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Abstract

The method of lines approach to the numerical solution of transient hyperbolic partial
differential equations (PDEs) allows us to write the PDE as a system of ordinary differential
equations (ODEs) in time. Solving this system of ODEs explicitly requires choosing a stable
time step satisfying the Courant-Friedrichs-Lewy (CFL) condition. When a uniform mesh
is used, the global CFL number is used to choose the time step and the system is advanced
uniformly in time. The need for local time-stepping, i.e., advancing elements by their
maximum locally defined time step, occurs when the elements in the mesh differ greatly in
size. When global time-stepping is used, the global CFL number and the globally defined
time step are defined by the smallest element in the mesh. This leads to inefficiencies as a
few small elements impose a restrictive time step on the entire mesh. Local time-stepping
mitigates these inefficiencies by advancing elements by their locally defined time step and,
hence, reduces the number of function evaluations.

In this thesis, we present two local time-stepping algorithms based on a third order
Runge-Kutta method and the classical fourth order Runge-Kutta method. We prove these
methods keep the order of accuracy of the underlying Runge-Kutta methods in the context
of a system of ODEs. We then show how they can be used with the method of lines
approach to the numerical solution of PDEs, specifically with the discontinuous Galerkin
(DG) spatial discretization. Numerical simulations show we obtain the theoretical p+1 rate
of convergence of the DG method in both the L2 and maximum norms. We provide evidence
that these algorithms are stable through a number of linear and nonlinear examples.
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Chapter 1

Introduction

Hyperbolic partial differential equations appear in many fields of science and engineer-
ing, especially where wave phenomenon or advective transport are present. Among other
applications, they are used to model electromagnetic or acoustic wave propagation, gas
dynamics problems, and elastic waves in solids. Solutions of nonlinear hyperbolic partial
differential equations can develop fine structures that need to be resolved, solutions can
also steepen into shocks. This can occur even with smooth initial data [23]. In order to
capture these features accurately, we require small mesh elements. The modern approach
is to use an adaptive mesh rather than a uniform mesh so that we can allocate computa-
tional resources to regions where they are needed most. Adaptive meshes are also useful
to accurately represent small features of the geometry.

When using an adaptive mesh, element sizes can vary greatly throughout the compu-
tational domain. By the Courant-Friedrichs-Lewy (CFL) condition, the time step on each
element must be proportional to the element’s size for the method to be stable. If a uniform
time step is used over the whole mesh, as is often the practice with the method of lines
and explicit time integration methods, it is determined by the smallest element (the global
CFL condition). This can be very inefficient as a few small elements impose a restrictive
time step for all elements. A possible solution would be to use an implicit, unconditionally
stable time integration scheme as this would eliminate the CFL condition. However, this
has a disadvantage of requiring the solution of a large sparse linear system at each time
step.

Locally implicit methods allow explicit time-integrators to be used on large elements
but implicit time-integrators on smaller elements, where the time step would have been
drastically reduced. In [20], a fourth order implicit-explicit Runge-Kutta method is applied
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with the nodal discontinuous Galerkin discretization to problems in fluid flow. Using an
implicit time-integrator on the small elements creates a nonlinear system which needs to
be solved at each time step.

Explicit local time-stepping methods overcome the effects of local refinement by using
smaller time steps in the area of refined elements while keeping the time-integrator explicit
throughout the entire computational domain. This increases efficiency as larger elements
are not required to take as many time steps. The difficulty with explicit local time-stepping
is in the communication between elements of different sizes when they are at different time
levels. In [15], a second order local time stepping procedure is combined with discontinous
Galerkin discretization for solving symmetric hyperbolic systems. The method is fully
explicit but requires the solution of a linear system at each time step to resolve the interface
between large and small elements.

A local time-stepping approach is presented in [3, 2] in the context of adaptive mesh
refinement (AMR) with Cartesian girds. The AMR algorithm creates a set of finer and finer
subgrids which are allowed to overlap and nest in areas where finer resolution is required.
The time step on a fine grid is chosen in proportion to the time step of the largest grid
based on its level of refinement. The grids are updated in time from largest to smallest
with information being passed between grid levels through interpolation.

An alternative approach, based on the arbitrarily high-order derivatives discontinuous
Galerkin approach [13, 25], gives an explicit local time-stepping method for elastic wave
equations and the time-dependent Maxwell’s equations. Later, [16] combined the time-
stepping ideas in [13] to develop a predictor-corrector type Runge-Kutta based local time-
stepping method.

Recently, [17] presented arbitrarily high-order Runge-Kutta based local time-stepping
methods for wave phenomena. This method separates the computational mesh into two
groups, coarse elements and fine elements. Each group is then advanced with its stable
time step. Intermediate values needed at the coarse-fine interface are computed through a
combination of interpolation and Taylor expansion.

In [22], a second order Runge-Kutta based local time-stepping method is developed.
Each element is advanced with its maximum stable time-step and the interface between
large and small elements is resolved using an accurate quadratic polynomial. This poly-
nomial is used as a boundary condition for the small elements in a way which preserves
the order of the underlying Runge-Kutta method. This method supports meshes with
arbitrary levels of refinement.

Here, we follow a similar approach taken in [22] to develop local time-stepping methods
based on a third order Runge-Kutta method and the classical fourth order Runge-Kutta
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method. We store past information on the interface elements and use them to approximate
the inner stages of the small elements to advance the large interface elements. Next we
will create a polynomial approximation to the large interface elements to be used as a
boundary condition to advance the small interface elements.

This thesis is organized as follows. In Chapter 2, we will give a brief introduction to
explicit Runge-Kutta methods for solving first order ordinary differential equations. Next,
in Chapter 3, we will introduce the discontinuous Galerkin finite element method for the
spatial discretization of nonlinear hyperbolic conservation laws. We will show that this spa-
tial discretization leads to a first order system of ordinary differential equations and discuss
global stability restrictions. In Chapter 4, we will develop local time-stepping schemes for
ordinary differential equations and prove that they preserve the accuracy of their Runge-
Kutta counterparts. From here, we will discuss how these local time-stepping schemes
can be utilized for the time integration of discontinuous Galerkin spatial discretization to
alleviate the restrictive globally stable time-step. Finally, in Chapter 5, numerical exper-
iments will illustrate the expected rate of convergence of our local time-stepping schemes
from Chapter 4. We will present examples illustrating the efficiency of local time-stepping
versus global time-stepping. Concluding remarks and areas for future work on this topic
will be given in Chapter 6.
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Chapter 2

Numerical Solution of Ordinary
Differential Equations

2.1 Introduction

Ordinary differential equations have been studied since the development of calculus in the
seventeenth century by Newton and Liebniz. In general, ordinary differential equations do
not have closed form solutions, thus, numerical methods to approximate the solution are
necessary.

Numerical methods for solving ordinary differential equations fall into two broad cat-
egories: “single-step” methods, also known as Runge-Kutta methods which use only the
current approximation to advance the solution in time, and “multi-step” methods which
use several previous values to advance the solution. In this chapter we briefly discuss
Runge-Kutta methods. For a more detailed exposition of Runge-Kutta methods and other
numerical techniques for solving ordinary differential equations, see [4, 18].

2.2 Runge-Kutta Methods

Consider the initial value problem

d

dt
y = f(y, t), t > t0, (2.1)

y(t0) = y0,
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for a vector y = (y1, y2, . . . , ym)T and f : Rm × R→ Rm.

To numerically approximate the solution of the system of ordinary differential equations
(2.1) on the interval [t0, tf ] we first define our step size to be hn+1 = tn+1− tn. The general
s-stage Runge-Kutta method for the ordinary differential equation system (2.1) can be
written as

Yi = yn + hn+1

s∑
j=1

aijf(Yj, tn + cjhn+1), 1 ≤ i ≤ s, (2.2)

yn+1 = yn + hn+1

s∑
i=1

bif(Yi, tn + cihn+1), (2.3)

where the Yi’s are the intermediate approximations, or stages, to the solution at time
tn+cihn+1. The method can be represented using the shorthand notation, called a Butcher
Tableau,

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

.

Table 2.1: Butcher tableau for a general Runge-Kutta method.

The coefficients ci must satisfy

ci =
s∑
j=1

aij, i = 1, . . . , s, (2.4)

a necessary condition for high-order methods [18].

The Runge-Kutta method is explicit if and only if aij = 0 for j ≥ i because then the
stages Yi in (2.2) are given in terms of previously computed stages. Methods with some
aij 6= 0, j ≥ i are implicit. We will only consider explicit Runge-Kutta methods. Some
examples of explicit Runge-Kutta methods [1] are given below.

The only one parameter family of second-order methods:
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0 0 0
α α 0

1− 1
2α

1
2α

.

Table 2.2: One parameter family of Runge-Kutta 2 methods

Popular Runge-Kutta 2 methods are the midpoint method given by α = 1/2 and Heun’s
method given by α = 1.

An example of a one-parameter family of a three-stage, third-order Runge-Kutta method
is

0 0 0 0
2
3

2
3

0 0
2
3

2
3
− 1

4α
1

4α
0

1
4

3
4
− α α

.

Table 2.3: A one parameter family of Runge-Kutta 3 methods.

where α is a parameter.

Finally, the classical fourth-order Runge-Kutta scheme is written as

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

.

Table 2.4: The classical fourth order Runge-Kutta method.

2.3 Error Estimation and Order Conditions

2.3.1 Consistency and Order Conditions

Suppose our goal is to create a Runge-Kutta method which has global error satisfying

y(tf )− yN = O(hp), (2.5)
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where tf is our final time, yN is the numerical solution at tf and h is the maximum time-
step size used in the computation. We will state necessary conditions on the coefficients
of the Butcher tableau, Table 2.1, to achieve this level of accuracy.

From (2.3), we can see that any explicit Runge-Kutta method can be written as a
single-step method

yn+1 = yn + hn+1ψ(yn, t;hn+1), hn+1 = tn+1 − tn, (2.6)

where ψ is given in terms of the right-hand side of the differential equation f . We begin
by defining consistency and order of consistency of a single-step method [21].

Definition 1. For each (y, t) ∈ G ⊂ Rm × R denote by η = η(ξ) the unique solution to
the initial value problem

η′ = f(η, ξ), η(t) = y,

with initial data (y, t). Then

∆(y, t;h) =
1

h
(η(t+ h)− η(t))−ψ(y, t;h)

is called the local discretization error. The single-step (Runge-Kutta) method is called
consistent (with the initial value problem) if

lim
h→0

∆(y, t;h) = 0

uniformly for all (y, t) ∈ G, and it is said to have consistency order p if

‖∆(y, t;h)‖ ≤ Khp

for all (y, t) ∈ G, all h > 0, and some constant K.

Finding the order of consistency of a given Runge-Kutta method is as simple as taking
the Taylor expansion of the method (2.3) and subtracting the Taylor expansion of the exact
solution. The first power of h with a nonzero coefficient gives us the order of consistency,
provided the derivatives exist and are bounded. Determining the order of consistency
for high-order Runge-Kutta methods becomes troublesome as the number of terms in the
derivatives grows quickly. In a long series of papers by J.C. Butcher, starting in the 1960’s,
an elegant theory for determining this order was given. The theory involves using rooted
trees to enumerate the components in the Taylor series. This is beyond the scope of this
section but the details can be found in [4, 18].
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In [1], necessary conditions on the coefficients of the Runge-Kutta method to be con-
sistent of order p were derived, they are outlined below.

Let A be the s× s matrix whose entries are the coefficients of the tableau that defines
the Runge-Kutta method. Let Y = (Y1, Y2, . . . , Ys)

T be the vector of intermediate stages,
b = (b1, b2, . . . , bs)

T be the vector of weights, C = diag(c1, c2, . . . , cs) be the diagonal matrix
with the cj coefficients on its diagonal, and 1 = (1, 1, . . . , 1)T . Note that when the method
is explicit, A is lower triangular with zeros along the diagonal and so, Aj = 0 for all j ≥ s.

For consistency of order p we require

bTAkC l−11 =
(l − 1)!

(l + k)!
, 1 ≤ l + k ≤ p. (2.7)

In particular, with l = 1, we have

bTAk−11 =
1

k!
, k = 1, 2, . . . , p. (2.8)

In [4] the order conditions are used to prove that if an explicit s-stage Runge-Kutta
method has order p, then s ≥ p. It is also shown that if an explicit s-stage Runge-Kutta
method has order p ≥ 5, then s > p. Thus, the only explicit Runge-Kutta methods with
s = p have order p = 1, 2, 3, 4. In the table below, we give the highest order of accuracy
for a method with a given number of stages [1],

Number of stages 1 2 3 4 5 6 7 8 9 10
Highest order 1 2 3 4 4 5 6 6 7 7

.

Table 2.5: Highest attainable order per number of stages.

2.3.2 Local Error

An important measure of error for a Runge-Kutta method is the local error. The local
error of a method is the error made over one time step. We define this quantity as the
difference between the numerical solution yn+1 and the exact solution ỹ(tn+1) when solving
the initial value problem

d

dt
ỹ = f(t, ỹ), (2.9)

ỹ(tn) = yn. (2.10)
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Then, the local error at time tn+1 is

ln+1 = ỹ(tn+1)− yn+1. (2.11)

A rigorous local error bound for a Runge-Kutta method of order p is given in [18], and we
see that if the method is order p, and f ∈ Cp, then

‖ln+1‖ = ‖ỹ(tn+1)− yn+1‖ ≤ Chp+1, (2.12)

for some constant C.

It is interesting to not only analyze the local error of the Runge-Kutta method, but
also to analyze the local error of the intermediate stages. We can find the local error
by computing the Taylor expansions of the intermediate stages and comparing it to the
Taylor expansion of the exact solution at that time. This illustrates how Runge-Kutta
methods use the inner stages as low-order approximations to the solution and then cancel
the low-order errors to create a high-order approximation to the exact solution.

As an example to show the canceling of low order errors, we analyze the local error of
the Runge-Kutta method with the Butcher tableau given by Table 2.3 with α = 3/8 for
the autonomous scalar problem

d

dt
y = f(y), (2.13)

where f is a smooth function. This method has two intermediate stages at time t =
tn + 2h/3. The exact solution at this time has the Taylor expansion about t = tn

y(tn+2/3) = y(tn) +
2

3
hy′ +

2

9
h2y′′ +

4

81
h3y′′′ +O(h4),

= y(tn) +
2

3
hf +

2

9
h2fyf +

4

81
h3(fyyf

2 + f 2
y f) +O(h4), (2.14)

and the exact solution at time t = tn+1 has the Taylor expansion about t = tn

y(tn+1) = y(tn) + hy′ +
h2

2
y′′ +

h3

6
y′′′ +

h4

24
y(4) +O(h5),

= y(tn) + hf +
h2

2
fyf +

h3

6
(fyyf

2 + f 2
y f)

+
h4

24
(fyyyf

3 + 4fyyfyf
2 + f 3

y f) +O(h5), (2.15)

where the derivatives of y are evaluated at t = tn and the derivatives of f are evaluated at
y(tn).
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The first stage is

Y (1) = yn +
2

3
hf(yn). (2.16)

If we assume that the numerical solution is exact at time tn, that is yn = y(tn), then

y(tn+2/3)− Y (1) =
2

9
h2fyf +O(h3). (2.17)

Comparing this with (2.14), we see that the local error of the first stage is O(h2). Next,
we expand f(Y (1)) around the point yn. The second stage has the Taylor expansion

Y (2) = yn +
2

3
hf(Y (1))

= yn +
2

3
hf

(
yn +

2

3
hf(yn)

)
= yn +

2

3
hf +

4

9
h2fyf +

4

27
h3fyyf

2 +O(h4) (2.18)

Again, assuming yn = y(tn),

y(tn+2/3)− Y (2) = −2

9
h2fyf +O(h3). (2.19)

Comparing this with (2.14), we see the local error of the second stage is also O(h2).

To investigate the local error of the numerical solution yn+1, we expand each of the
following expressions in a Taylor series around yn

f(Y (1)) = f +
2

3
hfyf +

2

9
h2fyyf

2 +
4

81
h3fyyyf

3 +
1

243
h4fyyyyf

4 +O(h5), (2.20)

f(Y (2)) = f +
2

3
hfyf +

2

9
h2
(
fyyf

2 + 2f 2
y f
)

+
4

81
h3
(
fyyyf

3 + 9fyyfyf
2
)

+
2

243
h4
(
fyyyyf

4 + 16fyyyfyf
3 + 13fyyf

2
y f

2 + 12f 2
yyf

3
)

+O(h5).
(2.21)

The solution is updated in time using

yn+1 = yn +
h

4

(
f +

3

2
f(Y (1)) +

3

2
f(Y (2))

)
. (2.22)

Using (2.15), (2.20), and (2.21), we have

y(tn+1)− yn+1 =
h4

24

(
3

27
fyyyf

3 + f 3
y f

)
+O(h5). (2.23)

Thus, the local error of this Runge-Kutta 3 method is O(h4), while the inner stages are
only O(h2) accurate.
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2.3.3 Global Error and Convergence

Any practical numerical method needs a guarantee that the numerical solution will converge
to the unique solution. The global error of the method is the error of the numerical solution
after several time steps

en = y(tn)− yn. (2.24)

We are particularly interested in estimating the global error at the final time

eN = y(tf )− yN . (2.25)

We state that under certain conditions consistency is equivalent to convergence. From
[21], we have the following theorem.

Theorem 1. Assume that the function ψ describing the single-step (Runge-Kutta) method
is continuous in all variables and satisfies a Lipschitz condition in the first variable; i.e.,

‖ψ(y, t;h)−ψ(w, t;h)‖ ≤ K‖y −w‖

for all (y, t), (w, t) ∈ G ⊂ Rm × R, all (sufficiently small) h, and a Lipschitz constant K.
Then the single-step (Runge-Kutta) method is convergent if and only if it is consistent.

We see in Theorem 1 the need for a “sufficiently small” step size h; this is the topic of
discussion in Section 2.4.

To get the exact value of the global error requires knowledge of the exact solution of
the differential equation. For most problems, a closed form solution is not available; thus,
there is no way of computing the exact global error. To estimate the global error, we notice
that local errors are propagated along each time step through out the computation. The
following theorem, from [18], allows us to bound the global error at time tf based on the
local error estimation. We restate the theorem below.

Theorem 2. Let U be a neighborhood of {(y(t), t) : t0 ≤ t ≤ tf} where y(t) is the exact
solution of (2.1). Suppose that in U ∥∥∥∥∂f∂y

∥∥∥∥ ≤ L, (2.26)

and that the local error estimates ‖ln‖ ≤ Chp+1
n−1 are valid in U . Then the global error

(2.25) can be estimated by

‖eN‖ ≤ hp
C ′

L
(exp(L(tf − t0))− 1) (2.27)
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where h = maxhi,

C ′ =

{
C L ≥ 0

C exp(−Lh) L < 0,

and h is small enough for the numerical solution to remain in U .

It is useful to note that for the Runge-Kutta methods discussed above

hn+1‖∆(y, tn;hn+1)‖ = ‖1n+1‖(1 +O(hn+1)), (2.28)

i.e., the local error is one order higher than the local discretization error. Thus, if we have
consistency of order p, we have convergence of order p.

2.4 Region of Absolute Stability

To use a Runge-Kutta method to advance our solution in time we need a way to choose a
suitable time step hn+1 = tn+1− tn. We will see below that the time step cannot be chosen
arbitrarily and the size of our time step depends on the method we use. To find conditions
on our time step, we analyze how the numerical solution behaves when applied to the test
equation

y′ = λy. (2.29)

When Re(λ) > 0 the modulus of the exact solution will grow exponentially with time,
|y(tn+1)| > |y(tn)|. Hence, the exact solution is unstable and we will not be able to to
determine if the numerical solution is stable. When Re(λ) = 0 the exact solution will
oscillate for all time. Finally, when Re(λ) < 0 the modulus of the exact solution will decay
exponentially in time |y(tn+1)| < |y(tn)|, so we require the time step be chosen so that the
numerical solution does not grow with time, i.e., |yn+1| ≤ |yn|.

The region of absolute stability for a Runge-Kutta method is the region in the complex
plane such that applying the method to the test equation (2.29) with z = hλ from within
this region, gives a numerical solution satisfying |yn+1| ≤ |yn|. The region is taken in the
complex plane since in general, λ ∈ C.

To determine the region of absolute stability, we begin by rewriting the inner stages
(2.2) for the test equation (2.29) as

Y = yn1 + hλAY, (2.30)

Y = yn(I − zA)−11. (2.31)
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Next, we can rewrite (2.3) as

yn+1 = yn + hλbTY, (2.32)

= yn + ynzb
T (I − zA)−11, (2.33)

= yn
(
1 + zbT (I − zA)−11

)
, (2.34)

= yn

(
1 + zbT

(
I +

∞∑
i=1

ziAi

)
1

)
. (2.35)

Substituting (2.8) into (2.35), and using the fact Aj = 0 for all j ≥ s for explicit Runge-
Kutta methods, we have

yn+1 =

(
1 + z +

z2

2
+ · · ·+ zp

p!
+

s∑
j=p+1

zjbTAj−11

)
yn. (2.36)

To satisfy |yn+1| ≤ |yn|, we require∣∣∣∣∣1 + z +
z2

2
+ · · ·+ zp

p!
+

s∑
j=p+1

zjbTAj−11

∣∣∣∣∣ ≤ 1 (2.37)

This defines a polynomial in the complex variable z. Solving (2.37), we can find a region
in the complex plane so that if z = hλ lies in this region, the Runge-Kutta method will
be stable. In Figure 2.1, we plot the regions of absolute stability for the Runge-Kutta
methods of orders p = 1, 2, 3, 4.

In the inequality (2.37), we observe that Runge-Kutta methods with s = p will have the
same region of absolute stability, but when s ≥ p the region is determined by the methods
coefficients. We see that we can create different regions of absolute stability, possibly
increasing their size, by adding more stages to the method and altering the coefficients of
the Butcher tableau.

Consider now the linear system of ordinary differential equations

d

dt
y = Ay, (2.38)

where A is a constant, diagonalizable, m×m matrix, and y = (y1, y2, . . . , ym)T .

Let Λ = diag(λ1, λ2, . . . , λm) be the diagonal matrix composed of the eigenvalues λj of
A. Since A is diagonalizable, let Q be the matrix of eigenvectors of A so that

Q−1AQ = Λ. (2.39)
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Figure 2.1: Boundaries of Regions of Absolute Stability

Define w = Q−1y. Multiplying (2.38) on the left by Q−1 and noticing that Qw = y, we
get the system of differential equations

d

dt
w = Λw, (2.40)

where the system has now been written as m independent scalar differential equations. To
ensure stability of the Runge-Kutta method, we have to choose the time step so that each
hλj, j = 1, 2, . . . ,m is within the region of absolute stability. When we choose our time
step this way, we have

|wn| ≤ |wn−1| ≤ · · · ≤ |w0|. (2.41)

Transforming back into the variable y, we get

|yn| ≤ ‖Q‖|wn| ≤ · · · ≤ ‖Q‖|w0| ≤ ‖Q‖‖Q−1‖|y0|, (2.42)

where ‖ · ‖ is the matrix norm induced by the vector norm | · |. We notice that ‖Q‖‖Q−1‖
is the condition number of the matrix Q. From here, we see that if ‖Q‖‖Q−1‖ is not large,
or if ‖Q‖‖Q−1‖ ≤ 1, we can use the eigenvalues of A to determine a stable time step.
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Chapter 3

The Discontinuous Galerkin Finite
Element Method

3.1 Introduction

The discontinuous Galerkin methods are a class of numerical methods used for solving
differential equations. It was originally introduced by Reed and Hill in 1973 for solving
the neutron transport equation [24], then developed by Cockburn and Shu in a series of
papers [9, 8, 7, 6, 10] in the context of nonlinear hyperbolic conservation laws. Later, it
was extended to parabolic and elliptic partial differential equations. The discontinuous
Galerkin method has seen applications in gas and fluid dynamics, acoustics, electromag-
netics, geophysics, and many more topics. A more detailed history of the method is given
in [19].

Below, we introduce the discontinuous Galerkin method for nonlinear hyperbolic con-
servation laws, as developed by Cockburn and Shu.

3.2 One-Dimensional Scalar Equations

In this section, we present the discontinuous Galerkin method for one-dimensional scalar
hyperbolic conservation laws. Consider the scalar hyperbolic conservation law

ut + f(u)x = 0, a < x < b, t > 0, (3.1)

u(x, 0) = u0(x), a ≤ x ≤ b, (3.2)
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with appropriate boundary conditions.

Begin by subdividing the domain into non-overlapping elements Ij = [xj, xj+1] with
element size hj = xj+1 − xj, j = 1, . . . , N , such that

[a, b] =
N⋃
j=1

Ij.

To construct the discontinuous Galerkin formulation of [8] on element j, we multiply (3.1)
by a test function from the Sobolev space v ∈ H1(xj, xj+1) and integrate over the interval
[xj, xj+1] ∫ xj+1

xj

utvdx+

∫ xj+1

xj

f(u)xvdx = 0. (3.3)

Integrating by parts yields∫ xj+1

xj

utvdx+ f(u)v
∣∣∣xj+1

xj
−
∫ xj+1

xj

f(u)v′dx = 0. (3.4)

Next, we approximate u on Ij by Uj ∈ S, where S is a finite-dimensional subspace of
H1(xj, xj+1). We choose to approximate our test functions v on Ij by V ∈ S, where S
is the same finite dimensional subspace as our solution. This is known as the Galerkin
formulation. We obtain∫ xj+1

xj

d

dt
(Uj)V dx+ f(Uj)V

∣∣∣xj+1

xj
−
∫ xj+1

xj

f(Uj)V
′dx = 0. (3.5)

To choose a basis for S, we map the physical element Ij = [xj, xj+1] to the canonical
element I0 = [−1, 1] using the mapping

x(ξ) =
1− ξ

2
xj +

1 + ξ

2
xj+1, and

dx

dξ
=
xj+1 − xj

2
=
hj
2
. (3.6)

Changing variables, (3.5) becomes

hj
2

∫ 1

−1

d

dt
Uj(t, x(ξ))V (x(ξ))dξ+f(Uj(t, x(ξ)))V (x(ξ))

∣∣∣1
−1
−
∫ 1

−1

f(Uj(t, x(ξ)))
d

dξ
V (x(ξ))dξ = 0,

(3.7)
or, more compactly written

hj
2

∫ 1

−1

d

dt
(Uj)V dξ + f(Uj)V

∣∣∣1
−1
−
∫ 1

−1

f(Uj)V
′dξ = 0, (3.8)
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where the derivative in V ′ is understood to be taken with respect to ξ.

Next, we are tasked with choosing an appropriate finite dimensional subspace. We
choose S = Sp, the space of polynomials of degree less than or equal to p. One choice of
basis functions for this subspace is Φ = {1, x, x2, . . . , xp}. Although this is a valid choice
for a basis, it is known to be ill-conditioned for large p. Instead, we choose the set of
Legendre polynomials Pk, k = 0, 1, . . . , p. The Legendre polynomials are defined using the
recursion relation

P0(ξ) = 1, (3.9a)

P1(ξ) = ξ, (3.9b)

Pn(ξ) =
2n− 1

n
ξPn−1(ξ)− n− 1

n
Pn−2(ξ), n ≥ 2. (3.9c)

The Legendre polynomials form an orthogonal basis on [−1, 1],∫ 1

−1

PkPldξ =
2

2k + 1
δkl, (3.10)

where δkl is the Kronecker delta. This basis does not form an orthonormal set because the
normalization of (3.9) was chosen to satisfy

Pk(1) = 1. (3.11)

We note that with (3.11), we have at the other endpoint Pk(−1) = (−1)k. In Figure 3.1,
we show plots of the Legendre polynomials Pi(ξ), i = 1, 2, . . . , 5.

We write the numerical solution as a linear combination of basis functions

Uj =

p∑
i=0

cijPi, (3.12)

where the coefficients cij are functions of time t.

At each point xj the global numerical solution U(xj) is given by the left element Ij−1

and the right element Ij. The global numerical solution U is not well defined at these
points since we do not enforce continuity between elements and so, we are not guaranteed
that Uj−1(xj) = Uj(xj). To resolve this problem, we find the value of U(xj) by solving the
local Riemann problem. Its solution U∗j is called a Riemann state and can be determined
using a Riemann solver. Having a value U∗j , we can directly evaluate f(U∗j ) in (3.8).
Exact Riemann solvers for many problems are known but are costly to compute [26].
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Figure 3.1: Legendre polynomials Pi(ξ), i = 1, 2, . . . , 5

Alternatively, an approximate Riemann solver can be used to approximate f(U∗j ) at each
element interface. This is the approach we will use. To do so, we use the local Lax-Friedrich
flux

f(U∗j ) = Fn(Uj−1, Uj) =
1

2
(f(Uj(xj)) + f(Uj−1(xj)))−

λj
2

(Uj(xj)− Uj−1(xj)), (3.13)

where λj = max{|f ′(Uj(xj))|, |f ′(Uj−1(xj))|}.

Choosing our test functions V = Pk, k = 0, 1, . . . , p, substituting (3.12) into (3.8) and
using (3.10), we obtain an ordinary differential equation for each coefficient on element Ij

d

dt
ckj = −2k + 1

hj

[
Fn(Uj, Uj+1)− (−1)kFn(Uj−1, Uj)

]
+

2k + 1

hj

∫ 1

−1

f(Uj)P
′
kdξ, (3.14)

k = 0, 1, . . . , p. Combining all coefficients over all elements, we obtain a vector of solution
coefficients c. Thus, the discontinuous Galerkin method can be written as a system of
ordinary differential equations

d

dt
c = f(c), (3.15)

where f is a vector function defined by the right hand side of (3.14).
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3.3 One-Dimensional Systems of Equations

The derivation of the discontinuous Galerkin method for one-dimensional hyperbolic sys-
tems of conservation laws is analogous to that of the scalar case. Consider the hyperbolic
system

ut + f(u)x = 0, a < x < b, t > 0, (3.16)

u(x, 0) = u0(x), a ≤ x ≤ b, (3.17)

with appropriate boundary conditions, where u = (u1, u2, . . . , un)T is a vector of n vari-
ables. Following the same procedure as in the previous section, we multiply (3.16) by a
test function v and integrate by parts. Mapping element Ij to the canonical element I0

and approximating the exact solution by a vector of polynomials, we arrive at

hj
2

∫ 1

−1

d

dt
(Uj)V dξ + f(Uj)V

∣∣∣1
−1
−
∫ 1

−1

f(Uj)V
′dξ = 0, (3.18)

where the derivative in V ′ is understood to be taken with respect to ξ. Again, choosing
our polynomial basis to be the set of Legendre polynomials of degree up to p, and choosing
our test functions to be these basis functions V = Pk, k = 0, 1, . . . , p we arrive at

d

dt
ckj = −2k + 1

hj

[
Fn(Uj,Uj+1)− (−1)kFn(Uj−1,Uj)

]
+

2k + 1

hj

∫ 1

−1

f(Uj)P
′
kdξ, (3.19)

k = 0, 1, . . . , p. For one-dimensional systems, we choose our numerical flux to be the local
Lax-Friedrichs flux

Fn(Uj−1,Uj) =
1

2
(f(Uj(xj)) + f(Uj−1(xj)))−

λj
2

(Uj(xj)−Uj−1(xj)), (3.20)

where λj is the maximum of the spectral radius of f(Uj(xj))u and f(Uj−1(xj))u. Since the
system (3.16) is hyperbolic, the eigenvalues of the Jacobian matrix f(u)u are always real
[23].

Combining (3.19) with the numerical flux (3.20), the discontinuous Galerkin method
for one-dimensional systems can written as a system of ordinary differential equations

d

dt
c = f(c), (3.21)

where c is a vector of solution coefficients and f is a vector function defined by the right
hand side of (3.19).
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3.4 Two-Dimensional Systems of Equations

We now consider the two-dimensional system of hyperbolic conservation laws

ut +∇ · F(u) = 0, x ∈ Ω, t > 0, (3.22)

u(x, 0) = u0(x), x ∈ Ω, (3.23)

with suitable boundary conditions. Here, u = (u1, u2, . . . , un)T is a vector of n variables in
the computational domain Ω ⊂ R2 and F = [F1,F2] where F1 and F2 are fluxes in the x
and y direction, respectively.

We begin by partitioning our domain Ω into a mesh of non-overlapping triangles Ωj,
such that

Ω =
N⋃
j=1

Ωj.

Proceeding as in the one-dimensional case, we multiply (3.22) by a test function v ∈ H1(Ωj)
and integrate over Ωj ∫∫

Ωj

utvdx +

∫∫
Ωj

∇ · F(u)vdx = 0. (3.24)

We would like to apply the Divergence Theorem to the second integral. To do so, we use
the identity

∇ · (F(u)v) = ∇v · F(u) + v∇ · F(u). (3.25)

Substituting (3.25) into (3.24) we have∫∫
Ωj

utvdx +

∫∫
Ωj

∇ · (F(u)v)dx−
∫∫

Ωj

∇v · F(u)dx = 0. (3.26)

Applying the Divergence Theorem to the second integral in (3.26) we get∫∫
Ωj

utvdx +

∫
∂Ωj

(F(u)v) · njdτ −
∫∫

Ωj

∇v · F(u)dx = 0, (3.27)

where nj is the outward facing normal unit vector along each of element j’s edges.

Next, we approximate the solution u on Ωj by Uj ∈ S, where S is a finite-dimensional
subspace of H1(Ωj). Similarly, we choose to approximate the test functions from the same
subspace. As in one-dimension, the global solution U is not well defined along the element
boundaries and hence, along the element boundaries we solve the local Riemann problem.
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Using an approximate Riemann solver, we approximate the value F(U∗j). Let Uj+ denote
the value of the numerical solution on the outside of Ωj along its boundary ∂Ωj. Then,
our approximate Riemann value, given by the local Lax-Friedrichs flux, is computed as

n · F(U∗j) = Fn(Uj,Uj+) =
1

2
n · (F(Uj) + F(Uj+))− λj

2
(Uj+ −Uj), (3.28)

where λj is the the maximum of the spectral radius of the matrices

nx(F1(Uj))u + ny(F2(Uj))u, and nx(F1(Uj+))u + ny(F2(Uj+))u

computed at each integration point along the element edge, see Section 3.5.

To simplify computations, we will map each element Ωj to the canonical element Ω0,
which is the triangle with coordinates (0, 0), (1, 0), (0, 1). This mapping shown in Figure
3.2, maps each vertex (x, y) ∈ Ωj to a new vertex (ξ, η) ∈ Ω0. The mapping is given byxy

1

 =

x1 x2 x3

y1 y2 y3

1 1 1

 ξ
η

1− ξ − η

 , (3.29)

where the coordinates (xi, yi), i = 1, 2, 3 are the vertices of the given element. The Jacobian
of this mapping is a constant matrix and is given by

Jj =

(
xξ xη
yξ yη

)
=

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
. (3.30)

x ξ(1, 0)

y η

(0, 1)

(0, 0)

Ω0

Ωj (x2, y2)

(x3, y3)

(x1, y1)

Figure 3.2: Mapping of element Ωj to the canonical element Ω0.
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Applying the change of variables (3.29) to the first integral in (3.27) with numerical
solution Uj, we get

d

dt

∫∫
Ωj

Uj(x, y)V (x, y)dxdy =
d

dt

∫∫
Ω0

Uj(x(ξ, η), y(ξ, η))V (x(ξ, η), y(ξ, η))|detJj|dξdη.

(3.31)

Next we apply the change of variables (3.29) to the volume integral∫∫
Ωj

∇V · F(Uj)dxdy. (3.32)

Under this transformation we have(
Vx
Vy

)
=

(
ξx ηx
ξy ηy

)(
Vξ
Vη

)
, (3.33)

or in shorthand
∇xyV = J−1

j ∇ξηV. (3.34)

Therefore, under the change of variables∫∫
Ωj

∇xyV · F(Uj)dxdy =

∫∫
Ω0

J−1
j ∇ξηV · F(Uj)|detJj|dξdη, (3.35)

where on the left side of the equality V and Uj are functions of (x, y), and on the right
side V and Uj are understood to be functions of (x(ξ, η), y(ξ, η)).

Finally, for the last integral in (3.27), known as the surface integral, we will map each
side of element Ωj to the canonical interval I0 = [−1, 1]. This mapping is given by(

x
y

)
=

(
x1 x2

y1 y2

)(
(1− ξ)/2
(1 + ξ)/2

)
, (3.36)

where (xi, yi) are the endpoints of the edge and ξ ∈ I0. The chain rule gives, for each
surface integral

dτ =
1

2

√
(x2 − x1)2 + (y2 − y1)2dξ, (3.37)

which is simply half the length of each edge. Thus, for each edge of element Ωj, we define
the constant

lj,q =
1

2

√
(x2 − x1)2 + (y2 − y1)2, q = 1, 2, 3. (3.38)
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Applying these transformations to (3.27), our numerical solution must satisfy

|detJj|
∫∫

Ω0

d

dt
(Uj)V dξdη−|detJj|

∫∫
Ω0

J−1
j ∇V ·F(Uj)dξdη+

3∑
q=1

∫ 1

−1

(F(U∗j)V )·nj,qlj,qdξ = 0,

(3.39)
where Uj and V are understood to be functions of ξ, η and ∇ is an operator in (ξ, η)-space.

For our finite dimensional subspace S, we choose Sp = span{ξiηj|0 ≤ i + j ≤ p}, the
space of polynomials degree p or less. This subspace has

Np =
(p+ 1)(p+ 2)

2
(3.40)

basis functions. We choose an orthogonal basis [12] on Ω0, given by

ψki (ξ, η) =
√

(2i+ 1)(2k + 2)P 0,2i+1
k−i (1− 2ξ)Pi

(
1− 2η

1− ξ

)
(1− ξ)i, (3.41)

for k = 0, 1, . . . , p, i = 0, 1, . . . , k. Here, P
(0,2i+1)
k−i are Jacobi polynomials of degree k − i

and Pi are Legendre polynomials of degree i. These basis functions satisfy∫∫
Ω0

ψki ψ
l
mdξdη = δklδim, (3.42)

where δkl is the Kronecker delta function.

The numerical solution Uj can be written in terms of this basis as

Uj =

p∑
m=0

m∑
l=0

cjmlψ
m
l (ξ, η). (3.43)

Choosing V = ψki for k = 0, 1, . . . , p and i = 0, 1, . . . , k, substituting (3.43) into (3.39) and
using the orthogonality condition (3.42), we obtainNp equations for the solution coefficients
on element j

d

dt
cjki =

∫∫
Ω0

J−1
j ∇ψki · F(Uj)dξdη −

1

|detJj|

3∑
q=1

∫ 1

−1

(F(U∗j)ψ
k
i ) · nj,qlj,qdξ. (3.44)

Writing c as a vector of the coefficients over the entire domain, the discontinuous Galerkin
method can be written as a system of ordinary differential equations

d

dt
c = f(c), (3.45)

where f is a vector function defined by the right hand side of (3.44).
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3.5 Time-Stepping and the CFL Condition

To fully discretize our partial differential equation in space, we need a rule for approxi-
mating the volume integral of (3.14) and (3.19), and the volume and surface integrals of
(3.44).

Suppose we approximate our solution using up to degree p polynomials. Then, for the
one-dimensional volume integral of (3.14) we have that P ′k is at most degree p− 1 and Uj
is at most of degree p. If we have a linear flux, i.e., f(u) = au, we will need to integrate
a polynomial of at most degree 2p − 1. We would like the numerical quadrature to be as
accurate as possible, so we choose a quadrature rule to integrate polynomials of degree
2p − 1 exactly. In [8], it was stated that for nonlinear flux we increase the order of the
quadrature rule by one, so we must integrate with a quadrature rule of order 2p. For the
quadrature rule, we use the Gauss-Legendre quadrature with n = p+ 1 integration points
[8].

Similarly in two-dimensions, if we approximate our solution using up to degree p poly-
nomials, the surface integral contribution of (3.44) needs a one-dimensional quadrature rule
to integrate up to degree 2p + 1 polynomials exactly. We again use the Gauss-Legendre
quadrature with n = p+ 1 points. For the volume integral contribution, we choose an in-
tegration rule to integrate polynomials of degree up to 2p exactly. There are many choices
for integration rules for triangles, we use rules listed in [14]. In Table (3.1), we show the
number N of integration points on the triangle for a quadrature of degree q.

q 0 1 2 3 4 5 6 7 8 9 10
N 0 1 3 4 6 7 12 13 16 19 25

Table 3.1: Number N of integration points for quadrature of degree q on the canonical
triangle.

Combining (3.14), (3.19) and (3.44) with their appropriate quadrature rules, we have
a full discretization in space. We then need to advance the system of ordinary differential
equations

d

dt
c = f(c), (3.46)

in time, where f(c) is given by the right hand side of (3.14), (3.19) or (3.44). Since
we are concerned with solving hyperbolic conservation laws, we will use an explicit time
integration scheme. The most popular methods for solving (3.46), which we use in this
thesis, are explicit Runge-Kutta methods [19] as outlined in Chapter 2.
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With any time-stepping scheme, we need a way to choose a suitable ∆t to advance
the solution from tn to tn+1. In one-dimension, when we pair our spatial discretization of
degree p with an explicit Runge-Kutta scheme of order p+ 1, we require

∆t ≤ minj hj
maxj λj

· 1

2p+ 1
, (3.47)

where hj is the size of element j and λj is the fastest wave speed on element j, here
λj = |fu(uj)| [8].,

Similarly, in two-dimensions, the maximum stable time step on each element is depen-
dent on some measure of element size and the speed and direction of flow through that
element. The standard global CFL condition for two dimensions [6] when pairing a degree
p spatial discretization with an order p+ 1 Runge-Kutta method is given by

∆t ≤ minj rj
maxj |λj|

· 1

2p+ 1
, (3.48)

where rj is the radius of the inscribed circle in element j and λj is the maximum wave
speed on element j.

From (3.47), and (3.48), we see that the size of the global time step is restricted by
the smallest element computational mesh. When a computational mesh has elements of
greatly varying sizes, this leads to inefficiencies. Large elements must be advanced in time
with the same time step as the smallest element. To overcome these inefficiencies, it would
be ideal that each element is advanced in time with its maximum stable time step. This
is the topic of the next chapter.
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Chapter 4

Local Time-Stepping

4.1 Introduction

The time integration of the discontinuous Galerkin method requires knowing the solution
values of the neighboring elements at each time level to compute the numerical flux of
(3.15) in one-dimension, or the surface integral component of (3.44) in two-dimensions.
As an example, consider a one-dimensional uniform mesh. If we integrate in time using a
three stage Runge-Kutta method the stencil shown in Figure 4.1 is needed to advance the
solution on element j from tn to tn+1. Each stage is represented by an arrow. Higher order
Runge-Kutta methods need a larger stencil due to the higher number of stages.

cn+1
j

j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3

Figure 4.1: Stencil used to advance element j with a three stage Runge-Kutta method on
a uniform mesh.

Consider now a nonuniform mesh where the elements are of size ∆x for elements i ≤ j
and size ∆x/2 for elements i > j. We would like to advance the elements with their locally
stable time step, say ∆t for elements i ≤ j and ∆t/2 for elements i > j. To advance the
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solution on element j we would need the stencil given in Figure 4.2. We see that for a
three stage Runge-Kutta method, we need to extend two elements into the region of small
elements in the mesh. This could be problematic as we may be taking an unstable time
step on these elements.

cn+1
j

j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3

Figure 4.2: Stencil for advancing element j by the local time step size ∆t using a three
stage Runge-Kutta method on a nonuniform mesh.

Advancing the solution on element j + 1 from tn to tn+1 requires us to advance from

tn to tn+1/2, then from tn+1/2 to tn+1. To compute c
n+1/2
j+1 only requires the information

from large elements j and j − 1 to compute the inner stages. Then, to compute the inner
stages on elements j and j − 1 to advance c

n+1/2
j+1 to cn+1

j+1 we need to have the solution
solution values at tn+1/2 on the large elements j−2, j−1 and j. This requires us to extend
the stencil outward in space to element j − 4, shown in Figure 4.3. Again, higher order
Runge-Kutta methods will require a larger stencil.

cn+1
j+1

j − 4 j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3 j + 4 j + 5 j + 6 j + 7

Figure 4.3: Stencil for advancing element j + 1 by the local time step size ∆t/2 to tn+1

using a three stage Runge-Kutta method on a nonuniform mesh.

The example presented above illustrates how extensive the stencil can be for advancing
elements with their local time steps without modifying the time-stepping method. Our goal
is to develop time stepping methods that do not require us to extend the stencil outward
in space through the refined or coarsened regions. On elements where the neighboring
element requires a different sized time step, we will not compute stages higher than 1.
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Instead, we will approximate the stages using data from previous time steps in such a way
that we keep the accuracy of the underlying Runge-Kutta method.

Although our goal is to develop local time-stepping methods for the numerical solution
of partial differential equations, we begin this section by developing local time-stepping
methods for a system of two ordinary differential equations using a Runge-Kutta 3 scheme
and the classical Runge-Kutta 4 scheme. This will be an easier exposition of the methods
and allow us to arrive at some theoretical results. Finally, we will present how they can
be used with the discontinuous Galerkin method for solving problems on computational
meshes with elements of drastically different sizes.

4.2 Local Time-Stepping for Ordinary Differential

Equations

Suppose we would like to numerically solve the system of ordinary differential equations

x′ = f(x, y) (4.1a)

y′ = g(x, y), (4.1b)

where x = x(t), y = y(t). Suppose x can be advanced with time step hn+1 = tn+1 − tn and
y has to be advanced with time step hn+1/K,K ∈ N.

We follow the same approach presented in [22] to develop local time-stepping schemes
for the system (4.1). First, we advance the x in time. In order to do so, we must approxi-
mate the inner stages of y. These approximations are done by using data from the current
and previous time levels to create an approximation that is at least as accurate as the local
error of the actual Runge-Kutta stages.

Once x has been advanced one time step, we will create an interpolating polynomial
X (t) which approximates x(t) on the interval [tn, tn+1]. This interpolating polynomial
will be at least as accurate as the Runge-Kutta scheme being used. The interpolating
polynomial X (t), along with its derivatives, will be used in approximating the inner stages
of x to advance y through the K sub time steps needed to advance from tn to tn+1. Note
that we cannot simply use the value of the interpolating polynomial at the inner stage
times due to the fact that we need to commit low order errors to match the low order
errors of the stages in y.
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4.2.1 Runge-Kutta 3 Local Time-Stepping

The following local time-stepping method is based on the family of Runge-Kutta 3 methods
given by Table 2.3 with α = 3/8. It is shown below in Table 4.1.

0 0 0 0
2/3 2/3 0 0
2/3 0 2/3 0

1/4 3/8 3/8

Table 4.1: Butcher Tableau for the Runge-Kutta 3 method used to develop the local time-
stepping method.

Assume that at time tn both solutions xn and yn are known. We also assume we have
stored some data from the previous time level, namely f(xn−1, yn−1), g(xn−1, yn−1) and the
size of the time step hn.

We begin by advancing x from tn to tn+1. To do this, we must approximate the
intermediate stages of y. The scheme for advancing x is given by

X(1) = xn +
2

3
hn+1f(xn, yn), (4.2a)

Y (1) = yn +
2

3
hn+1g(xn, yn), (4.2b)

X(2) = xn +
2

3
hn+1f(X(1), Y (1)), (4.2c)

Y (2) = yn +
2

3
hn+1g(xn, yn) +

4

9
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn

)
, (4.2d)

xn+1 = xn +
hn+1

4

(
f(xn, yn) +

3

2
f(X(1), Y (1)) +

3

2
f(X(2), Y (2))

)
. (4.2e)

In (4.2) all steps are standard Runge-Kutta 3 steps applied to system (4.1) except for
(4.2d). Expanding the actual second Runge-Kutta stage of y in a Taylor series about tn
gives

Y
(2)
rk = yn +

2

3
hn+1f

(
X

(1)
rk , Y

(1)
rk

)
= yn +

2

3
hn+1f

(
xn +

2

3
hn+1f(xn, yn), yn +

2

3
hn+1g(xn, yn)

)
= yn +

2

3
hn+1g(xn, yn) +

4

9
h2
n+1(gxf + gyg)(xn, yn) +O(h3

n+1). (4.3)
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Since g(xn, yn) is known, we only need to approximate (gxf + gyg)(xn, yn). We notice that
the chain rule gives

d

dt
g(x(t), y(t)) = (gxf + gyg)(x(t), y(t)), (4.4)

and so we use a backward difference method to approximate (4.4)

g(xn, yn)− g(xn−1, yn−1)

hn
=

d

dt
g(x(t), y(t)) +O(hn). (4.5)

Assuming that hn = chn+1 for some constant c, we substitute (4.5) into (4.3) to arrive at
(4.2d).

Having advanced xn to xn+1, we seek to construct a polynomial of degree 3, X (t) which
interpolates the numerical solution x along the segment [tn, tn+1]. We require X (tn) =
xn,X (tn+1) = xn+1 and X ′(tn) = f(xn, yn). To have a cubic interpolating polynomial, we
require one more point. Choosing X ′(tn + 2hn+1/3) = (f(X(1), Y (1)) + f(X(2), Y (2)))/2, we
get the family of interpolating polynomials

X (t) = xn + (t− tn)f(xn, yn) + (t− tn)2

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1β

)
+ (t− tn)3β, tn ≤ t ≤ tn+1, (4.6a)

where β is a parameter. Under the assumption that xn = x(tn), we choose β so that
|x(t) − X (t)| = O(h4

n+1) for all tn ≤ t ≤ tn+1. Expanding the interpolating polynomial
and the exact solution in a Taylor series about tn reveals that this is satisfied when β =
x′′′(tn) +O(hn+1). Using finite differences we have

β =
1

2hn+1 + 3hn

(
2
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− f(xn, yn)− f(xn−1, yn−1)

hn

)
. (4.6b)

We are now tasked with advancing y through the fractional time steps tn,k = tn +
khn+1/K, k = 0, 1, . . . K. Denote the computed value of y at time tn,k by yn,k, where

yn,0 = yn and yn,K = yn+1. Additionally let X
(i)
k , Y

(i)
k , i = 1, 2, denote the inner Runge-

Kutta stages at the fractional step k. Since the interpolating polynomial (4.6) is locally
fourth order accurate, we also have x′(t) = X ′(t) +O(h3

n+1) and x′′(t) = X ′′(t) +O(h2
n+1)

for all tn ≤ t ≤ tn+1. Using these approximations, we have the following scheme to advance
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yn,k to yn,k+1

xn,k = X (tn,k), (4.7a)

X
(1)
k = xn,k +

2

3

(
hn+1

K

)
X ′(tn,k), (4.7b)

Y
(1)
k = yn,k +

2

3

(
hn+1

K

)
g(xn,k, yn,k), (4.7c)

X
(2)
k = xn,k +

2

3

(
hn+1

K

)
X ′(tn,k) +

4

9

(
hn+1

K

)2

X ′′(tn,k), (4.7d)

Y
(2)
k = yn,k +

2

3

(
hn+1

K

)
g(X

(1)
k , Y

(1)
k ), (4.7e)

yn,k+1 = yn,k +

(
hn+1

K

)(
1

4

)(
g(xn,k, yn,k) +

3

2
g(X

(1)
k , Y

(1)
k ) +

3

2
g(X

(2)
k , Y

(2)
k )

)
. (4.7f)

In (4.7) all steps are standard Runge-Kutta 3 steps applied to (4.1) except for (4.7b)
and (4.7d). In (4.7b), we use the fact that f(x(tn,k), y(tn,k)) = x′(tn,k) and x′(tn,k) =
X ′(tn,k) +O(h3

n+1). Additionally, expanding the actual second Runge-Kutta stage of x in
a Taylor series about tn,k gives

X
(2)
rk = xn,k +

2

3

(
hn+1

K

)
f
(
X

(1)
rk , Y

(1)
rk

)
= xn,k +

2

3

(
hn+1

K

)
f

(
xn,k +

2

3

(
h

K

)
f(xn,k, yn,k), yn,k +

2

3

(
h

K

)
g(xn,k, yn,k)

)
= xn,k +

2

3

(
hn+1

K

)
f(xn,k, yn,k) +

4

9

(
hn+1

K

)2

(fxf + fyg)(xn,k, yn,k) +O(h3
n+1).

(4.8)

To accurately approximate (4.8), we need an approximation to f(xn,k, yn,k) and (fxf +
fyg)(xn,k, yn,k). Observing that f(x(tn,k), y(tn,k)) = x′(tn,k) and (fxf+fyg)(x(tn,k), y(tn,k)) =
x′′(tn,k), we use x′(tn,k) = X ′(tn,k) +O(h3

n+1) and x′′(tn,k) = X ′′(tn,k) +O(h2
n+1) to arrive

at (4.7d) See Appendix A for a detailed derivation of (4.2)-(4.7).

Next, we will show that (4.2)-(4.7) is a third order scheme.

Lemma 3. If f, g are C4, then

(i) the local error of (4.2) is O(h4),
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(ii) the interpolating polynomial X (t) is a locally fourth order approximation of x(t) on
the interval [tn, tn+1] provided xn = x(tn),

(iii) the local error of (4.7) is O(h4),

(iv) the global error of (4.2)-(4.7) is O(h3).

Proof. Assume hn = hn+1 = h. First, we analyze the local error in x

lxn+1 ≡ x(tn+1)− xn+1. (4.9)

Assuming no error is committed prior to step n, i.e., xj = x(tj), yj = y(tj), j ≤ n, we
expand (4.2e) and x(tn+1) in a Taylor series about tn, obtaining

x(tn+1)− xn+1 = x(tn+1)

−
(
xn +

hn+1

4

(
f(xn, yn) +

3

2
f(X(1), Y (1)) +

3

2
f(X(2), Y (2))

))
=

(
x(tn) + hx′ +

h2

2
x′′ +

h3

6
x′′′ +

h4

24
x(4)(ξ1)

)
−

(
xn + hf

+
h2

2
(fxf + fyg) +

h3

6

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2

+ fygxf + fygyg
)

+ h4Rx(ξ2)

)
,

where ξ1 is a point in the interval [tn, tn+1], ξ2 is a point on the line connecting (xn, yn) to
(xn + hf, yn + hg), and Rx is the remainder term in the Taylor expansion of (4.2e). The
terms of x(4)(t) and Rx(t) are given by (C.1) and (C.2), in Appendix C. Noting that

x′ = f, x′′ = fxf + fyg,

x′′′ = fxxf
2 + 2fxyfg + f 2

xf + fxfyg + fyyg
2 + fygxf + fygyg,

we have

|lxn+1| =
∣∣∣∣h4

(
1

24
x(4)(ξ1)−Rx(ξ2)

)∣∣∣∣ ≤ Ch4, (4.10)

which proves (i).

Next expanding the exact solution x(t), the interpolating polynomial X (t) and its
coefficients in a Taylor series about tn gives

x(tn + δh)−X (tn + δh) =
(δh)4

24
x(4)(ξ1)− h4RX (ξ2) = C1(δ)h4, (4.11a)
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where RX is the remainder term for the interpolating polynomial, and 0 ≤ δ ≤ 1, see (C.3)
in Appendix C. This shows that the interpolating polynomial provides a locally fourth
order accurate approximation to x(t) on the interval [tn, tn+1], proving (ii). Additionally,
analyzing the local error of the derivatives of the interpolating polynomial X ′(t) reveals

x′(tn + δh)−X ′(tn + δh) =
(δh)3

6
x(4)(ξ1)− h3RX (ξ2) = C2(δ)h3, (4.11b)

x′′(tn + δh)−X ′′(tn + δh) =
(δh)2

2
x(4)(ξ1)− h2RX (ξ2) = C3(δ)h2, (4.11c)

where 0 ≤ δ ≤ 1. This show that X ′(t) gives a locally third order approximation to x′(t)
and X ′′(t) gives a locally second order approximation to x′′(t)on the interval [tn, tn+1].

Next, we analyze the local error in (4.7f)

lyn,k+1 ≡ y(tn,k+1)− yn,k+1. (4.12)

We assume there was no error committed prior to tn.k, i.e., xn,j = x(tn,j), yn,j = y(tn,j), j =
0, 1, . . . , k. First, substituting (4.11) into (4.7) with δ = k/K gives

X
(1)
k = x(tn,k) + C1

(
k

K

)
h4 +

2

3

(
h

K

)(
f(x(tn,k), y(tn,k)) + C2

(
k

K

)
h3

)
, (4.13a)

Y
(1)
k = y(tn,k) +

2

3

(
h

K

)
g

(
x(tn,k) + C1

(
k

K

)
h4, y(tn,k)

)
, (4.13b)

X
(2)
k = x(tn,k) + C1

(
k

K

)
h4 +

2

3

(
h

K

)(
f(x(tn,k), y(tn,k)) + C2

(
h

K

)
h3

)
+

4

9

(
h

K

)2(
(fxf + fyg)(x(tn,k), y(tn,k)) + C3

(
k

K

)
h2

)
,

(4.13c)

Y
(2)
k = y(tn,k) +

2

3

(
h

K

)
g
(
X

(1)
k , Y

(1)
k

)
. (4.13d)

Then (4.7f) becomes

yn,k+1 = y(tn,k) +

(
hn+1

K

)(
1

4

)(
g

(
x(tn,k) + C1

(
k

K

)
h4, y(tn,k)

)

+
3

2
g(X

(1)
k , Y

(1)
k ) +

3

2
g(X

(2)
k , Y

(2)
k )

)
. (4.13e)
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Substituting (4.13) into (4.12) and expanding each term in a Taylor series about tn,k gives

|lyn,k+1| =

∣∣∣∣∣
(
h

K

)4(
y(4)(ξ1)

24
−Ry,k+1(ξ2)

)
+O(h5)

∣∣∣∣∣ ≤ Ch4, (4.14)

where Ry,k+1 is the remainder of the Taylor series of (4.13e) about tn,k. The terms of y(4)(t)
and Ry,k+1(t) are given by (C.4) and (C.5), respectively, in Appendix C. This proves (iii).

The proof of (iv) follows from the proof of Lemma 1(iv) in [22], using the error estimates
(4.10), (4.14). This completes the proof.

4.2.2 Runge-Kutta 4 Local Time-Stepping

The following local-time stepping method is based on the classical Runge-Kutta 4 method
shown below in Table 4.2.

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Table 4.2: Butcher tableau for the classical Runge-Kutta 4 method to be used for local
time-stepping.

We follow the same procedure as Section 4.2.1 where we approximate the inner Runge-
Kutta stages. We state the inner stage approximations without justification as they are
derived by approximating the Taylor expansion of the stages. We refer the reader to
Appendix B for a detailed derivation of the following method.

Assume that at time tn both solutions xn and yn are known. We also assume we have
stored some previous data, namely f(xn−1, yn−1), g(xn−1, yn−1), f(xn−2, yn−2), g(xn−2, yn−2),
and time step sizes hn and hn−1.

We begin by advancing x from tn to tn+1. To do this, we must approximate the
intermediate stages of y. First, for y, we define a “correction term”. This term is nonzero
when hn+1 6= hn, and is used to replace high-order derivatives in the Taylor expansion
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multiplied by time step size hn with high-order derivatives multiplied by the current time
step size hn+1. It is given by

Corry =

(
2
hn+1 − hn
hn + hn−1

)(
g(xn, yn)− g(xn−1, yn−1)

hn
− g(xn−1, yn−1)− g(xn−2, yn−2)

hn−1

)
.

(4.15)
To advance xn to xn+1 we have the following scheme

X(1) = xn +
1

2
hn+1f(xn, yn), (4.16a)

Y (1) = yn +
1

2
hn+1g(xn, yn), (4.16b)

X(2) = xn +
1

2
hn+1f(X(1), Y (1)), (4.16c)

Y (2) = yn +
1

2
hn+1g(xn, yn) +

1

4
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn
− 1

2
Corry

)
, (4.16d)

X(3) = xn + hn+1f(X(2), Y (2)), (4.16e)

Y (3) = yn + hn+1g(xn, yn) +
1

2
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn
− 1

2
Corry

)
+

3

4
h3
n+1

(
2

hn + hn−1

)(
g(xn, yn)− g(xn−1, yn−1)

hn
− g(xn−1, yn−1)− g(xn−2, yn−2)

hn−1

)
,

(4.16f)

xn+1 = xn +
hn+1

6

(
f(xn, yn) + 2f(X(1), Y (1)) + 2f(X(2), Y (2) + f(X(3), Y (3))

)
. (4.16g)

We see in (4.16) that all steps are standard Runge-Kutta 4 steps applied the system (4.1)
except for (4.16d) and (4.16f).

Having advanced xn to xn+1, we seek to construct a polynomial of degree 4, X (t)
which interpolates the numerical solution x along the segment [tn, tn+1]. We construct
this polynomial in such a way that under the assumption that xn = x(tn), it satisfies
|x(t)−X (t)| = O(h5

n+1) for all tn ≤ t ≤ tn+1.

Similarly to the Runge-Kutta 3 local time-stepping polynomial, we choose X (tn) =
xn,X (tn+1) = xn+1 and X ′(tn) = f(xn, yn). To have a quartic interpolating polynomial, we
require two more points. Using the solution values xn+1 and xn, along with the current and
previous derivative values f(xn, yn), f(xn−1, yn−1) and f(xn−2, yn−2), we use finite difference
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methods to approximate derivatives of x(t)

β =
6(2hn+1 + 3hn)

6h2
n + 8hn+1hn + 6hnhn−1 + 3h2

n+1 + 4hn+1hn−1

[
(

6

2hn+1 + 3hn

)(
2
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− f(xn, yn)− f(xn−1, yn−1)

hn

)
−
(

2

hn + hn−1

)(
f(xn, yn)− f(xn−1, yn−1)

hn
− f(xn−1, yn−1)− f(xn−2, yn−2)

hn−1

)]
,

(4.17a)

α =

(
6

2hn+1 + 3hn

)(
2
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− f(xn, yn)− f(xn−1, yn−1)

hn

)
+

(
3h2

n+1 + 6hn+1hn + 2h2
n

2(2hn+1 + 3hn)

)
β, (4.17b)

where α = x(3)(tn+1) +O(h2
n+1) and β = x(4)(tn) +O(hn+1). Choosing X (3)(tn+1) = α and

X (4)(tn) = β, we get the unique interpolating polynomial

X (t) = xn + (t− tn)f(xn, yn)

+ (t− tn)2

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1

6
α +

h2
n+1

8
β

)

+
(t− tn)3

6
(α− hn+1β) +

(t− tn)4

24
β, tn ≤ t ≤ tn+1. (4.17c)

We are now tasked with advancing y through the intermediate time steps tn,k = tn +
khn+1/K, k = 0, 1, . . . K. Denote the computed value of y at time tn,k by yn,k, where

yn,0 = yn and yn,K = yn+1. Additionally, let X
(i)
k , Y

(i)
k , i = 1, 2, 3, denote the inner Runge-

Kutta stages at the fractional step k. We advance yn,k to yn,k+1 with the following scheme
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xn,k = X (tn,k), (4.18a)

X
(1)
k = xn,k +

1

2

(
hn+1

K

)
X ′(tn,k), (4.18b)

Y
(1)
k = yn,k +

1

2

(
hn+1

K

)
g(xn,k, yn,k), (4.18c)

X
(2)
k = xn,k +

1

2

(
hn+1

K

)
X ′(tn,k) +

1

4

(
hn+1

K

)2

X ′′(tn,k), (4.18d)

Y
(2)
k = yn,k +

1

2

(
hn+1

K

)
g(X

(1)
k , Y

(1)
k ), (4.18e)

X
(3)
k = xn,k +

(
hn+1

K

)
X ′(tn,k) +

1

2

(
hn+1

K

)2

X ′′(tn,k) +
1

4

(
hn+1

K

)3

X ′′′(tn,k), (4.18f)

Y
(3)
k = yn,k +

(
hn+1

K

)
g(X

(2)
k , Y

(2)
k ), (4.18g)

yn,k+1 = yn,k +

(
hn+1

K

)(
1

6

)(
g(xn,k, yn,k) + 2g(X

(1)
k , Y

(1)
k )

+ 2g(X
(2)
k , Y

(2)
k ) + g(X

(3)
k , Y

(3)
k )
)
. (4.18h)

In (4.18) all steps are standard Runge-Kutta 4 steps applied to (4.1) except for (4.18b),
(4.18d) and (4.18f).

Next, we will show that (4.16)-(4.18) is a fourth order scheme.

Lemma 4. If f, g are C5, then

(i) the local error of (4.16) is O(h5),

(ii) the interpolating polynomial X (t) is a localy fifth order approximation of x(t) on the
interval [tn, tn+1] provided xn = x(tn),

(iii) the local error of (4.18) is O(h5),

(iv) the global error of (4.16)-(4.18) is O(h4).

Proof. Assume a uniform time step, i.e., hn−1 = hn = hn+1 = h. The nonuniform case is
similar.
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First, we analyze the local error in x

lxn+1 ≡ x(tn+1)− xn+1. (4.19)

Assuming no error is committed prior to step n, i.e., xj = x(tj), yj = y(tj), j ≤ n, we
expand (4.16g) and x(tn+1) in a Taylor series about tn, obtaining

x(tn+1)− xn+1 = x(tn+1)

−

(
xn +

hn+1

6

(
f(xn, yn) + 2f(X(1), Y (1)) + 2f(X(2), Y (2))

+ f(X(3), Y (3))
))

=

(
x(tn) + hx′ +

h2

2
x′′ +

h3

6
x′′′ +

h4

24
x(4) +

h5

120
x(5)(ξ1)

)
−

(
xn + hf

+
h2

2
(fxf + fyg) +

h3

6

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2

+ fygxf + fygyg
)

+
h4

24

(
3fxxffyg + 5fxygfxf + 3fxyfgyg + 2fxfygxf + fxfygyg + 3fyyggxf

+ 2fygxyfg + fygygxf + 3fxxyf
2g + 3fxyyfg

2 + f 2
xfyg + fygxxf

2

+ fyg
2
yg + gxf

2
y g + 4fxxf

2fx + fxxxf
3 + fyyyg

3 + f 3
xf + fygyyg

2

+ fxfyyg
2 + 3fxyg

2fy + 3fxyf
2gx + 3fyyg

2gy

)
+ h5Rx(ξ2)

)
,

where ξ1 is a point in the interval [tn, tn+1], ξ2 is a point on the line connecting (xn, yn)
to (xn + hf, yn + hg), and Rx is the remainder term in the Taylor expansion of (4.16g).
The terms of x(5)(t) and Rx(t) are given by (C.6) and (C.7), respectively, in Appendix C.
Noting that

x′ = f, x′′ = fxf + fyg,

x′′′ = fxxf
2 + 2fxyfg + f 2

xf + fxfyg + fyyg
2 + fygxf + fygyg,

x(4) = 3fxxffyg + 5fxygfxf + 3fxyfgyg + 2fxfygxf + fxfygyg + 3fyyggxf

+ 2fygxyfg + fygygxf + 3fxxyf
2g + 3fxyyfg

2 + f 2
xfyg + fygxxf

2

+ fyg
2
yg + gxf

2
y g + 4fxxf

2fx + fxxxf
3 + fyyyg

3 + f 3
xf + fygyyg

2

+ fxfyyg
2 + 3fxyg

2fy + 3fxyf
2gx + 3fyyg

2gy,
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we have

|lxn+1| =
∣∣∣∣h5

(
1

120
x(5)(ξ1)−Rx(ξ2)

)∣∣∣∣ ≤ Ch5, (4.20)

which proves (i).

Next expanding the exact solution x(t), the interpolating polynomial X (t) and its
coefficients in a Taylor series about tn gives

x(tn + δh)−X (tn + δh) =
(δh)5

120
x(5)(ξ1)− h5RX (ξ2) = C1(δ)h5, (4.21a)

where RX is the remainder term for the interpolating polynomial, and 0 ≤ δ ≤ 1, see (C.8)
in Appendix C. This proves (ii). The interpolating polynomial provides a locally fifth order
accurate approximation to x(t) on the interval [tn, tn+1]. Additionally, analyzing the local
error of the derivatives of the interpolating polynomial reveals

x′(tn + δh)−X ′(tn + δh) =
(δh)4

24
x(5)(ξ1)− h4RX (ξ2) = C2(δ)h4, (4.21b)

x′′(tn + δh)−X ′′(tn + δh) =
(δh)3

6
x(5)(ξ1)− h3RX (ξ2) = C3(δ)h3, (4.21c)

x′′′(tn + δh)−X ′′′(tn + δh) =
(δh)2

2
x(5)(ξ1)− h2RX (ξ2) = C4(δ)h2, (4.21d)

where 0 ≤ δ ≤ 1. This show that X ′(t) gives a locally fourth order approximation to x′(t),
X ′′(t) gives a locally third order approximation to x′′(t) and X ′′′(t) gives a locally second
order approximation to x′′′(t)on the interval [tn, tn+1].

Next, we analyze the local error in (4.18h)

lyn,k+1 ≡ y(tn,k+1)− yn,k+1. (4.22)

We assume there was no error committed prior to tn.k, i.e., xn,j = x(tn,j), yn,j =
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y(tn,j), j = 0, 1, . . . , k. First, substituting (4.21) into (4.18) with δ = k/K gives

X
(1)
k = x(tn,k) + C1

(
k

K

)
h5 +

1

2

(
h

K

)(
f(x(tn,k), y(tn,k)) + C2

(
k

K

)
h4

)
, (4.23a)

Y
(1)
k = y(tn,k) +

1

2

(
h

K

)
g

(
x(tn,k) + C1

(
k

K

)
h5, y(tn,k)

)
, (4.23b)

X
(2)
k = x(tn,k) + C1

(
k

K

)
h5 +

1

2

(
h

K

)(
f(x(tn,k), y(tn,k)) + C2

(
k

K

)
h4

)
+

1

4

(
h

K

)2(
d

dt
f(x(tn,k), y(tn,k)) + C3

(
k

K

)
h3

)
,

(4.23c)

Y
(2)
k = y(tn,k) +

1

2

(
h

K

)
g
(
X

(1)
k , Y

(1)
k

)
, (4.23d)

X
(3)
k = x(tn,k) + C1

(
k

K

)
h5 +

(
h

K

)(
f(x(tn,k), y(tn,k)) + C2

(
k

K

)
h4

)
+

1

2

(
h

K

)2(
d

dt
f(x(tn,k), y(tn,k)) + C3

(
k

K

)
h3

)
+

1

4

(
h

K

)3(
d2

dt2
f(x(tn,k), y(tn,k)) + C4

(
k

K

)
h2

)
,

(4.23e)

Y
(3)
k = y(tn,k) +

(
h

K

)
g
(
X

(2)
k , Y

(2)
k

)
. (4.23f)

Then (4.18h) becomes

yn,k+1 = y(tn,k) +

(
hn+1

K

)(
1

6

)(
g

(
x(tn,k) + C1

(
k

K

)
h5, y(tn,k)

)

+ 2g(X
(1)
k , Y

(1)
k ) + 2g(X

(2)
k , Y

(2)
k ) + g(X

(3)
k , Y

(3)
k )

)
. (4.23g)

Substituting (4.23) into (4.22) and expanding each term in a Taylor series about tn,k gives

|lyn,k+1| =

∣∣∣∣∣
(
h

K

)5(
y(5)(ξ1)

120
−Ry,k+1(ξ2)

) ∣∣∣∣∣ ≤ Ch5, (4.24)

where Ry,k+1 is the remainder of the Taylor series of (4.23g) about tn,k. The terms of y(5)(t)
and Ry,k+1(t) are given by (C.9) and (C.10), respectively, in Appendix C. This proves (iii).

The proof of (iv) follows from the proof of Lemma 1(iv) in [22], using the error estimates
(4.20), (4.24). This completes the proof.
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4.3 Local Time-Stepping with the Discontinuous

Galerkin Method

The global CFL condition for the discontinuous Galerkin method when paired with Runge-
Kutta time-stepping was discussed in Section 3.5. There we saw that when using a globally
stable time step, we were constrained by using the stability condition of the smallest
element in the mesh. To overcome this, we will adapt the local time-stepping algorithms
developed in Section 4.2 to be used for the time integration of the discontinuous Galerkin
spacial discretization.

To apply these algorithms, we must first sort the mesh elements. Let r be the size of
the largest element in the mesh with ∆t being the corresponding stable time step on this
element. We then group elements into a “bin” based on their size relative to the maximum
element size. Element k with element size rk, satisfying r/2i+1 ≤ rk < r/2i will be placed
into bin(i). Bin(i) will be advanced with the time step ∆t/2i+1.

Next, we must categorize elements based on which bin they are in and which bins their
neighboring elements are in. Neighboring elements are elements which share a vertex or an
edge in one- or two- dimensions, respectively. Within each bin, elements are categorized as
follows: interior elements are elements in which all neighboring elements are in the same
bin; large interface elements are elements which have at least one neighbor belonging to
a bin of smaller elements; small interface elements are elements which have at least one
neighbor belonging to a bin of larger elements. Elements can be categorized as both a
large interface element and a small interface element.

When explicit time-stepping is used, the discontinuous Galerkin method is local which
means that we can solve our system element-wise in any order. The only communication
between elements is through the surface integral∫

∂Ωj

ψFn(Uj,Uj+) · ndξ, (4.25)

where Uj+ is a neighboring element of Uj. With this method, boundary conditions are
imposed through the evaluation of the surface integral (4.25). Since no neighboring element
Uj+ is present on the boundary of the domain we assign a ghost value which will be used
in place of the neighbor.

To deal with the computation of the surface integral (4.25) on the interface between
large and small elements, we will adopt the approach used to deal with boundary elements.
Due to the local property of the discontinuous Galerkin method, we can think of advancing
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each bin as its own smaller problem with the boundaries being either physical boundaries
or neighboring elements from different bins. On the interfaces between large and small
elements we will compute ghost approximations to solution coefficient which will be denoted
by the superscript G. Then, the solution value at the element boundary can be computed
as

U(ξb, t) =

Np∑
i=0

cGi ψi(ξb), (4.26)

where ξ is the local variable on the canonical element Ω0, and ξb corresponds to the values
of ξ which lie along the interface. The functions ψi correspond to the ith basis function on
Ω0. The solution values using the ghost approximations at each of the Runge-Kutta stages
can be computed the same way.

The proposed algorithms only require us to change the time-stepping procedure on
interface elements. We are able to use standard Runge-Kutta time stepping on all interior
element using their locally stable time step. The advantage of this is that these local time-
stepping algorithms can be implemented into preexisting code without having to rewrite
the entire time-stepping functionality.

4.3.1 Runge-Kutta 3 Local Time-Stepping with the Discontinu-
ous Galerkin Method

In this section, we adapt the algorithm developed in Section 4.2.1 to be used with the
discontinuous Galerkin method. Assume that at time tn, all elements are at the same time
level. Further, assume we have stored f(c) at time tn−1 on the large and small interface
elements and we have stored the time step size hn = tn − tn−1.

We begin by advancing the large elements with time step hn+1 = tn+1 − tn, the largest
stable time step on these elements. The solution coefficients on each of the small interface
elements for the first Runge-Kutta stage are given by

C
(1),G
si = cnsi +

2

3
hn+1fsi(c

n), i = 0, 1, . . . , Np. (4.27a)

Using (4.2d), the coefficients for the second Runge-Kutta stage on the small interface
elements are given by

C
(2),G
si = cnsi +

2

3
hn+1fsi(c

n) +
4

9
h2
n+1

(
fsi(c

n)− fsi(cn−1)

hn

)
, i = 0, 1, . . . , Np. (4.27b)
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The large elements can now be advanced from tn to tn+1.

Now, using (4.6), we create a cubic interpolating polynomial along each large element
interface to use as a boundary condition for updating the solution coefficients on the small
interface elements. This polynomial is given by

bli(t) = cnli + (t− tn)fli(c
n) + (t− tn)2

(
cn+1
li − cnli − hn+1fli(c

n)

h2
n+1

− hn+1βli

)
+ (t− tn)3βli,

(4.28a)

βli =
1

2hn+1 + 3hn

(
2
cn+1
li − cnli − hn+1fli(c

n)

h2
n+1

− fli(c
n)− fli(cn−1)

hn

)
, (4.28b)

for i = 0, 1, . . . , Np and tn ≤ t ≤ tn+1.

The time step on the small elements is divided into K levels, depending on the size
relative to the large elements. The local sub-step time levels are tn,k = tn+(k/K)hn+1, k =
0, 1, . . . , K. To advance the small elements from tn,k to tn.k+1, k = 0, 1, 2, . . . , K − 1, ghost
coefficients on the large interface elements are given by

cGli,k = bli(tn,k), i = 0, 1, . . . , Np. (4.29a)

Then, (4.7b) gives the ghost coefficients for the first Runge-Kutta stage on each of the
large interface elements. They are written as

C
(1),G
li,k = bli(tn,k) +

2

3

(
hn+1

K

)
b′li(tn,k), (4.29b)

for i = 0, 1, . . . , Np. Finally, using (4.7d), the ghost coefficients for the second Runge-Kutta
stage on the large interface elements are given by

C
(2),G
li,k = bli(tn,k) +

2

3

(
hn+1

K

)
b′li(tn,k) +

4

9

(
hn+1

K

)2

b′′li(tn,k), (4.29c)

for i = 0, 1, . . . , Np. The small elements can now be advanced to the next time level until
reaching tn,K = tn+1.

4.3.2 Runge-Kutta 4 Local Time-Stepping with the Discontinu-
ous Galerkin Method

In this section, we adapt the algorithm developed in Section 4.2.2 to be used with the
discontinuous Galerkin method. Assume that at time tn, all elements are at the same time
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level. Further, assume we have stored f(c) at time tn−1 and time tn−1 on the large and
small interface elements and we have stored the time step sizes hn and hn−1.

On each small interface element, we use (4.15) to define the “correction term”. This
term is used to replace the high-order derivative terms which are multiplied by hn by high-
order derivatives which are multiplied by the current time step hn+1. Using (4.15), the
correction term is given by

Corrs,i =

(
2
hn+1 − hn
hn + hn−1

)(
fsi(c

n)− fsi(cn−1)

hn
− fsi(c

n−1)− fsi(cn−2)

hn−1

)
, (4.30)

for i = 0, 1, . . . , Np. Note that if hn = hn+1 then Corrs,i = 0.

We begin by advancing the large elements with time step hn+1 = tn+1 − tn, the largest
stable time step on these elements. The solution coefficients on each of the small interface
elements for the first Runge-Kutta stage are given by

C
(1),G
si = cnsi +

hn+1

2
fsi(c

n), i = 0, 1, . . . , Np. (4.31a)

Using (4.16d), the coefficients for the second Runge-Kutta stage on the small interface
elements are given by

C
(2),G
si = cnsi +

hn+1

2
fsi(c

n) +
h2
n+1

4

(
fsi(c

n)− fsi(cn−1)

hn
− 1

2
Corrs,i

)
, (4.31b)

for i = 0, 1, . . . , Np. The coefficients for the third Runge-Kutta stage on the small interface
elements, given by 4.16f, are

C
(3),G
si = cnsi + hn+1fsi(c

n) +
h2
n+1

2

(
fsi(c

n)− fsi(cn−1)

hn
− 1

2
Corrs,i

)
+

3h3
n+1

4

(
2

hn + hn−1

)(
fsi(c

n)− fsi(cn−1)

hn
− fsi(c

n−1)− fsi(cn−2)

hn−1

)
, (4.31c)

for i = 0, 1, . . . , Np. The large elements can now be advanced from tn to tn+1.

We now use (4.17) to create a quartic interpolating polynomial along each large element
interface to use as a boundary condition for updating the solution coefficients on the small
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elements. This polynomial is given by

bli(t) = cnli + (t− tn)fli(c
n)

+ (t− tn)2

(
cn+1
li − cnli − hn+1fli(c

n)

h2
n+1

− hn+1

6
αli +

h2
n+1

8
βli

)

+
(t− tn)3

6
(αli − hn+1βli) +

(t− tn)4

24
βli, (4.32a)

βli =
6(2hn+1 + 3hn)

6h2
n + 8hn+1hn + 6hnhn−1 + 3h2

n+1 + 4hn+1hn−1

[
(

6

2hn+1 + 3hn

)(
2
cn+1
li − cnli − hn+1fli(c

n)

h2
n+1

− fli(c
n)− fli(cn−1)

hn

)
−
(

2

hn + hn−1

)(
fli(c

n)− fli(cn−1)

hn
− fli(c

n−1)− fli(cn−2)

hn−1

)]
, (4.32b)

αli =
20

9

(
6

2hn+1 + 3hn

)(
2
cn+1
li − cnli − hn+1fli(c

n)

h2
n+1

− fli(c
n)− fli(cn−1)

hn

)
+

(
3h2

n+1 + 6hn+1hn + 2h2
n

2(2hn+1 + 3hn)

)
βli, (4.32c)

for i = 0, 1, . . . , Np and tn ≤ t ≤ tn+1.

The time step on the small elements is divided into K levels, depending on the size
relative to the large element. The local sub-step time levels are tn,k = tn + (k/K)hn+1, k =
0, 1, . . . , K. To advance the small elements from tn,k to tn.k+1, k = 0, 1, 2, . . . , K − 1, ghost
coefficients on the large interface elements at tn,k are given by

cGli,k = bli(tn,k), i = 0, 1, . . . , Np. (4.33a)

Next, using (4.18b), the ghost coefficients for the first Runge-Kutta stage on each of
the large interface elements are given by

C
(1),G
li,k = bli(tn,k) +

1

2

(
hn+1

K

)
b′li(tn,k), i = 0, 1, . . . , Np. (4.33b)

The ghost coefficients for the second Runge-Kutta stage on the large interface elements,
given by (4.18d) are

C
(2),G
li,k = bli(tn,k) +

1

2

(
hn+1

K

)
b′li(tn,k) +

1

4

(
hn+1

K

)2

b′′li(tn,k), (4.33c)
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for i = 0, 1, . . . , Np. Finally, using (4.16f), the ghost coefficients for the third Runge-Kutta
stage on the large interface elements are given by

C
(3),G
li,k = bli(tn,k) +

(
hn+1

K

)
b′li(tn,k) +

1

2

(
hn+1

K

)2

b′′li(tn,k) +
1

4

(
hn+1

K

)3

b′′′li (tn,k), (4.33d)

for i = 0, 1, . . . , Np. The small elements can now be advanced to the next time level until
reaching tn,K = tn+1.

4.4 Discussion

The methods described in Sections 4.3.1, 4.3.2 do not require additional evaluations of the
function f(c), but require extra storage on the interface elements. The Runge-Kutta 3 local
time-stepping algorithm requires the storage of cn, f(cn), f(cn−1) on all interface elements,
cn+1 on the large interface elements, and storage of the previous time step hn. This
amounts to storing N ·Np · (3 · Num(int) + Num(large int)) + 1 double-precision floating-
point numbers, where N is the number of equations, Np is the number of polynomial
basis functions, Num(int) is the number of interface elements and Num(large int) is the
number of large interface elements. The Runge-Kutta 4 local time-stepping algorithm
requires the storage of cn, f(cn), f(cn−1), f(cn−2) on all interface elements, cn+1 on the
large interface elements, and storage of the previous time steps hn, hn−1. This amounts to
storing N ·Np · (4 ·Num(int)+Num(large int))+2 double-precision floating-point numbers.
This is not excessive as the number of interface elements is generally small compared to
the total number of elements in the mesh.

These time-stepping algorithms preserve the local nature of the discontinuous Galerkin
method in the sense that they do not extend the stencil outward in space. The ghost stages
use previous time values to compute high order approximations to the solution coefficients.
This allows the algorithm to be used in the case where a single element is surrounded by
elements from different bins, a property that is particularly useful on unstructured meshes.

Before illustrating the algorithms, we would like to investigate the theoretical maximum-
speed up we can achieve by using local time-stepping rather than global time-stepping.
Consider the simple example, from [13], of a computational mesh Ω with E spatial el-
ements. The mesh contains elements of two sizes, with two different stable time steps.
Assume that a percentage of elements having the small time step ∆t1 is α < 1 and the
percentage of elements having the large time step ∆t2 is (1 − α). Assume the time steps
satisfy ∆t2 = τ∆t1, τ > 1. Let NLTS be the number of space-time elements used in a local
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time-stepping method in the space-time domain Ω× T , where T = [t0, tf ]. Then,

NLTS = αE
tf − t0

∆t1
+ (1− α)E

tf − t0
∆t2

. (4.34)

For a global time-stepping algorithm, all elements must be advanced with the smaller
time-step ∆t1. The number of global space-time elements is

NGTS = E
tf − t0

∆t1
. (4.35)

We define the theoretical speed up σ to be the ratio of the number of space-time elements
in (4.35) and (4.34)

σ =
NGTS

NLTS
=

τ

1− α + ατ
. (4.36)

We consider two extreme limits. First, the case where there is great disparity in the two
time steps, τ →∞. Taking the limit, we obtain

lim
τ→∞

σ =
1

α
. (4.37)

We see that the theoretical speed up is not determined by the time step ratio τ but from
the percentage α of elements with the smaller time-step. This means that when there is a
small percentage of elements having time step ∆t1 we can expect a greater speed up than
if there is a larger percentage elements with the smaller time step. Secondly, we consider
the case when there are very few elements with the smaller time step, α→ 0. Taking the
limit, we obtain

lim
α→0

σ = τ. (4.38)

In this case, we see that the theoretical maximum for speed up is given by the time step
ratio τ .

To illustrate how the algorithms are implemented, we will present examples of how
Runge-Kutta 3 and Runge-Kutta 4 local time-stepping are used on two types of meshes.
The examples below have been adapted from [22] to fit the Runge-Kutta 3 and Runge-
Kutta 4 local time-stepping algorithms.

First, using the discontinuous Galerkin method for spatial discretization of a one-
dimensional scalar equation with two-for-one spacial refinement. The mesh contains el-
ements of size r to the left of the interface and size r/2 to the right of the interface. The
interface is located between elements j and j + 1. The elements of size r will be advanced
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with time step hn+1, whereas the elements of size r/2 will be advanced with time step
hn+1/2.

We begin with Runge-Kutta 3 local time-stepping. Suppose that until tn−1, global time
stepping has been used. In practice, only one global time step is needed before starting
the RK3-LTS algorithm.

Algorithm 1: RK3-LTS

1. Using global time-stepping, advance all elements from cn−1 to cn using a globally
stable time step hn. Store f(cn−1) on elements j and j + 1.

2. Compute f(cn) on all elements.

3. Compute the first stage on large elements C
(1)
large using the local time step hn+1.

4. Compute the first ghost stage on the small interface element j + 1 using (4.27a).

5. Compute f(C
(1)
large) and the second stage on all large elements C

(2)
large.

6. Compute the second ghost stage on the small interface element j + 1 using (4.27b).

7. Compute f(C
(2)
large) and advance the solution on all large elements to time tn+1 =

tn + hn+1. Figure 4.4.

8. Store solution value cn+1 on the large interface element j, then set a ghost value
equal to cn on this element using (4.29a) with K = 2 and k = 0.

9. Compute the first stage on the first half-step on the small elements C
(1)
small,0 using

f(cn) computed in Step 2, and using the local time-step hn+1/2

10. Compute the first ghost stage on the large interface element j using (4.29b) with
K = 2 and k = 0.

11. Compute f(C
(1)
small,0) and the second stage on the first half-step on all small elements

C
(2)
small,0.

12. Compute the second ghost stage on the large interface element j using (4.29c) with
K = 2 and k = 0.

13. Compute f(C
(2)
small,0) and advance the solution on all small elements to time tn+1/2 =

tn + hn+1/2, c
n+1/2
small . Figure 4.5.
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14. Using (4.29a) with K = 2 and k = 1, set the ghost solution value on the large
interface element j.

15. Compute f(c
n+1/2
small ) on all small elements.

16. Compute the first stage on the second half-step on the small elements C
(1)
small,0 using

f(c
n+1/2
small ) computed in Step 15, and using the local time-step hn+1/2

17. Compute the first ghost stage on the large interface element j using (4.29b) with
K = 2 and k = 1.

18. Compute f(C
(1)
small,1) and the second stage on the second half-step on all small ele-

ments C
(2)
small,1.

19. Compute the second ghost stage on the large interface element j using (4.29c) with
K = 2 and k = 1.

20. Compute f(C
(2)
small,1) and advance the solution on all small elements to time tn+1 =

tn+1/2 +hn+1/2. The solution on all small elements have been advanced to time tn+1.

21. Reset the solution on element j to the value stored in Step 8. Figure 4.6.

C(1) C(2)

cn+1

C(1) C(2)

cn+1

C(1),GC(2),G

j − 1 j j + 1 j + 2 j + 3

tn−1

tn

tn+1

tn+1/2

Figure 4.4: Algorithm 1: steps 2-7.
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cn+1 cn+1

C(1),GC(2),G C(1)C(2)

cn+1/2

C(1)C(2)

cn+1/2

j − 1 j j + 1 j + 2 j + 3

tn−1

tn

tn+1

tn+1/2

Figure 4.5: Algorithm 1: steps 8-13.

b(t)cn+1 cn+1

C(1),GC(2),G C(1)C(2)

cn+1

C(1)C(2)

cn+1

j − 1 j j + 1 j + 2 j + 3

tn−1

tn

tn+1

tn+1/2

b(tn+1/2)

Figure 4.6: Algorithm 1: steps 14-21.

Next we show the Runge-Kutta 4 local time-stepping algorithm on the same problem.
Suppose that until tn−2, global time stepping has been used. In practice, only two global
time steps are needed before starting the RK4-LTS algorithm. We do not present figures
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to demonstrate this algorithm as they are similar to Algorithm 1.

Algorithm 2: RK4-LTS

1. Using global time-stepping, advance all elements from cn−2 to cn−1 using a globally
stable time step hn−1. Store f(cn−2) on elements j and j + 1.

2. Using global time-stepping, advance all elements from cn−1 to cn using a globally
stable time step hn. Store f(cn−1) on elements j and j + 1.

3. Compute f(cn) on all elements.

4. Compute the first stage on large elements C
(1)
large using the local time step hn+1.

5. Compute the first ghost stage on the small interface element j + 1 using (4.31a).

6. Compute f(C
(1)
large) and the second stage on all large elements C

(2)
large.

7. Compute the second ghost stage on the small interface element j + 1 using (4.31b).

8. Compute f(C
(2)
large) and the third stage on all large elements C

(3)
large.

9. Compute the third ghost stage on the small interface element j + 1 using (4.31c).

10. Compute f(C
(3)
large) and advance the solution on all large elements to time tn+1 =

tn + hn+1.

11. Store solution value cn+1 on the large interface element j, then set the ghost value
equal to cn on this element using (4.33a) with K = 2 and k = 0.

12. Compute the first stage on the first half-step on the small elements C
(1)
small,0 using

f(cn) computed in Step 3, and using the local time-step hn+1/2

13. Compute the first ghost stage on the large interface element j using (4.33b) with
with K = 2 and k = 0.

14. Compute f(C
(1)
small,0) and the second stage on the first half-step on all small elements

C
(2)
small,0.

15. Compute the second ghost stage on the large interface element j using (4.33c) with
K = 2 and k = 0.
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16. Compute f(C
(2)
small,0) and the second stage on the first half-step on all small elements

C
(3)
small,0.

17. Compute the third ghost stage on the large interface element j using (4.33d) with
K = 2 and k = 0.

18. Compute f(C
(3)
small,0) and advance the solution on all small elements to time tn+1/2 =

tn + hn+1/2, c
n+1/2
small .

19. Using (4.33a) with with K = 2 and k = 1, set the ghost solution value on the large
interface element j.

20. Compute f(c
n+1/2
small ) on all small elements.

21. Compute the first stage on the second half-step on the small elements C
(1)
small,1 using

f(c
n+1/2
small ) computed in Step 20, and using the local time-step hn+1/2

22. Compute the first ghost stage on the large interface element j using (4.33b) with
K = 2 and k = 1.

23. Compute f(C
(1)
small,1) and the second stage on the second half-step on all small ele-

ments C
(2)
small,1.

24. Compute the second ghost stage on the large interface element j using (4.33c) with
K = 2 and k = 1.

25. Compute f(C
(2)
small,1) and the third stage on the second half-step on all small elements

C
(3)
small,1.

26. Compute the third ghost stage on the large interface element j using (4.33d) with
K = 2 and k = 1.

27. Compute f(C
(3)
small,1) and advance the solution on all small elements to time tn+1 =

tn+1/2 +hn+1/2. The solution on all small elements have been advanced to time tn+1.

28. Reset the solution on element j to the value stored in Step 11.

Finally, we extend Algorithms 1 and 2 to meshes with multiple levels of refinement.
Suppose the mesh contains elements of size r, r/2, . . . , r/2m where there are m + 1 levels
of refinement. Suppose elements have been grouped into bins based on their size, i.e.,
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elements of size r/2i are grouped into bin(i) which has local time step h/2i. Will illustrate
this extension with an example of m = 3, or four levels of two-for-one refinement.

Algorithm 3

1. Advance all elements to time tn using a globally stable time step, storing appropriate
data.

2. Advance all elements in time by one locally stable time step, h/2i using steps 2-13 of
Algorithm 1, or 3-18 of Algorithm 2. Begin by advancing the bin of largest elements
bin(0), then bin(1), bin(2), and finally bin(3).

3. Advance elements in bin(3) by one local time step h/8 using steps steps 14-21 of
Algorithm 1, or 19-28 of Algorithm 2. Now bin(2) and bin(3) are at the same time
level, Figure 4.7a.

4. Advance bin(2) and bin(3) with local time steps h/4 and h/8 using steps 2-13 of
Algorithm 1, or 3-18 of Algorithm 2. Store and update appropriate data.

5. Advance elements in bin(3) by one local time step h/8 using steps steps 14-21 of
Algorithm 1, or 19-28 of Algorithm 2. Now bin(1), bin(2) and bin(3) are at the same
time level, Figure 4.7b.

6. Advance bin(1), bin(2) and bin(3) with local time steps h/2, h/4, and h/8 using steps
2-13 of Algorithm 1, or 3-18 of Algorithm 2. Store and update appropriate data, ,
Figure 4.7c.

7. Repeat steps 3-5. All bins are advanced to tn+1, Figure 4.7d.
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(a) Steps 1-3 (b) Steps 4-5

(c) Step 6 (d) Step 7

Figure 4.7: Algorithm 3.
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Chapter 5

Numerical Results

In this section we provide a number of numerical examples demonstrating the accuracy and
efficiency of the algorithms proposed in Section 4. We use a discontinuous Galerkin spatial
discretization, as described in Section 3, with a second degree polynomial basis coupled
with the Runge-Kutta 3 local time-stepping algorithm and a third degree polynomial basis
coupled with the Runge-Kutta 4 local time-stepping algorithm. The time step for each
problem is chosen with the rule

∆t = C · S

λmax
· 1

2p+ 1
, (5.1)

where S is some measure of the element size, λmax is the maximum wave speed in the
computational domain, p is the degree of polynomial basis and C is a safety factor so that
we do not violate the CFL condition. In one-dimension S = ∆x and in two-dimensions
S = rmax/2, where rmax is the maximum inscribed radius of the elements in the mesh as
described in Section 4.3. Unless otherwise stated, we take C = 0.9.

5.1 One-Dimensional Examples

5.1.1 One-Dimensional Linear Advection

In the first example, we solve the linear advection equation

ut + ux = 0, t > 0, (5.2)

u(x, 0) = sin(πx),
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on the interval Ω = [−1, 1] with periodic boundary conditions u(−1, t) = u(1, t). The
domain is divided into two subdomains [−1, 0] and [0, 1]. The left subdomain is unrefined
with element size ∆x. The right subdomain is considered refined with element sizes ∆x/2
corresponding to two-for-one refinement and ∆x/4 corresponding to four-for-one refine-
ment. Due to the periodic boundary conditions, the two subdomains will be separated by
two interfaces: at x = 0, where the wave moves from the unrefined region into the refined
region and at x = ±1, where the wave moves from the refined region into the unrefined
region. The errors and rates of convergence in the L2 and max norms are presented in
Table 5.1 and Table 5.2 after five full rotations, i.e, at time t = 10. The max norm is
computed using 10 uniformly distributed points within each element.

2-for-1 Refinement 4-for-1 Refinement

∆x ‖e‖2 r ‖e‖∞ r ‖e‖2 r ‖e‖∞ r

2−3 4.51 e-04 - 1.20 e-03 - 5.05 e-04 - 1.17 e-03 -
2−4 5.50 e-05 3.04 1.50 e-04 3.00 6.14 e-05 3.04 1.47 e-04 2.99
2−5 6.84 e-06 3.01 1.89 e-05 2.99 7.64 e-06 3.01 1.85 e-05 2.99
2−6 8.55 e-07 3.00 2.38 e-06 2.99 9.55 e-07 3.00 2.31 e-06 3.00
2−7 1.07 e-07 3.00 2.95 e-07 3.01 1.19 e-07 3.00 2.90 e-07 3.00

Table 5.1: Errors in the L2 and max norms with rates of convergence for Runge-Kutta 3
local time-stepping in one-dimension.

2-for-1 Refinement 4-for-1 Refinement

∆x ‖e‖2 r ‖e‖∞ r ‖e‖2 r ‖e‖∞ r

2−3 4.06 e-06 - 2.88 e-05 - 5.30 e-06 - 2.87 e-05 -
2−4 2.53 e-07 4.00 1.83 e-06 3.98 3.32 e-07 4.00 1.82 e-06 3.98
2−5 1.59 e-08 3.99 1.15 e-07 3.99 2.08 e-08 4.00 1.15 e-07 3.99
2−6 9.97 e-10 3.99 7.19 e-09 4.00 1.30 e-09 4.00 7.17 e-09 4.00
2−7 6.30 e-11 3.98 4.50 e-10 4.00 8.23 e-11 3.98 4.63 e-10 3.95

Table 5.2: Errors in the L2 and max norms with rates of convergence for Runge-Kutta 4
local time-stepping in one-dimension with C = 0.65.

We achieve the theoretical p + 1 order of convergence of the discontinuous Galerkin
method with both two-for-one refinement and four-for-one refinement. The Runge-Kutta
4 simulations were computed with C = 0.65. The reduced safety factor for Runge-Kutta 4
was to ensure convergence in the max-norm, and indicates that there is a reduced stability
region for this method.
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(a) Runge-Kutta 3, 2-for-1 refinement.
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(b) Runge-Kutta 3, 4-for-1 refinement.
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(c) Runge-Kutta 4, 2-for-1 refinement.
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(d) Runge-Kutta 4, 4-for-1 refinement.

Figure 5.1: Point-wise error for 2-for-1 (left) and 4-for-1 (right) refinements at t = 10 for
Runge-Kutta 3 local time-stepping (top) and Runge-Kutta 4 local time-stepping (bottom).
The unrefined region of the domain is discretized with ∆x = 1/16.

In Figure 5.1, the point-wise errors of the obtained solutions are plotted. We see that
there are no oscillations or errors produced on the interface elements. When using the
Runge-Kutta 4 local time-stepping method, small errors appear on the inflow edge of the
large interface element when information is traveling from the small elements, this can be
seen in Figure 5.2. Errors and rates of convergence in the L2 and max norms with a safety
factor of C = 0.9 are presented in Table 5.3. We see that these errors have a large effect on
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the rate of convergence in the max norm. Reducing the time-step suppresses these errors
so that they do not exceed the maximum error produced on the interior elements.

2-for-1 Refinement 4-for-1 Refinement

∆x ‖e‖2 r ‖e‖∞ r ‖e‖2 r ‖e‖∞ r

2−3 6.74 e-06 - 3.12 e-05 - 8.58 e-06 - 3.12 e-05 -
2−4 4.08 e-07 4.05 2.01 e-06 3.96 5.04 e-07 4.10 1.95 e-06 4.00
2−5 2.56 e-08 3.99 1.27 e-07 3.98 3.16 e-08 3.99 1.25 e-07 3.96
2−6 1.62 e-09 3.98 1.03 e-08 3.62 2.02 e-09 3.97 1.27 e-08 3.30
2−7 1.03 e-10 3.98 1.23 e-09 3.06 1.34 e-10 3.91 1.99 e-09 2.67

Table 5.3: Errors in the L2 and max norms with rates of convergence for Runge-Kutta 4
local time-stepping in one-dimension with C = 0.9.
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(a) 2-for-1 refinement.
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(b) 4-for-1 refinement.

Figure 5.2: Point-wise error for 2-for-1 (left) and 4-for-1 (right) refinements at t = 10 for
Runge-Kutta 4 local time-stepping with C = 0.9. The unrefined region of the domain is
discretized with ∆x = 1/16. Note the increased error on the interface boundary at x = −1.

5.2 Two-Dimensional Examples

In the two-dimensional examples we use unstructured triangular meshes where the meshes
do not contain adjacent elements which differ by more than the factor of refinement, which
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we have set to two.

5.2.1 Two-Dimensional Advection

For the first two-dimensional test problem, we consider the classical rotating hill advection
problem given by

ut − (2πy)ux + (2πx)uy = 0, (5.3a)

u(x, y, 0) = α exp(−((x− x0)2 + (y − y0)2)/2r2), (5.3b)

with parameters α = 5, r = 0.15, x0 = 0.2, y0 = 0, on the domain Ω = [−1, 1] × [−1, 1].
Along the boundary of the domain, we enforce the exact solution

u(x, y, t) = α exp
(
− ((x cos(2πt) + y sin(2πt)− x0)2

+ (−x sin(2πt) + y sin(2πt)− y0)2)/2r2
)
. (5.3c)

We solve the rotating hill problem on two sets of meshes. Both meshes have an attractor
point at the center of the domain which reduces the size of the elements in the vicinity of
the point. The first mesh, Mesh 1, has four levels of refinement and the second mesh, Mesh
2, has nine levels of refinement. Mesh 1-A begins with 846 elements and Mesh 2-A begins
with 616 elements, they are shown in Figure 5.3. Each successive mesh, B-D, is created
through refinement by splitting where each element is split into four smaller elements,
quadrupling the number of elements in the mesh.

In Tables 5.4 and 5.5, we present the errors and rates of convergence in the L2 and max
norms at time t = 1, when the pulse has completed one full rotation around the origin.
We see that on both sets of meshes we achieve the theoretical p + 1 rate of convergence.
We note that the reduced CFL is not needed for the Runge-Kutta 4 local time-stepping
algorithm in two-dimensions. This can be explained by the fact that using the radius of the
inscribed circle on an element gives an overly conservative measure of the element size. In
fact, it has been shown that using the radius of the inscribed circle as a measure of element
size in the time step calculation is nearly a factor of

√
2 smaller than the maximum stable

time step of the problem [5].

5.2.2 Shallow Water Equations

The shallow water equations are an approximation to the Navier-Stokes equations which
result from assuming that the vertical length scale of the fluid is much smaller than hori-
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Figure 5.3: Nonuniform meshes used for the rate of convergence studies.

RK3-LTS RK4-LTS

Mesh ‖e‖2 r ‖e‖∞ r ‖e‖2 r ‖e‖∞ r

Mesh 1-A 5.12 e-03 - 3.58 e-03 - 5.35 e-04 - 3.85 e-04 -
Mesh 1-B 5.57 e-04 3.20 3.44 e-04 3.38 3.97 e-05 3.75 2.56 e-05 3.91
Mesh 1-C 5.94 e-05 3.23 3.45 e-05 3.32 2.11 e-06 4.23 1.33 e-06 4.27
Mesh 1-D 6.56 e-06 3.17 3.74 e-06 3.20 1.26 e-07 4.07 7.60 e-08 4.12

Table 5.4: Errors in the L2 and max norms with rates of convergence for Runge-Kutta 3
and Runge-Kutta 4 local time-stepping on Mesh 1.

zontal length scale. Written in terms of the conserved variables u = (h, uh, vh)T , they are
given by

∂

∂t

 h
uh
vh

+
∂

∂x

 uh
u2h+ 1

2
gh2

uvh

+
∂

∂y

 vh
uvh

v2h+ 1
2
gh2

 =

0
0
0

 , (5.4a)

where h is the height of the fluid, u, v are the velocities in the x and y directions, and g
is the acceleration due to gravity. See [26] for a full derivation of (5.4a). We solve (5.4a)
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RK3-LTS RK4-LTS

Mesh ‖e‖2 r ‖e‖∞ r ‖e‖2 r ‖e‖∞ r

Mesh 2-A 1.72 e-02 - 1.16 e-02 - 2.55 e-03 - 2.01 e-03 -
Mesh 2-B 2.14 e-03 3.01 1.40 e-03 3.06 1.83 e-04 3.80 1.40 e-04 3.84
Mesh 2-C 1.94 e-04 3.47 1.26 e-04 3.47 1.09 e-05 4.07 7.54 e-06 4.21
Mesh 2-D 2.02 e-05 3.26 1.28 e-05 3.30 5.89 e-07 4.21 3.93 e-07 4.26

Table 5.5: Errors in the L2 and max norms with rates of convergence for Runge-Kutta 3
and Runge-Kutta 4 local time-stepping on Mesh 2.

with the initial conditions h
uh
vh

 =

10 + 5 exp (−((x− x0)2 + (y − y0)2)/2r2)
0
0

 , (5.4b)

on the domain [−1, 1]×[−1, 1], where x0 = 0.25, y0 = 0.25 and r = 0.1. Along the boundary
we enforce reflecting boundary conditions and solve until a final time of tf = 0.1. The
reflected boundary conditions are implemented as follows. Let uj be a boundary element
and let n = (nx, ny) be the outward facing normal along the boundary edge. Let u+ be
the ghost solution used in the calculation of the surface integral 4.25. The value of u+ is
given by  h+

(uh)+

(vh)+

 =

 hj
(uh)j − 2nx((uh)jnx + (vh)jny)
(vh)j − 2ny((uh)jnx + (vh)jny)

 . (5.4c)

We solve the shallow water equations on a mesh containing very few small elements. The
small elements are concentrated in a region near the origin, elsewhere the mesh is uniform
in size (uniform in the sense that the elements have size r satisfying rmax/2 ≤ r ≤ rmax,
where rmax is the size of the largest element in the mesh). We separate elements into
bins in the way described in Section 4.3. The mesh contains 26329 elements in Bin(0),
109 elements in Bin(1), 68 elements in Bin(2), 58 elements in Bin(3), and 16 elements in
Bin(4). The few elements in Bin(4) will be very influential on the globally stable time step
and so, there will be a high maximum theoretical speed-up.

Let αi be the percentage of mesh elements contained in Bin(i), let E be the total
number of elements in the mesh, let ∆tmin be the globally stable time step calculated
based on the smallest element size and let ∆tmax be the time step calculated with the
largest element size. Recall from Section 4.3 that Bin(i) will be advanced with time step
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∆tmax/2
i+1. Then, the maximum theoretical speed-up σT is given by

σT =
E

tf
∆tmin

α0E
tf

∆tmax/2
+ α1E

tf
∆tmax/4

+ α2E
tf

∆tmax/8
+ α3E

tf
∆tmax/16

+ α4E
tf

∆tmax/32

(5.5)

=
∆tmax
∆tmin

· 1

2α0 + 4α1 + 8α2 + 16α3 + 32α4

. (5.6)

Assuming the difference in calculating the maximum wave speed for ∆tmin and ∆tmax is
negligible, we have

σT =
rmax
rmin

· 1

2α0 + 4α1 + 8α2 + 16α3 + 32α4

(5.7)

= 10.82. (5.8)

In Table 5.6, we compare the CPU time (in seconds) to run the simulations with local time-
stepping against global time-stepping. In the implementation of the local time-stepping
algorithms, before the time-stepping begins, we sort the edge list by bin. For comparing
these methods, we record the CPU time with edge sorting as well as the CPU time starting
after the edges have been sorted. These are labeled LTS and LTS-NS, respectively. The
CPU time for global time-stepping is labeled GTS. We denote the numerical speed-up by
σ1
N , σ

2
N for the numerical speed-up, with and without sorting.

LTS LTS - NS GTS σT σ1
N σ2

N σ1
N/σT σ2

N/σT

RK3 255.33 254.35 2707.88 10.82 10.61 10.65 0.98 0.98
RK4 988.85 987.83 10284.42 10.82 10.40 10.41 0.96 0.96

Table 5.6: Computational time for the shallow water simulations.

We see that with the numerical speed-up of our local time-stepping methods are within
2% of the maximum theoretical speed-up with the Runge-Kutta 3 local time-stepping
algorithm and within 4% of the maximum theoretical speed-up with the Runge-Kutta 4
local time-stepping algorithm. This suggests that the algorithms have little over-head on
this problem. Additionally, we have plotted the height h of the numerical solutions in
Figures 5.4 and 5.5. We see that there are no numerical artifacts produced as the wave
moves through the refined region at the origin.

5.2.3 The Euler Equations

The Euler equations are a nonlinear system of hyperbolic conservation laws that are used to
describe the dynamics of a compressible fluid that is inviscid and isotropic. These equations
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Figure 5.4: Height of the shallow water equations solved using Runge-Kutta 3 local time-
stepping.

are derived from the physical laws of conservation of mass, momentum and energy, see [26].
The physical variables are the mass density ρ, the x-velocity u, the y-velocity v, and the
pressure P . Given in terms of the conserved variables ρ, the x-momentum ρu, the y-
momentum ρv, and the total energy per unit mass E, the two-dimensional Euler equations
are

∂

∂t


ρ
ρu
ρv
E

+
∂

∂x


ρu

ρu2 + P
ρuv

u(E + P )

+
∂

∂y


ρv
ρuv

ρv2 + P
v(E + P )

 =


0
0
0
0

 . (5.9)

We see in (5.9) that there are four equations in five unknows. To close the system we use
the equation of state

P = (γ − 1)

(
E − ρ

√
u2 + v2

2

)
(5.10)

to compute the pressure P , where γ is an adiabatic constant. For air, we choose γ = 1.4.
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Figure 5.5: Height of the shallow water equations solved using Runge-Kutta 4 local time-
stepping.

Smooth Vortex Problem

In this problem, we simulate a smooth vortex moving upwards through the plane. The
domain is [−10, 10]× [−10, 10], with initial conditions given in the physical variables

ρ0 =

(
1− (γ − 1)

(SM)2

8π2
e

1−x2−y2

R2

) 1
γ−1

, (5.11a)

u0 =
Sy

2πR
e

1−x2−y2

2R2 , (5.11b)

v0 = 1− Sx

2πR
e

1−x2−y2

2R2 , (5.11c)

P0 =
1

γM2
ργ0 , (5.11d)
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where S = 13.5,M = 0.4, R = 1.5. Along the boundaries, we apply constant boundary
conditions 

ρ
u
v
P

 =


1
0
1
1

γM2

 . (5.11e)

The domain is meshed in such a way that along the line connecting the point (−10, 2.5) with
the point (10, 2.5) we have a line of refined elements, see Figure 5.6. The computational
mesh is more dense than the mesh shown in Figure 5.6. It is obtained by splitting each
element in this mesh into four smaller elements. This is done twice resulting in a mesh
with sixteen times more elements than seen in Figure 5.6.

X

Y

Z

Figure 5.6: Nonuniform mesh for solving the smooth vortex problem.

We plot the numerical solution of the density ρ at three time points t = 0, 2.5, 5, see
Figures 5.7, 5.8. At t = 0, the refined region is completely above the vortex, Figures 5.7a,
5.8a; at t = 2.5, the center of the vortex is located along the line connecting the point
(−10, 2.5) with the point (10, 2.5), Figures 5.7b, 5.8b; at t = 5 the vortex has completely
passed through the refined region, Figures 5.7b, 5.8b.

We see no qualitative change in the solution as it passes through the refined area, that
is, there is no artificial reflected wave or other mesh artifacts produced along the interface
between large and small elements.
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Figure 5.7: Density plots for the smooth vortex problem with Runge-Kutta 3 local time-
stepping.
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Figure 5.8: Density plots for the smooth vortex problem with Runge-Kutta 4 local time-
stepping.

5.3 Discussion

We see in Sections 5.1.1 and 5.2.1 that the theoretical p + 1 rate of convergence of the
discontinuous Galerkin method in the L2 and max norms is achieved for linear problems
in both one- and two-dimensions. For nonlinear problems that do not require limiting,
numerical solutions are oscillation free when advanced with their locally stable time-step.
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Furthermore, we see that when solutions pass through refined regions there are no artificial
waves being reflected. The numerical examples presented in Sections 5.1 and 5.2 provide
evidence that these local time-stepping algorithms are stable but indicate that there is a
reduced stability region for the Runge-Kutta 4 local time-stepping algorithm.

In Appendix D, the mesh data for each two-dimensional problem are given. For each
mesh we give the number of elements in each bin, and the number of interior, large and
small interface elements in each bin. Similar to Section 5.2.2, we calculate the numerical
speed-up given by the local time-stepping methods for each problem and each mesh. They
are given in Table 5.7 for Runge-Kutta 3 and Table 5.8 for Runge-Kutta 4. We see that
the numerical speed-up is a high percentage of the maximum theoretical speed-up. Runge-
Kutta 3 local time-stepping gets closer to the maximum theoretical speed-up due to the
reduced overhead compared to Runge-Kutta 4 local time-stepping. Overall, these methods
produce numerical speed-ups close to the theoretical maximum on a variety of meshes and
problems.

Mesh LTS LTS - NS GTS σT σ1
N σ2

N σ1
N/σT σ2

N/σT

Mesh 1-A 11.89 11.89 16.70 1.46 1.40 1.40 0.96 0.96
Mesh 1-B 94.75 94.73 136.30 1.46 1.44 1.44 0.98 0.98
Mesh 1-C 773.27 773.07 1130.39 1.46 1.46 1.46 1.00 1.00
Mesh 1-D 6270.04 6266.67 9140.31 1.46 1.46 1.46 1.00 1.00
Mesh 2-A 50.89 50.89 110.09 2.45 2.16 2.16 0.88 0.88
Mesh 2-B 411.10 411.09 937.71 2.45 2.37 2.37 0.98 0.98
Mesh 2-C 3344.83 3344.71 7813.16 2.45 2.34 2.34 0.96 0.96
Mesh 2-D 27526.52 27524.66 64493.51 2.45 2.34 2.34 0.96 0.96

Shallow W. 255.33 254.35 2707.88 10.82 10.61 10.65 0.98 0.98
Vortex 430.77 430.64 927.39 2.39 2.15 2.15 0.90 0.90

Table 5.7: Numerical speed-up of the Runge-Kutta 3 local time-stepping algorithm for all
two-dimensional examples.
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Mesh LTS LTS - NS GTS σT σ1
N σ2

N σ1
N/σT σ2

N/σT

Mesh 1-A 48.39 48.39 65.61 1.46 1.36 1.36 0.93 0.93
Mesh 1-B 403.36 403.35 564.78 1.46 1.40 1.40 0.96 0.96
Mesh 1-C 3390.77 3390.55 4788.49 1.46 1.41 1.41 0.97 0.97
Mesh 1-D 26899.72 26896.27 38840.11 1.46 1.44 1.44 0.99 0.99
Mesh 2-A 194.64 194.64 407.30 2.45 2.09 2.09 0.85 0.85
Mesh 2-B 1693.02 1693.02 3746.32 2.45 2.21 2.21 0.90 0.90
Mesh 2-C 14245.02 14244.91 32479.94 2.45 2.28 2.28 0.93 0.93
Mesh 2-D 116974.82 116973.10 268871.65 2.45 2.30 2.30 0.94 0.94

Shallow W. 988.85 987.83 10284.42 10.82 10.40 10.41 0.96 0.96
Vortex 1764.67 1764.54 3573.13 2.39 2.03 2.03 0.85 0.85

Table 5.8: Numerical speed-up of the Runge-Kutta 4 local time-stepping algorithm for all
two-dimensional examples.
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Chapter 6

Conclusion

We have presented two Runge-Kutta based local time-stepping methods based off of a
third order Runge-Kutta method and the classical fourth order Runge-Kutta method.
Mesh elements were sorted into bins by size, based on the element size relative to the
the maximum element. Bins were advanced by their locally stable time-step in order
from the bin containing the largest elements to the bin containing the smallest elements.
Intermediate stages of the large interface elements were computed by approximating the
stages of the small interface elements. Current and previous solution values were used in
the approximations of the small interface element stages. Next, on each large interface
element, an interpolating polynomial was constructed. This polynomial approximated the
numerical solution along the large interface with the accuracy of the underlying Runge-
Kutta method. To advance the small elements with their locally stable time step, the
interpolating polynomial was imposed as a boundary condition for the small elements
along the interface.

We showed that these local time-stepping methods support an arbitrary level and depth
of refinement while maintaining the order of accuracy of the underlying Runge-Kutta
method in the L2 and max norms. We provided evidence that they are numerically stable
and do not produce numerical artifacts while transitioning from coarse to refined regions,
or vice versa. A formal justification for the stability of these methods is needed as well as
determining whether the standard Runge-Kutta discontinuous Galerkin CFL condition is
suitable.

These methods have been shown to work well on static meshes with refined regions but
it is not evident how they can be paired with adaptive mesh refinement where interface
elements will be changing as the mesh is refined and coarsened throughout the simulation.
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Determining interface element approximations that do not require past information is one
area of future study that will allow for pairing with adaptive mesh refinement.

Other areas of future work include generalizing these methods to higher order explicit
Runge-Kutta methods as well as developing local time-stepping methods for low-storage
Runge-Kutta methods. Efficiently implementing local time-stepping methods into parallel
platforms such as graphics processing units or CPU clusters to solve large scale problems
is another attractive area of work.
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Appendix A

Derivation of Runge-Kutta 3 Local
Time-Stepping

In this appendix, we will give a detailed explanation of the derivation for the Runge-Kutta
3 local time-stepping scheme given in Section 4.2.1. To derive this scheme, we will analyze
the local error of the inner stages of the method using their Taylor series expansions. We
will then use previously computed values to create approximations to the inner stages that
are at least as accurate as the inner stages of the method. When possible, we will match
the high order derivative terms of the Taylor expansions using finite difference methods of
appropriate order. This will give us the desired accuracy but will change the leading order
error coefficient of the method.

To begin, we assume that the functions f and g in (4.1) are sufficiently smooth. For
the sake of readability, unless otherwise state, the functions f and g and their derivatives
are evaluated at t = tn, i.e., g = g(x(tn), y(tn)). We will also assume that all data up to
t = tn is exact. When referencing the actual Runge-Kutta stages we will denote the stages
by X

(i)
rk , Y

(i)
rk , i = 1, 2, whereas the stages used in the local time-stepping scheme will be

denoted as X(i), Y (i), i = 1, 2.
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The standard Runge-Kutta method for advancing xn to xn+1 is

X
(1)
rk = xn +

2

3
hn+1f(xn, yn), (A.1a)

Y
(1)
rk = yn +

2

3
hn+1g(xn, yn), (A.1b)

X
(2)
rk = xn +

2

3
hn+1f(X

(1)
rk , Y

(1)
rk ), (A.1c)

Y
(2)
rk = yn +

2

3
hn+1g(X

(1)
rk , Y

(1)
rk ), (A.1d)

xn+1 = xn +

(
hn+1

4

)(
f(xn, yn) +

3

2
f(X

(1)
rk , Y

(1)
rk ) +

3

2
f(X

(2)
rk , Y

(2)
rk )

)
. (A.1e)

As discussed in Section 4.1, we do not want to compute stages higher than stage 1, but
develop approximations to these stages. First, we directly compute the first stage of y
because it uses only information at the current time level tn

Y
(1)
rk = Y (1) = yn +

2

3
hn+1g(xn, yn). (A.2)

Next, we look at the Taylor expansion of the second stage

Y
(2)
rk = yn +

2

3
hn+1g(X(1), Y (1))

= yn +
2

3
hn+1g

(
xn +

2

3
hn+1f(xn, yn), yn +

2

3
hn+1g(xn, yn)

)
= yn +

2

3
hn+1g +

4

9
h2
n+1(gxf + gyg) +O(h3

n+1). (A.3)

We observe that the h2
n+1 component of (A.3) is the first derivative of g(x(t), y(t)) at time

tn. We approximate this value using a first order backwards difference

gxf + gyg =
g(xn, yn)− g(xn−1, yn−1)

hn
+O(hn). (A.4)

Assuming that hn = chn+1 for some constant c, we can substitute (A.4) into (A.3) to create
the approximate stage

Y (2) = yn +
2

3
hn+1g(xn, yn) +

4

9
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn

)
(A.5)

= yn +
2

3
hn+1g +

4

9
h2
n+1(gxf + gyg) +O(h3

n+1), (A.6)
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where hnh
2
n+1 was absorbed into the O(h3

n+1) term.

Using these approximations for Y (1) and Y (2), we take the Taylor expansions of (4.2e)
and compare it with the exact solution of x. The Taylor expansion of the exact solution
at t = tn + hn+1 is

x(tn + hn+1) = x(tn) + hn+1f +
1

2
h2
n+1 (fxf + fyg)

+
1

6
h3
n+1

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+O(h4
n+1). (A.7)

Expanding (4.2e) yields

xn+1 = xn +
hn+1

4

(
f(xn, yn) +

3

2
f
(
X(1), Y (1)

)
+

3

2
f
(
X(2), Y (2)

))
= xn + hn+1f +

1

2
h2
n+1 (fxf + fyg)

+
1

6
h3
n+1

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+O(h4
n+1).

(A.8)

Comparing (A.7) with (A.8), we have |x(tn+1)− xn+1| = O(h4
n+1).

Next, we are tasked with advancing y from tn to tn+1 using K locally stable time
steps of size hn+1/K. To do so, we need to approximate the numerical solution x and its
derivatives on the interval [tn, tn+1]. Using computed and stored information we will create
an interpolating polynomial, X (t), satisfying |x(t)−X (t)| = O(h4

n+1) for t ∈ [tn, tn+1]. Our
polynomial will have the form

X (t) = a0 + (t− tn)a1 + (t− tn)2a2 + (t+ tn)3a3. (A.9)

We use a cubic polynomial because we will need to match coefficients of the powers of δhn+1

up to and including (δhn+1)3 of the Taylor expansion of the interpolating polynomial and
the exact solution for t = tn + δhn+1, 0 ≤ δ ≤ 1. Using a cubic polynomial will give us the
desired accuracy with the least number of interpolating points.

We require the polynomial to satisfy X (tn) = xn,X (tn+1) = xn+1 and X ′(tn) =
f(xn, yn). To have a cubic interpolating polynomial we require a fourth point. Looking at
the expansions of the inner stages of x we see that

x′
(
tn +

2

3
hn+1

)
=

1

2
f
(
X(1), Y (1)

)
+

1

2
f
(
X(2), Y (2)

)
+O(h3

n+1). (A.10)
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Choosing the fourth point to satisfy X ′(tn+2hn+1/3) =
(
f
(
X(1), Y (1)

)
+ f

(
X(2), Y (2)

))
/2,

we get the family of interpolating polynomials

X (t) = xn + (t− tn)f(xn, yn) + (t− tn)2

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1β

)
+ (t− tn)3β, tn ≤ t ≤ tn+1, (A.11)

where β is a parameter. Evaluating X (t) at tn + δhn+1, 0 ≤ δ ≤ 1 and expanding the
coefficients in a Taylor series around tn, we get

X (tn + δhn+1) = xn + (δhn+1)f(xn, yn) + (δhn+1)2

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1β

)
+ (δhn+1)3β

= xn + (δhn+1)f(xn, yn) +
(δhn+1)2

2
(fxf + fyg)

+
h3
n+1

6

[
δ2
(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg − 6β
)

+ δ36β
]

+O(h4
n+1). (A.12)

Observe that if β = x′′′(tn)/6 +O(hn+1), we will achieve the desired accuracy. Using finite
differences to approximate this derivative, we have

β =
1

2hn+1 + 3hn

(
2
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− f(xn, yn)− f(xn−1, yn−1)

hn

)
(A.13)

=
1

6

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+O(hn+1).

Then,

X (tn + δhn+1) = xn + (δhn+1)f +
(δhn+1)2

2
(fxf + fyg)

+
(δhn+1)3

6

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+O(h4
n+1), (A.14)

and |x(t)−X (t)| = O(h4
n+1) on t ∈ [tn, tn+1], as desired.

78



Checking the accuracy of the derivatives of the interpolating polynomial we have

X ′(tn + δhn+1) = f(xn, yn) + 2(δhn+1)

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1β

)
+ 3(δhn+1)2β

= f(xn, yn) + (δhn+1) (fxf + fyg)

+
(δhn+1)2

2

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+O(h3
n+1), (A.15)

X ′′(tn + δhn+1) = 2

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1β

)
+ 6(δhn+1)β

= (fxf + fyg)

+ (δhn+1)
(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+O(h2
n+1). (A.16)

We see that |x′(t)−X ′(t)| = O(h3
n+1) and |x′′(t)−X ′′(t)| = O(h3

n+1) on t ∈ [tn, tn+1].

Denote by xn,k and yn,k the numerical solutions of x(t) and y(t) at the sub time level

tn,k = tn + (k/K)hn+1, k = 0, 1, . . . , K. Additionally let X
(i)
k and Y

(i)
k , i = 1, 2 denote the

inner Runge-Kutta stages at the fractional step k. We can think of advancing yn,k to yn,k+1

as its own smaller problem to develop a scheme that works for each k for k = 0, 1, . . . , K−1.

Concerned only with advancing yn,k to yn,k+1, we have the standard Runge-Kutta
scheme

X
(1)
rk = xn,k +

2

3

(
hn+1

K

)
f(xn,k, yn,k), (A.17a)

Y
(1)
rk = yn,k +

2

3

(
hn+1

K

)
g(xn,k, yn,k), (A.17b)

X
(2)
rk = xn,k +

2

3

(
hn+1

K

)
f(X

(1)
rk , Y

(1)
rk ), (A.17c)

Y
(2)
rk = yn,k +

2

3

(
hn+1

K

)
g(X

(1)
rk , Y

(1)
rk ), (A.17d)

yn,k+1 = yn,k +
1

4

(
hn+1

K

)(
g(xn,k, yn,k) +

3

2
g(X

(1)
rk , Y

(1)
rk ) +

3

2
g(X

(2)
rk , Y

(2)
rk )

)
. (A.17e)

Now, since we have already computed xn+1, we do not wish to compute the values of xn,k
for each k. Additionally, we do not wish to compute any additional function evaluations
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of f(x, y). Using the interpolating polynomial, we have x(tn,k) = X (tn,k) + O(h4
n+1).

Thus, in (A.17) we set xn,k = X (tn,k). Furthermore, we know f(x(t), y(t)) = x′(t) and
x′(tn,k) = X ′(tn,k) +O(h3

n+1), so in (A.17a) we set f(xn,k, yn,k) = X ′(tn,k). This gives the
approximation to the first stage

X
(1)
k = X (tn,k) +

2

3

(
hn+1

K

)
X ′(tn,k). (A.18)

Next, we would like to approximate (A.17c). Expanding in a Taylor series about tn,k
we have

X
(2)
rk = xn,k +

2

3

(
hn+1

K

)
f
(
X

(1)
rk , Y

(1)
rk

)
= xn,k +

2

3

(
hn+1

K

)
f

(
xn,k +

2

3

(
h

K

)
f(xn,k, yn,k), yn,k +

2

3

(
h

K

)
g(xn,k, yn,k)

)
= xn,k +

2

3

(
hn+1

K

)
f(xn,k, yn,k) +

4

9

(
hn+1

K

)2

(fxf + fyg)(xn,k, yn,k) +O(h3
n+1).

(A.19)

To accurately approximate (A.17c), we need an approximation to f(xn,k, yn,k) and (fxf +
fyg)(xn,k, yn,k). Again, we use f(xn,k, yn,k) = X ′(tn,k). Observing that (fxf+fyg)(x(tn,k), y(tn,k)) =
x′′(tn,k) and x′′(tn,k) = X ′′(tn,k) + O(h2

n+1) we arrive at the approximation to the second
stage, given by

X
(2)
k = X (tn,k) +

2

3

(
hn+1

K

)
X ′(tn,k) +

4

9

(
hn+1

K

)2

X ′′(tn,k). (A.20)
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Using these approximations, we have the new scheme

xn,k = X (tn,k), (A.21a)

X
(1)
k = xn,k +

2

3

(
hn+1

K

)
X ′(tn,k), (A.21b)

Y
(1)
k = yn,k +

2

3

(
hn+1

K

)
g(xn,k, yn,k), (A.21c)

X
(2)
k = xn,k +

2

3

(
hn+1

K

)
X ′(tn,k) +

4

9

(
hn+1

K

)2

X ′′(tn,k), (A.21d)

Y
(2)
k = yn,k +

2

3

(
hn+1

K

)
g(X

(1)
k , Y

(1)
k ), (A.21e)

yn,k+1 = yn,k +
1

4

(
hn+1

K

)(
g(xn,k, yn,k) +

3

2
g(X

(1)
k , Y

(1)
k ) +

3

2
g(X

(2)
k , Y

(2)
k )

)
. (A.21f)

Expanding (A.21f) in a Taylor series about tn,k, we have

yn,k+1 = yn,k +

(
hn+1

K

)
g +

1

2

(
hn+1

K

)2

(gxf + gyg)

+
1

6

(
hn+1

K

)3 (
gxxf

2 + 2gxyfg + gxfxf + gxfyg + gyyg
2 + gygxf + g2

yg
)

+O(h4
n+1),

(A.22)

where each function is evaluated at (xn,k, yn,k). Expanding the exact solution in a Taylor
series about tn,k we have

y(tn,k+1) = y(tn,k) +

(
hn+1

K

)
g +

1

2

(
hn+1

K

)2

(gxf + gyg)

+
1

6

(
hn+1

K

)3 (
gxxf

2 + 2gxyfg + gxfxf + gxfyg + gyyg
2 + gygxf + g2

yg
)

+O(h4
n+1),

(A.23)

where each function is evaluated at (x(tn,k), y(tn,k)). Subtracting (A.22) from (A.23) and
assuming (xn,k, yn,k) = (x(tn,k), y(tn,k)) we have |y(tn,k+1)− yn,k+1| = O(h4

n+1) as desired.
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Appendix B

Derivation of Runge-Kutta 4 Local
Time-Stepping

In this appendix, we will give a detailed explanation of the derivation for the Runge-Kutta
4 local time-stepping scheme given in Section 4.2.2. To derive this scheme, we will analyze
the local error of the inner stages of the method using their Taylor series expansions. We
will then use previously computed values to create approximations to the inner stages that
are at least as accurate as the inner stages of the method. When possible, we will match
the high order derivative terms of the Taylor expansions using finite difference methods of
appropriate order. This will give us the desired accuracy but will change the leading order
error coefficient of the method.

To begin, we assume that the functions f and g in (4.1) are sufficiently smooth. For
the sake of readability, unless otherwise state, the functions f and g and their derivatives
are evaluated at t = tn, i.e., g = g(x(tn), y(tn)). We will also assume that all data up to
t = tn is exact. When referencing the actual Runge-Kutta stages we will denote the stages
by X

(i)
rk , Y

(i)
rk , i = 1, 2, 3, whereas the stages used in the local time-stepping scheme will be

denoted as X(i), Y (i), i = 1, 2, 3.
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The standard Runge-Kutta method for advancing xn to xn+1 is

X
(1)
rk = xn +

1

2
hn+1f(xn, yn), (B.1a)

Y
(1)
rk = yn +

1

2
hn+1g(xn, yn), (B.1b)

X
(2)
rk = xn +

1

2
hn+1f(X

(1)
rk , Y

(1)
rk ), (B.1c)

Y
(2)
rk = yn +

2

2
hn+1g(X

(1)
rk , Y

(1)
rk ), (B.1d)

X
(3)
rk = xn + hn+1f(X

(2)
rk , Y

(2)
rk ), (B.1e)

Y
(3)
rk = yn + hn+1g(X

(2)
rk , Y

(2)
rk ), (B.1f)

xn+1 = xn +

(
hn+1

6

)(
f(xn, yn) + 2f(X

(1)
rk , Y

(1)
rk ) + 2f(X

(2)
rk , Y

(2)
rk ) + f(X

(3)
rk , Y

(3)
rk )
)
.

(B.1g)

As discussed in Section 4.1, we do not want to compute stages higher than stage 1,
but develop approximations to these stages. First, we directly compute the first stage of y
because it uses only information at the current time level tn

Y
(1)
rk = Y (1) = yn +

1

2
hn+1g(xn, yn). (B.2)

Next, we look at the Taylor expansion of the second stage of the Runge-Kutta scheme
for the function y

Y
(2)
rk = yn +

1

2
hn+1g(X

(1)
rk , Y

(1)
rk )

= yn +
1

2
hn+1g

(
xn +

1

2
hn+1f(xn, yn), yn +

1

2
hn+1g(xn, yn)

)
= yn +

1

2
hn+1g +

1

4
h2
n+1(gxf + gyg) +O(h3

n+1). (B.3)

We observe that the h2
n+1 component of (B.3) is the first derivative of g(x(t), y(t)) at time

tn. We approximate this value using a first order backwards difference

gxf + gyg =
g(xn, yn)− g(xn−1, yn−1)

hn
+O(hn). (B.4)
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Assuming that hn = chn+1 for some constant c, we can substitute (B.4) into (B.3) to create
the approximate stage

Y (2) = yn +
1

2
hn+1g(xn, yn) +

1

4
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn

)
. (B.5)

Expanding this second stage in a Taylor series we have

Y (2) = yn +
1

2
hn+1g(xn, yn) +

1

4
h2
n+1(gxf + gyg)

− 1

8
h2
n+1hn

(
gxxf

2 + 2gxyfg + gxfxf + gxfyg + fyyg
2 + gygxf + g2

yg
)

+O(h4
n+1).

(B.6)

Since the Runge-Kutta 4 methods is locally fifth order, we require that the the h3 terms
of the stages to be in terms of only hn+1. We define a correction term that will replace

1

8
h2
n+1hn

(
gxxf

2 + 2gxyfg + gxfxf + gxfyg + fyyg
2 + gygxf + g2

yg
)

(B.7)

with
1

8
h3
n+1

(
gxxf

2 + 2gxyfg + gxfxf + gxfyg + fyyg
2 + gygxf + g2

yg
)
. (B.8)

The correction term is given by

Corry =

(
2
hn+1 − hn
hn + hn−1

)(
g(xn, yn)− g(xn−1, yn−1)

hn
− g(xn−1, yn−1)− g(xn−2, yn−2)

hn−1

)
(B.9)

and has Taylor expansion

Corry = (hn+1 − hn)
(
gxxf

2 + 2gxyfg + gxfxf + gxfyg + fyyg
2 + gygxf + g2

yg
)

+O(hn+1).
(B.10)

This gives us the second stage

Y (2) = yn +
1

2
hn+1g(xn, yn) +

1

4
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn
− 1

2
Corry

)
. (B.11)

Next, we must look at the Taylor expansion of the third Runge-Kutta stage of y

Y
(3)
rk = yn + hn+1g(X

(2)
rk , Y

(2)
rk )

= yn + hn+1g

(
xn +

1

2
hn+1f(X

(1)
rk , Y

(1)
rk ), yn +

1

2
hn+1g(X

(1)
rk , Y

(1)
rk )

)
= yn + hn+1g +

1

2
h2
n+1(gxf + gyg) +O(h3

n+1). (B.12)
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Again, we use (B.4) to approximate gxf + gyg with the added correction term. If we were
to simply use

Y (3) = yn + hn+1g(xn, yn) +
1

2
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn
− 1

2
Corry

)
as our approximate third stage, we would not have accuracy in the h4 term of xn+1. We
need added information in terms of the third derivative of g in the third ghost stage. We
approximate this derivative using finite differences. To find the corresponding coefficient
of this term we apply the approximation with a parameter A and compute xn+1. With the
parameter A, the third stage is

Y (3) = yn + hn+1g(xn, yn) +
1

2
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn
− 1

2
Corry

)
+ Ah3

n+1

(
2

hn+1 + hn

)(
g(xn, yn)− g(xn−1, yn−1)

hn
− g(xn−1, yn−1)− g(xn−2, yn−2)

hn−1

)
.

(B.13)

The value of xn+1 is computed using

xn+1 = xn +
hn+1

6

(
f(xn, yn) + 2f

(
X(1), Y (1)

)
+ 2f

(
X(2), Y (2)

)
+ f

(
X(3), Y (3)

))
(B.14)

We then expand xn+1 in a Taylor series and subtract it from the exact solution. The Taylor
expansion of the exact solution x(tn+1) about tn is

x(tn+1) = x(tn) + hn+1f +
1

2
h2
n+1 (fxf + fyg)

+
1

6
h3
n+1

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+
1

24
h4
n+1

(
3fxxffyg + 5fxygfxf + 3fxyfgyg + 2fxfygxf + fxfygyg + 3fyyggxf

+ 2fygxyfg + fygygxf + 3fxxyf
2g + 3fxyyfg

2 + f 2
xfyg + fygxxf

2 + fyg
2
yg

+ gxf
2
y g + 4fxxf

2fx + fxxxf
3 + fyyyg

3 + f 3
xf + fygyyg

2 + fxfyyg
2 + 3fxyg

2fy

+ 3fxyf
2gx + 3fyyg

2gy

)
+O(h5

n+1). (B.15)

Subtracting the numerical solution from the exact solution gives

x(tn+1)− xn+1 = h4
n+1

(
1

8
− A

6

)(
gyyfyg

2 + gxxfyf
2

+ fyg
2
yggxf

2
y g + fxfygxf + 2fygxyfg + fygygxf

)
+O(h5

n+1). (B.16)
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Solving for A so that |x(tn+1)− xn+1| = O(h5
n+1) gives a value of A = 3/4 and so the third

stage in y is

Y (3) = yn + hn+1g(xn, yn) +
1

2
h2
n+1

(
g(xn, yn)− g(xn−1, yn−1)

hn
− 1

2
Corry

)
+

3

4
h3
n+1

(
2

hn+1 + hn

)(
g(xn, yn)− g(xn−1, yn−1)

hn
− g(xn−1, yn−1)− g(xn−2, yn−2)

hn−1

)
.

Next, we are tasked with advancing y from tn to tn+1 using K locally stable time
steps of size hn+1/K. To do so, we need to approximate the numerical solution x and its
derivatives on the interval [tn, tn+1]. Using computed and stored information we will create
an interpolating polynomial X (t) satisfying |x(t)−X (t)| = O(h5

n+1) for t ∈ [tn, tn+1]. Our
polynomial will have the form

X (t) = a0 + (t− tn)a1 + (t− tn)2a2 + (t+ tn)3a3 + (t− tn)4a4. (B.17)

We use a quartic polynomial because we will need to match coefficients of the powers of
δhn+1 up to and including (δhn+1)4 of the Taylor expansion of the interpolating polynomial
and the exact solution for t = tn + δhn+1, 0 ≤ δ ≤ 1. Using a quartic polynomial will give
us the desired accuracy with the least number of interpolating points.

Similarly to the Runge-Kutta 3 local time stepping method, we require the polynomial
to satisfy X (tn) = xn,X (tn+1) = xn+1 and X ′(tn) = f(xn, yn). To have a quartic interpolat-
ing polynomial, we require five interpolating points. Using finite difference approximations
we are able to compute

β =
6(2hn+1 + 3hn)

6h2
n + 8hn+1hn + 6hnhn−1 + 3h2

n+1 + 4hn+1hn−1

[
(

6

2hn+1 + 3hn

)(
2
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− f(xn, yn)− f(xn−1, yn−1)

hn

)
−
(

2

hn + hn−1

)(
f(xn, yn)− f(xn−1, yn−1)

hn
− f(xn−1, yn−1)− f(xn−2, yn−2)

hn−1

)]
,

(B.18)

α =

(
6

2hn+1 + 3hn

)(
2
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− f(xn, yn)− f(xn−1, yn−1)

hn

)
+

(
3h2

n+1 + 6hn+1hn + 2h2
n

2(2hn+1 + 3hn)

)
β, (B.19)
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where α = x(3)(tn+1) +O(h2
n+1) and β = x(4)(tn) +O(hn+1). Choosing X (3)(tn+1) = α and

X (4)(tn) = β, we get the unique interpolating polynomial

X (t) = xn + (t− tn)f(xn, yn)

+ (t− tn)2

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1

6
α +

h2
n+1

8
β

)
+

(t− tn)3

6
(α− hn+1β) +

(t− tn)4

24
β, tn ≤ t ≤ tn+1. (B.20)

Expanding each coefficient in a Taylor series about tn and evaluating the polynomial
at t = tn + δhn+1 for 0 ≤ δ ≤ 1 gives

X (tn + δhn+1) = xn + (δhn+1)f(xn, yn) +
(δhn+1)2

2
(fxf + fyg)

+
(δhn+1)3

6

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+
(δhn+1)4

24

(
3fxxffyg + 5fxygfxf + 3fxyfgyg + 2fxfygxf + fxfygyg

+ 3fyyggxf + 2fygxyfg + fygygxf + 3fxxyf
2g + 3fxyyfg

2 + f 2
xfyg

+ fygxxf
2 + fyg

2
yg + gxf

2
y g + 4fxxf

2fx + fxxxf
3 + fyyyg

3 + f 3
xf

+ fygyyg
2 + fxfyyg

2 + 3fxyg
2fy + 3fxyf

2gx + 3fyyg
2gy

)
+O(h5

n+1).

(B.21)

Expanding x(tn + δhn+1) and subtracting the interpolating polynomial, we have |x(t) −
X (t)| = O(h5

n+1) on t ∈ [tn, tn+1].

Checking the accuracy of the derivatives of interpolating polynomial for 0 ≤ δ ≤ 1, we
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have

X ′(tn + δhn+1) = f(xn, yn)

+ 2(δhn+1)

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1

6
α +

h2
n+1

8
β

)

+
(δhn+1)2

2
(α− hn+1β) +

(δhn+1)3

6
β

= f(xn, yn) + (δhn+1) (fxf + fyg)

+
(δhn+1)2

2

(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+
(δhn+1)3

6

(
3fxxffyg + 5fxygfxf + 3fxyfgyg + 2fxfygxf + fxfygyg

+ 3fyyggxf + 2fygxyfg + fygygxf + 3fxxyf
2g + 3fxyyfg

2 + f 2
xfyg

+ fygxxf
2 + fyg

2
yg + gxf

2
y g + 4fxxf

2fx + fxxxf
3 + fyyyg

3 + f 3
xf

+ fygyyg
2 + fxfyyg

2 + 3fxyg
2fy + 3fxyf

2gx + 3fyyg
2gy

)
+O(h4

n+1),

(B.22)

and |x′(t)−X ′(t)| = O(h4
n+1) on t ∈ [tn, tn+1].
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Expanding the second derivative of interpolating polynomial gives

X ′′(tn + δhn+1) = 2

(
xn+1 − xn − hn+1f(xn, yn)

h2
n+1

− hn+1

6
α +

h2
n+1

8
β

)

+ (δhn+1) (α− hn+1β) +
(δhn+1)2

2
β

= (fxf + fyg)

+ (δhn+1)
(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+
(δhn+1)2

2

(
3fxxffyg + 5fxygfxf + 3fxyfgyg + 2fxfygxf

+ fxfygyg + 3fyyggxf + 2fygxyfg + fygygxf + 3fxxyf
2g + 3fxyyfg

2

+ f 2
xfyg + fygxxf

2 + fyg
2
yg + gxf

2
y g + 4fxxf

2fx + fxxxf
3 + fyyyg

3

+ f 3
xf + fygyyg

2 + fxfyyg
2 + 3fxyg

2fy + 3fxyf
2gx + 3fyyg

2gy

)
+O(h3

n+1).

(B.23)

We see that |x′′(t)−X ′′(t)| = O(h3
n+1) on t ∈ [tn, tn+1].

Finally, expanding the third derivative of the interpolating polynomial, we have

X ′′′(tn + δhn+1) = (α− hn+1β) + (δhn+1)β

=
(
fxxf

2 + 2fxyfg + f 2
xf + fxfyg + fyyg

2 + fygxf + fygyg
)

+ (δhn+1)

(
3fxxffyg + 5fxygfxf + 3fxyfgyg + 2fxfygxf

+ fxfygyg + 3fyyggxf + 2fygxyfg + fygygxf + 3fxxyf
2g + 3fxyyfg

2

+ f 2
xfyg + fygxxf

2 + fyg
2
yg + gxf

2
y g + 4fxxf

2fx + fxxxf
3 + fyyyg

3

+ f 3
xf + fygyyg

2 + fxfyyg
2 + 3fxyg

2fy + 3fxyf
2gx + 3fyyg

2gy

)
+O(h2

n+1).

(B.24)

This reveals that |x′′′(t)−X ′′′(t)| = O(h2
n+1) on t ∈ [tn, tn+1].

Denote by xn,k and yn,k the numerical solutions of x(t) and y(t) at the sub time level

tn,k = tn + (k/K)hn+1, k = 0, 1, . . . , K. Additionally let X
(i)
k and Y

(i)
k , i = 1, 2 denote the
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inner Runge-Kutta stages at the fractional step k. We can think of advancing yn,k to yn,k+1

as its own smaller problem to develop a scheme that works for each k for k = 0, 1, . . . , K−1.

Concerned only with advancing yn,k to yn,k+1, we have the standard Runge-Kutta
scheme

X
(1)
rk = xn,k +

1

2

(
hn+1

K

)
f(xn,k, yn,k), (B.25a)

Y
(1)
rk = yn,k +

1

2

(
hn+1

K

)
g(xn,k, yn,k), (B.25b)

X
(2)
rk = xn,k +

1

2

(
hn+1

K

)
f(X

(1)
rk , Y

(1)
rk ), (B.25c)

Y
(2)
rk = yn,k +

1

2

(
hn+1

K

)
g(X

(1)
rk , Y

(1)
rk ), (B.25d)

X
(3)
rk = xn,k +

(
hn+1

K

)
f(X

(2)
rk , Y

(2)
rk ), (B.25e)

Y
(3)
rk = yn,k +

(
hn+1

K

)
g(X

(2)
rk , Y

(2)
rk ), (B.25f)

yn,k+1 = yn,k +
1

6

(
hn+1

K

)(
g(xn,k, yn,k) + 2g(X

(1)
rk , Y

(1)
rk ) + 2g(X

(2)
rk , Y

(2)
rk ) + g(X

(3)
rk , Y

(3)
rk )
)
.

(B.25g)

Now, since we have already computed xn+1, we do not wish to compute the values of xn,k
for each k. Additionally, we do not wish to compute any additional function evaluations
of f(x, y). Using the interpolating polynomial, we have x(tn,k) = X (tn,k) + O(h4

n+1).
Thus, in (B.25) we set xn,k = X (tn,k). Furthermore, we know f(x(t), y(t)) = x′(t) and
x′(tn,k) = X ′(tn,k) +O(h3

n+1), so in (B.25a) we set f(xn,k, yn,k) = X ′(tn,k). This gives the
approximation to the first stage

X
(1)
k = X (tn,k) +

1

2

(
hn+1

K

)
X ′(tn,k). (B.26)

Next, we would like to approximate (B.25c). Expanding in a Taylor series about tn,k
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we have

X
(2)
rk = xn,k +

1

2

(
hn+1

K

)
f
(
X

(1)
rk , Y

(1)
rk

)
= xn,k +

1

2

(
hn+1

K

)
f

(
xn,k +

1

2

(
h

K

)
f(xn,k, yn,k), yn,k +

1

2

(
h

K

)
g(xn,k, yn,k)

)
= xn,k +

1

2

(
hn+1

K

)
f(xn,k, yn,k) +

1

4

(
hn+1

K

)2

(fxf + fyg)(xn,k, yn,k) +O(h3
n+1).

(B.27)

To accurately approximate (B.27), we need an approximation to f(xn,k, yn,k) and (fxf +
fyg)(xn,k, yn,k). Again, we use f(xn,k, yn,k) = X ′(tn,k). Observing that (fxf+fyg)(x(tn,k), y(tn,k)) =
x′′(tn,k) and x′′(tn,k) = X ′′(tn,k) + O(h2

n+1) we arrive at the approximation to the second
stage, given by

X
(2)
k = X (tn,k) +

1

2

(
hn+1

K

)
X ′(tn,k) +

1

4

(
hn+1

K

)2

X ′′(tn,k). (B.28)

Finally, we need to approximate (B.25e). Expanding in a Taylor series about tn,k we
have

X
(3)
rk = xn,k +

1

2

(
hn+1

K

)
f
(
X

(2)
rk , Y

(2)
rk

)
= xn,k +

(
hn+1

K

)
f(xn,k, yn,k) +

1

2

(
hn+1

K

)2

(fxf + fyg)(xn,k, yn,k)

+
1

8

(
hn+1

K

)3 (
fxxf

2 + 2fxyfg + fxfyg + f 2
xf + fyyg

2 + fygxf + fygyg
)

+O(h4
n+1).

(B.29)

To accurately approximate (B.29), we need an approximation to f(xn,k, yn,k) and (fxf +
fyg)(xn,k, yn,k). Again, we use f(xn,k, yn,k) = X ′(tn,k). Observing that (fxf+fyg)(x(tn,k), y(tn,k)) =
x′′(tn,k), we have x′′(tn,k) = X ′′(tn,k) +O(h2

n+1). Finally, we have that

(fxxf
2 + 2fxyfg + fxfyg + f 2

xf + fyyg
2 + fygxf + fygyg)(x(tn,k), y(tn,k)) = x′′′(tn,k),

so we use the approximation x′′′(tn,k) = X ′′′(tn,k). We note that in (B.26) and (B.28)
we have introduced higher order information into the scheme, so we may not be able to

91



approximate X
(3)
rk with the same derivative coefficients. To find the coefficient of the last

derivative term, we set the third stage as

X
(3)
k = X (tn,k) +

(
hn+1

K

)
X ′(tn,k) +

1

2

(
hn+1

K

)2

X ′′(tn,k) + A

(
hn+1

K

)3

X ′′′(tn,k) (B.30)

where A is a parameter we need to solve for. We compute (B.25g) with this approximate
stage. We then expand the new solution in a Taylor series about tn,k and subtract it from
the exact solution. We then find the value of A which satisfies |y(tn,k+1)−yn,k+1| = O(h5

n+1).
We see that

y(tn,k+1)− yn,k+1 =

(
1

384
− A

96

)(
hn+1

K

)(
gxxf

2 + 2gxyfg + gxfxf

+ gxfyg + fyyg
2 + gygxf + g2

yg
)

+O(h5
n+1). (B.31)

Using A = 1/4 allows us to eliminate the h4
n+1 component of the error, giving |y(tn,k+1)−

yn,k+1| = O(h5
n+1) as desired. This gives following approximation to the third stage

X
(3)
k = X (tn,k) +

(
hn+1

K

)
X ′(tn,k) +

1

2

(
hn+1

K

)2

X ′′(tn,k) +
1

4

(
hn+1

K

)3

X ′′′(tn,k). (B.32)
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Using these approximations, we have the new scheme

xn,k = X (tn,k), (B.33a)

X
(1)
k = xn,k +

1

2

(
hn+1

K

)
X ′(tn,k), (B.33b)

Y
(1)
k = yn,k +

1

2

(
hn+1

K

)
g(xn,k, yn,k), (B.33c)

X
(2)
k = xn,k +

1

2

(
hn+1

K

)
X ′(tn,k) +

1

4

(
hn+1

K

)2

X ′′(tn,k), (B.33d)

Y
(2)
k = yn,k +

1

2

(
hn+1

K

)
g(X

(1)
k , Y

(1)
k ), (B.33e)

X
(3)
k = X (tn,k) +

(
hn+1

K

)
X ′(tn,k) +

1

2

(
hn+1

K

)2

X ′′(tn,k) +
1

4

(
hn+1

K

)3

X ′′′(tn,k),

(B.33f)

Y
(3)
k = yn,k +

(
hn+1

K

)
g(X

(2)
k , Y

(2)
k ), (B.33g)

yn,k+1 = yn,k +
1

6

(
hn+1

K

)(
g(xn,k, yn,k) + 2g(X

(1)
k , Y

(1)
k ) + 2g(X

(2)
k , Y

(2)
k ) + g(X

(3)
k , Y

(3)
k )
)
.

(B.33h)
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Appendix C

Taylor Expansions

In this appendix we give the remainder terms for the Taylor expansions for the proofs in
Sections 4.2.1 and 4.2.2.

The exact fourth derivative of x(t), where each term is evaluated at (x(t), y(t))

x(4)(t) = 3fxxffyg + 5fxygfxf + 3fxyfgyg + 2fxfygxf + fxfygyg + 3fyyggxf

+ 2fygxyfg + fygygxf + 3fxxyf
2g + 3fxyyfg

2 + f 2
xfyg + fygxxf

2

+ fyg
2
yg + gxf

2
y g + 4fxxf

2fx + fxxxf
3 + fyyyg

3 + f 3
xf + fygyyg

2

+ fxfyyg
2 + 3fxyg

2fy + 3fxyf
2gx + 3fyyg

2gy. (C.1)

The remainder term when computing the fourth order Taylor series expansion of (4.2e),
where each term is evaluated at (x(t), y(t))

Rx(t) =
1

6
fxxf

2fx +
1

9
fxxyf

2g +
1

9
fxyyfg

2 − 1

12
fyg

2
yg +

1

18
fxfyyg

2 − 1

12
fygyyg

2

− 1

12
gxf

2
y g +

1

9
fyyg

2gy +
1

9
fxyf

2gx −
1

12
fygxxf

2 +
1

9
fxyg

2fy +
1

9
fxxffyg

+
2

9
fxygfxf +

1

9
fxyfgyg −

1

12
fxfygxf +

1

9
fyyggxf −

1

6
fygxyfg

+
1

27
fyyyg

3 +
1

27
fxxxf

3 − 1

12
fygygxf. (C.2)

The remainder term when computing the fourth order Taylor series expansion of (4.6),
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where each term is evaluated at (x(t), y(t))

RX (t) =

(
− 1

18
fxyyfg

2 − 1

15
fyg

2
yg −

1

90
fxfyyg

2 − 1

15
fygyyg

2 − 1

15
gxf

2
y g

− 1

18
fyyg

2gy −
1

18
fxyf

2gx −
1

15
fygxxf

2 − 1

18
fxyg

2fy −
1

30
f 2
xfyg

− 1

18
fxxffyg −

7

90
fxygfxf −

1

18
fxyfgyg −

1

10
fxfygxf −

1

18
fyyggxf

− 2

15
fygxyfg −

1

15
fygygxf −

1

30
fxfygyg −

1

15
fxxf

2fx −
1

18
fxxyf

2g

− 1

54
fyyyg

3 − 1

54
fxxxf

3 − 1

30
f 3
xf

)
δ3

+

(
1

18
fyyyg

3 +
1

18
fxxxf

3 +
1

30
f 2
xfyg +

1

30
f 3
xf +

1

6
fxyf

2gx

+
1

6
fxyg

2fy +
1

6
fyyggxf −

1

30
fygxyfg −

1

60
fygygxf +

3

10
fxygfxf

+
1

30
fxfygyg +

1

6
fxxffyg +

1

6
fxyfgyg +

1

6
fyyg

2gy +
7

30
fxxf

2fx

+
1

6
fxxyf

2g +
1

15
fxfyyg

2 +
1

60
fxfygxf −

1

60
gxf

2
y g −

1

60
fygxxf

2

+
1

6
fxyyfg

2 − 1

60
fyg

2
yg −

1

60
fygyyg

2

)
δ2. (C.3)

The exact fourth derivative of y(t), where each term is evaluated at (x(t), y(t))

y(4)(t) = 2gxfxyfg + gxfxfyg + 3gxyg
2fy + 3gxyf

2gx + gxfxxf
2 + 2gxfygyg

+ 5gxygyfg + 3gxxfyfg + 3gxyfxfg + 3gyygxfg + 3gxxf
2fx + gxxxf

3

+ gyyyg
3 + 3gxyyfg

2 + 3gxxyf
2g + gygxfxf + g2

ygxf + g3
yg + gxf

2
xf

+ gxfyyg
2 + fyg

2
xf + gygxxf

2 + 4gyyg
2gy. (C.4)

The remainder term when computing the fourth order Taylor expansion of (4.13e),
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where each term is evaluated at (x(t), y(t))

Ry,k+1(t) =
1

9
gxyf

2gx +
1

9
gxxffyg +

1

9
gyyggxf +

1

9
gxyfgyg +

1

27
gxxxf

3

+
1

9
gxxyf

2g +
1

9
gxyfyg

2 +
1

9
gxyyfg

2 +
1

9
gyyg

2gy +
1

27
gyyyg

3

+
1

9
gxyfxfg +

1

9
gxxf

2fx. (C.5)

The exact fifth derivative of x(t), where each term is evaluated at (x(t), y(t))

x(5)(t) = fyg
4 + fxf

4 + fxxxxf
4 + fyyyyg

4 + 4 fxx
2f 3 + 10 fxxffxfyg + 4 fxxffygyg

+ 14 fxygfygxf + 6 fxygygfxf + 4 fyyggxfxf + 10 fyyggygxf + 4 fxxxygfygxf

+ 12 fxxf
2fxyg + 4 fxxffyyg

2 + 4 fxxf
2fygx + 6 fxxxf

2fyg + 6 fxxyf
2gyg

+ 4 fxygfx
2f + 4 fxyg

2fxfy + 10 fxyg
2fygy + 10 fxygxf

2fx + 6 fxyyg
2fxf

+ 8 fxyf
2gxyg + 4 fxyfgyyg

2 + 4 fxyf
2gygx + 4 fxyfgy

2g + 4 fyyggxxf
2

+ 8 fyyg
2gxyf + 4 fyyg

2gxfy + 6 fyyyg
2gxf + 4 fxxxygfxxf

2 + 8 fxxxyg
2fxyf

+ 4 fxxxygfx
2f + 4 fxxxyg

2fxfy + 4 fxxxyg
2fygy + 12 fxxyf

2gfx + 12 fxxyfg
2fy

+ 12 fxyygf
2gx + 12 fxyyg

2fgy + 6 fyyyg
3gy + 4 fxyg

3fyy + 6 fxyyg
3fy

+ 4 fyyg
3gyy + 4 fxxxyg

3fyy + 6 fxxxf
3fx + 7 fyyg

2gy
2 + 6 fxxyyf

2g2

+ 3 fyygx
2f 2 + 7 fxxf

2fx
2 + 3 fxxfy

2g2 + 8 fxy
2g2f + 4 fxyf

3gxx

+ 4 fxyyyfg
3 + 6 fxxyf

3gx. (C.6)

The remainder term when computing the fifth order Taylor series expansion of (4.16g),
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where each term is evaluated at (x(t), y(t))

Rx(t) =
5

144
fxxxyf

3g +
5

576
fxxxxf

4 +
5

576
fyyyyg

4 +
1

32
f 2
xxf

3 +
1

8
fxxffxfyg

+
1

24
fxxffygyg −

1

36
fxygfygxf +

1

12
fxygygfxf +

1

12
fyyggxfxf +

1

8
fyyggygxf

+
3

32
fxxf

2fxyg +
1

32
fxxffyyg

2 − 1

18
fxxf

2fygx +
5

96
fxxxf

2fyg +
5

96
fxxyf

2gyg

+
1

12
fxygfx

2f +
1

16
fxyg

2fxfy +
5

48
fxyg

2fygy +
7

48
fxygxf

2fx +
7

96
fxyyg

2fxf

+
1

8
fxyf

2gxyg +
1

16
fxyfgyyg

2 +
1

16
fxyf

2gygx +
1

16
fxyfgy

2g +
1

16
fyyggxxf

2

+
1

8
fyyg

2gxyf −
5

144
fyyg

2gxfy +
5

96
fyyyg

2gxf +
1

8
fxxyf

2gfx +
5

48
fxxyfg

2fy

+
5

48
fxyygf

2gx +
5

48
fxyyg

2fgy +
5

96
fyyyg

3gy +
1

32
fxyg

3fyy +
5

96
fxyyg

3fy

+
1

16
fyyg

3gyy +
17

288
fxxxf

3fx +
3

32
fyyg

2gy
2 +

5

96
fxxyyf

2g2 +
1

32
fyygx

2f 2

+
5

48
fxxf

2fx
2 +

1

32
fxxfy

2g2 +
1

16
fxy

2g2f +
1

16
fxyf

3gxx +
5

144
fxyyyfg

3

+
5

96
fxxyf

3gx −
7

72
fygy

2gxf −
5

16
fygxxf

2fx −
7

24
fygxyf

2gx −
7

72
fygygxxf

2

− 7

18
fygyyg

2gy −
17

144
fygxfx

2f +
1

144
fxfyyyg

3 − 7

72
fygyyyg

3 − 7

24
gxyg

2fy
2

− 7

72
fy

2gx
2f − 7

72
fygxxxf

3 − 7

72
fygy

3g +
1

96
fx

2fyyg
2 − 1

3
fygxygfxf

− 35

72
fygxyfgyg −

17

144
fygygxfxf −

7

24
fygyyggxf −

1

48
fxfygyyg

2 − 1

48
fxfygy

2g

+
1

48
fxfyyg

2gy −
17

144
gxfxfy

2g − 7

36
gxfy

2gyg −
7

24
gxxffy

2g

− 7

24
fygxyyfg

2 − 7

24
fygxxyf

2g. (C.7)

The remainder term when computing the fifth order Taylor series expansion of (4.17),
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where each term is evaluated at (x(t), y(t))

RX (t) =

(
δ2 + δ3 +

1

4
δ4

)(
− 17

324
fxfygygxf −

4

27
fxfygxyfg −

35

162
fygxyfgyg

− 7

54
fygyyggxf −

7

162
fygy

3g +
5

1296
fxxxxf

4 +
5

1296
fyyyyg

4 +
1

72
fxx

2f 3

+
1

36
fxyf

3gxx +
1

72
fxyg

3fyy + 1/36 fxy
2g2f +

17

648
fxxxf

3fx

+
5

216
fxxyyf

2g2 +
5

216
fxxyf

3gx +
5

216
fxyyg

3fy +
1

36
fyyg

3gyy

+
1
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The exact fifth derivative of y(t), where each term is evaluated at (x(t), y(t))

y(5)(t) = gyg
4 + gxf

4 + gxxxxf
4 + gyyyyg

4 + 4 gyy
2g3 + 10 gxxffxfyg
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3gxx + 6 gyyyg

3gy + 4 gxyg
3fyy + 7 gyyg
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2fgy. (C.9)

The remainder term when computing the fifth order Taylor expansion of (4.23g), where
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each term is evaluated at (x(t), y(t))
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(C.10)
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Appendix D

Computational Mesh Information

Mesh data used for computing the maximum theoretical speed-up given by the local time-
stepping methods.

Mesh 1-A.

Interior Large Interface Small Interface Total
Bin 0 156 26 0 182
Bin 1 65 30 28 123
Bin 2 62 41 34 137
Bin 3 357 0 47 404
Total 640 97 109 846

Mesh 1-B.

Interior Large Interface Small Interface Total
Bin 0 674 54 0 728
Bin 1 369 67 56 492
Bin 2 421 92 71 548
Bin 3 1517 0 99 1616
Total 2945 213 226 3384

Mesh 1-C.
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Interior Large Interface Small Interface Total
Bin 0 2802 110 0 2912
Bin 1 1715 141 112 1968
Bin 2 1851 196 145 2192
Bin 3 6260 0 204 6464
Total 12629 447 460 13536

Mesh 1-D.

Interior Large Interface Small Interface Total
Bin 0 11426 222 0 11648
Bin 1 7359 289 224 7872
Bin 2 8071 404 293 8768
Bin 3 25445 0 411 25856
Total 52301 915 928 54144

Mesh 2-A.

Interior Large Interface Small Interface Total
Bin 0 39 18 0 57
Bin 1 25 19 18 62
Bin 2 20 17 18 55
Bin 3 29 17 19 65
Bin 4 13 18 18 49
Bin 5 26 20 17 63
Bin 6 28 28 24 80
Bin 7 150 6 27 183
Bin 8 0 0 2 2
Total 330 143 143 616

Mesh 2-B.
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Interior Large Interface Small Interface Total
Bin 0 187 41 0 228
Bin 1 165 42 41 248
Bin 2 138 41 41 220
Bin 3 179 38 43 260
Bin 4 121 36 39 196
Bin 5 170 47 35 252
Bin 6 210 59 51 320
Bin 7 662 12 58 732
Bin 8 2 0 6 8
Total 1843 316 314 2464

Mesh 2-C.

Interior Large Interface Small Interface Total
Bin 0 825 87 0 912
Bin 1 817 88 87 992
Bin 2 704 89 87 880
Bin 3 869 80 91 1040
Bin 4 631 72 81 784
Bin 5 836 101 71 1008
Bin 6 1054 121 105 1280
Bin 7 2784 24 120 2928
Bin 8 14 0 18 32
Total 8534 662 660 9856

Mesh 2-D.
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Interior Large Interface Small Interface Total
Bin 0 3469 179 0 3648
Bin 1 3609 180 179 3968
Bin 2 3156 185 179 3520
Bin 3 3809 164 187 4160
Bin 4 2827 144 165 3136
Bin 5 3680 209 143 4032
Bin 6 4662 245 213 5120
Bin 7 11420 48 244 11712
Bin 8 86 0 42 128
Total 36718 1354 1352 39424

Shallow Water Equations Mesh.

Interior Large Interface Small Interface Total
Bin 0 26288 41 0 26329
Bin 1 50 16 43 109
Bin 2 37 15 16 68
Bin 3 34 8 16 58
Bin 4 8 0 8 16
Total 26417 80 83 26580

Smooth Vortex Mesh.

Interior Large Interface Small Interface Total
Bin 0 4541 199 0 4740
Bin 1 658 303 219 1180
Bin 2 1536 657 331 2524
Bin 3 1152 0 644 1796
Total 7887 1159 1194 10240
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