to the non-uniform acceleration it is useful to compare the

Costa-Villalba trajectory to a Rindler trajectory. This is accomplished by

setting ψ = 0, in which case the trajectory reduces to the Rindler trajectory

given by ξ = 0. In this situation, τψ = η is the proper time of the observer who

has a uniform acceleration of a.

To distill the physics of the non-uniform acceleration, the interaction starts

on the Minkowski time slice t0 and terminates at time tf . These times are

chosen such that the Costa-Villalba trajectory is approximately inertial at the

initial time and approximately Rindler at the final time.

At the start of the interaction the state of the system is taken to be

|ψ〉 = |0〉 ⊗ |AB〉 , (6.2)

where the field is in the Minkowski vacuum state |0〉 and the detectors are in a

Gaussian state |AB〉 described by the Wigner function

W (QB, PB, QA, PA) =
1

π2
exp

(
β2(QA +QB)2 +

1

α2
(QA −QB)2

+ α2(PA − PB)2 +
1

β2
(PA + PB)2

)
.

This is an entangled state for all α2β2 6= 1, however, regardless of the values of

α and β, the detectors are not entangled with the field at the initial time.

6.1.1 Equations of Motion and Mode Decomposition

Since the system is linear, the results of Section C.1.1 can be summed to obtain

the following equations of motion

(∂2
t −∇2)Φ̂(x) = λ0

{∫ ∞

τA(t0)

dτA Q̂A(τA)δ4
(
x− zA(τA)

)
+

∫ ∞

τψ(t0)

dτB Q̂B(τB)δ4
(
x− zB(τψ)

)}
,

(6.3)

(∂2
τi

+ Ω2
0)Q̂i(τi) =

λ0

m0

Φ̂(zi(τi)), (6.4)
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where i ∈ {A,B} and τi being the proper time of detector i. By performing

the analogous mode decomposition as in Section C.2, these operators can be

expressed as

Φ̂(x) =

√
1

2Ωrm0

∑
j∈{A,B}

(
f (j)(x)âj + f (j)∗(x)â†j

)
+

1

(2π)3/2

∫ ∞

−∞
d3k

√
1

2ω

(
f (+)(x,k)b̂k + f (−)(x,k)b̂†k

)
,

(6.5)

Q̂i(τi) =

√
1

2Ωrm0

∑
j∈{A,B}

(
q
(j)
i (τi)âj + q

(j)∗

i (τi)â
†
j

)
+

1

(2π)3/2

∫ ∞

−∞
d3k

√
1

2ω

(
q
(+)
i (τi,k)b̂k + q

(−)
i (τi,k)b̂†k

)
.

(6.6)

The canonical equal time commutation relations on Φ̂(x) and Π̂(x) (Equa-

tion (C.3)) impose the following commutation relations on the mode operators

[b̂k, b̂
†
k′ ] = δ3(k − k′) and [âi, â

†
j] = δij.

The mode decompositions of the conjugate momentum operators can be ob-

tained from Equations (6.5) and (6.6) by differentiation with respect to proper

time. Due to the Hermiticity of Φ̂(x) and Q̂i, it is sufficient to solve for the

modes f (j)(x), f (+)(x,k), q
(j)
i (τi), and q(+)(τi,k). Equations (6.3) and (6.4) as

well as the linear independence of the operators b̂k, b̂†k, âi, and â†i yield the

following equations of motion for the mode functions

(∂2
t −∇2)f (j)(x) = λ0

{∫ ∞

τA(t0)

dτA q
(j)
A (τA)δ4

(
x− zA(τA)

)
+

∫ ∞

τψ(t0)

dτψ q
(j)
B (τψ)δ4

(
x− zB(τψ)

)}
,

(6.7)

(∂2
t −∇2)f (+)(x,k) = λ0

{∫ ∞

τA(t0)

dτA q
(+)
A (τA,k)δ4

(
x− zA(τA)

)
+

∫ ∞

τψ(t0)

dτψ q
(+)
B (τψ,k)δ4

(
x− zB(τψ)

)}
,

(6.8)

(∂2
τi

+ Ω0)q
(j)
i (τi) =

λ0

m0

f (j)
(
zi(τi)

)
, (6.9)

(∂2
τi

+ Ω0)q
(+)
i (τi,k) =

λ0

m0

f (+)
(
zi(τi),k

)
. (6.10)
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Since the field and detectors are free before the interaction, the modes must

obey the following initial conditions

q
(i)
i

(
τi(t0)

)
= e−iΩrτi(t0),

∂τiq
(i)
i

(
τi(t0)

)
= −iΩre

−iΩrτi(t0),

f (+)(t0,x,k) = eik·x−iωt0 ,

∂tf
(+)(t0,x,k) = −iωeik·x−iωt0 ,

q
(+)
i

(
τi(t0),k

)
= ∂τiq

(+)
i

(
τi(t0),k

)
= 0,

f (i)(t0,x) = ∂tf
(a)(t0,x) = 0,

q
(B)
A (t0) = ∂tq

(B)
A (t0) = 0,

q
(A)
B

(
τψ(t0)

)
= ∂τψq

(A)
B

(
τψ(t0)

)
= 0.

Due to the presence of the point sources in Equations (6.7) and (6.8),

the field amplitude diverges at the location of the detectors. As a result,

Equations (6.9) and (6.10) need to be regularized as in Section C.3.1. However,

before this procedure can be applied, the retarded times and distances for the

trajectories must be obtained.

6.1.2 Retarded Times and Distances

The retarded time associated with a field point x is the time at which the

trajectory intercepts the past light cone of x. It is given by the solution to

σ = 0 where

σ = −1

2

(
xµ − zµ(t)

)(
xµ − zµ(t)

)
and zµ(t) is the trajectory of interest. The spatial distance between the field

point and the location of the detector at the retarded time is the retarded

distance. This is obtained by evaluating

∂σ

∂t

∣∣∣∣
σ=0

. (6.11)
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Figure 6.2: The retarded Minkowski time for point x is tret(x) and the retarded

distance R(x) is the spatial distance between the field point and the detector

at the retarded time.

Minkowski σ

Inserting the trajectory of the Minkowski observer, Alice, into the definition of

σ results in

σM = −1

2

(
xµ − zAµ(τA)

)(
xµ − zA

µ(τA)
)

= −1

2

(
R(x)2 − (t− x0)2

)
,

where R(x) =
√

(x1 − 1/b)2 + ρ2 and ρ2 = y2 + z2. Setting σM = 0, the

retarded time is found to be

tret(x) = x0 −R(x).

Similarly,
∂σM
∂t

∣∣∣∣
σM=0

= −R(x),

and so the retarded distance is given by R(x), as can be seen in Figure 6.2.

Evaluating on the accelerating observer’s trajectory yields

tret(τψ) = tret
(
zB(τψ)

)
=

1

b
− 1

a
e−aτψ .

Since this is independent of ψ, it is true for both the Costa-Villalba and Rindler

trajectories.
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Costa-Villalba and Rindler σ

Inserting Rob’s trajectory (6.1) into the definition of σ results in

σB = −1

2

(
xµ − zBµ(τψ)

)(
xµ − zB

µ(τψ)
)

= −1

2

[
ρ2 − UV +

U

a
eaυ − V

a
e−aυ +

1

a2
− ψ

(
U

a
e−aυ +

1

a2
e−2aυ

)]
,

where U = x0 − x1 and V = x0 + x1. The Costa-Villalba result is obtained by

setting ψ = 1

σV = −1

2

[
ρ2 − UV − V

a
e−aυ +

1

a2
+

(
2U

a
+

1

a2
e−aυ

)
sinh(aυ)

]
,

while setting ψ = 0 gives the Rindler result

σR = −1

2

(
ρ2 − UV − V

a
e−aη +

1

a2
+
U

a
eaη
)
.

The retarded times can be obtained by solving the equations σV = 0 and

σR = 0. However, to avoid the complicated expressions of the Costa-Villalba

trajectory (a cubic equation), the retarded times will be found geometrically

instead of solving σB = 0 directly. To simplify this, the analysis will be

restricted to the t-x plane. This will not be a problem for the purposes of

this chapter since the primary interest is calculating quantities related to the

detectors as opposed to the field.

The equation of the null line that passes through the trajectory (6.1) at τψ
and intercepts the inertial trajectory in the future is given by

t′ = −x′ + 1

a
cosh(aτψ) +

1

a
sinh(aτψ)− ψ

a
e−aτψ .

The retarded time is obtained by evaluating this at the point (t, 1/b) on the

inertial trajectory and solving for τψ. The result is

τ ret
ψ (t) =

1

a
ln

a
2

(
t+

1

b

)
+

√
a2

4

(
t+

1

b

)2

+ ψ

 .
This can be shown to satisfy σB = 0. The Rindler retarded time, obtained by

setting ψ = 0, is

ηret(t) =
1

a
ln

[
a

(
t+

1

b

)]
,
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while the Costa-Villalba retarded time

υret(t) =
1

a
arcsinh

[
a

2

(
t+

1

b

)]
,

is found by setting ψ = 1. The Costa-Villalba retarded proper time is then

obtained from Equation (B.3).

The retarded distance is given by

∂σB
∂τψ

∣∣∣∣
σB=0

= −U
2
eaτ

ret
ψ − V

2
e−aτ

ret
ψ − ψ

2

(
Ue−aτ

ret
ψ +

2

a2
e−2aτ ret

ψ

)
.

Setting ψ = 0 results in

∂σR
∂τψ

∣∣∣∣
σR=0

≡ −a
2
X(x) = −a

2

(
UV +

1

a2

)
,

which, when evaluated on the inertial trajectory equals

X
(
zA(t)

)
= t2 − 1

b2
+

1

a2
.

For the Costa-Villalba trajectory,

∂σV
∂τ

∣∣∣∣
σV =0

=
∂τ

∂υ

∂σV
∂υ

∣∣∣∣
σV =0

≡ D(x)

=
1

d2

√
1 +

1

d2

[(
1

2b
− t

2

)
d3 − td− 1

a

]
,

where d = aV/2 +
√

1 + a2V 2/4.

6.1.3 Regularized Equations of Motion and Solutions

Using the retarded times found in the previous section and applying the results

from Section C.3.1, the regularized equations of motion for the Costa-Villalba
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Figure 6.3: The retarded mutual influences between the detectors. The detectors

start interacting with the field at t0 and τ0 but do not influence each other

until after the times t1 and τ1.

observer are

(∂2
t + 2γ∂t + Ω2

r)q
(j)
A (t) =

λ2
0

4π

θ
[
τ ret
(
zA(t)

)]
|D
(
zA(t)

)
|
q
(j)
B

[
τ ret
(
zA(t)

)]
, (6.12)

(∂2
τ + 2γ∂τ + Ω2

r)q
(j)
B (τ) =

λ2
0

4π

θ
[
tret
(
zB(τ)

)]
R
(
zB(τ)

) q
(j)
A

[
tret
(
zB(τ)

)]
, (6.13)

(∂2
t + 2γ∂t + Ω2

r)q
(+)
A (t,k) = λ0f

(+)
0

(
za(t),k

)
+
λ2

0

4π

θ
[(
τ ret
(
zA(t)

)]
|D
(
zA(t)

)
|

q
(+)
B

[
τ ret
(
zA(t)

)
,k
]
,

(6.14)

(∂2
τ + 2γ∂τ + Ω2

r)q
(+)
B (τ,k) = λ0f

(+)
0

(
zB(τ),k

)
+
λ2

0

4π

θ
[
tret
(
zB(τ)

)]
R
(
zB(τ)

) q
(+)
A

[
tret
(
zB(τ)

)
,k
]
.

(6.15)

The modes are driven damped harmonic oscillators with natural frequency Ωr

and damping coefficient γ = λ2
0/8πm0. The equations of motion for the Rindler

detector can be found in [13]1.

1Alternatively, one can simply set ψ = 0 in zB and exchange D(x) for −aX(x)/2, τ for η,
and τ ret(x) for ηret(x).
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The causal connection between the detectors as a result of their mutual

interaction with the field is now explicit in the above equations. Since these

equations are linear, their solution can be built up iteratively by considering

the causal structure of the two detector system.

In particular, consider Equations (6.14) and (6.15). Due to retardation,

before time t1 (see Figure 6.3), B has no causal influence on A and so the only

source is the field amplitude at the position of the detector. During this time

the solution consistent with the boundary conditions is[
q
(+)
A (t)

]
0

= λ0

∫ t

t0

dt′K(t− t′)f
(+)
0

(
zA(t′),k

)
, (6.16)

where

K(t− t′) =
1

Ω
θ(t− t′)e−γ(t−t

′) sin
(
Ω(t− t′)

)
is the retarded Green’s function for a damped harmonic oscillator and Ω =√

Ωr − γ2. Similarly, before time τ1, A has no influence on B and so the

solution is [
q
(+)
B (τ)

]
0

= λ0

∫ τ

τ0

dτ ′K(τ − τ ′)f
(+)
0

(
zB(τ ′),k

)
, (6.17)

where τ0 = τ(t0). After time t1 however, the influence of B on A must be

taken into account. This influence is obtained by including the solution for

q
(+)
B (τ ) as a source in Equation (6.14). Before time t2, this solution is given by

Equation (6.17). The correction to q
(+)
A (t) is then a term of order λ3

0[
q
(+)
A (t)

]
1

= θ(t− t1)
λ3

0

4π

∫ t

t1

dt′
K(t− t′)

|D
(
zA(t′)

)
|

×
∫ τ ret(t′)

τ0

dτ ′K(τ ret(t′)− τ ′)f
(+)
0

(
zB(τ ′),k

)
.

Similarly, inserting Equation (6.16) into Equation (6.15) yields the correction

on B due to the influence of A after time τ1[
q
(+)
B (τ)

]
1

= θ(τ − τ1)
λ3

0

4π

∫ τ

τ1

dτ ′
K(τ − τ ′)

R
(
zB(τ ′)

)
×
∫ tret(τ

′)

t0

dt′K
(
tret(τ ′)− t′

)
f

(+)
0

(
zA(t′),k

)
.

The next order corrections, which are of order λ5
0, come into effect at times

t2 and τ2 and are obtained by substituting these results back into the equations
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of motion. The full solution is obtained by repeating this process for the entire

duration of the interaction. It can be written succinctly as a recurrence relation

in the following way[
q
(+)
A (t)

]
i
=
λ2

0

4π

∫ t

ti

dt′
K(t− t′)

|D
(
zA(t′)

)
|

[
q
(+)
B

(
τ ret(t′)

)]
i−1

,[
q
(+)
B (τ)

]
i
=
λ2

0

4π

∫ τ

τi

dτ ′
K(τ − τ ′)

R
(
zB(τ ′)

) [q(+)
A (tret

(
τ ′)
)]

i−1
,

with [
q
(+)
A (t)

]
0

= λ0

∫ t

t0

dt′K(t− t′)f
(+)
0

(
zA(t′),k

)
,[

q
(+)
B (τ)

]
0

= λ0

∫ τ

τ0

dτ ′K(τ − τ ′)f
(+)
0

(
zB(τ ′),k

)
.

The solution is given by

q
(+)
A (t) =

∑
i

θ(t− ti)
[
q
(+)
A (t)

]
i
,

q
(+)
B (τ) =

∑
i

θ(τ − τi)
[
q
(+)
B (τ)

]
i
.

Equations (6.12) and (6.13) can be solved in the analogous manner. The

solution is the the sum of the retarded mutual influences given by a similar

recurrence relation[
q
(j)
A (t)

]
i
=
λ2

0

4π

∫ t

ti

dt′
K(t− t′)

|D
(
zA(t′)

)
|

[
q
(j)
B

(
τ ret(t′)

)]
i−1

,[
q
(j)
B (τ)

]
i
=
λ2

0

4π

∫ τ

τi

dτ ′
K(τ − τ ′)

R
(
zB(τ ′)

) [q(j)
A (tret

(
τ ′)
)]

i−1
,

where in this case,[
q
(A)
A (t)

]
0

=
1

2
e−γ(t−t0)

[
W+e

−iΩ(t−t0) +W−e
iΩ(t−t0)

]
,[

q
(B)
B (τ)

]
0

=
1

2
e−γ(τ−τ0)

[
W+e

−iΩ(τ−τ0) +W−e
iΩ(τ−τ0)

]
,[

q
(B)
A (t)

]
0

=
[
q
(A)
B (τ)

]
0

= 0.

To study the dynamics of the entanglement as quantified by Σ, the two-point

functions of the detectors must be obtained.
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6.2 The Two-Point Correlation Matrix in the

Ultraweak Coupling Limit

With the initial state (6.2), the two-point correlation matrix splits into

〈Rµ,Rν〉 = 〈Rµ,Rν〉v + 〈Rµ,Rν〉a ,

where 〈Rµ,Rν〉v = 〈0|Rµ,Rν |0〉 is the contribution from the vacuum fluctua-

tions and 〈Rµ,Rν〉a = 〈AB|Rµ,Rν |AB〉 is the contribution from the state of

the detectors.

These will be calculated in the ultraweak coupling limit where γ � a,Ω. In

this regime, all terms O(λ2
0) are dropped from the mode functions. It is further

assumed that the detectors are very far apart such that there is significant

retardation of the mutual influences. This will mean that there will be little

correlation between the oscillators due to the vacuum fluctuations.

6.2.1 Vacuum Fluctuations

The contribution to the two-point function due to the vacuum fluctuations can

be evaluated as

〈Rµ,Rν〉v =
1

2

(
〈0|RµRν |0〉+ 〈0|RνRµ |0〉

)
=

1

2

(
〈0|RµRν |0〉+

[
〈0|RµRν |0〉

]∗)
= <

(
〈0|RµRν |0〉

)
.

After inserting the mode expansions of the operators, the only terms that

contribute are those that contain bkb
†
k, thus

〈Rµ,Rν〉v = <
{

1

(2π)3

∫
d3k

2ω
r(+)
µ (tµ,k)r(−)

ν (tν ,k)

}
, (6.18)

where r
(±)
µ = (q

(±)
B , p

(±)
B , q

(±)
A , p

(±)
A ).
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Calculating 〈Qi(τi)
2〉v

In the ultraweak coupling approximation, q
(+)
i (τi) is given by Equation (6.17).

Inserting this into Equation (6.18) and applying Equation (E.1) results in

〈QB(τ)QB(τ ′)〉 = θ(τ − τ0)θ(τ
′ − τ ′0)

λ2
0

m2
0Ω

2

∫ τ

τ0

dτ̃

∫ τ ′

τ ′0

dτ̃ ′ e−γ(τ−τ̃)e−γ(τ
′−τ̃ ′)

× sin
(
Ω(τ − τ̃)

)
sin
(
Ω(τ ′ − τ̃ ′)

) 1√
2π

(
1

∆x2 −∆t2

)
,

where

∆x2 −∆t2 =
1

a2

[
2− 2 cosh

(
a(υ − υ′)

)
− (e−aυ − e−aυ

′
)2
]

for the Costa-Villalba trajectory. Changing variables to Costa-Villalba coordi-

nates,

〈QB(τ)QB(τ ′)〉v = θ(τ − τ0)θ(τ
′ − τ ′0)

a2λ2
0

8π2m2
0Ω

2

∫ υ

υ0

dυ̃

∫ υ′

υ′0

dυ̃′

×
√

1 + e−2aυ̃
√

1 + e−2aυ̃′e−γ[τ−τ(υ̃)]e−γ[τ
′−τ(υ̃′)]

× sin
[
Ω
(
τ − τ(υ̃)

)]
sin
[
Ω
(
τ ′ − τ(υ̃′)

)]
×
[
1− cosh

(
a(υ̃ − υ̃′)

)
− 1

2
(e−aυ̃ − e−aυ̃

′
)2

]−1

,

where υ0 = υ(τ0), υ = υ(τ), υ′0 = υ(τ ′0), and υ′ = υ(τ ′). Note that the

integrand diverges when υ̃ = υ̃′, which is a generic feature regardless of the

trajectory [39]. This will be handled by subtracting off the divergent piece of

the integrand. To simplify this process, the coordinates are changed to

T = υ̃ + υ̃′, ∆ =
υ̃ − υ̃′

2
.

In these coordinates the two-point function is

〈QB(τ)QB(τ ′)〉v = −θ(τ − τ0)θ(τ
′ − τ ′0)

a2γ

πm0Ω2

∫∫
diamond

dTd∆

×
√

1 + e−2T + 2e−T cosh(2∆)e−γ[τ+τ
′−τ(T/2+∆)−τ(T/2−∆)]

× sin
[
Ω
(
τ − τ(T/2 + ∆)

)]
sin
[
Ω
(
τ ′ − τ(T/2−∆)

)]
× [(1 + e−T ) sinh2(∆)]−1.
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The region of integration (“diamond”) becomes

∆ ∈
[
υ0 − υ′

2
,
υ − υ′

2

]
=⇒ T ∈ [−2(∆− υ0), 2(∆ + υ′)] ,

∆ ∈
[
υ − υ′

2
,
υ0 − υ′0

2

]
=⇒ T ∈ [−2(∆− υ0),−2(∆− υ)] ,

∆ ∈
[
υ0 − υ′0

2
,
υ − υ′0

2

]
=⇒ T ∈ [2(∆ + υ0),−2(∆− υ)] .

The integrand can be expanded in the series

f(T,∆)

sinh2(∆)
≈ f(T, 0)

∆2
+
∂∆f(T, 0)

∆
+

1

2
∂2

∆f(T, 0)− 1

3
f(T, 0) + · · ·

where it can be seen that the first two terms are responsible for the divergence

at ∆ = 0 and will be subtracted off. The resulting regularized two-point

function is then

〈QB(τ)QB(τ ′)〉v = −θ(τ − τ0)θ(τ
′ − τ ′0)

a2γ

πm0Ω2
e−γ(τ+τ

′)

∫∫
diamond

dTd∆

×

{√
1 + e−2T + 2e−T cosh(2∆)

(1 + e−T ) sinh2(∆)
eγ[τ(T/2+∆)+τ(T/2−∆)]

× sin
[
Ω
(
τ − τ(T/2 + ∆)

)]
sin
[
Ω
(
τ ′ − τ(T/2−∆)

)]
− e2γτ(T/2)

[
1

∆2
sin
[
Ω
(
τ − τ(T/2)

)]
sin
[
Ω
(
τ ′ − τ(T/2)

)]
+

Ω

a∆

(
eT/2√
1 + eT

+
e−T

1 + eT

)
sin
(
Ω(τ − τ ′)

)]}
.

(6.19)

The analogous procedure can be applied to the Rindler trajectory except

that in this case

∆x2 −∆t2 =
2

a2

[
1− cosh

(
a(η̃ − η̃′)

)]
.
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The regularized two-point function is then

〈QB(η)QB(η′)〉v = −θ(η − η0)θ(η
′ − η′0)

a2γ

πm0Ω2
e−γ(η+η

′)

∫∫
diamond

dTd∆

{
1

2 sinh2(∆)
sin
(
Ω(η − T/2−∆)

)
sin
(
Ω(η′ − T/2 + ∆)

)
− 1

∆2

[
sin
(
Ω(η − T/2)

)
sin
(
Ω(η′ − T/2)

)]
+

Ω

a∆
sin
(
Ω(η − η′)

)}
.

Similarly, for the Minkowski trajectory

∆x2 −∆t2 = −(t̃− t̃′)2,

and so the the regularized two-point function is

〈QA(t)QA(t′)〉v = −θ(t− t′)θ(t′ − t′0)
2γ

πm0Ω2
e−γ(η+η

′)

∫∫
diamond

dTd∆

× eγT
{

1

∆2
sin
(
Ω(t− T/2−∆)

)
sin
(
Ω(t′ − T/2 + ∆)

)
− 1

∆2

[
sin
(
Ω(t− T/2)

)
sin
(
Ω(t′ − T/2)

)]
+

2Ω

a∆
sin
(
Ω(t− t′)

)}
.

The Minkowski and Rindler 〈Qi(τi)
2〉v can be evaluated analytically. In the

weak coupling limit they are [13]〈
QA(t)2

〉
v
≈ 1

2Ω
(1− e−2γt), (6.20)〈

QB(η)2
〉
v
≈ 1

2Ω
coth

(
πΩ

a

)
(1− e−2γη). (6.21)

However, for the Costa-Villalba trajectory the two-point function is much more

complicated. In this analysis, Equation (6.19) was evaluated numerically using

Simpson’s rule, and when required, Newton’s method for root finding. These

are summarized in Appendix D.

Calculating 〈Pi(τi)
2〉

In the weak coupling limit,

p
(+)
i (τi) = ∂τiq

(+)
i (τi) ≈ Ωλ0

∫ τ

τ0

dτ ′ e−γ(τi−τ
′
i) cos

(
Ω(τi − τ ′i)

)
f

(+)
0

(
zi(τ

′
i),k

)
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where the derivative of the exponential has been dropped since it is O(γ/Ω).

The two-point function is then

〈Pi(τi)Pi(τ ′i)〉 ≈ θ(τi − τi0)θ(τ
′
i − τ ′i0)

λ2
0

m2
0

∫ τi

τi0

dτ̃i

∫ τ ′i

τ ′i0

dτ̃i
′ e−γ(τi−τ̃i)e−γ(τ

′
i−τ̃i

′)

× cos
(
Ω(τi − τ̃i)

)
cos
(
Ω(τ ′i − τ̃i

′)
) 1√

2π

(
1

∆x2 −∆t2

)
.

However, since γ � Ω, the integration will be over many oscillations of

the cosines and there will be little difference than if they were sines as in

〈Qi(τi)Qi(τ
′
i)〉. Therefore,

〈PB(τ)PB(τ ′)〉 ≈ Ω2 〈QB(τ)QB(τ ′)〉 .

Calculating 〈Qi(τi), Pi(τi)〉

By definition,

〈Qi(τi), Pi(τi)〉 =
1

2
〈Qi(τi)Pi(τi) + Pi(τi)Qi(τi)〉

=
1

2
∂τi
〈
Qi(τi)

2
〉
.

Applying this to the analytical results for the Minkowski and Rindler trajectories

(Equations (6.20) and (6.21)), it can be seen that these two-point functions

are O(γ). In the ultraweak coupling limit, this is dropped and so

〈Qi(τi), Pi(τi)〉 ≈ 0.

Based on this, the Costa-Villalba 〈QB(τ), PB(τ)〉 is also taken to be negligible in

the ultraweak coupling limit. In future work, it would be interesting to include

this term to see if it has significant effects on the dynamics of entanglement.

Calculating the Cross Correlations

The origin of the cross correlations between A and B is in their indirect

interaction through the field. This is expressed in the mode functions as

higher order terms in λ0. In the ultraweak coupling limit, these higher order

terms can be neglected. Additionally, if the detectors are far apart there

will be significant retardation of the mutual influences and there will be little

correlation between the detectors. In the analysis here, it is assumed that the

detectors are sufficiently far apart that the cross correlations can be neglected.

44



6.2.2 State

The contribution to the two-point function due to the state of the detector can

be calculated directly to be [13]

〈Rµ,Rν〉a =
1

4

{
1

β2
<
(
r(A)
µ + r(B)

µ

)
<
(
r(A)
ν + r(B)

ν

)
+ α2<

(
r(A)
µ − r(B)

µ

)
<
(
r(A)
ν − r(B)

ν

)
+

1

Ω2
r

[
β2=

(
r(A)
µ + r(B)

µ

)
=
(
r(A)
ν + r(B)

ν

)
+

1

α2
=
(
r(A)
µ − r(B)

µ

)
=
(
r(A)
ν − r(B)

ν

)]}
.

Inserting the zeroth order expressions for the mode functions, the zeroth order

variances are found to be〈
Q2
i (τi)

〉
a

= e−2γτi

[
c+1
Ω2

(
γ sin(Ωτi) + Ω cos(Ωτi)

)2
+ c+2 sin2(Ωτi)

]
,

〈
P 2
i (τi)

〉
a

= e−2γτi

[
c+1
Ω2

(Ω2 + γ2)2 sin2(Ωτi)

+ c+2
(
γ sin(Ωτi)− Ω cos(Ωτi)

)2]
,

〈Qi(τi)Pi(τi)〉a = e−2γτi sin(Ωτi)

[
c+2
(
Ω cos(Ωτi)− γ sin(Ωτi)

)
− c+1

(
1 +

γ2

Ω2

)(
Ω cos(Ωτi) + γ sin(Ωτi)

)]
,

〈QA(t)QB(τ)〉a = e−γ(t+τ)
[
c−1
γ

Ω
sin
(
Ω(t+ τ)

)
+

(
c−1
γ2

Ω2
+ c−2

)
sin(Ωt) sin(Ωτ)

+ c−1 cos(Ωt) cos(Ωτ)

]
,

〈QA(t)PB(τ)〉a = e−γ(t+τ)
[
c−2 sin(Ωt)

(
Ω cos(Ωτ)− γ sin(Ωτ)

)
− c−1 sin(Ωτ)

(
1 +

γ2

Ω2

)(
Ω cos(Ωt) + γ sin(Ωt)

)]
,

〈PA(t)QB(τ)〉a = e−γ(t+τ)
[
c−2 sin(Ωτ)

(
Ω cos(Ωt)− γ sin(Ωt)

)
− c−1 sin(Ωt)

(
1 +

γ2

Ω2

)(
Ω cos(Ωτ) + γ sin(Ωτ)

)]
,
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〈PA(t)PB(τ)〉a = e−γ(t+τ)

[(
c−1 Ω2

(
1 +

γ2

Ω2

)2

+ c−2 γ
2

)
sin(Ωt) sin(Ωτ)

+ c−2 Ω2 cos(Ωt) cos(Ωτ)− γΩc−2 sin
(
Ω(t+ τ)

)]
,

where

c±1 =
1

4

(
1

β2
± α2

)
, and c±2 =

1

4Ω2

(
β2 ± 1

α2

)
.

6.3 Entanglement Dynamics

In this section, the results of a numerical study of the entanglement dynamics

between the two detectors in the ultraweak coupling limit is presented. The

entanglement was quantified using Σ, as defined in Section 3.2. The only

quantity that was calculated numerically was 〈Q2〉v for the Rindler and Costa-

Villalba trajectories, which was done using the extended Simpson’s rule with

50001 samples of the integrand. This offered a reasonable balance between

accuracy and computational effort. The integration limits of Equation (6.19)

required solving the transcendental Equation (B.3), which was done numerically

using Newton’s method. All other quantities were calculated analytically.

Details on these numerical techniques are presented in Appendix D.

The parameters used for the detectors were m0 = 1, γ = 0.00001, and

Ω = 2.3. This, along with the choice of accelerations considered, ensured the

system was in the ultraweak coupling regime. The initial state of the detectors

was taken to be the entangled Gaussian state (6.1) with α = 1.1 and β = 4.5.

The Minkowski detector was taken to be at b = −0.001. This distance makes it

reasonable to drop the mutual influences. Sigma was calculated as a function

of time for various accelerations, and in the Rindler case, an additional position

of the Minkowski detector was considered.

The interaction was activated on the Minkowski time slice

at0 = sinh(−10)− 1

2
e10 ≈ −22026.465772106751636,

and terminated at

atf = sinh(10)− 1

2
e−10 ≈ 11013.232852003428496.

This covers 10 e-folds on both sides of the turnover from inertial to uniform

acceleration of the Costa-Villalba trajectory and thus offers a good opportunity

to examine the effects of the non-uniform acceleration on entanglement.
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Figure 6.4: The time slicings associated with the detectors. The Costa-Villalba

detector measures proper time τ , which is related to υ by Equation (B.3); the

Rindler detector η; and the Minkowski detector t.

The evolution of the entanglement between the detectors is described in

the time slicings of each observer. The different time slicing schemes are

summarized in Figure 6.4. It is important to note that considering different

time slicings is not the same as describing entanglement from the point of

view of different observers. This is because entanglement is not an observable

quantity. Only after they perform a measurement on the state and communicate

could they tell if their state was entangled. Furthermore, to estimate the degree

in which their state was entangled, they would need to repeat their experiment

many times.

6.3.1 Minkowski and Costa-Villalba detectors

In Minkowski time slicing, Σ = Σ(t, τ(υ(t))) where τ(υ) is given by Equa-

tion (B.3) and

υ(t) =
1

a
arcsinh

[
at√
2

]
+

1

a
ln(
√

2).

The results for several values of a are plotted in Figure 6.5. For the parameters

considered, the entanglement present in the initial state decreases as a function

of time, regardless of the asymptotic acceleration.
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Figure 6.5: Σ in Minkowski time slicing for entanglement between a Minkowski

and a Costa-Villalba detector. The horizontal axis is scaled by the asymptotic

acceleration and covers 10 e-folds on either side of the transition from inertial

to uniform acceleration. The peaks present are likely numerical artifacts.
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Figure 6.6: Σ in Minkowski time slicing for entanglement between a Minkowski

and a Costa-Villalba detector. It is plotted in Minkowski proper time and, for

the purposes of comparison, the curves have been shifted so that they all start

at the same time. There is little acceleration dependence in this parameter

range.

While each curve looks different, this is a result of the scale. Even though

each curve covers 10 e-folds of the turnover, the duration of the interaction

is different for each value of a. Rescaling the curves to Minkowski proper

time shows that in fact, the entanglement dynamics are not sensitive to the

asymptotic acceleration of the Costa-Villalba observer. This is expected since

most of the change in entanglement occurs before the Rindler regime of the

Costa-Villalba trajectory. To facilitate the comparison, the curves in Figure 6.6

are shifted such that they start at the same time.

There are several small peaks in the sigma curves. The peaks occur at

at ≈ 44.0529 and at ≈ 157.3319 for the a = 1 and a = 0.1 curves, respectively.

There are similar peaks in the other curves, however they cannot be seen on

the scale of Figure 6.5; see Figure 6.7 for a close up. Since these peaks do

not occur at the same time, and more significantly, not near t = 0 where the
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Figure 6.7: The peaks present in Σ in Minkowski time slicing. They are likely

a numerical artifact.
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Figure 6.8: Finite size scaling analysis of the peak in Σ with a = 0.1. The

data was fit to Ax2 + Bx + C where A = 1.02668 × 108, B = 75.0742,

C = −0.00098042. In the continuum limit (infinite number of function samples),

Σ = −0.00098042.

most dramatic changes occur in the trajectory, it is likely they are numerical

artifacts. To test if this is the case, a finite size scaling analysis is performed.

This involves calculating Σ at a single point for several different numbers of

function samples. The resulting values are then plotted against the reciprocal

of the number of function samples. This shows how the calculation depends on

the size of the finite sampling in the numerical integration. A better estimate

of the true value can then be obtained by extrapolating to an infinite number

of function samples (continuum limit). As can be seen in Figure 6.8, for

a = 0.1 the peak was reduced and the estimated true value is approximately

−9.8042× 10−4. Since this value is negative, the detectors are entangled. This

strengthens the argument that this is a numerical artifact but does not settle

it. While unlikely, there could still be a small peak and further analysis would

be needed to completely determine if the peak is a physical effect.

Disentanglement was not observed for any values of a except for a = 0.1
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Figure 6.9: Finite size scaling analysis of the last data point of Σ with a = 0.1.

The data was fit to Ax2 + Bx + C where A = 1.74609 × 107, B = 10.4737,

C = −0.00011937. In the continuum limit (infinite function samples), Σ =

−0.00011937.

and a = 0.05. In those cases, Σ remained positive after the artificial peak. This

again is due to numerical accuracy and to see that that was the case, another

finite size scaling analysis was performed on the last data point of the a = 0.1

curve. As can be seen in Figure 6.9, the estimated true value is approximately

−1.1937× 10−4. This indicates that the detectors remained entangled for the

entire duration of the interaction. Furthermore, the similarity of the curves

suggests that disentanglement does not occur for any acceleration considered.

This is expected based on the results of [13]. In their analysis, they found that

to zeroth order, no disentanglement occurs for the Rindler trajectory. However,

the first order correction causes Σ to become positive. It is expected that the

same behavior would happen here and it would be interesting to see the effect

of the higher order corrections.
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Figure 6.10: Σ in Costa-Villalba time slicing for entanglement between a

Minkowski and a Costa-Villalba detector. The horizontal axis is scaled by the

asymptotic acceleration and covers 10 e-folds on either side of the transition

from inertial to uniform acceleration.

In Costa-Villalba time slicing, Σ = Σ(t(τ), τ) where

t(τ) =
1

b
− 1

a
e−aυ,

and υ is obtained by inverting Equation (B.3). In Figure 6.10, it can be seen

that for early times, there is little difference between the two slicings. This is

expected since τ is approximately t for early times. However, after t = 0 there

is significant time dilation due to the rapid change in acceleration. Overall, the

dynamics of entanglement are very similar in both time slicings.

6.3.2 Minkowski and Rindler detectors

For a system consisting of a Minkowski detector and a Rindler detector analyzed

in Minkowski time slicing, Σ = Σ(t, η(t)) where

η(t) =
1

a
arcsinh(at).
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Figure 6.11: Σ in Minkowski time slicing for entanglement between a Minkowski

and Rindler detector. Here, the Minkowski observer is in the left Rindler wedge

at b = −0.001.

The evolution of the entanglement as quantified by Σ is depicted in Figure 6.11

for several different accelerations. The entanglement decreases as a function

of time for all the parameters considered. The curves approach zero, but

no disentanglement occurs to this order. It is expected that the next order

correction would cause disentanglement to occur as found in [13]. Again, in

Minkowski time slicing the dynamics of the entanglement are not sensitive

to a. This can be seen in Figure 6.12 where Σ is plotted as a function of

Minkowski proper time and each curve has been shifted to allow for comparison.

This agrees with the findings of [13] where it was also found that there was

no acceleration dependence to zeroth order. This suggests that, at least to

zeroth order, the Davies-Unruh effect plays a minor role in the dynamics of

the entanglement in Minkowski slicing.

In Rindler time slicing

t(η) =
1

b
tanh(aη).
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Figure 6.12: Σ in Minkowski time slicing for entanglement between a Minkowski

and a Rindler detector. It is plotted in Minkowski proper time and, for the

purposes of comparison, the curves have been shifted so they start at the

same time. The Minkowski detector is located in the left Rindler wedge at

b = −0.001.
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Figure 6.13: Σ in Rindler time slicing for entanglement between a Minkowski

and a Rindler detector. The Minkowski detector is in the left Rindler wedge

with b = −0.001. The noise present is round off error.

Note that if the Minkowski observer is in the left Rindler wedge (b < 0), then t

is a decreasing function of η. In this case, the time evolution of the Minkowski

detector proceeds in the opposite direction relative to that of Minkowski time

slicing or if the detector was in the right wedge. This has a qualitative difference

on the evolution of entanglement between the detectors.

When b = −0.001, the entanglement is found to increase as a function

of time. While there is essentially no entanglement for the duration of the

interaction for the smallest accelerations considered (Figure 6.13), larger ac-

celerations generated more entanglement as can be seen in Figures 6.14, 6.15,

and 6.16. This is similar to the results of [34, 35] where they found that

two Unruh-DeWitt detectors interacting with a field in causally disconnected

regions of spacetime could become entangled. Their conclusion was that since

the interaction was local, the entanglement must have been extracted from the

vacuum itself.

In contrast, entanglement was found to decrease as a function of time
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Figure 6.14: Σ in Rindler time slicing for entanglement between a Minkowski

and a Rindler detector with a = 0.05. The Minkowski detector is located in

the left Rindler wedge at b = −0.001.
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Figure 6.15: Σ in Rindler time slicing for entanglement between a Minkowski

and a Rindler detector with a = 0.1. The Minkowski detector is located in the

left Rindler wedge at b = −0.001.

when b = 1. Since this is the only parameter that changed, it suggests

that the time reversal associated with the left Rindler wedge plays a role

in the increase of entanglement observed there. The larger the acceleration,

the more entanglement there is throughout the interaction. This is shown

in Figures 6.18, 6.19, and 6.20. For the smallest accelerations considered,

there was essentially no entanglement during the interaction as can be seen

in Figure 6.17. This is likely due to the increased interaction time for small

accelerations. The system could have disentangled within the first few data

points and if the interaction time was extended for the higher accelerations,

they would eventually show similar behavior. However, further numerical

calculations would be needed to verify this.
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Figure 6.16: Σ in Rindler time slicing for entanglement between a Minkowski

and a Rindler detector with a = 1. The Minkowski detector is located in the

left Rindler wedge at b = −0.001.
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Figure 6.17: Σ in Rindler time slicing for entanglement between a Minkowski

and a Rindler detector. The Minkowski detector is located in the right Rindler

wedge at b = 1. The noise present is round off error.

60



-10 -5 0 5 10
aη

-0.00021

-0.000209

-0.000209

-0.000208

-0.000208

Si
gm

a

a = 0.05

Figure 6.18: Σ in Rindler time slicing for entanglement between a Minkowski

and a Rindler detector with a = 0.05. The Minkowski detector is located in

the right Rindler wedge at b = 1.
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Figure 6.19: Σ in Rindler time slicing for entanglement between a Minkowski

and a Rindler detector with a = 0.1. The Minkowski detector is located in the

right Rindler wedge at b = 1.

62



-10 -5 0 5 10
aη

-0.9069

-0.9068

-0.9067

-0.9066

-0.9065

Si
gm

a

a = 1.0

Figure 6.20: Σ in Rindler time slicing for entanglement between a Minkowski

and a Rindler detector with a = 1. The Minkowski detector is located in the

right Rindler wedge at b = 1.
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6.3.3 Comparisons

This section compares the cases of two Minkowski detectors (obtained analyti-

cally), one Minkowski and one Rindler detector, and one Minkowski detector

and one Costa-Villalba detector. These comparisons are made in Minkowski

time slicing as that is the only time slicing common to all three cases.

As can be seen in Figures 6.21 and 6.22, the dynamics of the entanglement

for the Costa-Villalba case are almost identical to that of two Minkowski

detectors until near t = 0. This is expected since the acceleration of the

Costa-Villalba detector is changing very rapidly near this time. The difference

between the two cases is more pronounced with larger accelerations (compare

Figure 6.21 to Figure 6.22) and it is anticipated that this trend will continue.

For the parameters considered, the entanglement between a Minkowski and

a Costa-Villalba detector decreases more rapidly than for the Rindler case,

which showed the least degradation of entanglement throughout the interaction.

The two Minkowski detectors lost their entanglement the most rapidly. It

would be interesting to see if this behavior is generic over a wider range of

parameters and when the next order corrections are taken into account.
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Figure 6.21: Comparison of the dynamics of Σ in Minkowski time slicing for en-

tanglement between two Minkowski detectors; a Minkowski and a Costa-Villalba

detector; and a Minkowski and a Rindler detector. The asymptotic acceleration

of the Costa-Villalba detector is a = 0.1, which is also the acceleration of the

Rindler detector.
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Figure 6.22: Comparison of the dynamics of Σ in Minkowski time slicing for

entanglement between two Minkowski detectors; a Minkowski and a Costa-

Villalba detector; and a Minkowski and a Rindler detector. The asymptotic

acceleration of the Costa-Villalba detector is a = 1, which is also the acceleration

of the Rindler detector.
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Chapter 7

Conclusion and Future Work

The goal of this thesis was to study entanglement in non-inertial frames. It was

shown in Chapter 5 that entanglement can be extracted from the Minkowski

vacuum of a Dirac spinor field by projective measurements performed by a

uniformly accelerating observer. The physical mechanism at work is the Davies-

Unruh effect. The produced state is always entangled and its entanglement

increases as a function of the acceleration, reaching maximal entanglement in

the asymptotic limit of infinite acceleration.

This entanglement is between the occupation number of two modes, which is

a plane wave state that is not physically realizable. Any realistic implementation

of this effect would require the use of wave packets and it would be interesting

to extend the analysis to that case. Squeezed states are a natural choice since

the Bogoliubov transform is a squeezing operation.

Another related problem would be to see if the acceleration of the Rindler

observer can be deduced by the Minkowski observer from the entangled state

produced. While this wouldn’t make for a very practical accelerometer, since

the observers need to communicate in order to utilize the entanglement (why

not just communicate the acceleration?), it would still be interesting to see how

the parameters of the dynamics can be extracted from the particle production.

This is analogous to the work in [40] where they found that the entanglement

between the particles produced by an expanding Robertson-Walker universe

encodes the parameters of the spacetime.

Chapter 6 studied the dynamics of two entangled Unruh-DeWitt detectors

interacting with a massless Klein-Gordon field. One detector was taken to

be stationary while the other was undergoing non-uniform acceleration. The

trajectory of the moving detector was initially inertial and smoothly transitions
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to a uniform acceleration. In the parameter range considered, entanglement

decreased more rapidly in Minkowski time slicing for the case where one detector

had non-uniform acceleration than if it had had uniform acceleration. However,

it was not as rapid as two inertial detectors.

The dynamics of entanglement were also described in the time slicings

associated with each observer. It was found that in the ultraweak coupling

limit, the entanglement decreased as a function of time for all parameters

considered. In the case where one observer was detector was moving with

uniform acceleration, it was found that there was a qualitative difference in the

dynamics of the entanglement depending on the separation of the detectors. For

the parameters considered, entanglement decreased as a function of time when

the inertial detector was in the right Rindler wedge but increased as a function

of time when the detector was in the left wedge. This increase in entanglement

warrants further study. It would be interesting to know whether it is a generic

feature over a wide parameter range and what role the distance dependence

(and the associated time reversal for the Minkowski observer) plays.

It would also be interesting to study the dynamics of entanglement over

a larger parameter range. In particular, higher accelerations are expected to

bring about more of a difference between the Costa-Villalba and Minkowski

cases. It would be interesting to see if the case of two Minkowski detectors

always loses entanglement faster than the Costa-Villalba case in Minkowski

time slicing.

Finally, it would be interesting to go beyond the ultraweak coupling limit.

This would involve evaluating the entire two point correlation matrix. For the

Costa-Villalba observer, this is a considerable computational task especially

since the mutual influences can no longer be ignored.

While there is still much to be learned about relativistic quantum informa-

tion, this thesis, along with similar research, has demonstrated that relativity

adds a new layer of possibilities for both practical and fundamental insights

into quantum information and nature.
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Appendix A

Rindler Coordinates

Uniform acceleration is most conveniently described in the Rindler coordinate

system [41]. They are named after Rindler not because he discovered them, but

rather because he most thoroughly examined their physical properties. The

Rindler coordinates (η, ξ) are defined in terms of the Minkowski coordinates

(t, x) as

t =
1

a
eaξ sinh(aη), (A.1)

x =
1

a
eaξ cosh(aη), (A.2)

as can be seen in Figure A.1. These coordinates take values −∞ < η, ξ <∞
and cover the region x > |t|, which is called the right Rindler wedge and is

denoted I. The inverse transformation is

η =
1

a
arctanh(t/x),

ξ =
1

2a
ln[a2(x2 − t2)].

Another Rindler coordinate system is needed to cover the region −x > |t|
(the left Rindler wedge, which is denoted II). The definition of these coordinates

differ from Equations (A.1) and (A.2) by an overall minus sign. Note that this

means that η is a decreasing function of t — time “flows backwards” in this

wedge. Both coordinate systems give rise to the line element

ds2 = e−2aξ(dξ2 − dη2).

The left Rindler wedge is casually disconnected from the right Rindler

wedge. However, they can both be influenced by events in the region −t > |x|,
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Figure A.1: The Rindler coordinate system in the right Rindler wedge (I).

The lines of constant ξ are the worldlines of uniformly accelerating observers.

Also shown are the left Rindler wedge (II), the future wedge (F ), and the past

wedge (P ).

which is called the past wedge, denoted P . Similarly, both wedges are causally

connected to the future wedge, which is the region t > |x| and is denoted F .

A.1 Rindler Observers

Observers whose worldline is a line of constant ξ are called Rindler observers.

In particular, the trajectory an observer with ξ = ξ0 is given in terms of

Minkowski coordinates as

zµ(η) =
1

a
eaξ0 [sinh(aη), cosh(aη)] .

This observer is confined to the right Rindler wedge with the lines t = x and

t = −x as communication horizons. This observer’s proper time is eaξ0η, from

which the proper velocity is found to be

vµ(η) = e−aξ0
∂zµ

∂η
= [cosh(aη), sinh(aη)] .

The proper acceleration is

aµ(η) = e−aξ0
∂vµ

∂η
=

1

a
e−aξ0 [sinh(aη), cosh(aη)] ,
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which has a constant magnitude squared of

aµa
µ =

1

a2
e−2aξ0 .

Therefore, the Rindler observers are moving with a uniform acceleration of

ae−aξ0 . In particular, the line ξ = 0 is the worldline of an observer who measures

proper time η and is moving with uniform acceleration a. This observer crosses

the t = 0 line at η = 0 and x = 1/a. This is why the Rindler coordinates

are ideal for describing uniform motion. In addition to observers in the right

wedge, there are analogous observers in the left wedge, whose trajectories are

the lines of constant ξ in that wedge.
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Appendix B

Costa-Villalba Coordinates

The Costa-Villalba coordinates (υ, ζ) are related to the Minkowski coordinates

(t, x) by

t+ x =
2

w
sinh

(
w(υ + ζ)

)
, (B.1)

t− x = − 1

w
exp
(
−w(υ − ζ)

)
, (B.2)

as can be seen in Figure B.1. They take values −∞ < υ, ζ <∞ and cover the

region x > t. These coordinates give rise to the line element

ds2 = (e−2wυ + e2wζ)(dζ2 − dυ2).

The inverse transformations are given by

υ + ζ =
1

w
arcsinh

(w
2

(t+ x)
)
,

υ − ζ = − 2

w
ln
(
−w(t− x)

)
,

or equivalently,

υ =
1

2w
arcsinh

(w
2

(t+ x)
)
− 1

2w
ln
(
−w(t− x)

)
,

ζ =
1

2w
arcsinh

(w
2

(t+ x)
)

+
1

2w
ln
(
−w(t− x)

)
.

An alternate form of Equations (B.1) and (B.2) is

t =
1

w
ewζ sinh(wυ)− 1

2w
exp
(
−w(υ + ζ)

)
,

x =
1

w
ewζ cosh(wυ)− 1

2w
exp
(
−w(υ + ζ)

)
,
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Figure B.1: The Costa-Villalba coordinate system, which covers the region

x > t. The lines of constant ζ are the wordlines of observers who start inertial

and smoothly transition to uniform acceleration.

which allows these coordinates to be viewed as Rindler coordinates with a

correction. The rest of Minkowski space can be covered by introducing another

coordinate system that is the reflection of the above about the null line t = x.

The author refers to these coordinates Costa-Villalba coordinates since

Costa and Villalba studied them in the context of particle creation due to

non-inertial motion. They were first introduced by Kalnins in his study of the

separability of the Laplace equation in two and three dimensional Minkowski

space (i.e., the Klein Gordon equation) [42]. Costa further studied them in

a series of papers about separable coordinates and particle creation. In the

first, he reproduced the coordinate systems of Kalnins by a different method,

concentrating on their kinematical properties [43]. In the second, he constructs

two vacua of a massive Klein Gordon field corresponding to the asymptotes of

a the motion of Costa-Villalba observers [44], introduced in the next section.

By calculating the Bogoliubov coefficients linking these vacua to the Minkowski

vacuum, he finds that in the asymptotic future, the observer perceives a thermal

distribution at the Unruh temperature. In the third, Costa and Svaiter consider

the Bogoliubov transformations to the Milne and Rindler vacua [45], which are

the true limiting cases of the motion.

Building on [44], Percoco and Villalba found the vacua associated with
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these observers for massless Klein-Gordon fields as well as both massive and

massless Dirac fields [46]. Villalba and Mateu also used these coordinates to

study massive Klein-Gordon and Dirac fields in the presence of a magnetic

field [47].

B.1 Costa-Villalba Observers

An observer whose worldline is ζ = ζ0 for some constant ζ0, is called a Costa-

Villalba observer. Their trajectory, given in Minkowski coordinates, is

zµ(υ) =

[
1

w
ewζ0 sinh(wυ)− 1

2w
exp
(
−w(υ + ζ0)

)
,

1

w
ewζ0 cosh(wυ)− 1

2w
exp
(
−w(υ + ζ0)

)]
,

where υ is the evolution parameter. The observer’s proper time τ is obtained

from the line element on the trajectory

ds2 = −dτ 2 = −
(
e−2wυ + e2wζ0

)
dυ2.

This implies
dτ

dυ
=
√
e−2wυ + e2wζ0 ,

which can be integrated to obtain1

τ =
1

w
ewζ0 arcsinh

(
ew(υ+ζ0)

)
− 1

w

√
e−2wυ + e2wζ0 . (B.3)

The observer’s proper velocity is then

vµ =
dzµ

dτ

=
1√

e−2wυ + e2eζ0

[
ewζ0 cosh(wυ) +

1

2
exp
(
−w(υ + ζ0)

)
,

ewζ0 sinh(wυ) +
1

2
exp
(
−w(υ + ζ0)

)]
,

1Note that the expressions for the proper time in [44] and [47] are incorrect. In both,
the second term is mistakenly positive, while in Villalba and Mateu there is also a missing
square root.
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and the proper acceleration is

aµ =
dvµ

dτ

=
w

e−2wυ + e2wζ0

[
e−2wυ

e−2wυ + e2wζ0
ewζ0 cosh(wυ) + ewζ0 sinh(wυ)

+
1

2
exp
(
− w(υ + ζ0)

)( e−2wυ

e−2wυ + e2wζ0
− 1

)
,

+
e−2wυ

e−2wυ + e2wζ0
ewζ0 sinh(wυ) + ewζ0 cosh(wυ)

+
1

2
exp
(
− w(υ + ζ0)

)( e−2wυ

e−2wυ + e2wζ0
− 1

)]
.

Its magnitude is √
aµaµ =

we2wζ0

(e−2wυ + e2wζ0)3/2

from which it can be seen that the observer is inertial in the asymptotic past

and has uniform acceleration in the asymptotic future. In particular,

lim
t→−∞

√
aµaµ = 0 lim

t→∞

√
aµaµ = we−wζ0 .

This is the only orthogonal coordinate system that has this interpretation and

allows the Klein-Gordon (and Dirac) equations to separate [43].

These observers have a horizon at the line t = x. An observer on the

worldline ζ0 = 0 starts at x = 0 in the infinite past and crosses the t = 0 line

at υ = 1
2w

ln(2) where x = 1
w
√

2
. This observer’s asymptotic acceleration is w.
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Appendix C

Unruh-DeWitt Detector Theory

A simple model of a “particle detector” is the Unruh-DeWitt detector [11, 17].

It consists of a point charge with an internal degree of freedom coupled to a

quantum field via a monopole interaction. If the internal degree of freedom

becomes excited from its ground state, a particle is said to have been detected.

Often, the internal degree of freedom is taken to be a two-level system. In

this thesis, it is taken to be a harmonic oscillator and can be thought of as a

simplified version of an atom. The treatment here will consider the detector

coupled to a massless Klein-Gordon field in Minkowski space. This appendix

will derive the regularized equations of motion for the mode functions, which

completely describe the dynamics of the detector. These derivations reproduce

the results of §II and §III of [48]. However, they are generalized to an arbitrary

initial time and expressed in terms of the time slicing of the field, as opposed

to that of the detector.

C.1 Lagrangian and Equations of Motion

The Lagrange density for a massless Klein-Gordon field Φ(x) is

LF (x) = −1

2
∂µΦ(x)∂µΦ(x),

which gives rise to the action

SF =

∫
d4xLF (x) = −1

2

∫
d4x ∂µΦ(x)∂µΦ(x),
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and consequently, the equation of motion (free Klein-Gordon equation)

0 =
∂LF (x)

∂Φ(x)
− ∂µ

(
∂LF (x)

∂
(
∂µΦ(x)

))
= ∂µ∂

µΦ(x). (C.1)

The conjugate momentum to the field is given by

Π(x) =
∂LF (x)

∂
(
∂tΦ(x)

) = ∂tΦ(x).

The detector’s internal degree of freedom Q is taken to be a harmonic

oscillator with mass m0, bare natural frequency Ω0, and proper time τQ. The

Lagrangian is

LQ =
m0

2

(
(∂τQQ)2 − Ω2

0Q
2
)
,

and the resulting action

SQ =

∫
dτQ LQ =

∫
dτQ

m0

2

(
(∂τQQ)2 − Ω2

0Q
2
)
,

gives rise to the equation of motion

0 =
∂LQ
∂Q

− ∂τQ

(
∂LQ

∂
(
∂τQQ(τQ)

))
= −m0∂

2
τQ
Q−m0Ω

2
0Q.

The detector’s conjugate momentum is

PQ(τQ) =
∂LQ(τQ)

∂
(
∂τQQ(τQ)

) = m0∂τQQ(τQ).

The Lagrange density that describes the interaction of the detector with

the field is

LI = λ0Q(τQ)Φ(x)δ4
(
xµ − zµ(τQ)

)
, (C.2)

where zµ(τQ) is the trajectory of the detector. Note that zµ(τQ) is not treated

as a dynamical variable in this model. That is, the back reaction of the field

on the trajectory is ignored. The coupling strength λ0 is taken to be constant.

In general, it is a smooth function that can be used to turn the interaction on

and off (say, adiabatically). The corresponding action is then

SI =

∫
dτQ

∫
d4xLI = λ0

∫
dτQ

∫
d4xQ(τQ)Φ(xµ)δ4

(
xµ − zµ(τQ)

)
.
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C.1.1 Quantum Theory In The Heisenberg Picture

The quantum theory is constructed by promoting the dynamical variables Φ(x),

Π(x), Q(τQ), and PQ(τQ) to be Hermitian operators on a Hilbert space and

enforcing the equal time commutation relations[
Φ̂(t,x), Π̂(t,x′)

]
= iδ3(x− x′),[

Q̂(τQ), P̂Q(τQ)
]

= i. (C.3)

In the Heisenberg picture, the equations of motion are the operator valued

analogies of the classical equations of motion

∂µ∂
µΦ̂(x) = −λ0

∫ ∞

τ0

dτQ Q̂(τQ)δ4
(
x− z(τQ)

)
, (C.4)

∂2
τQ
Q̂(τQ) + Ω2

0Q̂(τQ) =
λ0

m0

Φ̂
(
τQ, z(τQ)

)
. (C.5)

The detector is a point source for the field while it is driven by the field

amplitude at its current position.

C.2 Mode Decomposition

Since the system is linear, the evolution will be a linear transformation in the

phase space of the operators. If the coupling is turned on at time t0, the field

operator can be represented as

Φ̂(t,x) =

∫
d3x′

(
fΦ(t,x,x′)Φ̂(t0,x

′) + fΠ(t,x,x′)Π̂(t0,x
′)
)

+ fQ(x)Q̂
(
τQ(t0)

)
+ fPQ(x)P̂Q

(
τQ(t0)

)
.

(C.6)

Similarly, Q̂ can be represented as

Q̂(τQ) =

∫
d3x′

(
qΦ(τQ,x

′)Φ̂(t0,x
′) + qΠ(τQ,x

′)Π̂(t0,x
′)
)

+ qQ(τQ)Q̂
(
τQ(t0)

)
+ qPQ(τQ)P̂Q

(
τQ(t0)

)
.

(C.7)

At the initial time t0, the field is free giving

Φ̂(t0,x) = Φ̂0(x), Q̂
(
τQ(t0)

)
= Q̂0,

Π̂(t0,x) = Π̂0(x), P̂Q
(
τQ(t0)

)
= P̂0.
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The free field Φ̂0(x) can be expanded in the modes

Φ̂0(x) =
1

(2π)3/2

∫
d3k

√
1

2ω

(
eik·x−iωt0 b̂k + e−ik·x+iωt0 b̂†k

)
(C.8)

and consequently, the initial conjugate momentum to field is given by

Π̂0(x) = ∂tΦ̂(t0,x) =
1

(2π)3/2

∫
d3k (−iω)

√
1

2ω

(
eik·x−iωt0 b̂k − e−ik·x+iωt0 b̂†k

)
.

To satisfy Equation (C.3), the mode operators must satisfy[
b̂k, b̂

†
k′

]
= δ3(k − k′).

Since the mode operators are independent of time, Equation (C.1) requires the

dispersion relation

ω = |k|.

Similarly, ladder operators can be defined for the detector as

Q̂0 =

√
1

2Ωrm0

(
e−iΩrτQ(t0) â+ eiΩrτQ(t0) â†

)
, (C.9)

and so

P̂0 = m0∂τQ(τQ(t0)) = −i
√

Ωrm0

2

(
e−iΩrτQ(t0) â− eiΩrτQ(t0) â†

)
.

The canonical commutation relation on Q̂ and P̂ impose[
a, a†

]
= 1.

In anticipation of the regularization to come, the renormalized frequency Ωr

(to be defined in Section C.3.1) has been used in the above definitions instead

of the bare natural frequency Ω0.

Combining Equations (C.6) and (C.8) results in

Φ̂(x) = Φ̂a(x) + Φ̂b(x), (C.10)

where

Φ̂a(x) =

√
1

2Ωrm0

(
fa(t,x)â+ fa∗(t,x)â†

)
,

Φ̂b(x) =
1

(2π)3/2

∫
d3k

√
1

2ω

(
f (+)(t,x,k)b̂k + f (−)(t,x,k)b̂†k

)
,
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and

fa(t,x) =
(
fQ(x)− iΩrm0f

PQ(x)
)
e−iΩrτQ(t0),

f (+)(t,x,k) =

∫
d3x′

(
fΦ(t,x,x′)− iωfΠ(t,x,x′)

)
eik·x

′−iωt0 ,

f (−)(t,x,k) =

∫
d3x′

(
fΦ(t,x,x′) + iωfΠ(t,x,x′)

)
e−ik·x

′+iωt0 .

Note that Hermiticity of Φ̂(x) requires

f (+)(t,x,k) = f (−)∗(t,x,k).

This means that fΦ(x,x′) and fΠ(x,x′) must be real functions. Due to the

Hermiticity of Q̂(τQ), fQ(x) and fPQ(x) are also real functions. Combining

Equations (C.7) and (C.9) results in

Q̂(τQ) = Q̂a + Q̂b, (C.11)

where

Q̂a(τQ) =

√
1

2Ωrm0

(
qa(τQ)â+ qa∗(τQ)â†

)
,

Q̂b(τQ) =
1

(2π)3/2

∫
d3k

√
1

2ω

(
q(+)(τQ,k)b̂k + q(−)(τQ,k)b̂†k

)
,

and

qa(τQ) =
(
qQ(τQ)− iΩrm0q

P (τQ)
)
e−iΩrτQ(t0),

q(+)(τQ,k) =

∫
d3x′

(
qΦ(τQ,x

′)− iωqΠ(τQ,x
′)
)
eik·x

′−iωt0 ,

q(−)(τQ,k) =

∫
d3x′

(
qΦ(τQ,x

′) + iωqΠ(τQ,x
′)
)
e−ik·x

′+iωt0 .

Again, Hermiticity of Φ̂(x) requires

q(+)(τQ,k) = q(−)∗(τQ,k)

and as a result, qΦ(τQ,x
′) and qΠ(τQ,x

′) must be real functions. The Hermitic-

ity of Q̂(τQ) imposes that qQ(τQ) and qPQ(τQ) must also be real.
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C.3 Equations of Motion for the Modes

It is sufficient to solve for fa(x), f (+)(x,k), qa(τQ), and q(+)(τQ,k) due to the

Hermiticity of Φ̂(x) and Q̂(τQ). Inserting Equations (C.10) and (C.11) into

Equations (C.4) and using the linear independence of b̂k, b̂†k, â, and â† yields

(∂2
t −∇2)fa(x) = λ0

∫
dτQ q

(+)(τQ,k)δ4
(
x− z(τQ)

)
, (C.12)

(∂2
t −∇2)f (+)(x,k) = λ0

∫
dτQ q

a(τQ)δ4
(
x− z(τQ)

)
. (C.13)

Similarly, linear independence as well as Equations (C.10), (C.11), and (C.5)

results in

(∂2
τQ

+ Ω2
0)q

a(τQ) =
λ0

m0

fa
(
z(τQ)

)
, (C.14)

(∂2
τQ

+ Ω2
0)q

(+)(τQ,k) =
λ0

m0

f (+)
(
z(τQ),k

)
. (C.15)

Prior to the interaction the field and the detectors were free, which leads to

the following initial conditions

qa
(
τ0(t0)

)
= e−iΩrτQ(t0),

∂τQq
a(τ0(t0)) = −iΩre

−iΩrτQ(t0), (C.16)

f (+)(t0,x,k) = eik·x−iωt0 , (C.17)

∂tf
(+)(t0,x,k) = −iωeik·x−iωt0 ,

q(+)
(
τQ(t0)

)
,k) = ∂τQ(τQ(t0),k) = 0,

fa(t0,x) = ∂tf
a(t0,x) = 0. (C.18)

The equations of motion for the operators Q̂(τQ) and Φ̂(x) have been reduced

to equations of motion for the complex-valued modes, which look analogous to

classical fields.

C.3.1 Regularized Equations Of Motion

Equations (C.12) and (C.13) can be solved using the retarded Green’s function

for the massless Klein-Gordon equation

Gret(x, x
′) =

1

4π
θ(t− t′)δ(σ),
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where θ(t) is the Heaviside step function and

σ = −1

2
(xµ − x′µ)(x

µ − x′
µ
).

The solution to Equation (C.13) is given by

f (+)(x,k) = f
(+)
0 (x,k) + f

(+)
1 (x,k), (C.19)

where f
(+)
0 (x,k) is the free field solution and f

(+)
1 (x,k) is the retarded solution.

In accordance with boundary condition (C.17), the free field solution is

f
(+)
0 (x,k) = eik·x−iωt.

The retarded solution can be further evaluated formally as

f
(+)
1 (x,k) = λ0

∫ ∞

−∞
d4x′

∫ ∞

−∞
dτQGret(x, x

′)q(+)(τQ,k)δ4
(
x′ − z(τQ)

)
= λ0

∫ ∞

−∞
dτQGret

(
x, z(τQ)

)
q(+)(τQ,k)

=
λ0

4π

∫ ∞

∞
dτQ θ

(
t− z0(τQ)

)
δ(σ)q(+)(τQ,k)

=
λ0

4π

∫ ∞

τQ(t0)

dτQ δ(σ)q(+)(τQ,k)

=
λ0

4π
θ
(
τ ret
Q (x)− τQ(t0)

)
q(+)

(
τ ret
Q (x),k

) [∣∣∣∣ ∂σ∂τQ
∣∣∣∣
τ ret
Q

]−1

.

The function τ ret
Q (x) is the retarded time and depends on the details of the

trajectory. It is the solution to σ = 0. Similarly,

∣∣∣∣ ∂σ∂τQ
∣∣∣∣
τ ret
Q

is the retarded

distance, which is the spatial distance between the field point and the detector

at the retarded time. This will cause the field f (+)(x,k) to diverge at the

location of the detector. This complicates solving Equation (C.15) since the

field amplitude at the position of the detector is the driving force for q(+)(τQ,k).

To handle this divergence the following regularization scheme [49, 50] is

used. Note that the system under consideration is a detector moving along

a prescribed trajectory and, by construction, there will be only one detector.

Therefore, at the energy scales of detector pair productions there is a natural

cutoff on frequency Λ. This is equivalent to giving the detector a finite width

O(Λ−1). This will limit the spatial resolution of the theory.
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The effective field theory is constructed by replacing the retarded Green’s

function with

GΛ
ret(x, x

′) =
1

4π
θ(t− t′)

(√
8

π
Λ2e−2Λ4σ2

)
,

where the delta function has been replaced by a Gaussian function that has a

very small standard deviation. This reduces to the usual Green’s function in

the limit of no cutoff, as required for consistency. That is,

lim
Λ→∞

GΛ
ret(x, x

′) = Gret(x, x
′).

The retarded solution is then

f
(+)
1 (x,k) ≈ λ0

∫
dτ ′QG

Λ
ret

(
x, z(τ ′Q)

)
q(+)(τ ′Q,k)

= λ0
Λ2

4π

√
8

π

∫ τQ

τQ(t0)

dτ ′Q q
(+)(τ ′Q,k)e−2Λ4σ2

.

Near the trajectory, x = zµ(τQ) so the following expansion can be made

zµ(τ
′
Q) = zµ(τQ) + svµ(τQ) +

s2

2
aµ(τQ) +

s3

3!
ȧµ(τQ) + · · · ,

where s = τ ′Q − τQ, vµ(τQ) = żµ(τQ), aµ(τQ) = v̇µ(τQ), and overdot denotes

differentiation with respect to τQ. Inserting this into the definition of σ results

in

σ = −1

2

(
zµ(τQ)− zµ(τ

′
Q)
)(
zµ(τQ)− zµ(τ ′Q)

)
≈ −1

2

(
svµ(τQ) +

s2

2
aµ(τQ) +

s3

3!
ȧµ(τQ)

)(
svµ(τQ) +

s2

2
aµ(τQ) +

s3

3!
ȧµ(τQ)

)
.

This can be simplified to

σ = s2 +
s4

24
aµa

µ +
s5

6
ȧµa

µ +
s6

36
ȧµȧ

µ

by using the following relations

vµv
µ = −1, aµv

µ =
1

2

∂(vµv
µ)

∂τQ
= 0, vµȧ

µ = −aµaµ.

Taylor expanding

q(+)(τ ′Q,k) = q(+)(τQ,k) + sq̇(+)(τQ,k) +
s2

2
q̈(+)(τQ,k) + · · · ,
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the retarded solution near the trajectory becomes

f
(+)
1 (zµ(τQ),k) ≈ λ0

Λ2

4π

√
8

π

∫ τQ

τQ(t0)

dτ ′Q e
−2Λ4(s2/2+s4aµaµ/24)2

×
(
q(+)(τQ,k) + sq̇(+)(τQ,k) +

s2

2
q̈(+)(τQ,k)

)
.

It is now assumed that Λ4s4 � 1 but Λ4s6aµa
µ � 1 so that

f
(+)
1 (zµ(τQ),k) ≈ λ0

Λ2

4π

√
8

π

q(+)(τQ,k)

0∫
τQ(t0)−τQ

ds e−
Λ4s4

2

+ q̇(+)(τQ,k)

0∫
τQ(t0)−τQ

ds se−
Λ4s4

2

+
1

2
q̈(+)(τQ,k)

0∫
τQ(t0)−τQ

ds s2e−
Λ4s4

2

 .

Since Λ is very large, the standard deviation of the Gaussian is very small. As

a result, the integration can be extended to infinity with negligible difference.

Letting s→ −s results in

f
(+)
1 (zµ(τQ),k) ≈ λ0

Λ2

4π

√
8

π

{
q(+)(τQ,k)

∫ ∞

0

ds e−
Λ4s4

2

+ q̇(+)(τQ,k)(τq,k)

∫ ∞

0

ds se−
Λ4s4

2

+
1

2
q̈(+)(τQ,k)

∫ ∞

0

ds s2e−
Λ4s4

2

}
.

Further letting x = Λ4s4/2 yields

f
(+)
1 (zµ(τQ),k) = λ0

Λ2

4π

√
8

π

{
1

Λ

1

27/4
q(+)(τQ,k)

∫ ∞

0

dx x−3/4e−x

− 1

Λ2

1

2
√

2
q̇(+)(τQ,k)

∫ ∞

0

dx x−1/2e−x

+
1

Λ3

1

213/4

∫ ∞

0

dx x−1/4e−x
}
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= λ0
Λ2

4π

√
8

π

{
q(+)(τQ,k)

1

Λ

1

27/4
Γ(1/4)

− q̇(+)(τQ,k)
1

Λ2

1

2
√

2
Γ(1/2)

+q̈(+)(τQ,k)
1

Λ3

1

25/4
Γ(3/4)

}
.

Dropping the term O(Λ−1), the mode near the trajectory becomes

f
(+)
1 (zµ(τQ),k) ≈ λ0

4π

(
Λκq(+)(τq,k)− q̇(+)(τQ,k)

)
,

where κ =
27/4Γ(5/4)√

π
. Finally, inserting this into Equation (C.15) results in

the regularized equation of motion for q(+)

(∂2
τQ

+ 2γ∂τQ + Ω2
r)q

(+)(τQ,k) =
λ0

m0

f
(+)
0 (zµ(τQ),k). (C.20)

Now the mode behaves like a damped harmonic oscillator with

γ =
λ2

0

8πm0

, and Ω2
r = Ω2

0 −
λ2

0Λ
2κ

4πm0

,

driven by the vacuum fluctuations of the field.

The same procedure is used to regularize Equation (C.14). However, in this

case fa0 (x) = 0 by boundary condition (C.18) so that

(∂2
τQ

+ 2γ∂τQ + Ω2
r)q

a(τQ) = 0. (C.21)

The dynamics of the Unruh-DeWitt detector are contained in the mode

functions q(+)(τQ,k) and qa(τQ). These are described as damped harmonic

oscillators governed by Equations (C.20) and (C.21). The dynamics of the field

are contained in the mode functions f (+)(x,k) and fa(x), which are governed

by Equations (C.13) and (C.12). To proceed further requires specialization to

a trajectory.
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Appendix D

Numerical Techniques

This appendix introduces the numerical techniques employed in the calculations

for Chapter 6. Numerical integration was carried out using Simpson’s rule

while numerically solving equations, such as the transcendental Costa-Villalba

proper time, was achieved using Newton’s method.

D.1 Simpson’s Rule

Simpson’s rule is a method to approximate the value of a definite integral. It

achieves this by approximating the integrand as a second order polynomial,

which is fit to the function at the endpoints of integration x1 and x3 as well as

the midpoint x2. Integrating this polynomial results in∫ x3

x1

dx f(x) ≈ h

3

(
f(x1) + 4f(x2) + f(x3)

)
,

where h = (x3−x1)/2. It is exact for polynomials of degree up to and including

three.

Dividing the integration region up into smaller, equally spaced intervals

and applying Simpson’s rule to each results in the extended Simpson’s rule

∫ xn

x1

dx f(x) ≈ xn − x1

3(n− 1)

f(x1) + 4

(n+1)/2∑
i=1

f(x2i) + 2

(n−1)/2∑
i=1

f(x2i−1) + f(xn)

 ,
where n is the number of times the function is sampled. It can be shown that

the error in the approximation is of order O(1/n4) [51]. The more function

samples, the better the approximation.
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D.2 Newton’s Method

Newton’s method is a numerical technique to approximate the root of a func-

tion [51]. Given an initial estimate of the root x0, the function is approximated

by the Taylor series

f(x) ≈ f(x0) + f ′(x0)(x− x0),

where prime denotes differentiation with respect to x. The root of this approx-

imation is often a better estimate to the actual root. The estimate can then

be further refined by repeating the procedure

xn+1 = xn −
f(xn)

f ′(xn)
.

Since Newton’s method relies on a Taylor series, the initial guess must be close

to the actual root for it to be effective.
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Appendix E

Free Field Mode Summation

This appendix will prove the result

1

2π

∫
d3k

2ω
f

(+)
0 (zµ(τ),k)f

(−)
0 (zµ(τ ′),k) =

(
1

∆x2 −∆t2

)
, (E.1)

where ∆x = zi(τ)− zi(τ ′) and ∆t = z0(τ)− z0(τ ′). The free field mode is

f
(+)
0

(
z(τ),k

)
= e−iωz

0(τ)+ik·z(τ ′)

and f
(−)
0 = f

(+)
0

∗
. Inserting these into the integral results in

1

2π

∫
d3k

2ω
f

(+)
0 (zµ(τ),k)f

(−)
0 (zµ(τ ′),k) =

1

2π

∫
d3k

2ω
e−iω∆teik·∆x.

Switching to spherical coordinates and performing the φ and θ integrations

results in

1

2π

∫
d3k

2ω
e−iω∆teik·∆x = −

∫ ∞

0

dω
1

∆x

(
e−iω(∆t−∆x) − e−iω(∆t+∆x)

)
.

Since the integrand oscillates, a cutoff must be introduced in order to perform

the integration. Letting ∆t→ ∆t− iε where ε is a small positive constant and

performing the remaining integration yields

−
∫ ∞

0

dω
1

∆x

(
e−iω(∆t−iε−∆x) − e−iω(∆t−iε+∆x)

)
=

(
1

∆x2 − (∆t− iε)2

)
.

The desired result is obtained by taking the limit ε→ 0.
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