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Abstract

The problem considered in this thesis is the following: We are given a Hamiltonian H
and time t, and our goal is to approximately implement the unitary operator e−iHt with
an efficient quantum algorithm. We present an efficient algorithm for simulating sparse
Hamiltonians. In terms of the maximum degree d and dimension N of the space on which
the Hamiltonian acts, this algorithm uses (d2(d+log∗N)∥Ht∥)1+o(1) queries. This improves
the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve,
and Sanders, which scales like (d4(log∗N)∥Ht∥)1+o(1). In terms of the parameter t, these
algorithms are essentially optimal due to a no–fast-forwarding theorem.

In the second part of this thesis, we consider non-sparse Hamiltonians and show signifi-
cant limitations on their simulation. We generalize the no–fast-forwarding theorem to dense
Hamiltonians, and rule out generic simulations taking time o(∥Ht∥), even though ∥H∥ is
not a unique measure of the size of a dense Hamiltonian H. We also present a stronger
limitation ruling out the possibility of generic simulations taking time poly(∥Ht∥, logN),
showing that known simulations based on discrete-time quantum walks cannot be dramat-
ically improved in general. We also show some positive results about simulating structured
Hamiltonians efficiently.
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Chapter 1

Introduction

1.1 Why simulate Hamiltonians?

To motivate the problem considered in this thesis, let us start with a very fundamental
question. What is the aim of physics? In other words, what are physicists trying to do?
There are several good answers to this question, one of which is that physicists are trying
to find a theory that explains how the universe works. This answer immediately leads to
the more interesting question: what does it mean to explain how the universe works?

When is one theory said to explain how the universe works better than another theory?
A pragmatic answer that I like is that the better theory is the one that predicts future events
more accurately. The theory whose prediction more closely matches reality is the better
theory. Conversely, if a theory is able to explain all logically consistent future outcomes
equally well, including those that never happen, then it is a completely useless theory. This
fact is sometimes counter-intuitive, as people often believe that a stronger theory should
explain more things, such as apples falling upwards and like charges attracting each other.
This is why a theory which allows all possible futures has zero informational content. To
quote Eliezer Yudkowsky [36],

The strength of a theory is not what it allows, but what it prohibits; if you
can invent an equally persuasive explanation for any outcome, you have zero
knowledge.

So predicting future events accurately is very important, and probably one of the most
important problems ever. If we believed that our universe is completely deterministic,
as was widely believed before the advent of quantum mechanics, our ideal theory would
predict the future perfectly, given enough time to perform calculations (i.e., unbounded
computational power). This is exactly what Laplace [29] wrote in 1825:
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An intelligence that, at a given instant, could comprehend all the forces by which
nature is animated and the respective situation of the beings that make it up, if
moreover it were vast enough to submit these data to analysis, would encompass
in the same formula the movements of the greatest bodies of the universe and
those of the lightest atoms. For such an intelligence nothing would be uncertain,
and the future, like the past, would be open to its eyes.

In simpler words, he says that if we know the (classical) Hamiltonian of the system (all
the forces by which nature is animated) and the initial conditions (the respective situation
of the beings that make it up), and have unbounded computational power (were vast enough
to submit these data to analysis), then the future can be perfectly predicted (nothing would
be uncertain, and the future, like the past, would be open to its eyes).

Although Laplace said this about Newtonian mechanics, it still makes sense in the
quantum world. If we know the Hamiltonian of the system and the initial quantum state,
we can predict the final quantum state of the system. The equation that tells us how to
do this is the Schrödinger equation. In this thesis, quantum systems will always be finite
dimensional and the Hamiltonians considered will be time independent. In this case, the
Schrödinger equation simplifies to

∣Ψfinal⟩ = e−iHt ∣Ψinitial⟩ , (1.1)

where H is the Hamiltonian (an N × N Hermitian matrix), ∣Ψinitial⟩ and ∣Ψfinal⟩ are N -
dimensional vectors representing the initial and final quantum states respectively, and t is
the time difference between the initial and final states.

This is the Hamiltonian simulation problem: Given a Hamiltonian, a time and an initial
state, produce the output state. It is merely the problem of exponentiating a matrix and
multiplying it with a vector, which is not a difficult task at all. So why is this a hard
problem? The hardness lies in the fact that although this is easy to do in principle, it is
not clear how to do this in a reasonable amount of time. In 1929, Dirac [14] wrote

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble.

This quotation highlights an important point—just knowing equations is not sufficient
to predict future events. We also need to be able to solve these equations in a reasonable
amount of time. There would be no point in knowing how to predict the motion of a few
particles if the amount of time it required to predict this exceeded the age of the universe.
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So what is a reasonable amount of time to predict something? Is this a subjective
concept or can one quantify the notion of an efficient method to solve a problem? The
punch line is now obvious to everyone who has taken an algorithms course. Of course we
know how to quantify efficient algorithms today, although it wasn’t obvious at all before
the invention of Turing machines and the papers of Cobham [12] and Edmonds [15]. This is
the problem studied in this thesis: How efficiently can we solve the Hamiltonian simulation
problem?

1.2 Why quantum computation?

The Hamiltonian simulation problem, or specifically the problem of simulating actual quan-
tum systems is an important practical problem today. A significant fraction of the world’s
computing power is devoted to simulating quantum systems that arise in chemistry, mate-
rials science, condensed matter physics, nuclear physics, etc. Unfortunately, all the known
classical algorithms for simulating quantum systems take exponential time.

The meaning of the previous sentence might not be clear, since I have not explained
what it means to simulate a quantum system. Surely if one is required to output an actual
quantum state this is obviously infeasible for a classical computer, which does not have the
ability to process quantum information. If the output is to be a description of the quantum
state, even approximately, this would require exponential space and time to write down.

However, the problem can be easily modified to make the inputs and outputs classical
without losing the essence of the problem. For example, consider the following problem
whose inputs and outputs are classical. Given a Hamiltonian H, and a time t, approx-
imately sample from the probability distribution over measurement outcomes when the
state e−iHt∣0⟩ is measured in the computational basis.

Now the above-mentioned claim makes sense: all known classical algorithms for this
problem run in exponential time. Moreover, if this problem had an efficient classical
algorithm, then quantum computers, which are quantum systems too, would have efficient
classical simulations.1 In particular, this would mean that integer factorization has an
efficient classical algorithm [35]. Indeed, it was the apparent exponential time complexity
of simulating quantum systems on a classical computer that led Feynman to propose the
idea of quantum computation [20].

In addition to predicting the behavior of physical systems, Hamiltonian simulation has
algorithmic applications. For example, the implementation of a continuous-time quantum

1This statement can be made more formal by saying that the Hamiltonian simulation problem, even
when the Hamiltonian is a sum of k-local terms, is BQP-hard. This follows from a construction of Feyn-
man [21] that encodes a polynomial-size quantum circuit into such a Hamiltonian.
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walk algorithm is a Hamiltonian simulation problem. Examples of algorithms that can
be implemented using Hamiltonian simulation methods include unstructured search [19],
adiabatic optimization [18], a quantum walk with exponential speedup over classical com-
putation [8], and the recent NAND tree evaluation algorithm of Farhi, Goldstone and
Gutmann [16].

As an example of how Hamiltonian simulation is used for algorithm design, consider
the NAND tree evaluation algorithm. The algorithm encodes the input into a sparse
Hamiltonian in such a way that the output can be obtained by simulating the Hamiltonian
for some amount of time. Since the constructed Hamiltonian is sparse, it can be simulated
efficiently, and the algorithm is efficient.

I believe that there are other algorithmic applications of Hamiltonian simulation waiting
to be discovered, and Hamiltonian simulation is a useful tool to have at one’s disposal when
designing quantum algorithms. This is the main motivation for improving the efficiency of
Hamiltonian simulation algorithms.

1.3 Notation and terminology

Most of the notation used in this thesis is standard in quantum computation, and is given
in any standard textbook such as the books by Nielsen and Chuang [31] or Kaye, Laflamme
and Mosca [26]. We will see several matrix norms in this thesis, all of which are explained
in detail in Section 2.1. We will also need some terminology from graph theory, which
is explained below. It is assumed that the reader is familiar with quantum computation,
linear algebra and basic graph theory.

In this thesis, graphs will always be simple: no self-loops and no multiple edges. Thus,
a directed graph G will be an ordered pair (V,E), such that E ⊆ V ×V and for all vertices
v, (v, v) is not an edge. An undirected graph has the additional constraint that for all
edges (u, v), (v, u) is also an edge. Equivalently, E can be thought of as a set of unordered
pairs, instead of a set of ordered pairs.

A graph is said to be d-sparse if its maximum degree is d. A star graph is a tree in
which one vertex (called the center) is adjacent to all the other vertices. In other words,
it is a complete bipartite graph K1,r. We call a forest in which each tree is a star graph a
galaxy. A graph is said to have arboricity k if its adjacency matrix can be written as the
sum the adjacency matrices of k forests, but not k − 1 forests.

A directed graph is a directed forest (directed tree) if its undirected graph is a forest
(tree). A directed tree is an arborescence if it has a unique root v such that all edges point
away from v. Alternately, there is exactly one directed path from v to any other vertex u.
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In an arborescence, the edges are always directed from the parent to the child. A directed
forest in which each tree is an arborescence is called a forest of arborescences.

A Hamiltonian, which is an N × N Hermitian matrix, can also be thought of as the
weighted adjacency matrix of a graph on N vertices, where the weight of the edge (i, j) is
Hij. In this graph, the weights are complex numbers and the weight of an edge from u to
v is the complex conjugate of the weight of the edge from v to u. Now if we make all the
nonzero weights equal to 1, we get the adjacency matrix of an undirected graph. We call
this the graph of the Hamiltonian. Notice that the graph of a Hamiltonian doesn’t depend
on the actual entries; it just depends on whether they are zero or not. Two Hamiltonians
whose sets of nonzero entries are the same have the same graph. We often associate
properties of the graph of a Hamiltonian with the Hamiltonian itself. For instance, we
might say “H is a forest,” meaning that the graph of H is a forest. Note that the graph
of a Hamiltonian with at most d nonzero entries in each row is a d-sparse graph. We call
such Hamiltonians d-sparse.

Finally, in this thesis logN will denote the base-2 logarithm of N . The function log∗N
is defined by log∗N = 0 if N ≤ 1 and log∗N = 1 + log∗ logN if N > 1.

1.4 The Hamiltonian simulation problem

In the Hamiltonian simulation problem, for a given Hamiltonian H and time t, our goal is to
approximately implement the unitary operator e−iHt with an efficient quantum algorithm
(using ancilla, if needed). An approximate implementation just means that the final state
produced should not be too far away from the intended final state, in terms of the trace
distance.2 This seems like the right norm to use because the distinguishability of two states
is exactly characterized by their trace distance, as originally observed by Helstrom [24].

Most importantly, we want this implementation to be efficient. Since a system with
logN qubits is described by a Hamiltonian of size N ×N , we would like the running time
of the algorithm to be polynomial in the size of the system, which is logN . To impose a
reasonable restriction on the dependence on �, we could ask that the algorithm should be
able to produce a constant approximation, such as � = 0.01, in polynomial time. However,
this isn’t good enough, since the Hamiltonian simulation algorithm might be used as a
subroutine polynomially many times, and we may wish to have constant error at the end.
Thus we should be able to guarantee inverse polynomial error in polynomial time. Putting
these two constraints together, we need an algorithm with running time poly(logN, 1/�).

Now we need to impose a reasonable restriction on the dependence on H and t. First
let us consider the dependence on t. It seems reasonable to expect our algorithm’s running

2The trace distance between �0 and �1 is ∥�0 − �1∥tr, where ∥A∥tr is defined as Tr
(√

A†A
)

.
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time to be polynomial in the running time of the quantum system we are simulating. In
particular, we would like it to be as close to linear as possible, since a sub-linear dependence
on t is not possible in general (see Theorem 1 in Section 1.5). The dependence on H,
however, is not as straightforward, since it depends on how H is represented. Clearly H
cannot be written down as an N ×N matrix, because an algorithm running in poly(logN)
time cannot read the entire input.

Since the unitary e−iHt is a function of the product of H and t only, and not H or t
individually, this gives some restriction on how the algorithm should scale with H. For
example, we can rescale t by rescaling H, by mapping the pair (H, t) to (Ht, 1), without
affecting the unitary e−iHt. Thus our algorithm’s running time should be bounded by a
polynomial in some measure of the size of H. As explained in Section 2.1, the obvious choice
here is a matrix norm. When H is sparse, most of its matrix norms have comparable values
and so the complexity of simulating H is not very sensitive to how its size is quantified. It
is conventional to require that the scaling be polynomial in ∥H∥, the spectral norm of H.
(As discussed in Chapter 4, this might not be appropriate for non-sparse Hamiltonians.)

Finally, we can put these constraints together. We say that a HamiltonianH can be sim-
ulated efficiently if there exists a quantum circuit which uses at most poly(logN, ∥Ht∥, 1/�)
one- and two-qubit gates that approximates the unitary operator e−iHt, such that the max-
imum error in the final state, as quantified by the trace distance, is at most �. Furthermore,
just knowing that these circuits exist is not sufficient; we would like that these circuits can
be generated in polynomial time. So a uniformity condition is needed, which would state
that given access to the inputs H, t and �, there is an efficient procedure to produce the
quantum circuit. (I have deliberately not explained how the input H is given. This will
depend on context and will be described when needed.)

1.5 Previous work

Various classes of Hamiltonians are known to have efficient simulations. As a trivial ex-
ample, consider a k-local Hamiltonian, where k is some constant. A Hamiltonian is called
k-local if it acts non-trivially on at most k qubits. Such a Hamiltonian can be simulated
in polynomial time because we can read the input to find out which k qubits are affected
by this Hamiltonian and then transform those qubits appropriately. Since k is a constant,
any unitary operation on k qubits can be implemented with a constant number of one- and
two-qubit gates.

As another example, consider a diagonal Hamiltonian, which is a Hamiltonian whose
off-diagonal entries are zero. Assuming we have an efficient procedure to compute the
diagonal entries of H, such a Hamiltonian is easy to implement. If H is diagonal, so is
e−iHt, and if the jth diagonal entry of H is ℎj, then the jth diagonal entry of e−iHt is

6



e−iℎjt. So the transformation to be performed is ∣j⟩ → e−iℎjt ∣j⟩. This operation is easy to
implement: first compute ℎj in an ancillary register, then perform a set of controlled phase
gates on the first register controlled by the ancilla, and then uncompute the ancilla. More
succinctly, ∣j, 0⟩ → ∣j, ℎi⟩ → e−iℎjt ∣j, ℎj⟩ → e−iℎjt ∣j, 0⟩. (For more details, and an efficient
circuit implementation, see Rule 1.6 in Ref. [10].)

As a non-trivial example, consider the class of Hamiltonians that can be represented
as the sum of polynomially many local Hamiltonians. Although local Hamiltonians can be
simulated trivially, simulating a sum of local Hamiltonians is not necessarily easy. Note
that e−i(A+B)t is, in general, not equal to e−iAte−iBt, and thus a sum of local Hamiltonians
cannot, in general, be simulated by simulating them one after the other. As Lloyd observed,
such Hamiltonians can be simulated efficiently using the Lie–Trotter formula [30], given an
explicit list of the local Hamiltonians. (Notice that the size of the input is polynomial in
logN , since the input consists of polynomially many constant-sized Hamiltonians.)

This was later generalized by Aharonov and Ta-Shma [1] to the case of sparse (and
efficiently row-computable) Hamiltonians. A Hamiltonian of size N ×N is sparse if it has
at most poly(logN) nonzero entries in any row. It is efficiently row-computable if there is
an efficient procedure to determine the location and matrix elements of the nonzero entries
in each row. This is indeed a generalization of the Hamiltonians considered by Lloyd, since
they are also sparse and efficiently row-computable.

These conditions lead to a very convenient black-box formulation of the problem, which
allows us to abstract away the details of the efficient procedure for computing locations
and matrix elements. We assume there is a black box that can be queried with a row index
j and another index i to obtain the value and location of the ith nonzero entry in the jth

row. This black box can be implemented efficiently when H is efficiently row-computable.
Now we can describe the complexity of simulating sparse Hamiltonians in terms of the
number of queries made to this black box.

A series of results decreased the number of black-box queries, in terms of N , from the
original O(log9N) [1], to O(log2N) [10], to O(log∗N) [5]. In particular, Berry, Ahokas,
Cleve, and Sanders [5] presented an almost linear-time algorithm for simulating sparse
Hamiltonians with query complexity

(log∗N)d4∥Ht∥
(
∥d2Ht∥

�

)o(1)

, (1.2)

where d is the maximum number of nonzero entries in any row and � is the maximum
permitted error in the final state.

The dependence of (1.2) on the simulation time is nearly optimal, since it is not possible
to simulate a general sparse Hamiltonian for time t using o(t) queries. Intuitively, this
means there is no generic way to fast-forward through the time evolution of quantum
systems. More formally, we have the following theorem [5, Theorem 3].
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Theorem 1 (No–fast-forwarding theorem). For any positive integer N there exists a row-
computable sparse Hamiltonian H with ∥H∥ = 1 such that simulating the evolution of H
for time t = �N/2 within precision 1/4 requires at least N/4 queries to H.

Although the dependence on t cannot be substantially improved, we would like to
improve the query complexity of simulating sparse Hamiltonians in some other way. In
Chapter 3, we show how to simulate sparse Hamiltonians with query complexity

(d+ log∗N)d2∥Ht∥
(
∥dHt∥
�

)o(1)

, (1.3)

which is at least as good as (1.2), and is strictly better when d = !(1).

The simulation of Ref. [5] has also been improved using a completely different ap-
proach [7, 4], giving an algorithm with query complexity

O

(
∥Ht∥√

�
+ dmax(H)t

)
, (1.4)

where max(H) = maxij ∣Hij∣. This improves (1.2) in some ways, but its dependence on
the error threshold � is worse, and thus the two algorithms are incomparable.

Moving on to more general Hamiltonians, recently methods have been presented for
simulating a Hamiltonian H that is not necessarily sparse. Of course, we do not expect to
efficiently simulate a general Hamiltonian, simply because there are too many Hamiltonians
to consider (just as we cannot hope to efficiently implement a general unitary operation
[28]). Moreover, a general Hamiltonian does not even have a polynomial-size description.
However, we can conceivably efficiently simulate non-sparse Hamiltonians with a suitable
concise description.

In particular, by applying phase estimation to a discrete-time quantum walk derived
from H, one can simulate H for time t in a number of walk steps that grows only linearly
with t [7, Theorem 5].

Theorem 2. For any Hermitian matrix H, there is a discrete-time quantum walk on the
graph of nonzero entries of H such that e−iHt can be simulated with error at most � using
O(∥abs(Ht)∥/�) steps of the walk, where abs(H) is the matrix with entries abs(H)jk =
∣Hjk∣.

Of course, to apply this result, we must implement the discrete-time quantum walk
derived from H. This can be done efficiently for various concisely specified non-sparse
Hamiltonians [7]. Note that the same theorem holds with ∥abs(H)∥ replaced by ∥H∥1 (a
matrix norm defined in Section 2.1); this quantity is generally larger than ∥abs(H)∥, but
the resulting walk may be easier to implement.
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Notice that the overhead of this simulation is proportional not to the spectral norm
∥H∥, but to a measure of the size of H that can be much larger when some entries of H
are negative (or more generally, complex). This naturally raises the question of whether
an improved simulation is possible. In Chapter 4, we examine this possibility. Unfor-
tunately, we show that there is no general Hamiltonian simulation algorithm that uses
only poly(∥Ht∥, logN) steps (Theorem 8), even if the algorithm has access to additional
structural information about the Hamiltonian, including information that allows a discrete-
time quantum walk on the graph of nonzero entries of H to be performed efficiently. This
suggests that Theorem 2 cannot be substantially improved.

1.6 Summary of results

The results stated in this thesis also appear in published articles and preprints, as indicated
below.

In Chapter 3, we present an algorithm for simulating sparse Hamiltonians that improves
on the best known algorithm for high precision simulation of sparse Hamiltonians. We

improve the complexity from (log∗N)d4∥Ht∥
(
∥d2Ht∥

�

)o(1)

to (d+log∗N)d2∥Ht∥
(
∥dHt∥
�

)o(1)

,

providing the best known method for high-precision simulation of sparse Hamiltonians. The
results of Chapter 3 appear in the following preprint:

Andrew M. Childs and Robin Kothari. Simulating sparse Hamiltonians with
star decompositions. Arxiv preprint arXiv:1003.3683, 2010.

In Chapter 4, we consider the problem of simulating dense Hamiltonians. In Section 4.1
we describe how the no–fast-forwarding theorem (Theorem 1) can be modified to give a
lower bound that depends on the spectral norm rather than various smaller measures of
the size of a Hamiltonian. We then strengthen this result in Section 4.2 and present an
example of a family of Hamiltonians with ∥abs(H)∥ ≫ ∥H∥ that cannot be simulated in
time poly(∥Ht∥, logN).

In Chapter 5, we investigate how certain structured Hamiltonians can be simulated in
time O(∥Ht∥), even though a general Hamiltonian cannot. In particular, we give a positive
result on the simulation of Hamiltonians whose graphs have small arboricity. The results
of Chapters 4 and 5 appear in the following published article:

Andrew M. Childs and Robin Kothari. Limitations on the simulation of non-
sparse Hamiltonians. Quantum Information and Computation 10 (2010) 669–
684.
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Chapter 2

Measuring simulation complexity

2.1 Measures of simulation complexity

As one can see from Section 1.5, upper and lower bounds on the complexity of simulating
a Hamiltonian H depend on some measure of the size of H. As discussed in Section 1.4,
since e−iHt depends only on the product Ht, the complexity of simulating H for time
t is some function of Ht. For example, the no–fast-forwarding theorem clearly cannot
be circumvented by simply multiplying H by a constant. Similarly, simulation results
such as those for sparse Hamiltonians, using ∥Ht∥1+o(1) operations, and Theorem 2, using
O(∥abs(Ht)∥) operations, depend on various measures of the size of Ht.

In this section, we take a step back and consider properties of various measures of the
size of H that may play a role in the complexity of simulating it. Let �(Ht) be a function
that measures the complexity of simulating H for time t. We can infer various properties of
�(⋅) as follows. Since it is trivial to simulate the identity operation, �(0) = 0. On the other
hand, if H ∕= 0, then it requires some work to simulate, so �(H) > 0. It is also plausible to
suppose that �(tH) = ∣t∣�(H). We clearly have �(Ht) ≤ ∣t∣�(H) for t ∈ ℤ, since Ht can
be simulated using ∣t∣ exact simulations of H. On the other hand, the no–fast-forwarding
theorem suggests that this is the best possible way to simulate Ht in general. Finally, since
the Lie product formula can be used to simulate H + K using simulations of H and K,
we expect that �(H +K) ⪅ �(H) + �(K) (up to the fact that a bounded-error simulation
requires a slightly superlinear number of operations).

These properties are reminiscent of the axioms for matrix norms, suggesting that it
may be reasonable to quantify the complexity of simulating H in terms of some matrix
norm �(H). Indeed, results on the simulation of sparse Hamiltonians are typically stated
in terms of the spectral norm ∥H∥, and Theorem 2 also involves matrix norms. We now
introduce various matrix norms relevant to Hamiltonian simulation.
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2.2 Matrix norms

Definition 1 (Spectral norm). The spectral norm of a matrix H is defined as

∥H∥ := max
v ∕=0

∥Hv∥
∥v∥

= max
∥v∥=1

∥Hv∥, (2.1)

where ∥v∥ is the standard Euclidean vector norm defined as ∥v∥ :=
√∑

i ∣vi∣2.

The spectral norm, also known as the operator norm or induced Euclidean norm, is
equal to the largest singular value of the matrix. For Hermitian matrices it is also equal
to the magnitude of the largest eigenvalue. This norm arises in the complexity of sparse
Hamiltonian simulation algorithms, and in Theorem 2 as the spectral norm of abs(H), the
matrix with entries abs(H)jk = ∣Hjk∣.

Definition 2 (Induced 1-norm). The induced 1-norm of a matrix H is defined as

∥H∥1 := max
v ∕=0

∥Hv∥1

∥v∥1

= max
j

∑
i

∣Hij∣, (2.2)

where ∥v∥1 is the vector 1-norm defined as ∥v∥1 :=
∑

i ∣vi∣.

The induced 1-norm is equal to the maximum absolute column sum of the matrix. As
mentioned in Section 1.5, Theorem 2 holds with ∥abs(H)∥ replaced by ∥H∥1. This does
not, however, lead to a superior simulation method since ∥H∥1 ≥ ∥abs(H)∥, as shown in
Lemma 1 below.

Definition 3 (Maximum column norm). The maximum column norm of a matrix H is
defined as

mcn(H) := max
j

√∑
i

∣Hij∣2 = max
v ∕=0

∥Hv∥
∥v∥1

= max
j
∥Hej∥, (2.3)

where ej is the jth column of the identity matrix.

The maximum column norm is the maximum Euclidean norm of the columns of H.
This norm appears in the complexity of an algorithm for simulating Hamiltonians whose
graphs are trees [7, Theorem 4] and in the related Proposition 2 in Section 5.1.

Definition 4 (Max norm). The max norm of a matrix H is defined as

max(H) := max
i,j
∣Hij∣. (2.4)

The max norm is just the largest entry of H in absolute value. It is a matrix norm,
and is typically much smaller than the other norms mentioned.

11



2.3 Relationships between matrix norms

The following lemma relates the various norms introduced above.

Lemma 1. For any Hermitian matrix H ∈ ℂN×N , we have the following inequalities:

max(H) ≤ mcn(H) ≤ ∥H∥ ≤ ∥abs(H)∥ ≤ ∥H∥1 ≤
√
N mcn(H) ≤ N max(H). (2.5)

Furthermore, each of these inequalities is the best possible.

Proof. The first inequality follows from the fact that the maximum element in any column
cannot be greater than the Euclidean norm of that column. We have

max(H) = max
j

(
max
i
∣Hij∣

)
≤ max

j

√∑
i

∣Hij∣2 = mcn(H). (2.6)

The next inequality follows from the observation that mcn(H) is defined by a maximum
over the standard basis vectors ej, whereas ∥H∥ is defined by a maximum over all vectors
with norm 1, which contains the set of all ej. Thus

mcn(H) = max
j
∥Hej∥ ≤ max

∥v∥=1
∥Hv∥ = ∥H∥. (2.7)

Using the triangle inequality with ∥H∥ = max∥v∥=1(
∑

i ∣
∑

j Hijvj∣2)
1
2 , we get

∥H∥ ≤ max
∥v∥=1

(∑
i

∣∣∣∣∑
j

∣Hij∣∣vj∣
∣∣∣∣2) 1

2

= max
∥v∥=1
vj≥0

(∑
i

∣∣∣∣∑
j

abs(H)ijvj

∣∣∣∣2) 1
2

. (2.8)

Now by maximizing over all v with ∥v∥ = 1 instead of only those with vj ≥ 0, we get

max
∥v∥=1
vj≥0

(∑
i

∣∣∣∣∑
j

abs(H)ijvj

∣∣∣∣2) 1
2

≤ max
∥v∥=1

(∑
i

∣∣∣∣∑
j

abs(H)ijvj

∣∣∣∣2) 1
2

= ∥abs(H)∥. (2.9)

The inequality in (2.9) is actually an equality due to the Perron–Frobenius theorem.

Since abs(H) is a symmetric matrix, there is an eigenvector z with eigenvalue equal
in magnitude to ∥abs(H)∥. Clearly this eigenvector satisfies ∥abs(H)z∥1 = ∥abs(H)∥∥z∥1.
Using this and maximizing over all nonzero vectors, we have

∥abs(H)∥ =
∥abs(H)∥∥z∥1

∥z∥1

=
∥abs(H)z∥1

∥z∥1

≤ max
v ∕=0

∥abs(H)v∥1

∥v∥1

= ∥abs(H)∥1. (2.10)
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The inequality now follows from the fact that ∥H∥1 = ∥abs(H)∥1, since

∥abs(H)∥1 = max
j

∑
i

∣ abs(H)ij∣ = max
j

∑
i

∣Hij∣ = ∥H∥1. (2.11)

For the next inequality, we use the fact that ∥v∥1 ≤
√
N∥v∥ for all vectors v. This can

be proved using the Cauchy–Schwarz inequality, ∣⟨u, v⟩∣ ≤ ∥u∥∥v∥, by taking ui = vi/∣vi∣.
Let jmax be the index j that maximizes

∑
i ∣Hij∣. Thus ∥H∥1 =

∑
i ∣Hijmax∣ = ∥Hejmax∥1.

Using these two inequalities, it follows that

∥H∥1 = ∥Hejmax∥1 ≤
√
N∥Hejmax∥ ≤

√
N max

j
∥Hej∥ =

√
N mcn(H). (2.12)

The last inequality is proved using the fact that for any j, Hij ≤ maxiHij; thus

mcn(H) = max
j

√∑
i

∣Hij∣2 ≤ max
j

√
N max

i
∣Hij∣2 =

√
N max

ij
∣Hij∣ =

√
N max(H).

(2.13)

For each of these inequalities, there is a matrix that achieves equality. The first four
inequalities are saturated when H is the identity matrix since the relevant norms are all
equal to 1. The last two inequalities are satisfied with equality whenH is the all-ones matrix
(i.e., for all i, j, Hij = 1), since then ∥H∥1 = N , mcn(H) =

√
N , and max(H) = 1.

Since Theorem 2 involves ∥abs(H)∥, we would like to know the strongest inequality
that relates ∥abs(H)∥ and ∥H∥ directly. Lemma 1 gives ∥abs(H)∥ ≤

√
N∥H∥, which is

also the best possible inequality between the two norms. For example, when N is a power
of 2, the matrix H = R⊗ logN achieves equality, where R := ( 1 1

1 −1 ) /
√

2 is the Hadamard

matrix. It has ∥H∥ = 1, but ∥abs(H)∥ =
√
N . This shows that Theorem 2 might not

be as powerful as we would like, since for some Hamiltonians, the simulation method of
Theorem 2 may be infeasible even when ∥H∥ is small.

2.4 Relationships between matrix norms for sparse

Hamiltonians

Although the above inequalities cannot be tightened in general, there can of course be
stronger relationships among the various norms for special classes of Hamiltonians. When
H is sparse, the norms mentioned above can differ at most by a factor of poly(logN).
Specifically, if H is d-sparse (i.e., it has at most d nonzero entries per row), then

max(H) ≤ mcn(H) ≤ ∥H∥ ≤ ∥abs(H)∥ ≤ ∥H∥1 ≤
√
dmcn(H) ≤ dmax(H). (2.14)
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The first four inequalities are from Lemma 1. The inequality ∥H∥1 ≤
√
dmcn(H)

follows from (2.12) using the fact that ∥v∥1 ≤
√
d∥v∥ when v has at most d non-zero

entries (this can be proved using the Cauchy–Schwarz inequality as before). The last
inequality follows from (2.13) and the inequality

∑
i ∣Hij∣2 ≤ dmaxi ∣Hij∣2, which holds

when H is d-sparse.

Just as in Lemma 1, for each of these inequalities and for all d > 0, there is a matrix
that achieves equality. The identity matrix, which is d-sparse for all d > 0 saturates the
first four inequalities. For the last two inequalities, choose the matrix which has its first
d× d entries equal to 1, and the rest equal to zero. More precisely, the (i, j) entry of this
matrix is 1 when i and j are both less than or equal to d. This matrix is d-sparse, and has
∥H∥1 = d, mcn(H) =

√
d, and max(d) = 1.

For sparse Hamiltonians, d = poly(logN), which means that for sparse Hamiltonians
all the above-mentioned norms are equivalent up to polynomial factors in logN . Although
we had used the spectral norm in the definition of an efficient simulation (recall that we
required the scaling to be poly(logN, ∥Ht∥, 1/�)), this lemma shows that if we quantify
the complexity of simulating sparse Hamiltonians using a different norm, this will change
the complexity by at most a poly(logN) factor. Since we allow Hamiltonian simulation
algorithms to run in time polynomial in logN anyway, this will not change the definition
of an efficient simulation.
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Chapter 3

Simulating sparse Hamiltonians

3.1 Problem description

In this chapter we consider the problem of simulating sparse Hamiltonians, which are
specified by a black box which can compute the location and matrix entries of the nonzero
elements in any row of the Hamiltonian, as discussed in Section 1.5.

More formally, the problem is to approximately implement the unitary e−iHt for a d-
sparse and efficiently row-computable N -dimensional Hamiltonian H for time t. As input,
we are given black-box access to H, and the values of d, t, �, and N . We have to implement
a unitary U , such that for all quantum states ∣ ⟩, the density operator corresponding to
U ∣ ⟩ is �-close to that of e−iHt ∣ ⟩ in trace distance.

As mentioned in Section 1.5, the property of row computability allows a convenient
black-box formulation of the problem that abstracts away the details of computing matrix
entries and locations. The Hamiltonian is provided as a black-box function f , which
accepts a row index and an integer i ∈ {1, 2, . . . , d} and outputs the column index and
matrix element corresponding to the ith nonzero entry in that row, if one exists. More
precisely, if the nonzero elements in row x are y1, y2, . . . , ydx , where dx ≤ d is the degree of
x, then f(x, i) = (yi, Hx,yi) for i ≤ dx and f(x, i) = (x, 0) for i > dx.

For each row x, we allow the order in which the yi are given by the oracle to be arbitrary
(but fixed). We do not assume that there is a convenient ordering, such as the increasing
order of labels (i.e., we do not assume that y1 < y2 < . . . < ydx). To use the black box in a
quantum circuit, we define an equivalent unitary matrix Uf which performs the operation
Uf ∣x, i, 0⟩ = ∣x, i, f(x, i)⟩.

Let us denote the minimum number of queries to Uf required to approximately simulate
e−iHt, up to error �, by Q�(H, t). This is the query complexity of implementing the given
Hamiltonian, and this is what we wish to minimize.
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3.2 Previous best algorithm

The best known algorithm for high-precision simulation of sparse Hamiltonians, prior to
our work, is the algorithm of Ref. [5]. A common approach to this problem, which is
also the approach of Ref. [5], breaks the problem into two subproblems, which we call the
Hamiltonian decomposition problem and the Hamiltonian recombination problem. First
the Hamiltonian is decomposed into a sum of easy-to-simulate Hamiltonians; then these
Hamiltonians are simulated for short times in a specific manner so that the overall simu-
lation is approximately the same as that of H.

Since we will also follow the decomposition–recombination strategy, we review this
approach as applied in Ref. [5]. The given Hamiltonian H is decomposed into a sum of
m Hamiltonians, H =

∑m
j=1 Hj. Let Q(Hj) denote the number of queries required to

simulate Hj for time tj given black-box access to H. (Note that we are given black-box
access to H, not Hj.) In general, the number of queries required will depend on tj and
the error threshold, but in the simulations used here Q(Hj) is independent of tj and Hj

will be simulated exactly. Specifically, Q(Hj) includes the number of queries required to
decompose H into Hj as well as to simulate Hj. In Ref. [5], the Hamiltonians Hj are
1-sparse, and their decomposition uses O(log∗N) queries to a black box for Hj. Since a
1-sparse Hamiltonian can be simulated for any time with 2 queries given an oracle for the
1-sparse Hamiltonian [8, 10], Q(Hj) = O(log∗N).

Theorem 3 (Hamiltonian edge decomposition [5]). If H is an N × N Hamiltonian with
maximum degree d, then there exists a decomposition H =

∑m
j=1 Hj, where each Hj is 1-

sparse, such that m = 6d2 and each query to any Hj can be simulated by making O(log∗N)
queries to H.

These Hamiltonians are then recombined using the Lie–Trotter formula, which expresses
the time evolution due to H as a product of time evolutions due to the individual Hj. The
unitary e−iHt is approximated by a product of exponentials e−iHjtj , such that the maximum
error in the final state does not exceed �. We need an upper bound on the number of
exponentials required, Nexp, which is given by the following theorem.

Theorem 4 (Hamiltonian recombination [5]). Let k be any positive integer. If H =∑m
j=1 Hj is a Hamiltonian to be simulated for time t by a product of exponentials e−iHjtj ,

and the permissible error (in terms of trace distance) is bounded by � ≤ 1 ≤ 2m5k−1∥Ht∥,
then the number of exponentials required, Nexp, is bounded by

Nexp ≤ 52km2∥Ht∥
(
m∥Ht∥

�

)1/2k

. (3.1)
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Using the upper bound on the number of exponentials and the maximum number of
queries needed to simulate any exponential, the total number of queries needed to simulate
the Hamiltonian H satisfies Q�(H, t) ≤ Nexp×maxj Q(Hj). With Q(Hj) = O(log∗N) and
m = 6d2, we get

Q�(H, t) = O

(
52kd4(log∗N)∥H∥t

(
d2∥Ht∥

�

)1/2k
)
. (3.2)

We see that Q�(H, t) is almost linear in t, which is almost optimal due to the no–fast-
forwarding theorem (Theorem 1). However, the dependence on d is not optimal. In the
next section we improve the dependence on d without affecting the other terms.

We propose a new strategy for decomposing sparse Hamiltonians and solving the Hamil-
tonian decomposition problem, and reuse the Hamiltonian recombination theorem (The-
orem 4). Our strategy breaks up the Hamiltonian into only m = 6d parts, but increases
Q(Hj) to O(d+ log∗N), improving the overall dependence on d and N .

3.3 Our algorithm

In this section we exhibit a different strategy for solving the Hamiltonian decomposition
problem which improves Theorem 3. The Hamiltonian decomposition problem is the prob-
lem of decomposing a Hamiltonian H into a sum of m Hamiltonians Hj such that given a
label 1 ≤ j ≤ m and a time tj, the unitary e−iHjtj can be efficiently simulated.

We solve this problem by decomposing the Hamiltonian into m = 6d galaxies. To
achieve this, we first decompose the given graph into d forests using the forest decomposi-
tion technique of Paneconesi and Rizzi [33]. The idea is to assign one of at most d colors
to each edge of the graph (not necessarily a proper edge coloring) such that the edges of
any particular color form a forest. Not only is this decomposition possible, but it has some
special properties that are required later in Lemma 3.

Lemma 2 (Forest decomposition). For any Hamiltonian H of maximum degree d, there
exists a decomposition H =

∑d
c=1Hc and an assignment of directions to the edges such

that each Hc is a forest of arborescences. Furthermore, given a color c and a vertex v, we
can determine v’s parent in Hc with one query (or determine that it is a root) and with
O(d) queries we can determine the list of edges in Hc incident on v.

Proof. We first describe a procedure that assigns a color c to each edge. Hc then consists of
all edges colored c. To color the edges, every vertex proposes a color for each edge incident
on it using the oracle in the following way: if y is x’s ith neighbor, then x proposes color
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i for the edge xy. More formally, if f(x, i) = (y,Hx,y), then x proposes color i for the
edge xy. Similarly, y proposes a color for the edge xy. The edge is now colored using the
proposal of the vertex with higher label (i.e., if x > y then the edge xy is colored with x’s
proposal). This coloring uses d colors, which is optimal up to constants since a d-sparse
graph can have dn/2 edges, but forests have at most n− 1 edges.

Now we assign directions to the edges and show that each Hc has no cycles, which
shows that each Hc is a directed forest. The edge xy is directed from x to y if x < y. This
choice of directions results in a directed acyclic graph, which has no directed cycles. To
rule out non-directed cycles, we note that any such cycle must contain a vertex v for which
both the edges of the cycle point toward v. This means the label of v is greater than those
of its two neighbors. Thus the color of these edges was decided by v, which cannot happen
since a vertex always proposes different colors for all the edges incident on it.

To show that each tree in Hc is an arborescence, let us show that it has a unique root.
If a directed tree has more than one root, it must have a vertex with more than one parent.
This again leads to the situation where a vertex has two incoming edges of the same color,
which is not possible since these edges are colored by this vertex’s proposal.

To show that the parent of a vertex can be determined with one query, note that if
pv is the parent of vertex v in Hc, then the edge from pv to v must be directed toward v.
Thus the color of this edge is decided by v. If this edge is in Hc, it is colored c. So if v has
a parent, it must be the cth neighbor of v. With one query to the oracle, we can determine
the cth neighbor of v. If there is no such neighbor, this vertex has no parent and is a root
in Hc. Otherwise the output of the oracle contains the label of the parent.

Finally, we show how to determine the list of edges in Hc incident on x with O(d)
queries. First we query the oracle at most d times to get the labels of all the neighbors
of x. For a neighbor y where y < x, the edge between x and y is colored by c only if y is
x’s parent in Hc. Thus we can discard all edges xy where y < x but y is not the parent of
x. When y > x, an edge between x and y is colored c only if x is y’s parent in Hc, and it
takes one query to verify this for each y. Thus with at most d additional queries we can
determine if all such edges are colored c.

We have now decomposed the Hamiltonian into a sum of d directed forests. Let T be
such a forest. We will decompose T into a sum of 6 galaxies, T = T1 + T2 + ⋅ ⋅ ⋅+ T6. This
is achieved by using an extension of the “deterministic coin tossing” protocol of Cole and
Vishkin [13] by Goldberg, Plotkin and Shannon [22]. Their protocol gives a proper vertex
coloring of an arborescence using only 6 colors making O(log∗N) queries. Vertex coloring
a forest of arborescences gives a galaxy decomposition of the forest, since all the edges that
point to vertices of a particular color form a galaxy.

Lemma 3 (Vertex coloring a forest). If T is a forest of arborescences, and the parent of
a vertex can be determined with one query to an oracle for T , then there exists a proper
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vertex coloring of T using 6 colors, such that the color of any vertex can be determined by
making O(log∗N) queries.

Proof. We first describe the vertex-coloring procedure for the forest. A simple observation
is that we already possess a vertex coloring of the forest: the labels of the vertices. This
is a trivial proper vertex coloring using N colors. Now we use a procedure that decreases
the number of colors used to O(logN). Then we can run several rounds of this procedure
to decrease the number of colors down to 6. Let cj(x) be the color assigned to vertex x at
the beginning of the jth round of the procedure. At the beginning of the first round, we
have c1(x) = x.

Let x be a vertex with parent px. Assume that we started with a proper vertex coloring
at the beginning of round j. Since we have a proper coloring, cj(x) ∕= cj(px). Let k be the
index of the first bit at which x and px differ, and let b be the value of the kth bit of x.
The new color for vertex x is the concatenation of k and b, denoted (k, b). If x is the root,
we take k = 0. We claim that if each vertex performs this procedure, the result is a proper
vertex coloring.

For a contradiction, suppose there are two adjacent vertices that have been assigned
the same color in round j. Without loss of generality, one of them is the parent of the
other, so let them be y and its parent py. Since we started with a proper coloring at the
beginning of round j, cj(y) ∕= cj(py), but now cj+1(y) = cj+1(py). Let cj+1(y) = (k, b)
where, by definition, k is the bit at which cj(y) and cj(py) differ, and b is the value of
the kth bit of cj(y). Since cj+1(py) also equals (k, b), the kth bit of cj(py) is b. But cj(y)
and cj(py) are supposed to differ at the kth bit, so this is a contradiction. Therefore the
coloring procedure is valid.

It remains to show that if the colors of the vertices are updated in this way, we reduce
the number of colors to 6 in O(log∗N) rounds. Let Lj be the number of bits used to
represent colors at the beginning of round j. Since we start with N colors, L1 = ⌈logN⌉.
In any step, the new color is (k, b), where the size of k is the logarithm of the size of the
previous color and b is just one bit. Thus Lj+1 = ⌈log(Lj)⌉+ 1. This gives us the following
recursion relation:

L1 = ⌈log(N)⌉ Lj+1 = ⌈log(Lj)⌉+ 1.

This recurrence relation can be solved by noting that Lj ≤ 2⌈log(j)(N)⌉ for all j ≥ 1,

where log(j)(x) is defined by log(1) x = log x and log(j) x = log(log(j−1) x). This yields
Lj = 3 when j = log∗N [22].

Further rounds cannot decrease Lj below 3, since Lj+1 = Lj when Lj = 3. A length
of 3 bits allows the use of at most 8 colors. Now we run the procedure once more. Since
there are 3 possible values for k, and 2 for b, there are at most 6 different colors now. The
total number of rounds is now log∗N + 1.
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To show that the color of a vertex can be determined with O(log∗N) queries, we note
that the color of vertex x at the end of the first round depends solely on the labels x and
px. In general, the color of vertex x at the end of j rounds depends only on the labels of its
first j ancestors. To determine x’s color after log∗N + 1 rounds, we only need the labels
of its log∗N + 1 ancestors, which can be found with log∗N + 1 queries, since the parent of
a vertex can be found with one query.

We have shown that a Hamiltonian can be decomposed into d forests of arborescences,
each of which can be vertex-colored with 6 colors. If we consider all the edges of one of
the d forests that point to a vertex of a particular color, this graph is a galaxy. So this
decomposes the original Hamiltonian into 6d galaxies. For this particular decomposition
of the Hamiltonian to be useful, we need to show that galaxies can be simulated easily.

Theorem 5 (Galaxy simulation). If Hj is a Hamiltonian whose graph is a galaxy of
maximum degree d, and the oracle can identify which vertices are centers of stars, then the
unitary operator e−iHjt can be simulated using O(d) calls to an oracle for Hj.

Proof. The key idea is that given a vertex v, we can learn everything about the star to
which v belongs with O(d) queries. If v is the center of the star, the oracle identifies it as
the center, so we can query all its neighbors to learn everything about the star with at most
d queries. If v is not the center, we can determine the center, which is the only neighbor
of v, with only one query, and then learn the rest of the star with at most d queries.

Let R(x) denote all the information about the star to which x belongs: the label of the
center, the labels of the other vertices in some fixed order, and the weights of all the edges.
It is essential that R(x) depend only the star and not the particular vertex x chosen from
the star, so that if x and y belong to the same star then R(x) = R(y). Since we know
that R(x) can be computed with O(d) queries, we can implement the unitary U given by
U ∣x, 0⟩ = ∣x,R(x)⟩ with O(d) queries.

The Hamiltonian we are trying to simulate, Hj, is a galaxy. Thus, if c is the center
of a star, and its neighbors are yi with edge weights wi, then Hj ∣c⟩ =

∑
iwi ∣yi⟩. If x is

not the center of a star, and the edge between x and the center c has weight wx, then
Hj ∣x⟩ = wx ∣c⟩. Let K be a Hamiltonian which is similar to Hj, but acts on the input
state ∣x,R(x)⟩ instead of ∣x⟩. That is, K ∣c, R(c)⟩ =

∑
iwi ∣yi, R(yi)⟩ when c is the center,

and K ∣x,R(x)⟩ = wx ∣c, R(c)⟩ otherwise. Note that although the second register looks
different, it is unaffected by K since R(x) depends only on the star and not the vertex.
Combining K with the unitary U above, we see that Hj = U †KU . In words, U first
computes all the information about the star in another register, K performs the required
Hamiltonian, and the U † uncomputes the second register, which was unaffected by K.

This simulation is efficient since K can be simulated efficiently. More importantly for
our purposes, K requires no queries to implement, since all the information about the star
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is already present in the second register. Thus the operation Hj = U †KU requires only as
many queries as U and U † require, which is O(d).

Combining Lemma 2, Lemma 3, and Theorem 5 gives our Hamiltonian decomposition
theorem.

Theorem 6 (Hamiltonian star decomposition). For a d-sparse Hamiltonian H, there exists
a decomposition H =

∑m
j=1Hj, where each Hj is a galaxy, such that m = 6d and each

galaxy Hj can be simulated for time tj using Q(Hj) = O(d + log∗N) queries to an oracle
for H.

Proof. From Lemma 2, Lemma 3, and Theorem 5, we know that the claimed decomposition
is possible and the resulting galaxies can be simulated. It remains to show that any Hj can
be simulated for time tj using O(d+ log∗N) queries to an oracle for H (not the Hj). Thus
the number of queries includes the cost of the decomposition and the cost of simulating
Hj.

To show this, let us implement Hj on the basis state ∣x⟩. If the implementation is
correct on all basis states, it is correct for all input states by linearity. We are given an
index j, which represents two indices, 1 ≤ c ≤ d and 1 ≤ t ≤ 6. We want to simulate
the galaxy formed by edges in Hc directed toward vertices colored t by the vertex coloring
algorithm of Lemma 3.

From the proof of Theorem 5, it is clear that if we can compute R(x), then we can
implement U , and thereby simulate the desired Hamiltonian. R(x) contains all the infor-
mation about the star to which x belongs. Using the result of Lemma 2, we can determine
the list of x’s neighbors in Hc using O(d) queries. By the result of Lemma 3, with O(log∗N)
queries we can determine x’s color according to the vertex coloring algorithm. We now
have x’s color and a list of its neighbors in Hc.

If x’s color is not t, then x must be the center of a (possibly empty) star in Hj. The
only edges in this star point toward vertices of color t, so we compute the colors of all
the children of x in Hc. These can be computed using only the labels of their log∗N + 1
nearest ancestors, which are all common ancestors. Thus we can compute the colors of all
of x’s children using O(log∗N) queries in total. Now we know the star around x, and thus
R(x), using O(d+ log∗N) queries.

If x’s color is t, then x’s parent is the center of star. The parent of x, px, can be
determined with one query. Since x and px are in the same star, R(x) = R(px). Since px is
the center of a star, we can compute R(px) as described above; thus we can also compute
R(x).

We have shown that for any x, we can compute R(x) with O(d+ log∗N) queries. Thus
the unitary U in the proof of Theorem 5 can be simulated with O(d+ log∗N) queries. By
Theorem 5, this means we can implement Hj with O(d+ log∗N) queries, as claimed.
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Now we can use our Hamiltonian decomposition theorem, instead of Theorem 3, with
the Hamiltonian recombination theorem (Theorem 4). Since we have Q(Hj) = O(d +
log∗N) from Theorem 6 and m = 6d from Lemma 2 and Lemma 3, we get our final result
using Q�(H, t) ≤ Nexp ×maxj Q(Hj):

Q�(H, t) = O

(
52kd2(d+ log∗N)∥H∥t

(
d∥Ht∥
�

)1/2k
)
. (3.3)

When compared with the query complexity of (3.2), we see that this improves the
scaling with d. The query complexity of (3.3) is always at least as good as that of (3.2).
Furthermore, when d = Ω(log∗N), which is likely to be the case when d is not constant,
(3.3) has no log∗N term: the scaling (in terms of d and N) is (d3)1+o(1), as compared to
(3.2) which scales like (d4 log∗N)1+o(1).

3.4 Remarks and conclusion

An important observation here is that there is a trade-off between two parameters in this
framework, the number of Hamiltonians Hj, which is the parameter m, and the maximum
complexity of simulating each Hj, which is maxj Q(Hj). The overall query complexity is
roughly O(m2 maxj Q(Hj)). At one end, we can choose m = 1, which means we are not
decomposing the Hamiltonian at all. This choice does not lead to anything. At the other
end, we can choose a large value for m, but a small one for maxj Q(Hj). This is the choice
of Ref. [5], since they choose maxj Q(Hj) to be O(log∗N), which is almost a constant, but
m to be 6d2, making the overall query complexity scale like O(d4 log∗N). Our choice of
parameters is somewhere in the middle, since we choose m to be 6d, but the complexity
of each simulation increases to O(d+ log∗N). But since the scaling is quadratic in m, but
only linear in maxj Q(Hj), the trade-off is favorable.

So far, we have measured the size of H using the spectral norm ∥H∥, due to convention.
However, if we express the simulation complexity in terms of a different norm, then both
(3.2) and (3.3) can be improved to give slightly better bounds.

In the proof of Theorem 4, ∥H∥ is used as a simple upper bound for maxj ∥Hj∥. How-
ever, omitting this step gives a slightly stronger version of Theorem 4 with ∥H∥ replaced
by maxj ∥Hj∥. For a 1-sparse Hamiltonian, we know from (2.14) that ∥Hj∥ = max(Hj) ≤
max(H), so ∥H∥ can be replaced by max(H) in (3.2). This makes the final query com-
plexity of their algorithm (d4(log∗N) max(H))1+o(1).

However, this also leads to an improvement of our algorithm. When Hj is a galaxy,
∥Hj∥ = mcn(Hj) (see (5.1) in Chapter 5), and since Hj is entry-wise upper bounded by
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H, mcn(Hj) ≤ mcn(H). Thus ∥H∥ can be replaced with mcn(H) in (3.3). This makes our
algorithm scale like (d2(d+ log∗N) mcn(H))1+o(1).

Now the algorithms are difficult to compare, since they are stated in terms of different
norms. To directly compare the two simulations, we can apply the bound mcn(H) ≤√
dmax(H) from (2.14) to express both query complexities in terms of max(H). In these

terms, we still find that star decomposition improves over edge coloring: our algorithm uses
at most (d2.5(d + log∗N) max(H))1+o(1) queries, whereas the algorithm of Ref. [5] scales
like (d4(log∗N) max(H))1+o(1).
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Chapter 4

Simulating dense Hamiltonians

4.1 A no–fast-forwarding theorem for dense Hamilto-

nians

The no–fast-forwarding theorem (Theorem 1) establishes a lower bound on the simulation
of sparse Hamiltonians. Let us restate the theorem, as stated in Section 1.5:

Theorem 1 (No–fast-forwarding theorem). For any positive integer N there exists a row-
computable sparse Hamiltonian H with ∥H∥ = 1 such that simulating the evolution of H
for time t = �N/2 within precision 1/4 requires at least N/4 queries to H.

Although the theorem is stated with ∥H∥ = 1, any of the norms in Lemma 1 could
have been used, since the Hamiltonian used in the proof of the no–fast-forwarding theorem
is 2-sparse, and by (2.14) the norms differ at most by a factor of 2. In particular, the
theorem could be restated with max(H) ≤ 1 or ∥H∥1 ≤ 2.

Since the choice of norm is unclear, it is conceivable that there are Hamiltonian sim-
ulation algorithms that run in time O(max(Ht)) or O(mcn(Ht)). To distinguish between
the norms, we require a dense Hamiltonian. The aim of this section is use the proof
techniques of Theorem 1 to establish a similar theorem for dense Hamiltonians. In par-
ticular, we show that there does not exist an algorithm for simulating dense Hamiltonians
in time O(max(Ht)) or O(mcn(Ht)). However, this does not appear to rule out O(∥Ht∥)
simulations, which we rule out in the next section with a different idea (Theorem 7).

Although Theorem 8 in the next section is stronger than Theorem 7 below, we briefly
present this straightforward generalization of the no–fast-forwarding theorem to show the
extent of that approach as applied to the non-sparse case.
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As in Theorem 1, we consider a black-box formulation of the problem of simulating
dense Hamiltonians. We consider a different and stronger black box here, because the
black box used in Theorem 1 is too weak for dense Hamiltonians (i.e., it is too easy to
prove lower bounds). Instead we assume that there is a black box that can be queried with
a row index j, which outputs the entire jth row, as opposed to giving just one element of
the jth row. Obviously any lower bounds proved for this black box still hold for the one
used for sparse Hamiltonian simulation.

Since the Hamiltonian is dense, the description of the jth row can be exponentially large.
This is not a problem, however, since our goal is to find a lower bound on query complexity,
not time complexity. Even though each query takes exponential space, it counts as only
one query.

In terms of this black-box model, we have the following:

Theorem 7. For any positive integer N , there exists a non-sparse Hamiltonian H such
that simulating the evolution of H for time t = �N/2 within precision 1/4 requires at
least N/4 queries to H. This Hamiltonian has ∥H∥ = 1, mcn(H) = Θ(1/

√
N), and

max(H) = Θ(1/N).

Proof. The main idea, as in the proof of Theorem 1 [5], is to construct a Hamiltonian
whose simulation for time t = �N/2 determines the parity of N bits. Since we know that
computing the parity of N bits requires at least N/2 queries [3, 17], this Hamiltonian cannot
be simulated with o(N) queries. Moreover, we want this Hamiltonian to be non-sparse.

To motivate the construction of the Hamiltonian H, we start with a simple sparse
Hamiltonian H1 whose graph is just a line with N + 1 vertices. Consider the Hamiltonian
acting on vectors ∣i⟩ with i ∈ {0, . . . , N}. The nonzero matrix entries of H1 are

⟨i ∣H1∣ i+ 1⟩ = ⟨i+ 1 ∣H1∣ i⟩ =
√

(N − i)(i+ 1)/N (4.1)

for i ∈ {0, 1, . . . , N −1}. This Hamiltonian has ∥H1∥ = 1, and simulating H1 for t = �N/2
starting with the state ∣0⟩ gives the state ∣N⟩ (i.e., e−iH1t∣0⟩ = ∣N⟩). If one has not
seen this Hamiltonian before, it is not clear why e−iH1t∣0⟩ = ∣N⟩ and how the entries of
H1 are chosen. This Hamiltonian is a multiple of the angular momentum operator Jx
of a system with spin N/2. The equation e−iH1t∣0⟩ = ∣N⟩ is analogous to the equation
e−i�Jx∣j,−j⟩ = ∣j,+j⟩, with j = N/2.

Now consider the Hamiltonian H2, which is the same one chosen in Ref. [5], generated
from an N -bit string S0S1 . . . SN−1. H2 acts on vertices ∣i, j⟩, with i ∈ {0, . . . , N} and
j ∈ {0, 1}. The nonzero matrix entries of this Hamiltonian are

⟨i, j ∣H2∣ i+ 1, j ⊕ Si⟩ = ⟨i+ 1, j ⊕ Si ∣H2∣ i, j⟩ =
√

(N − i)(i+ 1)/N (4.2)
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for all i and j.

By construction, ∣0, 0⟩ is connected to either ∣i, 0⟩ or ∣i, 1⟩ for any i; it is connected to
∣i, j⟩ if and only if j = S0 ⊕ S1 ⊕ . . . ⊕ Si−1. Thus ∣0, 0⟩ is connected to either ∣N, 0⟩ or
∣N, 1⟩, and determining which is the case determines the parity of S. The graph of this
Hamiltonian consists of two disjoint lines, one of which contains ∣0, 0⟩ and either ∣N, 0⟩
or ∣N, 1⟩ depending on the parity of S. Just as for H1, starting with the state ∣0, 0⟩ and
simulating H2 for time t = �N/2 will give either ∣N, 0⟩ or ∣N, 1⟩, which determines the
parity of S. Note that since H2 is a permutation of H1 ⊕H1, ∥H2∥ = ∥H1∥ = 1. This is
the Hamiltonian used in the proof of Theorem 1.

Finally, we construct the dense Hamiltonian H that has the properties stated in the
theorem. As before, H is generated from an N -bit string S0S1 . . . SN−1. Now H acts on
vertices ∣i, j, k⟩, with i ∈ {0, . . . , N}, j ∈ {0, 1}, and k ∈ {0, N − 1}. The nonzero entries
of H are given by

⟨i, j, k ∣H∣ i+ 1, j ⊕ Si, k′⟩ = ⟨i+ 1, j ⊕ Si, k′ ∣H∣ i, j, k⟩ =
√

(N − i)(i+ 1)/N2 (4.3)

for all i, j, k, and k′. The graph of H is similar to that of H2, except that for each vertex
in H2, there are now N copies of it in H. This Hamiltonian is dense because it has Θ(N2)
vertices and each vertex is connected to all N copies of its neighboring vertices, which gives
at least N nonzero entries in each row.

Now we simulate the Hamiltonian starting from the uniform superposition over the
copies of the ∣0, 0⟩ state, i.e., from the state 1√

N

∑
k ∣0, 0, k⟩. The subspace span{

∑
k ∣i, j, k⟩}

of uniform superpositions over the third register is an invariant subspace of this Hamil-
tonian. Since the initial state lies in this subspace, the quantum walk remains in this
subspace. In other words, the quantum walk on this dense graph starting from the chosen
state reduces to the quantum walk on H2 starting from the ∣0, 0⟩ state.

Now, just as before, the parity of S can be determined by simulating H for time
t = �N/2. This gives the lower bound of N/2 queries.

To calculate the norms of this Hamiltonian, we observe that H = H2 ⊗ J/N , where
J is the all-ones matrix of size N × N . This gives ∥H∥ = ∥H2∥ ⋅ ∥J∥/N = 1. Direct
computation shows that max(H) = Θ(1/N) and mcn(H) = Θ(1/

√
N).

This theorem rules out algorithms that make only O(max(Ht)) or O(mcn(Ht)) queries,
since for this Hamiltonian with t = �N/2 we have max(Ht) = Θ(1) and mcn(Ht) =
Θ(
√
N), both of which are disallowed by the lower bound of Ω(N). However, this does not

distinguish between ∥H∥ and ∥abs(H)∥ (since abs(H) = H), and in fact ∥H∥1 ∼ 1 as well.
In the next section we construct examples with ∥abs(H)∥ ≫ ∥H∥ in order to show that a
general simulation using O(∥Ht∥) steps (or even poly(∥Ht∥, logN) steps) is not possible.
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4.2 A stronger limitation for dense Hamiltonians

As discussed in Section 1.5, there are dense Hamiltonian simulation algorithms that use
O(∥abs(Ht)∥) or O(∥Ht∥1) steps of a discrete-time quantum walk. However, in light of the
no–fast-forwarding theorem for dense Hamiltonians, it might be reasonable to hope that
dense Hamiltonians can be simulated in O(∥Ht∥) steps, or at least in poly(∥Ht∥, logN)
steps. Indeed, if such simulations existed they could be applied to give new quantum
algorithms for various problems [7]. In this section, we show that such simulations are,
unfortunately, not possible in general.

The currently known dense Hamiltonian simulation algorithms rely on certain proper-
ties of the Hamiltonian that we call its structural properties. By this we mean the location
of nonzero entries in H, which correspond to the location of edges in the graph of the
Hamiltonian, and the magnitudes of the edge weights. (The remaining information about
the Hamiltonian is the phase of each matrix entry Hij.)

Given the structural information, the currently known algorithms can simulate dense
Hamiltonians using O(∥abs(Ht)∥) or O(∥Ht∥1) calls to an oracle that gives the phase of
the matrix entry at Hij. We call this the matrix entry phase oracle. This oracle provides
the value of Hij/∣Hij∣ when queried with the input (i, j). (The oracle may return any
complex number of unit modulus—say, 1—when Hij = 0.)

Note that in this formulation of the problem, the algorithm has access to a lot of infor-
mation about the Hamiltonian it has to simulate. It has complete structural information
about the Hamiltonian, which is already an exponential amount of information. It might
seem that given so much information, an algorithm can simulate the Hamiltonian with
very few queries to the matrix entry phase oracle. Indeed, with this information there does
exist an algorithm which simulates the Hamiltonian with O(∥abs(Ht)∥) queries [7].

However, we show that given a matrix entry phase oracle and complete structural in-
formation, there exist some Hamiltonians that cannot be simulated with poly(∥Ht∥, logN)
queries. The following theorem is our main result.

Theorem 8. No quantum algorithm can simulate a general Hamiltonian H ∈ ℂN×N for
time t with poly(∥Ht∥, logN) queries to a matrix entry phase oracle, even when given
complete structural information about the Hamiltonian.

Proof. The proof of the theorem is divided into two parts. First we show that there exists
a set of Hamiltonians of size N × N that is hard to simulate on average for a particular
time t. Specifically, we show that simulating a Hamiltonian selected uniformly at random
from this set for a chosen time has average-case query complexity Ω(

√
N/ logN). Then

we show that a Hamiltonian simulation algorithm that makes poly(∥Ht∥, logN) queries
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would violate this lower bound. The lemmas used in this section are proved in the next
section.

To show the lower bound, we need a black-box problem with an Ω(
√
N/ logN) average-

case lower bound, and a set of Hamiltonians whose simulation would solve this problem.
We consider the problem of distinguishing strings s ∈ {−1,+1}M that have sum −B
or +B, given a black box for the entries of the string. When queried with an index
i ∈ {1, 2, . . . ,M}, the black box returns the value of si ∈ {−1,+1}, where s = s1s2 . . . sM .
The following lemma characterizes the query complexity of this problem.

Lemma 4. Suppose we are given black-box access to a string s ∈ {−1,+1}M , where s
is chosen uniformly at random from the set of strings with

∑
i si ∈ {−B,+B}. Then

determining
∑

i si has average-case quantum query complexity Θ(M/B).

Thus, determining whether the sum is −
√
M logM or +

√
M logM , with the promise

that one of these is the case, requires Ω(
√
M/ logM) quantum queries on average. For

each string s, we construct a Hamiltonian Hs whose simulation for a particular time allows
us to distinguish the two possible cases (assuming s satisfies the promise).

Let Hs be a symmetric circulant matrix of size N ×N , where N = 2M + 1 is odd. A
circulant matrix is a matrix in which each row is rotated one element to the right relative to
the preceding row. (The rotation “wraps around,” i.e., the last element of a row becomes
the first element of the next row.) Consequently, a circulant matrix is completely specified
by its first row. However, since Hs is a symmetric circulant matrix, it is completely specified
by just the first M + 1 entries of the first row. Let the first entry of the first row be 0, and
the next M entries of the first row be s1, s2, . . . , sM . In other words, the first M + 1 entries
of the first row of Hs are 0 followed by the string s. Then the fact that Hs is symmetric
forces the remaining entries of the first row to be sM , sM−1, . . . , s1.

Given a black box for the entries of s, we can easily construct a black box for the entries
of Hs. Indeed, one query to H can be simulated with at most one query to the string s.
Sometimes no query to s is needed, since the diagonal entries of Hs are always 0.

Since Hs is a circulant matrix, it is diagonalized by the discrete Fourier transform. Its
eigenvalues �0, �1, . . . , �N−1 are

�k = 2
M∑
j=1

sj cos

(
2�jk

N

)
, and in particular, �0 = 2

M∑
j=1

sj. (4.4)

Thus the time evolution of Hs can be used to learn whether
∑

j sj is −
√
M logM or

+
√
M logM . Since �0 = 2

∑
j sj, the two cases can be distinguished by determining the

sign of �0. Note that we know the eigenvector corresponding to �0: it is the first column of
the discrete Fourier transform matrix, i.e., the uniform superposition over all computational
basis states.
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Consider the eigenvalues and eigenvectors of the unitary matrix e−iH� that corresponds
to evolving H for time � = �/4

√
M logM . The eigenvectors of this matrix are the same

as those of H, and each eigenvalue �k of H corresponds to the eigenvalue exp (−i�k�)
of e−iH� . Thus the uniform superposition is an eigenvector of e−iH� with eigenvalue
exp (−i�0�) = exp

(
−i�

∑
i si/2

√
M logM

)
. Since

∑
i si/
√
M logM is either ±1, the two

possible eigenvalues are ±i. Because the eigenvector is known, the two possibilities can
be easily distinguished by phase estimation [27, 11] on the unitary e−iH� . Since the prob-
lem of distinguishing these two cases has an Ω(

√
M/ logM) average-case lower bound by

Lemma 4, we get an Ω(
√
M/ logM) average-case lower bound for simulating such Hamil-

tonians for time � = �/4
√
M logM .

Now we want to show that a poly(∥Ht∥, logN) Hamiltonian simulation algorithm vi-
olates this average-case lower bound. Since we are dealing with average-case complex-
ity, we need to know the typical behavior of ∥Hs∥ when s satisfies the promise. Let
S := {−1,+1}M and let P be the subset of strings in S that satisfy the promise that∑

j sj is either −
√
M logM or +

√
M logM . As a first step, let us see the behavior of ∥Hs∥

for all strings s ∈ S, not just those that satisfy the promise.

Lemma 5. Let Hs ∈ ℝN×N be a symmetric circulant matrix of size N = 2M + 1 with the
first M + 1 entries of the first row given by 0 followed by a string s ∈ S. If s is chosen
uniformly at random from S, denoted s ∈R S, then for any d > 0,

Pr
s∈RS

(
∥Hs∥ ≥ 4d

√
M logM

)
≤ 4 + o(1)

M2d2−1
. (4.5)

In fact, even stronger results of this kind are known [34, 23], but the above bound
is easy to prove and sufficient for our purposes. Using Lemma 5, we wish to bound the
spectral norm of Hs when s ∈R P . We can do so by first calculating the probability that
a randomly selected string satisfies the promise.

Lemma 6. If s ∈R S, then the probability that s satisfies the promise is

Pr
s∈RS

(s ∈ P) = Θ(1/M). (4.6)

Using Lemmas 5 and 6, we can upper bound the probability that ∥Hs∥ is large when s
is chosen uniformly at random from P . If X is the event that ∥Hs∥ ≥ 4d

√
M logM and Y

is the event that s ∈ P , then Pr(X) is given by Lemma 5 and Pr(Y ) is given by Lemma 6.
In these terms, we can compute an upper bound for Pr(X∣Y ) as follows:

Pr
s∈RP

(
∥Hs∥ ≥ 4d

√
M logM

)
= Pr(X∣Y ) =

Pr(X ∩ Y )

Pr(Y )
≤ Pr(X)

Pr(Y )
= O(M2−2d2). (4.7)
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To achieve a contradiction, assume that for some constant c > 0, there exists a Hamil-
tonian simulation algorithm using O ((∥Ht∥ logM)c) queries to simulate H for time t. By
(4.7), we know that Hs almost always has spectral norm smaller than 4d

√
M logM when

s ∈R P . Since ∥Hs∥ ≤ ∥Hs∥1 = 2M , we can compute the average-case query complexity
of the claimed algorithm for simulating a uniformly random Hamiltonian Hs chosen from
the promised set for time � = �/4

√
M logM as follows:

E
s∈RP

((∥Ht∥ logM)c) ≤ Pr
s∈RP

(
∥Hs∥ < 4d

√
M logM

)
O
((

4d
√
M logM� logM

)c)
+ Pr

s∈RP

(
∥Hs∥ ≥ 4d

√
M logM

)
O((2M� logM)c) (4.8)

≤ O((d logM)c) +O
(
M c/2−2d2+2(logM)c/2

)
, (4.9)

and by choosing 2d2 > c/2 + 2, we have

E
s∈RP

((∥Ht∥ logM)c) = O ((logM)c) . (4.10)

Thus the average-case query complexity of the claimed algorithm is O ((logM)c), which
violates the lower bound of Ω(

√
M/ logM).

The proof technique above can be extended to rule out algorithms with query com-
plexity sub-exponential in (∥Ht∥, logN) as well, by changing the promised set (i.e., the
value of B used in Lemma 4) and choosing a larger value of d in Lemma 5. Exponential
functions of (∥Ht∥, logN) cannot be ruled out, of course, since any Hamiltonian can be
simulated by making O(N2) queries, which is exponential in logN . On the other hand, if
we insist that the query complexity of an algorithm depends only on ∥Ht∥ (and not logN),
then the proof above can be modified to rule out algorithms whose time complexity is an
arbitrary function of ∥Ht∥. For example, there exists no Hamiltonian simulation algorithm
that makes exp(exp(∥Ht∥)) queries.

Finally, we emphasize that even though the above proof uses average-case complexity
and distributions over inputs, Theorem 8 is a statement about the worst-case complexity
of simulating Hamiltonians.

4.3 Proofs of lemmas

In this section, we prove Lemmas 4, 5, and 6, which were used in the previous section.

Lemma 4. Suppose we are given black-box access to a string s ∈ {−1,+1}M , where s
is chosen uniformly at random from the set of strings with

∑
i si ∈ {−B,+B}. Then

determining
∑

i si has average-case quantum query complexity Θ(M/B).
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Proof. We prove this by first showing the same lower bound for the worst-case problem
using the quantum adversary method [2] and then reducing the worst-case problem to the
average-case problem.

For the worst-case lower bound, we use the original quantum adversary method of
Ambainis [2, Theorem 2]:

Theorem 9 (Ambainis). Let f(x1, . . . , xN) be a function of n {0, 1}-valued variables and
X, Y be two sets of inputs such that f(x) ∕= f(y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y be
such that

1. For every x ∈ X, there exist at least m different y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y , there exist at least m′ different x ∈ X such that (x, y) ∈ R.

3. For every x ∈ X and i ∈ {1, . . . , n}, there are at most l different y ∈ Y such that
(x, y) ∈ R and xi ∕= yi.

4. For every y ∈ Y and i ∈ {1, . . . , n}, there are at most l′ different x ∈ X such that
(x, y) ∈ R and xi ∕= yi.

Then, any quantum algorithm computing f uses Ω
(√

mm′

ll′

)
queries.

We require two sets of inputs X and Y that have different outputs. Let X be the set
of all strings for which

∑
i si = −B, and Y be the set for which

∑
i si = +B. We define

the relation R as follows. Let an element x ∈ X be related to an element of y ∈ Y if and
only if y can be reached from x by changing exactly B/2 −1s to +1s in the string x. Note
that a string in X has exactly (M/2 +B/2) −1s and (M/2−B/2) +1s.

Using these sets X and Y , and the relation defined above, it is easy to see that

m = m′ =

(
M/2 +B/2

B

)
and l = l′ =

(
M/2 +B/2− 1

B − 1

)
, (4.11)

so
m

l
=
m′

l′
=

1

2

(
M

B
+ 1

)
. (4.12)

Theorem 9 now provides a lower bound of Ω
(√

mm′/ll′
)

= Ω(M/B) for the worst-case

query complexity of this problem.

The worst-case query complexity can now be reduced to the average-case query com-
plexity under the uniform distribution over all input strings satisfying the promise. To do
this, we first apply a uniformly random permutation to the input string, and then with
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probability 1
2

multiply all the entries by −1 (and leave them unchanged with probability
1
2
). The resulting distribution is now uniform over all input strings satisfying the promise.

If the string is not multiplied by −1, then the output of the permuted string is the same as
the input string. If the string is multiplied by −1, then the output of the modified string
is the complement of that of the original input.

The lower bound is tight due to a matching upper bound provided by the algorithm
for approximate quantum counting [6]. To distinguish the two types of inputs, we can
approximately count the number of +1s to accuracy � = B/2M , which requires O(M/B)
queries.

The lower bound can also be shown by reducing it to a well-known hard problem. The
problem chosen in Lemma 4 looks similar to the problem of computing the majority of M
bits, which is the problem of determining whether Σisi ≥ 0. If we let B = 1, then our
problem looks like the hardest case of the majority problem, since the sum is just above or
below zero. Unsurprisingly, it can be shown that this problem is as hard as the majority
problem, which is known to have a lower bound of Ω(M) [3]. This problem on an input
of size of M/B bits can be reduced to our problem by duplicating all the inputs B times.
Thus if the original problem had Σisi = 1, then after duplicating the bits, the new sum
will be +B, and the input size will be M . This again gives a lower bound of Ω(M/B).

Lemma 5. Let Hs ∈ ℝN×N be a symmetric circulant matrix of size N = 2M + 1 with the
first M + 1 entries of the first row given by 0 followed by a string s ∈ S. If s is chosen
uniformly at random from S, denoted s ∈R S, then for any d > 0,

Pr
s∈RS

(
∥Hs∥ ≥ 4d

√
M logM

)
≤ 4 + o(1)

M2d2−1
. (4.13)

Proof. The eigenvalues of Hs are �r = 2
∑M

j=1 sj cos 2�jr
N

, where r ∈ {0, 1, . . . , N − 1}.
We wish to bound the probability that �r is large, so as to bound the probability of
∥Hs∥ = maxr ∣�r∣ being large. This is achieved by applying Hoeffding’s inequality [25,
Theorem 2].

Theorem 10 (Hoeffding’s inequality). If X1, X2, . . . , XM are independent and aj ≤ Xj ≤
bj for all 1 ≤ j ≤M , then for any t > 0, we have

Pr (X − E (X) ≥Mt) ≤ exp

(
−2M2t2∑M
j=1(bj − aj)2

)
(4.14)

where X =
∑M

j=1 Xj.
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If we take Xj = 2sj cos 2�jr
N

, then X = �r = 2
∑M

j=1 sj cos 2�jr
N

, each Xj is between −2

and +2, and E (X) =
∑M

j=1 E (Xj) = 0. By choosing t = 4d
√

logM/M , we get

Pr
(
�r ≥ 4d

√
M logM

)
≤ exp

(
−2M2(16d2 logM/M)∑M

j=1 42

)
=

1

M2d2
. (4.15)

Since a similar inequality holds when Xj is replaced by −Xj, we get

Pr
(
∣�r∣ ≥ 4d

√
M logM

)
≤ 2

M2d2
. (4.16)

Finally, since ∥Hs∥ = maxr ∣�r∣, a union bound gives

Pr
(
∥Hs∥ ≥ 4d

√
M logM

)
≤ 2N

M2d2
, (4.17)

which implies the desired result.

Lemma 6. If s ∈R S, then the probability that s satisfies the promise is

Pr
s∈RS

(s ∈ P) = Θ(1/M). (4.18)

Proof. Of the 2M strings of length M , those with sum −
√
M logM or +

√
M logM have

either 1
2
(M +

√
M logM) +1s or 1

2
(M +

√
M logM) −1s. Thus the total number of such

strings is

2

(
M

M+
√
M logM
2

)
. (4.19)

We can asymptotically approximate this expression using a well-known approximation for
the binomial coefficients (see for example equations 4.5 and 4.10 of Ref. [32]), which states
that (

n

k

)
∼ 2n exp (−2(k − n/2)2/n)√

�n/2
(4.20)

provided ∣k − n/2∣ = o(n2/3). Applying this to (4.19), we get

2

(
M

M+
√
M logM
2

)
= Θ

(
2M exp(− logM/2)/

√
M
)

= Θ(2M/M), (4.21)

which proves the claim.
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Chapter 5

Simulating structured Hamiltonians

5.1 Structured Hamiltonians

As mentioned in Section 1.5 and Chapter 3, we know how to simulate general sparse
Hamiltonians efficiently. As before, efficient means the running time of the quantum
algorithm should be poly(logN, ∥Ht∥, 1/�). On the other hand, we saw in Chapter 4 that
even with considerable information about a non-sparse Hamiltonian, it is not possible to
simulate it efficiently.

In algorithmic applications of Hamiltonian simulation, often the Hamiltonian to be sim-
ulated is known in great detail. For example, in the NAND tree evaluation algorithm [16],
the Hamiltonian to be simulated is a tree. In the particular case of evaluating a balanced
NAND tree, the Hamiltonian is a balanced binary tree (except the last level, which might
have one or zero children instead of two). Balanced binary trees are 3-sparse, and thus one
could use any black-box algorithm for simulating sparse Hamiltonians.

If we just use the algorithm of Ref. [5] whose query complexity is given by (1.2), the
query complexity turns out to be about (log∗N × t)1+o(1). However, the log∗N arises only
because the black-box algorithm has to decompose the tree into edges. But since we know
the structure of the tree, this decomposition can be done by us, thus removing the log∗N
term from the complexity of simulating such Hamiltonians. The moral of the story is that
in algorithmic applications we often know useful information about the Hamiltonian that
we are trying to simulate, which might help us speed up the simulation.

This chapter considers the problem of simulating dense Hamiltonians efficiently, given
access to structural information about the Hamiltonian. In Chapter 4, we defined the
structural information to be information about the magnitudes of all the entries in the
Hamiltonian. Often we do not really require all that information to simulate dense Hamil-
tonians; all we need is to be able to perform the discrete-time quantum walk in Theorem 2.
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In the following sections, we assume that we have enough structural information about
the dense Hamiltonian we wish to simulate to perform the discrete-time quantum walk
efficiently.

As Theorem 8 shows, we cannot hope for general Hamiltonian simulation algorithms
that scale polynomially in the spectral norm of the Hamiltonian, even with access to the
structural information of the Hamiltonian. Although we do know algorithms that scale like
O(∥abs(H)t∥), Lemma 1 tells us that ∥abs(H)∥ could be exponentially larger than ∥H∥.
However, we can achieve better scaling for special classes of Hamiltonians. For example,
we saw in Section 2.1 that much stronger bounds hold for sparse Hamiltonians.

5.2 Graphs of low arboricity

We can also improve the inequalities of Lemma 1 for certain classes of non-sparse Hamil-
tonians. For example, consider the class of Hamiltonians whose graphs are trees. Such
Hamiltonians can be efficiently simulated (given enough structural information) even when
they are not sparse: in this case, Theorem 2 gives a simulation using O(∥Ht∥) steps of a
discrete-time quantum walk, because when the graph of H is a tree, ∥abs(H)∥ = ∥H∥.

Proposition 1. If the graph of a Hermitian matrix H is a tree, then there exists a unitary
matrix U such that UHU † = abs(H). In particular, ∥abs(H)∥ = ∥H∥.

Proof. The matrix U is diagonal. To define Uii, we arbitrarily fix some vertex as the root
and consider the unique path from the root to vertex i. Let the path contain the vertices
i0, i1, . . . , ip−1, ip, i, where i0 is the root and ip is the parent of i. For each nonzero entry ofH,
define �ij := Hij/∣Hij∣. Then let Uii := 1 if i is the root and Uii := �i0i1�i1i2 ⋅ ⋅ ⋅�ip−1ip�ipi
otherwise. (Since these �ij correspond to edges, the corresponding Hij is nonzero, and thus
�ij is well defined.)

Since U is diagonal, (UHU †)ij = UiiHijU
∗
jj. If i and j are not adjacent in the tree, then

(UHU †)ij = Hij = 0 as required. Otherwise, suppose without loss of generality that j is the
parent of i. Then UiiU

∗
jj = ∣�i0i1∣2∣�i1i2 ∣2 ⋅ ⋅ ⋅ ∣�ip−1ip ∣2�ji = Hji/∣Hij∣, so (UHU †)ij = ∣Hij∣

as claimed.

Thus Theorem 2 gives a simulation using O(∥Ht∥) steps of a discrete-time quantum
walk. However, there is another simulation method for such Hamiltonians that uses only
mcn(Ht)1+o(1) steps [7, Theorem 4]. It seems from Lemma 1 that the discrete-time quantum
walk might be inferior to this, but due to Proposition 2 below it is, in fact, superior to the
mcn(Ht)1+o(1) simulation (except with respect to error scaling), since ∥Ht∥ ≤ 2 mcn(Ht)
when the graph of the Hamiltonian H is a tree.
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If H can be expressed as the sum of a small number of Hamiltonians, each of whose
graph is a forest, then H can be efficiently simulated when ∥H∥ is small. Recall that a
graph is said to have arboricity k if its adjacency matrix can be written as the sum of the
adjacency matrices of k forests, but not k − 1 forests.

Proposition 2. If the graph of a Hamiltonian H has arboricity k, then ∥abs(H)∥ ≤
2kmcn(H). Moreover, ∥abs(H)∥ ≤ 2k∥H∥ and ∥H∥ ≤ 2kmcn(H).

Proof. We begin by considering the case of a star graph. We show that if S is a Hamiltonian
whose graph is a star,

mcn(S) = ∥S∥ = ∥abs(S)∥. (5.1)

By permuting the vertices, the first vertex can be chosen to be the one with maximum
degree. Now the first column of the matrix S completely determines the Hamiltonian. Let
the first column be w. The matrix S has first column w and first row w†. It is easy to see
that mcn(S) = ∥w∥. S has exactly two nonzero eigenvalues, ±∥w∥, corresponding to the
eigenvectors ∥w∥e1 ± w, where e1 is the first column of the identity matrix. Since ∥S∥ is
the maximum eigenvalue, ∥S∥ = mcn(S).

Moreover, since abs(S) is a Hamiltonian whose graph is a star, we have ∥abs(S)∥ =
mcn(abs(S)). For any matrix H, mcn(abs(H)) = mcn(H), since the norms of the columns
depend only on the magnitude of each entry. This proves the desired result, mcn(S) =
∥S∥ = ∥abs(S)∥. These results also hold for galaxies, since the above norms �(⋅) all have
the property that �(A1 ⊕ . . .⊕ An) = max(�(A1), . . . , �(An)).

To show the result for graphs of arboricity k, we begin by showing how a rooted tree can
be decomposed into the sum of two forests of stars. The first forest contains all the edges
in which the parent vertex is at a even distance from the root. The second forest contains
the rest of the edges. This decomposes a rooted tree into two forests of stars, and similarly
decomposes a forest into two forests of stars. Since the Hamiltonian has arboricity k, it
can be decomposed into k forests, which can be decomposed into 2k forests of stars.

Thus H =
∑2k

l=0 Sl, where each of the Sl is a Hermitian matrix whose graph is a forest
of stars. Moreover, the matrices Sl have no overlapping edges, i.e., if (Sl)ij ∕= 0 for some
l, then (Sl)ij = 0 for all other l. Therefore, for all i, j, l, Hij ≥ (Sl)ij, which implies
mcn(H) ≥ mcn(Sl) for all l. This gives

mcn(H) ≥ 1

2k

∑
l

mcn(Sl) =
1

2k

∑
l

∥Sl∥. (5.2)

Using the triangle inequality, we find

∥abs(H)∥ ≤
∑
l

∥abs(Sl)∥ =
∑
l

∥Sl∥. (5.3)
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Combining (5.2) and (5.3) gives the main result. Using Lemma 1 and the main result
gives ∥abs(H)∥ ≤ 2k∥H∥ and ∥H∥ ≤ 2kmcn(H).

This shows that Hamiltonians with low arboricity can be simulated efficiently, since the
algorithm of Theorem 2 gives an efficient algorithm as ∥abs(H)∥ ≤ 2k∥H∥.
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Chapter 6

Concluding remarks and open
problems

In Chapter 3 we described a Hamiltonian decomposition technique that reduces the query
complexity of simulating sparse Hamiltonians from the previous best (d4 log∗N)1+o(1) to
(d2(d+ log∗N))1+o(1) in terms of N and d, without changing the dependence on the other
parameters, especially the error scaling. As stated in Section 1.5, if we are willing to
tolerate much higher error then we can achieve the query complexity given by (1.4) and
reduce the dependence on d and N . But how much can the dependence on d and N be
reduced, keeping the same error scaling? Are there interesting trade-offs between these
parameters suggesting that all the parameters cannot be simultaneously optimized?

On the other hand, we can establish some lower bounds on sparse Hamiltonian simula-
tion using Theorem 8 of Chapter 4. Although the theorem is about dense Hamiltonians, we
can consider a sparse Hamiltonian whose first d×d entries are nonzero (making it d-sparse)
and apply the lower bound in Theorem 8 with d instead of N . This shows that some query
complexities, like poly(∥Ht∥) (with no d dependence) cannot be achieved. By tweaking the

argument of Theorem 8, we can also rule out algorithms that scale like o
(√

d
log d
∥Ht∥

)
or

o(dmax(Ht)). For constant error, the complexity of the algorithm of Ref. [4] given by (1.4)
is indeed O(dmax(Ht)). Since o(dmax(Ht)) is disallowed by our bound, this algorithm is
optimal in terms of these parameters.

As explained in Section 3.4, the Hamiltonian decomposition–recombination framework
has an interesting trade-off that we exploited to improve the sparse Hamiltonian simulation
algorithm. It would be interesting to see if this framework can be used to further reduce
the dependence on d. It would also be interesting to establish stronger limitations on
the simulation of sparse Hamiltonians taking error dependence into account, since all the
present lower bounds only require constant-error simulation.
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Another interesting direction for future research is to answer the following question:
Can we simulate Hamiltonians with error dependence poly(log(1/�)) instead of poly(1/�)?
This would be an extremely high-precision algorithm for simulating sparse Hamiltonians.
Currently no such algorithm is known, and it might be the case that this is impossible. An
answer to this question either way would be interesting.

Finally, can the sparse Hamiltonian simulation techniques be extended to cover some
classes of non-sparse Hamiltonians? This is a very open-ended question, but it is conceiv-
able that ideas used for sparse Hamiltonian simulation might help with simulating some
non-sparse Hamiltonians.

In Chapter 4 we ruled out the possibility of a generic Hamiltonian simulation algo-
rithm using only poly(∥Ht∥, logN) operations, even with considerable extra information
about the Hamiltonian. However, we can nevertheless hope that some nontrivial classes of
Hamiltonians can be simulated in poly(∥Ht∥, logN) steps even though ∥H∥ ≪ ∥abs(H)∥.

One approach is to consider changing the basis in which the Hamiltonian is simulated.
Clearly, if unitary transformations U and U † can be performed efficiently, then H can be
simulated efficiently if and only if UHU † can. There must exist bases in which UHU † is
sparse (such as the basis in which it is diagonal), which may lead to efficient simulations of
H. Some trivial classes of Hamiltonians can be simulated in this way, such as Hamiltonians
that are tensor products of small factors. For example, the Hamiltonian R⊗n, where R :=
( 1 1

1 −1 ) /
√

2 is the Hadamard matrix, has ∥R⊗n∥ = 1 and ∥R⊗n∥1 = ∥abs(R⊗n)∥ = 2n/2, yet
the evolution according to R⊗n is easy to simulate. A similar simulation for a case where
the Hamiltonian is not a tensor product was used in Ref. [9].

An alternative method is to investigate ways of decomposing a Hamiltonian as a sum of
Hamiltonians that can be efficiently simulated. For example, we can simulate Hamiltonians
whose graphs have polynomial arboricity by decomposing them into stars (although we
saw in Proposition 2 that such Hamiltonians can already by simulated efficiently by the
method of Ref. [7] since they satisfy ∥abs(H)∥ = O(∥H∥)). More generally, other graph
decompositions could give rise to new efficient simulations.

Another interesting problem is to find classes of Hamiltonians that can be simulated
in sublinear time. These correspond to quantum systems whose time evolution can be
fast-forwarded. Some Hamiltonians may even be simulated in constant time, if e−iH� = I
after some constant time � (for example, the case R⊗n mentioned above has � = 2�).

We can also consider the problem of simulating dense Hamiltonians when given access
to a matrix entry oracle. This oracle returns Hij when queried with (i, j). It is clear that
many Hamiltonians require exponential time to simulate with this oracle, but the exact
query complexity can still be investigated. For example, since a Hamiltonian is described
by an N × N matrix, it can clearly be simulated with N2 queries. However, we can do
much better.
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Let us try using the algorithm of Chapter 3 in this case. A dense Hamiltonian corre-
sponds to d = N , and in this case the sparse Hamiltonian oracle and the matrix entry oracle
become the same. Plugging in d = N in (3.3), we see that the query complexity exceeds
N3, which is clearly unsatisfactory. Instead, let us use the discrete-time quantum walk
based algorithm whose complexity is given by (1.4). This gives an algorithm with query

complexity O
(
∥Ht∥√

�
+N max(H)t

)
. For constant error, constant time and max(H) = 1,

this gives an O(N) algorithm, which is optimal.

It would be interesting to see if this can be improved. For example, can the de-
pendence on � be improved? Perhaps there exists an algorithm with query complexity
O(Ntmax(H) poly(log(1/�)). On the other hand, maybe the dependence on N can be
improved given a promise on the structure of the Hamiltonian. For example, Berry and
Childs [4] show that if the Hamiltonian has the property that max(H) = 1, and the 2-norm
of every column and row is equal to 1, then such a Hamiltonian can be simulated for con-
stant time with constant error using only Õ(N2/3) queries. Such Hamiltonians arise when
encoding a unitary matrix into a Hamiltonian. More precisely, if U is a unitary matrix,
then the Hamiltonian H :=

(
0 U
U† 0

)
has these properties. It is not known if Õ(N2/3) is

optimal for the problem of simulating Hamiltonians arising from unitaries. A lower bound
of Ω(

√
N) can be shown, however, by a reduction from the search problem.

Finally, it would be interesting to see Hamiltonian simulation used as a subroutine in
new quantum algorithms. For example, several graph-theoretic problems have an obvious
Hamiltonian associated with them — the adjacency matrix of the input graph. Simulating
the adjacency matrix might conceivably yield useful information about the structure of the
graph.

There are probably many algorithmic applications of Hamiltonian simulation waiting
to be discovered, and finding them is also an important open problem.
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