
Energy Performance Testing of
Smartphones: A First Look at

Energy Bugs in Mobile Devices

by

Yasir Ali

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Yasir Ali 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Smartphones have revolutionized the way people live their daily lives, the way they
communicate with each other and the way they access information on-line. A decade ago,
desktop computers and laptops were the primary source to use internet and access on-line
information. But with all the technological advancements, smartphones and tablets have
taken over. An important factor that aided to the popularity of smartphones is different
applications available on smartphones. Whether a user wants to play games, watch videos,
read books, access on-line information or check his/her email, there are applications for
each and every one of them. These applications have greatly enhanced the user experience
on smartphones.

According to an old saying, everything comes at a price. The same is the case with these
smartphone applications. In addition to enhancing user experience and providing easy ac-
cessibility, they affect the smartphone battery consumption. They utilize the hardware
resources and in turn consume the battery’s energy. In comparison to the advancements
in hardware and software industry, the development in battery technology is significantly
slow. Even the battery energy density has little effect on the battery life with inefficient
applications. Therefore there is a need: (a) for applications that efficiently utilize the
smartphone battery, (b) to investigate the energy issues (energy bugs) in smartphones.
For applications to be energy efficient; we need to have some testing methodologies so that
the developers are aware of the energy consumption of their applications and can take
appropriate measures while the applications are still in the development phase. Bugs are
usually defined as an error in the system and energy bugs in smartphones are responsible
for the unexpected and substantial battery drain. In order to research the energy bugs in
smartphones, we need to have a comprehensive definition in context of software testing so
that the developers can use it as a reference while testing their applications and improve
the functionality of their applications.

With the above objectives in mind, in this thesis we have proposed and implemented a
methodology to efficiently reduce the configuration parameters of smartphone applications
that will help in reduction of test cases and will efficiently reduce the testing time. We
also validated our methodology by measurements and experiments on four different smart-
phones. We have investigated the energy issues in smartphones and have defined energy
bug. We also validated our definition with measurements and experiments.

iii

Acknowledgements

First and foremost, I am grateful to Almighty Allah for His countless blessings and for
giving me the knowledge and strength to accomplish my research work.

I would like to express my deepest and sincere gratitude to my supervisor Dr. Kshi-
rasagar Naik for his support, guidance and encouragement throughout my research. I
would also like to thank all of my research colleagues, former members of my research
group and friends for their help and support.

I am also thankful to my committee members, Professor Pin Han Ho and Professor
Andrew Morton, for their constructive feedback and comments on this thesis.

Last and by far not least, I am indebted to my parents and family for their unconditional
love, continuous support and prayers.

iv

Dedication

This thesis is dedicated to my parents.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Problem Statement . 4

1.4 Solution Strategy . 5

1.5 Contributions . 6

1.6 Organisation . 6

2 Literature Review 7

2.1 Introduction . 7

2.2 Energy Problem in Smartphones . 9

2.3 Bugs in Smartphones . 10

2.4 Energy Bugs: A Taxonomy . 11

2.4.1 Hardware Energy Bugs . 11

2.4.2 Software Energy Bugs . 12

2.4.3 Energy Bugs due to External Conditions 13

2.5 Review of Existing Research . 14

vi

3 Energy Performance Testing 18

3.1 Introduction . 18

3.2 Configuration Parameters . 21

3.3 Related Work . 26

3.4 Experimental Setup . 30

3.5 Proposed Methodology . 32

3.5.1 Maximum Differential Power . 32

3.5.2 Validation . 33

4 Energy Bug 40

4.1 Introduction . 40

4.2 Energy Bug: A Comprehensive Definition 41

4.2.1 High Power Consuming State . 44

4.2.2 Low Power Consuming State . 45

4.3 Energy Bug Across Different OS Versions 45

4.4 Energy Bug Across Different Applications with Same Functionality 51

5 Conclusion 54

References 56

vii

List of Tables

3.1 Examples of Basic Parameters (G0) . 23

3.2 Examples of Active Parameters (G1); ”Yes” means the parameter is avail-
able; ”No” means the parameter is not available. 24

3.3 Examples of Passive Parameters (G2); ”Yes” means the parameter is avail-
able; ”No” means the parameter is not available; ”Alternative” means a
similar parameter is available. 25

3.4 Pairwise test cases for system H. 27

3.5 Number of states for active parameters of Smartphones (NFC: Near Field
Communication; GPS: Global Positioning System; NAM: Network Access
Mode; NA: Not Available). 34

4.1 Energy consumption over different OS versions. 46

4.2 Energy consumption by different different browsers. 52

4.3 Difference in energy consumption by different browsers. 52

4.4 Difference in energy consumption by different browsers. 52

viii

List of Figures

1.1 Shift of Internet usage trend from PC to Smartphone [24]. 3

2.1 Battery Energy Density in Smartphones [19]. 8

3.1 Smartphone environment in terms of energy consumption hierarchy. 19

3.2 Schematic diagrams of functionality and energy performance testing. . . . 20

3.3 Smartphone application development process. 21

3.4 Categorization of smartphone parameters. 22

3.5 Experimental Setup. 31

3.6 Power consumption of all the states for active parameters of Samsung Galaxy
Nexus . 34

3.7 Obtaining the primary parameters for Samsung Galaxy Nexus. 35

3.8 Power consumption of all the states of the active parameters of BlackBerry
Z10. 36

3.9 Obtaining the primary parameters for BlackBerry Z10. 36

3.10 Power consumption of all the states of the active parameters of iPhone 3GS. 37

3.11 Obtaining the primary parameters for iPhone 3GS. 37

3.12 Power consumption of all the states of the active parameters of BlackBerry
Bold 9700. 38

3.13 Obtaining the primary parameters for BlackBerry Bold 9700. 38

4.1 Complete execution cycle of an application process 41

ix

4.2 Experiment 1 - Difference in energy consumption across different OS versions. 47

4.3 Experiment 2 - Difference in energy consumption across different OS versions. 48

4.4 Experiment 3 - Difference in energy consumption across different OS versions. 49

4.5 Experiment 4 - Difference in energy consumption across different OS versions. 50

4.6 Energy consumption across different applications with same functionality. . 53

x

Chapter 1

Introduction

Ever since the inception of the telephone by “Alexander Graham Bell”, there has been a
continuous development to improve the means of communication between people. And this
development has led to new inventions, new technologies and enhanced communication and
networking protocols. The technological world is changing rapidly and the communication
services providers as well as the mobile device manufacturers are investing in research and
development to enhance their products, services and to provide users with easily accessible
state of the art technology.

1.1 Background

Mobile phones were introduced in the early 1970’s [41]. They are the most popular com-
munication devices ever in human history. Only second to them are the ’Smartphones’,
introduced by Research-In-Motion (now BlackBerry) in 2005. There has been an exponen-
tial increase in the number of mobile phone users in the past two decades and now that
trend is shifting towards smartphones.

According to a report published by International Telecommunication Union (ITU),
there are nearly 7 billion mobile subscriptions worldwide [26]. In the beginning of 2014,
there were 14 countries with over 100 million mobile subscribers each. China alone has
over 1.2 billion mobile subscribers [26]. Smartphones are also becoming a popular means
to access the internet. According to the International Telecommunication Union (ITU),
by the end of 2014 the mobile broadband subscription will reach 2.3 billion users [44]. The

1

reason that these smartphones are becoming so popular is that they not only fulfil the
basic telephony needs of users but also act as a computing device equipped with latest
technology. On the plus side, with recent developments in the chip-set technology these
smartphones are becoming slim and small in size each year.

One other reason for this rapid and continual increase in smartphone users is thousands
of applications (commonly referred as Apps) available on App Stores. As of June 2014,
there are more than 1.2 million apps available in both Apple’s App Store and Google’s
Play Store [27], [23]. These applications with their simplicity and easy to use features
are available on the go and users do not have to always rely on their PC machines any
more. These applications range from education to business, from travel to entertainment
and from games to technology.

Smartphones with all new exciting features, latest technology and these amazing ap-
plications are favourite means of communication. Their functionalities and development
however, do have some constraints like processing capabilities, battery power, data privacy
and bandwidth; where battery power is the most important one.

1.2 Motivation

Following factors were the motivation behind this research:

1. The growing popularity of smartphones.

The smartphone market is growing day-by-day and there is no parallel to its popu-
larity. Recent statistics (Figure 1.1) have shown that users prefer to use smartphones
over computers and laptops [24].

2. The tremendous increase in smartphone applications.

Huge development of smartphone applications also aids the popularity of smart-
phones. Most of these applications use smartphone’s limited resources and consume
a large portion of limited battery energy. The number of downloads for smartphone
applications is expected to grow from 10.9 billion in 2010 to 76.9 billion in 2014 [11]
.

2

3. “Energy Bugs” in smartphones.

Bug is defined as an error in the system. The term energy bug, as the name suggests,
attributes that error with the energy of the system. In smartphones energy bugs are
responsible for the loss of the battery’s energy.

Figure 1.1: Shift of Internet usage trend from PC to Smartphone [24].

So with the above factors in mind, we first studied the power consumption by smart-
phone applications. After studying the impact of smartphone applications on battery, we
focussed on methodologies for energy performance testing of smartphones. We proposed a
methodology to select test configurations for energy cost evaluation of smartphone appli-
cations. We also defined energy bug and with the help of measurements and experiments
showed that the energy issues in smartphones are crucial for battery performance.

3

1.3 Problem Statement

The number of smartphone applications is increasing every day. There are already more
then million applications (apps) available in App Stores. The reason for the popularity of
these apps is the fact that they provide users with easy access to their needs. Whether you
need to check your email, watch videos, play games, read newspapers, access information
on-line or access social media there are apps available with these features. As shown in
figure 1.1, the trend in usage of smartphones to access internet is continuously increasing.
In some countries almost 80% of the users access internet through their smartphones [24].

Many of these applications have parameters that use hardware resources and can be
configured by the user. These hardware resources ultimately consume power from smart-
phone battery. The growth in battery technology is not keeping pace with the rapid
developments in the other subsystems of a smartphone namely, central processing unit,
memory, display, storage, and radio interfaces [30]. Therefore, there is a need to make
these applications energy efficient and there is a need to develop testing methodologies to
evaluate the energy efficiency of smartphones [40], [59].

Energy performance testing is different from functional testing (as discussed in sec-
tion 3.1) and requires consideration of all the parameters and their configurations. With
all the latest developments in ’app industry’, there are an enormous number of application
parameters and configurations in smartphones. As a result the number of test cases for
energy performance testing is huge. Therefore we have proposed a methodology in this
work that not only reduces the configuration parameters and test cases that a user has to
consider to perform energy performance testing but also give accurate results.

Sometimes smartphone applications start to consume more power which eventually
leads to drainage of the battery. The reason for this scenario is that there might be an
energy bug in the system/application. In this case the fault is either at the developers end
(the way the application was developed) or something might occur during execution that
leads the application to consume more power.

There is a difference between traditional software bugs (mostly due to programming
errors) and energy bugs. The energy bugs do not lead to an application crash or the system
being in a halt state but instead let the system/application to continue its operation. The
only problem is the excessive consumption of battery power [61].

4

The core issues being discussed in this thesis can be best summarized as:

• From energy performance testing perspective, how can we optimize the testing pro-
cess while maintaining accurate results?

• From software testing perspective, how can we define the “energy bug” phenomenon
in smartphones?

1.4 Solution Strategy

The following points outline the strategy to achieve the goals of this thesis. The details of
these strategies are discussed in Chapter 3 and chapter 4.

1. Categorizing Configuration Parameters of Smartphones.

Smartphone applications have numerous parameters that a user can configure. For
energy performance testing of smartphones, it is necessary that these configurations
should be reduced to a small set that would not only reduce the time for exhaustive
testing but will also give almost the same results as if we would have considered all the
configurations. To achieve this goal we proposed a methodology. We first selected the
smartphone parameters and measured power consumed by each individual parameter
and then applied our methodology to reduce the parameters. We used four state of
the art smartphones and compared the results to verify our methodology [56].

2. Defining “Energy Bugs” in Smartphones.

The issue of Energy Bug in smartphones is an important one and a few definitions
can be found in literature but all of them are either generic or specific to one aspect
of smartphone. In this work, we have tried to give a comprehensive definition to
this phenomenon (in context of software testing) and have supported our claims with
analysis, measurements and experiments.

5

1.5 Contributions

The work in this thesis makes the following contributions:

• generalising the energy performance testing framework in [59] and proposing a new
methodology.

• evaluating the energy cost of some basic smartphone applications and showing how
our methodology reduces the configuration parameters for energy performance test-
ing.

• explaining and defining the phenomenon of energy bug.

• investigate the impact of smartphone applications on energy consumption and per-
form experiments and measurements to support the energy bug definition.

1.6 Organisation

The rest of the thesis is organized as follows. Chapter 2 discusses related research and
literature for energy performance testing and energy bugs. Chapter 3 describes the energy
performance testing framework, testing methodology used and the experiments carried
out to validate our methodology. Chapter 4 contains the generalized definition of energy
bug and the validation results. Finally, Chapter 5 concludes this work and present some
recommendations for future work.

6

Chapter 2

Literature Review

In this chapter, we have discussed the energy issues in smartphones (Section 2.2). In order
to have a good understanding of the research work presented in this thesis (Chapter 4),
it is imperative to have knowledge of different bugs in smartphones. Therefore, we have
presented reasons for the occurrence of energy bugs in section 2.3 and then a taxonomy
of smartphone energy bugs in section 2.4. In section 2.5, we have presented a summary of
related work done in the domain of smartphone bugs and energy bugs.

The goal of this chapter is to outline the concept of bugs in smartphones, provide a
classification for these bugs and discuss existing research in this domain. All of this will lay
a foundation to better understand the concept of ’Energy Bug’ (discussed in Chapter 4).

2.1 Introduction

Smartphone market is estimated to be a $320 billion market by 2016 [17]. Smartphones
are already a leader in the technological arena and gadget industry. The desktop computer
sales around the world were outpaced by smartphone sales in 2011, making them the most
prevalent computing platform [16]. Smartphone sales are projected to grow at nearly 30%
compound annual growth rate over the next five years, exceeding 1.5 billion units per year
by 2016 [17]. Despite their immense success in the market, smartphones are constrained
to their battery life. Unfortunately the development in the battery technology is not at
par with the developments in software industry and the hardware components in smart-
phones [65].

7

If we look at the battery energy density in smartphones, it has improved over the years
but the rate of improvement and rate of increase in battery density is significantly slow.
In a recent study [19], the authors took the watt hour ratings on each smartphone battery
divided by the battery volume in square millimetres. This gives a normalized rating of
battery efficiency as shown in figure 2.1

Figure 2.1: Battery Energy Density in Smartphones [19].

The rate of increase is substantially slow. As figure 2.1 shows that Galaxy S2 is 53%
more dense then the iPhone 3G and the Galaxy S3 is 27% more dense then the Galaxy S2.
The Galaxy S4 is approximately 10% better in terms of battery energy density then Galaxy
S3. The iPhone 5 and Galaxy S4 batteries carry roughly the same amount of energy in
their respective volumes [19].

8

Historically, the performance of ’lithium ion’ batteries increases at about 10% a year [19].
As mentioned earlier, this improvement is not significant considering the technological ad-
vancements in the software and hardware industry. Therefore there is a need for energy
efficient applications and energy performance testing methodologies so developers are aware
of the energy consumption of their applications.

2.2 Energy Problem in Smartphones

Modern smartphones are equipped with state of the art technology but are constrained
to their battery life. One possible reason for this fact is that modern smartphones are
not only equipped with traditional components such as CPU, WiFi, NIC, radio, memory,
screen and storage (found in desktop or laptop machines) but also other accessories like
GPS, camera, accelerometer and other various sensors. And the power consumed by these
individual I/O components is often comparable to, or higher than, the power consumed by
the CPU in desktop or laptop machines [60].

Another important aspect of this energy problem is the smartphone applications. In
the past few years the smartphones have transitioned from being a closed platform con-
taining only pre-installed applications to open platforms hosting a variety of third party
applications. This change has led to different energy drain problem in smartphones [50].
Free applications are also one of the reason for smartphone energy problem as they per-
form several different operations along with their intended function and increase battery
consumption. According to [62], free apps like Free Chess and Angry Birds spend under
25-35% of their energy on gameplay, but over 65-75% on user tracking, uploading user in-
formation and downloading ads. These extra operations are a major reason for substantial
battery consumption and battery depletion in smartphones.

If we analyse this issue in context of producer and consumer, producer being the smart-
phone battery and consumer being the actual hardware components used by different ap-
plications, we will find a mismatch between the two and this indicates that this issue
should be dealt with more importance [60]. The trends in battery technology do not show
a significant growth and development [65] and it all points to the important problem of
energy being faced by smartphones today.

9

This energy issue is of such importance that almost 70% of phones returned to Mo-
torola in 2011 were related to energy problems [61]. While another study [5] shows that the
percentage of all technical support calls in context of faulty hardware are 14% for Android,
9% for Windows Phone 7 (WP7), 8% for Apple’s iPhone and 3.7% for BlackBerry devices.

Therefore the smartphone applications have to be energy aware and energy efficient,
there should be mechanisms and methodologies for developers to perform energy perfor-
mance testing and there should be a definition of energy bugs in smartphones which can
be used as a reference for software testing (all of these points are the goals and highlights
of this thesis).

2.3 Bugs in Smartphones

According to [60], energy bugs in smartphones can arise due to a variety of different reasons:

• Applications:

Wrong use of APIs and poorly managed and programmed applications can lead to
battery drain.

• Configurations:

Different configurations of applications can affect the power consumption of battery
in different ways. And if not configured properly, can lead to massive battery drain.

• Middle-ware:

Frameworks such as Android can be poorly programmed and can lead to severe
battery drain.

• Operating System:

Improper settings of operating system can drain considerable amount of battery.

• Firmware:

Poorly programmed device drivers can lead to significant battery drain.

10

• Hardware:

A faulty hardware like an old battery, an old and scratched SIM card or a faulty
audio amplifier or a faulty LCD can drain substantial amount of energy.

• Network:

Poor network conditions can lead to severe battery problems.

2.4 Energy Bugs: A Taxonomy

In the following we will classify the energy bugs (taxonomy) in terms of software issues,
hardware issues or due to various other reasons.

2.4.1 Hardware Energy Bugs

• Battery:

One of the many reasons for existence of energy bugs is the battery malfunction. If
a battery is not working properly, it will not only increase the frustration of user but
will also make him/her believe that there is a problem somewhere. In [61], authors
studied various internet forums and recorded several issues reported by users of dif-
ferent devices on different platforms. The authors then classified those issues into
different categories. According to their classification about 15.71% of the posts (a
large number of users) reported that the energy depletion was due to faulty battery.
Also if a battery is faulty, it never gets fully charged. It keeps losing the charge
internally and results in heating the battery.

• SIM Card:

The SIM cards in smartphones can also be the reason for battery drainage and en-
ergy bugs. In [61], authors found that about 0.43% of the posts on on-line forums
mentioned SIM card being the reason for unexpected battery depletion. The reason
could be that the SIM card is old and has scratches on it or that it is damaged and is
shorting the pins. Also sometimes users themselves try to cut their SIM cards (reg-
ular SIM to micro SIM), that could also lead to damage and malfunction of SIM card.

11

• SD Card:

Another important cause for battery drain is SD card in smartphones. If a SD card
is faulty or corrupted it could either put the buggy apps in a looping state, where
they try to access the hardware continuously [3], or in a hanging state, where they
continue to drain battery [61].

• Exterior Hardware Damage:

This could also be the reason for battery depletion. Hardware damage can act as a
trigger for other parts of the phone (software) to drain battery. For example a ’home
button’ of phone could be damage and result in random unlocking of the phone,
turning on the back light and consuming more power [61].

2.4.2 Software Energy Bugs

• Operating System:

According to [61], OS updates either by user or Over-the-Air (OTA) represent a
large number of complains for battery depletion. Among all the post analysed
in [61], 19.54% posts were regarding energy bugs due to OS updates. IOS updates
(4.0 - 4.3.3) resulted in substantial battery depletion among Apple devices including
iPhone, iPads and iPods(4.74% of the posts). Android OS updates also caused bat-
tery depletion (2.39% of the posts).

It is hard to identify the root cause for an energy bug. In case of an OS update, the
energy bug could either be in the updated OS itself or in any of the accompanying
applications or it might be due to the new OS configurations [61].

• Configurations:

The OS configurations and even the configurations for different applications affect
the power consumption and can be a reason for an energy bug. A change in OS
configurations of device might lead to battery depletion [4], [66].

12

• Applications and Frameworks:

Another important cause for energy bugs is the way applications are designed and
the way different APIs and frameworks are used by the designers. In [61] energy bugs
due to wrong use of APIs and frameworks have been classified as follow:

– No Sleep Bug

A no-sleep bug is a situation where an app acquires a wake lock for a component
which wakes the component up, but does not release the lock even after the job
is completed.

– Loop Bug

A loop bug happens where a part of an application enters a looping state per-
forming periodic but unnecessary tasks, draining significant battery. The peri-
odic task could be either unnecessary network polling, processing, or use of any
other component in a loop.

– Immortality Bug

An immortality bug is a situation where a buggy application that drains bat-
tery, upon being explicitly killed by the user, respawns, enters the same buggy
state, and continues to drain battery.

2.4.3 Energy Bugs due to External Conditions

• Wireless Signal Strength:

It is also an important factor that triggers battery drain in some cases. If the wireless
signal strength is weak, it will cause the Network Interface Card driver to increase the
Tx/Rx power [63], which can increase the battery consumption. According to [61],
about 11.11% posts indicated weak wireless signal strength to be the reason for
battery depletion.

13

• Wireless Handovers:

Repeated network handovers could also be the cause of battery drain. About 0.77%
posts in [61] indicates that unexpected battery drains were observed with frequent
wireless handovers.

2.5 Review of Existing Research

Pathak et al. [61] presented a taxonomy of energy bugs in smartphones and also discussed
the reasons for these energy bugs. Although it is difficult to identify the root cause for
energy bugs but possible reasons could either be programming errors, inappropriate API
usage, flaw in design of applications or changing external conditions. It also presented a
roadmap for developing a diagnostic framework to debug energy bugs.

Pathak et al. [64] discussed wakelock related energy bugs, which prohibit smartphones
from going into a sleep mode. They then proposed a dataflow approach to detect these
energy bugs.

Pathak et al. [62] presented design and implementation of eprof, an energy profiler for
smartphone applications. They evaluated six different applications and proposed bundle
presentation that helps in reducing energy consumption of applications.

Zhang et al. [69] discussed different energy models for different platforms. An incorrect
implementation of these models can result in excessive battery use (drain). It explained
how applications switch between different power models and also presented the similarities
and differences between the different platforms.

Zhang et al. [70] developed ADEL, an Automatic Detector of Energy Leaks. It helps
to detect and isolate the energy leaks due to unwanted network communication in mobile
applications. ADEL determines whether the data received by an application is important
to the user and also traces the direct and indirect use of this received data to determine
its effects.

14

Jindal et al. [45] studied a class of energy bugs and refereed it as sleep conflicts, which
can happen in smartphone device drivers when a particular component in a high power
state is unable to transition back to the base power state. They presented the root causes of
these sleep conflicts and classified them as well. They also presented a deployment scheme
that successfully performed sleep conflict avoidance and showed its implementation on two
Android smartphones.

Jindal et al. [46] discussed the sleep disorder bugs and presented a taxonomy of these
bugs. They categorized the time critical sections, which are the root cause of these sleep
disorders. The also presented a system to detect these sleep disorder bugs.

Muccini et al. [54] analysed the mobile application development and testing techniques
and investigated that whether mobile applications are different than traditional software
applications and if they require special testing techniques? They also debated on the chal-
lenges of mobile application testing strategies.

Wilke et al. [68] analysed the energy consumption issue in smartphone applications
according to user feedback (users comments on Google Play market). It also identified
major causes for inefficiency in smartphone applications.

Abdelmotalib and Wu [29] discussed energy management techniques in smartphones
operating systems. They provided a summary of those techniques that can reduce the
power consumption in mobile devices. They analysed and compared the general solutions
and showed that efficient operating system techniques can sufficiently reduce power con-
sumption in mobile devices.

Hao et al. [42] proposed a new approach, eLens, that provides fine grained estimate
of energy consumption at the code level. eLens combines two ideas: (a) program analysis
to determine the paths traversed and track energy information during execution, (b) per
instruction energy modelling. For evaluation purpose it uses energy models provided by
a software environment energy profile (SEEP), which enables the per instruction energy
modelling.

Li et al. [48] designed and implemented the Bugu service that targets the applications
running on mobile devices, analyses event power relationship and provides user with an
overview of the power behaviour of applications. It consists of two parts: (a) Bugu server,

15

that collects the power information of applications and, (b) Bugu client, which uses the
data from server and monitor the power consumption of applications.

Ma et al. [50] discussed the abnormal battery drain (ABD) issues in smartphones. It
also presented the design and implementation of eDoctor, a practical tool that helps user to
troubleshoot battery issues in smartphones. This tool captures the time varying behaviour
of applications and then based on a diagnosis, it suggests user to take appropriate repair
solutions. The paper also showed the accuracy and effectiveness of the tool by different
experiments.

Oliner e al. [58] described the design and implementation of Carat, a tool for performing
energy diagnosis on mobile devices. The Carat architecture includes (a) an application,
(b) a central server and (c) an analysis running in the cloud. The application sends infor-
mation and measurements to the server which identifies the energy issues with the users.
The paper also shows an execution and evaluation of the tool.

S, Nakajima [57] discussed that energy bugs should be identified at early stages of de-
velopment and not at the execution time because they are the design faults. This will give
designers a way to improve their applications. The paper also proposed a model, power
consumption automation, to account for power consumption. It also discussed how the
tool assisted analyses are conducted.

Liu et al. [49] investigated the smartphone applications for energy inefficiency issues.
Thy focused on sensor related energy issues in smartphone applications and advocated that
mostly energy issues are due to ineffective use of sensors and their data by the applications.
They presented an application model to simulate applications runtime behaviour. Their
approach can analyse the sensory data utilization by the application at different states.
They also presented a tool, GreenDroid on top of Java PathFinder and evaluated it using
Android applications.

Balasubramaniam et al. [36] presented a measurement study of the energy consump-
tion of the network technologies (GSM, 3G and WiFi) in smartphones. It also presented a
model for energy consumption by each technology and using those models presented some
protocols that reduced the energy consumption of different applications.

16

Vallina-Rodrihuez and Crowcroft [67] presented an extensive survey of the software so-
lutions to achieve energy efficiency in smartphones. The survey covered different research
areas namely: (a) energy-aware operating systems, (b) efficient resource management, (c)
the impact of user interaction patterns with mobile devices and applications, (d) wireless
interfaces and sensors management, and (e) benefits of integrating mobile devices with
cloud computing services.

17

Chapter 3

Energy Performance Testing

In this chapter, we have presented the techniques and methodologies used to perform energy
performance testing of smartphones. In section 3.1 we have presented an introduction to
Energy Performance Testing and its difference from the Functional Testing. In section 3.2
we have shown a classification of configuration parameters of smartphone applications and
their importance. In section 3.3 we have presented a summary of related work done in this
domain. In section 3.4 we have described the test bench used to perform all the experi-
ments. And in section 3.5 we have proposed a new technique to reduce the configuration
parameters and then its validation across different smartphones.

3.1 Introduction

Applications that run on smartphones provide users with an easy way to access information
on internet or act as a source of entertainment (gaming apps, video players etc.). These
applications in turn consume the smartphone’s limited resources like processor, memory,
communication interface, memory and storage to perform the required tasks. One may
argue that these hardware components practically consume the battery energy but the
fact is that these software applications are the real consumer in a sense that they utilize
the resources [31]. Figure 3.1 illustrates this concept and gives a high level over view of how
software applications utilize the resources through middle-ware and operating system. And
if these applications utilize the resources in an efficient way, the battery performance could
be greatly improved and enhanced. Therefore applications have to be energy efficient to
save and improve energy consumption in smartphones. On the other hand, the developers

18

should perform Energy Performance Testing along with Functional Testing to ensure that
there applications are energy efficient and there are no energy related bugs in them.

Battery

HW Resources

Operating System

Middleware / API

Applications /

Input/Output User

Processor

Memory / 3G /

WiFi / Storage

Display

Figure 3.1: Smartphone environment in terms of energy consumption hierarchy.

Although there are some significant differences between functional testing and energy
performance testing but experiments corresponding to a functional requirement and energy
performance testing can be accomplished at the same time. As shown in figure 3.2(a), a
user gives input to an application at time t1, the device processes the input and provides
output at time t2. During the time interval [t1,t2], the power consumption of the device
can be monitored, and thus after time t2, the output of the application can be verified as
part of functional testing and the consumed energy can be calculated as a part of energy
performance testing figure 3.2(b). This idea is also applicable to the testing of a component
of an application.

Energy performance testing along with functional testing should be prerequisite for
application development so that applications can be energy efficient and smartphone’s
battery consumption can be improved. Figure 3.3 depicts an energy-aware smartphone
application development process model. Following this model, in the design phase; devel-
opers keep energy efficiency in mind and conduct both functional and energy performance
testing after initial implementation of an application. The feedback from functional and
energy performance testing helps them make changes in the design and implementation.
Knowledge about the impact of the design decisions on energy consumption is very useful
at the development stage as changes made in the final stage of an application are more
expensive [47].

19

t1 t2 time

input outputexecution

(a) Functionality testing.

t1 t2 time

p

o

w

e

r

power

consumption

(b) Energy performance testing.

Figure 3.2: Schematic diagrams of functionality and energy performance testing.

20

Requirement

Specifications

Energy-aware Design

Implementation

Functional &

Performance Testing Final Version

Developer

Figure 3.3: Smartphone application development process.

Smartphone applications consume battery energy based on the hardware resources that
they utilize. This energy consumption by the smartphones can be measured by monitoring
the power discharge rate from the battery [31]. In a similar way the energy consumed
by the smartphone application can be calculated by taking the difference between the
energy consumption of smartphone device with and without that specific application. The
operating system in smartphones; while in its idle state, still consumes a certain amount
of energy to keep the device running and ready for the applications to execute. In each of
the above scenario; whether the smartphone device is in its idle state or it is executing an
application, the configuration of smartphone parameters play an important role [31].

3.2 Configuration Parameters

As mentioned earlier, there are significant differences in energy performance testing and
functional testing with both having different requirements. In functional testing the in-
put (parameters) to the system is treated equally whereas, in energy performance testing
more significance is given to the configuration parameters that eventually impact the con-
sumption of battery energy [30]. Due to a large number of configuration of smartphone
applications, there are enormous number of test cases [33]. Therefore there is a need for
a selection technique to reduce this enormous number of test cases. In order to evaluate

21

the energy cost of smartphone applications, [59] proposes a mechanism for user level test
cases. In [30], the author outlines the concept of parameters and configurations.

Intuitively, categorization of these parameters according to their impacts on the en-
ergy consumptions is useful in energy performance testing. As illustrated in figure 3.4,
the parameters are categorized into three groups: basic, active, and passive parameters.
The active parameters are further partitioned into two groups: primary and standalone
parameters. All those groups are explained in the following [56]:

All Parameters
G

��
Basic Parameters Active Parameters

 �� ��
Passive Parameters

��
�

Primary Parameters

��
�

Stand-alone Parameters

Figure 3.4: Categorization of smartphone parameters.

• Basic Parameters (G0):

This group contains all the parameters whose values are fixed. Table 3.1 shows
examples of basic parameters of the four smartphones. These parameters affect the
energy consumptions of a device, and their impacts just remain the same throughout
the testing process.

• Active Parameters (G1):

This group contains the parameters whose values are configurable and they particu-
larly control the hardware components. Table 3.2 gives some active parameters for
the four smartphones. The active parameters are further divided into following two
groups:

22

– Primary Parameters (Gp
1)

– Standalone Parameters (Gs
1)

The primary parameters cause the device to consume a significant proportion of
the total power and their variations yield informative test results. A technique to
further reduce the primary parameters of smartphone is discussed in Section 3.5. The
remaining active parameters are called standalone parameters; these are considered
for performing standalone configurations.

• Passive Parameters (G2):

This group contains the rest of the parameters whose values are also settable by
the users. They do not control the hardware components but they use hardware
components so they affect the test outcomes. Thus, we turn off or fix certain values
for these parameters. Examples of passive parameters have been shown in Table 3.3.

Since the operational behaviour of a smartphone is largely determined by its configura-
tion parameters, it is important to identify and classify those parameters. We considered
four smartphones, namely, BlackBerry 9700, BlackBerry Z10, Apple iPhone 3GS, and Sam-
sung Galaxy Nexus and identified their configuration parameters. Tables 3.1, 3.2, and 3.3
show the basic, active (primary), and passive parameters, respectively.

Bi Parameter Description
Samsung
Galaxy
Nexus

BlackBerry
Z10

Apple
Iphone

3GS

BlackBerry
Bold
9700

01 Display
Size of
display

1280 x 720
pixels, 4.65”

S1280 x 768
pixels, 4.2”

320 x 480
pixels, 3.5”

480 x 360
pixels, 2.4”

02
Operating

System (OS)
Name of
the OS

Android
BlackBerry

OS 10
Iphone OS 3 BlackBerry OS

03
Battery
Capacity

Type and
capacity

Li-ion
1,750 mAh

Li-ion
1800 mAH

Li-ion
1500 mAh

Li-ion
1250 mAh

Table 3.1: Examples of Basic Parameters (G0)

23

Bi Parameter Description
Samsung
Galaxy
Nexus

BlackBerry
Z10

Apple
Iphone

3GS

BlackBerry
Bold
9700

31 Volume
Allows user to

adjust
volume level

Yes (0-8) Yes (0-16) Yes (0-16) Yes (0-10)

32 Brightness
Allows user to

adjust
brightness level

Yes
(0-100%)

Continuous

Yes
(0-100%)

Continuous

Yes
(0-100%)

Continuous

Yes (0,10..
..100)

33 Bluetooth
Allows user to

turn
on/off bluetooth

Yes Yes Yes Yes

34 Camera
Allows user to

turn
on/off camera

Yes Yes Yes Yes

35

Network
Access
Mode

(NAM)

Allows user to
turn

on/off network
mode and select
from WiFi/3G

Yes Yes Yes Yes

36 GPS
Allows user to

turn
on/off GPS

Yes Yes Yes Yes

37
NFC (Near-

Field-
Comm.)

Allows user to
turn

on/off NFC
Yes Yes No No

Table 3.2: Examples of Active Parameters (G1); ”Yes” means the parameter is available;
”No” means the parameter is not available.

24

Bi Parameter Description
Samsung
Galaxy
Nexus

BlackBerry
Z10

Apple
Iphone

3GS

BlackBerry
Bold
9700

61
Network
selection

mode

This option
lets the mobile

device to
select the
network

manually or
automatically

Yes
(Auto/

Manual)

Yes
(Auto/

Manual)

Alternative
(Auto -
Select/

Deselect)

Yes
(Auto/

Manual)

62

WiFi
settings

- Network
Notification

This option
prompts user

when a
WiFi network

is available

Yes
(On/Off)

Yes
(On/Off)

Yes
(On/Off)

Alternative
(Prompt when

manual
connection or

login is
required)

63
Portable

WiFi
Hotspot

This option
allows the
device to
act as a

WiFi hotspot

Yes Yes

Alternative
(Setup

Internet
Tethering)

No

64
Screen

Timeout

This option
allows the
user to set
the display
timeout for

screen

Yes (15 sce
-10 min)

Yes (10 sec
-5 min)

Yes (1 - 5
min/never)

Yes (10 sec
-2 min)

Table 3.3: Examples of Passive Parameters (G2); ”Yes” means the parameter is available;
”No” means the parameter is not available; ”Alternative” means a similar parameter is
available.

25

3.3 Related Work

Accurate energy performance testing of smartphones is a challenging task, because there are
millions of system configurations [59] and it is extremely difficult to control the operational
environment of a smartphone [59], [53]. To reduce the number of test configurations for
conducting energy performance testing; in our previous work [59] and [30], we:

• studied the parameters of five different state-of-the-art smartphones, and categorized
them into three groups: basic, active and passive (as discussed in section 3.2 in
detail);

• showed that there is no need to consider all possible combinations of all the different
values of all the configuration parameters;

• partitioned the active parameters into primary and standalone parameters;

• introduced the concepts of primary and standalone test configurations;

• gave a proceduce to apply the methodology to derive the reduced number of test
configurations.

Although exhaustive testing; considering all possible combinations of inputs is desirable
[37], time and resource limitations dictate that only a subset of all test cases be considered
as a practical test space [51]. Therefore, reduction of test space is a continued topic of
interest. Pairwise testing is a well-known technique that covers all possible pairs of param-
eter states. For each and every pair of states that belong to different parameters, there
is at least one test case that contains both of those states [39]. This idea can easily be
generalized by covering t-wise combinations of states rather than pairs [55].

As an example of pairwise testing, consider a system H with three input parameters
x, y and z, where their domains are: D(x) = {Y es,No}, D(y) = {1, 10} and D(z) =
{True, False}. The number of all possible test cases for this system is 2 × 2 × 2 = 8;
however, all pairwise combinations can be covered by only 4 cases, as shown in Table 3.4.

26

Test ID x y z

TC1 Y es 1 True

TC2 Y es 10 False

TC3 No 1 False

TC4 No 10 True

Table 3.4: Pairwise test cases for system H.

Unlike pairwise testing, where each possible pair of parameter states is considered in at
least one of the test cases, the strategy proposed by Palit et al. [59] and Abogharaf et al.
[30] consider all possible combinations between primary parameter states and other active
parameter states. The latter technique puts more emphasis on parameters that have more
significant impacts on the energy performance metric.

Selection of a reduced number of test configurations for energy performance testing of
smartphones was originally proposed in [59] and [30]. First, we assumed that the primary
parameter set comprised of just one parameter [59], whereas the restriction was completely
eliminated in [30]. Second, in [30] we proposed a flowchart to derive test configurations for
a smartphone by applying the concepts developed in [59] and [30]. Since the current work
extends the concepts developed in reference [30], we briefly explain those concepts in the
following.

Assume that there are m active parameters in a smartphone d grouped in the set
Gd

1 = {B1, B2, · · · , Bm}. A specific state of a parameter Bj is b
(l)
j , and it has η(Bj)

states. For example, the Bluetooth parameter B33 in Table 3.2 has a state b133 = ‘ON’, and
η(B33) = 2 (i.e. ON and OFF).

A configuration βi represents an instance of all settable parameters of a smartphone.
An app Ai processes a certain types of contents denoted by Ci, and the number of contents
for app Ai is denoted by η(Ci). For example, a video player application A1 supports only
two file formats: c11 = MPEG and c21 = Flash. Thus, η(C1) = 2.

27

Assuming that one test case is used to cover one test configuration, the total number
of test cases Nc is as follows:

Nc = Sd ×
M∑
i=1

Xd(Ai)× η(Ci), (3.1)

where Sd is the total number of device configurations for a smartphone d, M is the number
of chosen applications, and Xd(Ai) indicates whether or not application Ai is available on
d. The number of all possible configurations on a smartphone d can be expressed as:

Sd =
m∏
j=1

η(Bj) (3.2)

Sd in Eq. 3.2 is extremely large (i.e. billions) for modern smartphones [59]. To reduce
the value of Sd to a reasonably small value (e.g. tens), we: (i) partitioned the active param-
eter set into two subsets, namely, primary parameters and standalone parameters; and (ii)
design primary configurations and standalone configurations. The primary configurations
are obtained by varying only the primary parameters, whereas standalone configurations
are obtained by varying standalone parameters one by one for all states of the primary
parameters. Now, Nc is expressed as:

Nc = (SP
d + SS

d)×
M∑
i=1

Xd(Ai)× η(Ci), (3.3)

where SP
d is the number of primary configurations, and SS

d is the number of standalone
configurations.

The dependency between parameters is a key idea in our methodology. Suppose the
parameters Bi = {b1i , b2i · · · , bIi } and Bj = {b1j , b2j · · · , bJj } are primary parameters, and
θ(bui , b

q
j) is the energy cost of a test case involving configuration parameters bui ∈ Bi and

bqj ∈ Bj. The parameters Bi and Bj are independent of each other, denoted by Bi⊥Bj, if
their energy costs are additive; that is:

Bi⊥Bj ⇐⇒[(
θ
(
bui , b

q
j

)
− θ

(
bvi , b

q
j

))
'
(
θ
(
bui , b

r
j

)
− θ

(
bvi , b

r
j

))]
u6=v,q 6=r

Suppose a set Gp
1, s.t. Gp

1 ⊆ G1, represents the set of primary parameters for smart-
phone d. In order to obtain general expressions for number of configurations, we make the
following assumptions:

28

• Gp
1 is said to be independent if all members of Gp

1 are independent of each other. The
notation Ind(Gp

1) means that the set Gp
1 is an independent set.

• A parameter Bj is independent of the set Gp
1 if Bj is independent of all members of

Gp
1. The notation Ind(Bj , G

p
1) signifies that Bj is independent of all members of Gp

1.

The number of the primary configurations Sp
d is expressed as follows [30]:

SP
d =


1 +

k∑
i=1

[η (Bi)− 1] + k(k−1)
2

, Ind(Gp
1)

k∏
i=1

η (Bi) , Otherwise

(3.4)

Looking at the upper expression of Eq. 3.4, which is applied when Gp
1 is independent

(i.e. Ind(Gp
1) holds.), the first term represents the first experiment needed to be conducted

which could have any parameter settings. Since the primary set is independent, the second
term represents the number of test cases required to be conducted across each parame-
ter in the primary set but subtracting one state, which was used in the first experiment,
from each parameter. The third term stands for the minimum number of test cases re-
quired to examine the independency among the parameters. The lower expression basically
represents all possible combinations of the parameters in the primary set since they are
dependent parameters.

The number of standalone configurations corresponding to a parameter Bj is Qj, as
expressed in what follows:

Qj =


η(Bj)− 1 + k , Ind(Bj , Gp

1)

[η (Bj)− 1]

[
1 +

k∑
i=1

(η (Bi)− 1)

]
, Ind(Gp

1)

[η (Bj)− 1]
k∏

i=1

η (Bi) , Otherwise

(3.5)

In the case where Bj is independent of Gp
1, the first and the second terms represent

the number of experiments required to be conducted across Bj where one of the states of
Bj was already conducted in the primary stage. The third term represents the minimum
number of experiments required to verify the independency of Bj among all parameters in
Gp

1.

29

In the case where Gp
1 is independent, the same number of configurations required in the

primary configurations in the case where Gp
1 is independent is needed to be conducted for

the rest of the states of Bj; in here we do not need to include the term used to examine
the independency because we would already know, from the primary stage, that Gp

1 is
independent. When Gp

1 is a dependent set, all possible combinations are required to be
considered while subtracting the configurations which were conducted in the primary stage.
The number of all standalone configurations SS

d can now be expressed as:

SS
d =

m∑
∀Bj /∈Gp

1

Qj (3.6)

The flowchart in [30] obtains a reduced number of test configurations as explained
above.

3.4 Experimental Setup

The test bench used to conduct experiments for validation of our proposed technique is
shown in figure 3.5 [30]. A smartphone under test is powered by an external power supply
with a high precision current measurement unit. A desktop or a laptop computer monitors
the power supply unit and gathers the measurements from the power supply throughout
the duration of an experiment.

A special battery connection setup is made to power the smartphone from external
power supply; where we disconnect the battery’s power interface but keep the communica-
tion interface connected to the smartphone. In order to have accurate measurements and
to avoid the power saving mode, the smartphone’s battery has to be fully charged during
all the experiments.

30

ComputerUser Power Supply

Smartphone

Base Station

Routers Access Point

INTERNET

Web Server

Figure 3.5: Experimental Setup.

31

3.5 Proposed Methodology

We propose a methodology to select the primary parameters from the active parameters.
Intuitively, a larger number of primary parameters means more test configurations to be
used, thereby giving better accuracy in testing at the cost of more testing. A key attribute
of our technique is that testers can fine tune their needs by means of a control variable
(discussed in section 3.5.1).

3.5.1 Maximum Differential Power

Intuitively, an active parameter that consumes a significant amount of power is a primary
parameter, and an active parameter that consumes a very small amount of power is a
standalone parameter. Therefore, the subset of active parameters which account for most
of the power cost is viewed to be the primary set, and the remaining active parameters are
put in the standalone set.

Now we introduce the concept of maximum differential power of an active parameter
Bi, denoted as maxDP (Bi). For Bi, maxDP (Bi) is calculated as the maximum power dif-
ference among all pairs of states of Bi. Alternatively, since the off state of Bi consumes the
least power, maxDP (Bi) is the difference between the maximum power consumed among
all states of Bi and the minimum power consumed in its off state. In the following, we give
a procedure, namely, ComputePrimary() to compute Gp

1 by using a threshold value called τ .

Begin Procedure ComputePrimary()

Step 1: Find the power consumption of all active parameters in all states.

Step 2: Sort the parameters of Gp
1 decreasingly according to their maximum differential

power consumption.

Step 3: Let SDP =
∑
maxDP (Bi), ∀Bi, Bi ∈ G1. Identify Gp

1 to be the minimal subset
of G1 such that the sum of the differential power of all the members of Gp

1 is at least
τ% of SDP .

End

32

That is,

Gp
1 =

{
Bi

∣∣∣∣∣
k∑

i=1

maxDP (Bi) ≥ τ% of SDP,Bi ∈ G1

}
(3.7)

For example, the Network Access Mode (NAM) parameter can be in one of 3 states
(Table 3.5), namely, Off, WiFi, and 3G. The Network Access Mode (NAM) parameter in
figure 3.6 for the Samsung Galaxy Nexus phone consumes the least power in its Off state
and the maximum power in its 3G state. Therefore, maxDP (NAM) for the Samsung
Galaxy Nexus is the power difference between its 3G state and its Off state.

3.5.2 Validation

To validate the methodology, we conducted tests on four different devices:

• Samsung Galaxy Nexus (Android)

• BlackBerry Z10 (BB 10 OS)

• BlackBerry Bold 9700 (BB 7 OS)

• iPhone 3GS (iOS).

We used the test bench outlined in Section 3.4 [30]. For all the experiments on above
mentioned devices, we considered the active parameters shown in Table 3.2. Table 3.5
shows the number of states of these active parameters used in experiments.

Out of four devices considered for testing purposes, two of them (Samsung Galaxy
Nexus and BlackBerry Z10) are new, whereas the other two (BlackBerry Bold 9700 and
Apple iPhone 3GS) are relatively old. For the older smartphones we considered 6 active
parameters, and for the newer smartphones we considered 7 active parameters. The reason
for this is the fact that the newer smartphones have more parameters then the older
generation of smartphones. In the following experiments, we set τ = 85%.

The parameters and their states are selected so that there is consistency in the exper-
iments. For example, the active parameter ’Brightness’ has discrete values (0 - 100) for
BlackBerry Bold 9700, but it is continuous for the other three devices; for consistency, we

33

Volume Brightness Bluetooth NFC GPS NAM Camera

Samsung Galaxy Nexus 9 2 2 2 3 3 2

BlackBerry Z10 17 2 2 2 3 3 2

Apple iPhone 3GS 17 2 2 NA 3 3 2

BlackBerry Bold 9700 11 2 2 NA 3 3 2

Table 3.5: Number of states for active parameters of Smartphones (NFC: Near Field
Communication; GPS: Global Positioning System; NAM: Network Access Mode; NA: Not
Available).

O
ff

O
ff

O
ff

0
%

0
% O
ff

O
ff

W
iF

i

O
n

O
n

1
0

0
%

1
0
0

%

O
n

O
n

3
G

A
G

P
S

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

NAM Camera Bluetooth Brightness Volume GPS NFC

P
o
w

e
r

C
o
n

s
u
m

p
ti
o
n
 (

W
)

Figure 3.6: Power consumption of all the states for active parameters of Samsung Galaxy
Nexus

considered only two states for ’Brightness’: 0% and 100%. Similarly the active parameter
’Volume’ has different states for all the four devices so we considered the minimum and
maximum volume for all the devices.

34

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

NAM Camera Bluetooth Brightness Volume GPS NFC

C
u

m
u

la
ti
v
e

 M
a

x
.

D
if
fe

re
n
ti
a
l

P
o

w
e

r
(W

) 85%

Figure 3.7: Obtaining the primary parameters for Samsung Galaxy Nexus.

In figure 3.6, we have shown power consumption of active parameters of Samsung
Galaxy Nexus smartphone. Figure 3.7 shows the cumulative maximum differential power
costs of all the active parameters in decreasing order. For this smartphone, with τ = 85%;
which is represented by the dotted horizontal line, the four parameters in the primary set
that strongly impact the power consumption are Network Access Mode (NAM), Camera,
Bluetooth and Brightness.

Next, we consider BlackBerry Z10 and plot the power costs of its active parameters and
their cumulative maximum differential power cost in figure 3.8 and figure 3.9, respectively.
For BlackBerry Z10, with τ = 85%; there are three parameters in the primary set that
strongly impact the power consumption: Network Access Mode (NAM), Brightness and
Volume.

Figures 3.7 and 3.9 show that the consumption of power by the same parameters are
different on different devices. Our technique yields four primary parameters for Samsung
Galaxy Nexus and three primary parameters for BlackBerry Z10. However, Network Ac-
cess Mode (NAM) and Brightness are the common parameters in both of the primary sets.

Next, we consider an iPhone 3GS and plot the power costs of its active parameters and
their cumulative maximum differential power cost in figure 3.10 and figure 3.11, respec-
tively. For this smartphone, we have considered 6 active parameters because it belongs to

35

O
ff

0
%

0
% O
ff

O
ff

O
ff

O
ff

W
iF

i

1
0
0
%

1
0
0
%

O
n

O
n

O
n

O
n

3
G

A
G

P
S

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

NAM Brightness Volume GPS Bluetooth Camera NFC

P
o

w
e
r

C
o

n
s
u
m

p
ti
o

n
 (

W
)

Figure 3.8: Power consumption of all the states of the active parameters of BlackBerry
Z10.

0

0.005

0.01

0.015

0.02

0.025

NAM Brightness Volume GPS Bluetooth Camera NFC

C
u

m
u

la
ti
v
e

 M
a

x
.

D
if
fe

re
n
ti
a

l
P

o
w

e
r

(W
)

85%

Figure 3.9: Obtaining the primary parameters for BlackBerry Z10.

a relatively old generation of smartphones. Considering τ = 85% for iPhone 3GS, there are
three parameters in the primary set: Network Access Mode (NAM), Camera and Bluetooth
that strongly impact the power consumption.

36

O
ff

O
ff

O
ff

0
%

0
% O
ff

W
iF

i

O
n

O
n

1
0

0
%

1
0
0

%

O
n

3
G

A
G

P
S

0.000

0.005

0.010

0.015

0.020

0.025

NAM Camera Bluetooth Brightness Volume GPS

P
o

w
e
r

C
o

n
s
u

m
p
ti
o

n
 (

W
)

Figure 3.10: Power consumption of all the states of the active parameters of iPhone 3GS.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

NAM Camera Bluetooth Brightness Volume GPS

C
u

m
u
la

ti
v
e

 M
a

x
.

D
if
fe

re
n

ti
a

l
P

o
w

e
r

 (
W

) 85%

Figure 3.11: Obtaining the primary parameters for iPhone 3GS.

Next, we consider a BlackBerry Bold 9700 and plot the power costs of its active param-
eters and their cumulative maximum differential power cost in figure 3.12 and figure 3.13,
respectively. With the same τ = 85% threshold, there are two parameters in the primary
set: Network Access Mode (NAM) and Bluetooth that strongly impact the power consump-
tion.

37

O
ff

O
ff

0
% O
ff

O
ff

0
%

W
iF

i

O
n

1
0

0
%

O
n

O
n

1
0
0

%

3
G

A
G

P
S

0.000

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0.036

NAM Bluetooth Brightness Camera GPS Volume

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

W
)

Figure 3.12: Power consumption of all the states of the active parameters of BlackBerry
Bold 9700.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

NAM Bluetooth Brightness Camera GPS Volume

C
u
m

u
la

ti
v
e
 M

a
x
.

D
if
fe

re
n
ti
a
l

P
o

w
e
r

(W
)

85%

Figure 3.13: Obtaining the primary parameters for BlackBerry Bold 9700.

38

Comparing figure 3.11 and figure 3.13, we notice that the technique yields three pri-
mary parameters for iPhone 3GS and two primary parameters for BlackBerry Bold 9700.
However, Network Access Mode (NAM) and Bluetooth are the common parameters in the
two primary sets for both the devices.

Our experiments on four different smartphones from three makers and with four differ-
ent operating systems reveal the following interesting observations:

• Conforming to intuition, the technique selects the primary parameters which consume
more power. As a consequence, the technique does not select those active parameters
which do not incur much power cost.

• The technique selects very similar primary parameters for all the devices.

• The number of primary parameters for a device is a characteristic of the device itself,
which is intuitive.

• Obviously, a larger τ will produce a larger number of primary parameters, thereby
increasing the number of test configurations.

• Test designers have the option to choose an appropriate τ to strike a balance between
time to test and exhaustiveness of testing.

39

Chapter 4

Energy Bug

Energy bugs in smartphones have been a concern for the manufacturers, the users and the
application developers. In comparison to traditional software bugs, energy bugs are not
only hard to detect but it is also difficult to find their root causes [61]. The reason for this
is that in most of the cases energy bugs do not only affect the system performance and
its operation but also consume large amount of energy. From software testing perspective,
it is imperative to have a definition in literature which can be used as a reference. None
of the studies surveyed for this thesis discuss energy bug from the software testing point
of view. In this chapter, we have defined energy bug relative to software testing domain
(section 4.2). In section 4.3 and section 4.4 we have discussed a couple of scenarios and
have verified our definition with measurements and experiments.

4.1 Introduction

Energy bug is usually credited as an error in the system but it is not always the case.
The presence of energy bug might or might not affect the system output. There are many
aspects of battery and smartphone that have to be taken into consideration before defining
energy bug. In the following work we have researched the literature, on-line resources and
have used experimentation to define the energy bug phenomenon.

40

4.2 Energy Bug: A Comprehensive Definition

We define energy bug as follow:

Bug that affects the smartphone’s (system) battery
consumption and in some cases leaves the smartphone

in a different power consuming state. Energy bugs
might or might not affect the system’s output.

Pid

PRE

POWER

STATE

PROCESS

POST

POWER

STATE

Pfd > Pid

Pfd = Pid

Pfd < Pid

Pe

P
O

W
E

R
 (

W
)

TIME (s)

Figure 4.1: Complete execution cycle of an application process

Figure 4.1 shows the execution cycle of a complete application process for power con-
sumption pattern in smartphones. Let us suppose there are three states with respect to
power consumption for a process to complete its task: pre power state, post power state
and the state where actual process takes place. Now suppose that in the pre power state
the device was idle consuming Pid power before the execution of the process started (where
“id” stands for initial idle state). Then during the execution of the process, the device
consumes Pe power. After the execution time te seconds, the device goes back to the idle

41

state. Suppose that in this final state, the device being idle consumes Pfd power (where
“fd” stands for final idle state) and that the device remains in idle state for td seconds
before and after the execution of process. Here we have assumed that the idle state of the
device is when the device is not in sleep mode but is actually running with basic applica-
tions. And whenever a device has to execute a process, it is an additional application that
requires the device to perform additional tasks consequently consuming more power from
the battery.

According to the definition, a device is in an ideal working condition without the
presence of an energy bug if the post-condition of the device after execution of the process
is same as the pre-condition of the device before the execution of process. This energy cost
relationship is given in Eq. 4.1:

Pfd = Pid (4.1)

→ Post Power State = Pre Power State

→ Actual Output = Desired Output

Now if there is an energy bug in the device (system), the desired output will not be
achieved and it may lead the system to either of the following two states:

1. High power consuming state:

In this state the device will consume more power than it was consuming before the
execution of the process started. It will not only affect the output of the process
but will also lead to drainage of the device battery. Following equation explains this
state:

Pfd >> Pid (4.2)

→ Post Power State 6= Pre Power State

→ Actual Output 6= Desired Output

2. Low power consuming state:

In this state the device will consume less power than it was consuming before the
execution of the process started. It will not only affect the output of the process

42

but will also affect the operation and performance of the device. Following equation
explains this state:

Pfd << Pid (4.3)

→ Post Power State 6= Pre Power State

→ Actual Output 6= Desired Output

The important thing to realize here is that an energy bug in the system can lead to
either of the high or low power consuming states of the device which in turn might lead
to the failure of the process. Other possibility could be the fact that the requirements
of the execution time for the process are not followed precisely. In the latter case where
requirements of execution time are not fulfilled, there may or may not be an energy bug
in the system.

The new generation of smartphones are equipped with a large number of sensors and
their presence not only enhances the functionality of the device but also allows the users to
perform a variety of different tasks and access information in a convenient way. In order for
a device to function properly in an ideal way, these sensors have to work in a perfect way as
they are supposed to. The reason for this is that any malfunction in a sensor could possibly
be due to presence of an energy bug, as it directly affects the power consumption of a device.

Proximity sensor is one of the numerous sensors present in new generation of smart-
phones. A proximity sensor is a sensor, able to detect the presence of nearby objects
without any physical contact. A proximity sensor often emits an electromagnetic field or
a beam of electromagnetic radiation (infra-red, for instance) and looks for changes in the
field or return signal. The object being sensed is often referred to as the proximity sen-
sor’s target [1]. Proximity sensors are commonly used in smartphones to detect (and skip)
accidental touch screen taps when held to the ear during a call [2].

In the following, we will give two real life examples of the proximity sensor malfunction
and presence of an energy bug. Where in first case an energy bug in the system leads to
massive battery drain leaving the device in a high power consuming state. In the second
case an energy bug in the system affects the basic operation and performance of the device
and leaves the device in a low power consuming state then the pre-process power consuming
state.

43

4.2.1 High Power Consuming State

As explained earlier, this state of a device not only affects the output of the process but
also leads to excessive battery consumption and in some cases completely drains the bat-
tery. Although the execution time of a process is an important factor that might lead the
device to this high current consuming state but this is not a factor majority of the time.
That leaves us with the important problem of an ”Energy Bug”.

An energy bug that caused the device to consume massive battery power and eventu-
ally led to battery drainage was detected on iPhone 4S running iOS 5.0.1 and 6.1.1 [6],
[13], [18], [12], [21]. Apple’s iPhone 4S was introduced with a new feature called Siri,
an intelligent assistant that helps user get things done just by asking [7]. Although Siri
was a new and exciting feature but its initial release had a serious energy bug related to it
that was causing massive battery drain leading the device to a high power consuming state.

In order to activate the Siri, users had to long press the home button. Siri however,
had another option to activate it from the settings called ”Raise to Speak”. This option if
activated, allowed the users to use Siri by just raising the phone to their ear. With this
option turned on, the iPhones proximity sensor would remain in an active state (consuming
more power) for the duration of time till this option was on (as normally the proximity
sensor only comes to an active state when a user receives a phone call or when a phone
call is made by the user).

The energy bug that was leading the device to a high power consuming state was that
in iOS 5.0.1, this ”Raise to Speak” option had no effect to control the functionality of
proximity sensor [20], [15], [9]. It is a known fact that with the proximity sensor being
in an active state (Raise to Speak option) to activate Siri, the device will consume more
battery power. But the desired behaviour is that when this option is turned off, the device
should go back to its normal (power consuming) state. That was not the case in iPhone
4S running iOS 5.0.1 where whether the Raise to Speak option was turned on or off, the
proximity sensor was always in an active state and as a result the device was constantly in
a high power consuming state, draining the battery [10], [14], [8].

44

4.2.2 Low Power Consuming State

As the name suggests, this state of the device affects the performance and functionality
of the device and leaves the device in a state where it consumes less power than it was
consuming before a particular process started. An energy bug that led the device to this
state was detected on Samsung Galaxy Note 3 running Jelly Bean (Android OS v4.3). The
issue was again with the malfunctioning of proximity sensor. But unlike an iPhone, in this
case the proximity sensor malfunction was leading the device to a low power consuming
state.

The normal operation of proximity sensor is to turn off the screen when a user answers
a phone call and then turn on the screen as soon as the call ends. The energy bug was that
whenever user received a phone call, the screen would turn off but then would not turn on
unless the power button was pressed. Due to presence of this energy bug, the smartphone’s
screen would remain off after a phone call consequently affecting the functionality of device
and leaving the device in a low power consuming state [25], [28], [22].

4.3 Energy Bug Across Different OS Versions

Energy bug is an important phenomenon and it requires extensive research in this domain
to make the new generation of smartphones energy efficient. Motivated by our findings
(section 4.1), we researched energy bugs across different OS versions. It is a known fact
that with each OS update either there are new features being added to the operating
system or there are bug fixes or it is combination of both. But the important question here
is:

what happens to the power consumption of the device?

In order to investigate this, we used two identical new smartphones and made sure
that two different OS versions were available (one with a new OS version and one with a
relatively old OS version). The next step was to devise an experiment. In the following,
we will outline the steps for the experiment ComputeEnergy():

45

Begin Experiment ComputeEnergy()

Step 1: Open the built-in browser of the smartphone.

Step 2: Goto the following URL: http://youtube.com and select the full website option.

Step 3: Play a video for 6 minutes and then close the browser.

End

Old OS Version - Energy (J) New OS Version - Energy (J) Difference

Experiment 1 569.99 473.88 18.41 %

Experiment 2 564.02 478.91 16.32 %

Experiment 3 564.63 470.18 18.25 %

Experiment 4 568.05 478.04 17.1 %

Table 4.1: Energy consumption over different OS versions.

To have a consistency in our experiments, we performed the same experiment on two
same devices with same configurations but different OS versions. We performed the same
experiment multiple times to verify our results. We also used the same video for all the
experiments. In order to ensure that the measured energy is the real cost of playing that
video in the browser, we made sure to clear the cache of browser each time the experiment
was performed so that all the web elements will be requested fresh from the web server [32].

Table 4.1 shows the results of four iterations of same experiment performed on two
same smartphones with different OS versions following the experiment outlined above. In
order to compute the energy consumption, we have used the same experimental setup as
described in section 3.4.

The results show that there is a significant difference between the energy consumption
of the devices which indicates the presence of energy bug across different OS versions.

Following figures 4.2, 4.3, 4.4 and 4.5 show the actual results of all the experiments
performed to compute energy consumption across different OS versions.

46

http://youtube.com

0 50 100 150 200 250 300 350
0

1

2

3

4

Time (Sec)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Old OS Version

0 50 100 150 200 250 300 350
0

1

2

3

4

Time (Sec)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

New OS Version

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (Sec)

Po
we

r C
on

su
m

pt
ion

 (W
)

Old OS Version
New OS Version

Figure 4.2: Experiment 1 - Difference in energy consumption across different OS versions.

47

0 50 100 150 200 250 300 350
0

1

2

3

4

Time (Sec)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Old OS Version

0 50 100 150 200 250 300 350
0

1

2

3

4

Time (Sec)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

New OS Version

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (Sec)

Po
we

r C
on

su
m

pt
ion

 (W
)

Old Version
New Version

Figure 4.3: Experiment 2 - Difference in energy consumption across different OS versions.

48

0 50 100 150 200 250 300 350
0

1

2

3

4

Time (Sec)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Old OS Version

0 50 100 150 200 250 300 350
0

1

2

3

4

Time (Sec)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

New OS Version

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (Sec)

Po
we

r C
on

su
m

pt
ion

 (W
)

Old Version
New Version

Figure 4.4: Experiment 3 - Difference in energy consumption across different OS versions.

49

0 50 100 150 200 250 300 350
0

1

2

3

4

Time (Sec)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Old OS Version

0 50 100 150 200 250 300 350
0

1

2

3

4

Time (Sec)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

New OS Version

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (Sec)

Po
we

r C
on

su
m

pt
ion

 (W
)

Old Version
New Version

Figure 4.5: Experiment 4 - Difference in energy consumption across different OS versions.

50

4.4 Energy Bug Across Different Applications with

Same Functionality

As discussed earlier that the smartphone applications should be energy efficient but usu-
ally there are several applications available that provide the same functionality. How to
select between them ? What about the energy consumption ? In the following, we have
investigated the same questions:

what happens to the power consumption of the device when we use
different applications with same functionality on our smartphones?

In order to investigate this issue, we used a new smartphone and made sure that
four different browser applications were available for it. The next step was to devise an
experiment. We have used the same experiment as discussed in section 4.3. In the following,
we will outline the steps for the experiment ComputeEnergy():

Begin Experiment ComputeEnergy()

Step 1: Open the browser application in smartphone.

Step 2: Goto the following URL: http://youtube.com and select the full website option.

Step 3: Play a video for 6 minutes and then close the browser.

End

To have a consistency in our experiments, we performed the same experiment using the
same device with same configurations but different browser applications. We performed the
same experiment multiple times to verify our results. We also used the same video for all
the experiments. In order to ensure that the measured energy is the real cost of playing that
video in the browser, we made sure to clear the cache of browser each time the experiment
was performed so that all the web elements will be requested fresh from the web server [32].

In order to compute the energy consumption, we have used the same experimental setup
as described in section 3.4. Table 4.2 show four iterations of same experiment performed

51

http://youtube.com

Browser 1 -
Energy (J)

Browser 2 -
Energy (J)

Browser 3 -
Energy (J)

Browser 4 -
Energy (J)

Experiment 1 582.73 473.18 569.90 505.48

Experiment 2 560.59 462.56 548.93 491.89

Experiment 3 555.67 462.29 555.86 490.02

Experiment 4 559.47 464.80 562.87 490.56

Table 4.2: Energy consumption by different different browsers.

for energy consumption on same smartphone with four different browsing applications fol-
lowing the experiment outlined above.

Table 4.3 and table 4.4 show the comparison and difference in energy consumption of
four different browsers. The results show that there is a significant difference between the
energy consumption which indicates the presence of energy bug and validates our view
point.

Difference in Browser 1
and Browser 2 - Energy (J)

Difference in Browser 1
and Browser 4 - Energy (J)

Experiment 1 20.75 % 14.19 %

Experiment 2 19.10 % 13.05 %

Experiment 3 18.30 % 12.50 %

Experiment 4 18.40 % 13.80 %

Table 4.3: Difference in energy consumption by different browsers.

Difference in Browser 3
and Browser 2 - Energy (J)

Difference in Browser 3
and Browser 4 - Energy (J)

Experiment 1 18.31 % 11.83 %

Experiment 2 16.80 % 10.80 %

Experiment 3 18.30 % 12.50 %

Experiment 4 19.10 % 13.0 %

Table 4.4: Difference in energy consumption by different browsers.

52

Figure 4.6 show the results of all four experiments performed to compute energy con-
sumption across different applications in a graphical form.

Figure 4.6: Energy consumption across different applications with same functionality.

Our experiments for two different scenarios, one with two different versions of operat-
ing systems on same smartphone and the other with different application (providing the
same functionality) on same operating system and same smartphone, reveal the following
interesting observations:

• Different versions of operating systems have different energy consumption patterns.

• Difference in energy consumption across operating system versions shows the presence
of energy bugs.

• Different applications (although having same functionality) have different energy con-
sumption patterns.

• Difference in energy consumption shows that there are energy issues in the applica-
tions and indicates the presence of energy bugs.

53

Chapter 5

Conclusion

Smartphones with all the state of the art technology, latest hardware components, new
software and exciting applications are still constrained to their battery. There has been
a tremendous growth and advancement in smartphone’s software and hardware but in
comparison the progress in smartphone battery technologies is very slow. The smartphone
applications act as primary source for battery consumption as they utilize the smartphone’s
resources to complete different tasks. Therefore there is a need for applications to be en-
ergy efficient in their operations. The energy issues in smartphones have been a source of
user frustration and a concern for the smartphone manufacturers. Therefore in Chapter 2,
we have provided a literature survey of these energy issues in smartphones. We have dis-
cussed energy bugs and different reasons that could lead the smartphones to these energy
bugs. We have also provided taxonomy of these energy bugs. At the end we have discussed
related research in this domain.

In Chapter 3, we have discussed energy performance testing methodologies and pre-
sented a methodology to reduce the configuration parameters of smartphones. We also
verified our methodology by measurements and experiments on four different smartphones.
Our results showed that this methodology will help developers to efficiently test their ap-
plications for energy inefficiency.

Then in Chapter 4, we have focused on energy bugs and energy issues in smartphones.
We defined energy bug in context of software testing and presented several scenarios and
cases. We investigated the energy bugs across different versions of operating system and
across different applications with same functionality. We also performed experiments on

54

latest smartphones and validated our definition with measurements and experiments. Our
results showed that there are energy bug across different versions of operating systems in
smartphones and also across different applications with same functionality.

In the future, we will work to improve the testing methodologies so that the number of
test cases for energy performance testing can be further reduced. With new smartphones,
new operating systems and new applications the energy bug issue will be of critical impor-
tance. So we will work on mechanisms and tools to detect these energy bugs (by using our
definition as a reference). We will also work on solution strategies to avoid and overcome
these energy bugs.

55

References

[1] Proximity sensor. http://www.wikipedia.org/wiki/Proximity_sensor#cite_

note-Proximity_sensor_on_Android_smartphones-1.

[2] Proximity sensor on android gingerbread. http://www.thecodeartist.blogspot.

ca/2011/01/proximity-sensor-on-android-gingerbread.html.

[3] Sd card corruption. http://code.google.com/p/android/issues/detail?id=

2500.

[4] Setcpu for root users. http://www.setcpu.com/.

[5] Android phones more prone to hardware problems. http://www.pcmag.com/

article2/0,2817,2387493,00.asp, June 2011.

[6] Apple confirms battery life problems are ios 5 related. http://www.wired.com/2011/
11/iphone-4s-battery-issues/, November 2011.

[7] Apple press release. https://www.apple.com/pr/library/2011/10/

04Apple-Launches-iPhone-4S-iOS-5-iCloud.html, October 2011.

[8] iphone 4 ambient light sensor problem or software bug? https://discussions.

apple.com/thread/3055905, May 2011.

[9] iphone 4s battery problem maybe found. https://discussions.apple.com/thread/
3507356?tstart=0, November 2011.

[10] Possible issue leading to iphone 4s battery drain. https://discussions.apple.com/
thread/3491965, November 2011.

[11] What will the smartphone market look like in 2015? http://www.mashable.com/

2011/04/07/what-will-the-smartphone-market-look-like-in-2015/, April
2011.

56

http://www.wikipedia.org/wiki/Proximity_sensor#cite_note-Proximity_sensor_on_Android_smartphones-1
http://www.wikipedia.org/wiki/Proximity_sensor#cite_note-Proximity_sensor_on_Android_smartphones-1
http://www.thecodeartist.blogspot.ca/2011/01/proximity-sensor-on-android-gingerbread.html
http://www.thecodeartist.blogspot.ca/2011/01/proximity-sensor-on-android-gingerbread.html
http://code.google.com/p/android/issues/detail? id=2500
http://code.google.com/p/android/issues/detail? id=2500
http://www.setcpu.com/.
http://www.pcmag.com/article2/0,2817,2387493,00.asp
http://www.pcmag.com/article2/0,2817,2387493,00.asp
http://www.wired.com/2011/11/iphone-4s-battery-issues/
http://www.wired.com/2011/11/iphone-4s-battery-issues/
https://www.apple.com/pr/library/2011/10/04Apple-Launches-iPhone-4S-iOS-5-iCloud.html
https://www.apple.com/pr/library/2011/10/04Apple-Launches-iPhone-4S-iOS-5-iCloud.html
https://discussions.apple.com/thread/3055905
https://discussions.apple.com/thread/3055905
https://discussions.apple.com/thread/3507356?tstart=0
https://discussions.apple.com/thread/3507356?tstart=0
https://discussions.apple.com/thread/3491965
https://discussions.apple.com/thread/3491965
http://www.mashable.com/2011/04/07/what-will-the-smartphone-market-look-like-in-2015/
http://www.mashable.com/2011/04/07/what-will-the-smartphone-market-look-like-in-2015/

[12] [bug] ios 6 - battery drain : Siri raise to speak/proximity sensor always on/flashing
when screen active. https://discussions.apple.com/thread/4312957?start=

30&tstart=0, October 2012.

[13] ios 6 iphone 4s battery drain. https://discussions.apple.com/thread/4310494?

tstart=0, September 2012.

[14] iphone 4s- infrared sensor still stays on constantly with 5.1 update. https://

discussions.apple.com/thread/3932190, May 2012.

[15] Iphone 5 proximity sensor problem? https://discussions.apple.com/thread/

4590331, December 2012.

[16] Smartphone sales overtake pcs. http://mashable.com/2012/02/03/

smartphone-sales-overtake-pcs/, February 2012.

[17] Smartphone sales will dwarf pc sales. http://www.businessinsider.com/

smartphone-sales-forecast-2012-2?nr_email_referer=1, February 2012.

[18] Why can’t i turn off proximity sensor? - apple support communities. https://

discussions.apple.com/message/21261383#21261383, October 2012.

[19] Are smartphones getting larger because they have
to? http://www.extremetech.com/computing/

163636-the-ever-expanding-smartphone-or-why-are-phablets-so-darn-popular,
August 2013.

[20] Battery problem. https://discussions.apple.com/thread/4812604, February
2013.

[21] iphone 4s battery headaches persist for ios 6.1.1 users. http://www.wired.com/2013/
02/iphone-4s-battery-problems/, February 2013.

[22] Note 3 proximity sensor issue during calls. http://

forums.androidcentral.com/verizon-samsung-galaxy-note-3/

323701-note-3-proximity-sensor-issue-during-calls.html, October 2013.

[23] Android statistics: Number of android applications. http://www.appbrain.com/

stats/number-of-android-apps, August 2014.

57

https://discussions.apple.com/thread/4312957?start=30&tstart=0
https://discussions.apple.com/thread/4312957?start=30&tstart=0
https://discussions.apple.com/thread/4310494?tstart=0
https://discussions.apple.com/thread/4310494?tstart=0
https://discussions.apple.com/thread/3932190
https://discussions.apple.com/thread/3932190
https://discussions.apple.com/thread/4590331
https://discussions.apple.com/thread/4590331
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://www.businessinsider.com/smartphone-sales-forecast-2012-2?nr_email_referer=1
http://www.businessinsider.com/smartphone-sales-forecast-2012-2?nr_email_referer=1
https://discussions.apple.com/message/21261383#21261383
https://discussions.apple.com/message/21261383#21261383
http://www.extremetech.com/computing/163636-the-ever-expanding-smartphone-or-why-are-phablets-so-darn-popular
http://www.extremetech.com/computing/163636-the-ever-expanding-smartphone-or-why-are-phablets-so-darn-popular
https://discussions.apple.com/thread/4812604
http://www.wired.com/2013/02/iphone-4s-battery-problems/
http://www.wired.com/2013/02/iphone-4s-battery-problems/
http://forums.androidcentral.com/verizon-samsung-galaxy-note-3/323701-note-3-proximity-sensor-issue-during-calls.html
http://forums.androidcentral.com/verizon-samsung-galaxy-note-3/323701-note-3-proximity-sensor-issue-during-calls.html
http://forums.androidcentral.com/verizon-samsung-galaxy-note-3/323701-note-3-proximity-sensor-issue-during-calls.html
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

[24] Chart: Global web access shifts to smartphones.
http://www.thenextweb.com/shareables/2014/08/19/

watch-world-move-towards-smartphones-one-simple-chart/, August 2014.

[25] Faulty proximity sensor in galaxy note 3. https://community.verizonwireless.

com/thread/814958, January 2014.

[26] Global mobile statistics 2014: Mobile subscribers; handset market share;
mobile operators. http://www.mobithinking.com/mobile-marketing-tools/

latest-mobile-stats/a#topmobilemarkets, May 2014.

[27] itunes app store now has 1.2 million apps, has seen 75 bil-
lion downloads to date. http://www.techcrunch.com/2014/06/02/

itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date,
June 2014.

[28] Proximity sensor issues and signal issues. https://community.verizonwireless.

com/thread/814442, January 2014.

[29] Ahmed Abdelmotalib and Zhibo Wu. Power management techniques in smartphones
operating systems. IJCSI International Journal of Computer Science Issues, 9(3),
2012.

[30] A. Abogharaf, R. Palit, K. Naik, and A. Singh. A methodology for energy performance
testing of smartphone applications. In 7th Int. Workshop on Automation of Software
Test, pages 110–116, 2012.

[31] Abdulhakim Abogharaf. A client-centric data streaming technique for smartphones:
An energy evaluation. Masters thesis, ECE Department, University of Waterloo,
Ontario, Canada, 2013.

[32] Abdurhman Albasir. An evaluation of smartphone resources used by web advertise-
ments. Masters thesis, ECE Department, University of Waterloo, Ontario, Canada,
2013.

[33] R. Arya, R. Palit, and K. Naik. A methodology for selecting experiments to measure
energy costs in smartphones. In 7th Int. Wireless Comm. and Mobile Comp. Conf.
(IWCMC), pages 2087 –2092, July 2011.

[34] James Bach and Patrick J. Schroeder. Pairwise testing: A best practice that isn’t. In
22nd Annual Pacific Northwest Software Quality Conference, pages 180–196, 2004.

58

http://www.thenextweb.com/shareables/2014/08/19/watch-world-move-towards-smartphones-one-simple-chart/
http://www.thenextweb.com/shareables/2014/08/19/watch-world-move-towards-smartphones-one-simple-chart/
https://community.verizonwireless.com/thread/814958
https://community.verizonwireless.com/thread/814958
http://www.mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#topmobilemarkets
http://www.mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#topmobilemarkets
http://www.techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date
http://www.techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date
https://community.verizonwireless.com/thread/814442
https://community.verizonwireless.com/thread/814442

[35] N. Balasubramanian and et al. Energy consumption in mobile phones: a measurement
study. In Proc. of the 9th ACM SIGCOMM Internet Measurement Conference, IMC
’09, pages 280–293, 2009.

[36] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. En-
ergy consumption in mobile phones: a measurement study and implications for net-
work applications. In Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, pages 280–293. ACM, 2009.

[37] Kyoung Youn Cho, S. Mitra, and E.J. McCluskey. Gate exhaustive testing. Test
Conference, International, pages pp. 771–777, 2005.

[38] D. Cohen and et al. The aetg system: An approach to testing based on combinatorial
design. IEEE Trans. on Software Engineering, 23:437–444, 1997.

[39] Jacek Czerwonka. Pairwise testing in real world. In Proceedings of 24th Pacific North-
west Software Quality Conference, 2006.

[40] J. Bernal et al. Towards an efficient context-aware system: Problems and suggestions
to reduce energy consumption in mobile devices. In 9th Int. Conf. ICMB-GMR, pages
510 –514, 2010.

[41] Zachary C Fluhr and Eric Nussbaum. Switching plan for a cellular mobile telephone
system. Vehicular Technology, IEEE Transactions on, 22(4):197–202, 1973.

[42] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Estimating mobile
application energy consumption using program analysis. In Software Engineering
(ICSE), 2013 35th International Conference on, pages 92–101. IEEE, 2013.

[43] J. Huang, Q. Xu, and et al. Anatomizing application performance differences on
smartphones. In 8th, MobiSys ’10, pages 165–178, 2010.

[44] International Telecommunication Union (ITU). The world in 2014: Ict facts and
figures. April 2014.

[45] Abhilash Jindal, Abhinav Pathak, Y Charlie Hu, and Samuel Midkiff. Hypnos: under-
standing and treating sleep conflicts in smartphones. In Proceedings of the 8th ACM
European Conference on Computer Systems, pages 253–266. ACM, 2013.

[46] Abhilash Jindal, Abhinav Pathak, Y Charlie Hu, and Samuel Midkiff. On death,
taxes, and sleep disorder bugs in smartphones. In Proceedings of the Workshop on
Power-Aware Computing and Systems, page 1. ACM, 2013.

59

[47] J.-M. Kang and et al. User-centric prediction for battery lifetime of mobile devices.
In 11th Asia-Pacific Symposium on Network Operations and Management, pages 531–
534, Berlin, Heidelberg, 2008. Springer-Verlag.

[48] Youhuizi Li, Hui Chen, and Weisong Shi. Acm hotmobile 2013 poster: Bugu: an
application level power profiler and analyzer for mobile devices. ACM SIGMOBILE
Mobile Computing and Communications Review, 17(3):27–28, 2013.

[49] Yepang Liu, Chang Xu, and SC Cheung. Where has my battery gone? finding sensor
related energy black holes in smartphone applications. In Pervasive Computing and
Communications (PerCom), 2013 IEEE International Conference on, pages 2–10.
IEEE, 2013.

[50] Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, Soyeon Park, Dongcai Shen, Yuanyuan
Zhou, Lawrence K Saul, and Geoffrey M Voelker. edoctor: Automatically diagnosing
abnormal battery drain issues on smartphones. In NSDI, pages 57–70, 2013.

[51] D. Marinov and et al. An evaluation of exhaustive testing for data structures. Technical
report, MIT Computer Science and AI Lab. Report MIT -LCS-TR-921, 2003.

[52] Robert N. Mayo and P. Ranganathan. Energy consumption in mobile devices: Why
future systems need requirements-aware energy scale-down. In PowerAware Computer
Systems, pages 26–40, 2003.

[53] H. Muccini, A. Di Francesco, and P. Esposito. Software testing of mobile applications:
Challenges and future directions. In 7th Int. Workshop on Automation of Software
Test, pages 29–35, 2012.

[54] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. Software testing of
mobile applications: Challenges and future research directions. In Automation of
Software Test (AST), 2012 7th International Workshop on, pages 29–35. IEEE, 2012.

[55] K. Naik and P. Tripathy. Software Testing and Quality Assurance: Theory and Prac-
tice. John Wiley & Sons, first edition, 2008.

[56] Kshirasagar Naik, Yasir Ali, Veluppillai Mahinthan, Ajit Singh, and Abdulhakim
Abogharaf. Categorizing configuration parameters of smartphones for energy perfor-
mance testing. In Proceedings of the 9th International Workshop on Automation of
Software Test, pages 15–21. ACM, 2014.

60

[57] Shin Nakajima. Model-based power consumption analysis of smartphone applications.
In ACESMB@ MoDELS, 2013.

[58] Adam J Oliner, Anand Iyer, Eemil Lagerspetz, Sasu Tarkoma, and Ion Stoica. Col-
laborative energy debugging for mobile devices. In Proceedings of the Eighth USENIX
conference on Hot Topics in System Dependability, pages 6–6. USENIX Association,
2012.

[59] R. Palit, R. Arya, K. Naik, and A. Singh. Selection and execution of user level test
cases for energy cost evaluation of smartphones. In 6th Int. Workshop on Automation
of Software Test, pages 84–90, 2011.

[60] Abhinav Pathak. Energy debugging in smartphones. PhD thesis, ECE Department,
Purdue University, Indiana, USA, 2012.

[61] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks, page 5. ACM, 2011.

[62] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof. In Proceedings
of the 7th ACM european conference on Computer Systems, pages 29–42. ACM, 2012.

[63] Abhinav Pathak, Y Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. Fine-
grained power modeling for smartphones using system call tracing. In Proceedings of
the sixth conference on Computer systems, pages 153–168. ACM, 2011.

[64] Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and Samuel P Midkiff. What is keep-
ing my phone awake?: characterizing and detecting no-sleep energy bugs in smart-
phone apps. In Proceedings of the 10th international conference on Mobile systems,
applications, and services, pages 267–280. ACM, 2012.

[65] Robert A Powers. Batteries for low power electronics. Proceedings of the IEEE,
83(4):687–693, 1995.

[66] Suresh Siddha, Venkatesh Pallipadi, and AVD Ven. Getting maximum mileage out of
tickless. In Linux Symposium, volume 2, pages 201–207. Citeseer, 2007.

[67] Narseo Vallina-Rodriguez and Jon Crowcroft. Energy management techniques in mod-
ern mobile handsets. Communications Surveys & Tutorials, IEEE, 15(1):179–198,
2013.

61

[68] Claas Wilke, Sebastian Richly, Sebastian Gotz, Christian Piechnick, and Uwe Aß-
mann. Energy consumption and efficiency in mobile applications: A user feedback
study. In Green Computing and Communications (GreenCom), 2013 IEEE and In-
ternet of Things (iThings/CPSCom), IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, pages 134–141. IEEE, 2013.

[69] Jack Zhang, Ayemi Musa, and Wei Le. A comparison of energy bugs for smartphone
platforms. In Engineering of Mobile-Enabled Systems (MOBS), 2013 1st International
Workshop on the, pages 25–30. IEEE, 2013.

[70] Lide Zhang, Mark S Gordon, Robert P Dick, Z Morley Mao, Peter Dinda, and Lei
Yang. Adel: An automatic detector of energy leaks for smartphone applications.
In Proceedings of the eighth IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 363–372. ACM, 2012.

62

	List of Tables
	List of Figures
	Introduction
	Background
	Motivation
	Problem Statement
	Solution Strategy
	Contributions
	Organisation

	Literature Review
	Introduction
	Energy Problem in Smartphones
	Bugs in Smartphones
	Energy Bugs: A Taxonomy
	Hardware Energy Bugs
	Software Energy Bugs
	Energy Bugs due to External Conditions

	Review of Existing Research

	Energy Performance Testing
	Introduction
	Configuration Parameters
	Related Work
	Experimental Setup
	Proposed Methodology
	Maximum Differential Power
	Validation

	Energy Bug
	Introduction
	Energy Bug: A Comprehensive Definition
	High Power Consuming State
	Low Power Consuming State

	Energy Bug Across Different OS Versions
	Energy Bug Across Different Applications with Same Functionality

	Conclusion
	References

