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Abstract

Thermal radiation is of significant importance in a broad range of engineer-
ing applications including high-temperature and large-scale systems. Although the
governing equations of thermal radiation have been known for many years, the
complexities inherent in the phenomenon, such as the multidimensionality and
integro-differential nature of these equations, have made it difficult to obtain an
accurate, efficient, and robust computational method. Developing the finite vol-
ume radiation method in the 1990s was a significant progress but not a panacea
for computational radiation. The major drawback of this method, which is com-
mon among all methods that solve for directional intensities, is its slow convergence
rate in many situations which increases the solution cost dramatically. These sit-
uations include large optical thicknesses, strongly reflecting boundaries, and any
other factor that causes strong directional coupling like complex geometries.

Several acceleration schemes have been developed in the heat transfer and neu-
tron transport communities to expedite the convergence and reduce the solution
cost, but none of them led to a general and reliable method. Among these avail-
able schemes, the two most promising ones, the multiplicative scheme and coupled
ordinates method, suffer from failing on fine grids and being very complicated for
complex scattering phase functions, respectively.

In this research, a new computational method, called the QL method, has been
introduced. The main idea of this method is using the phase weight concept to
relate the directional and average intensities and re-arranging the Radiative Trans-
fer Equation to find a new expression for the radiant heat flux. This results in an
elliptic-type equation for the average intensity at each control volume which con-
serves the radiant energy in all directions in the control volume. This formulation
gives the QL method a great advantage to solve for the average intensity while
including the directional effects. Since the directional effects are included and the
radiant energy is conserved in each control volume, this method is expected to be
accurate and have a good convergence rate in all conditions. The phase weight
distribution required by the QL method can be provided by a method like the finite
volume method or discrete ordinates method.

The QL method is applied to several 1D and 2D test cases including isotropic
and anisotropic scattering, black and partially reflecting boundaries, and emitting-
absorbing problems; and its accuracy, convergence rate, and solution cost are stud-
ied. The method has been found to be very stable and efficient, regardless of grid
size and optical thickness. This method establishes very accurate predictions on the
tested coarse grids and its results approach the exact solution with grid refinement.
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Chapter 1

Introduction

Thermal radiation refers to a mode of heat transfer caused by electromagnetic waves
or photon exchange. Unlike the other two modes of heat transfer, conduction and
convection, which depend nearly on the first power of temperature, radiative heat
transfer is a very strong function of the absolute temperature level with a power of
4 or 5. Consequently, the importance of radiation becomes more significant as tem-
perature increases. In fact, radiation plays an important role in high-temperature
processes, like combustion, and engineering systems, such as boilers, furnaces, re-
actors, engines, and gas turbines. Even at low temperature, radiation is usually
more important than natural convection. Also radiation is of great importance in
large-scale systems. For instance, it is not just the high temperature in boilers and
furnaces that makes radiation the dominant mode, it is their large size.

The other distinctive feature of thermal radiation is that no medium is required
between two locations for heat transfer. This makes radiation the only possibility of
heat transfer in space or vacuum, for example to dissipate waste heat from the power
systems in space. Because of this broad range of applications, thermal radiation
deserves consideration, research and development.

Thermal radiation is a very complex phenomenon and although the governing
equations are known, they are difficult to solve. This difficulty originates from the
fact that radiation transport depends on radiant intensity which is a function of
position, direction, wavelength, and local temperature. In some cases, these depen-
dences are not straightforward. For example the spectral behavior of gases needs
very complicated models. In addition, intensities in all directions are usually cou-
pled through a scattering phase function which makes the computational radiation
cumbersome. Therefore, while a huge interest exists in predicting radiative heat
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transfer because of its applications, these complexities make it very difficult to have
a multidimensional robust, accurate, and efficient computational radiation method.

A new computational method for radiative heat transfer in participating media,
named the QL method, has been introduced in this study. It will be shown that
this method is applicable to multidimensional problems and is capable of treating
anisotropic scattering and spectral properties.

In this introductory chapter, after a brief explanation of the equations that
govern thermal radiation, the existing computational radiation methods and accel-
eration schemes will be reviewed. At the end of this chapter, the objectives of the
present work and the outline of the thesis are given.

1.1 Radiative Transfer Equation

The fundamental variable used to describe radiation is intensity I which is defined
as

Iλ(r, s) = lim
∆A→0

∆Qλ

∆A

where ∆Qλ represents the spectral directional radiant energy rate which passes an
elemental area ∆A, per unit solid angle and per unit wavelength. This element is
perpendicular to the ray direction s and has its center at r. In general, intensity
varies in a finite solid angle dω, which lies in the direction s, and the Radiative
Transfer Equation (RTE) governs this variation.

Fig.1.1 depicts an elemental volume. The unit vector s = siei (summation
implied) is defined by the polar angle θ (measured from the z axis) and azimuthal
angle φ (measured from the x axis), where ei are the unit vectors in the Cartesian
coordinates (so s1 = sin θ cosφ, s2 = sin θ sinφ, and s3 = cos θ). Writing a radiant
energy balance for this control volume gives the RTE as [1]

dIλ
ds

= −KλIλ − σsλIλ +KλIbλ + σsλĪλ (1.1)

where Kλ is the absorption coefficient, Ibλ is the blackbody intensity, and σsλ is the
scattering coefficient. In this equation, the left-hand side is the rate of increase
of intensity within the solid angle in the control volume. The first two terms in
the right-hand side are attenuation through absorption and out-scattering, and
the third term is augmentation due to emission. The fourth term, namely the in-
scattering term, accounts for the increase of intensity because of diverted photons
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Figure 1.1: The control volume used to derive the RTE.

from the other solid angles into dω. This term is given by

Īλ(r, s) =
1

4π

Z
4π

Iλ(r, s
0)Φ(s0, s)dω0 (1.2)

where Iλ(r, s0) is the intensity at r within dω0 (Fig.1.1) Φ(s0, s) is the phase function
for scattering from the solid angle dω0 (in the s0 direction) to the solid angle dω (in
the s direction). This equation clearly shows that the in-scattering term depends
on radiation from all incoming directions.

Eq.(1.1) along with an appropriate boundary condition forms the governing
equations of the radiation transport which are solved numerically to find the inten-
sity field.

Radiation contributes to the internal energy equation through a source term,
called the radiant source term q000r , as [1]

ρcp
DT

Dt
= 5 · (k5T ) + q000g − q000r + βT

Dp

Dt
+ μφ (1.3)

where

q000r =

Z ∞

0

ZZ
4π

Kλ (Iλb − Iλ) dωdλ (1.4)

and q000g accounts for the other volumetric energy generations. Eqs.(1.3) and (1.4)
relate radiation to the other modes of heat transfer.
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1.1.1 Review of Computational Radiation Methods

In spite of the complexities in radiative heat transfer and difficulties in modeling the
phenomena, various computational methods have been developed during the last
60 years which were usually adopted from the neutron transport field and modified
to fit the radiation heat transfer. Among these methods, there are very accurate
but computationally expensive methods like the Monte Carlo method, and there
are methods which have traded off the accuracy with the solution cost like the P1
method.

Reviewing the existing radiation methods is beyond the scope of this study
and detailed reviews can be found in Viskanta and Mengüç [2], Modest [3], Lewis
and Miller [4], and Siegel and Howell [5]. However, a brief introduction to two
of the most common methods, the discrete ordinates method (DOM) and the P1
method, will be given here to highlight their advantages and disadvantages. Then
the widely used finite volume method, which has been employed in this research,
will be explained in the next section.

The P1 Method

This method is a member of the general group of spherical harmonics method
(PN approximation). The general form, the PN approximation, is obtained by
representing the intensity distribution by a series of spherical harmonics. This
converts the governing equations to relatively simple partial differential equations
with an elliptic nature.

The simplest approximation, the P1 method, is widely used because of its sim-
plicity and low cost and is implemented in commercial codes like FLUENT and
CFX. This method has been discussed in many books and papers for a wide range
of applications. A very readable reference for the P1 method is Modest [3]. Sazhin
and coworkers [6] have demonstrated the advantages and limitations of the P1
method for a real problem, coal combustion in a industrial furnace. In Appendix
C of this thesis, the iterative solution of the P1 method has been briefly discussed.

The major drawback of the P1 method is that it is only accurate in media with
near-isotropic intensity distribution, and the accuracy improves slowly for higher-
order methods (like P3), while the mathematical complexity increases extremely
rapidly [3]. Generally, derivation of the spherical harmonics method, even for the
P1 method, is known to be very tedious, although in Chapter 2 of this thesis a
very simple derivation will be introduced for the P1 method. It is a common
misconception that the P1 method gives inaccurate results in optically thin media.
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This conclusion is correct in many situations, but is invalid when emission from a
hot medium is considered [3].

Another disadvantage of this method is that, because of the orthogonality of the
spherical harmonics, the P1 approximation is unable to treat non-linear scattering
phase functions.

The Discrete Ordinates Method

The DOM was originally proposed by Chandrasekhar [7] and was applied to the
astrophysical and atmospheric radiation. Carlson and Lathrop [8, 9] extended its
application to the neutron transport field and Fiveland [10, 11, 12], and Truelove
[13, 14] developed and implemented the method for the radiative heat transfer
analysis. This method is available as an option in some commercial codes.

In this method, the directional distribution of the intensity is replaced by a
set of discrete directions spanning the total solid angle range of 4π. Integrals over
solid angles are approximated by numerical quadrature. Apparently, the accuracy
of the method depends strongly on the quadrature scheme. Any of the known
methods like the finite volume and the finite element may be used for the spatial
discretization.

The DOM suffers from some serious drawbacks like false scattering and ray ef-
fect. The false scattering is caused by the spatial discretization error and results
in smearing the intensity distribution and can be overcome by using a finer spa-
tial mesh. The ray effect is a result of the angular discretization error and can
be reduced by using a finer angular grid or coarser spatial mesh1 [3]. The other
disadvantage of the DOM is difficulties in extending the application of the method
beyond Cartesian geometry.

The most serious disadvantage of the DOM is that this method does not ensure
the conservation of radiant energy which is a result of using quadrature for the an-
gular discretization. In the next section, the finite volume method will be reviewed
which ensures the conservation of energy.

1It is interesting to know that these two errors, false scattering and ray effect, may partially
cancel each other which results in more accurate results (see [36])

5



1.2 The Finite Volume Radiation Method

Over the last three decades, the finite volume method (FVM) has been accepted
as a popular fluid flow solution procedure, mainly because of its exact satisfaction
of the conservation equations over the region (the finite volume). Therefore, it
was naturally the next step in evolution of the computational radiation methods
to apply the finite volume idea to direction as well as space. Replacement of the
quadrature in the DOM with the finite solid angles in the FVM not only overcomes
the problem of energy conservation, but also establishes a method which shares the
same philosophy and the same computational grid with the fluid flow solvers.

The finite volume radiation method was first developed by Raithby and Chui [15]
and then was extended and applied to various problems: Nonorthogonal meshes [16,
17], cylindrical enclosures [18, 19, 20, 21], pulverized fuel flame [22], unstructured
meshes [23, 24, 25, 26, 27], periodic geometries [28], and irregular geometries [29, 30].

Chai et al. [31] and Raithby [32] reviewed some features of the method and
several researchers [33, 34, 35] compared the DOM and the FVM for some test
cases, which showed that the FVM has better accuracy and performance. Raithby
[36] did a comprehensive study of the spatial and angular discretization errors. The
FVM has been implemented in several commercial codes, such as FLUENT.

In the remainder of this section, the discrete equations for the FVM are derived
for a gray medium (wavelength independent). The FVM is applicable to non-gray
media but the gray approximation has been used in this study for the sake of
simplicity and λ subscript is dropped.

1.2.1 The Discrete Equations

The RTE (Eq.(1.1)) expresses the conservation of radiant energy over an infinitesi-
mal volume in the solid angle which lies in the direction s (Fig.1.1). Integration of
this equation over any specified volume VP and solid angle ωl gives a discrete equa-
tion which conserves energy in the finite volume and finite solid angle. Carrying
out the integrations and using the Gauss divergence theorem, Eq.(1.1) becomesZ

ωl

Z
As

I(s · n)dAsdω =
Z
ωl

Z
VP

[−(K + σs)I +KIb + σsĪ]dV dω (1.5)

where As and VP are the surface area and volume of the specified control volume
and n is the unit surface normal. K and σs are appropriate wavelength-averaged
quantities because of the gray-medium approximation.
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In the finite volume method, the spatial solution domain is subdivided into
discrete nonoverlapping volumes, and a single node is located within each volume
where location of this node in the control volume depends on the selected type of
the grid (i.e. cell-centered or vertex-centered).

To be consistent with the spatial discretization, direction, which is also an in-
dependent variable, is subdivided into L discrete, nonoverlapping solid angles of
size ωl, l = 1, 2, · · ·L, which sum to 4π. The number of angles and their size
distribution, like the spatial discretization, are chosen by the analyst.

By reasonably approximating all variables as constant over VP and ωl, the right-
hand side of Eq.(1.5) is approximated asZ
ωl

Z
VP

£
−(K + σs)I +KIb + σsĪ

¤
dV dω ≈ [−(KP + σsP )I

l
P +KP Ib,P + σsP Ī

l
P ]VPω

l

(1.6)
where I lP is the intensity at node P and within the solid angle ω

l. Ī lP is approximated
as [18]

Ī lP =
1

4π

LX
l0=1

I l
0
PΦ

l0l
(1.7)

where

Φ
l0l
=

R
ωl

R
ωl0 Φ(l

0, l)dω0dω

ωl

To approximate the left-hand side of Eq.(1.5), the surface of the control volume
is subdivided into Nip surface panels of area As,ip where an integration point is
located at the center of each panel. Fig.1.2 shows 2D and 3D control volumes with
some of their neighbors where integration points are indicated by “×”.
The radiative heat transfer rate through panel ip and within ωl is

Qlip = As,ip

Z
ωl
Iip(s · nip)dω (1.8)

where the left-hand side of Eq.(1.5) is
PNip

ip=1Q
l
ip. Note that Iip and nip have been

approximated by their values at the integration point ip. Using Eqs.(1.6) and (1.8),
the approximation of Eq.(1.5) is

NipX
ip=1

Qlip =

NipX
ip=1

As,ip

Z
ωl
Iip(s · nip)dω =

£
−(KP + σsP )I

l
P +KP Ib,P + σsĪ lP

¤
VPω

l

(1.9)
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Figure 1.2: A control volume and its panels and integration points (a) 2D (b) 3D.
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To complete the discretization, relations should be found between the Iip values
and nodal point values like I lP and I

l
nb, since intensity is only calculated at the

computational nodes. Many differencing methods such as the diamond, step, and
exponential schemes have been suggested to find Iip. In this study, the simplest
method, the step scheme, has been employed which is reviewed in the following
section. In Chapter 5 of this thesis, a brief review of the available differencing
schemes is presented and a new second-order scheme is proposed.

The Upwind Scheme

The upwind differencing scheme (UDS), also called the step scheme, is a first-order
bounded scheme and is widely used in CFD. In this method, the Iip values are
approximated by the values at the upstream nodes which is consistent with the
physical propagation of the RTE. This approximation means that for example in
Fig.1.3, for direction s1

I l1 = I
l
2 = I

l
8 = I

l
9 = I lP

I l3 = I
l
4 = I lnb3

I l5 = I
l
6 = I

l
7 = I lnb4

and for direction s2

I l3 = I
l
4 = I

l
5 = I

l
6 = I

l
7 = I lP

I l1 = I
l
2 = I lnb1

I l8 = I
l
9 = I lnb2

The main advantages of the UDS are that this method is very simple and does
not produce nonphysical results (e.g. negative intensities) since this scheme is
bounded. However, this method is first order and is not accurate in strongly par-
ticipating media where the intensity changes significantly between the upstream
node and the integration point. Also this method produces false scattering.

Relating the Iip values with the nodal values by a differencing scheme (like
UDS), Eq.(1.9) becomes a set of discrete equations including only the nodal values
which have the form of [15]

alP I
l
P =

X
nb

alnbI
l
nb + b

l
P (1.10)

The numerical procedure for solving this equation is presented in Chapter 3.
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Figure 1.3: A control volume and its integration points to demonstrate the UDS.

Boundary Conditions

These equations still need a boundary condition to form a closed system of equa-
tions. For a gray-diffuse surface at temperature Ts, the boundary condition for the
surface intensity I ls which leaves the surface toward the medium, s

l · n < 0, is

²sAsσT
4
s + (1− ²s)

X
sl0 ·n>0

Ql
0
=
X
sl·n<0

Qls = AsπI
l
s (1.11)

where sl is the unit direction vector in the center of the discrete solid angle ωl, n is
the unit surface normal pointing from the medium towards the surface, ²s is the sur-
face emissivity, and Ql is the radiative heat transfer rate (Eq.(1.8)). This equation
shows that the intensity leaving the surface to the medium I ls is a combination of
the emitted radiation from the surface (first term) and the reflected radiation from
the surface (second term). The reflected radiation, (1− ²s)

P
sl0 ·n>0Q

l0 , depends on
the incident intensities on the surface. For a black surface, ²s = 1, the boundary
condition reduces to

I ls =
σT 4s
π
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(b)(a)

Figure 1.4: Two typical solid angle distributions for L = 48.

Angular Grid

Several researchers [23, 28, 32, 37, 38] have discussed the angular discretization error
for the FVM especially for the case that the solid angle is bisected by the surface
which means that the boundaries of the solid angle are not exactly aligned with the
surface. The other issue addressed in these papers is the solid angle distribution
over 4π. Fig.1.4 shows two different types of distribution. In (b), the solid angles
do not have the same size (especially near the poles they are very small). In (a),
they have been made about equal and with the aspect ratio of unity. In this study,
only type (b) has been used, although uniform solid angles, type (a), are usually
preferred.

1.2.2 Isotropic Scattering

Isotropic scattering is the simplest scattering model which assumes that the energy
is scattered uniformly in all directions. In this case, Φ = 1 and Eq.(1.7) becomes

Ī lP =
1

4π

LX
l0=1

I l
0
Pω

l0

where the right-hand side is the discrete form of average intensity Ia:

Ia(r) =
1

4π

Z
4π

I(r, s0)dω0

Hence Ī lP = Ia,P for isotropic scattering.
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1.2.3 Radiative Equilibrium

The increase in internal energy due to radiation crossing the boundaries of the
control volume is obtained by integrating Eq.(1.5) over ωl = 4π:Z

4π

Z
As,P

I(s · n)dωdAs = −4π
Z
VP

K(Ia − Ib)dV ≈ −4πKP (Ia,P − Ib,P )VP (1.12)

which equals q000r VP according to Eq.(1.4). The scattering contribution drops out of
this energy balance because scattering can change the directional distribution but
does not affect the level of radiative energy.

In the radiative equilibrium condition, the temperature field adjusts to make
the net surface heat transfer in Eq.(1.12) zero, which means q000r = 0 and

Ib,P = Ia,P

In this condition, the fluid temperature and the radiation fields are disconnected.
This very simple condition allows the radiation method to be studied in isolation,
without any need to solve the internal energy equation.

1.3 Iterative Solution

In the RTE, emission is a function of the temperature of the medium and in-
scattering depends on the intensities from all incoming directions. Therefore, the
radiant intensity in a given direction depends on both of the temperature and
the complete radiation fields. To avoid solving the equations for all directions
simultaneously by a direct solver, these equations are solved iteratively.

To obtain intensity in a given direction, the temperature field and intensities in
all the other directions are assumed known from the previous iteration (i.e. they are
“lagged”) and appear in the source term in the right-hand side. The newly obtained
intensity is used to update the temperature field and the in-scattering terms. This
cycle is repeated until convergence is achieved. Such an iterative solution method
is referred to as explicit or sequential.

For optically thin media, the lagged terms are very small and the convergence
rate is very fast. As the optical thickness increases, the angular coupling becomes
stronger and the lagged terms dominate. At a given node, solving the RTE in each
direction conserves the energy in that direction, but updating the temperature
field and the in-scattering terms with the newly obtained intensity destroys the
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conservation of energy in the previously solved directions. This can dramatically
slow down the convergence.

The convergence can become so slow that the explicit method is practically
useless. Raithby and Chui [15] observed this slow convergence for the finite volume
method and Viskanta and Mengüç [2] reported similar slow convergence for the
discrete ordinates method for large optical thicknesses for the explicit solution.
In fact, any numerical radiation method that solves the RTE will experience this
slow convergence behavior with large optical thicknesses if an explicit procedure is
used. Therefore, an acceleration scheme is required to improve the convergence and
reduce the solution cost.

1.4 Acceleration Schemes

During the past decades, several methods have been developed to accelerate the
neutron transport equation; they are reviewed by Lewis and Miller [4]. Although
these methods are also applicable to the RTE, they may not have the same per-
formance since the neutron transport equation and the RTE are not completely
identical (i.e. the RTE has a more complex boundary condition).

Raithby and Chui [15] proposed an implicit method to accelerate the finite
volume radiation method and later they developed an implicit method based on
multiplicative correction (Chui and Raithby [39] and Chui [40]). This method is
referred to as the multiplicative acceleration scheme in this research. Fiveland and
Jessee [41] studied three acceleration schemes for the RTE including the successive
over relaxation, syntax acceleration, and mesh rebalance methods. They showed
that the mesh rebalance acceleration scheme for the discrete ordinates method
(equivalent to the multiplicative acceleration scheme for the finite volume method)
is the most promising method among these available acceleration schemes. However,
they also showed that the mesh rebalance method fails to produce convergence
of the RTE for large optical thicknesses and fine grids. Raithby and Chui [42]
confirmed this poor convergence for the multiplicative method. The breakdown of
these acceleration methods makes them practically ineffective since fine meshes are
required to obtain accurate solutions.

To overcome this problem, Fiveland and Jessee [41] suggested the coarse mesh
rebalance (CMR) method. This method is identical to the basic mesh rebalance
method except that a coarser mesh is used for the rebalance equation (the implicit
equation) than for the RTE. In the CMR method, the rebalance mesh is obtained
by regrouping the control volumes of the basic mesh into blocks (to form the coarse
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grid) in a way that each block has a cell optical thickness around unity. The cell
optical thickness is defined as the product of a characteristic length of the grid (e.g.
spacing between nodes) and the extinction coefficient. They showed that the CMR
method dramatically improves the convergence of the RTE for several simple bench-
mark problems on uniform grids. However, a general regrouping method has not
been proposed and extending the method to complex geometries and unstructured
grids is questionable. Studies in the neutron transport community have shown that
the stability of CMR is conditional and the convergence becomes slower or unstable
for certain conditions [43, 44, 45].

As another remedy, Raithby and Chui [42] showed that the poor convergence
of the multiplicative method can be also improved by introducing underrelaxation
to damp the interaction between the RTE and the implicit equations of the multi-
plicative method. However, these authors did not claim a recipe for obtaining the
underrelaxation factors and these factors are problem and grid dependent. In Ap-
pendix A, the multiplicative method will be scrutinized to understand the reason
for its breakdown.

Also recently Mathur and Murthy [46, 47] have developed a new method, named
the coupled ordinates method (COMET), based on the multigrid idea, which solves
the internal energy equation and the RTE together. In this method, at a given node,
the intensities in all directions and the temperature are updated together. To reduce
the computational cost, for the interior nodes, the average intensity is also included
which results in a matrix that can be easily upper triangularized. This method has
been shown to reduce the cost substantially. However, later studies implied that
the complexity of this method increases sharply as the scattering phase function
becomes more complicated (Mathur and Murthy [47]).

This review shows that a general and efficient computational method for thermal
radiation is still required.

1.5 Objectives of this Study

The objectives of this work are summarized as

1. to develop and formulate a new efficient, robust and accurate computational
radiation method, and

2. to evaluate the new method by applying it to several 1D and 2D benchmark
problems.
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1.6 Main Approximations

Some approximations are required to make the problems simple and to allow the
results to be compared with the exact solutions. These simplifications do not
suggest that these effects (e.g. gray medium or diffuse surface) are unimportant or
uninteresting in engineering applications. Also these approximations do not mean
that the new method is incapable of handling them. The main approximations in
this work are:

1. The medium is assumed to be gray which neglects the spectral effects. All
radiative properties, like the absorption and scattering coefficients, are ap-
proximated to be uniform, constant and known.

2. All surfaces are assumed isothermal, gray, and diffuse with constant and
known emissivity and reflectivity.

3. The radiative equilibrium condition is assumed so that radiation can be stud-
ied in isolation.

1.7 Outline of the Thesis

Chapter 2 of this thesis describes the basis of the QL method and presents the
formulation of this new method. To explore its performance, the QL method is
applied to several 1D and 2D benchmark problems where Chapter 3 explains the
numerical procedure, grid, and iterative solver used to solve these problems. In
Chapter 4, results of these test cases are presented, and the accuracy, efficiency and
robustness of the QL method is studied.

In Chapter 5, a new differencing method based on the QL idea is formulated
and results for several 2D test cases are presented. Chapter 6 contains summary,
conclusions and suggestions for future work. In Appendix A, the multiplicative ac-
celeration scheme has been studied to demonstrate its performance and understand
the reason of its breakdown. Appendix B presents the complete discretization of
the QL equations for a 2D Cartesian grid as a supplement to Chapter 2. Appendix
C studies two solvers to accelerate the convergence rate of the P1 method.
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Chapter 2

The QL Method

It was concluded in the first chapter that an accurate, efficient, and robust compu-
tational method capable of resolving the complexities in thermal radiation is still
required. In this chapter, fundamentals of a newly proposed computational method,
named the QL method, are presented1. The method has been formulated for the
general case and the solution procedure is described. At the end of this chapter,
the expected accuracy and efficiency of this method are discussed.

2.1 Mathematical Formulation

Methods like the FVM and DOM solve the RTE to conserve the radiant energy
in each discrete direction for each control volume. In contrast, a method like the
P1 has been formulated to conserve the radiant energy in all directions in each
control volume. While the former are accurate but costly, the latter is inaccurate
but inexpensive. The idea of the QL method is to conserve radiant energy in a
control volume in all directions but include the directional effects in the solution
by using the phase weight concept.

2.1.1 The Radiation Energy Equation

The RTE was introduced in Chapter 1 as

dI

ds
= −(K + σs)I(r, s) +KIb(r) +

σs

4π

Z
4π

I(r, s0)Φ(s0, s)dω0 (2.1)

1This method is originally proposed and formulated by G. D. Raithby in 1996 but was never
tested or published. The name of the method was also suggested by him.
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Integrating Eq.(2.1) over the volume VP and over a solid angle of 4π results in the
Radiation Energy Equation (REE). Recognizing that dI/ds = ∇I · s = ∇ · (Is),
integrating the left-hand side of Eq.(2.1) and using the Gauss divergence theorem
givesZ

4π

Z
VP

dI

ds
dV dω =

Z
4π

Z
VP

∇ · (Is)dV dω =
Z
As,P

∙Z
4π

Isdω

¸
· n dAs (2.2)

The local radiant heat flux vector is, by the definition of intensity,

q(r) =

Z
4π

I(r, s)sdω (2.3)

Substituting this into Eq.(2.2) yieldsZ
4π

Z
VP

dI

ds
dV dω =

Z
As,P

q · ndAs

which is the radiative heat flow leaving through the surface As,P .

In the integration of the right-hand side of Eq.(2.1), the integrals of the out-
scattering and in-scattering terms cancel exactly (as they must because scattering
only redistributes the energy over directions but does not change the energy level).
Using the definition of average intensity,

R
4π
Idω = 4πIa, the REE isZ

As,P

q · ndAs = −4π
Z
VP

K (Ia − Ib) dV (2.4)

This equation was derived before (Eq.(1.12)) by integrating Eq.(1.5) over ωl = 4π.
The only difference in the procedures is that here the local radiant heat flux vector
q has been used in the left-hand side.

2.1.2 The Equation for q(r)

The directional intensity I is required in Eq.(2.3) to obtain q(r) for Eq.(2.4). This
directional intensity is obtained here by re-arranging the RTE as follows:

I(r, s) =
−1
κ

dI

ds
+ (1− Ω)Ib(r) + Ω

½
1

4π

Z
4π

I(r, s0)Φ(s0, s)dω0
¾

(2.5)

where κ = K+σs is the extinction coefficient and Ω = σs/κ is the single scattering
albedo. It is important to mention that using the RTE in this way becomes inap-
propriate in the limit of vanishing medium participation (for example, (dI/ds)/κ
becomes indeterminate since dI/ds→ 0 as κ→ 0).
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Substituting this equation for I into Eq.(2.3), the integral of the Ib term vanishes
since

R
4π
sdω = 0. Using dI/ds =∇I ·s = ∂I

∂xj
sj in Eq.(2.5), and s = siei in Eq.(2.3),

the equation for q(r) becomes

q(r) = −1
κ
It + ΩIs (2.6)

where It, the transport integral, and Is, the scattering integral, are defined as

It =

½Z
4π

∂I

∂xj
sjsidω

¾
ei (2.7)

Is =

½Z
4π

½
1

4π

Z
4π

I(r, s0)Φ(s0, s)dω0
¾
sidω

¾
ei (2.8)

In the following section, these integrals are evaluated for the general case and for
several special cases like uniform intensity and isotropic scattering.

Evaluation of the Transport Integral, It

Uniform Intensity Distribution For uniform distribution, I = Ia, the It inte-
gral in Eq.(2.7) becomes

It =

½Z
4π

∂I

∂xj
sjsidω

¾
ei =

∂Ia
∂xj

½Z
4π

sjsidω

¾
ei =

4π

3
∇Ia (2.9)

since Z
4π

sisjdω =
4π

3
for i = j

= 0 for i 6= j (2.10)

General Equation for It The phase weight αl is defined as

αl =
I l

Ia
(2.11)

which gives the relative intensity for each ωl. Re-arranging this equation gives
I l = αlIa. If it is assumed that the values of αl are known, the general equation for

18



It is

It =

½Z
4π

∂I

∂xj
sjsidω

¾
ei =

∂

∂xj

½Z
4π

Isisjdω

¾
ei

=
∂

∂xj

(
Ia

LX
l=1

αl
∙Z

ωl
sisjdω

¸)
ei

=
∂

∂xj

(
Ia

LX
l=1

αlDl
ij

)
ei (2.12)

Dl has 9 components2 for each direction l
¡
Dl
ij =

R
ωl
sisjdω

¢
, but is independent

of spatial location. Values of Dl
ij are calculated by exact integration, or precise

numerical integration, and stored.
P

LD
l
ij =

R
4π
sisjdω should agree with the

results of exact integration in Eq.(2.10). Appendix B presents the Dl
ij components

with exact integration.

Evaluation of the Scattering Integral, Is

Isotropic Scattering For Φ = 1, the scattering integral is

Is =

Z
4π

½
1

4π

Z
4π

I(r, s0)dω0
¾
sdω = Ia(r)

Z
4π

sdω = 0 (2.13)

This means that for isotropic scattering, scattering makes no contribution to the
net radiant flux through the control volume faces.

Linear Anisotropic Scattering Φ(s0, s) = 1 + a1(s · s0) : The uniform part of
the Φ(s0, s) does not contribute to the scattering integral, so that

Is =
a1
4π

Z
4π

½Z
4π

I(r, s0)s · s0dω0
¾
sdω

=
a1
4π

½Z
4π

I(r, s0)

∙Z
4π

sisjdω

¸
s0jdω

0
¾
ei (2.14)

Using Eq.(2.10) gives

Is =
a1
3

Z
4π

I(r, s0)s0dω0 =
a1
3
q(r) (2.15)

2Only 6 of these components are independent since Dl
ij = D

l
ji.
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General Equation for Is Introducing the phase weight from Eq.(2.11), the Is
integral in Eq.(2.8) for any Φ(s0, s) can be written as

Is =

Z
4π

½
1

4π

Z
4π

I(r, s0)Φ(s0, s)dω0
¾
sdω

= Ia(r)
LX
l0=1

αl
0
½Z

ωl0

½
1

4π

Z
4π

Φ(s0, s)sdω

¾
dω0
¾

= Ia(r)
LX
l0=1

αl
0
Fl

0
(2.16)

where the vector Fl
0
has 3 components F l

0
i for every solid angle ω

l0 . The values of
F l

0
i are calculated by exact integration, or precise numerical integration, and stored
(Appendix B).

2.1.3 Approximate Equations for q(r) in the Interior

Knowing It and Is for the general and special cases, q is evaluated from Eq.(2.6).

Approximately Uniform I

If the intensity is exactly uniform, the heat flow, by Eq.(2.3) is exactly zero. How-
ever, if I(r, s) is approximately uniform, substituting Eq.(2.13) for isotropic scatter-
ing and Eq.(2.9) for uniform distribution into Eq.(2.6) yields the following equation
for the radiant heat flux:

q(r) = −4π
3κ
∇Ia (2.17)

For linear anisotropic scattering, and nearly uniform I, substituting Eqs.(2.15) and
(2.9) into Eq.(2.6) leads to

q(r) =
−4π

3 (κ− a1σs/3)
∇Ia (2.18)

Eqs.(2.17) and (2.18) agree with the P1 approximation [3], but the derivation here
is both simpler and independent of the spherical harmonics.
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General Case

Substituting the General Equation for It, Eq.(2.12), and Is, Eq.(2.16), the equation
of q, Eq.(2.6), yields

q(r) =

"
−1
κ

∂

∂xj

Ã
Ia

LX
l=1

αlDl
ij

!
+ Ω

Ã
Ia

LX
l0=1

αl
0
F l

0
i

!#
ei (2.19)

where defining

Tij =
LX
l=1

αlDl
ij (2.20)

and

Si =
LX
l0=1

αl
0
F l

0
i (2.21)

simplifies Eq.(2.19) to

q(r) =

∙
−1
κ

∂

∂xj
(IaTij) + Ω (IaSi)

¸
ei (2.22)

For the special case of linear anisotropic scattering, using Eq.(2.15) for Is reduces
the final equation into

q(r) =

∙
−1

(κ− a1σs/3)
∂

∂xj
(IaTij)

¸
ei (2.23)

2.1.4 Equation for qip at Boundary Integration Points

For integration points that lie on the boundary of a gray-diffuse surface,

qip · nip = qip =

Z
ω−
Is · nipdω| {z }

flux out of the medium

+ ²s
σT 4s
π

Z
ω+
s · nipdω − ρs

Z
ω−
Is · nipdω| {z }

flux towards the medium

= (1− ρs)

Z
ω−
Is · nipdω − ²sσT 4s (2.24)

where ω+ is the range of solid angles carrying radiation into the medium from the
surface, and ω− is the range carrying radiation out of the medium towards the
surface. ρs is the surface reflectivity which is related to the surface emissivity by
ρs = 1− ²s. Notice that

R
ω+=2π

s · nipdω = −π.
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2.2 The Discrete Equation

Eqs.(2.22) and (2.24) give the radiant heat flux required by the REE (Eq.(2.4)).
Using the finite volume method, the REE is discretized to form a set of linear
algebraic equations for the nodal Ia values.

Using the same approximations as Chapter 1, for a specified control volume
(Fig.1.2), the discrete form of the REE isX

ip

qip · nipAs,ip = −4πKPVP (Ia,P − Ib,P ) (2.25)

where qip is the radiant heat flux evaluated at an integration point ip, nip is the
unit normal to the panel at the integration point, As,ip is the surface area of the
panel, KP is the absorption coefficient at node P , VP is the volume of the control
volume and Ia,P and Ib,P are the average intensity and blackbody intensity at node
P, respectively.

At the interior integration points (ip = 1, 2, . . . 7 in Fig.2.1), qip is calculated
from Eq.(2.22) using a linear profile approximation based on the nodal Ia values
(see Appendix B for details).

For the boundary integration points (ip = 8 and 9 in Fig.2.1), Eq.(2.24) is used
to find the qip values in Eq.(2.25). In the discrete form, Eq.(2.24) becomes

qip = ²sIa,p
X

Nl·nip>0

αlPN
l · nip − ²sσT 4s (2.26)

where Nl is a vector with 3 components
¡
N l
i =

R
ωl
sidω

¢
and is calculated and

stored for every l. Calculating N l
i and qip is explained in Appendix B.

Substituting the qip equations at the interior and boundary integration points
into Eq.(2.25) results in a linear algebraic equation, called the QL equation, for Ia
at each node P with the form of

aP Ia,P =
X
nb

anbIa,nb + bP (2.27)

where the coefficients and the source term depend, for the general case, on the αl.
The source term also depends on the local temperature through the Ib term. The
complete discretization of the equations for a 2D Cartesian grid is presented in
Appendix B.
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Figure 2.1: A 2D boundary control volume and its interior and boundary integration
points.

2.3 Solution Procedure

Eq.(2.27) is the final form of the discretized equations for the QL method which
are solved to find the Ia field. Both of the coefficients and the source term in
that equation depend on the αl distribution through Tij and Si. In the general
case, the αl distribution is not known and consequently, the QL method should be
accompanied by one of the methods which solve the RTE to find the directional
intensities. In this research, the FVM method with UDS has been adopted to
obtain the directional intensity distribution. The main reason of using the UDS is
its boundedness and simplicity.

The Ia field is calculated by the QL method and is inserted in the FVM to find
the directional intensity distribution. Knowing the directional intensities, the αl

distribution is calculated as

αl =
I l

1
4π

PL
l=1 I

lωl
(2.28)

which is then used in the QL method.

For the general case where the radiation and temperature fields are linked
through the q000r and Ib terms, the QL equations and other governing equations
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(like the momentum and internal energy equations) should be solved together. In
this case, the QL method solution procedure requires the following steps assuming
that the radiation and internal energy equations are solved segregated:

1. N l
i , D

l
ij, and F

l
i (i, j = 1, 2, 3) are calculated and stored.

2. Uniform intensity distribution is used as the initial guess which means αl = 1
for all nodes and all directions. q000r is guessed (e.g. q

000
r = 0).

3. Knowing αl, Tij (Eq.(2.20)) and Si (Eq.(2.21)) are calculated.

4. Since q000r is known, all the other governing equations are solved to find the
temperature field.

5. The coefficients and the source term in Eq.(2.27) are updated by information
obtained in Steps 3 and 4.

6. Eq.(2.27) is solved by an iterative solver like multigrid and residuals are re-
duced below the specified target to obtain Ia in all nodes.

7. The radiant source term q000r is updated.

8. After each specific number of cycles3 (e.g. 5 or 10), these parts are also
accomplished:

• Knowing the temperature and Ia fields, the Ib and Ī terms4 in the discrete
RTE (Eq.(1.10)) are updated.

• The FVM is used to solve the RTE and find the directional intensities
and the αl distribution (Eq.(2.28)).

9. Steps 3 to 9 (one cycle) are repeated until the convergence to the fluid flow
and heat transfer problem is achieved.

It is important to mention that Step 4 may be very complicated per se and usu-
ally includes solving the continuity, momentum, internal energy, turbulence model,
particulate transport, and chemical reaction equations.

3One cycle is defined as Steps 3 to 9 of this solution procedure.
4In fact, the QL method calculates the Ia field and another expression is required to relate Ī

to Ia (for this expression, see Appendix B).
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Step 8 is accomplished occasionally after each specific number of cycles. This
specified number is at discretion of the analyst and depends on the problem and
required accuracy.

Also it should be pointed out that the QL method can be used when the ra-
diation and the fluid flow and heat transfer equations are solved coupled. In the
coupled solution, Steps 4, 5, 6, and 7 in the above procedure are replaced by solving
a system of equations including continuity, momentum, internal energy, . . . and the
QL equations for u, v, w, p, T, . . . and Ia.

If the temperature field and radiation are disconnected (e.g. radiative equilib-
rium), the solution procedure reduces to:

1. Steps 1 and 2 as before.

2. Based on the initial guess, Tij and Si are calculated and then the coefficients
and the source term in Eq.(2.27) are computed.

3. Eq.(2.27) is solved and residuals are reduced below the specified target to
obtain Ia in all nodes.

4. Knowing the Ia distribution, the Ib and Ī terms in the discrete RTE are
updated.

5. The FVM is used to solve the RTE and find the directional intensities and
the αl distribution (Eq.(2.28)).

6. Tij and Si are updated and then the coefficients and the source term in
Eq.(2.27) are calculated.

7. Steps 3 to 7 (one cycle) are repeated until a preset convergence criterion is
satisfied.

This solution procedure is shown by a flowchart in Chapter 3 (Fig.3.5) after the
convergence criteria for Step 3 and Step 7 (for the cycle) are defined.

2.4 Accuracy and Efficiency

2.4.1 Accuracy

There are two issues concerning the accuracy of the QL method that should be
considered separately: the modeling error and the discretization error.
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Using the phase weights in evaluating q for the REE includes the effect of the
directional intensity distribution in the REE. This gives the QL method a great
advantage to solve for Ia while including the directional effects. Therefore, the
QL method is expected to be accurate even when the intensity distribution is not
isotropic.

The linear profile approximation which is used to discretize the REE is a second-
order discretization scheme; however, the accuracy of the imported αl distribution
can affect the accuracy. When the UDS, which is a first-order scheme, is used in the
FVM, the QL method is also expected to be first-order, although the discretization
in this method is second-order.

In summary, since the error is only due to discretization, the QL method con-
verges to the exact solution of the RTE as the spatial and angular grids are refined.

2.4.2 Computational Cost

As stated before, the conventional FVM or DOM (without acceleration) have slow
convergence rates for the strongly participating media since the radiant energy in
each control volume is not conserved during the iterative solution. The QL method
formulation gives an equation which has been integrated over all solid angles and
consequently conserves the radiant energy in each control volume. This has been
observed to lead to a rapid convergence.

The other advantage of the QL method is that when this method is used to
compute radiation in a fluid flow and heat transfer problem, only one equation is
required for each control volume (for Ia). For example, for N control volumes, there
areN equations. But when the FVMwith L solid angles is used, N×L equations for
intensity must be formed in each cycle where under several conditions (e.g. strongly
participating medium), many cycles are required to obtain the convergence .

An example demonstrates the significant difference between these two approaches
for a fluid flow and heat transfer problem. For a problem of modest size, the in-
tensity may be calculated at N = 105 spatial nodes. In the FVM with L = 48
directions, this requires that N ×L = 4.8 million equations for intensity be formed
and solved. For strong medium participation, the number of cycles M can of-
ten exceed 10. Therefore, for this modest problem, the formation and solution of
N × L ×M = 48 million equations are required. This enormous computational
effort may be repeated every time step until convergence to the fluid flow and heat
transfer problem is achieved. In the QL method, only N equations are required and
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M is usually smaller because of the better convergence rate. In this method, solv-
ing the N × L equations for directional intensities is required only once in several
number of cycles.

2.5 Concluding Remarks

The QL method was introduced and formulated in this chapter. The main idea of
this method is using the phase weight concept to relate the directional and average
intensities, and re-arranging the RTE to find a new expression for the radiant
heat flux. This derivation procedure gives an equation for Ia which also includes
the directional effects through the phase weights. The spectral and non-uniform
radiative properties can be easily incorporated and the method can be implemented
in the non-orthogonal and unstructured grids.

The resulting equations, which are elliptic, can be discretized by a linear profile
approximation which results in a set of linear algebraic equations for Ia. Then this
set of equations can be solved by the efficient linear equations solvers like multigrid.

Also the strategy to include the QL method in solving a fluid flow and heat
transfer problem was described in this chapter and it was discussed that this method
can substantially reduce the computational cost for thermal radiation by reducing
both the number of cycles and the cost of each cycle.

To verify the accuracy and robustness, and to measure the efficiency of the QL
method, several benchmark problems have been solved. The numerical procedure,
description of the problems and results are presented in the next two chapters.
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Chapter 3

The Numerical Solution

The QL method was described and the equations were derived in Chapter 2. To
study the performance of this new method, several benchmark problems have been
solved and their results are presented in Chapter 4. In this chapter, the geometry
of these problems, and the computational grid, convergence criteria and solver used
are explained.

3.1 Geometry

The geometry of all of the benchmark problems solved in this research is a 2D rec-
tangular enclosure with isothermal, diffuse, gray surfaces enclosing a gray medium
at temperature TG, with known and constant absorption coefficient K, and scatter-
ing coefficient σs. Also the temperature and emissivities of all of the four surfaces
are specified.

Fig.3.1 shows the rectangular enclosure, its dimensions, and the origin which
is located at the bottom-left corner of the enclosure. In this enclosure, the aspect
ratio AR is defined as

AR =
Ly
Lx

3.2 Computational Grid

The grid generation starts by dividing the solution domain to a specified number
of rectangular elements. As shown in Fig.3.2 (a), the computational nodes are
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Figure 3.1: The geometry: a 2D rectangular enclosure.

located at the corners of these elements and four panels are created inside each
element where an integration point is located at the center of each panel.

In the interior, each four neighbor elements create a control volume around their
shared corner. Such a grid is called vertex-centered. Fig.3.2 (b) shows 4 neighbor
elements and a control volume in this kind of grid.

In a 2D rectangular enclosure, for a specified number of elements in the x and
y directions (nx and ny), a uniform grid is generated by dividing the enclosure into
nx × ny equal rectangular elements with the size of ∆x×∆y × 1 where

∆x =
Lx
nx

∆y =
Ly
ny

This results in Nx×Ny = (nx + 1)× (ny + 1) control volumes and nodes where the
interior control volumes have the same size (∆x×∆y×1) and the boundary control
volumes are a half or a quarter of the interior ones. Fig.3.3 depicts a 4× 5 grid for
a rectangular enclosure where the control volumes are defined by the dashed lines.
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Figure 3.2: An element and a control volume in a 2D Cartesian grid.
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Figure 3.3: A 4× 5 grid for a rectangular enclosure.

3.3 Solver

As stated in Chapter 2, to solve a radiation problem with the QL method, the
αl distribution should be obtained from a method like the FVM or DOM. In this
research, the FVM has been used which was explained before in the first chapter.

The QL equations for a 2D Cartesian grid are completely derived in Appendix B
and the solution procedure was explained in Chapter 2. In all of the problems solved
in this research, the temperature field is known or not connected to radiation; the
“solution procedure”, therefore, refers to the second solution procedure in Chapter
2. In this section, the solver and convergence criteria for solving the FVM and QL
equations are described.

3.3.1 The QL Equations

After updating the coefficients and the source term in Eq.(2.27) for each node with
the new αl distribution obtained from the FVM (or in the first cycle, from the
initial guess), the resulting set of linear algebraic equations are solved to find the
Ia field. These equations are elliptic in nature and an iterative solver is required.
This is the third step in the solution procedure.
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To solve the QL equations efficiently, an additive correction multigrid solver [48]
has been used. The additive correction multigrid solver is widely used in CFD and
has been shown to accelerate the iterative solution substantially especially when
the matrix of coefficients is not diagonally dominant.

A fixed “V” cycle with the point Gauss-Seidel as the smoother has been used in
the additive correction multigrid solver. In both prolongation and restriction, the
smoother sweeps each level once from the bottom-left corner to the top-right corner
of the enclosure. Each control volume in the coarse grid consists of MNx ×MNy
control volumes of the finer grid and in most of the cases, the coarsest grid has only
one control volume: the entire solution domain.

The iterative solution is started by an initial guess, the Ia field from the previous
cycle or Ia = 10−5Wm−2 in the first cycle, and the iterative solution is terminated
when the convergence criterion is satisfied. One iteration in this iterative solution
is defined as accomplishing one fixed “V” cycle.

The convergence criterion for stopping the iterative solution of Eq.(2.27) is to
reduce the scaled maximum residual below a specified target Ei. The residual of
Eq.(2.27) for each control volume is defined as

rP =

¯̄̄̄P
nb anbIa,nb + bP − aP Ia,P

aP ×Rng

¯̄̄̄
(3.1)

which is calculated at the end of each iteration. Rng is the range of Ia in the
solution domain and can be approximated by σ (T 4max − T 4min) /π where Tmax and
Tmin are the maximum and minimum temperatures of the enclosure surfaces.

The maximum residual in each iteration is rmax = (rP )max and the rmax on the
first iteration is romax. The iterative solution is terminated when

rmax/r
o
max ≤ Ei = 10−5 (3.2)

This iterative solution gives the Ia field which is then inserted in the FVM equations.

3.3.2 The FVM Equations

Using the UDS in the FVM results in a parabolic-type set of linear algebraic equa-
tions which can be solved by marching (Step 5 of the solution procedure). This
means that once the Ī and Ib are known (from the QL method1 and the temperature

1See Appendix B (Eq.(B.7)) for the expression relating Ī to Ia.
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field2), the solution starts from the bottom and left surfaces and marches though
all nodes into the top-right of the enclosure in directions included in the quadrant
indicated in Fig.3.4 (a). This sweep gives the directional intensities in the solid
angles which lie in those directions.

Since now the incoming radiation to the top and right surfaces are known, the
intensities leaving these surfaces can be calculated from Eq.(1.11). Then a sweep
can be started from the bottom and right surfaces through all nodes and this time,
towards the top-left of the enclosure which gives the directional intensities in the
solid angles which lie in directions included in the quadrant indicated in Fig.3.4
(b). Now the intensities leaving the top and left surfaces can be updated and then
another sweep is started. Four sweeps should be done to determine directional
intensities in all directions. The order of doing these sweeps is arbitrary.

Fig.3.4 shows the P control volume and its neighbors and indicates the four
sweeping patterns schematically. This figure also specifies the computational nodes
participating in calculating the directional intensities in node P in each sweep by
solid circles. These nodes are always in upstream. Note that when the UDS is used,
two panels in each side of the control volume can be combined to one with a single
integration point located at its center (center of that side).

For black surfaces, intensities which satisfy Eq.(1.10) are obtained by the first
4 sweeps. However, these intensities may not be the final answer since Ī values
which came from the QL equations may not be correct because the QL equations
had used the αl distribution from the previous cycle. For reflecting surfaces, these
intensities may not even satisfy Eq.(1.10) since the intensities leaving surfaces may
be incorrect. For both black and non-black surfaces, only the first 4 sweeps are
done and the new αl distribution is calculated. Then the coefficients and the source
term in Eq.(2.27) for each node are updated with the newly obtained αl distribution.
Before solving the Ia equations again with the updated coefficients and source term,
the convergence criterion of the cycle should be checked.

3.4 Convergence Criterion for Cycle

When the directional intensities are updated, the coefficients in the QL equations
change so that these equations are no longer satisfied by the most recent values of
Ia. The procedure of calculating Ia, I l (and therefore αl), and the coefficients of the
Ia equations is therefore repeated until a cycle convergence criterion is met.

2In radiative equilibrium, Ib is obtained from Ib = Ia.
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The convergence criterion for cycle is

Rmax/R
o
max ≤ Eo = 10−5

which is checked at the end of each cycle where Eo is a specified target and
Rmax = (RP )max. RP is calculated in the same way as rP (Eq.(3.1)), except that
the coefficients have been updated by the newly obtained αl distribution. Romax is
the maximum residual on the first cycle.

Fig.3.5 shows the complete solution procedure by a flowchart.
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Figure 3.5: The complete solution procedure of the QL method.
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Chapter 4

Results

In this chapter, the QL method is applied to several 1D and 2D benchmark problems
and results are compared with the exact solutions, and the results of the FVM1 and
P1 method to study the accuracy of the QL method.

To illustrate the efficiency of the QL method, the number of cycles and work
units (WU) required to solve these problems have been reported and compared with
the cost of the FVM with explicit update. Another important issue is robustness
which has been studied at the end of this chapter.

The formulation of the QL method and numerical procedure were completely
described in Chapters 2 and 3. Before presenting the results, the dimensionless
parameters used in this chapter need to be introduced:

• Nondimensional distance: x∗ = x/Lx and y∗ = y/Ly.

• Optical thickness: κ∗ = κLy.

• Nondimensional heat transfer on the hot bottom surface: q∗ = q/σ (T 4h − T 4c )
where q is the surface heat flux on the bottom surface and Th and Tc are the
temperatures of the hot and cold surfaces, respectively. The surface heat flux
is defined as [1]:

q = ²BσT
4
B − (1− ρB)| {z }

²B

ZZ
ω−
Is · ndω

1As stated before, the UDS has been used in the FVM to solve these test cases. The convergence
criterion for the FVM solution is reducing the scaled residual of Eq.(1.10) (calculated in the same
way as Eqs.(3.1) and (3.2)), in all control volumes and solid angles, below 10−5.
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where ²B is the surface emissivity, TB is the temperature of the bottom surface,
and ω− is the range of solid angles carrying energy out of the medium to the
bottom surface. q∗ is reported along the first half of the bottom surface
(0 ≤ x∗ ≤ 0.5 and y∗ = 0) .

• Reflectance : q∗R = qR/σT 4B where qR is the incident radiant heat flux on the
hot bottom surface:

qR =

ZZ
ω−
Is · ndω

• Nondimensional temperature: T ∗ = (T 4 − T 4c ) / (T 4h − T 4c ) . T ∗ is reported
along the centerline of the enclosure (x∗ = 0.5 and 0 ≤ y∗ ≤ 1) .

4.1 One-Dimensional Problems

The geometry of the 1D problems is an enclosure with a very small aspect ratio
which approaches a plane medium enclosed between two parallel isothermal, gray,
diffuse plates. The top surface is cold TT = Tc = 0K and the bottom surface is hot
TB = Th = 100K . Fig.4.1 shows the geometry of the 1D problems.

To obtain the solution of the 1D problems, the 2D code has been used with
AR = 1/3000, Nx×Ny = 5×8 control volumes, and Nθ×Nφ = 1×16 solid angles.
The mesh of type “b” in Fig.1.4 is used for the angular grid, and Nθ = 1 means
that each solid angle covers the complete range of the polar angle (0 ≤ θ ≤ π).
Four levels are used in the multigrid solver, and each coarse-mesh block consists of
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Figure 4.2: Four levels of the spatial mesh used in the multigrid solver in the 1D
problems.

1 control volume in the x direction and 2 control volumes in the y direction of the
finer mesh (MNx ×MNy = 1 × 2) (Fig.4.2). Note that in the 1D problems, the
coarsest grid is made up of 5 blocks where each of them spans the domain in the y
direction2.

Five 1D benchmark problems are solved in this research and q∗ or q∗R is reported
at the center of the bottom surface:

Case 1. Purely isotropically scattering medium between parallel black plates.

Case 2. Purely isotropically scattering medium between parallel partially reflecting
plates.

Case 3. Purely anisotropically scattering medium, with a linear phase function, be-
tween parallel black plates.

Case 4. Purely anisotropically scattering medium, with a non-linear phase function,
between parallel black plates.

2In the 1D problems, the coarsest mesh does not consist of only one control volume (the
solution domain) because of the very small aspect ratios of the blocks which may adversely affect
the performance of the multigrid solver.
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Case 5. Isothermal absorbing-emitting medium between parallel black plates.

Note that the medium in Cases 1 and 2 is the same as an absorbing-emitting
medium in radiative equilibrium.

4.1.1 Isotropic Scattering

Case 1: Black Surfaces

The first problem is to find the radiative heat transfer in a purely isotropically
scattering medium (Ω = 1,Φ = 1) contained between two black surfaces. Heaslet
and Warming [49] have presented a very precise (“exact”) solution for this problem.

Accuracy Fig.4.3 compares the q∗ values predicted by the QL method with the
exact solution and results of the P1 and finite volume methods for a wide range of
optical thicknesses (10−2 ≤ (κ∗ = σsLy) ≤ 103).
This comparison shows that the FVM accurately predicts the radiative heat

transfer in the optically thin media, but the accuracy of the solution degrades as
the optical thickness increases. The fact that the convergence rate is very slow in
the optically thick limit (see Fig.4.5) may raise a doubt that this inaccuracy is a
result of an unconverged solution. This doubt is false and it has been ensured that
the solutions are fully converged. In fact, this deterioration is a result of using
the UDS which is not accurate when the medium is strongly participating. In this
condition, the intensity changes significantly between the upstream node and the
integration point whereas this variation is not accounted in the UDS.

Fig.4.4 shows this explanation schematically. The directional intensity distrib-
utions at two computational nodes, A and B, in a strongly participating medium
are presented as nearly isotropic. When the UDS is used, the I l distribution at
the integration point ip is approximated from the upstream nodes (A in the “ + ”
direction and B in the “ − ” direction), which results in the dashed-line distribu-
tion. The actual I l distribution at ip is presented by the solid line, which shows
the enormous error in the UDS approximation that results in an incorrect radiant
heat flux at the face of the control volume. Because of this incorrect radiant heat
flux, the I l and Ia values at the downstream nodes are not accurate and the error
is propagated downstream and accumulated. As addressed before, the reason of
the difference between the actual and approximated distributions is that the UDS
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Figure 4.3: Nondimensional heat transfer on the hot bottom surface for a purely
isotropically scattering plane medium enclosed between two parallel black surfaces
(Case 1).
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Figure 4.4: The UDS approximaion in a strongly participating medium.

does not account for the attenuation between the upstream node and the integra-
tion point. Grid refinement overcomes this problem by decreasing the attenuation
strength via decreasing the distance between the upstream node and the integra-
tion point. Therefore, the FVM solution approaches the exact results with grid
refinement3.

The P1 method performs surprisingly well in this 1D problem (the maximum
error is about 3%), a behavior which has been observed before [50, 51]. The reason
is the semi-isotropic intensity distribution in this 1D problem [51].

The QL method gives a very accurate solution for these coarse spatial and
angular grids where the maximum error is around 1.5%. It is worthwhile mentioning
that although the FVM has a poor accuracy in the optically thick limit, the QL
method, which obtains the αl distribution from the FVM, gives very precise results
in the strongly participating media.

The reason for this very good performance is that, although the FVM is not able
to predict the I l and Ia distributions accurately for the large optical thicknesses,
the αl distribution is not affected severely by this error and the FVM gives a nearly
isotropic intensity distribution (I l ≈ Ia) in each node since the source term is
strongly dominant over the directional terms in the discretized RTE. Therefore,
αl = I l/Ia ≈ 1 is calculated which is the correct αl distribution in the strongly

3It is clear that this inaccuracy is a result of using the first order discritization scheme (UDS).
Applying the higher-order methods results in very accurate results for any optical thickness on
the coarse grids.
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participating medium. Consequently, the correct αl distribution is fed into the QL
equations.

The QL method calculates the radiant heat flux at the integration points from
the gradient of Ia and its value at ip (Eq.(2.22)) by a second-order linear approxi-
mation and does not need the I l distribution at ip. Therefore, with an accurate αl

distribution which is provided by the FVM, the QL method is able to accurately
calculate the radiative heat transfer in the strongly participating medium.

Convergence Rate Fig.4.5 shows the number of cycles required to achieve con-
vergence for the FVM and QL method. It is observed that the number of cycles
in the FVM increases sharply for κ∗ ≥ 1 because of the strong directional coupling
between intensities as a result of the scattering.

The QL method converges in a few cycles for the whole range of optical thick-
nesses where the maximum number of cycles is 10 in the worst case (κ∗ = 4 and 5).
In the optically thin limit, the correct results are obtained by a few cycles since the
directional coupling is weak and the FVM gives the correct αl distribution after a
small number of cycles. In the optically thick limit, the QL equations establish the
correct Ia distribution after a few cycles and the FVM gives the correct αl distri-
bution for this Ia field since the source term is dominant. Therefore, the solution
converges in a few cycles in this limit as well. Consequently, the maximum number
of cycles occurs for the intermediate optical thicknesses where the directional and
source terms are in balance. However, even for the intermediate optical thicknesses,
the QL method converges rapidly.

Note that based on the definition of cycle in Chapter 2, the P1 method converges
in one cycle. It should be pointed out that since the computational cost of each
cycle is different in these three methods, the number of cycles is not an appropriate
indicator of the cost of each method. The actual cost can be measured in work unit
which is reported for 2D problems. However, Fig.4.5 depicts that the QL method,
in contrast to the FVM, has a very good convergence rate for both of the optically
thin and thick media.

Case 2: Partially Reflecting Surfaces

This test case is the same as the first one except that here both surfaces are partially
reflecting, ²B = ²T = 0.1. Fig.4.6 compares the q∗ values predicted by the QL, P1,
and finite volume methods with the exact solution, and Fig.4.7 shows the number
of cycles required to achieve convergence in this problem.
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Figure 4.5: Number of cycles required to achieve convergence for a purely isotrop-
ically scattering plane medium enclosed between two parallel black surfaces (Case
1).
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Results in both figures have the same trends as Figs.4.3 and 4.5 for Case 1.
However, the number of cycles for the FVM is much larger in Case 2 because
of the strong coupling between the intensities leaving a reflecting surface and the
incident intensities on that surface. The QL method is found to have a very good
convergence rate except for very small optical thicknesses.

4.1.2 Anisotropic Scattering

Cases 1 and 2 dealt with the isotropic scattering and showed the good performance
of the QL method in predicting the radiative heat transfer in 1D problems for the
simplest scattering phase function. In Cases 3 and 4, the QL method is applied to
problems with linear and non-linear anisotropic scattering to study the behavior of
this method for complex phase functions. A relatively fine angular grid has been
used for Cases 3 and 4: (Nx ×Ny)× (Nθ ×Nφ) = (5× 16)× (4× 24).

Case 3: Linear Phase Function

The medium in this test case is purely scattering (Ω = 1) with a linear scattering
phase function (Φ(s0, s) = 1 + a1 cosΨ) where Ψ is the angle between s and s0

(Fig.1.1). Both of the top and bottom surfaces are black.

Fig.4.8 compares the reflectance on the bottom surface calculated by the QL
method with the exact results for a1 = 0, 0.5, and 1 in the range of 1 ≤ σsLy ≤ 10.
The exact solution has been obtained from Busbridge and Orchard [52].

The QL method results are in excellent agreement with the exact solution for
this set of grids (maximum error is 1%) and the number of cycles required for
convergence is smaller than 11.

Case 4: Non-Linear Phase Function

The QL method has been applied to a problem where a purely scattering medium
(Ω = 1) with a non-linear scattering phase function (Φ(s0, s) = 1 + a1 cosΨ +
a2(3 cos

2Ψ− 1)). The medium is enclosed between two parallel black surfaces.

Fig.4.9 shows the calculated reflectance on the bottom surface for a1 = 0, 1, and
1.5, a2 = 0.25, and 1 ≤ σsLy ≤ 10. Orchard [53] has presented the exact solution
for this problem.

The QL solution is found to be in a good agreement with the exact solution
where the maximum error for a1 = 0 and 1 is 1% for this set of grids. For a1 = 1.5,
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Figure 4.6: Nondimensional heat transfer on the hot bottom surface for a purely
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flecting surfaces (Case 2).
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(Case 3).
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the error is around 1.8% for κ∗ = 1, but decreases rapidly with increasing κ∗ and is
around 1% for κ∗ ≥ 5. The QL solution for this problem converges within 12 cycles
in the worst case.

4.1.3 Isothermal Slab

The fifth test case is radiative heat transfer in an emitting-absorbing isothermal
slab (Ω = 0) which is contained between two parallel black surfaces. The medium
is maintained at TG = 50K and the top and bottom surfaces are at the same
temperature TT = TB = 100K . In this case, q∗ is defined as q∗ = q/ (σT 4B − σT 4G) .

A relatively fine spatial grid Nx ×Ny = 5× 16 has been used for this problem
to capture the sharp variations near the surfaces.

Fig.4.10 compares the results of the QL, P1, and finite volume methods with
the exact solution. These results show that all of the three methods predict the
radiative heat transfer accurately for the optically thin media but the accuracy of
the P1 method degrades rapidly as the absorption coefficient increases. The reason
for the inaccuracy in the P1 results is the intensity discontinuity which exists at the
surface as a result of the temperature jump [3]. The maximum error in the QL and
finite volume predictions is about 4% while the P1 method has a maximum error
of 15%.

Solving this problem is very inexpensive for any optical thickness since the
intensities in different directions are decoupled. In fact, the FVM converges within
2 cycles and the QL method requires only 4 cycles to converge.

4.2 Two-Dimensional Problems

In this section, the method is extended to 2D test cases and its performance is
examined for more complex problems. As mentioned earlier, to measure the actual
cost of the solution, a work unit (WU) should be defined and used. In this research,
oneWU for a specific set of spatial and angular grids is defined as the computational
effort required to do 10 explicit updates in the FVM on that grid (i.e. 10 cycles of
the FVM). Hence, the work unit is found by dividing the CPU time for the solution
by the CPU time for accomplishing 10 FVM cycles. With this definition of the
WU, the actual cost of the FVM and QL method can be measured and compared.

Six 2D test cases have been solved in this section:
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Figure 4.9: Reflectance on the hot bottom surface for a purely scattering medium,
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Case 6. Purely isotropically scattering in square enclosures with black and partially
reflecting surfaces.

Case 7. Purely isotropically scattering in wide and tall enclosures with black surfaces.

Case 8. Absorbing-isotropically scattering medium in square enclosures with black
surfaces.

Case 9. Absorbing-anisotropically scattering medium in square enclosures with black
surfaces.

Case 10. Purely anisotropically scattering, with the linear, non-linear and Delta-Eddington
phase functions, in square enclosures with black surfaces.

Case 11. Isothermal absorbing-emitting medium in square enclosures with black sur-
faces.

4.2.1 Pure Isotropic Scattering

Case 6: Square Enclosure

The first 2D benchmark problem is a purely isotropically scattering medium (Ω =
1,Φ = 1) enclosed in a square enclosure where the bottom surface is hot TB = Th =
100K and the other three surfaces are cold Tc = 0K . The exact solution of this
problem has been presented by Crosbie and Schrenker [54].

The spatial grid is Nx × Ny = 27 × 27 with 4 levels in the multigrid solver
(MNx ×MNy = 3 × 3). Nθ × Nφ = 1 × 24 solid angles have been used for the
angular discretization.

Accuracy Fig.4.11 compares the q∗ along the bottom surface predicted by the
QL method with the exact solution and results of the FVM and P1 method for
three optical thicknesses κ∗ = 0.25, 1, and 10. Figs.4.12, 4.13, and 4.14 show the
nondimensional temperature T ∗ along the centerline for these three optical thick-
nesses. The temperature distribution has been obtained from Ib = Ia as a result of
the radiative equilibrium.

These comparisons show the poor performance of the P1 method except in the
optically thick medium, which was expected. This method overpredicts the heat
transfer for κ∗ = 0.25 and 1 especially near the corner where a discontinuity in the
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Figure 4.14: Nondimensional temperature along the centerline for a purely isotrop-
ically scattering medium enclosed in a square enclosure with black surfaces for
κ∗ = 10.0 (Case 6).
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surface emissive power exists. This discontinuity severely affects the accuracy of
the P1 predictions even for κ∗ = 10.

The FVM accurately predicts the radiative heat transfer except for the optically
thick medium as a result of the UDS. The reason of this inaccuracy was explained
for the 1D problems and as mentioned, the FVM results approach the exact solution
with spatial grid refinement at the expense of more cost and memory (or with a
higher-order scheme which increases the complexity). The QL method yields very
accurate q∗ and T ∗ distributions for all of these three small, medium, and large
optical thicknesses for this set of coarse grids.

Fig.4.15 quantifies the error in the solution of the finite volume, P1, and QL
methods for a wide range of optical thicknesses. Results are reported for (Nx ×Ny)×
(Nθ ×Nφ) = (27× 27) × (1× 24) , with 4 levels in the multigrid solver (MNx ×
MNy = 3× 3).
The error in the predicted q∗ at the center of the bottom surface has been

calculated as

error percentage =

¯̄
q∗exact − q∗predicted

¯̄
q∗exact

× 100

where q∗exact is obtained by extrapolating the results from three spatial grids: 27×
27, 81× 81, and 243× 243.
Fig.4.15 shows that the error of the QL method is always less than 1% while the

P1 and finite volume methods have this accuracy for κ∗ ≥ 10 and κ∗ ≤ 1, respec-
tively. Again it should be pointed out that the FVM suffers from the inaccuracy
of the UDS in the strongly participating medium. In fact, the UDS is not able to
recover the diffusion approximation for the optically thick limit. The reason for the
poor performance of the P1 method in the optically thin media is that the intensity
distribution is strongly directional-dependent in this limit.

Cost Figs.4.16 and 4.17 compare the solution cost and number of cycles respec-
tively for the finite volume and QL methods for a wide range of optical thicknesses,
and black and partially reflecting surfaces. Results are reported for a set of fine
spatial and angular grids (Nx ×Ny) × (Nθ ×Nφ) = (81× 81) × (1× 48) with 5
levels in the multigrid solver (MNx ×MNy = 3× 3).
These figures show that when the surfaces are black, the QL solution converges

in less than 10 cycles and the cost is around 1WU (10 cycles in the FVM) for the
whole range of the medium participation. The FVM has a better convergence rate
for the optically thin limit since the directional coupling is very weak in this limit
and the solution converges rapidly. The cost and number of cycles of the FVM rises
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sharply for κ∗ ≥ 1 because of the strong directional coupling and the FVM with
the explicit update is practically useless in this limit. It is observed that the QL
method performs better than the FVM for κ∗ > 1.

The same trends are observed for both methods for partially reflecting surfaces;
however, the solution is more expensive and needs more cycles, because of the
dependence of the intensities leaving surfaces on the incident intensities due to the
reflecting boundaries. Again the QL method needs more computational effort for
the optically thin media but outperforms the FVM for κ∗ > 0.1.

For both of the black and partially reflecting surfaces, there is a penalty in the
performance (cost) of the QL method in the optically thin limit, but the solution
cost for this limit is small.

To demonstrate the performance of the QL method more clearly, Table 4.1 shows
the results of Figs.4.16 and 4.17 for some selected optical thicknesses and also for
a highly reflective boundary with ² = 0.1. The percentage in the parenthesis is the
portion of the computational effort (WU) spent to form and solve the QL equations.
This portion decreases with increasing optical thickness, since for large κ∗, the QL
equations are more strongly diagonally dominant and therefore, the multigrid solver
is more efficient in solving those equations.

Gain is defined as the ratio of the computational cost of the FVM to the com-
putational cost of the QL method. Table 4.1 illustrates the very good performance
of the QL method, and it is observed that the solution cost is almost constant and
does not change with κ∗.

The efficacy of the QL method is noticeable for the strongly participating media
and strongly reflecting boundaries; although as mentioned before, there is a small
cost penalty for small κ∗ when the surfaces have small reflectivity. However, the
computational cost in these cases is small and the largest penalty is 0.4WU, which
is equal to only 4 cycles of the FVM according to the definition of the work unit.

Non-Participating Media Before leaving this test case, it should be recalled
that the QL method does not work for κ∗ = 0, since re-arranging the RTE used to
derive the equation for q gives an indeterminate expression for κ∗ = 0. This issue
should be studied carefully since even if κ∗ = 0 happens locally in a region of the
solution domain, the QL method will diverge. This problem can be overcome by
replacing κ∗ = 0 with a very small value that gives accurate results and ensures
convergence.

As an example, in this test case for (Nx×Ny)×(Nθ×Nφ) = (27×27)×(1×24),
using σs = 10−6m−1 (κ∗ = 10−6) in the QL method gives exactly the correct q∗
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Table 4.1: Comparison of the solution cost between the QL method and FVM
applied to a square enclosure with a purely isotropically scattering medium (Case
6).

FVM QL Gain
² κ∗ WU cycle WU cycle WU (FVM)

WU (QL)

0.1 0.5 4 0.9(38%) 5 0.6
0.5 0.6 6 1.0(32%) 6 0.6

1.0 1.0 0.9 9 1.2(29%) 8 0.8
5.0 3.5 37 1.2(22%) 9 2.9
10.0 8.8 93 1.2(20%) 9 7.3

0.1 1.1 11 1.4(28%) 10 0.8
0.5 1.6 16 1.2(30%) 8 1.3

0.5 1.0 2.0 21 1.3(29%) 9 1.5
5.0 6.2 66 1.1(24%) 8 5.6
10.0 12.9 137 1.3(22%) 10 9.9

0.1 5.9 62 2.3(25%) 17 2.6
0.5 8.1 85 2.0(24%) 15 3.9

0.1 1.0 10.7 113 1.8(26%) 13 6.0
5.0 30.2 320 1.6(24%) 12 18.9
10 54.0 571 1.5(23%) 11 36.0
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along the bottom surface for κ∗ = 0 (q∗exact = 1) where the solution converges within
4 cycles and the solution cost is 0.8WU. 53% of the solution cost is spent on the
QL equations. The FVM solves this problem for κ∗ = 0 with 0.2WU in 2 cycles.

It seems that this remedy, using a very small value instead of 0, is practical
and accurate results can be obtained with a reasonable solution cost. However, its
application to real problems should be explored.

Case 7: Rectangular Enclosure

In this case, the radiative heat transfer in a tall enclosure (AR = 10)4 and a
wide enclosure (AR = 1/5) has been found by the QL method and the results are
compared with the FVM and exact solutions. All surfaces are black and the purely
isotropically scattering medium is gray and in radiative equilibrium. In both cases
the optical thickness is unity (σsLy = 1).

For the enclosure with AR = 10, Nx × Ny = 9 × 25 control volumes with 3
levels in the multigrid solver (MNx×MNy = 3× 5) have been used for the spatial
grid. Nx × Ny = 25 × 9 control volumes with 3 levels in the multigrid solver
(MNx ×MNy = 5 × 3) have been employed for the spatial grid in the case that
AR = 1/5. In both cases, Nθ ×Nφ = 1× 24 solid angles are used for the angular
discretization.

Accuracy Figs.4.18 and 4.19 compare q∗ on the bottom surface and T ∗ along the
centerline obtained by the QL and finite volume methods with the exact solution of
Crosbie and Schrenker [54]. For this set of coarse grids, both methods are found to
have a very good accuracy for the tall enclosure (AR = 10) where the error in the
predicted q∗ at the center of the bottom surface is 0.3% and 0.7% for the FVM and
QL method, respectively. In this case, the optical thickness in both of the x and
y directions are small (κ∗x = σsLx = κ∗y/10 = 0.1) so the UDS is accurate. Notice
that both methods slightly underestimate T ∗ near the bottom surface (hot surface)
which can be improved by using a finer grid (especially in the y direction).

For the wide enclosure (AR = 1/5), the FVM suffers from the inaccuracy of the
UDS since in this case, κ∗x = 5κ

∗
y = 5 and the medium is optically dense in the x

direction. The maximum error in the prediction of the FVM for q∗ at the center of
the surface is around 3%. The QL method gives very accurate results for this case
too, with a maximum error of 0.1%.

4Aspect ratio is defined as AR = Ly/Lx.
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Figure 4.18: Nondimensional heat transfer on the hot bottom surface for a purely
isotropically scattering mediumwith unit optical thickness in rectangular enclosures
with black surfaces (Case 7).
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Table 4.2: Comparison of the solution cost between the QL method and FVM
applied to a wide enclosure with a purely isotropically scattering medium (Case 7).

FVM QL Gain
κ∗ WU cycle WU cycle WU (FVM)

WU (QL)

0.1 0.5 5 1.2(48%) 6 0.4
0.5 0.9 9 1.0(35%) 6 0.9
1.0 1.3 13 1.2(28%) 8 1.1
5.0 6.2 65 1.6(26%) 11 3.9
10.0 15.4 163 1.3(21%) 10 11.8

Cost To study the efficiency of the QL method in the rectangular enclosures, the
radiative heat transfer in a wide enclosure with AR = 1/10 has been solved by the
QL method and FVM, and the work units and number of cycles have been reported
in Table 4.2. This aspect ratio has been chosen since its convergence rate is worse
than the problems with AR = 10 or 1/5. A set of fine grids (Nx×Ny)×(Nθ×Nφ) =
(125× 27)× (1× 48) has been used for the spatial and angular grids with 4 levels
in the multigrid solver (MNx ×MNy = 5× 3).
These results show the advantage of the QL method over the FVM and the

enormous reduction in the solution cost for the optically thick limit. The cost
penalty in the optically thin limit is a little larger than before (0.7WU), mainly
because of the larger portion of the cost spent on solving the Ia equations with the
multigrid solver (≈ 48%). This is probably caused by the small aspect ratios of the
coarse-mesh blocks.

4.2.2 Absorbing-Scattering Medium

In this case, the radiative heat transfer in an absorbing-scattering but not emitting
medium, enclosed in a square enclosure with black surfaces has been solved by the
QL method for the isotropic and anisotropic scattering. The bottom surface is hot
Th = 100K and the other surfaces are cold Tc = 0K .

Case 8: Absorbing-Isotropically Scattering Medium

Fig.4.20 shows the nondimensional heat transfer on the hot bottom surface pre-
dicted by the QL and finite volume methods and compares it with the exact so-
lution for Ω = 0.5 and 0.9 where κ∗ = 1. The spatial grid is Nx × Ny = 27 × 27
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Table 4.3: Comparison of the solution cost between the QL method and FVM ap-
plied to a square enclosure with black surfaces containing an absorbing-isotropically
scattering medium with Ω = 0.5 (Case 8).

FVM QL Gain
κ∗ WU cycle WU cycle WU (FVM)

WU (QL)

0.1 0.4 4 0.7(37%) 4 0.6
0.5 0.5 5 1.0(33%) 6 0.5
1.0 0.6 6 0.8(29%) 5 0.7
5.0 0.8 8 0.8(20%) 6 1
10.0 0.8 8 0.7(18%) 5 1.1

with 4 levels in the multigrid solver (MNx ×MNy = 3 × 3). The angular grid is
Nθ ×Nφ = 1× 24.

Accuracy Both methods give very accurate results for the given grid. The error
in the prediction of q∗ at the center of the bottom surface for Ω = 0.5 is 0.06% and
0.2% for the FVM and QL method, respectively. This error for Ω = 0.9 is around
0.1% and 0.8% for the FVM and QL method, respectively. In this case, the FVM
has a very good accuracy since the optical thickness is not large so the UDS is
accurate.

Cost Table 4.3 presents the number of cycles and work units required to solve
this problem for Ω = 0.5 and 0.1 ≤ κ∗ ≤ 10. The spatial and angular grids are
Nx × Ny = 81 × 81 and Nθ × Nφ = 1 × 48 respectively, where 5 levels have been
used in the multigrid solver (MNx ×MNy = 3× 3).
Trends in these results are nearly similar to the previous ones; for κ∗ > 5, the

QL method needs less computational effort and there is a negligible cost penalty
for the small optical thicknesses. However, the solution in this case, even with the
explicit update in the FVM, is inexpensive because of the existence of absorption,
and the FVM converges within a small number of cycles even for the large optical
thicknesses and therefore, the gain is around 1.

Case 9: Absorbing-Anisotropically Scattering Medium

The problem and the spatial grid in this case are the same as Case 8 except that
here the scattering is anisotropic with a linear phase function and the angular grid
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Figure 4.20: Nondimensional heat transfer on the hot bottom surface for an
absorbing-isotropically scattering medium enclosed in a square enclosre with black
surfaces (Case 8).
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is relatively finer (Nθ ×Nφ = 4× 24). The exact solution is obtained from [55].

Fig.4.21 depicts the q∗ distribution predicted by the QL method and FVM, and
compares them with the exact solution. It is seen that for this set of coarse grids,
both of the QL and FVM results are in an acceptable agreement with the exact
solution, the maximum error for q∗ at the center of the surface in the worst case is
less than 1%; however, a finer spatial and angular grids is required to obtain more
accurate results, especially for strong scattering (Ω = 0.95).

4.2.3 Pure Anisotropic Scattering

The accuracy of the QL method in predicting the radiative heat transfer for anisotropic
scattering was studied before (Cases 3, 4, and 9) where the results were in a very
good agreement with the exact solutions for the tested coarse grids. In this section,
the attention is focused on the solution cost and convergence rate of the QL method
for complex phase functions.

Table 4.4 compares the computational cost and number of cycles required by the
QL method and FVM applied to a square enclosure with black surfaces enclosing a
medium which scatters anisotropically with a linear phase function: Φ = 1−cos(Ψ).
The medium does not absorb or emit.

Nx×Ny = 81×81 control volumes and Nθ×Nφ = 2×48 solid angles have been
used to solve this problemwith 5 levels in the multigrid solver (MNx×MNy = 3×3).
This table shows the advantage of the QL method for κ∗ > 1 where the gain

in the computational cost rises sharply with increasing the participation of the
medium. For κ∗ = 10, the difference in work units required by the QL and finite
volume methods is around 8WU, which is equal to 80 cycles in the FVM.

Case 10: Complex Phase Functions

To further study the performance of the QL method, the method is applied to
solve problems with more complex phase functions for a wide range of optical
thicknesses. The selected phase functions are the non-linear and Delta-Eddington
scattering phase functions.

The non-linear phase function is

Φ(s0, s) = 1 + a1 cos(Ψ) + a2(3 cos
2(Ψ)− 1)
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Table 4.4: Comparison of the solution cost between the QL method and FVM
applied to a square enclosure enclosing an anisotropically scattering medium with
a linear phase function Φ = 1− cos(Ψ).

FVM QL Gain
κ∗ WU cycle WU cycle WU (FVM)

WU (QL)

0.1 0.4 4 0.7(16%) 5 0.6
0.5 0.6 6 1.0(13%) 8 0.6
1.0 0.9 9 1.3(12%) 10 0.7
5.0 3.9 41 1.6(11%) 13 2.4
10.0 10.1 107 1.7(10%) 14 6.0

and the Delta-Eddington phase function is

Φ(s0, s) = 2fδ(1− cos(Ψ)) + (1− f)(1 + 3g cos(Ψ))

where a1 = 1.5, a2 = 0.25, f = 0.5, and g = 0.3 have been used in this research.

The purely anisotropically scattering medium is enclosed in a square enclosure
with black surfaces. The spatial grid is Nx × Ny = 81 × 81 with 5 levels in the
multigrid solver (MNx×MNy = 3× 3), and the angular grid is Nθ ×Nφ = 2× 48.
Figs.4.22 and 4.23 compare the solution cost and number of cycles for the QL

method and FVM for these two phase functions. As before, there is a small penalty
in solution cost for the small optical thicknesses and then the QL method surpasses
the FVM which is very expensive for the optically thick media.

Comparing these figures with Figs.4.16 and 4.17 shows that there is a difference
between the trends in the optically thick media. Whereas the number of cycles and
cost in Case 1 (isotropic scattering) do not change significantly in the optically thick
limit and are almost constant, the number of cycles and cost rise with increasing
κ∗ when the scattering is anisotropic.

This behavior was observed and discussed before by Chui and Raithby [39] for
the multiplicative acceleration scheme. Since the QL method and the multiplicative
scheme are common is solving for Ia and using the phase weight concept, this
behavior was expected for the QL method too. The reason of this behavior is that
the isotropic scattering does not contribute to the net radiant flux through the
control volume faces and therefore, drops out of the QL equation (see Eq.(2.13)).
But the anisotropic scattering participates in the QL equations (through Eq.(2.16))
and causes a strong directional dependence in the coefficients of the QL method
which deteriorates the convergence rate.
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Even though the effectiveness of the QL method is affected adversely by the
anisotropic scattering, the QL method is still much more efficient than the FVM
which is completely useless for the strongly participating media.

4.2.4 Isothermal Absorbing-Emitting Medium

The radiative heat transfer in an isothermal slab was solved in Case 5 and it was
mentioned that solving this problem is very inexpensive since intensities in different
directions are decoupled. However, obtaining accurate results for this problem,
especially in 2D, is difficult because of the ray effect, the exponential variation
of intensity near the surfaces, and the discontinuity in the intensity field at the
surfaces. In fact, there is a very sharp variation of intensities with an exponential
nature near the surfaces for large optical thicknesses which is difficult to capture.

In Case 11, the QL method has been applied to a 2D isothermal absorbing-
emitting medium enclosed in a square enclosure with cold black surfaces. The
medium is kept at TG = 100K and q∗ for this problem is defined as q∗ = q/σT 4G.

Nx×Ny = 27×27 control volumes and Nθ×Nφ = 1×24 solid angles have been
used to solve this problemwith 4 levels in the multigrid solver (MNx ×MNy = 3× 3) .
The exact heat flux on each point of the bottom surface is obtained by inte-

grating the RTE analytically from the upstream surface to the desired point for a
given direction and then numerically integrating the intensities in that point over
all directions to find the flux.

Nondimensional heat transfer onto the bottom surface for the weakly and strongly
emitting media (K = 0.1 and 10) is presented in Fig.4.24. The results for the weakly
emitting media (K = 0.1) are in a very good agreement with the exact solution and
the maximum error is about 1.5% for this set of coarse grids. In the strongly emit-
ting medium, the QL method has a very poor accuracy and the error is around
7%. The reason of this inaccuracy is the sharp variation of intensities with an ex-
ponential nature near the surfaces which can not be resolved by the current spatial
grid.

To overcome this problem, the grid should be clustered near the surfaces to have
a finer mesh in the region of sharp variations. To cluster the grid near the top and
bottom surfaces, an exponential expression has been used [56]:

y = Ly
(1 + β)

³
β+1
β−1

´2η−1
+ (1− β)

2

∙³
β+1
β−1

´2η−1
+ 1

¸
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Figure 4.22: Comparison of the solution cost of the FVM and QL method applied
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(b)(a)

Figure 4.25: Control volumes in uniform (a) and non-uniform (b) grids in a square
enclosure.

where 1 < β <∞ is a control parameter and as β gets closer to 1, the grid becomes
finer near the top and bottom surfaces. β = 1.05 is used in this research. η is
defined as η = (j− 1)/(Ny − 1) where 1 ≤ j ≤ Ny is the computational node index
in the y direction. The same expression has been used to cluster the grid near the
left and right surfaces. Fig.4.25 shows the top-right quarter of the square enclosure
with the uniform and non-uniform (β = 1.05) grids.

The non-uniform mesh with the same number of control volumes and solid
angles as before has been used to solve this problem for the strongly emitting
medium again. Fig.4.24 depicts that using a finer grid near the surfaces can resolve
the sharp variations in this region and improve the accuracy dramatically.

4.2.5 Robustness

Up to this point, it has been shown that the QL method is able to efficiently predict
the radiative heat transfer in different kind of problems with a very good accuracy
for the tested coarse grids. Another issue that should be considered is robustness.

To study the robustness of the QL method, the methodology used in the litera-
ture [41, 42] for the multiplicative method (the mesh rebalance method) is employed
here and the QL method is applied to a wide range of grid sizes and cell optical
thicknesses. The cell optical thickness is defined as κ∆ where ∆ is a length scale
of the grid where here ∆ = Lx/ (Nx − 1) (width of the interior control volumes) is
used.
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Table 4.5: The solution cost and number of cycles required by the QL method
applied to a square enclosure with black surfaces enclosing a purely isotropically
scattering medium to study the robustness of the QL method.

Nx ×Ny
σs∆ 4× 4 8× 8 32× 32 64× 64 128× 128
0.001 3 3 4 4 5

[0.4] (0%) [0.4](19%) [0.6](28%) [0.7](33%) [1.0](43%)
0.01 4 4 5 6 8

[0.5](0%) [0.6](27%) [0.7](25%) [1.0](30%) [1.2](32%)
0.05 5 5 8 8 9

[0.5](0%) [0.6](24%) [1.1](21%) [1.1](22%) [1.3](24%)
0.1 5 7 9 9 10

[0.6](0%) [1.0](27%) [1.2](21%) [1.2](21%) [1.4](23%)
0.5 7 9 10 10 10

[0.8](0%) [1.1](21%) [1.4](20%) [1.4](20%) [1.4](23%)
1 8 8 9 9 9

[1.0](0%) [1.1](24%) [1.2](20%) [1.2](21%) [1.3](26%)
5 7 7 8 8 8

[0.9](0%) [1.0](23%) [1.1](18%) [1.2](24%) [1.2](31%)
10 7 8 8 8 8

[0.9](0%) [1.0](18%) [1.1](19%) [1.2](24%) [1.3](32%)
100 7 8 8 8 8

[0.6](0%) [1.0](14%) [1.1](21%) [1.2](26%) [1.3](35%)

The solved problem is the same as Case 6. The medium is purely isotropically
scattering (κ = σs) and the enclosure is square and the surfaces are black. The
bottom surface is hot TB = Th = 100K and the other three surfaces are cold
Tc = 0K . Nθ × Nφ = 1 × 48 solid angles have been used in the angular grid.
Coarse-mesh blocks are MNx ×MNy = 2× 2.
Table 4.5 presents the number of cycles, work units (in the square brackets), and

the portion of the solution cost spent to form and solve the QL equations (in the
parenthesis). These results illustrate the stability of the QL method for the range
of very coarse to very fine grids and for a wide range of cell optical thicknesses (and
optical thicknesses). The computational cost which is added because of solving the
QL equations is around 20%− 25% except for very small optical thicknesses where
solving the Ia equations is costly due to the lack of diagonal dominance.
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Chapter 5

A New Differencing Scheme

A new differencing scheme for the RTE, which calculates the radiant heat flux at
the integration points in the same way as the QL method, is introduced in this
chapter. This scheme is second-order accurate and gives elliptic-type equations for
the directional intensities.

This new scheme is applied to the FVM and the equations are derived in this
chapter. Then several 2D benchmark problems are solved to study its performance.

5.1 Review of the Existing Differencing Schemes

During the past decades, many researchers have attempted to develop an appro-
priate spatial differencing scheme to discretize the RTE. The spatial discretiza-
tion error takes the form of numerical smearing and dispersion. The numerical
smearing (false scattering) is a result of the truncation error and is caused by low-
order schemes like the first-order UDS, or schemes where the interpolation line and
the centerline of the solid angle are not aligned [57]. The numerical dispersion
causes nonphysical under- and over-shoots and results from unbounded discretiza-
tion methods. Since intensity is a positive quantity by definition, these under-shoots
may result in negative intensities which are physically unrealistic and can cause
numerical instabilities. Researchers have tried to prevent negative intensities by
various ways including the negative intensity fix-up procedure [9], positive scheme
[58], variable weight scheme [59], and positive intensities criteria [60].

Eliminating both of the numerical smearing and dispersion errors simultaneously
is difficult since they are inversely related; to reduce the smearing, a higher-order
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scheme or a finer spatial mesh is required where the former usually introduces
dispersion and the latter increases the computational cost and memory. The dis-
persion can be diminished by using a lower-order scheme which produces numerical
smearing.

Chai et al. [61] studied a number of common differencing schemes including
the positive scheme [58], step scheme (UDS) [62], and diamond scheme [62], and
concluded that a more accurate scheme is still required. Raithby and Chui [15]
and Chai et al. [63] modified the exponential scheme, and Jessee and Fiveland [57]
considered four bounded high-resolution differencing schemes: MINMOD, MUSCL,
CLAM, and SMART.

Along with these attempts to propose more accurate and stable differencing
schemes for the RTE, several researchers [64, 34, 65] have tried to formulate the
RTE in the even parity form. The even parity form of the RTE is derived by
considering opposite directions s and −s, and by defining the following quantities:

F (r, s) =
1

2
[I(r, s) + I(r,−s)]

G(r, s) =
1

2
[I(r, s)− I(r,−s)]

Adding and subtracting the RTE written for s and −s results in two equations
for F (r, s) and G(r, s) where eliminating G(r, s) from these two equations gives
a second-order form of the RTE. This second-order form is called the even parity
equation [4].

The even parity equation has the advantages of second-order accuracy and being
positive definite and self-adjoint [66]. Also since the second-order even parity equa-
tion does not have the one-way characteristics of the first-order conventional RTE,
the standard spatial discretization schemes (e.g the central differencing scheme)
and efficient linear equations solvers (e.g. the multigrid solver) can be applied to
solve the equations.

However, studies showed that the accuracy of the even parity equation degrades
with increasing optical thickness and the surface emissivity. Also solving the even
parity equation is more expensive than solving the conventional RTE. Therefore,
the even parity formulation has been abandoned in favor of the conventional RTE.

In the following section, a new second-order differencing scheme is proposed,
based on re-arranging the RTE in the same way as the QL equations were derived
in Chapter 2.
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5.2 Mathematical Formulation

The RTE was discretized in Chapter 1 with the finite volume method which finally
resulted in (Eq.(1.9))

NipX
ip=1

Qlip =
£
−(KP + σsP )I

l
P +KP Ib,P + σsĪ lP

¤
VPω

l (5.1)

for the control volume VP with Nip panels (Fig.1.2) where

Qlip = As,ip

Z
ωl
Iip(s · nip)dω = As,ipqlip · nip (5.2)

is the radiative heat transfer rate through panel ip within ωl.

As discussed in the first chapter, Iip should be approximated in terms of the
nodal values through a differencing scheme. Noticing that qlip in Eq.(5.2) and qip
in Eq.(2.3) are simply related,

qip =
X
L

qlipdω

the same approach used to calculate qip can be applied to find qlip.

The Iip intensity in Eq.(5.2) can be calculated by re-arranging the RTE as

I(r, s) =
−1
κ

dI

ds
+ (1− Ω)Ib(r) + Ω

½
1

4π

Z
4π

I(r, s0)Φ(s0, s)dω0
¾

Substituting this equation for I into

qlip =

Z
ωl
Iipsdω

and using dI/ds =∇I · s = ∂I
∂xj
sj and s = siei yields

qlip = −
1

κ
Ilt + (1− Ω)Ilb+ΩI

l
s (5.3)

where Ilt, the directional transport integral, I
l
b, the directional emitting integral and

Ils, the directional scattering integral, are defined as

Ilt =

½Z
ωl

∂I

∂xj
sjsidω

¾
ei =
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½Z
ωl
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¾
ei
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Z
4π

I(r, s0)Φ(s0, s)dω0
¾
sidω
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For ωl = 4π, Ilb = 0 and I
l
t and I

l
s become the transport and scattering integrals in

Eqs.(2.7) and (2.8). Using Dl and Nl defined in Chapter 2, the first two integrals
are simplified as

Ilt =
∂I

∂xj
Dl
ijei

Ilb = IbN
l
iei

The scattering integral can be approximated as

Ils =
1

4π

Z
4π

I(r, s0)

½Z
ωl
Φ(s0, s)sdω

¾
dω0 =

½
1

4π

Z
4π

I(r, s0)Jll
0
dω0
¾

where

Jll
0
=

Z
ωl
Φ(l0, l)sdω

Dl, Nl, and Jll
0
are calculated by exact or precise numerical integration and stored

for each direction and are independent of the spatial location.

Substituting these integrals into Eq.(5.3) and using Eqs.(5.1) and (5.2) gives
the final form of the discretized equation:
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¤
VPω

l (5.4)

The boundary condition for this equation is the same as Eq.(1.11). For a gray-
diffuse surface at temperature Ts, the boundary condition for the surface intensity
I ls which leaves the surface toward the medium, s

l · n < 0, is

²sAsσT
4
s + (1− ²s)

X
sl0 .n<0

Ql
0
=
X
sl.n>0

Qls = AsπI
l
s (5.5)

where n is the unit surface normal pointing out of the medium, ²s is the surface
emissivity, and Ql is the radiative heat transfer rate (Eq.(5.2)).

The left-hand side of Eq.(5.4) is approximated by a linear profile based on the
nodal I l values, in the same way as the QL equations (see Chapter 2 and Appendix
B). The second and third terms in the right-hand side and the terms resulting from
the approximation of the second and third terms in the left-hand side are lagged in
the source term. Eq.(5.4) with Eq.(5.5) give a set of linear algebraic equations in
the form of

aP I
l
P =

X
nb

anbI
l
nb + b

l
P (5.6)
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5.3 Numerical Solution

The resulting equations (Eq.(5.6)) are elliptic in nature and are efficiently solved
by the multigrid solver. For the case that the temperature field is known or not
connected to radiation, the solution procedure is:

1. Calculate and store Dl, Nl, and Jll
0
.

2. Initializing the I l and Ia values (e.g. 10−5 Wm−2 sr−1 and Wm−2). Ib is
calculated from the temperature field, or Ib = Ia if the medium is in radiative
equilibrium.

3. The multigrid solver is used in each direction to solve Eq.(5.6) and reduce the
scaled maximum residual below the specified target. After finding the new
I l distribution in each direction, the Ia field is updated and the source terms
are re-calculated (Gauss-Seidel update).

4. After sweeping through all directions, the scaled maximum residual of Eq.(5.6)
in all control volumes and solid angles are checked and the iterative solution
is terminated if the convergence criterion is satisfied.

5.4 Results

Several 2D benchmark problems are solved in this section to study the accuracy
of the new differencing scheme. The new differencing scheme is used in the FVM
which is then referred to as “New Scheme”. Results are compared with the exact
solutions and results of the FVM with UDS (referred to as “UDS”) and the QUDL
method where the superscript UD shows that the first-order UDS has been used
in the FVM to find the αl distribution for the QL method. Also the second-order
New Scheme can be used to provide the αl distribution for the QL method (which
is then called QNSL ), but the solution will be the same as the New Scheme solution
since the New Scheme and the QNSL have the same discretization error.

The New Scheme is applied to a purely isotopically scattering medium enclosed
in square and rectangular enclosures with black or partially reflecting surfaces.

The multigrid solver, computational grid, and convergence criteria1 used for
these problems are the same as before (see Chapter 3).

1Note that the residuals are calculated for Eq.(5.6).
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5.4.1 Square Enclosure

This test case is the same as Case 6 in the previous chapter. A purely isotropically
scattering medium or an absorbing-emitting medium in radiative equilibrium is
enclosed in a square enclosure with black surfaces. The bottom surface is hot
Th = 100K and the other surfaces are cold Th = 0K .

The spatial grid is Nx × Ny = 27 × 27 with 4 levels in the multigrid solver
(MNx ×MNy = 3 × 3). Nθ × Nφ = 1 × 24 solid angles have been used in the
angular discretization.

Fig.5.1 compares the New Scheme results for q∗ with the exact solution and
results of the UDS and the QUDL method for three optical thicknesses: κ∗ = 0.25, 1,
and 10; and Figs.5.2, 5.3, and 5.4 show the T ∗ distribution along the centerline.
These comparisons show that the New Scheme is able to predict the radiative heat
transfer accurately in both optically thin and thick media for this set of coarse grids
whereas the UDS is inaccurate for the dense media, as explained before. However,
for κ∗ = 0.25, the T ∗ distribution predicted by the New Scheme deviates from the
exact results near the hot surface while the predicted q∗ by this method is in a
very good agreement with the exact solution. The reason of this deviation is that
although the New Scheme predicts the intensities in the directions closely parallel
to the y axis accurately, its prediction for the intensities in the directions nearly
parallel to the x axis (which have small contribution to q∗) is inaccurate. Since T ∗

is proportional to Ib = Ia, this inaccuracy adversely affects the T ∗ distribution.

Fig.5.5 quantifies the error in the predicted q∗ at the center of the bottom surface
for the UDS, QUDL , and New Scheme (QNSL ), for a wide range of optical thicknesses.
Results are reported for Nx × Ny = 27 × 27 control volumes with 4 levels in the
multigrid solver and Nθ × Nφ = 1 × 24 solid angles. This figure depicts that the
accuracy of the New Scheme is comparable to the accuracy of the QUDL and the
maximum error is below 1%.

To study the effect of the surface reflectivity on the accuracy of the New Scheme,
the above problem has been solved when all surfaces are partially reflecting. The
spatial and angular grids are the same as before. Fig.5.6 compares the results of
the New Scheme with a very precise solution (Zone method [67]) and results of the
UDS and QUDL method. It is observed that the accuracy of the UDS and the New
Scheme is comparable to the accuracy of the QUDL method for this intermediate
optical thickness and this set of coarse grids.
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Figure 5.1: Nondimensional heat transfer on the hot bottom surface for a purely
isotropically scattering medium enclosed in a square enclosure with black surfaces.
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Figure 5.2: Nondimensional temperature along the centerline for a purely isotrop-
ically scattering medium enclosed in a square enclosure with black surfaces for
κ∗ = 0.25.
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Figure 5.3: Nondimensional temperature along the centerline for a purely isotrop-
ically scattering medium enclosed in a square enclosure with black surfaces for
κ∗ = 1.
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Figure 5.4: Nondimensional temperature along the centerline for a purely isotrop-
ically scattering medium enclosed in a square enclosure with black surfaces for
κ∗ = 10.
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Table 5.1: The solution cost and number of cycles required by the UDS and New
Scheme applied to an isotropically scattering medium enclosed in a square enclosure
with black surfaces.

UDS New Scheme
κ∗ ² cycle WU cycle WU
0.25 1 5 0.5 8 70.5

0.1 113 11.1 163 140.1
1 0.5 21 1.5 27 39.4

1 9 0.6 9 27.8
10 1 87 6.2 87 40.1

Solution Cost

In addition to accuracy, it is also important to study the solution cost of the New
Scheme and compare it with the cost of the UDS. In Table 5.1, the solution cost
and number of cycles for these two methods have been reported for the problems
solved before.

These results show that whereas the UDS and New Scheme have similar con-
vergence rates (number of cycles), the New Scheme is much costlier than the UDS,
especially for small optical thicknesses. This means that a cycle in the New Scheme
is much more expensive than a cycle using UDS.

The reason of this large cost for each cycle of the New Scheme is that in this
scheme, for a given direction, the intensities in all control volumes are spatially
coupled because of the elliptic nature of the equations and an iterative solution
is required to obtain the intensity field in each direction even when the Ia and Ib
fields are known for an isotropically scattering medium in an enclosure with black
surfaces. In spite of using the multigrid solver, solving the resulting equations may
be costly especially when the optical thickness is small. In contrast to this scheme,
for UDS, if the Ia and Ib fields are known for an isotropically scattering medium and
the surfaces are black, the intensity in each control volume in a given direction only
depends on the upstream intensities (parabolic nature), and therefore the solution
is obtained in a single sweep of the grid.

5.4.2 Rectangular Enclosure

To further study the accuracy of the New Scheme, this method has been applied to
two rectangular enclosures solved in the previous chapter (AR = 10 and 1/5). All
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surfaces are black and the optical thickness of the purely isotropically scattering
medium is unity (σsLy = 1).

For the enclosure with AR = 10, Nx ×Ny = 9× 25 control volumes have been
used for the spatial grid with 3 levels in the multigrid solver (MNx × MNy =
3 × 5). Nx × Ny = 25 × 9 control volumes with 3 levels in the multigrid solver
(MNx ×MNy = 5 × 3) have been employed for the spatial grid in the case that
AR = 1/5. In both cases, Nθ ×Nφ = 1× 24 solid angles are used for the angular
discretization.

Figs.5.7 and 5.8 compare the q∗ and T ∗ distributions predicted by the New
Scheme with the exact solution and results of the UDS and QUDL . These comparisons
show that these three methods yield very accurate predictions for this set of coarse
grids for the tall enclosure where the optical thickness is small. For the wide
enclosure, New Scheme and QUDL have comparable accuracies and both are more
accurate than the UDS since the medium is dense in the x direction (κ∗x = 5).

5.5 Concluding Remarks

A new spatial differencing scheme, the New Scheme, is introduced in this chapter.
In this scheme, the radiant heat flux at an integration point is related to the gradient
of I l at that integration point which is easily calculated by a second-order linear
profile approximation.

The New Scheme was applied to several simple 2D problems and found to be
accurate in both optically thin and thick limits for the tested coarse grids. However,
this scheme is very costly compared to the UDS, especially in the optically thin
media.

Besides being very costly, it has been observed that the accuracy of the QUDL
method is comparable to the accuracy of the QNSL . In fact, up to this point, studies
have shown that the UDS can efficiently provide an accurate αl distribution for
the QL method. However, it should be pointed out that the QUDL method is first
order (because of the UDS) and to obtain a second-order method, the αl distribution
should be second-order accurate which implies the necessity of using a second-order
differencing scheme in the FVM.
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Figure 5.7: Nondimensional heat transfer on the hot bottom surface for a purely
isotropically scattering mediumwith unit optical thickness in rectangular enclosures
with black surfaces.
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Chapter 6

Summary

In this study, a new computational radiation method, the QL method, has been
investigated which is shown to be accurate, efficient, and stable. In this method, a
single equation for Ia in each control volume is derived where heat flux at the inte-
gration points is obtained by re-arranging the RTE, and the phase weight concept
is used to include the directional effects in this equation. Therefore, whereas this
equation solves for Ia in each control volume, which ensures conservation of radiant
energy in the control volume, it also accounts for the directional effects. The phase
weights can be obtained from a method such as the FVM.

The QL equations are elliptic and standard differencing schemes (e.g. central
differencing scheme) and efficient linear equations solvers (e.g. multigrid) are ap-
plicable to solve them. This method can be implemented in non-orthogonal and
unstructured meshes, and is capable of handling anisotropic scattering (with any
kind of phase function), partially reflecting boundaries, non-uniform radiative prop-
erties, and spectral effects.

In this research, the equations for the general case were derived and several
simple 1D and 2D benchmark problems, including isotropic and anisotropic scat-
tering, black and partially reflecting boundaries, and emitting-absorbing media,
were solved on Cartesian grids to study the performance of this method. These
test cases showed that the QL method is very stable and always converges with a
reasonable number of cycles, regardless of the grid size and optical thickness. For
the large optical thicknesses, especially when the surfaces are partially reflecting,
the solution cost1 of the QL method is much lower than the cost of the FVM with
explicit update. There is a cost penalty for very small optical thicknesses which

1Measured in work units.

94



is not of great importance since the solution cost in this limit is low. Also it was
pointed out that the QL method does not work when κ∗ is exactly zero, since the
QL equations will be ill-posed. This drawback and the small cost penalty in the op-
tically thin limit are the only disadvantages of the QL method have been diagnosed
so far.

Solution of the QL method approaches the exact solution with spatial and an-
gular grids refinement, and results of the benchmark problems showed that the QL
method has similar or better accuracy than the FVM with UDS for a given spatial
and angular grid. Especially in the optically dense limit, the QL method gives the
correct diffusion approximation.

In this research, the QL method was only studied for simple test cases where the
RTE and internal energy equation were disconnected. The real advantage of the
QL method over the other available computational methods can be demonstrated
when a fluid flow and heat transfer problem is solved. In such a costly problem,
using the QL method can substantially reduce the computational cost compared to
using the FVM with explicit update since: 1) only one variable (Ia) for radiation
is solved for each control volume (instead of L directional intensities2), and 2)
during the iterative solution, the radiant energy is conserved in each control volume.
Therefore, the cost per cycle is less and the convergence rate is expected to be fast
which together, will reduce the solution cost dramatically. The FVM is only applied
occasionally to update the phase weight distribution and improve the accuracy.

Besides studying the QL method, a new differencing scheme has been introduced
in this thesis. In this method, the radiant heat flux at the integration points
is calculated by re-arranging the RTE and therefore, this scheme has a similar
formulation to the QL equations, except that its equations are integrated over ωl

instead of 4π.

This scheme can be applied to the FVM or DOM and the resulting equations
are elliptic. The standard differencing schemes and efficient linear equations solvers
can be applied to solve these equations as well. The FVM with the new scheme
is used to solve several 2D benchmark problems. Results on the coarse grids have
shown that this method yields very accurate predictions in both optically thin and
thick limits, and has similar or better (for the thick limit) accuracy than the FVM
with UDS. The major drawback of this scheme is that it is very costly, especially
when the optical thickness is small.

The distinctive feature of the QL method, solving for Ia with the directional
2L is the number of discrete solid angles and depends on the required accuracy. It may be

larger than 30.
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effects included, along with its very good performance observed in this study sug-
gests this method as a promising method for general fluid flow and heat transfer
solvers. This encourages further exploration and development of this method. In
the following, a few suggestions for future research are given.

6.1 Future Directions

There are a few recommendations for future work on the QL method:

1. The QL method should be extended to 3D problems with non-orthogonal and
unstructured grids. One issue that may arise is complexity of the equations
since the QL equations contain both non-mixed derivatives (i.e. ∂/∂x1e1)
and mixed derivatives (i.e. ∂/∂x1e2) which may increase the complexity.
One remedy for this problem is lagging the mixed derivatives, but it may
slow down the convergence.

2. The other important issue regarding the QL equations is that these equations
are not guaranteed to be diagonally dominant since the coefficients depend
on the αl distribution. Although the QL method was found very stable in
the tested cases, the only way to guarantee this robustness for any kind of
problem is ensuring the diagonal dominance. Therefore, it is worth to try to
assure the diagonal dominance of the QL equations.

3. The most important suggestion for the next stage is using the QL method
in a fluid flow and heat transfer solver to explore its performance. In such
a solver, it would be possible to control the solution cost and accuracy with
changing the number of αl distribution updates.

4. Although the FVM with UDS was found accurate enough to calculate the αl

distribution for the QL method in the simple test cases, the solution is first-
order accurate. Therefore, it is suggested to study the effect of more accurate
differencing schemes in the FVM on the performance of the QL method.

5. There is a cost penalty for the small optical thicknesses, and the QL method
does not work when κ∗ = 0. This problem can be overcome by changing
the value of κ∗ from zero to a very small number. The influence of these
drawbacks for the nearly non-participating media in practical problems should
be meticulously scrutinized.
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Appendix A

The Multiplicative Method

It was stated in Chapter 1 that the best available acceleration scheme for the RTE,
the multiplicative method, is practically useless since it fails to produce convergence
for the strongly participating media on fine grids [41, 42]. Understanding the reason
of this poor performance can be very helpful in developing new efficient methods.
In this appendix, after a brief introduction to the multiplicative method, the con-
vergence of the accelerated RTE solution with the multiplicative method will be
studied to demonstrate its performance and its breakdown for certain conditions.
Then the reason of this failure will be discussed.

A.1 Formulation of the Multiplicative Method

The multiplicative method has been formulated based on the conservation of total
radiant energy over each control volume. Fiveland and Jessee [41] interpreted the
multiplicative method as a two-level multigrid scheme where the angular rather
than the spatial discretization is coarsened.

Discretizing the RTE with the finite volume method gives (Eq.(1.10))

alP I
l
P =

X
nb

alnbI
l
nb + b

l
P (A.1)

where nb refers to the neighbor nodes. This equation ensures conservation of radiant
energy over the control volume surrounding node P within the discrete solid angle
ωl. Therefore, summing this equation over all solid angles will yield an equation
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that ensures total energy conservation over all directions for this control volume:
LX
l=1

alP I
l
P =

LX
l=1

X
nb

alnbI
l
nb +

LX
l=1

blP (A.2)

where L is the total number of solid angles so that
PL

l=1 ω
l = 4π.

The phase weight was defined before as

αlP =
I lP
Ia,P

where re-arranging gives
I lP = αlP Ia,P (A.3)

Inserting Eq.(A.3) in Eq.(A.2) and combining all direction-dependent parameters
in the coefficients a and the source term b gives an implicit equation for Ia as

aP Ia,P =
X
nb

anbIa,nb + bP (A.4)

The coefficients and the source term for the general case has been presented in [39]
and [40].

A.2 Performance and Failure

In this section, a simple 2D problem is solved to study the performance of the mul-
tiplicative method. The medium is purely isotropically scattering (with scattering
coefficient = σs) and gray, enclosed in a square enclosure of dimension H ×H with
black walls. The bottom wall is hot at 100K and the other three walls are cold at
0K .

Radiative heat transfer has been found by solving the RTE with the finite vol-
ume method of Raithby and Chui [15]. The UDS is used to discretize the RTE
and the multiplicative method of Chui and Raithby [39] is used to accelerate the
convergence.

In this case, the governing equations are the discretized RTE (Eq.(A.1))⎛⎜⎜⎝
balPz }| {X

nb

alnb + σsVPω
l

⎞⎟⎟⎠
| {z }

alP

I lP =
X
nb

alnbI
l
nb + σsVPω

lIa,P| {z }
blP

(A.5)
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and the implicit equation (Eq.(A.4))

aP Ia,P =
X
nb

anbIa,nb + bP (A.6)

where
aP =

X
L

balPαlP and anb =
X
l

alnbα
l
nb (A.7)

and bP = 0 except at the boundaries. These coefficients will be presented later.

The phase weights are calculated from

αlP =
I lP
Ĩa,P

(A.8)

where Ĩa,P = 1
4π

P
L I

l
Pω

l, and the I lP values are obtained from Eq.(A.5). The
solution procedure is:

1. All Ia values are initialized (in this case: 10−5 Wm−2).

2. Eq.(A.5) is solved for each node and each solid angle to find I lP .

3. The intermediate Ia,P values (Ĩa,P ) are calculated from Ĩa,P =
1
4π

PL
l=1 I

l
Pω

l.

4. αlP values are updated from Eq.(A.8).

5. Using the newly evaluated phase weights, Eq.(A.7) is used to calculate the
coefficients of the implicit equation (Eq.(A.6)).

6. Eq.(A.6) is solved for Ia at each node.

7. Steps 2 through 7 are repeated until the convergence criterion is satisfied.

Steps 2 through 7 constitute a cycle. The solution is judged to have converged
in Step 7 when the scaled residuals for all of the Ia equations in the multiplicative
method have reduced to 10−6. In each cycle, the Ia equations are solved to reduce
the scaled maximum residuals to 10−4 (Step 6). Because of the parabolic character
of Eq.(A.5), the solution of this equation (Step 2) can be achieved by one sweep over
all control volumes and solid angles. This has been explained before in Chapter 3
(see Fig.3.4)

A 2D uniform Cartesian vertex-centered grid, which was explained in Chapter
3, with N ×N control volumes has been used. The width and height of the interior
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Table A.1: Number of cycles to achieve convergence in a 2D problem for the mul-
tiplicative method.

σs∆
Grid size 0.001 0.01 0.05 0.10 0.25 0.5 1.0 5.0 10 100

5× 5 4 5 6 7 10 11 11 8 7 5
10× 10 4 5 8 10 15 18 16 9 8 5
25× 25 4 7 13 23 89 101 34 11 9 6
50× 50 5 9 29 Á Á Á 92 11 8 6
100× 100 5 12 Á Á Div. Div. Div. 12 9 6

control volumes are ∆ = H/(N − 1). Direction is divided into L equal solid angles
labeled ω1, ω2, ... ωl, ... ωL. Each solid angle covers the complete range of the polar
angle (0 ≤ θ ≤ π). 24 solid angles have been used for this problem.

It has been shown [41, 42] that the cell optical thickness (σs∆) plays a more
important role than the optical thickness (σsH) in the performance of the multi-
plicative method. Thus, in this study the attention has been focused on the cell
optical thickness and the grid size.

Table A.1 shows the number of cycles to achieve convergence for different grid
sizes and cell optical thicknesses. These results show that for coarse grids, the
method works well for all values of σs∆, as reported before [39, 41, 42]. In some
cases for the fine grids and 0.05 ≤ σs∆ ≤ 1.0, convergence was not achieved and in
fact, the code diverged for three cases, as indicated by “Div.”. This range for poor
convergence was previously reported by Raithby and Chui [42]. In cases which are
indicated by “Á”, the convergence was not achieved within 150 cycles. The reason
of this failure is given in the next section.

A.3 The Breakdown

The poor convergence of the iterative solution, indicated in Table A.1, has been
discussed by Raithby and Chui [42]. Their explanation is given first and then a
very simple 1D problem will be used to support it.

There are only two ways for interaction between the equations in the multiplica-
tive method:

1. The calculated values of Ia,P from Eq.(A.6) are influenced by the I lP values
from the solution of Eq.(A.5) only through the phase weights αlP .
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2. The calculated values of I lP from Eq.(A.5) are influenced by the Ia,P values
computed from Eq.(A.6) only through the term on the right-hand side.

To obtain rapid convergence, at least one of these influences must be weak. For
σs∆À 1, scattering is so dominant that the I lP intensities from Eq.(A.5) are very
nearly isotropic. Because the information that flows from Eq.(A.5) to Eq.(A.6) is
almost independent of the information that flows back from Eq.(A.6) to Eq.(A.5),
convergence is achieved rapidly. For σs∆ ¿ 1, the term on the right-hand side of
Eq.(A.5) is small, independent of the exact values of Ia,P , since σs is small. Hence,
the linkage between Eq.(A.5) and Eq.(A.6) is weak, and the convergence rate is
fast.

For intermediate σs∆, the phase weights on a given cycle can be asymmetric,
being larger in directions pointing away from the lower wall (the hot wall). This
results in asymmetric neighbor coefficients anb in the Ia,P equation, with those on
the lower side of node P being larger. This carries energy from the hot wall to the
medium and increases the level of Ia,P in the enclosure. Inserting these Ia,P values
into Eq.(A.5) yields I lP values that are more isotropic (the phase weights are more
symmetric) which then reduces the interior values of Ia,P . The residual bounces
from cycle to cycle about some level in a chaotic manner. No oscillations appear
on a coarse grid, presumably because the number of degree of freedom is too small.

The lack of diagonal dominance in the Ia,P equation appears to amplify the
resonance between the equations. Raithby and Chui [42] checked this explanation
by underrelaxing Eq.(A.6) to ensure diagonal dominance. This eliminated all cases
of divergence but the residual still bounced, and convergence was not achieved. The
convergence can be improved by introducing underrelaxation to both Eq.(A.6) and
Eq.(A.8). Details of this procedure can be found in [42]. This procedure is not
the final solution for the poor convergence since these factors are problem and grid
dependent.

The above explanation for the poor convergence and the physical reason of the
lack of diagonal dominance are clarified next by an illustrative example.

A.3.1 Illustrative Example

To demonstrate the reasons behind the fluctuations in the Ia values and the lack
of diagonal dominance, a very simple 1D problem is solved with the multiplicative
method. A purely isotropically scattering gray medium is enclosed between two
parallel black surfaces which are at the same temperature TB = TT = 100K, and
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are 0.1m apart (Fig.A.1 (d)). The scattering coefficient is σs = 18m−1 and 7
control volumes have been used along with 16 solid angles. Since the first and the
last control volumes are half of the others, ∆ for the interior control volumes is
∆ = 0.1/6 and the cell optical thickness is calculated as

σs∆ = 18× 0.1
6
= 0.3

This cell optical thickness is in the range where the poor convergence was observed
for fine grids (Table A.1). However for this problem, since the temperature differ-
ence between two walls is zero, the convergence is not achieved even for this very
coarse grid (N = 7).

Generally, it has been observed in the 1D problems that decreasing the difference
between the temperatures of the walls degrades the convergence. For example in
this problem, for TB = 100K and TT = 0K the solution converges in 16 cycles
while for TB = 100K and TT = 80K the convergence needs 31 cycles. For the case
that we are interested in, TB = TT = 100K, convergence is never achieved.

Fig.A.1 shows the αl distribution for the first 3 interior nodes for the first 4
cycles. Since the problem is symmetric, the distributions at the interior nodes
above the middle are the mirror image of Fig.A.1. It is seen that the αl profiles
flip between the solid-line profiles and the dashed-line profiles and each is repeated
in every second cycle. For example, the distributions for cycles 2 and 4 are almost
the same. This behavior was observed before by Raithby and Chui [42] for the 2D
problem and the reason was explained in the last section.

To better understand this behavior, we should look at the matrix of coefficients,
the Ia distributions, and the αl profiles simultaneously. The αl profiles were pre-
sented before, but the two others (matrix of coefficients and Ia distributions) need
to be explained.

Matrix of Coefficients: Eq.(A.6) may be written in the matrix form as

[A] {Ia} = [B]

where the elements of the matrix of coefficients [A] are obtained from Eq.(A.7):

[A] =

⎡⎢⎢⎢⎢⎢⎣
a1P −a1N 0 0 0
. . . . . . . . . 0 0
0 −aiS aiP −aiN 0

0 0
. . . . . . . . .

0 0 0 −a7S a7P

⎤⎥⎥⎥⎥⎥⎦
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Figure A.1: The αl distributions for the first 4 cycles in 3 nodes for σs∆ = 0.3.
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where i refers to the control volume index. Eqs.(A.9), (A.10) and (A.11) are ma-
trices of coefficients for the first 3 cycles:

[A]1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.3 −1.6 0 0 0 0 0
−6.4 8.1 −2.8 0 0 0 0
0 −6.5 8.6 −4.4 0 0 0
0 0 −5.8 8.8 −5.8 0 0
0 0 0 −4.4 8.6 −6.5 0
0 0 0 0 −2.8 8.1 −6.4
0 0 0 0 0 −1.6 7.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.9)

[A]2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.7 −4.7 0 0 0 0 0
−0.6 6.0 −3.5 0 0 0 0
0 −1.3 5.5 −2.7 0 0 0
0 0 −2.0 5.4 −2.0 0 0
0 0 0 −2.7 5.5 −1.3 0
0 0 0 0 −3.5 6.0 −0.6
0 0 0 0 0 −4.7 6.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.10)

[A]3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.5 −1.7 0 0 0 0 0
−5.1 7.6 −2.8 0 0 0 0
0 −5.9 8.2 −4.2 0 0 0
0 0 −5.6 8.5 −5.6 0 0
0 0 0 −4.2 8.2 −5.9 0
0 0 0 0 −2.8 7.6 −5.1
0 0 0 0 0 −1.7 6.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.11)

It is very important to understand that the [A] matrices are influenced by the
αl distributions. According to the multiplicative method formulation (Eqs.(A.6)
and (A.7)), the coefficients for the control volume of the node P are

aP =
X
L

αlPbalP
aN =

X
sl·e1<0

αlNa
l
N

aS =
X
sl·e1>0

αlSa
l
S

where sl·e1 > 0 implies summation only on s directions that are upward. When an
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upwind differencing scheme is used, the al coefficients are

balP = max[−Nl · e1,Nl · e1] =
¯̄
Nl
¯̄

alN = max[−Nl · e1, 0] (A.12)

alS = max[Nl · e1, 0]

where Nl =
R
ωl
sdω. Therefore

aP =
X
L

¯̄
Nl
¯̄
αlP

aS =
X
sl·e1>0

¯̄
Nl
¯̄
αlS (A.13)

aN =
X
sl·e1<0

¯̄
Nl
¯̄
αlN

Since the
¯̄
Nl
¯̄
values in each direction are equivalent in these coefficients, the

relative magnitudes of the a coefficients only vary with the αl distribution.

Now we can consider the connection between the [A] matrices and the αl dis-
tributions with an example. For the third node, i = 3, the coefficients are

A1(3, 3) = a3P =
X
L

¯̄
Nl
¯̄
αl3

A1(3, 2) = −a3S = −
X
sl·e1>0

¯̄
Nl
¯̄
αl2 (A.14)

A1(3, 4) = −a3N = −
X
sl·e1<0

¯̄
Nl
¯̄
αl4

Fig.A.1 shows that in the first cycle, the αl values at the second node (αl2) in
the upward directions are larger than the αl values in the fourth node (αl4) in the
downward directions. Looking at Eqs.(A.14) shows that αl2 > αl4 results in a

3
S > a

3
N .

Therefore, in the third row of the [A]1 matrix aS > aN (|A1(3, 2)| > |A1(3, 4)|). As
another example, Fig.A.1 depicts that in the second cycle, the αl values at the
second node in the upward directions are smaller than the αl values at the fourth
node in the downward directions. As a result, aN > aS (|A2(3, 2)| < |A2(3, 4)|) at
the third node in the second cycle (third row of the [A]2 matrix).

The Ia Distribution: Ia (obtained in Step 6 from the implicit equation) across
the medium in each cycle has been plotted in Fig.A.2. Ia is scaled by σT 4B and x is
scaled by Lx, and are denoted by I∗a and x

∗ in the figure, respectively.
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Discussion

Now we have enough information to discuss the observed fluctuations and the poor
convergence. Solving the RTE in Step 2 gives the I l values which are integrated in
Step 3 to find the Ĩa values in the first cycle. Then αl values are calculated in Step
4 which are shown in Fig.A.1 (the first cycle). Forming the coefficients in Step 5
results in the [A]1 matrix.

Looking at the [A]1 matrix shows that below the midpoint (rows 1 to 3), aS > aN
which implies transfer of energy from the bottom wall to the middle of the enclosure.
For the nodes above the midpoint, aN > aS which forces energy to transfer from
the top wall to the middle of the enclosure. Therefore, the level of energy at the
middle of the enclosure will be very high at the end of the first cycle. This high
level of energy is observed in Fig.A.2 (I∗a level in the first cycle).

In the second cycle, this high Ia level results in the I l values which give the Ĩa
values. The αl distributions are then obtained which are quite different from the
first cycle and the [A]2 matrix is formed by these α

l values. In contrast to the first
cycle, the [A]2 matrix shows that in the second cycle, energy is forced to transfer
from the middle towards the walls. Fig.A.2 shows that the I∗a level in the medium
at the end of the second cycle is low (the lowest curve). Again, the [A]3 matrix
shows that the situation in the third cycle is the same as the first one and energy
is carried to the middle of the enclosure and these fluctuations continue.

Diagonal Dominance

So far we have explained the reason of the fluctuations in the phase weights and
average intensity levels. Although these oscillations can be responsible for the poor
convergence, it seems that they are not the only ones. These fluctuations also
happen in some other cases which are damped after several cycles and the solution
converges at the end (sometimes with an acceptable number of cycles).

The other important issue is the lack of diagonal dominance which was first
mentioned by Raithby and Chui [42]. It is clear that the [A]1 and [A]3 matrices
are not diagonally dominant while [A]2 is. In fact, the condition number of [A]1
is 549 and the condition number of [A]3 is 252. Condition numbers of the [A]2
and [A]4 matrices are smaller than 10. It can be concluded that the lack of di-
agonal dominance in the odd cycles intensifies the fluctuations and destroys the
convergence.

Now the question is what causes the lack of diagonal dominance. Fig.A.3 shows
the phase weight profiles schematically for a node at the center of the enclosure
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Figure A.2: Scaled Ia distributions across the enclosure for the first 4 iterations.

(node P ) and its neighbors (namedN and S). This distribution is the same as solid-
line profiles in Fig.A.1 (cycles 1 and 3) where the [A] matrices are not diagonally
dominant.

The al and a coefficients were given before (Eqs.(A.12) and (A.13)). From
Eq.(A.13):

aP =
X
L

¯̄
Nl
¯̄
αlP ∝ (R1 +R3)

aS =
X
sl·e1>0

¯̄
Nl
¯̄
αlS ∝ R2

aN =
X
sl·e1<0

¯̄
Nl
¯̄
αlN ∝ R4

where the R values are proportional to the magnitudes of the αl distribution in-
dicated by regions 1, 2, 3 and 4 in Fig.A.1. Since (R2 = R4) > (R1 = R3) (from
Fig.A.3), it is obvious that aS+aN will be larger than aP . This shows why the [A]1
and [A]3 matrices are not diagonally dominant (aP < aS + aN).

This very simple 1D example shows clearly the reasons of bouncing in residuals
and also the lack of diagonal dominance. All observations and conclusions in this

114



 N

S

P

 2

1

3

4

e1 s 

Figure A.3: Schematic αl profiles at 3 nodes in the middle of the enclosure

example are consistent with what Raithby and Chui [42] found in the 2D problem.

A.4 Other Differencing Schemes

Until now only the UDS has been used in studies focused on the performance of
the multiplicative method [41, 42]. It is also interesting to consider discretization
methods other than the upwind scheme in the multiplicative method to see the
effect of the differencing scheme on the performance; and also to ensure that the
poor convergence is not caused by the upwind scheme.

To study a more strongly coupled scheme, the second-order exponential scheme
of Raithby and Chui [15] has been used to solve the 1D problem (the illustrative
example). The only difference is that here, TB = 100K and TT = 0K . In the
exponential scheme, the intensity in an integration point is approximated by the
analytical solution of the RTE between the upstream node and the integration
point.

Table A.2 compares the multiplicative method performance for two different
schemes: the upwind scheme and the exponential scheme. Table A.2 shows that
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Table A.2: Number of cycles to achieve convergence in a 1D problem for the mul-
tiplicative method with the upwind and exponential schemes.

σs∆
Grid 0.001 0.01 0.05 0.10 0.25 0.5 1.0 5.0 10 100

Upwind Scheme
5 4 6 8 10 13 14 13 8 7 4
10 4 7 11 16 25 30 22 9 7 4
25 5 9 25 132 Á Á 76 9 7 4
50 6 12 Á Á Á Á Á 10 7 4
100 7 20 Á Á Á Á Á 10 7 4
Exponential Scheme
5 4 5 8 9 12 14 12 5 4 2
10 4 6 11 15 27 33 19 5 4 2
25 5 9 24 Á Á Á 35 5 4 2
50 5 12 Á Á Á Á 53 5 4 2
100 7 20 Á Á Á Á 77 5 4 2

the range of 0.05 ≤ σs∆ ≤ 1 for poor convergence is common between the 1D and
2D problems with different differencing schemes.

A.5 Concluding Remarks

In this appendix, the effectiveness of the multiplicative method in accelerating the
RTE solution was studied. It was shown that this method fails to produce con-
vergence in the intermediate optical thickness range (0.05 ≤ σs∆ ≤ 1) for fine
grids. The explanation given before in the literature was verified by a simple exam-
ple. Looking at the matrices of coefficients, αl profiles and Ia levels simultaneously
showed the physical reason behind the fluctuations which cause the poor conver-
gence. Also the lack of diagonal dominance, which intensifies the fluctuations, was
discussed and explained. At the end, it was shown by a 1D problem that the poor
convergence is not limited to the upwind differencing scheme, and the range that
this breakdown happens is common between the upwind and exponential schemes.
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Appendix B

Two-Dimensional Discretization

In this appendix, the complete discretization of the QL equations for a 2D Cartesian
grid is presented. The 2D Cartesian grid, which has been used in this research, was
explained in Chapter 3 (Figs.3.2 and 3.3).

As explained in Chapter 2, in the QL method, qip is obtained from Eq.(2.22) or
Eq.(2.26) and is inserted in Eq.(2.25) to form Eq.(2.27). The aim of this appendix
is to find the coefficients and source term of Eq.(2.27) for the interior and boundary
control volumes for the general case.

B.1 Interior Control Volumes

Starting from the interior control volumes, inserting Eq.(2.22) in Eq.(2.25) givesX
ip

∙
−1
κ

∂

∂xj
(IaTij) + Ω (IaSi)

¸
ei · nipAs,ip = 4πKPVP (Ib,P − Ia,P ) (B.1)

where Tij and Si were defined before by Eqs.(2.20) and (2.21) as

Tij =
LX
l=1

αlDl
ij

and

Si =
LX
l0=1

αl
0
F l

0
i
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Each of these variables has two parts: one part which does not change during the
iterative solution and is calculated and stored at the beginning of the solution (Dl

ij

and F l
0
i ) and the other part, α

l, which changes during the solution. Therefore, Tij
and Si should be updated once a new αl distribution is obtained.

Dl
ij and F

l0
i are easily calculated by exact or precise numerical integration at the

beginning of the solution. Dl
ij is independent of the spatial position and depends

only on the angular grid:

Dl
ij =

Z
ωl
sisjdω

It is known that (Fig.B.1 (a))

s = s1e1 + s2e2 + s3e3

= sin(θ) cos(φ)e1 + sin(θ) sin(φ)e2 + cos(θ)e3

Therefore

Dl
11 =

Z
ωl
s1s1dω =

Z φl+

φl−

Z θl+

θl−

sin3(θ) cos2(φ)dθdφ

=

∙
1

3

¡
cos3(θl+)− cos3(θl−)

¢
−
¡
cos(θl+)− cos(θl−)

¢¸
×
∙
1

2

¡
φl+ − φl−

¢
+
1

4

¡
sin(2φl+)− sin(2φl−)

¢¸

Dl
12 = Dl

21 =

Z
ωl
s1s2dω =

Z φl+

φl−

Z θl+

θl−

sin3(θ) cos(φ) sin(φ)dθdφ

=

∙
1

3

¡
cos3(θl+)− cos3(θl−)

¢
−
¡
cos(θl+)− cos(θl−)

¢¸
×
∙
1

2

¡
sin2(φl+)− sin2(φl−)

¢¸

Dl
22 =

Z
ωl
s2s2dω =

Z φl+

φl−

Z θl+

θl−

sin3(θ) sin2(φ)dθdφ

=

∙
1

3

¡
cos3(θl+)− cos3(θl−)

¢
−
¡
cos(θl+)− cos(θl−)

¢¸
×
∙
1

2

¡
φl+ − φl−

¢
− 1
4

¡
sin(2φl+)− sin(2φl−)

¢¸
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where θl+, θ
l
−, φ

l
+, and φl− are limits that define the solid angle ω

l (Fig.B.1 (b)). For
a 2D problem, Dl

i3 and D
l
3i are not required; however, they can be easily calculated

as before.

F l
0
i depends on both of the angular grid and scattering phase function:

F l
0
i =

Z
ωl0

½
1

4π

Z
4π

Φ(s0, s)sidω

¾
dω0

For the non-linear scattering phase function,

Φ(s0, s) = 1 + a1(s · s0) + a2(3(s · s0)2 − 1) (B.2)

this equation becomes

F l
0
i =

Z
ωl0

½
1

4π

Z
4π

£
1 + a1(s · s0) + a2(3(s · s0)2 − 1)

¤
sidω

¾
dω0

=

Z
ωl
0

½
1

4π

Z
4π

a1(s · s0)sidω
¾
dω0

=
a1
4π

Z
ωl
0

Z
4π

[sin(θ) cos(φ) sin(θ0) cos(φ0) + sin(θ) sin(φ) sin(θ0) sin(φ0)

+ cos(θ) cos(θ0)]sidωdω
0

Notice that the isotropic and non-linear parts of the phase function (the first and
third terms in Eq.(B.2)) do not contribute to F l

0
i and their integrals are zero. Hence

F l
0
1 =

a1
4π

Z
ωl0

Z 2π

0

Z π

0

£
sin3(θ) cos2(φ) sin(θ0) cos(φ0) + sin3(θ) sin(φ) cos(φ) sin(θ0) sin(φ0)

+ sin2(θ) cos(θ) cos(φ) cos(θ0)
¤
dθdφdω0

=
a1
4π

Z φl
0
+

φl
0
−

Z θl
0
+

θl
0
−

∙
4π

3
sin(θ0) cos(φ0)

¸
sin(θ0)dθ0dφ0

=
a1
6

∙³
θl
0

+ − θl
0

−

´
− 1
2

³
sin(2θl

0

+)− sin(2θl
0

−)
´¸
×
³
sin(φl

0

+)− sin(φl
0

−)
´
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Figure B.1: The polar coordinate system (a) and a solid angle (b).
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F l
0
2 =

a1
4π

Z
ωl0

Z 2π

0

Z π

0

£
sin3(θ) sin(φ) cos(φ) sin(θ0) cos(φ0) + sin3(θ) sin2(φ) sin(θ0) sin(φ0)

+ sin2(θ) cos(θ) sin(φ) cos(θ0)
¤
dθdφdω0

=
a1
4π

Z φl
0
+

φl
0
−

Z θl
0
+

θl
0
−

∙
4π

3
sin(θ0) sin(φ0)

¸
sin(θ0)dθ0dφ0

= −a1
6

∙³
θl
0

+ − θl
0

−

´
− 1
2

³
sin(2θl

0

+)− sin(2θl
0

−)
´¸
×
³
cos(φl

0

+)− cos(φl
0

−)
´

It is important to mention that although the non-linear part of the phase func-
tion has dropped out of the QL equations, it still affects these equations through
the αl distribution and therefore, the QL method is able to predict the radiative
heat transfer for non-linear phase functions accurately.

For the case of our interest, 2D Cartesian grid, Eq.(B.1) reduces to

8X
ip=1

½∙
−1
κ

µ
∂ (IaT11)

∂x1
+

∂ (IaT12)

∂x2

¶
+ Ω (IaS1)

¸
e1+∙

−1
κ

µ
∂ (IaT21)

∂x1
+

∂ (IaT22)

∂x2

¶
+ Ω (IaS2)

¸
e2

¾
· nipAs,ip = 4πKPVP (Ib,P − Ia,P )

Using x1 = x and x2 = y for convenience simplifies this equation to

8X
ip=1

½∙
−1
κ

µ
∂ (IaTxx)

∂x
+

∂ (IaTxy)

∂y

¶
+ Ω (IaSx)

¸
e1+∙

−1
κ

µ
∂ (IaTyx)

∂x
+

∂ (IaTyy)

∂y

¶
+ Ω (IaSy)

¸
e2

¾
· nipAs,ip = 4πKPVP (Ib,P − Ia,P )

(B.3)

Knowing Dl
ij and F

l0
i , Tij and Si are updated at all computational nodes once a

new αl distribution is obtained. To complete the discretization, the derivatives of
IaTij and values of IaSi in the left-hand side of Eq.(B.3) should be approximated
based on the nodal values. These derivatives and values are approximated for each
variable using linear profiles within each element. The basis of this approximation
is explained in the following.

Fig.B.2 shows an element where the integration points are located at the center
of the panels. A local temporary t − s coordinate system is located at the center
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Figure B.2: A typical 2D rectangular element.

of the element where t and s both vary between −1 and 1. Anywhere inside the
element, the value of a variable J can be approximated as

J =
(1− s)(1− t)J1 + (1− s)(1 + t)J2 + (1 + s)(1− t)J3 + (1 + s)(1 + t)J4

4
(B.4)

where J1, J2, J3, and J4 are values at the computational nodes. For example, at
the integration point a, t = −0.5 and s = 0, Ja is calculated as

Ja =
3J1 + J2 + 3J3 + J4

8

To find the derivatives at the integration points, Eq.(B.4) is differentiated with
respect to x and y as

∂J

∂x
=

∂J

∂t

∂t

∂x
=

∂J

∂t

∆t

∆x
=

2

∆x

∂J

∂t

∂J

∂y
=

∂J

∂s

∂s

∂y
=

∂J

∂s

∆s

∆y
=

2

∆y

∂J

∂s

where

∂J

∂t
=
−(1− s)J1 + (1− s)J2 − (1 + s)J3 + (1 + s)J4

4

∂J

∂s
=
−(1− t)J1 − (1 + t)J2 + (1− t)J3 + (1 + t)J4

4
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Figure B.3: An interior control volume in a 2D Cartesian grid.

Therefore

∂J

∂x
=
−(1− s)J1 + (1− s)J2 − (1 + s)J3 + (1 + s)J4

2∆x

∂J

∂y
=
−(1− t)J1 − (1 + t)J2 + (1− t)J3 + (1 + t)J4

2∆y
(B.5)

For example, at the integration point d, t = 0 and s = 0.5, derivatives are calculated
as

∂J

∂x

¯̄̄̄
d

=
−J1 + J2 − 3J3 + 3J4

4∆x

∂J

∂y

¯̄̄̄
d

=
−J1 − J2 + J3 + J4

2∆y

In Eq.(B.3), derivatives of IaTij and values of IaSi at the integration points
should be found by Eqs.(B.4) and (B.5).

A control volume in a 2D Cartesian grid was shown before in Chapter 3 and is
repeated here for convenience (Fig.B.3). At ip = 1, nip = e1; therefore, the second
term inside the summation in Eq.(B.3) vanishes since e2 · e1 = 0. ip = 1 in element
P − E − N − NE in Fig.B.3 is similar to integration point “b” in Fig.B.2 and
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nodes 1, 2, 3, and 4 in Fig.B.2 are similar to nodes P, E, N, and NE in Fig.B.3
respectively. Consequently for ip = 1

∂ (IaTxx)

∂x

¯̄̄̄
ip=1

=
−3 (IaTxx)P + 3 (IaTxx)E − (IaTxx)N + (IaTxx)NE

4∆xEP

∂ (IaTxy)

∂y

¯̄̄̄
ip=1

=
− (IaTxy)P − (IaTxy)E + (IaTxy)N + (IaTxy)NE

2∆yNP

(IaSx)|ip=1 =
3(IaSx)P + 3(IaSx)E + (IaSx)N + (IaSx)NE

8

where ∆xEP and ∆yNP are the width and height of the element (Fig.B.3).

At ip = 2, nip = e2, and this point is similar to point “a”. Therefore

∂ (IaTyx)

∂x

¯̄̄̄
ip=2

=
− (IaTyx)P + (IaTyx)E − (IaTyx)N + (IaTyx)NE

2∆xEP

∂ (IaTyy)

∂y

¯̄̄̄
ip=2

=
−3 (IaTyy)P − (IaTyy)E + 3 (IaTyy)N + (IaTyy)NE

4∆yNP

(IaSy)|ip=2 =
3(IaSy)P + (IaSy)E + 3(IaSy)N + (IaSy)NE

8

ip = 3 is in another element, W − P −NW −N, and is similar to point “c” in
Fig.B.2. Therefore

∂ (IaTyx)

∂x

¯̄̄̄
ip=3

=
− (IaTyx)W + (IaTyx)P − (IaTyx)NW + (IaTyx)N

2∆xPW

∂ (IaTyy)

∂y

¯̄̄̄
ip=3

=
− (IaTyy)W − 3 (IaTyy)P + (IaTyy)NW + 3 (IaTyy)N

4∆yNP

(IaSy)|ip=3 =
(IaSy)W + 3(IaSy)P + (IaSy)NW + 3(IaSy)N

8

All derivatives and values at the other 5 integration points are calculated in the
same manner. Inserting them in Eq.(B.3) results in Eq.(2.27):

aP Ia,P = aNIa,N + aEIa,E + aSIa,S + aW Ia,W

+aNEIa,NE + aSEIa,SE + aNW Ia,NW + aSW Ia,SW + bP (B.6)
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where

aP =
3

4κP

∙µ
∆yP
∆xEP

+
∆yP
∆xPW

¶
TPxx +

µ
∆xP
∆yNP

+
∆xP
∆yPS

¶
TPyy

¸
+ 4πKP∆xP∆yP

aN =
1

8κP

∙
−
µ
∆yNP
∆xEP

+
∆yNP
∆xPW

¶
TNxx +

6∆xP
∆yNP

TNyy

¸
− 3Ω
8
SNy ∆xP

aE =
1

8κP

∙
6∆yP
∆xEP

TExx −
µ
∆xEP
∆yNP

+
∆xEP
∆yPS

¶
TEyy

¸
− 3Ω
8
SEx ∆yP

aS =
1

8κP

∙
−
µ
∆yPS
∆xPW

+
∆yPS
∆xEP

¶
TSxx +

6∆xP
∆yPS

TSyy

¸
+
3Ω

8
SSy∆xP

aW =
1

8κP

∙
6∆yP
∆xPW

TWxx −
µ
∆xPW
∆yNP

+
∆xPW
∆yPS

¶
TWyy

¸
+
3Ω

8
SWx ∆yP

aNE =
1

8κP

∙
∆yNP
∆xEP

TNExx + 4TNExy +
∆xEP
∆yNP

TNEyy

¸
− Ω

16

¡
SNEx ∆yNP + S

NE
y ∆xEP

¢

aNW =
1

8κP

∙
∆yNP
∆xPW

TNWxx − 4TNWxy +
∆xPW
∆yNP

TNWyy

¸
+

Ω

16

¡
SNWx ∆yNP − SNWy ∆xPW

¢

aSE =
1

8κP

∙
∆yPS
∆xEP

T SExx − 4T SExy +
∆xEP
∆yPS

T SEyy

¸
+

Ω

16

¡
−SSEx ∆yPS + S

SE
y ∆xEP

¢

aSW =
1

8κP

∙
∆yPS
∆xPW

T SWxx + 4TSWxy +
∆xPW
∆yPS

T SWyy

¸
+

Ω

16

¡
SSWx ∆yPS + S

SW
y ∆xPW

¢
bP = 4πKP∆xP∆yP Ib,P

Notice that ∆xP and ∆yP are the width and height of the control volume (Fig.B.3)
and are calculated as

∆xP =
∆xEP +∆xPW

2

∆yP =
∆yNP +∆yPS

2
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B.2 Boundary Control Volumes

Fig.B.4 depicts a boundary control volume. Derivatives and values at ip = 1, 2, 7,
and 8 are calculated exactly the same as before since they are interior integration
points.

When the surface is isothermal, integration points at the boundary (at the
surface) are combined to a single one at the node P since the surface emissive
power (σT 4s ) is uniform. For this integration point, qip is calculated from Eq.(2.26):

qip · nip = qip = ²sIa,p
X

Nl·nip>0

αlPN
l · nip − ²sσT 4s

where Nl is a vector and its components

N l
i =

Z
ωl
sidω

are calculated as

N l
1 =

Z
ωl
s1dω =

Z φl+

φl−

Z θl+

θl−

sin2(θ) cos(φ)dθdφ

=
1

4

£
2
¡
θl+ − θl−

¢
−
¡
sin(2θl+)− sin(2θl−)

¢¤
×
£
sin(φl+)− sin(φl−)

¤

N l
2 =

Z
ωl
s2dω =

Z φl+

φl−

Z θl+

θl−

sin2(θ) sin(φ)dθdφ

= −1
4

£
2
¡
θl+ − θl−

¢
−
¡
sin(2θl+)− sin(2θl−)

¢¤
×
£
cos(φl+)− cos(φl−)

¤
At the boundary integration point (at node P ) shown in Fig.B.4, nip = −e1 and

qip is calculated as
qP = −²RIa,p

X
−Nl·e1>0

αlPN
l
1 − ²RσT 4R

Inserting this flux and q1, q2, q7, and q8 in Eq.(2.25) gives an equation like Eq.(B.6)
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in which

aP =
3

4κP

∙
∆yP
∆xEP

TPxx +

µ
∆xP
∆yNP

+
∆xP
∆yPS

¶
TPyy

¸
+ ²RC∆yP +

3Ω

8
SPx∆yP + 4πKP∆xP∆yP

aN =
1

8κP

∙
−∆yNP
∆xEP

TNxx +
6∆xP
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TNyy

¸
− Ω

16

¡
SNx ∆yNP + 3S

N
y ∆xEP

¢

aS =
1

8κP

∙
−∆yPS
∆xEP

T Sxx +
6∆xP
∆yPS

T Syy

¸
+

Ω

16

¡
−SSx∆yPS + 3SSy∆xEP

¢
bP = 4πKP∆xP∆yP Ib,P + ²RσT

4
R∆yP

where
C = −

X
−Nl·e1>0

αlPN
l
1

and is positive. aE, aNE, and aSE are the same as before (for interior nodes) and
aW = aNW = aSW = 0.

All coefficients and source terms in the other interior and boundary control
volumes are calculated in exactly the same manner. Once those values are obtained,
we will have a set of algebraic equations where the only unknowns are Ia values at
the computational nodes.

B.3 The In-Scattering Term

Solving the QL equations gives the Ia field while the Ī values are required in the
FVM and generally, these two are not equal. It may be useful to show how Ī can
be evaluated once the Ia and αl distributions are known.

It was shown in Eq.(1.7) that

Ī lP =
1

4π

LX
l0=1

I l
0
PΦ

l0l

By using I l
0
P = αl

0
P Ia,P from Eq.(2.11), this equation becomes

Ī lP =
1

4π
Ia,P

LX
l0=1

αl
0
PΦ

l0l
(B.7)
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Figure B.4: A boundary control volume in a 2D Cartesian grid.

which relates the Ī values to the Ia field.
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Appendix C

Acceleration of the P1 Solution

The P1 method converts the governing equations of thermal radiation from very
complex integro-differential equations to relatively simple partial differential equa-
tions with an elliptic nature. These equations are easily solved by iterative solvers;
but the only problem is the slow convergence rate, especially when the optical
thickness is small. The boundary condition, which is of the third kind, is culprit for
this slow convergence rate. A connected problem is that the unconverged solution
of the P1 equations does not satisfy the conservation of radiant energy over the
solution domain; therefore, when the P1 method is coupled with a fluid flow solver,
the total energy is not conserved over the solution domain, which adversely affects
the convergence rate of the fluid flow and heat transfer solution.

These two problems have been studied by Li and Modest [68]. They proposed a
multiplicative correction factor to ensure the satisfaction of the radiant energy over
the solution domain which is also shown to accelerate the convergence rate sub-
stantially. This method is introduced as a reduced mesh rebalance method and the
correction factor is interpreted as a uniform phase weight. This corrective procedure
has been employed recently in parallelization of the P1 method by Krishnamoorthy
and co-workers [69].

This appendix may be seen irrelevant to the rest of this thesis which is about
the QL method; but in fact, there are two reasons which make it valuable to study
the convergence rate and conservation of the radiant energy in the P1 solution:

1. In spite of the limitations and disadvantages of the P1 method, which were
explained in Chapter 1, this method is popular and widely used because of
its simplicity and low solution cost.
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2. The P1 and QL equations have very similar natures: the QL solution has
a very slow convergence rate in the optically thin limit and its unconverged
solution does not conserve the energy over the solution domain too. Therefore,
studying the P1 method can help in improving the QL method.

To overcome the problem of slow convergence in the QL method, the additive
correction multigrid solver was employed in this research which showed a satis-
factory performance. It is interesting to explore the performance of the multigrid
solver in the P1 method and compare it with the performance of the correction
method of Li and Modest [68].

C.1 The P1 Equations

The P1 equations are derived by using the Spherical Harmonics in a tedious proce-
dure [3]. But in Chapter 2 of this thesis, a new very simple derivation procedure was
introduced which gives the P1 equations for the interior control volumes (Eq.(2.17)).
In fact, using α = 1 (I = Ia) in the QL equations gives the P1 equations in the
interior control volumes. The boundary conditions are different and the boundary
condition of the P1 method is

q = − 2²s
(2− ²s)

¡
σT 4s − πIa

¢
(C.1)

C.2 Correction Method

The correction method of Li and Modest [68] is explained in this section. Conser-
vation of the radiant energy over a control volume requires (see Chapter 2)Z

As,P

q · ndAs = −4π
Z
VP

K (Ia − Ib) dV

Summing this equation over all control volume results in an equation for the
radiant energy balance over the solution domain:Z

As,<

q · ndAs = −4π
Z
V<

K (Ia − Ib) dV (C.2)
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where As,< and V< are the surface area and volume of the solution domain. Using
Eq.(C.1) in the left-hand side, Eq.(C.2) in the discrete form becomes

−
MX
j=1

2²s,j
(2− ²s,j)

¡
σT 4s,j − πIa,j

¢
As,j = −

NX
i=1

4πK (Ia,i − Ib,i)Vi (C.3)

where N is total number of control volumes in the solution domain and M is
the number of boundary control volumes. While a converged solution satisfies
this equation, an unconverged solution during the iterative solution does not. As
mentioned before, this can adversely affect the convergence rate and the total energy
balance over the solution domain in a coupled solution of a fluid flow and heat
transfer problem.

In the correction method, satisfaction of Eq.(C.3) is used as a constraint to
ensure that the radiant energy is conserved in each iteration. This is done by
correcting the calculated Ia values by a uniform correction factor f , in a way that
Eq.(C.3) is satisfied:

−
MX
j=1

2²s,j
(2− ²s,j)

¡
σT 4s,j − πfIa,j

¢
As,j = −

NX
i=1

4πK (fIa,i − Ib,i)Vi

Hence f in each iteration can be found from this equation as

f =

MP
j=1

2²s,j
(2−²s,j)σT

4
s,jAs,j +

NP
i=1

4πKIb,iVi

MP
j=1

2π²s,j
(2−²s,j)Ia,jAs,j +

NP
i=1

4πKIa,iVi

This correction factor is calculated once a new Ia field is obtained, and then is used
to modify the Ia field:

Ia,i = f × Ia,i i = 1, 2, . . . N

Li and Modest [68] applied this method to a 2D problem, a cylindrical combus-
tion chamber, with a known temperature distribution and compared the number of
iterations for the Gauss-Seidel and alternating direction line-by-line TDMA itera-
tive methods with block correction with and without the correction method. They
showed that the correction method can reduce the number of iterations dramati-
cally, especially for small optical thicknesses.

In this appendix, a simple 2D test case is studied with three solvers: the Gauss-
Seidel solver, the Gauss-Seidel solver with the correction method, and the additive
correction multigrid solver. The convergence rate, solution cost, and conservation
of radiant energy over the domain is studied for a wide range of optical thicknesses.
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C.3 Test Case

This test case is the same as Case 6 in Chapter 4. An emitting-absorbing medium
in radiative equilibrium is enclosed in a square enclosure where the bottom surface
is hot TB = Th = 100K and the other three surfaces are cold Tc = 0K .

Nx×Ny = 64×64 control volumes are used where in the multigrid solver, blocks
are 2×2 and the coarsest mesh consists of one control volume, the solution domain
(7 levels). The computational grid, convergence criteria, and multigrid solver are
the same as Chapter 3. One iteration in the multigrid solver is defined as doing
one fixed V cycle. In the Gauss-Seidel solver, sweeps are done from the bottom-left
corner to the top-right corner once in each iteration. Solution cost is measured
by work unit and 1WU for a specified grid is defined as the computational effort
required to do 1000 Gauss-Seidel iterations.

The three solvers used in this problem are indicated by GS (w/o. correction),
which means the Gauss-Seidel solver without the correction method; GS (w. cor-
rection), which means the Gauss-Seidel solver with the correction method; and
Multigrid, refers to the additive correction multigrid solver.

Table C.1 reports the number of iterations and work units for four optical thick-
nesses: κ∗ = 0.01, 0.1, 1, and 10, for black and partially reflecting surfaces. It is seen
that using the Gauss-Seidel solver with the correction method can substantially im-
prove the convergence rate and reduce the solution cost, especially for small optical
thicknesses. However, these results also show that the multigrid solver has a much
better performance than the Gauss-Seidel solver with the correction method and
the solution cost is much lower. Fig.C.1 shows the scaled maximum residual versus
iteration for these four optical thicknesses. The enormous improvement in the con-
vergence rate with the multigrid solver is obvious. These comparisons demonstrate
the great advantage of using the multigrid solver.

The other important issue is conservation of energy over the solution domain
which will be considered in the following.

In the radiative equilibrium condition, Ia = Ib, the radiant source term, right-
hand side of Eq.(C.3), is zero. Therefore, conservation of radiant energy over the
solution domain requires the radiative heat transfer over the domain (left-hand side
of Eq.(C.3)) to be zero. Fig.C.2 plots this term versus iteration for κ∗ = 1. Since
the desired value for this term is zero, any deviation from zero can be interpreted
as error. As expected, the converged solutions of all three solvers satisfy the con-
servation of radiant energy over the domain. But during the iterative solution, the
Gauss-Seidel solver without the correction method does not conserve the energy
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Figure C.1: Scaled maximum residual of the P1 method with the Gauss-Seidel solver
without the correction method, Gauss-Seidel solver with the correction method,
and multigrid solver applied to an emitting-absorbing medium enclosed in a square
enclosure with black surfaces.
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Table C.1: Performance of three solvers in the P1 method applied to an emitting-
absorbing medium enclosed in a square enclosure.

GS (w/o. correction) GS (w. correction) Multigrid
κ∗ ²s it WU it WU it WU
0.01 1 790479 794.7 7531 8.1 120 0.5
0.1 1 80216 80.3 6242 6.6 111 0.4

0.1 151244 151.0 6771 7.2 115 0.4
1 0.5 24963 25.0 4807 5.1 94 0.4

1 9328 9.3 3175 3.4 71 0.3
10 1 2640 2.6 1423 1.5 47 0.2

and the error is large. The multigrid solver does not conserve the energy either,
but it has a very fast convergence rate and its error is small.

Fig.C.2 presents the radiative heat transfer before the correction for the Gauss-
Seidel solver with the correction method. After correcting the Ia field, the Gauss-
Seidel solver with the correction method does conserve the radiant energy over the
solution domain and the radiative heat transfer over the solution domain will be
equal to the radiant source term.

C.4 Concluding Remarks

It was shown in this appendix that the additive correction multigrid solver has a
better performance in solving the P1 equations than the Gauss-Seidel with the cor-
rection method. Conservation of radiant energy over the domain was also discussed
and it was shown that the correction method guarantees this conservation while
the multigrid solver does not. At the end it should be mentioned that to compare
the real performance of the correction method and multigrid solver, they should be
applied to non-equilibrium problems (i.e. when radiation is coupled with internal
energy).

134



Iteration

R
ad

ia
tiv

e
H

ea
tT

ra
ns

fe
r[

W
]

100 101 102 103-12

-10

-8

-6

-4

-2

0

GS (w/o. correction)
GS (w. correction)
Multigrid

Figure C.2: Radiative heat transfer over the solution domain for κ∗ = 1 obtained
by the P1 method with three solvers.
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