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Abstract

Search and summarization of streaming social media, such as Twitter, requires the ongoing

analysis of large volumes of data with dynamically changing characteristics. Tweets are

short and repetitious – lacking context and structure – making it difficult to generate a co-

herent synopsis of events within a given time period. Although some established algorithms

for frequent itemset analysis might provide an efficient foundation for synopsis generation,

the unmodified application of standard methods produces a complex mass of rules, dom-

inated by common language constructs and many trivial variations on topically related

results. Moreover, these results are not necessarily specific to events within the time pe-

riod of interest. To address these problems, we build upon the Linear time Closed itemset

Mining (LCM) algorithm, which is particularly suited to the large and sparse vocabulary

of tweets. LCM generates only closed itemsets, providing an immediate reduction in the

number of trivial results. To reduce the impact of function words and common language

constructs, we apply a filtering step that preserves these terms only when they may form

part of a relevant collocation. To further reduce trivial results, we propose a novel strength-

ening of the closure condition of LCM to retain only those results that exceed a threshold

of distinctiveness. Finally, we perform temporal ranking, based on information gain, to

identify results that are particularly relevant to the time period of interest. We evaluate

our work over a collection of tweets gathered in late 2012, exploring the efficiency and

filtering characteristic of each processing step, both individually and collectively. Based on

our experience, the resulting synopses from various time periods provide understandable

and meaningful pictures of events within those periods, with potential application to tasks

such as temporal summarization and query expansion for search.
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Chapter 1

Introduction

1.1 Social Media Text

Text posted on social media outlets, such as Twitter, is a good and timely source of infor-

mation about real world events [72]. It also includes posts about other topics attracting

the collective attention of user communities, such as Internet memes or large scale discus-

sions [60]. Nevertheless, the collective stream from all users is overwhelmed by personal

updates and non-informative chatter [39, 35]. Furthermore, the attention span given to

the majority of topics is quite short [45]. Finding posts about topics of interest in a timely

fashion requires an efficient mining algorithm.

To realize the benefits of social media in giving a voice to ordinary people, the algorithm

should mine the content of posts without explicitly assigning weights based on popularity

of users. However, the nature of text in social media poses a challenge when applying

traditional text mining algorithms. Text in social media is usually short, undermining

the effectiveness of within document frequency counting. It lacks context, since posts are

standalone and most platforms do not allow explicit linkage. It also lacks structure and

other useful formatting cues. One type of mining algorithms that can be applied to such

data is frequent itemset mining.
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1.2 Frequent Itemset Mining

Frequent itemset mining algorithms count the number of times each combination of “items”

appear together. This is called the support of the itemset. An itemset is considered frequent

if its support is above a threshold. When mining textual data, an item is usually taken to

be a unigram. A set of items are considered to be appearing together if they appear within

the same document or paragraph. The frequent itemset mining family of algorithms is

fast and efficient, however it is not readily suited for application on text. Following are a

number of challenges faced when applying frequent itemset mining to textual data. In this

thesis we address those problems, adapting frequent itemset mining to social media text

without degrading its efficiency:

1. The number of itemsets mined grows with the number of distinct items – which is

particularly high in the text domain. In social media, the problem is complicated

by the continuous creation of new tokens [53], in the form of hashtags or usernames,

and due to shortening of words because of the length limit of some platforms.

2. The number of frequent itemsets is generally high. Frequent itemset mining was

originally proposed as a preliminary stage for association rules mining, which sifts

through the numerous itemsets and produces a smaller number of rules associating

combinations of items with each other. To reduce the number of itemsets, they

may be limited by setting a high support threshold. This is not possible in text

mining because the frequency of most items is low, and only a few items have high

frequencies; that is, frequencies of items follow a long-tailed Zipfean distribution.

3. Function words are among the few items having high frequencies. This leads to

mining a large number of itemsets which are uninformative language constructs.

Even if a maximum frequency threshold is set, incurring the risk that we will filter

out important itemsets, many non-English constructs will be mined because the

proportion of posts in English is much higher than other languages. Notice that we

do not remove function words so that we allow mining itemsets made up solely of

function words, and to make the mining results easier to understand at the user level.
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4. There is considerable redundancy in frequent itemsets caused by trivial differences

in the language used.

1.3 Motivation and Contributions

Frequent itemset mining is suitable to the dynamic nature of social media streams. It does

not require prior knowledge of the distribution of items, nor does it require selecting a few

items to monitor or a number of topics to mine. It is fast, efficient and scalable. It is also

robust against data sparsity, and can actually exploit this sparsity for faster computation.

Unlike trending topics1 [58], the results of frequent itemset mining include itemsets that

have high frequency because of sustained interest, as well as a spike of interest.

The mined itemsets provide the vocabulary associated with events and can be used as

a preliminary step for search and summarization. For example, the collection of mining

results from different epochs of time can be used for temporal query expansion and doc-

ument expansion [20, 24]. Expansion methods can be specially developed based on the

mining results, but it is also possible to use existing methods. The results from each epoch

can be treated as a document, and relevant “documents” can be used to create a temporal

profile [40] of the query or document being expanded. For summarization, frequent item-

sets can provide a good foundation for summary creation. While the frequent itemsets

themselves are not summaries, since they lack qualitative properties such as coherence and

cohesion, the results are understandable at the user level. As we shall see in later exam-

ples, the top ranked itemsets cover a variety of open topics, and within one topic different

opinions are reported as separate contrastive itemsets.

Previous work has proposed methods tailored for the use of frequent itemsets (patterns)

to improve search performance. Itemsets provide better semantics than keywords, and

have better statistical properties than phrases [87]. By using carefully selected itemsets

and filtering out “meaningless” ones, pattern-based approaches achieve better performance

than keyword-based approaches [88]. However, the choice of “interesting” or “informative”

itemsets and filtering out “meaningless” ones remains an area of active research. In Li et

1http://blog.twitter.com/2010/12/to-trend-or-not-to-trend.html
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al. [51] itemsets are mined from paragraphs of newswire text, and are used to determine

term weights for query expansion. Improvements in performance have been achieved by

using itemsets taken from a training set of related documents, as well as ones from unrelated

documents. In a more recent work, an unsupervised version that relies on co-occurrence of

itemsets within the same paragraph has been proposed [4].

In this thesis, we propose efficient methods for filtering out non-informative frequent

itemsets, reducing redundancy in the mining results, and ranking the selection according to

temporal novelty. Our methods exploit the dynamics of social media and make use of the

collaborative filtering that users naturally undergo on social media, by sharing interesting

posts and participating in conversations. Our main contributions are as follows:

• We propose the use of variable length term N-grams as items to avoid mining unin-

formative language constructs as itemsets.

• We propose a condition for selecting informative itemsets, and a clustering scheme

for reducing redundancy in the mining results.

• We propose a formula for ranking itemsets according to temporal novelty.

The effectiveness of our methods is shown quantitatively, in terms of the reduction in the

number of itemsets at each processing step. The quality of the final outcome is verified by

showing mining results from various time periods.

1.4 Thesis Outline

The next two chapters provide necessary background. We start by discussing related work

in chapter 2, then we explain the algorithm on which we build our work in chapter 3.

In chapter 3, we also introduce the dataset we use, and the data prepocessing necessary

for running a frequent itemset mining algorithm on social media text effectively. The

most important contribution in this chapter is a simple method for flattening the Zipfean

distribution of items, and thus reduce the number of itemsets made up of function words.

Chapter 4 presents our main contributions for creating temporal synopses from frequent
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itemsets. We present in it our proposed condition for selecting itemsets, the clustering

scheme for grouping together itemsets according to their topic, and a ranking formula

that is suitable for ranking clusters according to temporal novelty (based on the collective

Infomration Gain of itemsets in them). In chapter 5, we empirically evaluate the efficiency

and the effectiveness of our proposed methods. Finally, we conclude our presentation and

suggest future directions in chapter 6.

1.5 Terminology and Notation

Classically, frequent itemset mining is applied to a database of transactions made at a

retail store. This terminology is suitable for market basket data and we retain it out of

convention, even though we are mining text where the terms “corpus” and “document”

are normally used. Because of the dynamic nature of social media, rather than giving the

whole database as input to mining algorithms, the input is an epoch of data; data with

timestamps within a certain period of time. The epoch’s span is the length of this period

in hours, and the volume velocity at this epoch is the number of transactions in the epoch

divided by its span.

We now introduce the notation used in this thesis:

• W = {w1, w2, . . . , wn}: The set of all items occurring within the epoch of data being

mined. Items can be terms or term N-grams in this thesis.

• ta = {wa1 , . . . , wam}: A transaction made up of a set of items. Each transaction has

a sequential id derived from its timestamp (denoted by the subscript letter).

• Espan = 〈ta, tb, . . . , tv〉: An epoch of data of a certain span, such as an hour, made

up of the sequence of the transactions created within this hour.

• s ⊂ W : An itemset; any possible combination of items.

• Ts = {t : t ∈ E and s ⊆ t}: All transactions containing itemset s. We refer to it as

the itemset’s postings list, as is common in the Information Retrieval (IR) literature.
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Chapter 2

Background and Related Work

2.1 Frequent Itemset Mining

Frequent itemset mining comprises a large body of work that goes back to the early

1990s [2]. We categorize frequent itemset mining algorithms into 1) algorithms that operate

in the item space, 2) algorithms that operate in the transaction space, and 3) algorithms

that operate in the solution space. While a comprehensive survey is beyond the scope of

this thesis, we discuss at least one representative from each category of algorithms.

2.1.1 The Apriori Algorithm

Agrawal et al. [3] proposed the Apriori algorithm as part of the first efficient solution

to the problem of association rules mining [2]. In the domain of market basked data,

an association rule is an implication that an item is likely to be purchased in the same

transaction with a certain set of items. Association rules are mined by finding itemsets

that co-occur together frequently, then producing a rule with each individual item as a

consequent to the purchase of the rest of the itemset. The Apriori algorithm finds frequent

itemsets of increasing lengthes iteratively. It starts by counting frequencies of individual

items (itemsets of length 1). Then it iteratively increases the length of itemsets. At each

6



iteration, it generates candidate itemsets of length k (k-itemsets) by merging frequent

itemsets of length (k-1) ((k-1)-itemsets) that differ in only 1 item, usually the last item

given a certain total ordering of items. By using only the frequent (k-1)-itemsets for

generating candidate k-itemsets, many possible k-itemsets are implicitly pruned, based

on the anti-monotonicity between itemsets’ support and length: all subsets of a frequent

itemset must be frequent. However, each candidate has to be explicitly checked to verify

that it does not have any infrequent subsets.

Apriori and algorithms based on it suffer performance degradation and large increases

in memory requirement when the number of distinct items is high. These limitations

are caused by the candidate generation bottleneck. A large number of candidates can

be generated, especially in early iterations of the algorithm. Consider, for example, the

generation of candidate 2-itemsets from a database. This generation requires producing all

unordered pairs of 1-itemsets (terms), after pruning out rare ones with frequency less than

the support threshold. In many domains, including text mining, the number of frequent

1-itemsets is large enough to prohibit generating a number of candidates in the order of this

number squared. In text mining, a rather low support threshold has to be used, because

the frequency of terms follow a long-tailed Zipfean distribution.

The Apriori based family of algorithms operates in the item space in the sense that

an itemset can be expanded by any item regardless of whether there is any support for

the combination. Operating in the transaction space avoids this blind enumeration of

unsupported candidates, and the subsequent DB scan required to count the support of

those candidates. This involves the creation of a succinct representation of the DB that is

well suited for itemset mining.

2.1.2 The FP-Growth Algorithm

The first algorithm proposed based on the idea of avoiding candidate generation was FP-

Growth [30]. The database is represented as a frequency ordered prefix tree called the FP-

tree. Items with low support are removed, so that any node in the FP-tree is necessarily an

item with enough support. An FP-tree imposes the invariant that within each branch the

frequency is non-increasing from the root down to the leaves. This increases the chance

7



Figure 2.1: A few steps in the FP-Growth algorithm as depicted by Han et al. [31]

of finding common prefixes. An FP-tree also contains links between nodes representing

the same item. Those links are used to create the conditional FP-tree for an item, which

is the FP-tree made only from branches containing this item, excluding any items with

lower frequency. The algorithm proceeds by iterating over items in increasing order of

frequency. Each item is first output as an itemset, and then its conditional FP-Tree is

created and recursively mined. At each recursive call, the current item is appended to

a growing prefix, which is prepended to all itemsets mined from the conditional FP-tree.

Figure 2.1, borrowed from Han et. al [31], shows a few steps in the FP-Growth algorithm.

The navigation of a representation of the database avoids the candidate generation

bottleneck, by directly deriving itemsets from the transaction space. However, the creation

of such representation is a bottleneck itself. Building conditional pattern bases and sub-

FP-trees becomes time and space consuming as the recursion goes deep and the number

of patterns becomes large [85].

2.1.3 Solution Space Algorithms

The last category of frequent itemset mining algorithms comprises algorithms that operate

in the solution space. It can be argued that algorithms that traverse a representation

of the DB are operating in the solution space rather than the transaction space – given

that they avoid generating candidates with low support. However, in our categorization

8



we focus on the logic behind how itemsets are generated or pruned rather than the data

structure used to generate them. After all, any algorithm must calculate the support of

itemsets, and this requires the algorithm to either maintain a representation of the DB

or scan the transactions. Algorithms that operate in the solution space prune itemsets

that do not possess certain properties. The limited number of itemsets that possess the

desired property are sufficient to deduce the rest of the solution (other frequent itemsets

and their support information). The reduction in the number of itemsets mined improves

the performance of such algorithms, even if they rely on candidate generation to enumerate

possible itemsets before checking for the desired property. It is not always necessary to

produce the full solution since the properties usually filter out only redundant itemsets,

and in many cases the elect itemsets can be used directly.

The closure property [65, 66, 96] prunes an itemset if it has the same support as its

supersets. It is easy to see that all itemsets and their support can be derived from the set

of closed itemsets. A formal proof is given by Pasquier et al. [65]. The smallest itemset of

an equivalence class of itemsets having the same support is called a generator [44] or a free

set [12]. It is also possible to keep only the generator of each equivalence class, but in this

case some infrequent itemsets has to be kept in order to be able to calculate the support

of all frequent itemsets [44]. A different selection of itemsets can be made according to the

non-derivable property [17, 18], which is linked to the closed property.

Finding closed itemsets can be done by arranging possible itemsets into a Galois lattice,

then traversing the lattice using the Galois connection between itemsets and transactions in

which they appear. Figure 2.2 shows an example of a Galois lattice. The Galois connection

is a pair of operators, one to map an itemset to transactions in which it appears, and another

to map a set of transactions to the largest itemset that appears in all of them. Applying

the two operators in cascade grows an itemset directly to its closed superset. More details

can be found in Pasquier et al. [66] and Zaki et al. [96].

Some algorithms take advantage of the closure property to reduce the search space

more dramatically, such as CLOSET [67] and LCM [81]. Our work is based on LCM

(which stands for Linear-time Closed itemset Mining) [81]. As a starting point for our

work, we use the implementation of LCM submitted to the workshop for Frequent Itemset

Mining Implementations (FIMI) in 2004 [41], which was the workshop’s award winner. The

9



TID Items

1 A B C

2 B C E

3 A B C E

4 B E

5 A B C E

The transaction database

Figure 2.2: Example of a Galois lattice adapted from Pasquier et al. [66]
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LCM algorithm is robust against data sparsity, and has low memory requirements since

it does not store intermediate results. We will explain the closure property and describe

LCM in detail in section 3.1. We proceed by discussing other areas of related work.

2.2 Election of Representative or Interesting Itemsets

The problem of having many itemsets, with redundancy and noise, can be addressed by

picking out representative itemsets that satisfy a certain condition. The representative

itemsets are not necessarily sufficient to deduce the rest of the solution (itemsets and

their support information). In this thesis we propose a condition for selecting interesting

itemsets, which we call distinct itemsets. Related approaches to picking out representative

itemsets are 1) choosing a set that will minimize the reconstruction error of the full solution,

and 2) limiting the number of itemsets to a user specified number.

The δ-free [13], δ-covered [90], and master itemsets [92] are examples of conditions

motivated by providing a compressed representation of itemsets through sacrificing support

information. The δ-free condition selects an itemsets if its support is different from the

support of all its subsets by at least δ. This selection of itemsets can be used to approximate

the support of other frequent itemsets with a guarantee on the error, but only if some

infrequent itemsets are included in the selection. The δ-free condition implies setting an

upper bound on the strength of association rules that can be derived from selected itemsets.

It is suitable for compressing mining results from dense datasets, but it is exactly the

opposite of distinctiveness condition we propose in this thesis.

The δ-covered condition is also the opposite of the distinctiveness condition, as it

“relaxes the closure condition to further reduce pattern set size” [55]. On the other hand,

the distinct condition strengthens the closure condition. The δ-covered condition sets an

upper bound on the confidence of the rule that an itemset implies a superset; if an itemset

implies its superset with confidence greater than δ, then it is considered to be covered

by the superset and can be pruned. On the other hand, the distinct condition sets a

lower bound on the confidence of a derived association rule. Nevertheless, the clustering

scheme Xin et al. [90] propose (δ-clusters) is similar to the strongly closed itemset clusters
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proposed in this thesis. The efficient version of the clustering algorithm, RPLocal, limits

the search space for clustering candidates using a similar reasoning to the reasoning used

in our algorithm – exploiting the sequence in which frequent itemsets are found. The

main difference between δ-clusters and strongly closed itemset clusters is that δ-clusters

are soft clusters, while strongly closed itemset clusters are hard clusters. Also, the distance

measure used in δ-clusters is the Jaccard distance, while the strongly closed itemset clusters

are based on association rule confidence.

Yan et al. [92] proposed a method to choose k itemsets as representatives of the itemsets

in the full solution, which they call master itemsets. Rather than leaving k as a user spec-

ified parameter, a method is proposed for choosing k by minimizing the restoration error

of support information. A master pattern is the union of all itemsets in a cluster, similar

to our proposed strongly closed itemsets. While the use of clustering is similarly motivated

by the trivial difference between itemsets, the k master itemsets have to cover all itemsets.

On the other hand, strongly closed itemsets actually avoid clustering together itemsets

representing different topics or different opinions within a topic. Furthermore, Yan et al.

improve performance by approximating the calculation of the distance between itemsets,

to avoid accessing the data. We can achieve high performance without approximation

because our mining results include the postings list of each itemset.

Another approach to choosing itemsets is according to their interestingness. The in-

terestingness of itemsets (patterns) has been an area of active research for a long time.

According to Silberschatz and Tuzhilin [75] interestingness of an itemset can be objective

or subjective. Commonly used objective measures include (a more extensive coverage is

provided by Geng et al. [26] and Tan et al. [77]):

1. Support : The number (or fraction) of transactions that contain the itemset.

2. Confidence: The confidence of a rule derived from the itemset. A rule is derived from

the itemset by treating one item, w, as the consequent of the rule while the rest of

items, s \ w, are the antecedent. The confidence of the rule is then defined as:

conf(s \ w → s) =
|Ts|
|Ts\w|

(2.1)
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Since different rules with varying confidence can be derived from an itemset, either

the minimum (all-confidence) or the maximum (any-confidence) is used [63].

3. Lift [16]: The probability (support) of the itemset over the product of the probabil-

ities of all items in the itemset. This is a measure of dependence and can be linked

to Pointwise Mutual Information [14]. Such a measure is suitable for knowledge dis-

covery or exploratory search tasks, where the goal is to extract correlated itemsets

or significant phrases.

4. Bond (or Coherence) [63]: The support of an itemset over the number of transactions

containing any of its items.

An important property of a measure, upon which all Apriori based mining algorithms

are built, is the downward closure property; the value of a downward closed measure cannot

increase as the size of the itemset increases. All the above measures are downward closed [9]

with the exception of lift which is upward closed (cannot decrease with the increase of the

size of the itemset), and any-confidence which is neither upward nor downward closed.

Algorithms that mine itemsets based on the above measures were proposed [47, 42], but if

an application specific measure is to be used then it has to be evaluated in a post mining

stage or within the Redundancy-Aware Top-K Framework [89].

The Redundancy-Aware Top-K Framework [89] selects the top k itemsets according to

an interestingness criterion. The major difference between their approach and all of the

previous work is that it emphasizes both interestingness and redundancy when selecting

the top k itemsets. The itemset interestingness is defined in the context of the applica-

tion; summarizing the whole collection of itemsets is not the goal. Our work fits in this

framework: we reduce redundancy through filtering and clustering, and we propose a rank-

ing that orders itemsets according to some definition of interestingness. If only the top k

itemsets are desired, itemsets ranked at positions higher than k can be omitted. An ex-

plicit number of itemsets needs not be set, however. This makes our computational model

more efficient, since we do not need to solve a constrained optimization problem. In their

experiments, Xin et al. [89] used two application specific interestingness measures: they

used one that is based on TF-IDF for extracting interesting itemsets from a text corpus,
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and another that is tailored for predicting block fetches in storage systems [52]. We rank

itemsets according to their novelty using a measure based on Information Gain. Prelim-

inary experimentation with various other measures of interestingness ruled them out as

ineffective for our purposes.

Subjective measures of interestingness select itemsets that are actionable or unex-

pected [76]. Selecting unexpected itemsets entails building a probabilistic model to use

it for estimating itemsets probabilities. Jaroszewicz and Simovici [38] use a Baysian net-

work as a model, which is suitable for cases where items denote discrete values of a limited

number of attributes. A commonly used model is the maximum entropy model [83, 78, 57].

The Maximally informaTiVe itemsets (MTV) algorithm [57] uses a greedy algorithm to se-

lect k itemsets whose probabilities diverge the most from the estimate given by a maximum

entropy model. The maximum entropy model is initialized as a uniform distribution. After

selecting each of the k itemsets it is updated to fit the selected itemsets actual frequencies

using the iterative scaling procedure [23]. If k is set to infinity, the algorithm will generate

the best model according to the Bayesian Information Criterion (BIC). Since BIC incorpo-

rates a penalty term for the number of parameters (itemsets included in the model), this

selection will minimize redundancy while maximizing surprise (divergence from model).

The model can be initialized using itemset frequencies known from prior knowledge. It is

also possible to use the Minimum Description Length (MDL) as a criterion for selecting

itemsets. We compare our selection of itemsets to ones obtained from MTV using the

implementation provided by the authors1. However, the value of k has to be kept low (at

most 100) for the algorithm to finish without an error, even though it is running without

a limit on its resource usage on a machine with 256 GB of RAM. In our work we focus on

efficiency, allowing the summary to include larger numbers of itemsets than the values of

k for which MTV finishes in a reasonable time (at most 10). This is crucial for scalability

to the volumes of data typical to social media streams.

Another approach to picking out itemsets is choosing ones that can be used to compress

the data (not the itemsets). The KRIMP algorithm [82] is a good example of methods that

follow this approach. Our goal is different because we aim to filter out itemsets pertaining

to personal updates, which make up a large portion of social media data.

1http://www.adrem.ua.ac.be/implementations
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2.3 Frequent Itemsets in Search and Summarization

Different ways to use frequent itemset mining in search have been proposed. Possas et

al. [70] proposed using closed itemsets in place of terms, using them in exactly the same

way that terms are used. In the tokenization process, they use CHARM [96] to mine closed

itemsets of terms from each document. They then add the document to the postings

lists of each closed itemset it contains. Queries are tokenized similarly and results are

ranked using TF-IDF. This simple approach achieves increased precision on various test

collections, possibly because frequent itemsets take into account collocation information.

The approach is simplistic, however. The overlap between itemsets was not taken into

account while tokenizing documents and queries into itemsets. Also, the mining algorithm

was not modified to accommodate the high number of terms and the greater length of

documents compared to the length of transactions typical to market basket data. Finally,

the number of itemsets is higher than the number of terms so the index size will increase.

Wu et al. [88, 87] proposed the use of sequential closed patterns in place of terms, in

what they call a pattern based approach to information retrieval. They consider patterns

as surrogates to phrases that have better statistical properties than phrases, thus achiev-

ing a break through in the performance of phrase based approaches. “Although phrases

contain less ambiguous and narrower meanings than individual words, the likely reasons

for the discouraging performance [50] from the use of phrases are: (1) phrases have inferior

statistical properties to words, (2) they have low frequency of occurrence, and (3) there

are a large number of redundant and noisy phrases among them.” [87] They addressed the

problem of overlap between itemsets, and they developed an algorithm specifically tailored

for mining closed sequential patterns from text. Documents are broken into paragraphs

such that a paragraph is the unit of mining and retrieval. This alleviates the problem that

documents are usually much longer than traditional market basket transactions. Albathan

et al. [4] extended the work of Wu et al. by proposing a method for further reducing the

number of closed patterns. Lau et al. [46] used related methods for term weighting in

pseudo-relevance feedback for Twitter search, and achieved substantial improvements over

a baseline.
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In an earlier work [1], we have also explored the viability of using frequent itemsets for

query expansion in microblog search. We could achieve improvements over a strong baseline

on the TREC 2011 microblog track queries. As a baseline, we used Okapi BM25 [73]

with its parameters tuned to achieve the best performance on short documents. The

baseline’s performance ranked high compared to the TREC 2011 submissions. After query

expansion, the performance was better than all of the TREC 2011 submissions. Queries

were expanded using terms from itemsets that are most relevant to the query, according to

the same relevance ranking formula used in the baseline. We used frequent itemsets mined

by an unmodified mining algorithm that returns the top k itemsets according to their

support2. However, query expansion achieved no improvement over the baseline on the

TREC 2012 microblog track queries. This indicates that there was not enough relevant

itemsets, because of the use of support to limit the number of itemsets. The methods

proposed in this thesis can be used for mining a short ranked list of relevant itemsets,

which can then be used by methods such as our earlier work, or the work of Wu et al.

This work also complements the work done by Yang et al. [93] for using frequent itemsets

as a temporal summary. They have proposed a framework for storing mining results of

temporally consecutive intervals (batches of data) using a pyramidal time window. Their

framework allows for fast execution of temporal queries, and for tracking the evolution

of topics. However, the itemsets stored for each interval are not selected for providing

the best summary. Instead, they are selected according to their utility in compressing

the data. The temporal summary is created from transactions relevant to a query in a

separate step. First, the pyramidal time window is queried using keywords and a specific

time intervals (for example, “world cup” on the day before a certain match). Then, non-

negative matrix factorization is used to extract topics from the returned transactions. The

pyramidal time window structure can be used to store itemsets selected by our methods,

thus directly providing a temporal summary without the need for the matrix factorization

step. Our methods exploit the nature of social media to choose topically relevant itemsets

without the need for a query. Social media has been shown to be a good source of real-time

information, as we will discuss in the next section.

2https://cwiki.apache.org/MAHOUT/parallel-frequent-pattern-mining.html
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2.4 Social Media as a Source of Information

The problem of finding information in social media posts is motivated by the uniqueness

and variety of information that can be found in these media. Some stories are reported

mainly on social media because of censorship on journalism, such as the 2009 Iranian

elections protests (nicknamed “Iran’s Twitter Revolution”3). Other stories are reported

mainly on social media because the content creator happens to be at the right place at

the right time. This could be by chance, like in the case of the emergency landing of a US

Airways plane on the Hudson river in New York4. This could also be an intentional act of

citizen journalism. Citizen journalists are “the people formerly known as the audience,”

who “were on the receiving end of a media system that ran one way, in a broadcasting

pattern, with high entry fees and a few firms competing to speak very loudly while the

rest of the population listened in isolation from one another – and who today are not in a

situation like that at all.”5

In a study of the use of Twitter as a news medium during the 2011 Tunisia and Egypt

revolutions, Lotan et al. [56] categorized 963 accounts that made influential posts according

to the type of actor. A post is considered influential if it is among the top 10% of posts

in terms of the number of near duplicates made out of it; posts that had at least 16 near

duplicates in the Tunisia data, or at least 19 near duplicates in the Egypt data. The types of

actors included mainstream media organizations and mainstream new media organizations,

which are news and media organizations with and without offline presence, respectively.

It also included journalists, who are individuals employed by media organizations or who

regularly work as freelancers for them.

In both datasets, media organizations make up about 11% only of the 963 accounts

(approximately 7% for ones with offline presence and 4% for ones that exist solely online).

Journalists make up another 15%, so the total of mainstream media affiliated accounts is

approximately 26%. On the other hand, more than half of the accounts from which influen-

3http://www.theatlantic.com/technology/archive/2010/06/evaluating-irans-twitter-revolution/58337/
4http://www.telegraph.co.uk/technology/twitter/4269765/New-York-plane-crash-Twitter-breaks-the-

news-again.html
5http://archive.pressthink.org/2006/06/27/ppl frmr.html#more
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tial tweets originated belong to individuals not affiliated to the government or mainstream

media (55% for Tunisia and 56% for Egypt). Out of those individuals, almost half are

ordinary people who do not self identify and cannot be identified by assessors as bloggers

or activists.

The rate at which an account makes posts is approximately 16 per hour for main-

stream media affiliated accounts, and approximately 10 for individuals accounts (thus a

mainstream media account makes 60% more posts). Also the probability that a post will

be echoed is 0.88 for mainstream media accounts, 0.55 for journalists, 0.4 for bloggers and

activists, and 0.31 for individuals (this is the probability that any follower will echo the

post, the average number of followers of an account belonging to an ordinary person is much

lower than that of an account belonging to an actor of any of the other types). However,

collectively the fraction of highly echoed threads originating from ordinary people is on a

par with the fraction of threads originating from a journalist. Threads originating from

ordinary people, bloggers and activists together make up more than half of highly echoed

threads, followed by threads originating from journalists (around 20%), then threads orig-

inating from mainstream media (around 10%, divided equally between media with and

without offline presence).

All this emphasizes the influence citizen journalists and ordinary people now have on

the information creation and dissemination process. User created content is rich with

unique content tackling a variety of topics from different points of view. However, it is

dominated by non-informative chatter and personal updates. In a study comparing the

use of Twitter’s search feature to Web search, Teevan et al. [79] found that Twitter is

mostly used for getting timely information: updates about events, news about topics of

interest (such as technology news), and realtime local updates (such as traffic jams). It

was noted that Twitter search could be the main way of accessing Twitter, since posts

from the followed network could to be outside of the user’s topical interests. This is

supported by findings from an earlier study by Naaman et al. [61], in which 3,379 tweets

from 350 accounts belonging to individuals were studied. The tweets were hand coded into

different categories, then the activity of users in terms of what type of tweets they make

was analyzed. It was found that 40% of the studied tweets are personal updates (about

“me now’ ’), and that users can be clustered into a big cluster of “meformers” (80% of
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the users, half of their posts are personal updates) and a small cluster of informers (20%

of the users, half of their posts are for sharing information). The study also found that

most people engage in some form of meformer activity; on average, users had 41% of their

messages in the “me now” category. Therefore, filtering out posts by meformers, or giving

higher weights to posts by informers would not be sufficient for filtering posts about “me

now” and finding informative posts made by ordinary people.

To tap into social media as a source of information, social media users collaboratively

select good content. On Twitter, users can retweet an interesting post, which means

forwarding it to their followers. The dynamics of retweeting was studied by Boyd et

al [15]. One of the findings was that posts being retweeted are frequently modified to

accommodate additional text, or at least the notation meant to indicate that the post is a

retweet. The limit on tweets length might be the reason behind this modification, but it

can also be a way to emphasize what the retweeter finds most interesting. The selection of

what to keep from the post is actually a form of collaborative filtering itself, because the

most interesting parts has to be retained. Parts that are selected by many people are likely

to be good summaries of what is interesting. Using frequent itemset mining, the words in

those selections would be mined as itemsets. In chapter 4 we discuss how to exploit such

social media dynamics to create temporal synopses. In the next section, we discuss other

methods for finding emerging topics in social media.

2.5 Topic Detection and Tracking for Social Media

The problem of Topic Detection and Tracking (TDT) was introduced by Allan et al. in

1998 [6]. Topic detection is the discovery of previously unknown topics, where a topic was

first defined as an “event” then its definition was broadened to include the triggering event

as well as other events and activities directly related to it. Our work can be categorized as

a method for topic detection from social media, or more specifically “event” detection since

we make no effort to group events into topics. Ever since it was introduced, TDT has been

an area of active research. Besides the fact that there is always room for improvement,

TDT was originally targeting the domain of newswire data, and the solutions developed
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for this domain are not directly applicable to data from other domains.

In the domain of social media, Petrović et al. [68] used an adaptation of Locality

Sensitive Hashing (LSH) [36] to perform first story detection at scale. The computation

framework is the same as the one used in traditional systems [94, 7]:

• The distance between a tweet and its nearest neighbour from the preceding tweets is

calculated.

• If the distance is less than a threshold, then the tweet is added to the topic represented

by the cluster containing the nearest neighbour.

• If the distance is greater than the threshold, a new cluster is created. The new cluster

represents a new topic, with the current tweet as its first story.

The adaptation of LSH that Petrović et al. propose reduces the number of times a tweet

is considered far from all of its neighbours while it actually is not. In case of failure to find

a near neighbour, a tweet is compared with the last 1000 tweets, updating the minimum

distance if necessary. The performance of the modified LSH on a traditional TDT task

(TDT-5) was comparable to the UMass FSD system [7]. On the other hand, the run times

of the two systems are 2 hours and 28 hours respectively. Another experiment was done

on a dataset of a 160 million tweets collected over a period of 6 months from Twitter. The

UMass system failed to terminate, while the LSH based system could process each tweet in

bounded space and time. One problem remains, however. Their system does not achieve

high precision in determining if a tweet cluster pertains to an event or not. Actually, their

system can detect spam clusters with high precision (average precision = 0.963), but not

event clusters (average precision = 0.34). The problem of identifying event clusters was

further studied by Beker et al. [10], where they used a Support Vector Machine (SVM)

classifier and achieved a higher precision. However, the test set used was limited to 5 hours

of Twitter data and the precision decreases as the number of clusters increases.

Another approach to event detection follows the framework of bursty keywords detec-

tion proposed by Kleinberg [43]. In this framework, a set of keywords are tracked – possibly

all tokens in the dataset. A state machine is used to indicate the state of each keyword,
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where consequitive states correspond to higher levels of burst intensity. Each state tran-

sition is associated with a cost, and a keyword is moved between states such that the

overall cost of its transitions is minimized. A simplified version of this framework is used

by Parikh and Karlapalem [64]. In their work, there are only two states for each token:

the normal state, and the bursty state. A token is moved to the state of being bursty

if the increase in its frequency exceeds a threshold, and it stays in this state for a fixed

time interval. The timeline is divided into fixed length intervals, and a token is totally

ignored in intervals when it is in the normal state. Tokens are then clustered according

to the similarity of the sets of bigrams with which the co-occur, and the pattern of their

appearance (moving to the bursty state). The clusters are considered to be events, and

they are ranked according to their sizes. The clustering they propose has to process data

from a long interval, so that the similarity of appearance can be calculated. This approach

is not suitable for stream processing. Besides, the number of clusters produced by their

methods is small compared to the number of events one would expect to have happened

in the interval of time processed (23 in 20 days and 15 in a week).

Another method that tracks the frequency of all tokens is EDCoW [86], where the

wavelet transformation is used to convert counts of occurrences from the time domain to

the frequency domain then auto-correlation is used to detect burstiness. However, the

use of wavelet transformation is not justified specially for the enormous number of tokens

in case of social media. Other methods based on burst detection track a small set of

keywords. Lehmann et al. [48] track hashtags and study their usage pattern. Chakrabarti

and Punera [19] track tokens appearing in tweets tagged by the name of an American

football team, and use them to create a summary of a game.

Our work can also be seen in the light of meme-tracking [49], where a particularly

interesting quotation (meme) is tracked across news and blog posts. The quotation being

tracked is not quoted verbatim in all posts, but rather parts of it are selected and it

could be slightly paraphrased. This is similar to modifications made during retweeting an

interesting tweet. Leskovec et al. [49] tracked quotations made by American politicians

during the 2008 U.S. presidential elections. Phrases made up of 4 words or more are

tracked if they got repeated 10 times or more in blogs and news articles, where at most

25% of the repetitions could be on the same domain name. A directed acyclic graph is
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constructed where vertices represent phrases and edges are weighted according to the edit

distance between the phrases, as well as the number of occurrences of the longer phrase.

The graph is then divided into clusters where each cluster contains one root that has no

outgoing edges. Each vertex is assigned to the cluster with which it has the highest number

of edges. Clusters are then ranked according to the number of news articles and blog posts

containing any phrase from the cluster. Leskovec et al. then use the clusters and their

associated news articles and blog posts to perform an analysis of the temporal variation of

the volume of posts about each meme. They propose a model that fits the data well, and

study the difference between blog posts and news articles in terms of how fast a meme is

picked and how long it remains in focus before getting dropped. In our work, we are also

using the volume of posts containing phrases and their variations (itemsets). We also do

clustering but in a different way, and we work in a totally different scale of time.

O’Connor et al. [62] also start from phrases to summarize tweets about a user specified

query. They select significant phrases which are statistically unlikely, then cluster them.

Frequent itemsets are a better starting point than phrases, since there are much more

phrases than frequent itemsets.

Event detection in Twitter can also be done using natural language processing to iden-

tify event parts of speech [72], or to identify action phrases [69]. Of course, it is also

possible to apply topic modelling by Latent Dirichlet Allocation (LDA) [33] or an online

varient [32, 95]. Our method tackles the problem in a totally different way than these two

approaches.

22



Chapter 3

Mining Social Media Text

3.1 The Linear-Time Closed Itemset Mining

Algorithm

In section 2.1.3 we have discussed frequent itemset mining algorithms that overcome the

bottleneck of candidate generation by limiting the solution to itemsets with a certain

property, reducing the size of the solution and possibly providing a way to quickly navigate

the solution space. In this thesis, we expand on the Linear-time Closed itemset Mining

(LCM) algorithm [81], which mines only closed itemsets [65]. The LCM algorithm is

distinctively fast because it also takes hints from the transaction space during candidate

generation. This also makes it resilient against data sparsity, since it will not consider a

candidate that never appears in the data. The ability to efficiently mine sparse data makes

LCM particularly suitable for mining social media text. In this section we explain in detail

how LCM works.

Since LCM makes use of the properties of closed itemsets, we begin our presentation by

discussing these properties. Informally, a closed itemset contains any item that is present

in all the transactions containing this itemset. A formal definition of closed itemsets is

given in equation 3.1:
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C = {sc : sc ⊂ W and@ sdwhere sc ⊂ sd and |Tsc | = |Tsd|} (3.1)

The properties of closed itemsets are as follows:

1. Adding an item to a closed itemset reduces its support.

2. A subset of a closed itemset is not necessarily closed, but one or more closed subset

must exist for any itemset (formally this could be the empty set, given that any item

that appears in all transactions is removed in a preprocessing step).

3. If a closed k-itemset can be extended any further then one of its supersets will be

closed, however not necessarily a (k+1) superset. Itemsets that cannot be extended

any further are called maximal itemsets, which form a subclass of closed itemsets.

Besides being much smaller than the solution space of frequent itemsets, the solution

space of closed itemsets can be navigated efficiently. By using an arbitrary total ordering

of items, any closed itemset can be considered an extension of exactly one of its subsets.

Thus, only this subset is extended during candidate generation. All other subsets do not

need to be extended by items that would lead to the longer closed itemset. This property

is called prefix preserving closure extension (PPC-Extension) and it was proposed and

formally proved by Uno et al. [81].

PPC-Extension is achieved by following three rules, which we state after a few defini-

tions to facilitate their statement. First, an item is larger/smaller than another item if it

comes later/earlier in the total ordering. This terminology comes from the fact that LCM

is most efficient if the items are ordered in ascending order of their frequency. Second,

the suffix of an itemset is one or more items which have to be removed to get an itemset

with greater support. Notice that they are necessarily the last items added to the itemset,

regardless of the total ordering. Finally, we call the first item added to the suffix of the

itemset its suffix head. With this terminology, the rules for PPC-Extentsion are as follows:

1. An itemset must be extended by every item that occurs in Titemset, except items

which are smaller than its suffix head ; extending by smaller items will lead to closed
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itemsets already generated in an earlier step. Extension items are added to the

itemset in turn in the order given by the total ordering, recursively applying PPC-

Extension to the extended itemset before adding the next extension item.

2. After adding an extension item, we, to an itemset, s, we add all other items that

appear in all transaction containing s ∪ {we} – that is, items whose frequency

within Ts∪{we} is equal to |Ts∪{we}|. The newly added items become the suffix.

3. If all items in the suffix are larger than the suffix head then add the itemset to

the solution. Otherwise, prune this solution branch; all closed itemsets within this

branch have already been generated, when processing the smallest suffix member.

Table 3.1 is an example of how PPC-Extentsion is used to generate closed itemsets

starting from the 1 -itemset {‘barack’}. The upper table enumerates T{‘barack′}. The lower

table shows steps of itemsets generation. The current itemset along with its frequency

is in column 2. Itemsets marked by an (*) are the closed itemsets that are part of the

solution. The suffix of the itemset is shown in italic. All possible extension items and their

frequencies are in column 3. Extension items that are smaller than the suffix head are

shown with a line striked through them. For each itemset, the extension items are kept

so that it is known which extension item is next in turn to be added. An item is bolded

when its turn to be added has come. After adding each item, a pass is done on Titemset to

enumerate and count possible extension items. To enforce a support threshold infrequent

extension items would be removed after counting, but in this example there is no such

threshold. Finally, column 4 is a comment explaining each step.

Table 3.1 shows that the number of steps is linear in the number of closed itemsets, and

the only additional storage required, besides storage for the documents, is that required

for possible extension items. Of course, this is a simplified example, but it shows in essence

how LCM achieves its low run time and memory requirements. We refer the interested

reader to Uno et al. [81] for a theoretical proof that the algorithm runs in linear time in the

number of closed itemsets, and that this number is quadratic in the number of transactions.

Performance on a real dataset is shown in section 3.2. We proceed by describing how to

implement this algorithm using an inverted index.
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Doc. Id Document Doc. Id Document

a barack & mitt b barack obama & mitt romney

c barack obama & romney d barack obama

Documents (two per row)

Step Current Itemset Possible Extension Items Comments

1 {barack} (4) mitt (2), obama (3), romney (2) Items in T{‘barack′} are counted. There is

not an item appearing in all transactions.

2 {barack} (4)* mitt (2), obama (3), romney (2) Rule 3: suffix is ordered, add itemset to

solution. This is not shown as a separate

step in the rest of the example.

3 {barack} (4) mitt (2), obama (3), romney (2) Items are ordered lexicographically.

Adding ‘mitt’ to itemset.

4 {barack, mitt} (2)* obama (1), romney (1) Extension items reenumerated & counted.

5 {barack, mitt, obama} (1) romney (1) Rule 2: ‘romney’ appears in all Titemset.

6 {barack, mitt, obama, romney}(1)* Rule 3: ‘obama’ is the suffex head.

7 {barack} (4) mitt (2), obama (3), romney (2) Nothing more to add, back to {‘barack’}.
8 {barack, obama} (3)* mitt (1), romney (2) Rule 1: skipping ‘mitt’, adding ‘romney’

9 {barack, obama, romney} (2)* mitt (1) Rule 1: Nothing more to add.

10 {barack} (4) mitt (2), obama (3), romney (2) Back to {‘barack’}, adding ‘romney’.

11 {barack, romney} (2) mitt (1), obama (2) Rule 2: add ‘obama’ after ‘romney’.

12 {barack, romney, obama} (2) mitt (1) Rule 3: suffix is not ordered, prune.

13 {barack} (4) mitt (2), obama (3), romney (2) Back to {‘barack’}, all possible extension

items were added. Done.

Closed itemsets containing ‘barack’

Table 3.1: Generation of closed itemsets by Prefix Preserving Closure Extension
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3.1.1 Implementation Details

We show in algorithm 1 how to implement LCM and PPC-Extension using an inverted

index. The algorithm assumes the presence of a search infrastructure, with the ability of

performing boolean queries efficiently. Besides the high likelihood that such an infrastruc-

ture already exists, it is also a good representation of textual data. Other representations

that are designed for databases in general might not be well suited for textual data. For

example, the memory requirements of the FP-tree suffers from the sparsity of data, since

the data structure is succinct only if it can find common prefixes within the constraints of

its invariant. The possibility of using an inverted index in the implementation of LCM is

yet another reason why it is well suited for textual data.

The algorithm takes as input an epoch of data and a support threshold. It outputs the

closed itemsets with support above the threshold. Along with each itemset in the solution,

it also outputs the transactions in which it occurs – which is represented as 〈items, Titemset〉.
The symbol � denotes that the lefthand side succeeds the righthand side in the total

ordering. In the implementation shown, it is not necessary that the inverted index’s tokens

list (X.tokens) follow the total ordering; all itemsets of length 1 will be considered anyway.

Each 1-itemset is then expanded according to the PPC-Extension rules. Lines 11-18 are

the enumeration and occurrence counting of possible extension items, except line 15 which

forms the closed itemset according to PPC-Extension rule number 2. Lines 19-20 prune a

solution branch according to rule number 3, and line 21 adds the itemset to the solution

according to the rule’s complement. Lines 22-27 extend the itemset according to rule

number 1, where line 23 (along with line 5) enforces the support threshold.

The algorithm lends itself to distributed implementations. For example, a map/reduce

implementation is straightforward since the only operations are counting (line 15) and

projection (line 24). However, the fast execution time and the low memory requirements

of the algorithm makes it possible that a distributed implementation will cause unnecessary

overhead for all but the largest datasets. We experimented with Hadoop1 and the overhead

was in the order of minutes. Besides, many problems start to arise when the programming

model is complicated, and Hadoop was particularly problematic.

1http://hadoop.apache.org
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Input: support: Support threshold

Data: E: Epoch of data

Result: C: Closed itemsets occurring in at least support records

1 C ← {〈∅, E〉} ; // ∅ is a closed itemset. This is skipped in practice

2 X ← Inverted index of E;

3 foreach w ∈ X.tokens do

4 T{w} ← X.postingsList[w];

5 if |T{w}| ≥ support then // Support threshold enforcement on 1-itemsets

6 LCM({w}, w, T{w}) ;

7 end

8 return C ;

9 Function LCM(s: Current itemset, wsh: Suffix head,

10 Ts: Transactions (tweets) containing s) is

11 frequency[1 . . . wn] ← 0;

12 suffix ← {wsh};
13 foreach t ∈ Ts do

14 foreach w ∈ t do

15 frequency[w]++;

16 if frequency[w] = |Ts| then suffix ← suffix ∪{w} ;

17 end

18 end

19 if ∃v ∈ suffix : wsh � v then

20 return ; // Prune according to PPC-Extension Rule 3

21 C ← C ∪{〈s ∪ suffix, Ts〉};
22 foreach v � wsh and v /∈ suffix do

23 if frequency[v] ≥ support then

24 Ts∪{v} ← Ts ∩ T{v} ; // Results of query s AND v

25 LCM(s ∪ suffix ∪ {v}, v, Ts∪{v})
26 end

27 end

28 end
Algorithm 1: The LCM frequent itemset mining algorithm
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3.2 Using LCM for Mining Social Media Text

3.2.1 Dataset

Throughout this paper we use data collected from the Twitter public stream2 since October

1st, 2012. We use only tweets written in the Latin script to facilitate tokenization using

white space and other word boundaries. We collect only the tweet text to avoid reliance

on any features specific to a certain social medium, and to make the algorithms applicable

to other media where text is short such as Facebook or Google+ status updates. YouTube

comment data is a particularly promising candidate since comments are limited to 500

characters; the itemsets could provide textual highlights of non-textual content.

We remove duplicate original tweets (not retweets) using a Bloom filter [59]. This

filtering removes spam tweets sent by botnets, averaging at 2.86% of the stream. There

were two disruptions during data gathering. One in late October because of Hurricane

Sandy which made the Twitter service unaccessible. The other was in late December

because of technical problems on the server gathering the data.

The average number of tweets per hour (volume velocity) in the data is 119,035.49

tweets (n = 2,546 hours, standard error = 491), and the average number of tweets per

day is 2,705,931.83 tweets (n = 112 days, standard error = 55,155). These are simple

moving averages calculated by summing the number of tweets in non-overlapping epochs

and dividing by the number of epochs. A more accurate estimate of the average number of

tweets at different hours of the day can be acquired using a timeseries model of the activity

on the social network.

3.2.2 Timeseries Model of the Dataset

Arrivals entering a system are commonly modelled as a Poisson stochastic process. A

Poisson process can be characterized by a random variable N(t) representing the aggre-

gate number of arrivals that has happened up to time t. This random variable has a Poisson

2https://dev.twitter.com/docs/streaming-apis/streams/public
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probability mass function with a rate λ (as well as two other necessary properties: inde-

pendent and stationary increment). When the rate is high enough (more than 1000), the

Normal distribution can be used as an approximation to the Poisson distribution. Since

social media has arrival rates larger than 1000 posts per minute (the time unit is arbi-

trary but must be long enough to have more then 1000 arrivals), it is therefore possible to

assume a normal distribution and use a timeseries model to describe the activity on the

social network. One class of timeseries models which is particularly useful for analysis is

the class of state space models.

Values of a variable in timeseries data is known to be correlated, and specialized models

are developed to deal with such explicit correlation. The explicit autocorrelation (corre-

lation between values of the same variable) is usually uninteresting, since it is known and

expected. For example, the data can be known to have a trend such as a chronic increase in

the volume velocity. Also, a cyclic increase and decrease in the volume velocity according

to the time of day can be expected – this is called the seasonal effect in timeseries analysis.

State space methods provide an explicit structural framework for the decomposition of

timeseries [22]. Unlike the more popular Box-Jenkins ARIMA models, trend and seasonal

effects are not treated as nuisance parameters, and it is not necessary to remove the trend

and seasonal effects from the series before the analysis can begin. Instead, a state space

model has an equation to capture each type of effect that is suspected to contribute to

the values of the observed variable. Different models can be used to describe the same

observed variable, and the best model is selected using the Akaike information criterion

which penalizes extra parameters.

After experimentation with different models, we found that the model that best de-

scribes the volume velocity of Twitter is the following:

1. A deterministic seasonal cycle that is 1 day long, which captures the effect of the

hour of day on the number of posts.

2. A stochastic level component, which represents the volume velocity specific to each

hour. The stochasticity is represented as a variance attached to the level component.
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There was no need to add a trend component, maybe because the sampling used by the

Twitter API public stream endpoint emits a stable volume of Tweets, and maybe because

there was actually no significant growth in the use of Twitter during the months of data

collection. In our model we use the timestamps of tweet creation, and we did not keep the

timestamps of when the API returned each tweet as part of the sample.

Figures 3.1 and 3.2 show different components of the model when it is fitted to the

hourly number of tweets in the month of October 2012. Figure 3.1 shows the daily cycle

component (green) and the noise component (black). The noise component must be present

in all state space models, to capture small variabilities in the observed value so that the

model does not over-fit the data. The cycle is perfectly aligned with the days in the Hawaii

Standard Time (HST) time zone, and thus we always use this timezone (GMT-10) to get

the date from a timestamp. Figure 3.2 shows the level component (red) along with a scatter

plot of the hourly volume velocity. The blue continuous line is the simple moving average

and its confidence bands are the blue dashed lines. The simple moving average is clearly

not a a good estimate of the hourly volume velocity. A better estimate of the number of

tweets in an upcoming hour can be predicted from the model using a Kalman filter [80].

The peaks in the level component coincide with real world events. The peaks on the

3rd, 16th and 22nd coincide with the presidential debates3, and the peak on the 28th coincide

with the emergency declaration for the northeastern states of the USA in anticipation of

Hurricane Sandy4. The use of such a model to indicate the presence of interesting informa-

tion can be investigated further, however it will probably require modelling the number of

occurrences of many keywords. This is not scalable because handling correlation between

different random variables increases the number of parameters of the model quadratically

in the number of variables. The correlation between random variables is captured by a

variance-covariance matrix, and if two variables are not known to be independent a pa-

rameter must be added in the cell of the intersection of their row and column. We will not

use timeseries models any further than this exposition.

3http://www.uspresidentialelectionnews.com/2012-debate-schedule/
4http://www.fema.gov/hurricane-sandy-timeline#oct28
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Figure 3.1: Seasonal and noise components of the volume velocity
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Figure 3.2: Stochastic level of the volume velocity
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3.2.3 Dynamic Support Threshold

It is necessary to adapt the support threshold to the dynamicity of the volume velocity

at different times of the day. If a ratio support threshold is used then this would not be

needed, however determining a support ratio is difficult and it is more desirable to be able

to specify the threshold as an absolute number. We therefore define the minimum support

threshold as the threshold at the hour of the least volume velocity during the day. The

minimum support threshold is supplied as an absolute number and then converted to a

ratio, α, by dividing it by the average of the number of tweets in the hour of minimum

volume velocity in different days. The actual support threshold used for mining any given

epoch, E, is thus α multiplied by the number of tweets in the epoch:

dynamic support threshold = α× |E| where α : support ratio (3.2)

=
minimum support threshold

avg(minday (volume velocity))
× |E| (3.3)

Calculating the support threshold dynamically as such makes it intuitive to select a

minimum support threshold, but it would lead to a high support threshold in epochs

including a burst of tweets. The high support might lead to mining only itemsets about

the topic that is causing the burst. Mining a sliding window can alleviate this problem.

3.2.4 Sliding Window Model

One of the prominent stream processing models is the sliding window model, where a

window of data slides forwards through the stream. The window keeps a fixed amount of

history data (fixed in terms of age not size); data with a timestamp older that a certain time

is removed from the window as new data is added. The data in the window is processed

every time the window slides. Thus, the sliding window model sets a cut-off age after which

a datapoint has no effect at all on the results of the stream processing algorithm. This is

the simplest way to overcome the problem that an anomaly in the date, such as a burst of

tweets about a certain topic, could affect the mining results more than recent data. More

elaborate methods include dynamically changing the sliding window size [11], smoothing

the data [28], and weighting data according to its age [27].
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We apply our algorithms to epochs of data, similar to the block evolution stream mining

approach [25, 98]. However, our algorithms are not strictly stream processing algorithms.

Stream processing algorithms are supposed to process transactions one at a time as they

arrive, looking at each transaction only once – in other words, they should make one pass

on the data then discard it. This complicates the model of computation and there is no

justification to process social media data as a stream. The stream processing model of

computation is justified when the data is not supposed to be stored (such as data from

sensor networks), or when the processing time has to be as short as possible such that

looking at historic data is an overhead (such as in the case of processing stock ticker data,

where making a decision a few milliseconds before/after competitors can translate into

profits/losses). In the case of social media text, the data has to be stored anyway and the

perception of the human users makes processing times in the order of seconds acceptable

for a real time system.

In essence, processing epochs of data is similar to mining a sliding window that is

moved forward by time steps of short span. The time step must be longer than the time

needed to mine an epoch of data, and the performance of our algorithms makes it possible

to use a time step as short as a few seconds for epochs up to a day long. The window

must be moved such that the combinations of transactions not processed together in a

batch is minimal. This is achieved by using a time step as short as possible, within the

limits of available resources (such as storage space for mining results, if they are retained).

Moreover, the time step must be less than the epoch length to avoid missing mining results

from a spike happening at the boundary between two epochs.

Figure 3.3 shows the runtime of LCM on epochs of increasing length, and we will show

in section 5.1 that our extensions do not degrade its performance. The times reported in

figure 3.3 are averages across all epochs of the specified length in the last 3 months of 2012,

using a time step that is half the epoch length. The variance is very low and the confidence

bands are not shown because they appear as dots. The minimum support threshold used

throughout this thesis is 10 occurrences in the hour of day in which the volume velocity is

the minimum. Figure 3.4 shows the averages of the actual support threshold to which this

minimum support threshold translates at different epoch spans.
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Figure 3.3: Mean runtime of LCM at different epoch spans

Figure 3.4: Mean support corresponding to minimum support 10, at different epoch spans
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In the rest of this paper we mine epochs of 1 hour span. The reason behind this choice

is an observation that the number of closed itemsets mined from epochs of span 1 hour

or more, at the same minimum support threshold, remains the same. This indicates that

itemsets mined from shorter epochs are not included in the results of mining longer epochs.

Therefore, the epoch span should be minimized. However, when the epoch span is shorter

than an hour the frequency required to surpass the support threshold becomes very low,

and the number of mined itemsets increases, with many noise itemsets appearing in the

results. For example, the number of itemsets mined from a 15 minutes epoch is double

that mined from an hour long epoch.

Regardless of the length of the epoch, many mined itemsets are combinations of function

words. In the next section, we outline how we reduce the number of itemsets and eliminate

the effect of function words by N-gram filtering.

3.3 Filtering Language Constructs

A large number of itemsets are language constructs that bear no information, such as “such

as”. By treating sequential language constructs, and any other multiword expression, as

one item we eliminate a large number of such itemsets. We can also eliminate itemsets that

are made up of all the different fragments of the language construct along with other items;

for example, the itemset {we, did, it, #teamobama} can produce 10 other combinations

of length 2 or more. There are many measures of association that can be used to detect

multiword expressions, but each measure is good only under certain conditions [71]. After

preliminary experiments with various measures, we determined that the best performance

could be obtained by tokenizing the documents into term N-grams of varying length.

We use term N-gram tokens such that N-grams of high probability are replaced by

(N+1)-grams, resulting in a distribution with no high peaks. An N-gram is considered to

have a high probability if its maximum likelihood estimate, from a background model, is

higher than a threshold ηN . A background language model built from a long epoch of data

from the same stream is used for probability estimation. The language model is simply a

hash map of the counts of N-grams that appeared within the last month, for N up to 7.
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The tokenization of a tweet starts by tokenizing it into unigrams, as described in ap-

pendinx A. Then, each unigram of high probability is replaced by two term bigrams, by

attaching to it the unigrams before and after it. We keep replacing N-grams of high prob-

ability by two (N+1)-grams until there are no more such N-grams.

The threshold of high probability is different for each value of N. The threshold for

unigrams is determined as follows: We pick a topical term that is known to steadily

appear with a rather high frequency, and is talked about in all languages; for example,

‘obama’. The maximum likelihood estimate of the probability of the term ‘obama’ within

the whole collection of tweets is 0.0001. We use η1 = P (“obama”) = 0.0001. At each N,

the probability threshold is adjusted to account for the increase in the number of tokens

and the overall increase in the grand sum of counts (caused by overlap). The adjusted ηN

is:

ηN = η1 ×
∑
{w:w∈W andw.length≤N} freq(w)∑
{v: v ∈W and v.length=1} freq(v)

(3.4)

The effect of increasing the maximum length of N-grams is shown in figures 3.5 and 3.6.

Figure 3.5 shows the flattening of the distribution by plotting the average decile values at

three different times of day. N-grams appearing less than 10 times in an hour (the minimum

support threshold we use) are excluded, because they do not contribute to the distribution

of items that the algorithm has to mine. The peakedness of the head of the Zipfean

distribution is reflected in the peakedness of the 100th percentile. Increasing the maximum

N-gram length reduces the peakedness as well as the variance in the peakedness between

different hours of day. Figure 3.6 shows how the maximum N-gram length affects the mining

algorithm; it shows the number of tokens in the input, the number of closed itemsets, and

the runtime of mining one hour of data. The values shown are averages across all one-hour

epochs in the month of November 2012. The value of η1 used is 0.0001. Figure 3.6(a) shows

that the number of distinct items increases substantially as the maximum N-gram length

increases from 1 to 2, then continues increasing slightly until it starts decreasing at N ≤ 5.

The decrease happens because all 4-grams with probability above the threshold are parts

of tweets from services that use the same text and append a URL, such as tweets reporting

scores from Game Insight5. Such tweets are tokenized into more 4-grams than 5-grams,

5http://www.game-insight.com/

38

http://www.game-insight.com/


and the 4-grams appearing in them do not appear elsewhere. Thus, some adjacent 4-grams

are replaced by fewer 5-grams. Figure 3.6(b) shows that the number of itemsets continues

to decrease as expected, with the biggest reduction when the maximum N-gram length

increases from 1 to 2. Figure 3.6(c) shows that runtime also decreases as the maximum

N-gram length increases from 1 to 5, since LCM’s runtime is proportional to the number

of closed itemsets, and it can take advantage of the sparsity of data. The runtimes in this

figure are slightly less than those in figure 3.3 because they do not include the time taken

for writing the posting list of each itemset.

The numbers of itemsets reported in the plots are counts of distinct unigram sets. After

mining itemsets of term N-grams we flatten the itemsets to sets of unigrams again. This is

necessary since an itemset will have different N-gram set representations, and its postings

list is the union of those of the different representations. This also removes overlap between

N-grams of the same itemset, making it easier to reason about how itemsets relate to each

other. We will use the relation between an itemset and its subsets to select interesting

itemsets in the next chapter.

The condition for selecting itemsets that we propose in the next chapter cannot select

itemsets of length 1 (frequent unigrams). Thus, to assess its filtering characteristics we

have to compare the number of itemsets it selects to the number of itemsets of length 2

or more before its application. At N ≤ 5, the number of closed itemsets of length 2 or

more that are mined from an hour long epoch averages at 2,439.17. We also note that the

number of maximal itemsets of length 2 or more averages at 1,831.92. This high number

of maximal itemsets show that they cannot substitute the strongly closed itemsets, which

we propose in the next chapter.
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(a) Hour of Day: 00-01 HST (5-6 AM EST)

(b) Hour of Day: 08-09 HST (1-2 PM EST)

(c) Hour of Day: 16-17 HST (9-10 PM EST)

Figure 3.5: Average of token frequency percentiles at different times of day and maximum

N-gram length 40



(a) Mean number of distinct items at different values of maximum N

(b) Mean number of itemsets at different values of maximum N

(c) Mean runtime in milliseconds at different values of maximum N

Figure 3.6: Effect of changing the maximum N-gram length on mining hour long epoches
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Chapter 4

Selecting and Ranking Itemsets

In section 3.3, we discussed our handling of function words, using a technique that exploits

LCM’s tolerance to sparsity. After applying this technique, the average number of closed

itemsets mined from an hour of Twitter data drops from 61,505 to 6,146. In this chapter

we propose two methods for reducing the number of itemsets even further. The first

is a condition for selecting itemsets, and the second is a clustering scheme that merges

together similar itemsets to reduce redundancy. We also propose a ranking function that

scores itemsets according to their temporal novelty. The two methods and the ranking

function all exploit the dynamics of social media, therefore we start by discussing it.

4.1 Social Media Dynamics

As discussed earlier, one use case of social media is to share content that a user finds

important with her network. The user may share an original status message about the

topic of interest, or re-share content posted by other users. In twitter, re-sharing is done

by retweeting, which can be done in several ways. One way is by using the “retweet”

feature of the Twitter client, which simply forwards the tweet to the user’s network. The

“retweet” feature keeps a reference to the original tweet in the forwarded tweet, but it does

not allow editing it – it automatically prepends “RT: @orignal poster username”. Since
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Figure 4.1: Venn diagram of transactions containing items from highly retweeted tweets

editing is not supported by the “retweet” feature, many users chose to retweet manually

to be able to add their own thoughts. Recently this can be done using the “reply” feature,

which allows a user to write a tweet that references the original tweet thus maintaining

the hierarchy of the conversation. However, manually retweeting is still a prevalent way to

re-share a tweet along with the user’s comment.

There are several conventions for manual retweeting [15]. All the conventions basically

quote the original tweet along with its poster’s username and a retweet indicator, with

the retweeter’s comment prepended. Due to the 140 characters limit set on the length

of tweets the quotation is usually edited to be as short as possible by selecting only the

most discriminative words. This selection is an act of collaborative filtering, but it results

in many trivially different subsets from the original tweet, and all subsets with enough

support will be mined as itemsets. The additions of retweeters also form many different

supersets of the of the original tweet, and some additions may represent opinions that are

supported enough to be mined as itemsets.

Figure 4.1 illustrates closed itemsets related to two of Donald Trump’s famous tweets in

reaction to Obama’s victory in the 2012 US elections1. Each area in the figure represents the

transactions containing the itemset formed by concatenating the items in all intersecting

ellipses. The figure shows that one of the tweets was most distinguishable by the words

1http://www.huffingtonpost.com/2012/11/07/donald-trump-election-revolution_n_2085864.

html

43

http://www.huffingtonpost.com/2012/11/07/donald-trump-election-revolution_n_2085864.html
http://www.huffingtonpost.com/2012/11/07/donald-trump-election-revolution_n_2085864.html


“sham, and, travesty”, which are quoted along with Donald Trump’s user name in most of

the retweets. Other people also chose to include “not, democracy” and/or “elections” in

their retweets, and in most of the cases the retweet indicator “rt” was added to the retweet.

A few people also added something about Donald Trump’s “hair” while retweeting. The

second tweet’s most discriminative words are “the, world, is, laughing, at”. Some people

completed this by the original tweet’s “us”, and others replaced it by “you”. At the same

time interval, some people tweeted about “fraud” mentioning Donald Trump in their tweets

but without any quotation from his tweets.

The figure illustrates how the closed property of an itemset is easily satisfied by an

itemset created through the modification of transactions that contain another closed item-

set. For example, if a transaction containing a closed itemset is modified by removing one

of its items, another closed itemset with enough support is immediately formed resulting

in a two closed itemsets instead of one. While an update operation is not supported in

the model of frequent itemset mining, a similar effect happens when people retweet, or

even when they are writing original posts about a certain fine grained topic. In case of

retweeting, people actually start from the original tweet and then remove parts of it to

make space for their content. We can imagine that for each fine grained topic there is

also a base post that represent the information or ideas within the topic. People make

posts about the fine grained topic by selecting parts of the base post and adding their own

thoughts. This results in many closed itemsets about the topic that are trivially different

from each other.

The fact that any maximal itemset is a closed itemset is another weakness of the closed

condition when used for mining social media text. If a closed itemset is expanded by a

certain item a number of times over the support threshold, this results in a maximal itemset

which is closed by definition. Now consider that a tweet is retweeted hundreds of times

and different groups of people append the same words to it, but no group is considerably

large relative to the number of retweets. Since a low support threshold has to be used

when mining text, this will result in many maximal itemsets that might not be adding any

information to the closed itemset.
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4.2 Distinct Itemsets

We have seen that the dynamics of posting on social media result in redundant closed

itemsets. To reduce redundancy, we propose the distinct condition, which is not as easily

satisified as the closed condition, and use it for selecting itemsets. The distinct condition

builds on the concept of association rule confidence. Confidence is the basic property

used for association rules mining, and it is used in the definition of δ-free sets [13]. Mining

itemsets based on the confidence of rules they induce has long been recognized as a method

for finding “interesting patterns” [21], but since this property is not anti-monotone it

cannot be directly used to mine itemsets. It has to be used in a post-processing phase.

The confidence of an assocation rule that the presence of an itemset, santecedent, implies the

presence of another itemset, sconsequent, is defined as:

conf(santecedent → sconsequent) =
|Tsantecedent

∩ Tsconsequent|
|Tsantecedent

|
(4.1)

The distinct condition is a novel strengthening of the closed condition so that it is

not easily satisfied by any modification of a closed itemset. Consider a closed itemset

santecedent that has a particularly high support, as is the case for itemsets made up of the

most discriminative words of a certain topic, or a language construct used in different

topics. In this case, we can filter out closed supersets of santecedent that have support high

enough to satisfy the support threshold but much lower than santecedent’s support. These

itemsets have enough support to be mined as frequent itemsets, but they do not represent

a distinctive piece of information or opinion within the topic that santecedent represents.

The distinct condition is similar in essence to mining itemsets at multiple minimum

supports [54, 74, 84, 91], where a different support threshold is used for each itemset

according to the frequency of its components, or its length, or some other function that

calculates the suitable support threshold. However, distinct itemsets are based on a very

simple condition that is easy to implement efficiently and intuitive to reason about.

We define a distinct itemset as a closed itemset whose frequency comprises more than

a certain proportion of the frequency of its least frequent subset – we call this its parent

itemset. The proportion is a parameter, κ, that controls the selectivity of the condition,
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or the distinctiveness of itemsets selected by the condition. This can be interpreted as

selecting itemsets which are implied by a subset with confidence greater than κ. Formally,

the set of distinct itemsets, D, is defined as follows:

D = {s : s ∈ C and∃ sparent ⊂ s where
|Ts|
|Tsparent |

≥ κ} (4.2)

In the mining results of hour long epochs from the Twitter data, the number of distinct

itemsets, at κ = 0.25, averages at 347.01 itemsets as compared to 2,439.17 closed itemsets

of length 2 or more. To make sure that no important information is filtered out we look at

itemsets that are filtered out, and to facilitate the investigation we restrict it to itemsets

containing one of the topical terms ‘obama’ or ‘romney’ in the first two weeks of November

2012. Excluding epochs in which the terms do not occur at all, the average number of

filtered out itemsets that contain a topical term is 7.2 itemsets per epoch. The hour

when the US presidential elections result became clear (10 PM EST on 6 November, 2012)

happens to be the hour with the most number of such itemsets, because of the large

number of posts about ‘obama’ and ‘romney’. Figure 4.2 shows the filtered itemsets from

this hour. Most of the itemsets in the figure are not interesting. Furthermore, interesting

ones have surrogates in the set of distinct itemsets: a subset or a superset or an alternative

with similar (sometimes more accurate) information. In the figure, we include below each

filtered itemset that we find interesting the distinct itemset that we consider its surrogate.

In figure 4.1, distinct itemsets are illustrated in solid lines, and closed itemsets that

do not satisfy the distinctiveness condition are illustrated in dashed lines. This is not an

accurate illustration and it is only meant to give an intuition of how distinct itemset are

different from closed itemsets which are not distinct. We have seen in figure 4.2 some

realistic examples of itemsets that are rejected by the distinct condition. Figure 4.3 shows

the distinct itemsets from the same hour at the same κ. Itemsets pertaining to Donald

Trump’s “sham and travesty” tweet appear on the right side of the figure. Close to the

bottom left of the figure there are itemsets showing the number of electoral votes each

candidate got at different points of time ({191, 238} and {191, 249}). It is clear from the

figure that considerable redundancy remains in distinct itemsets. In the next section we

propose overcoming this redundancy by clustering similar itemsets together.
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1 [romney, that]

2 [still, obama, is]

↪→ [still, obama]

3 [romney, what]

4 [romney, with]

5 [will, romney]

6 [romney, if, wins]

7 [romney, for, mitt]

8 [romney, lost]

9 [romney, like]

10 [romney, campaign]

11 [romney, is, mitt]

12 [romney, still]

13 [romney, supporters]

14 [romney, a]

15 [romney, i]

16 [s, romney]

17 [romney, of]

18 [romney, on]

19 [romney, or]

20 [romney, in]

21 [romney, is]

22 [romney, had]

23 [romney, at]

24 [romney, 244]

↪→ [obama, 244]

25 [romney, has]

26 [romney, got]

27 [romney, can]

28 [romney, but]

29 [romney, was]

30 [romney, the]

31 [voted, for, obama, who]

32 [2012, obama]

33 [romney, aint]

34 [obama, is, barack]

35 [gana, obama]

36 [obama, gano]

37 [michelle, obama]

39 [years, more, obama, 4]

↪→ [#4moreyears, obama]

40 [romney, for, vote]

41 [de, obama]

42 [obama, an]

43 [on, obama]

44 [obama, it]

45 [so, obama]

46 [obama, d]

47 [did, obama, it]

48 [for, obama, it]

49 [que, obama]

50 [URL, obama]

51 [can, obama]

52 [obama, all]

53 [so, obama, won]

↪→ [wonnn, obama]

54 [yes, obama]

55 [obama, is, the]

56 [supporters, obama]

57 [obama, when]

58 [with, obama]

59 [obama, team]

60 [obama, has, won]

↪→ [obama, we, won]

61 [this, got, obama]

62 [yeah, obama]

63 [romney, about]

64 [obama, happy, won]

↪→ [glad, obama, won]

65 [yesss, obama]

66 [president, obama, barack]

Figure 4.2: Itemsets from the hour starting at 10 PM EST on 6 Nov. 2012, which contain

‘barack’ or ‘romeny’ and are closed but not distinct
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Figure 4.3: Scatter plot of distinct itemsets from the hour starting at 10 PM EST on 6 Nov. 2012
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4.3 Strongly Closed Itemsets

To overcome the redundancy in distinct itemsets we merge similar ones into strongly closed

itemset clusters. This will also filter out any itemset that does not belong to a particular

topic since it will not be part of a cluster. The similarity of a distinct itemset, santecedent,

and another distinct itemset, sconsequent, is measured as the overlap of the transactions con-

taining both of them with the transactions containing santecedent. According to equation 4.1

this is the confidence of the association rule that santecedent → sconsequent. Confidence is not

a symmetric measure, but our proposed clustering makes use of the order in which PPC-

extension generates itemsets (as discussed in section 3.1) to determine which itemset should

be the antecedent and which should be the consequent.

If PPC-extension uses a total ordering of items that is non-increasing in item frequency,

then an itemset generated earlier should be the antecedent, and an itemset generated later

should be the consequent. This builds upon the use of variable length N-grams as items,

as described in section 3.3, so that the most frequent items are not function words. In that

case, following the non-increasing order of item frequency leads to the following:

• Itemsets related to a certain topic are mined close to each other. Notice that PPC-

Extension is equivalent to a depth first traversal of a hypothetical prefix tree of closed

itemsets. That is, closed supersets of each itemset are generated before moving to

an itemset that is not a superset.

• The most discriminative itemset from each topic (according to users’ selection) is

mined before other itemsets from the same topic, because it is composed of items

having the highest support within its topic.

• If an itemset branches out into supersets related to two topics or two opinions within

one topic, this itemset is mined before itemsets from either of the two branches. It

should not be clustered with either of the branches.

• For an itemset to belong to a topic, it must contain a set of topical words. Since we are

processing items in descending order of frequency, then itemsets containing multiple

topical words are generated when mining the supersets of the itemset containing only
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the most frequent of them. Thus, itemsets belonging to a topic will be mined after

the topic’s most discriminative itemset, even if they are not its superset.

According to the observations above, the topical similarity between itemsets can be indi-

cated by the confidence of the association rule that an itemset generated earlier implies an

itemset generated later. Using this similarity measure, we cluster itemsets as follows:

1. Itemsets are processed one by one as they are generated by PPC-extension (using a

total ordering that is non-increasing in frequency).

2. If the itemset is not distinct it is discarded.

3. A distinct itemset, sconsequent, is clustered with a previously generated itemset, santecedent,

if one exists such that the confidence conf(santecedent → sconsequent) exceeds a thresh-

old, which we take to be 1− κ (the indistinctiveness of sconsequent from santecedent).

4. If more than one antecedent itemset result in rules with confidence higher than the

threshold, the consequent itemset is clustered with the one resulting in the rule with

the highest confidence.

5. When an itemset is clustered with another that is already part of a cluster, it is

added to the existing cluster.

Each cluster is aggregated into a strongly closed itemset, which is the union of all cluster

members, and its postings list the union of their postings lists.

This clustering scheme adds an itemset, si, to the cluster containing the itemset, sj,

which maximizes the confidence of the rule conf(sj → si), with a lower bound on the

confidence to maintain distinctiveness. Using D to denote the set of distinct itemsets, we

define the desired clustering and the strongly closed itemset represented by each cluster as
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follows:

R = {r : r =
⋃
i

(si, sj) where si ∈ D and sj ∈ D

and ∀(si,sj) sj = argmaxskconf(sk → si)

and conf(sj → si) ≥ (1− κ)

and (sj = r.centroid or (sj, r.centroid) ∈ r)}

Sl = {w : w ∈
⋃

(si,sj)∈rl

si where rl ∈ R} (4.3)

A different clustering scheme could be used; the goal is to reduce redundancy, and

we devised this scheme because it has several merits that makes it suitable. First, the

similarity is measured in the transaction space, so that itemsets are clustered according

to topical similarity and regardless of the lexical similarity. Jaccard similarity is another

possible similarity measure, but it cannot be interpreted as the strength of an implication.

Also, calculating confidence requires calculating the intersection only, so it is easier to

terminate the calculation early if the confidence would not be more than the required

threshold. Second, this clustering can be implemented efficiently using techniques similar

to the ones proposed by Bayardo et al. [8]. This will be detailed in the next section.

The number of strongly closed itemsets from an hour long epoch averages at 139.1

itemsets. This is less than 0.25% of the average number of closed itemsets returned by

LCM without any of our proposed methods (61,505.16). Strongly closed itemset clusters

can be made up of distinct itemsets or closed itemsets. The result of the clustering remains

the same, but the runtime of the clustering increases by 50% when closed itemsets are used.

Besides, when distinct itemsets are used it is also possible to include the distinct itemsets

that are not part of any cluster in the result. This increases the average number of itemsets

in the synopsis from 139.1 to 224.49, at κ = 0.25. Distinct itemsets that are not part of

any cluster in the Twitter dataset are either language constructs, or named entities that

had just enough support to mine them as an itemset, but did not have support that is

high enough to make them a centroid of a cluster. We do not rule out the possibility of

including them in the synopses, but we chose not to include them in the current work.
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4.4 Algorithm for Selecting and Clustering Itemsets

It is straightforward to implement an efficient algorithm for selecting and clustering item-

sets as described in the last two sections. The main ideas for an efficient implementation

are to limit the comparisons to a few candidates, and to terminate the comparison early if

the similarity threshold will not be met. In our case, the postings lists are longer than the

itemsets. Thus, we calculate the similarity between the postings lists of two itemsets only

if they intersect in one item at least. When calculating the similarity between two postings

lists, we can terminate early if the difference exceeds the maximum difference permissible

to achieve a similarity of 1−κ, which can be derived from equation 4.1. Algorithm 2 shows

a possible implementation.

To illustrate how the algorithm works, in figure 4.4 we show the clustering hierarchy of

itemsets pertaining to the “sham and travesty” tweet. The figure shows a tree structure

of how itemsets were added to the cluster. An itemset’s parent in the tree is the itemset

that resulted in the rule with the maximum confidence, which we call the best clustering

candidate. An itemset is added to a cluster through its best clustering candidate. The best

clustering candidate always has a smaller id, since ids are given sequentially to itemsets and

we cluster each itemset with ones that were generated before it. The support of the best

candidate is not necessarily higher than the support of the itemset being clustered, but all

itemsets within the topic has a support lower than that of the topic’s most discriminative

itemset, n810={sham} in this case. For example, the hierarchy n1018 → n1019 → n1075

has support values 120, 124, 126 respectively, which are all less than 142 (the support of

n810). Finally, we note that this single strongly closed itemset cluster replaces 26 distinct

itemsets. The overall reduction in the number of itemsets will be discussed in section 5.1.

Another example is given in figure 4.5 to illustrate an itemset that branches into dif-

ferent opinions within one topic. These itemsets are mined from tweets of fans voting for

different artists to win the MTV Europe Music Awards (MTVEMA). There are 4 distinct

clusters in the figure; one for each artist, and one for itemsets not mentioning any artist.
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Input: κ: Minimum distinctiveness threshold

Data: C: Closed itemsets produced by LCM, in the order they were generated

Result: R: Strongly closed itemset clusters

1 for i← 2 to |C| do

2 C ← {sc : sc ∈ C and c < i and |sc ∩ si| > 0}; // Candidates for clustering

3 P ← {sp : sp ∈ C and p < i and sp ∩ si = sp}; // si’s subsets (ancestors)

4 sp ← argmaxsp∈P
|Tsi |
|Tsp |

; // Direct parent

5 if sp = null OR
|Tsi |
|Tsp |

< κ then // Not a distinct itemset

6 C ← C \ si ; // Should not be considered in later iterations

7 continue ; // Should not be added to a cluster

8 end

9 sm ← null, maxConf ← 0 ; // Best clustering candidate and its score

10 foreach sc ∈ C do

11 ∆← (1− (1− κ))× |Tsc| ; // Maximum difference for confidence 1-κ

12 δ ← difference(Tsc , Tsc∪si ,∆) ; // Terminates early if δ > ∆

13 if δ ≤ ∆ then // The confidence exceeds the threshold

14 conf ← |Tsc |−δ
|Tsc |

;

15 if conf > maxConf then

16 sm ← sk ; // Best clustering candidate

17 maxConf ← conf ;

18 end

19 end

20 end

21 if sm 6= null then

22 if R[sm] = null then R[sm]← sm; // New cluster with centroid sm

23 R[si]← R[sm] ; // Add si to the cluster containing sm

24 R[sm].itemset← R[sm].itemset ∪ si ∪ sm;

25 R[sm].postingsList← R[sm].postingsList∪si.postingsList∪sm.postingsList;
26 end

27 end

28 return R;
Algorithm 2: Forming strongly closed itemset clusters

53



Id Itemset Support

Figure 4.4: The hierarchy of itemsets in the cluster pertaining to the “sham and travesty” tweet
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Id Itemset Support

Figure 4.5: Several clusters for itemsets pertaining to the MTV Europe Music Awards votes

55



4.4.1 Bounding Space and Time Requirements

Algorithm 2 requires keeping distinct itemsets and their postings lists in memory, so that

the similarity between a closed itemset and all the previously generated distinct ones can be

efficiently calculated. This is an overhead that the original LCM does not incur, but it is not

a large overhead; due to the limited number of closed itemsets, the memory requirements

does not exceed 6 GB for mining hour long epochs using a Java implementation that uses

a lot of objects. However, it is possible to use less memory and also bound the memory

requirement by setting a hard limit on the number of itemsets kept in memory.

The number of positions between an itemset and a clustering candidate is 1973.11 on

average, with a standard deviation of 1443.64. The large standard deviation indicates

that candidates are either found close to the itemset (less than 500 positions behind), or

in a position that is several thousands of itemsets behind. According to our observation

that itemsets from one topic are generated close to each other, when the total ordering

is descending in items frequency, we limit the mining results kept in memory to the last

1000 itemsets and their postings lists. This sets a bound on the memory requirement, as

well as the runtime which is dominated by the similarity calculations. Without limiting

the number of itemsets kept in memory, the runtime for filtering and clustering hour long

epochs at κ = 0.25 is 5.2 seconds on average. This is reduced to less than 1 second if

only the last 1000 results from LCM are kept in memory. More detailed discussion of the

runtime performance of the algorithm is given in section 5.1. The quality of the strongly

closed itemsets produced with that limit in place is investigated in section 5.2.

4.5 Temporal Ranking

We now propose a ranking function that scores itemsets according to their novelty, such

that the ordered list of itemsets can be presented to a user as a summary of what is

happening on Twitter in the mined epoch. The ranks can also be used as weights for

itemsets when used by other system components, such as a search component that uses

itemsets for query expansion.
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We measure temporal novelty compared to a longer period of time leading up to the

mined epoch – a background model. A good indicator of novelty is the pointwise Kullback-

Leibler Divergence (KLD) between an itemset’s probability in the current epoch and in

the background model. The KLD of the probability of an itemset, si, in the background

model, Q, from the current epoch’s model, P , can be considered as the Information Gain,

IG:

IG(P (si), Q(si)) = −(H(P (si))−H(P (si), Q(si)))

=
∑

P (si) logP (si)−
∑

P (si) logQ(si)

= KLD(P (si)||Q(si)) (4.4)

This interprets the KLD of an itemset’s probability as the number of extra bits in the

representation of the itemset used by an encoding based on Q as compared to the number

of bits used by an encoding based on P; hence, the information gain in moving from a prior

distribution to a posterior distribution.

To calculate the collective IG of itemsets in a strongly closed itemset, we have to take

into account that the itemsets of the cluster are not independent. For simplicity we will

consider only the pairwise dependence between every itemset and the smallest common

subset. The joint probability of the smallest common subset, smin, and any itemset in the

cluster, sj, is basically the probability of the itemset sj, since smin ⊂ sj. In other words,

the probability of smin conditioned on any itemset sj in the cluster is 1, and there is no

information in the occurrence of smin given that sj occurred. An alternative interpretation

is that there is a shared component in the IG of all itemsets in the cluster, which is the

IG of smin. Hence, the IG of an itemset cluster, r = {si1 , .., sim}, can be approximated as

the IG of its smallest subset, smin, plus the IG of each itemset in the cluster conditioned

on smin:

IG(P (si1 , ...sim), Q(si1 , ...sim)) = IG(P (smin), Q(smin))

+
∑

j=i1..im

IG(P (sj|smin), Q(sj|smin)) (4.5)

This formula avoids implicitly adding the information gain from smin multiple times to the

total information gain. It can be used for ranking clusters, but it will favour larger clusters.
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We normalize by the size of the cluster, giving our final ranking formula for strongly closed

itemsets:

score(r) = IG(P (smin), Q(smin)) +

∑
j=i1..im

IG(P (sj|smin), Q(sj|smin))

m
(4.6)

In this thesis, the background model we use for each day is the results of mining the 4

weeks before it, using a minimum support value of 1 occurrence. Mining the background

model at such a low support increases the number of produced itemsets, which is desirable

for a background model. All probability estimates are smoothed by add-one smoothing.
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Chapter 5

Evaluation

In this chapter we analyze the performance of the methods proposed by applying them to

the mining results of all one-hour long epochs in the Twitter dataset. We evaluate their

efficiency in reducing the number of mined itemsets in section 5.1, and we assess their

effectiveness for choosing a high quality synopsis in section 5.2. The experiments were

run using a single threaded Java implementation of algorithm 2, running on a 1.4 GHz

processor with 2 MB of cache.

5.1 Efficiency

We evaluate the efficiency of our proposed filtering and clustering methods in terms of the

number of itemsets before and after their application, and the runtime overhead they add

on top of the runtime of the LCM algorithm. Using variable length N-grams as items, the

average number of itemsets mined from an hour-long epoch is 2,439.17 closed itemsets of

length 2 or more after flattening; that is, excluding itemsets that are merely a frequent

unigram. We start by analyzing the reduction in this number at different values of the

distinctiveness threshold, κ.

Figure 5.1 show the effect of varying κ on the mean number of distinct and strongly

closed itemsets. The number of distinct itemsets drops as the distinctiveness threshold
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increases. On the other hand, the number of strongly closed clusters formed increases as

the similarity/indistinctiveness threshold (taken as 1−κ) decreases. The dashed line shows

that the number of unclustered distinct itemsets reaches zero at κ = 0.5, explaining why the

number of clusters changes very slightly after that. We use κ = 0.25 in this thesis, which is

an arbitrary choice based on the definition not the data. The average number of strongly

closed itemsets mined from one-hour epochs at this value of κ is 139.1, which is about

5.7% of the number of closed itemsets of length 2 or more. If we also include unclustered

distinct itemsets in the synopses, their average size increases to 224.49 itemsets per hour

long epoch.

Figure 5.2 shows the total runtime of the LCM algorithm plus filtering based on the

distinct condition and clustering into strong closed itemsets at different epoch spans. The

runtime of LCM alone is also plotted for reference. We also plot the performance of

another frequent itemset mining algorithm, FP-Zhu [29], which was the runner up at FIMI

2004 [41]. We include it to show that our extensions do not degrade the performance of

LCM even in the context of competitions. The y-Axis is in logarithmic scale to keep the

scale of the plot suitable for seeing slight differences. The output of LCM is the input to

the filtering and clustering step, so it is affected by the number of closed itemsets produced.

Recall that the number of itemsets from epochs of span less than an hour is higher than

that from epoch of span one hour or more. This explains why it takes slightly longer time

for clustering results from the 15-minute epoch and then takes a constant time for epochs

of a longer span.

5.2 Effectiveness

We now show examples of the synopses produced by ranking the strongly closed itemsets

as discussed in section 4.5. The examples will serve as our assessment of the quality of the

synopses. We make an effort to choose epochs from time periods when it is known what

people should be talking about. In section 5.2.1, we show how the 2012 US presidential

elections day is summarized by our methods. We also compare our summary to the one

produced by a state of the art algorithm, which generates better quality summaries than
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Figure 5.1: The number of different types of itemsets at different values of κ, the distinc-

tiveness threshold. The value of κ used in this thesis is 0.25, midway between 0 and 0.5

when all distinct itemsets are clustered, but it was determined according to the definition.

Figure 5.2: Runtime, at different epoch spans, of the LCM algorithm with and without the

filtering and clustering extensions as well as of another efficient frequent itemset mining

algorithm. Our extensions do not degrade the efficiency of the LCM algorithm.

61



other summarization algorithms based on itemsets [57]. In section 5.2.2, we investigate the

synopses of hours selected by the aid of Google Trends1, assessing which popular queries

were or were not reflected in our synopses.

5.2.1 U.S. Presidential Elections Day

In this section, we focus on the 2012 US presidential elections day, November 6th. We

compare the quality of the synopsis of the day created by our proposed methods to the

quality of the synopsis created by mining the top itemsets with the MTV algorithm [57]

(according to a maximum entropy model). The synopsis should be suitable for giving a

user an overview of what people were Tweeting about at different times of the day.

Table 5.1 shows the top 3 strongly closed itemsets from one-hour epochs on the elections

day, using a half-hour time step. The itemsets shown are the first appearances of the most

interesting itemsets; that is, an hour is shown only if its top 3 feature novel interesting

itemsets2. The first column is the beginning of the hour, EST time. The second column

is the top itemsets, reordered and punctuated to be meaningful phrases by looking at a

few tweets from the postings list of each itemset. The third column is a commentary to

explain the itemsets, also composed constructed according to tweets in the postings lists.

The fourth column is the rank of an equivalent itemset in the top 30 itemsets mined by

the MTV algorithm, if one exists.

We can see how the events of the US presidential elections unwind from “get out and

vote” to the projections and debates, all the way to the “acceptance speech”. Early in

the day, people were excited and congratulating each other for being on the elections day.

The excitement continues for one more hour, with some people taking it too far by sending

pictures of their ballots. Itemsets about the elections stop occupying the top 3 ranks until

the evening. During the day, the top 3 ranks were occupied by itemsets about UEFA

Champions football matches (with timely updates of their scores), and about TV shows.

1http://www.google.ca/trends
2The top 50 itemsets in the hours from 5 AM on the 6th till almost 9 AM on the 7th are

available for download at http://plg.uwaterloo.ca/~yaboulna/thesis_results/twitter_synopses/

elections-day_nov6-0500_nov7-0850_top50-strongly-closed.txt
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We include the top 3 itemsets of 3 PM as an example. In the evening, the elections heat

up and events about it keep occupying top positions in all epochs. At 10 PM all the top 5

were relevant and very interesting that we decided to include an extra two itemsets in the

example (we do this for MTV as well, in the hour of the acceptance speech). Shortly after

the results of the elections became clear, news that Marijuana and same sex marriage were

legalized in some states occupy the top rank. This exemplifies the power of social media

as a collaborative filter, selecting the news of greatest importance to social media users.

The user centric definition of importance is also evident in the attention given to the “lady

with a flag in her hair” appearing on TV behind Obama during the acceptance speech.

The top 3 itemset mined by the MTV algorithm [57] are usually itemsets from Tweets

sent by services reporting users’ scores in games, or the number of new followers each user

got. However, the top 10 itemsets usually contain interesting itemsets3. Therefore, in

table 5.2 we show itemsets that we find interesting from MTV’s top 10, assuming that the

itemsets from Tweets sent by automatic services can be filtered out by another dedicated

filter. The actual rank in which the itemset appeared is shown in column 3, and the

rank in which it appears among strongly closed itemsets is shown in column 4. We show

only hours in which the top 10 itemsets contain novel interesting itemsets. The itemsets

chosen by MTV tend to be complete Tweets which were retweeted by many users, thus

we omit the explanation column for brevity. The input to the algorithm was transactions

made up of N-grams up to 5 terms long. This helped the algorithm converge faster since

the distribution is flatter. The use of N-grams also overcomes the dominance of language

constructs, which are ranked high in all hours if unigrams are used.

All the topically relevant itemsets chosen by MTV are present in the top 50 strongly

closed itemsets – most of them are in the top 30. We do not know if all the top ranked

strongly closed itemsets would also be picked by MTV if we use it to mine more itemsets.

The space and time requirements of MTV becomes prohibitively large when the number of

itemsets requested is increased, as it takes more than an hour to mine the top 50 itemset

from an hour long epoch. At k > 100 the MTV algorithm fails because of a memory error,

3The top 30 itemsets in the hours from 5 AM on the 6th till 5 AM on the 7th are available for down-

load at http://plg.uwaterloo.ca/~yaboulna/thesis_results/twitter_synopses/elections-day_

nov6-0500_nov7-0500_top30-MTV.txt
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Time Itemset Explanation MTV

08:30

get out and vote Encouraging participation 17

happy elections day Congratulations 27

it’s elections day Excitement -

09:30

if romney wins People reflecting about the different possible results -

of your ballot Telling people to stop sending pictures of ballots -

in line to vote Tweeting while standing in line 28

15:00

Borussia Dortmund Real Madrid 2 Score update of UEFA football match 17

incroyable talent France’s version of the Got Talent TV show -

City Ajax 2 Score of Manchester City vs Ajax -

19:30

Linda McMahon Linda McMahon loses CT senate race -

Florida is so ... tight or close; the number of votes -

Romney is winning Speculations about the results -

20:00

New Hampshire Obama won in NH 9

Obama to win / is winning Two itemsets speculating -

too close to call The results are still not clear 22

21:00

Ohio and Florida Obama won in 2 more states -

Sarah Palin Sarah Palin appears on Fox news -

concession speech Todd Akin’s concession speech -

22:00

The electoral college Republicans complaining about the voting system 9

President of the United States Barack Obama is the 44th president of the USA 8

who voted for People turning against each other -

once you go black you never go [back] A popular culture reference 15

my president is black Americans proud about the equality of opportunities -

22:30

@realdonaldtrump this elections (see ta-

ble 5.2 for the rest of the tweet)

One of Donald Trump’s famous melt down tweets.

This cluster merges 26 distinct itemsets.

1

concede to The losing candidate has to concede -

Obama won. I ... People’s reactions to the results -

23:00

same sex marriage Some states legalized same sex marriage 27

for recreational use Colorado legalized Marijuana for recreational use 21

acceptance speech People anticipating the speech 26

00:30

Delivered, sealed, signed Stevie Wonder’s song used in Obama’s campaigns 10

The best is yet to come Quote from Obama’s acceptance speech 2

with the flag in her [hair] During the speech, attention on social media goes to

a woman appearing behind Obama on TV!

14

01:00

Four more years Barack Obama’s tweet; the most retweeted in 2012 20

@paulmyers47: spots Pyramidal marketing; people retweet to make money 12

President Barack Obama News headlines about the speech uses the formal title -

Table 5.1: Top 3 strongly closed itemsets for hours in US presidential elections day
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Time Itemset Ranks

19:00

A partir de que idade você considera alguém velho? (Portuguese for “From what age

do you consider someone old?”)

1 22

A qué edad consideras que alguien es viejo? (Spanish for the same question above; we

do not know what started this meme)

4 10

We’ll find out if it’s true. America went black, will it go back? 9 24

20:30

Obama rhymes with Ohana. Ohana means family & family means nobody gets left

behind. Mitt rhymes with shit.

3 3

New Hampshire 9 1

#IamSickOf 10 -

21:00

We’re all in this together. That’s how we campaigned, and that’s who we are. Thank

you. -bo

1 22

@barackobama This happened because of you, thank you. 4 20

@barackobama Four more years URL 6 6

22:00

@realDonaldTrump: We can’t let this happen. We should march on Washington and

stop this travesty. Our nation is totally divided!

5 44

President of the United States 8 2

@realDonaldTrump: The electoral college is a disaster for a democracy. 9 1

22:30

@realDonaldTrump: This election is a total sham and a travesty. We are not a

democracy!

1 1

@realDonaldTrump: Our country is now in serious and unprecedented trouble...like

never before.

3 24

@realDonaldTrump: He lost the popular vote by a lot and won the election. We should

have a revolution in this country!

5 31

23:00

@realDonaldTrump: Lets fight like hell and stop this great & disgusting injustice! The

world is laughing at us.

4 48

@realDonaldTrump: House of Representatives shouldn’t give anything to Obama un-

less he terminates Obamacare.

6 15

@adamlevine: That’s what happens when you fu** with Sesame Street 8 18

00:30

The best is yet to come 2 2

Michelle, I have never loved you more 5 12

We are an American Family, and we rise ... 8 20

Delivered, sealed, signed, I’m yours 10 1

Table 5.2: The most interesting itemsets out of the top 10 itemsets picked by the MTV

algorithm for hours in the US presidential elections day. Column 3 is the actual rank given

to each itemset by MTV. Column 4 is the rank of an equivalent strongly closed itemset.
65



Figure 5.3: Runtime of mining an hour long epoch using the MTV algorithm [57] at different

resultset sizes (top k). The runtime increases exponentially with increasing values of k.

even though it was being run on a machine with 256 GB of RAM, with no limit on its

resource consumption. The runtime performance at k ≤ 100 is plotted in figure 5.3. The

small value of k that has to be used makes MTV inadequate for mining social media, where

the high volume of posts and the variety of topics users talk about is likely to result in

more itemsets than what MTV would pick as the top k. On the other hand, strongly closed

itemsets are efficiently mined and are not restricted to a predefined number.

5.2.2 Google Trends

Google Trends is a freely available service provided by Google. It analyzes queries sub-

mitted to the Google search engine by millions of users worldwide, and it can be used to

know the most popular queries for different geographies4. It can also be used to compute

trends of user specified queries over time5. Queries that are named entities according to

4http://www.google.ca/trends/
5https://support.google.com/trends/answer/87276?hl=en
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Google’s Knowledge Graph6 are automatically tracked and aggregated by category into

Top Charts7 – lists of real-world people, places and things ranked in order of search vol-

ume during user specified intervals of time8. We use the Top Charts of November 2012 for

the people category9 (only available for queries made from the USA) as an aid for finding

out what social media users are expected to be talking about. We observed that named

entities that make it to the top 10 chart in the people category are divided into finer groups.

The queries about people in each group have similar volumes over time, with peaks at the

times of real world events in which those people in the group took part. For example,

the top two most searched for people are Barack Obama and Mitt Romney. Figure 5.2.2

is the plot showing the volume of queries about either of them, as displayed by Google

trends10. The two curves in the plot are similar; both have peaks at the elections day and

are otherwise flat. Note that the y-Axis in the figure is scaled11 so that the maximum

volume per day for either of the queries becomes 100 (to our surprise the curve for “Barack

Obama” is much lower that that of “Mitt Romney”, even though they occupy positions 1

and 2 respectively in the Top Chart). Since entities can be grouped together according to

the events which made users search for them, we use the Top Charts to know about real

world events which were of interest to internet users. We evaluate the use of strongly closed

itemsets as temporal synopses by investigating the mining results from the time periods

when these events were happening. We look for itemsets about those entities and events

in the top 30 strongly closed itemset, and assess which of them were or were not reflected

in our synopses. The number of itemsets from each hour is limited to 30 because this is a

number that can be conveniently displayed as a summary for a human user.

6http://www.google.com/insidesearch/features/search/knowledge.html
7http://www.google.ca/trends/topcharts
8https://support.google.com/trends/answer/3076011?hl=en
9http://www.google.ca/trends/topcharts#vm=chart&cid=people&geo=US&date=201211

10http://www.google.ca/trends/explore#q=Barack%20Obama%2C%20Mitt%20Romney&geo=US&date=

11%2F2012%201m&cmpt=q
11https://support.google.com/trends/answer/87282?hl=en&ref_topic=13975
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Figure 5.4: Google Trends’ volume with time plot for the queries “Barack Obama” and

“Mitt Romney”, the top 2 in the Top Chart for the people category in November 2012.

Both curves show a peak of interest at the day of the U.S. presidential elections.

Pop artists and music awards events

Pop artists occupy most of the top 10 chart for the people category. Five out of the top 10

are pop artists, and they occupy ranks as high as 3 (Justin Bieber) and 4 (Taylor Swift).

This is due to music awards events, specially the MTV Europe Music Awards on November

11th12 and the American Music Awards on November 18th13. Figure 5.2.2 shows the query

volumes for the artists in the top 10 chart. The curves for all of the artists show relatively

high volume when those events were happening.

The top 30 strongly closed itemsets mined from hours leading to the MTV Europe

Music Awards contain many itemsets about the events and the artists, especially that

this event used social media to collect audience votes. Voting for the award winner is a

good example of a topic where people have strongly different opinions. We have shown

earlier, in figure 4.5, that such different opinions are all reported as separate strongly closed

itemsets, because clustering in the transaction space avoids forming incohesive clusters. We

also note that different strongly closed itemsets from one such topic can all occupy high

ranks. For example, the top 10 itemsets for the hour starting 9:30 EST on November 11th

12http://en.wikipedia.org/wiki/2012_MTV_Europe_Music_Awards
13http://en.wikipedia.org/wiki/American_Music_Awards_of_2012
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Figure 5.5: Google Trends’ volume with time plot for the queries about pop artists in the

Top Chart for the people category in November 2012. The curves for different artists show

similar trends with high search frequency at the times of music awards events.

are shown in table 5.2.2. The number in parenthesis next to each item is the number of

itemsets in the cluster which contain this item. Items in the itemset are sorted by their

frequency in this hour, in descending order. The first itemset in the top 10 reflect the

winner, Justin Bieber. Itemsets about other topics also appear in the top 10; there was a

football game between Chelsea and Liverpool, and November 11th is the day World War

I ended (observed as Remembrance day in the United Kingdom and the Commonwealth

of Nations, and Veteran’s day in the USA). Several other hours have itemsets supporting

different artists in the top 30, which are all variations of the itemset: {i, think, ARTIST,

NAME, will, be, the, big, winner, tweet, your, pick, at, URL14, #mtvema}.

The American Music Awards (AMAs) did not use social media to collect votes, so there

was not as much posts about it as MTVEMA. However, itemsets about it still occupied top

positions. There are several hours where the itemset {american, music, awards} occupied

the top rank, but the hour we choose to show as an example does not. We chose this

hour because it contains an itemset that offers more information than what is contained in

other itemsets from other hours; itemsets during this event were mainly names of artists,

or the name of the event. The itemsets from this hour, shown in table 5.2.2, contains

an itemset (at position 26) about how Justin Bieber appeared with his mother Pattie

14http://ema-twittertracker.mtv.com/live/predict.html
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1 #emawinbieber(43), #mtvema(92), URL(31), at(47), be(77), bieber(62), big(81), i(24), justin(62),

pick(50), the(62), think(48), tweet(74), will(77), winner(67), your(65)

2 #jonasbrothers(3), #emawinjoej(4), #joejonas(3)

3 #emawinbieber(1), #justinbieber(2)

4 #emawinbieber(2), #justinbieber(2), #emavotebieber(4)

5 chelsea(2), liverpool(2), vs(3)

6 #staycurrent(3), you(1), @buysocialclout(2), can(1), follow(1), today(1)

7 #emavoteonedirection(1), URL(2), emavoteonedirection(1)

8 #emawinbieber(1), #justinbieber(2), @justinbieber(2)

9 remembrance(2), day(1)

10 veteran(2), day(1), s(2)

Table 5.3: Top 10 itemsets in an hour in the morning of the day of MTV Europe Music

Awards, showing different Strongly Closed itemset clusters voting for different artists

Mallette15 instead of his usual escort Selena Gomez, his ex-girlfriend. This is interesting

news, specially following Justin and Selena’s break up that warranted both of their names

a surge in their popularity as search queries on November 9th and 10th. The news of the

break up appeared in the top 30 itemsets of different hours on those days. We include

some example tweets randomly selected from the tweets in the postings lists of the strongly

closed itemset {justin, bieber, and, selena, gomez}. This shows how including the postings

lists in the mining results makes the synopses particularly rich, because the actual posts

from which they were mined can be easily retrieved:

• “Justin Bieber and Selena Gomez Break Up http://eonli.ne/SByVNK” WHAT?!?!?!

Is this truee? @justinbieber @selenagomez”

• “Justin and Selena broke up? O o the awkward moment when he wrote a song about

her and another with her name in it...”

• “apparently there is a rumor that justin bieber and selena gomez broke up? GO

@jessleigh1122 GO!!!!!”.

15http://hollywoodlife.com/2012/11/18/justin-bieber-brings-mom-to-amas-without-selena-gomez/

#!1/nokia-jenny-mccarthy/
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The itemsets in table 5.2.2 also include the names of other artists that are not in the Top

Chart. Liam Payne (rank number 5) is a member of the band One Direction, which won

several awards that night. Carly Rae Jepsen (rank number 9) also performed and won an

award at the American Music Awards16.

People appearing in the Top Charts but not in the synopses

Out of the five pop artists appearing in the Top Chart, as shown in figure 5.2.2, the

names of only four appeared repeatedly in the top 30 itemsets of hours in the days of their

respective higher search volume. The name of Rihanna never appeared in any strongly

closed itemset. Actually it rarely appeared in any itemset of length 2 or more. It is not

unusual for an itemset about an artist to be merely his or her name, and several artists,

like Rihanna, are known by their first name only. It is impossible for an itemset of length

1 to be distinct, since this condition requires that the itemsets be implied by one of its

subsets with high confidence. Therefore distinct and strongly closed itemsets would never

capture information in an itemset of length 1. The same happens with one more of the

names in the Top Chart, Abraham Lincoln. During the month of November people were

talking on Twitter about Lincoln the movie and this was reflected in mining the term as a

closed 1-itemset from several hours throughout the month. However, there were not any

closed itemsets longer than 1 item, and thus there was no mention of Lincoln the movie in

the synopses. This shortcoming can be overcome by settitng a lower support threshold so

that longer itemsets are mined.

Another two celebrities who appear in the top 10 chart but not the synopses are Kim

Kardashian and Michael Jordan. The volume of queries about Kim Kardashian is different

from other artists, since she is not a pop music artist and does not participate in music

awards events. For these two celebrities, the volume of queries does not have high peaks,

and the curve is relatively flat. Itemsets mined from Twitter rarely mention either of

them. Of all itemsets mined from hour long epochs throughout the month of November,

only 37 closed itemsets contain “Kim Kardashian” or “@kimkardashian”, and none contain

16http://blog.muchmusic.com/carly-rae-jepsen-wins-at-the-american-music-awards-puts-on-fun-and-

flirty-performance/
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1 @vinoalan(1), #vinofollowspree(2)

2 vote(2), #peopleschoice(2), voted(1), retweet(2), @peopleschoice(4), URL(3), for(1), i(1), just(1),

to(2), via(3)

3 @simoncowell(2), follow(2), me(2), please(2), to(1)

4 grinch(2), stole(2), all(3), christmas(2), for(2), haters(3), how(1), is(1), the(5), this(1)

5 you(1), @real liam payne(2), thank(2)

6 grinch(3), stole(2), how(1), the(3)

7 all(3), amas(1), for(3), is(2), the(4), this(2), watching(2)

8 grinch(1), stole(2), christmas(2)

9 jepsen(3), carly(1), rae(2)

10 dumb(1), dumber(2)

11 3(2), @real liam payne(2), URL(1), live(1), on(1)

12 hi(2), say(1), to(2)

13 oz(1), wizard(2), of(2), the(2)

14 liam(1), @real liam payne(1), URL(1), ama(1), live(1), on(2), the(1)

15 american(2), awards(2), music(3)

16 ama(3), award(3), first(1), night(1), of(3), s(2), the(6), watching(1)

17 @simoncowell(1), @real liam payne(1), call(2), follow(2), me(3), so(2)

18 pone(3), triste(2), qu(1), te(3)

19 is(1), on(1), red(1), the(2), wanted(1)

20 @simoncowell(1), simon(3), call(1), follow(3), me(2), please(3)

21 american(2), awards(1), music(2), the(2)

22 carpet(2), red(1)

23 oz(1), wizard(3), of(2)

24 imessage(2), is(1)

25 series(1), survivor(2)

26 and(3), justin(2), pattie(2)

27 you(4), @real liam payne(3), URL(1), found(2), i(2), live(1), love(1), on(1)

28 #getglue(2), URL(1)

29 #gameinsight(1), #android(2), #androidgames(1), URL(3), android(1)

30 #gameinsight(1), #android(2), #androidgames(3)

Table 5.4: Top 30 itemsets from 18:30 EST on the day of American Music Awards (AMAs)

showing several mentions of the event, as well as news about Justin Bieber in rank 26.
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“Michael Jordan” or “@jumpman23” (his verified username). This means that the number

of occurrences of their names is lower than the support threshold in the all or almost all of

the 1,440 overlapping hour epochs in the month. We do not know why is it the case that

the interest shown by Google search users was not reflected by Twitter users, or maybe

this is an artifact of the algorithms used to enumerate the Top Charts.
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Chapter 6

Conclusion and Future Work

In this thesis we have proposed a method for efficiently creating temporal synposes of

social media streams, based on a frequent itemset mining algorithm that is suitable for

sparse data, LCM. The synposes can be used to explore social media, and they can also

reflect what is going on in the real world. Several studies have shown that social media

is a good source of information about real world events, offering timely information from

a variety of sources. Actually some of the information on social media is not available in

traditional news media, or might be available on social media first then get picked up by

news media. Social media allows citizen journalists and ordinary people to make posts that

can get disseminated widely based on the quality of the post, and regardless of the fame of

the poster. Our methods focus of the content of posts, without explicitly giving different

weights to posts made by different types of account owners. Thus, the synopses reflect the

interests of social media users at different points of time, giving voice to ordinary people

and allowing the dynamics of social media to surface content which users find intriguing.

6.1 Contributions

Our method summarizes an hour of Twitter data (119,035.49 tweets on average) into 139.1

itemsets in 1,945.68 milliseconds on average, and scales well for longer epochs of data. The
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direct application of LCM on one-hour epochs of Twitter data results in an average of

61,505.16 closed itemsets and takes 2,506.58 milliseconds onaverage. The improvement is

due to the following contributions:

• Using variable length term N-grams as items, to mitigate the effect of the skewness

of the frequency distribution of unigrams. Frequently occurring sequential multi-

word expressions are concatenated into one item during tokenization, resulting in

transactions made up of items coming from a relatively flat distribution. Section 3.3

propose a simple method to do this; tokenizing documents (Tweets) into unigrams,

then repeatedly replacing any token whose probability exceeds a threshold by two

tokens formed by concatenating to it the unigrams before and after it. This sim-

ple preprocessing step results in dropping the number of itemsets mined from an

hour long epoch from more than 60,000 to just above 6,000 itemsets. The reduc-

tion comes from avoiding the creation of itemsets that are combinations of function

words. This preprocessing step was successfully used to improve results from the

MTV algorithm [57] as well as our algorithm.

• The use of the distinct condition to select only itemsets which are distinctly different

from their closed subsets. The condition strengthens the closure property such that

an itemset is included in the mining results only if its support is different from the

support of its longest subset by a substantial proportion. The closed property is easily

satisfied by itemsets that are trivially different from their subsets, which results in

many uninteresting itemsets – specially short itemsets made up of a commonly used

term along with another term that does not have a strong association with it. Such

itemsets are filtered out by the distinct condition, given that transactions are made

up of variable length N-grams as items.

• Distinct itemsets are clustered into strongly closed itemsets for a further reduction in

the number of itemsets. We propose an efficient clustering scheme that exploits the

order in which itemsets are generated by LCM. The resulting clusters group together

itemsets belonging to a certain fine grained topic, or an opinion within a topic, and

avoids forming non-coherent clusters. The union of items in each cluster is a strongly
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closed itemset, which groups together several distinct itemsets, reducing redundancy

in the mining results.

Another important contribution is a formula for ranking strongly closed itemsets based

on their temporal novelty, using the collective Information Gain of itemsets in the cluster,

taking into account the dependence between itemsets in a cluster.

6.2 Results

We have shown the effectiveness of our methods by applying them to tweets posted in the

time frames of various real world events. We use a minimum support threshold and an

epoch length that we set according to certain characteristics of the data, which can be

easily found out if the dataset is changed. However, we set the parameter that controls the

distinctiveness between two itemsets, κ, to an arbitrary value according to its definition.

We have shown that the top ranked strongly closed itemsets from different hours are

relevant to the real world events known to be taking place at those hours. For example, the

top 3 itemsets from different hours in the day of the US presidential elections can be used

to compose a summary of how the day unwound. We also compared our synopses for that

day to the ones created by a state of the art algorithm for creating a summary based on

frequent itemsets; the MTV algorithm [57]. We have shown that our algorithm efficiently

creates synopses that cover the information in the summary created by MTV – itemsets

that are picked by the MTV algorithm are all among the top 50 strongly closed itemsets.

Furthermore, our synopses contain information not present in the summary created by

MTV. We have also assessed the quality of the synopses against data from Google Trends.

Google Trends was used to learn about real world events and entities in which Google

Search users were particularly interested at different peroids of time. The synopses were

then examined to see if they also reflect similar user interest. We have found that there is

a strong similarity in the majority of cases, and we analyzed the cases where our synopses

did not reflect the same user interest as Google Trends.

76



6.2.1 The Complete Results of Mining the Twitter Dataset

The complete results of mining all one-hour epochs of the Twitter dataset is available

for download1. The mining results at different values of κ, at minimum support 10, are

available as GZipped Tar balls. The result of each one-hour epoch in the last 3 months of

2012 (with half-hour time steps) is a tab separated file which contains: 1) the strongly closed

itemsets, 2) their postings lists, and 3) values of several ranking formulae. The itemsets

are sorted in the descending order of the ranking formula used in this thesis (column 14).

6.3 Future Work

This work provides a foundation for the use of data from social media in temporal infor-

mation retrieval. The synopses we create capture people’s interest at different points in

times, and can be used to create a temporal profile for a query. This profile can then be

used for weighting documents according to the time in which they were published.

The synopses can be also directly used for temporal query expansion. Terms from

itemsets relevant to a query can be used for query expansion, thus acting as precomputed

results of pseudo-revelance feedback. It is also possible to use terms from documents where

relevant itemsets occur as the resultset to be used as input for pseudo-revelance feedback.

The ranks of itemsets can be used to weight expansion terms, if temporal novelty is desired.

The efficiency of the proposed algorithms makes it possible to use the mining results as

input to other real-time systems. For example, hashtag suggestions can be offered based

on association rules created from the itemsets, such that the consequent is a hashtag (this

can also be done as automatic document expansion).

Another possible future direction is to use itemsets that appear as a sequence for

building coherent extractive summaries of the social media stream.

We also wish to explore ways to make use of the temporal signal during mining, such

as when calculating similarity during clustering.

1http://plg.uwaterloo.ca/~yaboulna/thesis_results/twitter_synopses/1hr+30min_

ngram5-relsupp10_oct-nov-dec/
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Appendix A

Unigram Tokenization

The data is tokenized into unigrams using white space and punctuation marks as separa-

tors. The characters ‘@’, ‘#’ and ‘ ’ are allowed within a unigram, while the rest of the

punctuation marks are treated as delimiters. Only Latin characters (Unicode code points

less than ‘u024F’) and numbers are allowed within a unigram. Any other characters that

are not delimiters are skipped. If a unigram is a number then the dot and the comma

characters are allowed within it. The tokenizer also does the following:

• All URLs (from ‘http[s]:’ to the next whitespace) are replaced by the unigram “URL”.

• Runs of the same character are reduced to only 3 repetitions (for example, “coooool”

is replaced by “coool”).

• Hashtags are stored twice, with and without the the ‘#’ character. The tag without

the ‘#’ character is left at tag’s positions, while the other is appended at the end of

the tweet. This handles cases where the hashtag is used in place of a word, such as

“president #obama...”.

• The apostrophe used in contractions (can’t, don’t, ..etc) is removed from the unigram,

but does not act as a delimiter.
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