
Efficient Composition
of Discrete Time Quantum Walks

by

Xingliang Lou

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Combinatorics and Optimization – Quantum Information

Waterloo, Ontario, Canada, 2017

C© Xingliang Lou 2017

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

It is well known that certain search problems are efficiently solved by quantum walk algo-
rithms. Of particular interest are those problems whose efficient solutions involve nesting
of search algorithms. The nesting of search algorithms generally incurs an extra logarith-
mic factor in query and time complexity, due to the use of majority voting as an error
reduction technique. We study whether composition of search algorithms can be achieved
without the said logarithmic factor in complexity. Two methods of composition have been
proposed in this thesis. The first is a slight simplification of the quantum walk algorithm
due to Magniez, Nayak, Roland, and Santha. The second is a method for composition of
Markov chains. Neither approach appear to be generally applicable to all cases of quantum
walk composition. Further work is required to determine the circumstances under which
these approaches provide the logarithmic factor of increase in efficiency that we desire.

iv

Acknowledgements

I would like to acknowledge the Department of Combinatorics and Optimization and the
Institute for Quantum Computing at the University of Waterloo for providing the unique
research opportunity that culminated in the writing of this thesis. It would not be possible
for me to attain my current level of understanding of quantum computation without the
interaction with faculty members and students, of which there are too many to name
individually.

I thank Dr. Michele Mosca and Dr. Richard Cleve for agreeing to read my thesis.
Furthermore, I am especially grateful towards my supervisor, Dr. Ashwin Nayak, both for
his direction and guidance in research, as well as for his understanding and support. The
pursuit of excellence in higher education has not been easy, and my supervisor has seen
me through the most trying times.

v

Table of Contents
1 Introduction 1
1.1 Quantum Walk Search with Imperfect Oracle 1
1.2 Background Assumed and Notations Used 3
1.3 Outline of Sections 4

2 Principal Angles and Vectors of Two Subspaces 5
2.1 Definition 6
2.2 Basic Properties 7
2.3 Construction of Orthonormal Basis of Cn Using Principal Vectors 8
2.4 Simultaneous Block Diagonalization of Π1 and Π2 10
2.5 Sum and Product of Projections, Product of Reflections 12
2.6 Singular Value Decomposition of Product of Projection Matrices 13

3 Markov Chains and Discrete Time Quantum Walks 15
3.1 Markov Chains 16
3.2 Irreducibility, Aperiodicity, Reversibility, δ, ε 17
3.3 The MNRS Quantum Walk 21
3.4 Imperfect Checking 25

4 Approach 1: MNRS Quantum Walk without Reduction of Error of Phase
Estimation 27

4.1 Proposed Algorithm 28
4.2 Principal Angles and Vectors of Proposed Algorithm 31
4.3 Finding Eigenvalues and Vectors of Matrices in the Form of R 37
4.4 The Simple Case 41
4.5 The Counterexample 47
4.6 Perturbation Bounds 55

5 Approach 2: Composed Walk Construction 57
5.1 Composition of Markov chains 58
5.2 Properties of Pcmp 59
5.3 Complexity Analysis of Composed Walk 62

6 Conclusion 67

References 69

1

1 Introduction

1.1 Quantum Walk Search with Imperfect Oracle
Suppose we have a function f : X 7→ {0, 1}, where X is finite. We would like to decide
whether there exists x that is marked, i.e., f(x) = 1, and find such an x if there is.

It is well known that, given a quantum oracle, a.k.a. a black box , that computes f , the
Grover search algorithm efficiently finds such an element with high probability [Gro96]. Its
query and time complexities are of order O(

√
n) and O(

√
n log n) respectively, assuming

that a query to the oracle itself requires only constant time. This is already a significant
improvement over the best possible classical algorithm, but the story of quantum speedups
does not end here. Sometimes, the structure of the problem allows for even faster searching.
Take, for example, the Element Distinctness problem. Invoking Grover’s algorithm here
amounts to searching over all pairs of elements for a colliding pair, resulting in a query
complexity of O

(√
n2
)

= O(n). However, it has been shown that using a so-called quantum
walk over the Johnson graph, a query complexity of O(n2/3) can be achieved [Amb07].
Advanced search algorithms that offer additional speedup over Grover are typically more
complex in structure. For instance, in solving the Triangle Finding problem, there is an
algorithm with query complexity Õ(n13/10) that involves using a quantum walk algorithm,
where the oracle is a Grover search over yet another quantum walk [MSS07]. The fastest
known algorithm for this problem to date in terms of query complexity is due to Le Gall. It
achieves a query complexity of Õ(n5/4) with even more layers of nesting of search algorithms
[LG14]. Both algorithms are superior to Grover search over all triples of vertices, which
results in a query complexity of O(

√
n3) = O(n3/2).

While the speedup of these algorithms are undoubtedly attractive, they share a com-
mon undesirable characteristic. Quantum searching, be it via Grover or quantum walks,
typically succeed with high probability, rather than with certainty. In other words, quan-
tum searching has a non-zero probability of error. If quantum searching was to be used
as an oracle of another search algorithm, the error will accumulate with each call to the
oracle. This is a problem, because the analyses of search algorithms such as Grover search
and quantum walks typically assume that the oracle is perfect. In quantum informa-
tion processing, it is well known that error accumulates at most additively. That is, if
U1, U2, . . . , Un and V1, V2, . . . , Vn are unitary operators, and ‖Uj − Vj‖ < γ for all j, then
‖U1U2 · · ·Un − V1V2 · · ·Vn‖ < nγ [NC10]. Hence, suppose we have an imperfect oracle V
and a perfect oracle U . If we invoke V multiple times, say k times, in an algorithm instead
U , it had better be the case that ‖U − V ‖ < γ/k, for some small constant γ, so that the
entire algorithm succeeds with high probability.

In previous works, the method of obtaining an oracle with such a small error has been
via the method of majority voting. Here, instead of using the imperfect oracle V as-is, we

2

invoke V many times over the same input, and use the output that appears more often.
It can be shown that if the oracle gives the correct answer with amplitude bounded away
from 1√

2 by a constant, it suffices to take the majority vote over O(log(k)) instances of V
to obtain an error of at most ε/k. The obvious downside is that this new oracle is built
using O(log(k)) instances of the original oracle, and this logarithmic penalty appears in
the query and time complexity of the algorithm. In fact, the definition of Õ(·) with the
tilde on the O, which appeared in the query complexities of the above mentioned Triangle
Finding algorithms, is O(·) with polylogarithmic factors.

The purpose of this thesis is to examine whether composition of quantum walk al-
gorithms necessarily incur the logarithmic overhead in complexity from majority voting.
That is, we are seeking new and possibly more natural ways of composing search algo-
rithms in the hope of removing the logarithmic factor from all quantum walk based search
algorithms where composition is involved. Other than the work presented in this thesis,
there have been two existing research directions that attempts to accomplish this goal.
Many problems that can be solved efficiently using discrete time quantum walks can also
be formulated in terms of span programs and learning graphs [Rei09, Bel12]. There are well-
known algorithms for determining whether an oracle computes a 1-input to a span program
or a learning graph. Further, there are known methods of composing span programs and
learning graphs such that the query complexity of the resulting algorithm increases only
multiplicatively, without any extra logarithmic factors. However, the two said approaches
are not without their downsides. With regards to span programs, the quantum algorithm
that computes it requires the implementation of a general unitary over a high dimensional
Hilbert space. In the worst case, the time complexity of a general unitary is polynomial
in the dimension of the Hilbert space, which is exponential in the number of qubits. In
the case of learning graphs, the method of composition is limited to the composition of
1-certificates. Ideally, we would like to be able to place a reasonable upper bound on the
time complexity as well as the query complexity, and also be able to perform composition
more generally. Motivated by these desires, we have chosen to take on this new research
direction of composition of discrete time quantum walks, to determine the extent to which
we can improve on the existing approaches.

3

1.2 Background Assumed and Notations Used

Background knowledge in quantum computation is assumed from the reader. Reference
texts such as [NC10] and [KLM07] are recommended for readers who lack such background.

In all of our analyses, quantum states, denoted using Dirac’s bra-ket notation as in
|φ〉, are represented as complex vectors in Cm, where m is clear from context. We work
only with pure states. The tensor product state |φ〉 ⊗ |ψ〉 is sometimes denoted as |φ〉|ψ〉.
All state evolutions are unitary. Measurements, whether partial or complete, are in the
computational basis.

Throughout the thesis, the symbol i denotes the imaginary unit
√
−1, unless its mean-

ing is otherwise bounded by its context, e.g. when it appears as a dummy variable in a
summation. Following the notational conventions in [MNRS11], the symbol π takes on
three meanings. The first is the standard circumference-to-diameter ratio, which is ap-
proximately equal to 3.14159. The symbol π generally assumes this meaning when we
discuss angles or phases of a complex number. The second is the stationary distribution
of a Markov chain, as defined in Definition 3.2.4. In this context, π is a row vector. The
third is the initial state of the discrete time quantum walk algorithm |π〉, as defined in
Algorithm 3.3.5(1). Only when we surround π with Dirac’s bra or ket as in 〈π| or |π〉 does
it take on this meaning. Similarly, the symbol ∗ takes on two meanings. When it is ap-
plied to complex numbers, vectors, and most matrices, ∗ refers to the conjugate transpose
of the said object. The one exception to this rule is when it is applied to a reversible,
stochastic matrix. In this case, ∗ refers to the time reversal of the said matrix, as defined
in Definition 3.2.10.

4

1.3 Outline of Sections

Since this thesis is meant to be a self-contained treatise on composition of quantum walks,
Chapters 2 and 3 are dedicated to background information. In particular, Chapter 2 an-
alyzes the behaviour of product of reflections—an algorithmic component found both in
discrete time quantum walks and, as a special case, in Grover search. Chapter 3 outlines
relevant properties of Markov chains, and introduces the discrete time quantum walk algo-
rithm due to Magniez, Nayak, Roland, and Santha [MNRS11]. Finally, Chapters 4 and 5
contain detailed discussions on possible approaches of composing quantum walk algorithms
without incurring the logarithmic overhead in complexity.

5

2 Principal Angles and Vectors of Two Subspaces

Many existing analyses of the Grover search algorithm make the observation that in essence,
the Grover search iterate is a product of two reflections. The diffusion operator is a
reflection about the uniform superposition of all elements, namely,

∑
x∈X |x〉 normalized.

Meanwhile, the checking operator reflects about the superposition unmarked elements,
which is

∑
x∈X,f(x)=0 |x〉 normalized. Throughout the entire algorithm, the state of the

system remains within the span of these two states. By a straightforward reasoning in 2D
geometry, one obtains that the product of these two reflection operators effects a rotation
by an angle of 2θ, where θ is the angle between the two said states after normalization.

The discrete time quantum walk that we will analyze also involves the product of
reflections. Though unlike in Grover search, these reflections are not about two states
but instead about two subspaces. The analysis requires the concept of principal angles
and vectors between two subspaces. This concept was first discovered by Camille Jordan
in 1875 [Jor75] and since then it has seen applications in other fields of study such as
computer vision and mathematical physics. An overview of the results relevant to discrete
time quantum walks will be provided in this chapter. See [Gal08] for a more complete
review on the subject.

We will use ∗ to denote the conjugate transpose of a vector or a matrix. Also, we define
the dot product u · v between two vectors u and v to be u∗v.

6

2.1 Definition

Let M1, M2 be subspaces in Cn, with dimensions k, ` respectively. Suppose that k ≥ `.
(The analysis for the case where k < l will be omitted as it is very similar.)
Definition 2.1.1 The principal angles θ1, θ2, . . . , θ` and principal vectors u1, u2, . . . , u`,
v1, v2, . . . , v` between M1 and M2 are angles and vectors such that the following relations
hold.

cos θ1 = max
u∈M1,v∈M2
||u||=||v||=1

|u · v| = u1 · v1,

cos θj = max
u∈M1,v∈M2
||u||=||v||=1

u⊥u1,...,uj−1
v⊥v1,...,vj−1

|u · v| = uj · vj for all 2 ≤ j ≤ `.

Further, the jth principal subspace is span{uj , vj}, for all 1 ≤ j ≤ `.
In this definition, uj and vj are vectors that achieves the maxima. Intuitively, the first

pair of principal vectors u1 and v1 are chosen such that u1 is in M1, v1 is in M2, and the
angle between them is minimized—thus the cosine of the angle is maximized. Then, for all
j ≥ 2, uj and vj are again chosen to have minimal angle but with the constraint that uj
is orthogonal to all the previous vectors u1 through uj−1, and similarly for vj . We choose
the vectors so that uj · vj is real and uj · vj ≥ 0. We also choose θj to be between 0 and
π/2. That is, θj = cos−1(uj · vj). This way, the principal angles θ1, . . . , θ` are uniquely
determined. The principal vectors are not.

Notice that M2 = span{v1, . . . , v`}. This is because dimM2 = ` and v1, . . . , v` are
orthonormal and therefore linearly independent. However, in the case where k > `,
{u1, . . . , u`} does not span M1—there are not enough vectors. In the analysis that follows,
we will often want an orthonormal basis for M1. This motivates the following definition.
Definition 2.1.2 Let d = k − `. Then let u`+1, u`+2, . . . , u`+d be unit vectors so that
{u1, u2, . . . , u`+d} form an orthonormal basis for M1.

Since we now have M1 = span{u1, . . . , uk}, M2 = span{v1, . . . , v`}, we can say that
span{M1,M2} = span{u1, . . . , uk, v1, . . . , v`}. (Though dim span{u1, . . . , uk, v1, . . . , v`} is
not necessarily k+`.) Later on, we will wish to construct an orthonormal basis for the entire
space of Cn. To do that, we need a basis for the orthogonal complement of span{M1,M2}.
This brings us to our last definition.
Definition 2.1.3 Let e = n − dim span{M1,M2} = dim span{M1,M2}⊥. Then let
w1, w2, . . . , we be unit vectors so that {w1, w2, . . . , we} form an orthonormal basis for
span{M1,M2}⊥.

7

2.2 Basic Properties

Property 2.2.1 θ1 ≤ θ2 ≤ . . . ≤ θ`.
Proof. If θm > θm+1, then um, vm would not be the mth principal vectors since the angle
between um+1 and vm+1 is smaller. �

Property 2.2.2 ui · vj =
{

cos θj if i = j,
0 if i 6= j, for all 1 ≤ i ≤ k and 1 ≤ j ≤ `.

Proof. If i = j, then ui · vj = cos θj by definition. The proof for the case where i 6= j can
be found in Theorem 8 of [GH06]. It is a tedious but straightforward inductive proof using
the Cauchy-Schwarz inequality. �

Because ui · vj = 0 whenever i 6= j, we now know that span{u1, v1}, span{u2, v2},
. . ., span{u`, v`}, span{u`+1}, . . ., span{uk} are mutually orthogonal subspaces. This
orthogonality relationship allows us to decompose span{M1,M2} as a direct sum of their
principal subspaces:
Property 2.2.3 span{M1,M2} = span{u1, v1} ⊕ span{u2, v2} ⊕ · · · span{u`, v`}

⊕ span{u`+1} ⊕ · · · ⊕ span{uk}.
Our last property concerns how the principal vectors behave under the action of pro-

jection matrices onto M1 and M2.
Property 2.2.4 Let Π1, Π2 be projection matrices ontoM1,M2. Then Π1vj = cos θjuj
and Π2uj = cos θjvj for all 1 ≤ j ≤ `.

Proof. Since Π1 projects onto M1, we have Π1 =
∑k

i=1 uiu
∗
i . Then by Property 2.2.2,

Π1vj =
∑k

i=1 uiu
∗
i vj = cos θjuj . The proof for Π2uj = cos θjvj is similar. In [GH06], this

property is proven simultaneously with Property 2.2.2 in the inductive step. �

8

2.3 Construction of Orthonormal Basis of Cn Using Principal Vectors
We know from Section 2.1 that all principal angles are within the interval [0, π/2]. In this
section, we distinguish three kinds of principal subspaces: those with principal angles of
0, strictly between 0 and π/2, and π/2. The angles 0 and π/2 in particular are special for
the following reasons.
Property 2.3.1 If θj = 0, then uj = vj ; the principal vectors are overlapping.

Hence span{uj , vj} = span{uj}.
Property 2.3.2 If θj = π/2, then uj ⊥ vj ; the principal vectors are orthogonal.

Hence span{uj , vj} = span{uj} ⊕ span{vj}.
We now count the number of principal angles of each kind: let a, b, c respectively

denote the number of 0, strictly between 0 and π/2, and π/2 principal angles. That is, we
have θ1 = θ2 = · · · θa = 0, θa+1, . . . , θa+b ∈ (0, π/2), and θa+b+1 = · · · = θa+b+c = π/2.
First, we note the following property.
Property 2.3.3 a = dim(M1 ∩M2), and

M1 ∩M2 = span{u1, . . . , ua} = span{v1, . . . , va}.
Next, from Property 2.3.1 and Property 2.3.2, we can see that the decomposition of

principal subspaces in Property 2.2.3 can be further refined.
Property 2.3.4
span{M1,M2} = span{u1} ⊕ · · · ⊕ span{ua}

⊕ span{ua+1, va+1} ⊕ · · · ⊕ span{ua+b, va+b}
⊕ span{ua+b+1} ⊕ span{va+b+1} ⊕ · · · ⊕ span{ua+b+c} ⊕ span{va+b+c}
⊕ span{ua+b+c+1} ⊕ · · · ⊕ span{ua+b+c+d}.

(Note that a+ b+ c = ` and a+ b+ c+ d = k. d was defined in Definition 2.1.2.)
The vectors in the above decomposition, namely u1, . . ., ua, ua+1, va+1, . . ., ua+b, va+b,

ua+b+1, va+b+1, . . ., ua+b+c, va+b+c, ua+b+c+1, . . .ua+b+c+d form an “almost” orthonormal
basis for span{M1,M2}. The only pairs of vectors that are not orthogonal are uj and vj
for all j where 1 ≤ j ≤ a + b. In these cases we have uj · vj = cos θj 6= 0. All other pairs
of vectors are orthogonal either by construction in Definition 2.1.1 or by Property 2.2.2.

To construct an orthonormal basis, we will use the Gram-Schmidt orthogonalization
procedure on each of {ua+1, va+1}, . . ., {ua+b, va+b}. Recall how this procedure works: we
wish to find a vector u⊥j such that span{uj , u⊥j } = span{uj , vj}, where u⊥j is orthogonal to
uj . To do so, we subtract from vj its projection to uj , and normalize the resulting vector.
This leads us to the following definition.
Definition 2.3.5 For all j where a+ 1 ≤ j ≤ a+ b, let

u⊥j =
vj − uju∗jvj
||vj − uju∗jvj ||

=
vj − uju∗jvj

sin θj
.

9

The justification for ||vj − uju
∗
jvj || = sin θj is straightforward: ||vj − uju

∗
jvj ||2 =

(vj − uju∗jvj)∗ (vj − uju∗jvj) = v∗j vj − v∗juju∗jvj = 1− cos2 θj = sin2 θj .

An immediate corollary for our definition of u⊥j is the following formula for vj .

Corollary 2.3.6 For all j where a+ 1 ≤ j ≤ a+ b, vj = cos θj uj + sin θj u⊥j .
Proof. Isolate vj in Definition 2.3.5, and substitute u∗jvj = uj · vj = cos θj by Definition
2.1.1. �

With this definition of u⊥j , we can now write span{uj , vj} = span{uj , u⊥j } = span{uj}⊕
span{u⊥j } for all j between a+ 1 and a+ b. This leads to our next refinement of Property
2.3.4, now with an orthonormal basis for span{M1,M2}.
Property 2.3.7
span{M1,M2} = span{u1} ⊕ · · · ⊕ span{ua}

⊕ span{ua+1} ⊕ span{u⊥a+1} · · · ⊕ span{ua+b} ⊕ span{u⊥a+b}
⊕ span{ua+b+1} ⊕ span{va+b+1} ⊕ · · · ⊕ span{ua+b+c} ⊕ span{va+b+c}
⊕ span{ua+b+c+1} ⊕ · · · ⊕ span{ua+b+c+d}.

Finally, an orthonormal basis for the entire space of Cn is simply the union of basis
vectors of span{M1,M2} and span{M1,M2}⊥.
Property 2.3.8

Cn = span{M1,M2} ⊕ span{M1,M2}⊥

= span{u1} ⊕ · · · ⊕ span{ua}
⊕ span{ua+1} ⊕ span{u⊥a+1} · · · ⊕ span{ua+b} ⊕ span{u⊥a+b}
⊕ span{ua+b+1} ⊕ span{va+b+1} ⊕ · · · ⊕ span{ua+b+c} ⊕ span{va+b+c}
⊕ span{ua+b+c+1} ⊕ · · · ⊕ span{ua+b+c+d}
⊕ span{w1} ⊕ · · · ⊕ span{we}.

(e and w1, . . .we were defined in Definition 2.1.3.)
Counting the number of basis vectors in Property 2.3.8, we see that n = a+2b+2c+d+e.

10

2.4 Simultaneous Block Diagonalization of Π1 and Π2

As we defined at the end of Section 2.2, let Π1, Π2 be projection matrices onto M1, M2. A
key result in the theory of two subspaces is that Π1 and Π2 can be simultaneously block-
diagonalized with 1× 1 and 2× 2 blocks. As we will see now, this diagonalization can be
done in the basis of principal vectors. In the text that follows, we will use 1m and 0m to
respectively denote m×m identity and zero matrices.
Definition 2.4.1 LetQ be the matrix whose columns are the orthonormal basis vectors
for Cn that we presented in Property 2.3.8. That is,

Q = [u1; . . . ;ua;
ua+1;u⊥a+1; . . . ;ua+b;u⊥a+b;
ua+b+1; . . . ;ua+b+c;
va+b+1; . . . ; va+b+c;
ua+b+c+1; . . . ;ua+b+c+d;
w1; . . . ;we]

Property 2.4.2 (Diagonalization of Π1)

Π1 = Q



1a
1 0
0 0

. . .
1 0
0 0

1c
0c

1d
0e


Q∗

Proof. This diagonalization follows from the fact that every column in Q is either in M1
or is orthogonal to M1. So by standard linear algebra, we know that the positions of 1s
in the diagonal matrix correspond to the columns in Q that are in M1—the 1-eigenvectors
of Π1, whereas the position of 0s correspond to the columns in Q orthogonal to M1—the
0-eigenvectors of Π1. Looking at the definition of Q in Definition 2.4.1, we see that the
first a columns are in M1, then every odd column in the next 2b columns are in M1, then
the next c columns are also in M1, the c columns after that are not in M1, the next d
columns are in M1, and the last e columns are not in M1. �

11

Property 2.4.3 (Diagonalization of Π2)

Π2 = Q



1a
cos2 θa+1 cos θa+1 sin θa+1
cos θa+1 sin θa+1 sin2 θa+1

. . .
cos2 θa+b cos θa+b sin θa+b
cos θa+b sin θa+b sin2 θa+b

0c
1c

0d
0e


Q∗

Proof. The justification for the first a and the last 2c+ d+ e diagonal entries are the same
as that of Property 2.4.2, except we now look at which columns of Q are within M2: the
first a columns of Q are in M2 due to Property 2.3.1; skipping the next 2b columns for
now, the next c columns are orthogonal to M2, the c columns after that are in M2, and
finally the last d + e columns are orthogonal to M2. The middle 2b entries are trickier
because ua+1, u⊥a+1, . . . , ua+b, u

⊥
a+b are neither within nor orthogonal to M2. But we know

instead that vj ∈ M2, and Corollary 2.3.6 tells us how to express vj in the basis of uj
and u⊥j : vj = cos θj uj + sin θj u⊥j . Therefore, in the basis of uj and u⊥j , Π2 acts like[

cos θj

sin θj

]
[cos θj sin θj] =

[
cos2 θj cos θj sin θj

cos θj sin θj sin2 θj

]
. This is the form of the 2×2 block that appears

b times in the above matrix—once for each principal subspace of angle strictly between 0
and π/2. �

For conciseness, let Λ1 and Λ2 denote the block diagonal matrices in Property 2.4.2
and Property 2.4.3 so that Π1 = QΛ1Q∗ and Π2 = QΛ2Q∗. We restate the above diago-
nalizations of Π1 and Π2 as follows.
Property 2.4.4 (Block diagonalizations of Π1 and Π2, stated more concisely)

Π1 = QΛ1Q
∗ = Q diag

(
1a,
[1 0

0 0

]
j=a+1,...,a+b

, 1c, 0c, 1d, 0e
)
Q∗

Π2 = QΛ2Q
∗ = Q diag

(
1a,
[cos2 θj cos θj sin θj

cos θj sin θj sin2 θj

]
j=a+1,...,a+b

, 0c, 1c, 0d, 0e
)
Q∗

12

2.5 Sum and Product of Projections, Product of Reflections

Following Property 2.4.4, the block diagonalizations of Π1+Π2, Π1Π2, and (2Π1−1n)(2Π2−
1n) are simple corollaries.
Corollary 2.5.1 (Sum of projection matrices)

Π1 + Π2 = Q diag
(

2a,
[

1 + cos2 θj cos θj sin θj
cos θj sin θj sin2 θj

]
j=a+1,...,a+b

, 1c, 1c, 1d, 0e
)
Q∗

Corollary 2.5.2 (Product of projection matrices)

Π1Π2 = Q diag
(

1a,
[

cos2 θj cos θj sin θj
0 0

]
j=a+1,...,a+b

, 0c, 0c, 0d, 0e
)
Q∗

Corollary 2.5.3 (Product of reflection matrices)

(2Π1− 1n)(2Π2− 1n) = Q diag
(

1a,
[

cos 2θj sin 2θj
− sin 2θj cos 2θj

]
j=a+1,...,a+b

,−1c,−1c,−1d, 1e
)
Q∗

Proof.
Π1 + Π2 = QΛ1Q∗ +QΛ2Q∗ = Q(Λ1 + Λ2)Q∗

Π1Π2 = QΛ1Q∗QΛ2Q∗ = Q(Λ1Λ2)Q∗
(2Π1 − 1n)(2Π2 − 1n) = (2QΛ1Q∗ −QQ∗)(2QΛ2Q∗ −QQ∗) = Q(2Λ1 − 1n)(2Λ2 − 1n)Q∗

The reader may verify that the diagonal matrices stated in the three corollaries are
indeed equal to Λ1 + Λ2, Λ1Λ2, and (2Λ1 − 1n)(2Λ2 − 1n). �

Corollary 2.5.3 in particular is useful in understanding the behaviour of quantum walks,
since the product of reflection operators is a commonly found component in such algo-
rithms. We observe that this operator effects a rotation by 2θj in each of the principal
subspaces. Most notably, within the principal subspaces with 0 principal angle—that is,
within M1 ∩M2—it acts as the identity operator 1a. Incidentally, the eigenvalues of the
2D rotation matrix

[
cos 2θj sin 2θj

− sin 2θj cos 2θj

]
are exp(2θji) and exp(−2θji). Their corresponding

eigenvectors are
[1
i

]
and

[1
−i
]
. As for Corollary 2.5.2, we will see next that it can be used

as a practical means for computing the principal angles and vectors of two subspaces. We
do not make any further use of Corollary 2.5.1 in this thesis, but we stated it here anyway
because it is as immediate a corollary as the other two.

13

2.6 Singular Value Decomposition of Product of Projection Matrices

Our last topic of discussion on the subject of principal angles and vectors is the method
by which they are computed. While Definition 2.1.1 suggests a maximization problem
to which principal vectors are solutions, in practice this definition is not used directly.
Instead, an approach commonly used within the quantum literature is the singular value
decomposition of Π1Π2. We will see below that the singular values of Π1Π2 are cos θ1, . . .,
cos θ`, 0, . . ., 0. Further, the left and right singular vectors of the nonzero singular values
are the corresponding principal vectors.

Let
Λ = diag

(
1a,
[

cos2 θj cos θj sin θj
0 0

]
j=a+1,...,a+b

, 0c, 0c, 0d, 0e
)

so that Π1Π2 = QΛQ∗, as we stated in Corollary 2.5.2. To find the singular value de-
composition of Π1Π2, we make two observations. First, since Q is unitary, the singular
values of Π1Π2 and Λ are the same, whereas the singular vectors are related by a change
in basis via matrix Q. Second, since Λ is block diagonal, the singular values and vectors
of the entire matrix are simply those of each diagonal block. Hence, we examine Λ block
by block.

First, all singular values of 1a are 1. The singular vectors corresponding to this block
are the first a columns of Q. These are the principal vectors whose principal angles are
0—in other words, the vectors inM1∩M2. Next, the singular values of 0c, 0c, 0d, and 0e are
all zero. The singular vectors corresponding to these are one of several things: principal
vectors whose principal angles are π/2, the basis vectors in M1 that are not principal
vectors as defined in Definition 2.1.2, and vectors in span{M1,M2}⊥ as defined Definition
2.1.3. Lastly, observe that the 2× 2 blocks in Λ have the singular value decomposition[

cos2 θj cos θj sin θj
0 0

]
= cos θj

[
1
0

]
[cos θj sin θj] + 0

[
0
1

]
[sin θj − cos θj].

So every such 2× 2 block gives rise to two singular values. The first is cos θj . Its left and
right singular vectors are 1 ·uj + 0 ·u⊥j = uj and cos θjuj + sin θju⊥j = vj , i.e., the principal
vectors. The other singular value is 0, and its singular vectors are orthogonal complements
to uj and vj in span{uj , vj}.

15

3 Markov Chains and Discrete Time Quantum
Walks

The purpose of this chapter is to provide the foundation upon which further discussions
on discrete time quantum walks can be built. We begin with a brief discussion on relevant
properties regarding Markov chains, because a walk on such a chain is the namesake task
that quantum walks perform faster than their classical counterpart. Then, a description of
the discrete time quantum walk due to Magniez, Nayak, Roland, and Santha [MNRS11],
henceforth referred to as the MNRS quantum walk, is given. Finally, as a segue to to our
subsequent analyses, we explain more precisely what is meant by a “composed” quantum
walk, and discuss the performance of its naive implementation.

16

3.1 Markov Chains

A Markov chain is a step-by-step random process. The state of this process is always some
element in a set X called the state space. With every step, the state transitions from one
element of X to another. The probability of this transition depends only on the current
and the next state. If X = {1, 2, . . . , n}, one can characterize a Markov chain with an
n× n transition matrix P . The entry on the ith row and jth column of P , denoted as pij ,
is the transition probability from state i to state j. As a consequence of P being a matrix
containing probabilities, every element of P is nonnegative, and every row of P sums to 1.
We call a matrix such as P that satisfies these two properties a stochastic matrix.

In the context of quantum algorithms, we often associate a Markov chain with a directed
graph. If we consider a graph whose set of vertices is X, and contains an edge from vertex i
to vertex j iff pij > 0, then an instance of a Markov process is a random path—in other
words, a random walk—on this graph, where pij is the probability of the edge i— j being
selected from vertex i.

One can contemplate the problem of finding a marked state, or a marked vertex in a
Markov chain. That is, suppose there is a function f : X 7→ {0, 1} and we would like to
find a state x ∈ X such that f(x) = 1. Classically, one strategy would be to pick some
element in X as the initial state, and then carry out the Markov process step by step
until we land on a marked state. The average number of steps this process takes is the
well-studied expected hitting time. What makes this problem relevant to us is that there
also exist efficient quantum algorithms that find a marked element efficiently. Furthermore,
other problems such as Element Distinctness and Triangle Finding reduce to instances of
finding a marked state in a Markov chain.

The variant of quantum walk algorithm that we study is the MNRS quantum walk
[MNRS11]. We first explain the properties that a Markov chain must satisfy for it to be
used by this algorithm, and introduce some notation that we use consistently in this thesis.

17

3.2 Irreducibility, Aperiodicity, Reversibility, δ, ε
The MNRS quantum walk does not work on all Markov chains. Its analysis assumes that
the Markov chain is irreducible, aperiodic, and reversible. The complexity of the algorithm
also depends on quantities such as the spectral gap δ, and the ratio of marked elements ε.
The definitions of these terms as well as properties relevant to them are stated below.
We do not prove all the properties, especially those regarding Markov chains in general.
Proofs are provided only for those properties that are motivated by the specific application
of quantum walks. In every case where a proof is not provided here, a reference to the
proof is given along with the statement of the property.
Definition 3.2.1 A Markov chain is irreducible if every state in X can be reached
from any state in X; equivalently, an irreducible Markov chain is one where the associated
directed graph is strongly connected.
Property 3.2.2 The largest eigenvalue (largest in magnitude) of a stochastic matrix
is 1. (See [Spi] or Section 8.7 of [HJ12] for proof.)
Property 3.2.3 If P is the stochastic matrix that characterizes an irreducible Markov
chain, then its 1-eigenvector and 1-left-eigenvector are unique up to scalar multiplication.
Further, all elements of its 1-eigenvector and 1-left-eigenvector can be chosen to be strictly
positive. (See Theorem 1.5 of [Sen06] for proof. This is a special case of the well-known
Perron-Frobenius theorem.)
Definition 3.2.4 The stationary distribution of an irreducible Markov chain, denoted
as π, is the unique 1-left-eigenvector of P , normalized so that its elements sum to 1. Let
π1, π2, . . ., πn denote the elements of π.
Definition 3.2.5 Let x ∈ X. The period of a state x is gcd{k | P kxx > 0, k > 0}; this
is the greatest common divisor of lengths of all paths that goes from x to x. The period is
undefined if no such path exists.
Property 3.2.6 The periods of all states in an irreducible Markov chain are the same.
(See Lemma 1.2 of [Sen06] for proof.)
Definition 3.2.7 As a consequence of Property 3.2.6, we define the period of an irre-
ducible Markov chain to be the period of any one of its states.
Property 3.2.8 If matrix P characterizes an irreducible Markov chain with period d,
then the eigenvalues of P with modulus 1 are precisely the dth roots of unity: 1, exp(2πi/d),
exp(2 · 2πi/d), . . . , exp((d− 1) · 2πi/d). (See Theorem 1.7 of [Sen06] for proof.)
Definition 3.2.9 An irreducible Markov chain is aperiodic if its period is 1.
Definition 3.2.10 Let P be the matrix that characterizes an irreducible Markov chain.
The time reversal of P , denoted as P ∗, is a matrix whose elements are given by

p∗yx = πx
πy
pxy for all x, y ∈ X.

18

Definition 3.2.11 A Markov chain characterized by matrix P is reversible if it is
irreducible and πxpxy = πypyx for all x, y ∈ X; in other words, if P = P ∗.
Property 3.2.12 All eigenvalues of an irreducible, reversible Markov chain matrix are
real.
Proof. Let P be the stochastic matrix that characterizes an irreducible and reversible
Markov chain. Let U = diag(√π1,

√
π2, . . . ,

√
πn). One can show, using Definition 3.2.11,

that UPU−1 is real symmetric. The desired result follows from the fact that all eigenvalues
of a real symmetric matrix are real. �

Corollary 3.2.13 The period of an irreducible, reversible Markov chain is either 1
or 2.
Proof. This is immediate from Property 3.2.12 and Property 3.2.8. Only the first and
second roots of unity are all real numbers. �

Property 3.2.14 An irreducible, reversible Markov chain is aperiodic iff it is not
bipartite. (This property provides a simple way of checking whether a reversible Markov
chain is aperiodic.)
Proof. An important property of an irreducible Markov chain with period d is that its state
space X can be partitioned into d disjoint subsets X0, X1, . . . , Xd−1 such that for every
j ∈ {0, 1, . . . , d− 1}, Xj has at least one element, and all edges from Xj go to X(j+1) mod d.
(See Section 1.3 of [Sen06] for proof.) It can then be shown that the associated graph of
an irreducible Markov chain is bipartite if and only if its period is divisible by 2. From
here, Corollary 3.2.13 immediately leads to desired result. �

Definition 3.2.15 Let P be the matrix that characterizes an irreducible Markov chain.
The spectral gap of the Markov chain, denoted as δ, is the difference in magnitude between
1 and the second largest eigenvalue of P in magnitude.
Definition 3.2.16 Suppose there is a function f : X 7→ {0, 1}. The goal of the MNRS
quantum walk algorithm is to find an x such that f(x) = 1. The ratio of marked elements
of a Markov chain, denoted ε, is

∑
x∈X,f(x)=1 πx.

We have introduced a lot of concepts in this section. To help consolidate everything
that we know so far, we now illustrate the preceding definitions and properties through an
example.

19

Example 3.2.17 Consider the Markov chain on state space X characterized by matrix
P , and the function f : X 7→ {0, 1}, defined below.

X = {1, 2, 3, 4}

P =


0 1/3 1/3 1/3

1/2 0 1/2 0
1/3 1/3 0 1/3
1/2 0 1/2 0


f(1) = 0, f(2) = 0, f(3) = 1, f(4) = 0

1 2

34

1/3

1/2

1/3

1/2 1/3

1/2

1/3

1/2
1/3

1/3

The eigenvalues and left-eigenvectors of P are as follows.
λ1 = 1 1

10 [3 2 3 2] (= π)
λ2 = −2/3 [−1 1 −1 1]
λ3 = −1/3 [1 0 −1 0]
λ4 = 0 [0 1 0 −1]

First, since P is a stochastic matrix, Property 3.2.2 tells us that 1 is one of its eigenval-
ues, and no other eigenvalue has magnitude greater than 1. We see that this is indeed the
case for P . Then, observe that the associated graph of this Markov chain is strongly con-
nected. This means that the Markov chain is irreducible. As a result, the Perron-Frobenius
theorem tells us that the 1-eigenvector is unique, in the sense that the algebraic and geo-
metric multiplicity of this eigenvalue are both 1. Further, there exists a 1-eigenvector with
strictly positive elements. These are all true in the case of P . While any scalar multiple of
our 1-eigenvector is still a 1-eigenvector, we define the stationary distribution π to be the
one we wrote because its elements sum to 1. Next, this Markov chain is reversible. This
fact can be checked by verifying directly that πxpxy = πypyx is true for all x, y ∈ X. Conse-
quently, the eigenvalues of P are real. Lastly, we see that the Markov chain is also aperiodic.
There are two ways of verifying this fact. The first way is by observing that the associated
graph is not bipartite due to the presence of odd-length cycles such as 1 — 2 — 3 — 1.
Hence one can prove aperiodicity by invoking Property 3.2.14. Another way is by noticing
that only the first root of unity, 1, is an eigenvalue of P . A periodic Markov chain would
also have other roots of unity as eigenvalues due to Property 3.2.8. Since we already know
that the Markov chain reversible, we need to check only that the second root of unity, −1,
is not an eigenvalue due to Corollary 3.2.13. Because this Markov chain is irreducible,
aperiodic, and reversible, we can use the MNRS quantum walk algorithm to find a marked
state.

The performance of the algorithm depends on the spectral gap and the ratio of marked
elements. It also depends on other quantities such as the set-up, update, and checking

20

costs. We will look at these last three quantities in the next section. For the time being,
we know that the eigenvalue of P that is second largest in magnitude is −2/3. So the
spectral gap is δ = 1− |−2/3| = 1/3. We can also compute the ratio of marked elements:
ε =

∑
x∈X,f(x)=1 πx = π3 = 3/10.

21

3.3 The MNRS Quantum Walk

Below is the problem solved by the MNRS quantum walk.
Problem 3.3.1 (Finding a marked state in a Markov chain)
Suppose there is an irreducible, aperiodic, and reversible Markov chain on some state
space X characterized by the transition matrix P . Suppose also that there is a function
f : X 7→ {0, 1}. If there exists an x ∈ X such that f(x) = 1, find such an x. If not, return
“not found.”

There are in fact two versions of the MNRS algorithm: a simple and a complex one.
The complex version offers a slight improvement in asymptotic complexity. Both of these
algorithms assume the existence of the so-called set-up, update, and checking operators,
which are defined below.
Definition 3.3.2 (Set-up, update, and checking)
Available to the MNRS algorithm are
(1) The set-up operator, US , which maps |0〉 to

∑
x∈X
√
πx|x〉.

(2) The two update operators U1 and U2 and their inverses, with actions
U1 : |x〉|0〉 7→

∑
y∈X

√
pxy|x〉|y〉 and U2 : |0〉|y〉 7→

∑
x∈X

√
p∗yx|x〉|y〉.

(3) The checking operator, i.e., the oracle, UC , which maps |x〉 to (−1)f(x)|x〉.
Following the notational conventions in [MNRS11], we let S, U, and C denote the

respective costs of these operators. As in the said paper, we use the word “cost” as a
blanket term to mean either the time complexity or the query complexity with respect to
some oracle (not necessarily UC), depending on context. In our analysis, we assume for
simplicity that the operators in Definition 3.3.2 act on registers of dimension |X|—which
is to say that |x〉, |y〉 ∈ C|X|, and that |0〉 is some arbitrary initial state in this space. In
reality, it is common for the states |x〉 and |y〉 to be entangled with some data structure
that depends on x and y. If we want to be strictly correct, all occurrences of |x〉 and |y〉
in this section really ought to be replaced by |x〉|data(x)〉 and |y〉|data(y)〉. The set-up,
update, and checking costs should also include the cost of accessing and modifying the
data structure. We do not consider the data structure in this thesis, because it distracts
us from the main points of discussion. Since there is an isomorphism between the states
with data structure, i.e., |x〉|data(x)〉, and the states without, i.e., |x〉, it is not difficult to
adapt our later proofs to properly account for the presence of data structures.

Letting δ and ε denote the spectral gap and the ratio of marked elements of the Markov
chain, the performance of the MNRS walk is then as follows.
Theorem 3.3.3 (Simple MNRS, Section 3 of [MNRS11])
There is an algorithm that solves Problem 3.3.1 with cost O(S + 1√

ε
(1√

δ
U log 1√

ε
+ C)).

22

Theorem 3.3.4 (Complex MNRS, Section 4 of [MNRS11])
There is an algorithm that solves Problem 3.3.1 with cost O(S + 1√

ε
(1√

δ
U + C)).

We now detail the steps of the MNRS algorithm. On a high level, both versions follow
the same steps. The algorithm uses two data (i.e., non-ancillary) registers and many ancilla
registers. Each data register resides in a space of dimension |X|.
Algorithm 3.3.5 (The MNRS quantum walk)
(1) Create the state |π〉 :=

∑
x∈X
√
πx|x〉

∑
y∈X
√
pxy|y〉 on the two data registers.

Repeat Steps 2 and 3 O(1/
√
ε) times

(2) Flip the phase of marked states on the first register. That is, perform the operation

|x〉|y〉 7→
{
−|x〉|y〉 if f(x) = 1,
|x〉|y〉 if f(x) = 0.

(3) Reflect the two registers approximately about the |π〉 state.
(4) Measure the first register. Return the measurement outcome if it is a marked state;

return “not found” otherwise.
The implementations of Steps 1, 2, and 4 are straightforward using the operators given

by Definition 3.3.2. We leave it to the reader to verify that the cost of Step 1 is S + U, and
the costs of Steps 2 and 4 are both C. Step 3 is the most complicated. This is the step whose
implementation requires ancilla registers. We remark that, if Step 3 can be implemented
exactly, the MNRS quantum walk would be identical to Grover’s amplitude amplification.
However, Step 3 is efficiently implemented using the phase estimation algorithm—an algo-
rithm which is not exact. In the MNRS walk, the precision of Step 3 is chosen so that the
behaviour of the entire algorithm differs negligibly from Grover’s amplitude amplification.

We discuss below the implementation of Step 3. To avoid repeating much of the analysis
in [MNRS11], we do not provide proof for the properties that we claim, though we do
mention here that it is the proof of Property 3.3.8 that requires the Markov chain to be
reversible and aperiodic.
Definition 3.3.6 A key component of Step 3 of Algorithm 3.3.5 is the quantum walk
operator, which we denote as UW . UW acts on two registers of dimensions |X|. It is the
product of two reflection operators (2ΠB − I)(2ΠA − I), where
(1) ΠA is the projector onto the subspace A := span{

∑
y∈X
√
pxy|x〉|y〉 | x ∈ X},

(2) ΠB is the projector onto the subspace B := span{
∑

x∈X
√
p∗yx|x〉|y〉 | y ∈ X},

(3) I is the identity operator.
Property 3.3.7 The cost of UW is in O(U).
Property 3.3.8 The largest singular value of ΠBΠA is 1. Its unique left and right
singular vectors (up to scalar multiplication) are both |π〉. All other singular values of
ΠBΠA are no greater than 1− δ.

23

Property 3.3.9 Consequently, by Corollary 2.5.3, |π〉 is a 1-eigenvector of UW . Eigen-
values of all other eigenvectors of UW in span{A,B} are of the form exp(2θi), where
cos−1(1− δ) ≤ |θ| ≤ π/2. Note that cos−1(1− δ) ∈ O(1/

√
δ).

Theorem 3.3.10 (Phase estimation, Section 5.2 of [NC10] or Section 7.2 of [KLM07])
There exists an algorithm—namely, phase estimation with precision O(1/

√
δ)—with the

following properties.
(1) It uses two input registers of dimensions |X|.
(2) It uses an output register of dimension O(1/

√
δ).

(3) It uses O(1/
√
δ) instances of controlled-UW , plus a few other auxiliary operations

such as Hadamard transformations, controlled phase rotations, and (optionally) swap op-
erations. Consequently, the cost of this algorithm is in O(1√

δ
U).

Further, if we let Φ denote this algorithm, then
(4) 〈π|〈0|Φ|π〉|0〉 = 1.

(If the input state is |π〉, the output register remains |0〉. Since |π〉 is a 1-eigenvector, phase
estimation computes the eigenvalue 1 = exp(0i) exactly.)
(5) If |φ〉 ∈ span{A,B} and 〈π|φ〉 = 0, then
|〈φ|〈0|Φ|φ〉|0〉| ≤ β, where β is some small constant.

(Any eigenvector of UW that is orthogonal to |π〉 and is still in span{A,B} will not be a
1-eigenvector. Its eigenvalue will be in the form exp(2θi), where the phase 2θ is bounded
away from 0 due to Property 3.3.9. Since phase estimation is not exact, its output may
still have a small projection onto |0〉. The precision of O(1/

√
δ) ensures that the norm of

this projection is bounded above by a small constant.)
We now see that the phase estimation algorithm with precision O(1/

√
δ) can be used

to approximate Step 3 of Algorithm 3.3.5 with constant-bounded error.
Algorithm 3.3.11 (Step 3 of Algorithm 3.3.5)
Given an input state |φ〉, we wish to reflect it approximately about |π〉. To do so, we
initialize k fresh ancilla registers, each of dimension O(1/

√
δ), to |0〉.

(1) Run phase estimation as described in Theorem 3.3.10 k times, using the same input
state |φ〉 but a different ancilla register as the output register every time. The parameter
k is defined in the comments below.
(2) Flip the phase if any of the output registers is non-|0〉,
(3) Perform the inverse of Step 1.
The reader can check that Algorithm 3.3.11 correctly maps the input state |π〉 to itself

and perfectly cleans up all ancilla registers when the input is |π〉. If the input state
|φ〉 is orthogonal to |π〉 and |φ〉 ∈ span{A,B}, then in the case when k = 1, phase
estimation computes a nonzero phase with probability at least 1 − β2, where β is as
defined in Theorem 3.3.10(5). This implies that Algorithm 3.3.11 has at most constant-
bounded error. The error can be made smaller by choosing a bigger k, but the cost of
this algorithm will then be O(k · 1√

δ
U). It is a well known property that errors in a

24

quantum circuit accumulate at most additively. (See Box 4.1 of Section 4.5.3 of [NC10].)
Since Step 3 of Algorithm 3.3.5 is repeated O(1/

√
ε) times, we need the cumulative error

from O(1/
√
ε) repetitions of Algorithm 3.3.11 to be bounded by a small constant. The

difference between the simple and complex versions of the MNRS walk is the strategy in
how this is done. In the simple version, we choose k to be in O(log 1√

ε
). It can be shown

that this many repetitions of phase estimation suffices in suppressing the error of each
iteration of Algorithm 3.3.11 to the order of β

√
ε. The cost of Algorithm 3.3.11 is then

O(log(1√
ε
) · 1√

δ
U), giving rise to the 1√

δ
U log 1√

ε
term in Theorem 3.3.3. In the complex

version, k varies throughout the algorithm. The pattern in which the k varies is recursively
defined as to mimic that of the bounded-error oracle in [HMdW03]. The analysis of this
strategy is tedious and can be found in Section 4 of [MNRS11], but the bottom line is that it
is still possible to achieve constant-bounded error overall while repeating phase estimation
only O(1) times on average. In Chapter 4, we consider an even simpler strategy: we set
k = 1, which is to not repeat phase estimation at all. We also use the same ancilla register
throughout, instead of initializing a fresh one each time. In this strategy, we can no longer
rely on the additive error bound to prove that the algorithm approximates Grover search.
Instead we provide a careful analysis and determine whether the resulting algorithm is
correct anyway.

We conclude our commentary on the MNRS quantum walk with a small digression,
which is that the algorithm in Section 3.3 of [MNRS11] is not quite the same as our Al-
gorithm 3.3.5. Our algorithm requires knowledge of ε, in the same way that Grover’s
amplitude amplification also requires knowledge of the ratio of marked elements to deter-
mine the number of iterations for which the algorithm needs to run. The technique used
in the paper is the so-called randomized Grover search. We do not concern ourselves with
this technique, because it adds complexity to the algorithm that does not contribute to
the main points of the thesis. It is a straightforward modification of the original Grover
search, and it is just as easily applicable to our work in Chapters 4 and 5.

25

3.4 Imperfect Checking

Throughout Section 3.3, we assumed that the checking oracle is perfect. That is, Step 2 of
Algorithm 3.3.5 is exact, implemented by a checking operator UC that computes f with-
out error. Motivated by existing quantum walk-based algorithms for certain problems,
we are interested in relaxing this assumption. That is, we would like to assume instead
that UC has constant bounded error. Under this assumption, the standard approach is
to reduce error by running UC O(log 1√

ε
) times on each iteration of Step 2 and take the

majority vote on its output. With this approach, the cumulative error from O(1/
√
ε)

iterations will be sufficiently small that we can say that the resulting algorithm approx-
imates Algorithm 3.3.5. This approach, used in conjunction with complex MNRS, gives
rise to a total cost of O(S + 1√

ε
(1√

δ
U + C log 1√

ε
)). However, the log 1√

ε
factor is unde-

sirable. We would like to study whether there exists more efficient algorithms with cost
O(S + 1√

ε
(1√

δ
U + C)), preferably in both query and time complexity. Chapters 4 and 5 will

be devoted to finding such an algorithm.

27

4 Approach 1: MNRS Quantum Walk without Re-
duction of Error of Phase Estimation

We now study a slight simplification of the MNRS quantum walk algorithm described
in Algorithm 3.3.5. In this simplification, Step 3 of the algorithm is implemented using
Algorithm 3.3.11 with the parameter k set to 1. That is, the phase estimation algorithm is
run only once per iteration. In addition, Step 3 uses the same ancilla register throughout
the algorithm, as opposed to a fresh ancilla on every iteration. We analyze the behaviour
of this algorithm, in the hope of discovering that when the checking procedure is perfect,
we do not need any special tricks to reduce the error of Step 3 of Algorithm 3.3.5, either
by simply running phase estimation multiple times, or by varying the number of times it is
run in a complex pattern. This is so that when UC is not perfect, we can avoid incurring
the logarithmic majority voting overhead by treating it as a bounded error oracle and use
the error reduction strategy in [HMdW03]. This approach does not assume any structure
in UC . UC can be a generic bounded-error oracle like the one in [HMdW03]. The said
algorithm can be analyzed using the theory of principal angles and vectors, because its
iterate is a product of two reflections. We determine whether the resulting rotation still
results in a correct algorithm that succeeds with high probability.

In this chapter, In denotes the identity operator that acts on the space Cn for every
positive integer n.

28

4.1 Proposed Algorithm
The proposed algorithm uses two data registers, each of dimension |X|, and one ancilla
register of dimension O(1/

√
δ). The steps are basically the same as Algorithm 3.3.5 except

for two differences. First, the number of times Step 2 and 3 are repeated may be different.
We let T denote the number of repetitions, where T is calculated in later sections. We
would like T to be in O(1/

√
ε) so that the performance of this algorithm is asymptotically

no worse than the original MNRS quantum walk. Second, as noted previously, Step 3 is a
special case of Algorithm 3.3.11 with k = 1 that uses the same ancilla register throughout.
Algorithm 4.1.1 (MNRS walk without reduction of error of phase estimation)
(1) Create the state |π〉 :=

∑
x∈X
√
πx|x〉

∑
y∈X
√
pxy|y〉 on the two data registers.

Also, initialize the ancilla register to |0〉.
Repeat Steps 2 and 3 T times
(2) Flip the phase of marked states on the first register. That is, perform the operation

|x〉|y〉 7→
{
−|x〉|y〉 if f(x) = 1,
|x〉|y〉 if f(x) = 0.

(3) Reflect the two registers approximately about the |π〉 state.
(4) Measure the first register. Return the measurement outcome if it is a marked state;

return “not found” otherwise.
The inner workings of Step 3, which involves the phase estimation algorithm, will be

relevant to our analysis. We provide the details here.
Definition 4.1.2 (Quantum Fourier transform)
The quantum Fourier transform of order N , which we denote as FN , is a unitary operator
with the following action.

FN : |x〉 7→
N−1∑
j=0

exp(jx · 2πi/N) |j〉 for all x ∈ {0, 1, . . . , N − 1}

Definition 4.1.3 (Controlled UW)
Suppose there is a unitary operator UW that acts on two registers of dimension |X|, as
defined in Definition 3.3.6, the N-wise controlled UW is an operation that uses an extra
control register of dimension N , with the following action.
c-UW : |φ〉 ⊗ |x〉 7→ (UW)x|φ〉 ⊗ |x〉 for all x ∈ {0, 1, . . . , N − 1} and |φ〉 ∈ C|X| ⊗ C|X|

(The control register is the second register.)
Algorithm 4.1.4 (Step 3 of Algorithm 4.1.1)
We have two input registers of dimensions |X| and an ancilla register of dimensionO(1/

√
δ),

as we did in Algorithm 4.1.1. Let N denote the exact dimension of the ancilla register.
Step 3 of Algorithm 4.1.1 is then implemented as follows.
(1) Apply FN to the ancilla register.
(2) Apply c-UW to the three registers.

29

(3) Apply F−1
N to the ancilla register.

(4) Flip the phase if the ancilla register is non-|0〉.
(5) Uncompute the first 3 steps.

(i.e., perform the inverses of (3), (2), and (1), in that order.)
Definition 4.1.5 (Phase estimation)
The first three steps of Algorithm 4.1.4 are known as the phase estimation algorithm, which
satisfies Theorem 3.3.10. Let Φ denote the unitary operation defined by these steps:

Φ := (I|X| ⊗ I|X| ⊗ F−1
N) · c-UW · (I|X| ⊗ I|X| ⊗ FN).

Property 4.1.6 (Inverse of phase estimation)
Suppose that |φ〉 ∈ C|X| ⊗ C|X| and that |φ〉 is an eigenvector of UW .

If Φ|φ〉|0〉 = |φ〉
∑N−1

j=0 αj |j〉,

Then Φ−1|φ〉|0〉 = |φ〉
∑N−1

j=0 α∗j |(N − j) modN〉.

Proof. To prove this result, we first establish the following lemma.
Lemma 4.1.7 〈φ|〈b|Φ |φ〉|a〉 = 〈φ|

〈
(b+ k) modN

∣∣Φ |φ〉∣∣(a+ k) modN
〉

for all a, b ∈ {0, 1, . . . , N − 1} and k ∈ Z.
Here is one intuition for what the lemma is trying to say: when we run phase estimation, we
usually initialize the ancilla state to |0〉. So consider the special case where a = 0. In this
case, the lemma tells us that had we started with a different state such as |k〉 on the ancilla
register instead of |0〉, the output of phase estimation would be “shifted” by k. One way to
prove the lemma is to tediously expand both sides using the definition of Φ: if |φ〉 has the
eigenvalue exp(θi), then both sides expand to

∑N−1
j=0 exp((aj−bj)·2πi/N+θj). Our desired

result becomes easy to prove using the lemma. By assumption, we have 〈φ|〈j|Φ|φ〉|0〉 = αj
for all standard basis states |j〉 ∈ CN . Therefore,

α∗j = (〈φ|〈j|Φ|φ〉|0〉)∗ = 〈φ|〈0|Φ−1|φ〉|j〉 = 〈φ|〈(N − j) modN |Φ−1|φ〉|0〉,
where the last equality applies Lemma 4.1.7 with a = j, b = 0, and k = N − j. Property
4.1.6 is of interest to us because it leads to the following corollaries. �

Corollary 4.1.8 For all |φ〉 ∈ C|X| ⊗ C|X|,
|〈φ|〈0|Φ|φ〉|0〉| = |〈φ|〈0|Φ−1|φ〉|0〉|.

(More specifically, 〈φ|〈0|Φ|φ〉|0〉 = (〈φ|〈0|Φ−1|φ〉|0〉)∗.)
Corollary 4.1.9 Therefore, Corollary 4.1.8 implies that Theorem 3.3.10(4) and (5)
apply to the inverse of phase estimation as well. That is,
(1) If |φ〉 is a 1-eigenvector of UW (e.g. |π〉), then 〈φ|〈0|Φ−1|φ〉|0〉 = 1.
(2) If |φ〉 ∈ span{A,B} and 〈π|φ〉 = 0, then |〈φ|〈0|Φ−1|φ〉|0〉| ≤ β, for some small

constant β.
Corollary 4.1.9 is used in Section 4.2, where we analyze the algorithm in more detail.

For the time being, we note that both Steps 2 and 3 of Algorithm 4.1.1 are reflection

30

operators: Step 2 is clearly a reflection operator as it effects a phase flip. Step 3, whose
implementation is described in Algorithm 4.1.4, also effects a phase flip up to a similarity
transformation by Φ. As such, the theory of principal angles and vectors can be used to
analyze the behaviour of this algorithm. We proceed with this analysis in the next section.

31

4.2 Principal Angles and Vectors of Proposed Algorithm

Let Π2 and Π3 denote projection operators onto spaces about which the reflections occur,
so that the operators corresponding to Steps 2 and 3 of Algorithm 4.1.1 are respectively
(2Π2 − I) and (2Π3 − I). We see that Step 2 reflects about the space spanned by those
states with unmarked elements in the first register, so Π2 =

∑
x∈X,f(x)=0 |x〉〈x|⊗I|X|⊗IN .

Meanwhile, there are two equivalent ways of deriving Π3. The first way is by inspecting
Algorithm 4.1.4 step by step. We can derive that Π3 = Φ−1 ·(I|X|⊗I|X|⊗|0〉〈0|) ·Φ. As for
the second way, observe that Step 3 reflects about the space spanned by those initial states
that gives the |0〉 phase estimate. Motivated by this observation, we make the following
definitions.
Definition 4.2.1 (of “|vj〉”)
Let |v1〉, |v2〉, . . . , |v|X|2〉 ∈ C|X| ⊗ C|X| denote the |X|2 orthonormal eigenvectors of UW .
In particular, let |v1〉 denote |π〉, the unique 1-eigenvector within span{A,B}, which is also
the initial state of the data registers of Algorithm 4.1.1. (See Definition 3.3.6 for definitions
of UW, A, and B.)
Definition 4.2.2 (of “|λj〉”)
For each j ∈ {1, 2, . . . , |X|2}, let |λj〉 ∈ CN be the state such that Φ−1|vj〉|0〉 = |vj〉|λj〉.
That is, |λj〉 denotes the contents of the ancilla register of Φ−1|vj〉|0〉.

We remark that |λ1〉 = |0〉, due to Corollary 4.1.9. In fact, |λj〉 = |0〉 for any j such
that |vj〉 is a 1-eigenvector of UW . It is straightforward to verify that the states that give
the |0〉 phase estimate, and therefore do not pick up a phase flip from Algorithm 4.1.4, are
precisely those spanned by {|vj〉|λj〉}j=1,...,|X|2 . Hence, Π3 =

∑
1≤j≤|X|2 |vj〉|λj〉〈vj |〈λj |.

In summary, the projection operators corresponding to Steps 2 and 3 of Algorithm 4.1.1
are as follows.
Property 4.2.3

Π2 =
∑

x∈X,f(x)=0
|x〉〈x| ⊗ I|X| ⊗ IN ,

Π3 = Φ−1 · (I|X| ⊗ I|X| ⊗ |0〉〈0|) · Φ =
|X|2∑
j=1
|vj〉|λj〉〈vj |〈λj |.

Section 2.6 tells us that the nonzero singular values of the product of projectors Π3Π2
reveals to us the cosines of principal angles, and that the corresponding singular vectors
are the principal vectors. Given a matrix M , one method of computing its singular values
and vectors is by finding the eigenvalues and vectors of MM∗. The square roots of the
eigenvalues of MM∗ are the singular values of M . Moreover, for each eigenvalue, its
eigenvectors are the left singular vectors of M . The matrix of interest in our case is Π3Π2.
Since projection matrices are Hermitian and idempotent, we find that (Π3Π2)(Π3Π2)∗ =
Π3Π2Π∗2Π∗3 = Π3Π2Π3.

32

Definition 4.2.4 Let ΠU :=
∑

x∈X,f(x)=0 |x〉〈x| ⊗ I|X|.
Property 4.2.5

Π3Π2Π3 =
|X|2∑
j=1

|X|2∑
k=1
〈vj |ΠU |vk〉 · 〈λj |λk〉 ·

(
|vj〉|λj〉〈vk|〈λk|

)
.

Proof. The proof is immediate from Property 4.2.3 and Definition 4.2.4:

Π3Π2Π3 =
(|X|2∑

j=1
|vj〉|λj〉〈vj |〈λj |

)(∑
x∈X,f(x)=0

|x〉〈x| ⊗ I|X| ⊗ IN

)(|X|2∑
k=1
|vk〉|λk〉〈vk|〈λk|

)

=
|X|2∑
j=1

|X|2∑
k=1
|vj〉|λj〉〈vj |〈λj |

(∑
x∈X,f(x)=0

|x〉〈x| ⊗ I|X| ⊗ IN

)
|vk〉|λk〉〈vk|〈λk|

=
|X|2∑
j=1

|X|2∑
k=1
|vj〉|λj〉

(
〈vj | ·

∑
x∈X,f(x)=0

|x〉〈x| ⊗ I|X| · |vk〉

)(
〈λj |IN |λk〉

)
〈vk|〈λk|

=
|X|2∑
j=1

|X|2∑
k=1
|vj〉|λj〉

(
〈vj |ΠU |vk〉

)(
〈λj |λk〉

)
〈vj |〈λj |

=
|X|2∑
j=1

|X|2∑
k=1
〈vj |ΠU |vk〉 · 〈λj |λk〉 ·

(
|vj〉|λj〉〈vj |〈λj |

)
.

�

Definition 4.2.6 Let |uj〉 := ΠU |vj〉 for all j ∈ {1, 2, . . . , |X|2}.
Corollary 4.2.7 Property 4.2.5 can be restated thus, using Definition 4.2.6:

Π3Π2Π3 =
|X|2∑
j=1

|X|2∑
k=1
〈uj |uk〉 · 〈λj |λk〉 ·

(
|vj〉|λj〉〈vk|〈λk|

)
.

We would like to find the eigenvalues and vectors of Π3Π2Π3. To make our computation
simpler, we make a change of basis. Consider the following definition.
Definition 4.2.8 Let R be the |X|2×|X|2 square matrix whose elements are given by

rjk := 〈uj |uk〉 · 〈λj |λk〉.
In other words,

R =
|X|2∑
j=1

|X|2∑
k=1
〈uj |uk〉 · 〈λj |λk〉 ·

(
|j〉〈k|

)
.

33

By comparing Corollary 4.2.7 and Definition 4.2.8, the reader can easily verify that all
eigenvalues of Π3Π2Π3 whose eigenvectors are in span{|vj〉|λj〉}j=1,...,|X|2 are also eigen-
values of R. The eigenvectors of Π3Π2Π3 and R corresponding to the said eigenvalues are
related by a change of basis from the basis of {|vj〉|λj〉}j=1,...,|X|2 to the standard basis.

In our definition of |vj〉, we did not impose any restrictions on the ordering of the
eigenvectors |vj〉, other than requiring |v1〉 to denote the unique 1-eigenvector |π〉 of UW
in span{A,B}. Let m = dim span{A,B}. (For an irreducible, aperiodic, and reversible
walk, m = 2|X|− 1, because dimA = dimB = |X|, and dim(A∩B) = 1.) We now further
stipulate |v2〉, . . . , |vm〉 to be the other m− 1 eigenvectors of UW within span{A,B}. The
remaining eigenvectors |vm+1〉, . . . , |v|X|2〉 are therefore in (span{A,B})⊥. We order the
eigenvectors within span{A,B} before those that are not, so that the matrix R can be
written in a more organized form, as we see below.
Theorem 4.2.9
For each j ∈ {1, 2, . . . , |X|2}, let
εj := 〈u1|uj〉,
βj := 〈λ1|λj〉 = 〈0|λj〉.

Then,

R =



1− ε β2ε2 · · · βmεm 0 · · · 0
β∗2ε
∗
2

... ? ?
β∗mε

∗
m

0
... ? ?
0


.

(Recall that ε is the ratio of marked elements, as defined in Definition 3.2.16. The “?”s
represent blocks of the matrix whose values we do not explicitly compute in this theorem.)
Further, the following properties are satisfied:
(1) β1 = βm+1 = βm+2 = · · · = β|X|2 = 1,
|β2|, . . . , |βm| ≤ β, for some small constant β,

(2)
∑m

j=2 |εj |2 = ε · (1− ε),
(3)
√∑m

j=2 |βjεj |2 ≤ β
√
ε
√

1− ε,
(4) trace(R) = trace(ΠU), and trace(ΠU) = (

∑
x∈X,f(x)=0 1) · |X|,

(5) For all j ∈ {2, . . . ,m},
|εj |2 ≤ ε · (1− ‖|uj〉‖2) and |εj |2 ≤ (1− ε) · ‖|uj〉‖2.

Regarding Theorem 4.2.9, Parts (1), (2), and (4) are basic results regarding the elements
of the matrix R. Part (3) is a corollary from (1) and (2); it provides an upper bound on
the norm of the top row (and left most column) of R excluding the first element. Part (5)

34

provides an upper bound for elements on the top row of R (or leftmost column) provided
that we know the diagonal element on the same column (or row). When ‖|uj〉‖2 > ε,
the first inequality of Part (5) provides an tighter bound than the second. The opposite
is true when ‖|uj〉‖2 < ε. Note that Part (2) already implies that |εj |2 ≤ ε · (1 − ε) for
every j ∈ {2, . . . ,m}, but Part (5) improves on this upper bound. For every value of
‖|uj〉‖ ∈ [0, 1], the tighter of two inequalities provides a bound that is at least as tight
as implied by Part (2). In the special cases where ‖|uj〉‖ = 0 or 1, the tighter inequality
implies that εj = 0.

Before we begin the proof of Theorem 4.2.9, we note that the proof uses two simple
lemmas. They are as follows.
Lemma 4.2.10 ‖|u1〉‖ =

√
1− ε.

Lemma 4.2.11 For all j ∈ {m+ 1, . . . , |X|2}, 〈u1|uj〉 = 0.
Lemma 4.2.10 is straightforward to verify: start with |u1〉 = ΠU |v1〉 = ΠU |π〉 using

the definitions of |u1〉 and |v1〉, and then plug in the definitions of ΠU , |π〉, and ε from
Property 4.2.5, Algorithm 4.1.1, and Definition 3.2.16. The proof of Lemma 4.2.11 is a bit
longer. It is discussed at the end of this section.

We now proceed with the proof of Theorem 4.2.9.
Proof of Theorem 4.2.9. We begin by proving that the top row and leftmost column of R
are indeed as stated. The elements of the top row are computed as follows.
r11 = 〈u1|u1〉〈λ1|λ1〉 = 〈u1|u1〉 = ‖|u1〉‖2 = 1− ε, (by Lemma 4.2.10)

r1j = 〈u1|uj〉〈λ1|λj〉 =
{
βjεj if 2 ≤ j ≤ m, (by definitions of βj and εj)
0 if m+ 1 ≤ j ≤ |X|2. (by Lemma 4.2.11, εj = 〈u1|uj〉 = 0)

One can verify that the matrix R is a Hermitian matrix. As such, elements of the leftmost
column are given by rj1 = (r1j)∗.

Next, we present proof for each of the stated properties.
(1) Since |v1〉 = |π〉 ∈ A∩B, and |vm+1〉, . . . , |v|X|2〉 ∈ (span{A,B})⊥, we know from Corol-
lary 2.5.3 that |v1〉, |vm+1〉, . . . , |v|X|2〉 are all 1-eigenvectors of UW . Therefore, Corollary
4.1.9(1) implies that |λj〉 = |0〉 for all j ∈ {1,m+ 1,m+ 2, . . . , |X|2}. So

βj = 〈0|λj〉 = 〈0|0〉 = 1
for all j ∈ {1,m+ 1,m+ 2, . . . , |X|2}.

Similarly, since |v2〉, . . . , |vm〉 are all eigenvectors of UW in span{A,B} that are orthog-
onal to |π〉, we can use Corollary 4.1.9(2) and show that

β ≥ |〈vj |〈0|Φ−1|vj〉|0〉| = |〈vj |〈0| · |vj〉|λj〉| = |〈0|λj〉| = |βj |
for all j ∈ {2, . . . ,m}.
(2) Based on the fact that {|vj〉}j=1,...,|X|2 forms an orthonormal basis for C|X| ⊗ C|X|,

35

we deduce that
∑|X|2

j=1 |〈u1|vj〉|2 = ‖|u1〉‖2. By Lemma 4.2.10, we have ‖|u1〉‖2 = 1 − ε.
Therefore

1− ε =
|X|2∑
j=1
|〈u1|vj〉|2

=
|X|2∑
j=1
|〈u1|ΠU |vj〉|2 (because 〈u1| = 〈u1|ΠU)

=
|X|2∑
j=1
|〈u1|uj〉|2 (because ΠU |vj〉 = |uj〉)

= |〈u1|u1〉|2 +
|X|2∑
j=2
|〈u1|uj〉|2

= (1− ε)2 +
|X|2∑
j=2
|〈u1|uj〉|2.

By rearranging, we get
∑|X|2

j=2 |〈u1|uj〉|2 = 1 − ε − (1 − ε)2 = ε · (1 − ε). The desired

result follows immediately, because
∑m

j=2 |εj |2 =
∑m

j=2 |〈u1|uj〉|2 =
∑|X|2

j=2 |〈u1|uj〉|2, by
definition of εj and Lemma 4.2.11.
(3) The proof steps are straightforward applications of Parts (1) and (2):√√√√ m∑

j=2
|βjεj |2 ≤

√√√√ m∑
j=2
|βεj |2 = β

√√√√ m∑
j=2
|εj |2 = β

√
ε
√

1− ε.

(4) Reading off the diagonal elements of R from Definition 4.2.8, we get

trace(R) =
|X|2∑
j=1
〈uj |uj〉 · 〈λj |λj〉 =

|X|2∑
j=1
〈uj |uj〉 =

|X|2∑
j=1
〈vj |ΠU |vj〉.

Because {|vj〉}j=1,...,|X|2 forms an orthonormal basis of C|X| ⊗C|X|, we have 〈vj |ΠU |vj〉 =
trace(ΠU), which proves that trace(R) = trace(ΠU). ΠU is a diagonal matrix in the
standard basis. By counting the number of 1s on the diagonal of ΠU from its definition in
Definition 4.2.4, we see that trace(ΠU) = (

∑
x∈X,f(x)=0 1) · |X|.

(5) Let
ΠM := (I|X| ⊗ I|X|)− ΠU =

∑
x∈X,f(x)=1

|x〉〈x| ⊗ I|X|,

so that ΠU +ΠM = I|X|⊗I|X|. Let |mj〉 = ΠM |vj〉 for all j ∈ {1, 2, . . . , |X|2}. Immediately
we have |vj〉 = |uj〉+ |mj〉. We can also see that for all j ≥ 2,

36

0 = 〈v1|vj〉 = 〈v1|(ΠU + ΠM)|vj〉 = 〈v1|ΠU |vj〉+ 〈v1|ΠM |vj〉 = 〈u1|uj〉+ 〈m1|mj〉.
So |〈u1|uj〉| = |〈m1|mj〉|. Since |uj〉 and |mj〉 are orthogonal, ‖|uj〉‖2+‖|mj〉‖2 = 1. Hence

‖|m1〉‖ =
√

1− ‖u1‖2 =
√
ε, and

‖|mj〉‖ =
√

1− ‖uj‖2.
The Cauchy-Schwarz inequality implies that |〈m1|mj〉| ≤ ‖m1‖ · ‖mj‖ =

√
ε
√

1− ‖uj‖2,
which in turn implies that |〈u1|uj〉| ≤

√
ε
√

1− ‖uj‖2. Squaring both sides and setting
εj = 〈u1|uj〉 yields the first inequality.

As for the second inequality, we use the Cauchy-Schwarz inequality directly to get
|〈u1|uj〉| ≤ ‖u1‖ · ‖uj‖ =

√
1− ε ‖uj‖,

so |εj |2 = |〈u1|uj〉|2 ≤ (1− ε) · ‖uj‖2, as we desired. �

We are interested in finding the eigenvalues and vectors of a matrix in form of R,
which satisfies properties stated in Theorem 4.2.9. These eigenvalues, the square root of
which are the singular values of Π3Π2, allow us to derive the angle of rotation within each
principal subspace of the operator (2Π3 − I)(2Π2 − I). Section 4.3 comments further on
the correctness and efficiency of Algorithm 4.1.1.

We conclude this section by completing the proof for Lemma 4.2.11 as promised. It is
a simple corollary of the following lemma.
Lemma 4.2.12 For all |φ〉 ∈ A, |χ〉 ∈ (span{A,B})⊥, 〈φ|ΠU |χ〉 = 0.
Proof. Suppose that |χ〉 is any state in (span{A,B})⊥. From Definition 3.3.6(1), A is
spanned by {|x〉

∑
y∈X
√
pxy|y〉}x∈X . For every j ∈ X, let |φj〉 = |j〉

∑
y∈X
√
pjy|y〉.

Observe first that 〈φj |χ〉 = 0 for all j ∈ X, because |φj〉 ∈ A and |χ〉 ∈ (span{A,B})⊥.
We can then show that 〈φj |ΠU |χ〉 = 0 for each j ∈ X: if f(j) = 0, then 〈φj |ΠU =

〈φj |, so 〈φj |ΠU |χ〉 = 〈φj |χ〉 = 0; on the other hand, if f(j) = 1, then 〈φj |ΠU = 0, so
〈φj |ΠU |χ〉 = 0 · |χ〉 = 0. Since 〈φj |ΠU |χ〉 = 0 is true for all j ∈ X, it must also be the case
that 〈φ|ΠU |χ〉 = 0, where |φ〉 is any linear combination of the |φj〉s. �

Lemma 4.2.11 For all j ∈ {m+ 1, . . . , |X|2}, 〈u1|uj〉 = 0.
Proof. By Definition 4.2.6, 〈u1|uj〉 = 〈v1|ΠU |vj〉. Since |v1〉 ∈ A, and |vj〉 ∈ (span{A,B})⊥,
Lemma 4.2.12 tells us that 〈v1|ΠU |vj〉 = 0. �

The reader may wonder whether a result analogous to Lemma 4.2.12 also holds for
the subspace B. That is, if |ψ〉 ∈ B and |χ〉 ∈ (span{A,B})⊥, whether it is the case
that 〈ψ|ΠU |χ〉 = 0. It turns out that this is not always true. In fact, it is not even
true for the Markov chain shown in Example 3.2.17. Let |ψ2〉 = 1√

2 |1〉|2〉 + 1√
2 |3〉|2〉,

|ψ4〉 = 1√
2 |1〉|4〉 + 1√

2 |3〉|4〉, and |χ〉 = |1〉|2〉 − |1〉|4〉 − |3〉|2〉 + |3〉|4〉. Applying the
definitions of A and B in Definition 3.3.6(1)(2) to Example 3.2.17, one can verify that
|ψ2〉 ∈ B, |ψ4〉 ∈ B, and |χ〉 ∈ (span{A,B})⊥, but 〈ψ2|ΠU |χ〉 6= 0 and 〈ψ4|ΠU |χ〉 6= 0. We
leave it to the interested reader to work through this example.

37

4.3 Finding Eigenvalues and Vectors of Matrices in the Form of R

In Section 4.1, we saw that the iterate of Algorithm 4.1.1 is a product of reflection operators.
To understand its behaviour, we sought the principal angles and vectors of this operator,
which can be obtained from the eigenvalues and vectors of the matrix Π3Π2Π3, derived in
Property 4.2.5. Under a change of basis, and with a suitable ordering of basis vectors, the
said matrix is related to R, defined in Definition 4.2.8, which satisfies properties stated in
Theorem 4.2.9. We want to know whether the algorithm works. Going forward with the
analysis, there are two points that we wish to clarify.

First, recall that the algorithm is constructed using the quantum walk operator UW ,
defined in terms of a Markov Chain, and the phase estimation algorithm Φ. However,
throughout our derivations so far, we did not use any Markov chain-specific properties,
other than the fact that the |vj〉s are orthogonal and |v1〉 = |π〉. We also did not scrutinize
the phase estimation algorithm any more than observing that Φ−1|φ〉|0〉 = |0〉 for all 1-
eigenvectors |φ〉 of UW , and |〈φ|〈0|Φ−1|φ〉|0〉| ≤ β for all non-1-eigenvectors. This begs the
question of whether these key properties of Markov chains and phase estimation are all the
sufficient conditions we need to prove the validity of the algorithm. The research direction
undertaken in this thesis entertains this idea. Consider the following definitions.
Definition 4.3.1 (Notations used Section 4.2 in more general terms)
(1) Let M , N be positive integers.
(2) Let f : {1, . . . ,M} 7→ {0, 1} be a function.
(3) Let ΠU =

∑
x∈{1,...,M},f(x)=0 |x〉〈x|.

(4) Let |v1〉, . . . , |vM 〉 be any orthonormal basis for CM .
(5) Let |uj〉 = ΠU |vj〉 for all j ∈ {1, . . . ,M}.
(6) Let ε = 1− ‖|u1〉‖2.
(7) Let |λ1〉, . . . , |λM 〉 be any states in CN , satisfying
(a) |λ1〉 = |0〉, and
(b) for all j ∈ {2, . . . ,M}, |〈0|λj〉| ≤ β or 〈u1|uj〉 = 0.

(8) Let Π2 = ΠU ⊗ IN .
(9) Let Π3 =

∑M
j=1 |vj〉|λj〉〈vj |〈λj |.

(10) Let R =
∑M

j=1
∑M

k=1〈uj |uk〉 · 〈λj |λk〉 · (|j〉〈k|).
Algorithm 4.3.2
Using notations defined in Definition 4.3.1, consider an algorithm that uses two registers
of dimensions M and N , with the following steps.
(1) Initialize the two registers with the state |v1〉|0〉.
Repeat Steps 2 and 3 T times
(2) Perform the operation (2Π2 − I).
(3) Perform the operation (2Π3 − I).

38

(4) Measure the first register. Return the measurement outcome if it is a marked state,
return “not found” otherwise. (Again, a state x is marked if f(x) = 1.)

Notice that Algorithm 4.1.1, which we aim to analyze, is a special case of Algorithm
4.3.2, where M = |X|2, N ∈ O(1/

√
δ), the |vj〉s are the eigenvectors of the quantum walk

operator UW , and the |λj〉s are the inverse phase estimates of |vj〉, satisfying Φ−1|vj〉|0〉 =
|vj〉|λj〉. One can verify that the said inverse phase estimates, i.e., the |λj〉s defined and
used in Section 4.2, satisfy Definition 4.3.1(7a) and (7b), in particular (7b): for all j ∈
{2, . . . ,m}, |〈0|λj〉| ≤ β, and for all j ∈ {m+ 1, . . . , |X|2}, 〈0|λj〉 = 1, but 〈u1|uj〉 = 0.
Theorem 4.3.3 Analogues of Property 4.2.5, Corollary 4.2.7 and parts of Theorem
4.2.9 also apply to Π2, Π3 and R that were defined in Definition 4.3.1:

Π3Π2Π3 =
M∑
j=1

M∑
k=1
|vj〉ΠU |vk〉 · 〈λj |λk〉 ·

(
|vj〉|λj〉〈vj |〈λj |

)

=
M∑
j=1

M∑
k=1
〈uj |uk〉 · 〈λj |λk〉 ·

(
|vj〉|λj〉〈vj |〈λj |

)
.

If we let εj := 〈u1|uj〉, and βj := 〈λ1|λj〉 = 〈0|λj〉, then the following are true.
(∗) r11 = 1− ε,
(1) β1 = 1,
(2)
∑M

j=2 |εj |2 = ε · (1− ε),

(3)
√∑M

j=2 |βjεj |2 ≤ β
√
ε
√

1− ε,
(4) trace(R) = trace(ΠU),
(5) For all j ∈ {2, . . . ,M},

|εj |2 ≤ ε · (1− ‖|uj〉‖2) and |εj |2 ≤ (1− ε) · ‖|uj〉‖2.
We omit the proof for Theorem 4.3.3, since it follows basically the same steps as the

analogous properties in Section 4.2.
The next point of clarification is to define what we mean by “the algorithm works”.

What criteria regarding the principal angles and vectors must be satisfied for us to consider
the algorithm to be successful? Recall that the goal of the algorithm is to find a marked
state quickly. So correctness and efficiency are two criteria the algorithm needs to satisfy.
Formally, what we mean the following.
Problem 4.3.4 We wish to determine whether Algorithm 4.1.1 is correct and efficient.
(1) The algorithm is correct if there exists T such that, after T iterations, the probability

of measuring a marked element is at least a constant.
(2) The algorithm is efficient if T ∈ O(1/

√
ε). Otherwise the original MNRS algorithm

is more efficient.
(3) We attempt to determine the correctness and efficiency of Algorithm 4.3.2 that uses

the more general definitions of |vj〉 and |λj〉 in Definition 4.3.1 that are agnostic of Markov

39

chains and phase estimation, because then the correctness and efficiency of Algorithm 4.1.1,
being a special case of Algorithm 4.3.2, will be implied.

The number of iterations T that the algorithm requires depends on the principal angles
of the iterate. To facilitate further discussion, we make the following definitions.
Definition 4.3.5
Let M2,M3 ⊆ CM ⊗ CN be subspaces that Π2 and Π3 projects onto.
Let ` be the smaller one of dimM2 and dimM3.
Let θ1, θ2, . . . , θ` be the principal angles between M2 and M3.
Let |s1〉, |s2〉, . . . , |s`〉 ∈M2 and |t1〉, |t2〉, . . . , |t`〉 ∈M3 be the principal vectors.

We note that the initial state of the algorithm |v1〉|0〉 is inM3. Also, the action of (2Π3−
I)(2Π2 − I) within every principal subspace is a Grover-like rotation towards a marked
state. Using language from Chapter 2: for every j ∈ {1, . . . , `}, within span{|sj〉, |tj〉},
(2Π3 − I)(2Π2 − I) effects a rotation by 2θj from |sj〉 to |s⊥j 〉, where by Gram-Schmidt,
|s⊥j 〉 = |tj〉 − |sj〉〈sj |tj〉, normalized. But |s⊥j 〉 contains only marked elements, because it
is precisely |tj〉 with unmarked elements subtracted away.

So one can imagine a few ways in which the algorithm may be correct. For example,
perhaps the initial state |v1〉|0〉 has a large projection onto one particular principal sub-
space, and the principal angle of this subspace is in O(1/

√
ε). Or perhaps |v1〉|0〉 has large

projections onto several principal subspaces, and all the principal angles are in O(1/
√
ε)

and are close to each other.
Problem 4.3.6

Is Algorithm 4.3.2 correct and efficient for all |vj〉 and |λj〉 satisfying Definition 4.3.1?
Unfortunately, the short answer to the above problem is a disappointing “no”. Despite

all the properties we were able to prove in Theorem 4.2.9 and Theorem 4.3.3, we could
explicitly find the eigenvalues and vectors of R only for specific simple cases. Section 4.4
presents such a simple case: the case where |λ2〉 = · · · = |λM 〉. Even so, we were able
to produce a counterexample where Algorithm 4.3.2 is not correct. Section 4.5 presents
the counterexample. It is currently uncertain whether the counterexample can be circum-
vented.

Before moving on, we would like to state and prove one property regarding principal
angles that is used in both Sections 4.4 and 4.5. This property allows us to find, in simple
cases, how much the initial state |v1〉|0〉 projects onto the principal subspaces without
explicitly computing the principal vectors.
Property 4.3.7 (Weighted average of eigenvalues of R)
We use the same notations as we did in Definition 4.3.5. Let k = dimM3. If k > `, let
|t`+1〉, . . . , |tk〉 be states such that |t1〉, . . . , |tk〉 form an orthonormal basis for M3.

40

If |v1〉|0〉 =
k∑
j=1

αj |tj〉, then
k∑
j=1
|αj |2 cos2 θj = 1− ε.

Explanation. Since |v1〉|0〉 ∈ M3, it can be written as a weighted sum (i.e., linear combi-
nation) of the orthonormal basis states |tj〉. The property says that the weighted average
of eigenvalues of R, which are the squares of singular values cos θj of Π3Π2, is 1− ε.
Proof.

1− ε = 〈u1|〈0| · |u1〉|0〉
= 〈v1|〈0|Π2 |v1〉|0〉

=
(

k∑
i=1

α∗i 〈ti|

)
Π2

 k∑
j=1

αj |tj〉


=

k∑
i=1

k∑
j=1

α∗iαj 〈ti|Π2|tj〉

=
k∑
i=1

k∑
j=1

α∗iαj cos θj〈ti|sj〉
(
by Property 2.2.4, Π2|tj〉 = cos θj |sj〉

)
=

k∑
j=1

α∗jαj cos2 θj

(
by Property 2.2.2, 〈ti|sj〉 =

{ cos θj if i = j

0 if i 6= j

)

=
k∑
j=1
|αj |2 cos2 θj

�

41

4.4 The Simple Case
We now present the analysis of a special case of Algorithm 4.3.2. In this special case,
we suppose that |λ1〉 = 0, and |λ2〉 = · · · = |λM 〉, where 〈0|λ2〉 = · · · = 〈0|λM 〉 = β
for some small constant β. Hypothetically, one can imagine the scenario where the quan-
tum walk operator UW has just a single 1-eigenvector |v1〉, and all the other eigenvectors
|v2〉, . . . , |vM 〉 have the same eigenvalue and therefore the same inverse phase estimates
|λ2〉, . . . , |λM 〉. We say “hypothetically”, because we remark at the end of this section that
this case will almost never happen for a non-trivial quantum walk algorithm. Nonetheless,
we present the analysis for this case because it is a valid special case for Algorithm 4.3.2
which we are able to completely analyze from start to finish.
Theorem 4.4.1 When |λ2〉 = · · · = |λM 〉, Algorithm 4.3.2 is correct and efficient.
If 〈0|λ2〉 = β, then for small values of ε > 0 and small values of β, a marked element can
be discovered with high probability by running Algorithm 4.3.2 for O

(
1/
√
ε (1− |β|2)

)
iterations.

In the following analysis, we use notations that were defined in Section 4.3, partic-
ularly in Definition 4.3.1 and Definition 4.3.5. As we derived previously, the behaviour
of Algorithm 4.3.2 is characterized by the eigenvalues and vectors of Π3Π2Π3, whose for-
mula is stated in Theorem 4.3.3. Π3Π2Π3 is then related to the matrix R, defined in
Definition 4.3.1(10).
Definition 4.4.2 Let |λ〉 = |λ2〉.

(Since |λ2〉, . . . , |λM 〉 are all equal, we drop the redundant subscript from our notation.)
Definition 4.4.3 Let ΠM = IM −ΠU and |m1〉 = ΠM |v1〉, so that |v1〉 = |u1〉+ |m1〉.
Definition 4.4.4 Let |û1〉 = |u1〉/‖u1‖ and |m̂1〉 = |m1〉/‖m1‖.
Property 4.4.5 Since ‖|u1〉‖ =

√
1− ε and ‖|m1〉‖ =

√
ε, we have

|v1〉 =
√

1− ε |û1〉+
√
ε |m̂1〉.

From the definition of Π3, we see that the subspaceM3 is spanned by {|vj〉|λj〉}j=1,...,M .
In our case, {|vj〉|λj〉}j=1,...,M = {|v1〉|0〉}∪{|vj〉|λ〉}j=2,...,M . Since {|vj〉}j=1,...,M forms an
orthonormal basis for CM , any definition of |v2〉, . . . , |vM 〉 such that {|vj〉}j=2,...,M forms
an orthonormal basis for the orthogonal complement of |v1〉 in CM would be consistent
with the definition of Π3 and leads to a correct analysis. We choose to use the following
definition of |v2〉, . . . , |vM 〉, because the analysis it leads to has the simplest steps.
Definition 4.4.6 Let |v2〉 =

√
ε |û1〉−

√
1− ε |m̂1〉. One can confirm that 〈v1|v2〉 = 0.

Let |v3〉, . . . , |vM 〉 be any states such that |v1〉, . . . , |vM 〉 form an orthonormal basis for CM .
Property 4.4.7 〈uj |uk〉 = 0 for all j ∈ {1, 2} and k ∈ {3, . . . ,M}.
Proof. We first prove the following lemma: for all k ∈ {3, . . . ,M}, 〈û1|vk〉 = 0. Since
{|vk〉}k=1,...,M forms an orthonormal basis for CM , we have

∑M
k=1 |〈û1|vk〉|2 = ‖|û1〉‖2 = 1.

Hence,

42

1 =
M∑
k=1
|〈û1|vk〉|2

= |〈û1|v1〉|2 + |〈û1|v2〉|2 +
M∑
k=3
|〈û1|vk〉|2

= (1− ε) + ε+
M∑
k=3
|〈û1|vk〉|2

= 1 +
M∑
k=3
|〈û1|vk〉|2

0 =
M∑
k=3
|〈û1|vk〉|2.

So |〈û1|vk〉|2 = 0 for all k ∈ {3, . . . ,M}, implying that 〈û1|vk〉 = 0. The lemma has been
proven. Then, using the lemma, we can say that for all k ∈ {3, . . . ,M},

〈u1|uk〉 = 〈v1|ΠU |vk〉 =
√

1− ε 〈û1|vk〉 = 0, and
〈u2|uk〉 = 〈v2|ΠU |vk〉 =

√
ε 〈û1|vk〉 = 0.

�

Property 4.4.8 Let β = 〈0|λ〉, then

R =


1− ε β

√
ε
√

1− ε 0 · · · 0
β∗
√
ε
√

1− ε ε 0 · · · 0
0 0
...

... ?
0 0

 .
Proof. Definition 4.3.1(10) tell us that elements of R are given by rjk = 〈uj |uk〉 · 〈λj |λk〉.
From the definitions of |v1〉 and |v2〉, we know that |u1〉 = ΠU |v1〉 =

√
1− ε |û1〉 and

|u2〉 = ΠU |v2〉 =
√
ε |û1〉. From here, we compute that

r11 = 〈u1|u1〉 · 〈λ1|λ1〉 = 1− ε 〈û1|û1〉〈0|0〉 = 1− ε,
r22 = 〈u2|u2〉 · 〈λ2|λ2〉 = ε 〈û1|û1〉〈λ|λ〉 = ε,

r12 = 〈u1|u2〉 · 〈λ1|λ2〉 =
√

1− ε
√
ε 〈û1|û1〉〈0|λ〉 = β

√
ε
√

1− ε,
r21 = (r12)∗ = β∗

√
ε
√

1− ε.
Further, for all k ∈ {3, . . . ,M}, Property 4.4.7 tells us that

43

r1k = 〈u1|uk〉 · 〈λ1|λk〉 = 0 · 〈λ1|λk〉 = 0,
r2k = 〈u2|uk〉 · 〈λ2|λk〉 = 0 · 〈λ2|λk〉 = 0,
rk1 = (r1k)∗ = 0,
rk2 = (r2k)∗ = 0.

�

We see that, under our choice of basis, the R matrix is block diagonal. In our analysis,
we need only to concern ourselves with the top left 2×2 block, because the eigenvectors of
Π3Π2Π3 corresponding to the bottom right block are orthogonal to the initial state |v1〉|0〉.
Property 4.4.9 The two eigenvalues of the matrix[

1− ε β
√
ε
√

1− ε
β∗
√
ε
√

1− ε ε

]
are λ1 = 1

2 +
√

1
4 − ε · (1− ε) ·

(
1− |β|2

)
and λ2 = 1

2 −
√

1
4 − ε · (1− ε) ·

(
1− |β|2

)
.

Proof. The characteristic equation of the matrix is λ2 − λ + ε · (1 − ε) · (1 − |β|2) = 0.
Solving this equation for λ using the quadratic formula gives the desired result. �

We remark that the two eigenvalues stated by Property 4.4.9 can be simplified when
|β| = 0 or 1. When |β| = 1, 1

2 ±
√

1
4 − ε · (1− ε) ·

(
1− |β|2

)
= 1

2 ±
√

1
4 = 0 or 1. When

|β| = 0, 1
2 ±

√
1
4 − ε · (1− ε) ·

(
1− |β|2

)
= 1

2 ±
√(1

2 − ε
)2 = 1

2 ±
∣∣1

2 − ε
∣∣ = ε or 1 − ε.

However, we are most interested in the case where β is a small constant close to zero. For
that, we have the following approximations.
Property 4.4.10 For all ε ∈ [0, 1

2),
λ1 ≤ 1− ε+ 1− ε

1− 2ε ε |β|
2 and

λ2 ≥ ε− 1− ε
1− 2ε ε |β|

2.

Proof. We present the proof for λ1. For all ε ∈ [0, 1
2),

44

λ1 = 1
2 +

√
1
4 − ε · (1− ε) ·

(
1− |β|2

)
= 1

2 +
√

1
4 − ε · (1− ε) + |β|2 · ε · (1− ε)

= 1
2 +

√
1
4 − ε · (1− ε)

√
1 + |β|

2 · ε · (1− ε)
1
4 − ε · (1− ε)

= 1
2 +

√(
1
2 − ε

)2
√

1 + |β|
2 · ε · (1− ε)

1
4 − ε · (1− ε)

= 1
2 +

(
1
2 − ε

)√
1 + |β|

2 · ε · (1− ε)
1
4 − ε · (1− ε)

≤ 1
2 +

(
1
2 − ε

)(
1 + 1

2 ·
|β|2 · ε · (1− ε)
1
4 − ε · (1− ε)

) (
because

√
1 + x ≤ 1 + 1

2x
)

= 1
2 +

(
1
2 − ε

)
+
(

1
2 − ε

)
· 1

2 ·
|β|2 · ε · (1− ε)
1
4 − ε · (1− ε)

= 1− ε+
(

1
2 − ε

)
· 1

2 ·
|β|2 · ε · (1− ε)
1
4 − ε · (1− ε)

= 1− ε+
(

1
2 − ε

)
· 1

2 ·
|β|2 · ε · (1− ε)(1

2 − ε
)2

= 1− ε+ 1− ε
1− 2ε · ε · |β|

2

The proof for λ2 is similar, except the first “+” signs in the first six lines are replaced with
“−”s, the “≤” is replaced with “≥”, and we simplify accordingly afterwards. �

The key observation from Property 4.4.10 is that for small values of ε, 1−ε
1−2ε ≈ 1, so for

small values of β, the eigenvalue λ1 is close to 1 − ε, because λ1 ≤ 1 − ε + 1−ε
1−2ε ε |β|

2 ≈
1− ε+ ε |β|2. It turns out, as we prove below, that the initial state |v1〉|0〉 also has a large
projection onto the eigenvector of λ1.
Property 4.4.11 Let |t1〉, |t2〉 be eigenvectors of Π3Π2Π3 with eigenvalues λ1, λ2.
Then |〈t1| · |v1〉|0〉|2 ≥ 1− ε for all ε ∈ [0, 1

2) and all β such that |β| ∈ [0, 1].
Proof. We first note that λ1 ∈ [1 − ε, 1] for all |β| ∈ [0, 1]: as |β| increases from 0 to 1,
λ1 = 1

2 +
√

1
4 − ε · (1− ε) ·

(
1− |β|2

)
increases monotonically from 1− ε to 1.

Let ρ1 = |〈t1| · |v1〉|0〉|2 and ρ2 = |〈t2| · |v1〉|0〉|2. The fact that R is block diagonal means
that eigenvectors of Π3Π2Π3 other than |t1〉 and |t2〉 are all orthogonal to |v1〉|0〉. So by
Property 4.3.7,

45

ρ1λ1 + ρ2λ2 = 1− ε.
Then, since ρ1 + ρ2 = 1 and λ1 + λ2 = 1,

ρ1λ1 + (1− ρ1)(1− λ1) = 1− ε.
Solving for ρ1 gives us

ρ1 =
ε− 1

2
1− 2λ1

+ 1
2 .

One can then show from here that ρ1 decreases monotonically from 1 to 1−ε as λ1 increases
from 1− ε to 1. Note that the numerator ε− 1

2 is negative because ε ∈ [0, 1
2). �

Corollary 4.4.12 By running Algorithm 4.3.2 for O
(
1/
√
ε (1− |β|2)

)
iterations, the

resulting state is marked with high probability.
Proof. The proof of Corollary 4.4.12, which we now present, provides a summary of our
findings in this section. Since the iterate of Algorithm 4.3.2 is a product of two reflections,
its behaviour can be understood using the theory of principal angles and vectors. The
eigenvectors of Π3Π2Π3, which are the left singular vectors of Π3Π2, give us one of the
two principal vectors in each principal subspace, namely |t1〉, |t2〉, . . . , |t`〉. Since R, the
matrix related to Π3Π2Π3, is block diagonal, we know that the initial state |v1〉|0〉 has
nonzero projection onto only two principal subspaces: span{|s1〉, |t1〉} and span{|s2〉, |t2〉}.
(|s1〉 := Π2|t1〉 normalized, |s2〉 := Π2|t1〉 normalized.) Of these two subspaces, |v1〉|0〉
has a large projection onto span{|s1〉, |t1〉} in particular: by Property 4.4.11, the square
of the norm of this projection is at least 1 − ε. With every iteration of the algorithm,
the component of |v1〉|0〉 within this principal subspace rotates towards a marked state by
angle 2θ1, where θ1 is the principal angle of this subspace. The said principal angle satisfies
cos2 θ1 = λ1. By Property 4.4.10, λ1 is bounded away from 1. To be formal, we consider ε
to be small if ε ∈ (0, 1

10]. For such small values of ε, 1−ε
1−2ε ∈ (1, 9

8]. We have
θ1 = cos−1√λ1

= sin−1√1− λ1

≥ sin−1
√
ε− 1−ε

1−2ε ε |β|2 (by Property 4.4.10)

≥ sin−1
√
ε− 9

8 ε |β|2

≥
√
ε (1− 9

8 |β|2)

∈ Ω
(√

ε (1− |β|2)
)

for small values of β.

Because |v1〉|0〉 has a large projection onto a principal subspace whose principal angle is in
Ω
(√

ε (1− |β|2)
)
, we deduce that running the algorithm for O

(
1/
√
ε (1− |β|2)

)
iterations

results in a marked state with high probability. Therefore, in the special case where
|λ2〉 = · · · = |λM 〉, Algorithm 4.3.2 is correct and efficient. �

46

While the success for this special case is good news, there are two reasons why this case
will most likely not occur for a quantum walk algorithm of interest. First, by inspection
of Corollary 2.5.3, the eigenvalues of product of reflections that are not 1 or −1 always
come in pairs: if exp(θi) is an eigenvalue, so is exp(−θi). This goes contrary to the fact
that |λ2〉 = · · · = |λM 〉, which implies that there is only one non-1 eigenvalue, Second,
|v1〉 is generally not be the only 1-eigenvector of UW ; vectors in (span{A,B}⊥) are also
1-eigenvectors. This brings us to the question of whether Algorithm 4.3.2 is correct and
efficient in all cases. As we see in the next section, it is not.

47

4.5 The Counterexample

A question that naturally arises from Property 4.3.7 is whether this property alone is a
sufficient condition for the efficiency of Algorithm 4.3.2. After all, if the weighted average
eigenvalues of Π3Π2Π3 is 1 − ε, where the weights are the squared norms of projections
from |v1〉|0〉 to the eigenvectors, then perhaps the individual eigenvalues are also somewhat
close to 1− ε, which would then imply the efficiency of the algorithm. In this section, we
prove that this is not the case.
Theorem 4.5.1 There exists {|vj〉}j=1,...,M and {|λj〉}j=1,...,M satisfying Definition
4.3.1 such that when ε� |β|2, Algorithm 4.3.2 is not correct.

The condition ε � |β|2 is satisfied for most search problems of interest. Typically, ε
is very small. Meanwhile, β, the “error” of phase estimation, is a constant independent
from ε. In fact, we require β to be an independent constant in order to prove Theorem
3.3.10(3), which says that the cost of phase estimation is in O(1√

δ
U).

We build up this counterexample step by step. To begin, we point out a basic linear
algebra fact. Consider a block matrix of the form[

a b · û∗
b∗ · û c · I

]
where a, b, c, are scalar constants, û is a unit column vector with, say m components, and
I is the m×m identity matrix. Compare it with the 2× 2 matrix[

a b
b∗ c

]
.

It is perhaps not a surprise that the two eigenvalues of the 2×2 matrix are also eigenvalues
of the (m+ 1)× (m+ 1) block matrix.
Property 4.5.2 The eigenvalues of[

a b · û∗
b∗ · û c · I

]
are λ1, λ2, c, . . . , c if and only if the eigenvalues of[

a b
b∗ c

]
are λ1, λ2.
Proof. Because the latter matrix is Hermitian, it has two orthonormal eigenvectors v1, v2
with eigenvalues λ1, λ2. If v1 =

[
p
q

]
and v2 =

[r
s

]
, one can verify that

[
p
q·û

]
and

[r
s·û
]
are

eigenvectors of the former matrix with the same respective eigenvalues. The other m − 1
eigenvectors of the former matrix are in the form

[
0
û⊥

]
, where û⊥ is any vector orthogonal

to û. These vectors have the eigenvalue c. �

48

Having established Property 4.5.2, we turn our attention to the following matrix.
Definition 4.5.3

R̄ :=
[

1− ε β
√
ε
√

1− ε
β∗
√
ε
√

1− ε 1− |β|2 + |β|2ε

]
We will explain why this matrix is important in a moment. For the time being, we

compute its eigenvalues.
Property 4.5.4 The eigenvalues of R̄ are 1 and (1− |β|2)(1− ε).
Proof. The characteristic equation of the matrix is λ2 − (1 + (1 − ε)(1 − |β|2))λ + (1 −
ε)(1− |β|2) = 0. Factoring the polynomial gives us its two solutions. �

As we derived in Sections 4.2 and 4.3, the behaviour of Algorithm 4.3.2 is related to the
eigenvalues and vectors of the R matrix. If it is possible to construct {|vj〉}j=1,...,M and
{|λj〉}j=1,...,M such that R = R̄, then we would have successfully disproven the correctness
of the algorithm. This is because one of the eigenvalues of R̄ is 1. The principal subspace
corresponding to the eigenvalue 1 has a principal angle of zero, so no rotation happens
here. We will see in Property 4.5.15 that |v1〉|0〉 has a very large projection onto this
principal subspace. However, it is impossible for R = R̄, because R̄ violates Theorem
4.3.3(5). Using notations defined in Section 4.3, the top right element of R̄ is equal to
β2ε2. Theorem 4.3.3(5) says that |ε2|2 ≤ ε (1 − ‖u2‖2). But in our case of R̄, we have
|ε2|2 = ε · (1− ε) and ε (1− ‖u2‖2) = ε · (|β|2 − |β|2ε) = |β|2 · ε · (1− ε). The left hand side
is greater than the right.

Nonetheless, in the special case where 1/|β|2 is a power of 2, it is possible to find
{|vj〉}j=1,...,M and {|λj〉}j=1,...,M , where M = 1 + 1/|β|2, such that

R =


1− ε β2√ε

√
1− ε · · · β2√ε

√
1− ε

(β∗)2√ε
√

1− ε 1− |β|2 + |β|2ε
...

. . .
(β∗)2√ε

√
1− ε 1− |β|2 + |β|2ε

 .
1 1/|β|2

(The numbers below the matrix represent dimensions of the blocks above them.)
This matrix R is related to R̄ through Property 4.5.2. Because of this, eigenvalues

of R̄ are also eigenvalues of R, and the eigenvectors are related by a change in basis. In
addition, the matrix R satisfies Theorem 4.3.3(5), because the elements on the top row,
namely β2√ε

√
1− ε, are smaller by a factor β compared to the top right element of R̄,

which is β
√
ε
√

1− ε. Because the eigenvalues and vectors of R̄ does not imply correctness
of Algorithm 4.3.2, neither does R, which completes the proof.

The rest of this section explains the construction of {|vj〉}j=1,...,M and {|λj〉}j=1,...,M
in detail. Our construction uses the well-known Hadamard transformation.

49

Definition 4.5.5 (Hadamard transformation)

Let H = 1√
2

[
1 1
1 −1

]
.

Property 4.5.6 Let “·” denote the binary bitwise dot product, then

H⊗k|x〉 = 1√
2k

2k−1∑
y=0

(−1)x·y|y〉 for all x ∈ {0, . . . , 2k − 1}.

The key property of H⊗k relevant to our purpose is the following.
Corollary 4.5.7 ∣∣∣∣〈y|H⊗k|x〉∣∣∣∣ =

∣∣∣∣ 1√
2k

∣∣∣∣ for all x, y ∈ {0, . . . , 2k − 1}.

In particular, 〈y|H⊗k|x〉 = 1√
2k

if x = 0 or y = 0.

Said in another way, all elements in the Hadamard matrix have the same magnitude,
namely 1/

√
2k; only the signs are different. Moreover, the top row and leftmost column of

the matrix are positive.
We are now ready to provide the construction for our counterexample, using notations

from Definition 4.3.1. Suppose that 1/|β|2 is a power of 2.
Definition 4.5.8 Let k be the positive integer such that 2k = 1/|β|2.
Definition 4.5.9 (of M , N , f)
(1) Suppose that M � 2k + 1. Let N = 2k + 1.
(Recall the meanings of M and N from Definition 4.3.1(4) and (7).)

(2) Let f : {1, . . . ,M} 7→ {0, 1} be a function such that there is only 1 marked element.
(So that there are M − 1 unmarked elements.)

Definition 4.5.10 (of “|vj〉”)
Suppose that |vj〉 ∈ CM for all j ∈ {1, . . . ,M}.
(1) Let |v1〉 =

√
1− ε |û1〉+

√
ε |m̂1〉, where

|û1〉 is any normalized superposition of unmarked states, and |m̂1〉 is the marked state.
(2) Let |v2〉, . . . , |v2k+1〉 be defined as follows.

[v2; v3; . . . ; v2k+1] := [w; q1; . . . ; q2k−1] ·H⊗k, where
(2a) |w〉 :=

√
ε |û1〉 −

√
1− ε |m1〉, and

(2b) |q1〉, . . . , |qM−2〉 forms an orthonormal basis for the image of ΠU − |û1〉〈û1|.
(e.g. |v2〉 = 1√

2k
(|w〉+ |q1〉+ · · ·+ |q2k−1〉))

(3) Let |v2k+2〉, . . . , |vM 〉 be defined as follows.
|vj〉 := |qj−2〉 for all j ∈ {2k + 2, . . . ,M}

50

Definition 4.5.11 (of “|λj〉”)
Suppose that |λj〉 ∈ CN = span{|0〉, |1〉, . . . , |2k〉} for all j ∈ {1, . . . ,M}.
(1) Let |λ1〉 = |0〉.
(2) Let |λ2〉, . . . , |λ2k+1〉 be defined as follows.

[λ2;λ3; . . . ;λ2k+1] :=
[
H⊗k

0

]
(e.g. |λ2〉 = 1√

2k
(|0〉+ |1〉+ · · ·+ |2k − 1〉))

(3) Let |λ2k+2〉, . . . , |λM 〉 be defined as follows.
|λj〉 := |2k〉 for all j ∈ {2k + 2, . . . ,M}.

The claim is that {|vj〉}j=1,...,M and {|λj〉}j=1,...,M , as defined above, gives us the
counterexample.
Property 4.5.12
(1) 〈u1|u1〉 = 1− ε

(2) 〈u1|uj〉 =
{
β
√

1− ε
√
ε if 2 ≤ j ≤ 2k + 1

0 if j > 2k + 1

(3) 〈uj |uj〉 =
{

1− |β|2 + |β|2ε if 2 ≤ j ≤ 2k + 1
1 if j > 2k + 1

(4) 〈ui|uj〉 = 0 if i 6= j and 2 ≤ i and 2 ≤ j

(5) 〈λj |λj〉 = 1 for all j ∈ {1, . . . ,M}

(6) 〈λ1|λj〉 =
{ 1√

2k
= β if 2 ≤ j ≤ 2k + 1

0 if j > 2k + 1

(7) 〈λi|λj〉 =


0 if i 6= j and 2 ≤ i ≤ 2k + 1 and 2 ≤ j ≤ 2k + 1
0 if i 6= j and 2 ≤ i ≤ 2k + 1 and j > 2k + 1
0 if i 6= j and i > 2k + 1 and 2 ≤ j ≤ 2k + 1
1 if i 6= j and i > 2k + 1 and j > 2k + 1

Proof. Recall that |uj〉 = ΠU |vj〉. The proofs of all of the above are trivial from Definition
4.5.10, Definition 4.5.11, and Corollary 4.5.7.
(1) Immediate from Definition 4.3.1(6).
(2) Let [〈u1|u2〉; 〈u1|u3〉; . . . ; 〈u1|u2k+1〉] denote the 1 × 2k matrix whose elements are
〈u1|u2〉, 〈u1|u3〉, . . . , 〈u1|u2k+1〉. Then

51

[〈u1|u2〉; 〈u1|u3〉; . . . ; 〈u1|u2k+1〉]
= 〈v1|ΠU [v2; v3; . . . ; v2k+1]
= 〈v1|ΠU [w; q1; . . . ; q2k−1] ·H⊗k

=
√

1− ε 〈û1| · [
√
ε û1; q1; . . . ; q2k−1] ·H⊗k

= [
√

1− ε
√
ε; 0; . . . ; 0] ·H⊗k

=
[

1√
2k
√

1− ε
√
ε; . . . ; 1√

2k
√

1− ε
√
ε

]
= [β
√

1− ε
√
ε; . . . ; β

√
1− ε

√
ε].

For all j > 2k + 1,
〈u1|uj〉 = 〈v1|ΠU |vj〉 =

√
1− ε 〈û1|qj−2〉 = 0.

(3) For all j ∈ {2, . . . 2k + 1},
〈uj |uj〉 = ‖|uj〉‖2

= ‖ΠU |vj〉‖2

=
∥∥∥∥ 1√

2k
(
ΠU |w〉 ± ΠU |q1〉 ± · · · ± ΠU |q2k−1〉

)∥∥∥∥2 (by Definition 4.5.10(2)
and Corollary 4.5.7)

=
∥∥∥∥ 1√

2k
(√

ε |û1〉 ± |q1〉 ± · · · ± |q2k−1〉
)∥∥∥∥2

= 1
2k

(ε+ 1 + · · ·+ 1)

= ε+ 2k − 1
2k

= 1− |β|2 + |β|2ε.
For all j > 2k + 1,

〈uj |uj〉 = 〈qj−2|ΠU |qj−2〉 = 〈qj−2|qj−2〉 = 1.
(4) First, note that ΠU |w〉 =

√
ε |û1〉, ΠU |qj〉 = |qj〉 for all j ∈ {1, . . . ,M − 2}, and

|û1〉, |q1〉, . . . , |qM−2〉 are orthogonal. Even though by Definition 4.5.10(2), the vectors
|u2〉, . . . , |u2k+1〉 are defined by

[u2; . . . ;u2k+1] = ΠU [v2; . . . ; v2k+1]
= ΠU [w; q1; . . . ; q2k−1] ·H⊗k = [

√
ε û1; q1; . . . ; q2k−1] ·H⊗k

,

the columns of [
√
ε û1; q1; . . . ; q2k−1] · H⊗k are still orthogonal, because H⊗k is a unitary

transformation.
(5) Immediate from Definition 4.5.11; |λj〉 is normalized for all j ∈ {1, . . . ,M}.
(6) Let [〈λ1|λ2〉; . . . ; 〈λ1|λ2k+1〉] denote the 1× 2k matrix whose elements are 〈λ1|λ2〉, . . .,
〈λ1|λ2k+1〉. Then

52

[〈λ1|λ2〉; . . . ; 〈λ1|λ2k+1〉]
= 〈λ1| · [λ2; . . . ;λ2k+1]

= 〈0| ·
[
H⊗k

0

]
= [1; 0; . . . ; 0] ·

[
H⊗k

0

]
=
[

1√
2k

; . . . ; 1√
2k

]
= [β; . . . ; β].

For all j > 2k + 1, 〈λ1|λj〉 = 〈0|2k〉 = 0.
(7) |λ2〉, |λ3〉, . . . , |λ2k+1〉 are all orthogonal due to their definitions in Definition 4.5.11(2):
all columns of H⊗k are orthogonal. These states are also orthogonal to |2k〉. Conse-
quently they are orthogonal to |λ2k+2〉, . . . , |λM 〉. The inner product between any two of
|λ2k+2〉, . . . , |λM 〉 is 1, because they are all equal to |2k〉. �

As a result of Property 4.5.12, we derive that the matrix R takes on the following form.
Corollary 4.5.13

R =



1− ε β2√ε
√

1− ε · · · β2√ε
√

1− ε 0 · · · 0
(β∗)2√ε

√
1− ε 1− |β|2 + |β|2ε 0

...
.

(β∗)2√ε
√

1− ε 1− |β|2 + |β|2ε 0
0 0 1
...

.
0 0 1


1 2k (= 1/|β|2) M−1−2k

(Again, the numbers below the matrix represent dimensions of the blocks above them.)

Proof. Recall that according to Definition 4.3.1(10), R =
∑M

i=1
∑M

j=1〈ui|uj〉 · 〈λi|λj〉 ·
(|i〉〈j|). Property 4.5.12 provides us with enough information to compute every element of
this matrix. We leave it to the reader to work through the steps. �

Corollary 4.5.14 The eigenvalues of R are
1, (1− |β|2)(1− ε), 1− |β|2 + |β|2ε, . . . , 1− |β|2 + |β|2ε, 1, . . . , 1.

Proof. We first look at the bottom right (M − 1− 2k)× (M − 1− 2k) block of R. This is a
diagonal matrix with 1s on the diagonal, so the eigenvalues within this block are 1, . . . , 1.
Next, we examine the top left (1 + 2k)× (1 + 2k) block. Observe that this block is in the
form of the block matrix stated in Property 4.5.2, with a = 1 − ε, b = β

√
ε
√

1− ε, and

53

c = 1− |β|2 + |β|2ε. As a result, two of the eigenvalues of this block are the same as those
of R̄, defined in Definition 4.5.3. These two eigenvalues are 1 and (1 − |β|2)(1 − ε), as
calculated in Property 4.5.4. By Property 4.5.2, the other 2k − 1 eigenvalues in this block
are all equal to c, which is 1− |β|2 + |β|2 in our case. �

Let λ1 = 1, λ2 = (1− |β|2)(1− ε). We then have the following.
Property 4.5.15 Suppose that ε 6= 0, ε 6= 1, and |β|2 6= 0. Let |t1〉, |t2〉 be the two
eigenvectors of Π3Π2Π3 that are not orthogonal to |v1〉|0〉 with eigenvalues λ1, λ2. Then
|〈t1| · |v1〉|0〉|2 = 1− ε

|β|2 + ε(1− |β|2) and |〈t2| · |v1〉|0〉|2 = ε

|β|2 + ε(1− |β|2) .

Proof. The state |v1〉|0〉 is orthogonal to all eigenvectors of Π3Π2Π3 except those corre-
sponding to the two eigenvalues of R̄, calculated in Property 4.5.4. Consequently, we can
find the squared norms of projections of |v1〉|0〉 to the two eigenvectors using Property 4.3.7.
Let ρ1 = |〈t1| · |v1〉|0〉|2 and ρ2 = |〈t2| · |v1〉|0〉|2. Property 4.3.7 tells us that

ρ1λ1 + ρ2λ2 = 1− ε.
Using the fact that ρ1 + ρ2 = 1, λ1 = 1, and λ2 = (1− |β|2)(1− ε). We have

(1− ρ2) · 1 + ρ2(1− |β|2)(1− ε) = 1− ε.
Solving for ρ2 gives us

ρ2 = ε

|β|2 + ε(1− |β|2) .
Then ρ1 is simply 1− ρ2. �

Corollary 4.5.16 When ε � |β|2, Algorithm 4.3.2 is not correct for our choice of
{|vj〉}j=1,...,M and {|λj〉}j=1,...,M .
Proof. Recall from Problem 4.3.4 what it means for Algorithm 4.3.2 to be correct: it is
correct if the initial state |v1〉|0〉 eventually rotates to a mostly marked state after a certain
number of iterations. We now explain why this does not happen in our case. As always,
we reason about the behaviour of the algorithm using the theory of principal angles and
vectors. According to Property 4.5.15, the initial state |v1〉|0〉 has a large projection onto
the 1-eigenvector |t1〉 of Π3Π2Π3. Because |t1〉 is a 1-eigenvector, there are two things
we can say about the principal subspace containing it. First, no rotation happens in this
subspace. The rotation angle, 2θ1, is given by 2θ1 = 2 cos−1√1 = 0. Second, |t1〉 contains
only unmarked states. This is because by Property 2.2.4, 1 = cos2 θ1 = ‖Π2|t1〉‖2, and
‖Π2|t1〉‖2 gives us the ratio of unmarked elements of |t1〉. (See Definition 4.3.1(8) for the
definition of Π2.) Let |φT 〉 denote the state of Algorithm 4.3.2 after T iterations. Since
no rotation happens in the principal subspace containing |t1〉, we deduce that |〈t1|φT 〉|2
remains equal no matter how many iterations we run the algorithm for. Hence, we derive
from Property 4.5.15 that

|〈t1|φT 〉|2 = 1− ε

|β|2 + ε(1− |β|2)

54

for every T . Observe that 1 − ε/(|β|2 + ε(1− |β|2)) ≥ 1 − ε/|β|2. Since |t1〉 is entirely
unmarked, the probability of measuring a marked element in |φT 〉 therefore does not exceed
ε/|β|2. So the success probability is no greater than ε/|β|2 for every T . If we assume that
ε � |β|2 and consider |β|2 to be a constant independent from ε, then the probability is
in O(ε). Since ε = 1/M , this probability is arbitrarily close to zero for sufficiently large
values of M . Therefore, for our choice of {|vj〉}j=1,...,M and {|λj〉}j=1,...,M , the algorithm
is not correct. �

55

4.6 Perturbation Bounds

In our analysis of Algorithm 4.3.2 so far, we determined the behaviour of the algorithm
by computing the eigenvalues of Π3Π2Π3 exactly. However, the process of computing
eigenvalues is not trivial, and we were only able to do so in special cases such as those
presented in Sections 4.4 and 4.5. Perhaps this leaves the reader wondering whether there
are approximation theorems in linear algebra that are applicable to our analysis. In short,
the attempted efforts of using approximation theorems has not been met with much success
in the course of our research. But for completeness we highlight here some of our key
methodologies.

We present one approach that one might take to prove the correctness of Algorithm 4.1.1
without explicitly calculating the eigenvalues of R. Recall that the R matrix, to which
Π3Π2Π3 is related, has the following form.

R =



1− ε β2ε2 · · · βmεm 0 · · · 0
β∗2ε
∗
2

... ? ?
β∗mε

∗
m

0
... ? ?
0


.

(See Theorem 4.2.9 for details on this matrix.) The question of whether Algorithm 4.1.1 is
correct arises from the fact that phase estimation is not exact. However, if we suppose for
a moment that phase estimation is exact—for example, suppose that all the eigenvalues of
UW are of the form exp(2πi · 0.x1x2 . . . xN) for some finite N , where x1, . . . , xN are binary
digits—then the algorithm would be correct. In the case where phase estimation is exact,
β2, . . . , βm are all zero. This motivates us to decompose the R matrix as

R =



1− ε 0 · · · 0 0 · · · 0
0
... ? ?
0
0
... ? ?
0


+



0 β2ε2 · · · βmεm 0 · · · 0
β∗2ε
∗
2

... 0 0
β∗mε

∗
m

0
... 0 0
0


,

where the first term is the ideal form of the R matrix had there been no error in phase
estimation, while the second term is the error, or perturbation, from the ideal. If the R
matrix were just the first term, the proof of correctness of Algorithm 4.1.1 is easy: R is
block diagonal, and the eigenvector of Π3Π2Π3 corresponding to the top left 1× 1 block is
precisely |v1〉|0〉 with eigenvalue 1 − ε. The question is how much the perturbation term

56

affects the eigenvalue 1− ε and its associated eigenvector |v1〉|0〉. To answer this question,
we use the following theorem
Theorem 4.6.1 (Perturbation theorem, Chapter 6 of [Bha13], page 152)
Let A,B be n × n Hermitian matrices. Suppose that λ1 ≥ λ2 ≥ · · · ≥ λn are eigenvalues
of A, and µ1 ≥ µ2 ≥ · · · ≥ µn are eigenvalues of A+B. Then

|λj − µj | ≤ ‖B‖ for all j ∈ {1, . . . , n},
where ‖B‖ is the spectral norm of B.

Let A and B be the first and second term of R respectively. We know that one of the
eigenvalues of A is 1− ε. Suppose that this is the jth largest eigenvalue of A, so λj = 1− ε.
It is not difficult to derive that the spectral norm of B is the norm of its top row or leftmost
column. Therefore, from Theorem 4.2.9(3), ‖B‖ ≤ β

√
ε
√

1− ε. Theorem 4.6.1 then tells
us that the jth largest eigenvalue of A+B is within [1−ε−β

√
ε
√

1− ε, 1−ε+β
√
ε
√

1− ε].
However, this is not useful to us at all. We would like this eigenvalue to be close to 1− ε,
but
√
ε is far too large in comparison to ε. So this particular line of reasoning does not

seem to show any promise.
The above approach is not the only method of approximating the eigenvalues of Π3Π2Π3.

Other means of placing bounds on eigenvalues include the theory of Gershgorin discs (See
Chaper 6 [HJ12]) and the theory of sum of Hermitian matrices (See [KT01]). It is also
possible to examine the matrix Π2Π3Π2, because its eigenvalues are the same as those of
Π3Π2Π3, which are the squares of singular values of Π3Π2.

The approximation of eigenvectors presents its own set of challenges, because in general
eigenvectors can be very sensitive to perturbations. Chapter 7 of [Bha13] provides the
following example. Consider the two matrices

[
1+ε

0
0

1−ε

]
and

[
1
ε
ε
1

]
. Even though they

differ by only a small amount, one can easily verify that
[

1
0

]
and

[
0
1

]
are eigenvectors of

the first matrix, while
[

1
1

]
and

[
1
−1

]
are eigenvectors of the second matrix.

In the end, we abandoned the approach of approximating the eigenvalues of Π3Π2Π3.
This is because the goal of the approximation is to prove the correctness of Algorithm 4.3.2
by reasoning that despite the small perturbation, the resulting algorithm still resembles
the ideal case where the initial state |v1〉|0〉 has an eigenvalue of 1− ε. However, we know
that this is not the case, because we produced a counterexample in Section 4.5.

57

5 Approach 2: Composed Walk Construction

Our last topic of discussion involves the more specific problem of nested MNRS quantum
walks. The problem under consideration is still Markov chain search: we are finding a
marked vertex on a Markov chain on some state space, say {1, . . . , n}, with transition
matrix P . However, the process of determining whether a vertex x ∈ X is marked requires
yet another quantum walk with its own transition matrix Px. Unlike in Chapter 4, we
do assume structure in the checking procedure UC : we assume that UC is another MNRS
quantum walk. So in a sense, we want to find a way to efficiently compose the outer walk on
P with the inner subwalks on P1, . . . , Pn. We make the assumption that a vertex x in the
outer walk is marked iff a there exists a marked vertex in the subwalk Px. This assumption
is applicable to some problems such as Element Distinctness and Triangle Finding, but
not others such as AND-OR tree evaluation. (To determine whether an AND-OR tree
evaluates to 0, we need to search for an OR subtree without a marked element.) We
study a construction where we build a composed Markov chain from P and P1, . . . , Pn and
comment on its performance.

In this chapter, the (j, k)-element in matrix P is denoted as pjk. The (j, k)-element in
matrices P1, P2, . . . , Pn are denoted as p(1)

jk , p
(2)
jk , . . . , p

(n)
jk . We will also use the Dirac bra-ket

notation to not only denote quantum states but vectors in general, because it provides us
a visually appealing way of distinguishing row and column vectors. We let |1〉, |2〉, . . . , |n〉
denote the standard basis column vectors in Cn. For every vector |φ〉 ∈ Cn, 〈φ| is a row
vector that is the conjugate transpose of |φ〉.

58

5.1 Composition of Markov chains
Let P denote the matrix that characterizes the “outer” Markov chain. We will refer to
vertices in this Markov chain as the “outer vertices.” Assuming that the state space of this
Markov chain is of size n, P is an n× n matrix:

P =

 p11 · · · p1n
...

. . .
...

pn1 · · · pnn

 .
If the said Markov chain is irreducible, let 〈s| denote the unique 1-left-eigenvector of this
matrix, normalized so that its elements sum to 1. (This is the same as the π vector, defined
in Definition 3.2.4.) Let sj denote the jth element of 〈s|. So 〈s| =

∑
1≤j≤n sj 〈j|.

Let P1, P2, . . ., Pn denote the matrices characterizing the “inner” Markov chains.
Vertices in these Markov chains are referred to as “inner vertices.” Let m1, m2, . . ., mn

denote the sizes of their state spaces.

P1 =

 p
(1)
11 · · · p

(1)
1,m1

...
. . .

...
p

(1)
m1,1 · · · p

(1)
m1,m1

 , . . . , Pn =

 p
(n)
11 · · · p

(n)
1,mn

...
. . .

...
p

(n)
mn,1 · · · p

(n)
mn,mn

 .
If these Markov chains are irreducible, let 〈s(1)|, 〈s(2)|, . . ., 〈s(n)| denote their unique
1-left-eigenvectors, normalized so that elements from each vector sum to 1.

Let |u〉 denote the column vector of 1s: |u〉 =

 1
...
1

.
Then, the composed Markov chain is defined as follows.

Definition 5.1.1 (Markov chain composed from P, P1, . . . , Pn)
Let Pcmp denote the matrix that characterizes the Markov chain that composes P with
P1, . . . , Pn. We define this matrix to be the following.

Pcmp :=


p11 P1 p12 |u〉〈s(2)| · · · p1n |u〉〈s(n)|

p21 |u〉〈s(1)| p22 P2 p2n |u〉〈s(n)|
...

. . .
...

pn1 |u〉〈s(1)| pn2 |u〉〈s(2)| · · · pnn Pn


Observe that each “element” in the above definition is a block matrix. The block on

the jth row and kth column is of dimension mj ×mk. Consequently, we index the rows
and columns of Pcmp by two indices: the first index is the block number, while the second
index is the row or column number within the block. For example, pcmp

(1,2),(1,3) refers to the
(2, 3)-element in the (1, 1)-block of Pcmp. So pcmp

(1,2),(1,3) = (p11P1)23 = p11p
(1)
23 . Also note

that the dimension of |u〉 is derived from the size of the block containing it.

59

5.2 Properties of Pcmp

Property 5.2.1 If P, P1, . . . , Pn are stochastic, irreducible, aperiodic, and reversible,
so is Pcmp.
Proof. We divide the proof into four parts. Each parts proves one of the four claimed
properties of Pcmp.
(1) Pcmp is stochastic.

By assumption, P, P1, . . . , Pn are all stochastic. Hence all rows in these matrices sum
to 1. It is also the case that elements of each of 〈s(1)|, 〈s(2)|, . . ., 〈s(n)| sum to 1 as well.
It is straightforward to confirm that all rows of Pcmp sum to 1 as a result.
(2) Pcmp is irreducible.

To prove irreducibility, we need to show that there exists a path from any vertex to
any vertex. Let (usrc, vsrc) and (udest, vdest) be two vertices in Pcmp. (As noted in Definition
5.1.1, every vertex in Pcmp labelled by two indices. The first label is the index of the outer
vertex. The second is of the inner vertex.) By irreducibility of the outer walk P , there is a
path from usrc to udest in P . Let this path be usrc −→ u1 −→ u2 −→ · · · −→ ul −→ udest
We consider two cases. Case 1: the length of the path is zero, so the path from usrc to
udest is a self-loop. In this case usrc = udest, so vsrc and vdest are within the same outer
vertex. By irreducibility of Pusrc , there exists a path between vsrc and vdest. The existence
of a self-loop establishes that pusrc,usrc 6= 0. So the block matrix pusrc,usrcPusrc is not zero,
establishing that there is a path in Pcmp between the two said vertices. Case 2: the length
of the path is not zero. In this case, we can assume the existence of a path does not visit
the same vertex twice and does not visit usrc or udest in the middle. Observe that if (u1, v1),
(u2, v2) are two vertices in Pcmp and u1 6= u2, then there is an edge between these two
vertices iff pu1,u2 6= 0. This is immediate from the fact that pcmp

(u1,v1),(u2,v2) = pu1,u2 · s
(u2)
v2

for all u1 6= u2 and that s(u2) does not have zero elements. Therefore, if usrc −→ u1 −→
u2 −→ · · · −→ ul −→ udest is a path in P with no repeating vertices as we assumed, then
(usrc, vsrc) −→ (u1, v1) −→ (u2, v2) −→ · · · −→ (ul, vl) −→ (udest, vdest) is a path in P cmp

for any v1, v2, . . .vl within their respective outer vertices.
(3) Pcmp is aperiodic.

One way to prove this is by reasoning that Pcmp cannot have an eigenvalue of−1, which
a bipartite walk matrix must have. We will instead use a combinatorial argument, in the
same spirit as the proof for irreducibility. A graph is non-bipartite iff it contains a self-loop
or a (not necessarily directed) cycle of odd length. By assumption, P is non-bipartite. We
first assume that P has a self-loop. In this case, puu 6= 0 for some vertex u in P . So the uth
block on the diagonal of Pcmp, which is puuPu, is nonzero. Since Pu is also non-bipartite
by assumption, Pcmp is non-bipartite. Next, we assume that P has a cycle of odd length.
Suppose this cycle is u1 — u2 — · · · — ul. We’ve already seen in the irreducibility proof
that P cmp

(u1,v1),(u2,v2) 6= 0 for all u1, u2, v1, v2 such that u1 6= u2 and pu1,u2 6= 0. Then, since

60

all vertices in the cycle are distinct, we know that (u1, v1) — (u2, v2) — · · · — (ul, vl) is
an odd cycle in Pcmp, for any v1, v2, . . ., vl in their respective outer vertices.
(4) Pcmp is reversible.

Let 〈scmp| denote the unique 1-eigenvector of Pcmp and let scmp
i,j denote its elements.

(Again, note that we refer to the elements of 〈scmp| with two indices.) We can verify
that 〈scmp| =

[
s1〈s(1)| s2〈s(2)| · · · sn〈s(n)|

]
. So scmp

i,j = sis
(i)
j . To show that Pcmp is

reversible, we need to confirm that every pair of vertices (u1, v1), (u2, v2) in Pcmp satisfy
scmp
u1,v1 p

cmp
(u1,v1),(u2,v2) = scmp

u2,v2 p
cmp
(u2,v2),(u1,v1). (∗)

We divide the proof into two cases: the case where u1 = u2 and where u1 6= u2. When
u1 = u2, observe that pcmp

(u1,v1),(u2,v2) = pu1,u1p
(u1)
(v1,v2), and pcmp

(u2,v2),(u1,v1) = pu2,u2p
(u2)
(v2,v1) =

pu1,u1p
(u1)
(v2,v1). If pu1,u1 = 0, then both sides of the above equation are equal to zero and we

are done. On the other hand, when pu1,u1 6= 0, equation (∗) is equivalent to

su1s
(u1)
v1 pu1,u1p

(u1)
(v1,v2) = su1s

(u1)
v2 pu1,u1p

(u1)
(v2,v1)

su1s
(u1)
v1 p

(u1)
(v1,v2) = su1s

(u1)
v2 p

(u1)
(v2,v1) (because pu1,u1 6=0)

s
(u1)
v1 p

(u1)
(v1,v2) = s

(u1)
v2 p

(u1)
(v2,v1). (because su1 6= 0)

Since Pu1 is reversible by assumption, the last equation always holds. Therefore, (∗) is
true, which is what we wanted to prove. Next, we assume that u1 6= u2. In this case,
pcmp

(u1,v1),(u2,v2) = pu1,u2s
(u2)
v2 , and pcmp

(u2,v2),(u1,v1) = pu2,u1s
(u1)
v1 . So we need to check whether

su1s
(u1)
v1 · pu1,u2s

(u2)
v2 = su2s

(u2)
v2 · pu2,u1s

(u1)
v1 ,

or equivalently,
su1pu1,u2 = su2pu2,u1 .

Since P is reversible by assumption, we know that this equality holds. Again, this implies
that equation (∗) is true. Therefore, Pcmp is reversible. �

Property 5.2.2 If
λ1 = 1, λ2, . . . , λn

are eigenvalues of P , and
λ

(j)
1 = 1, λ(j)

2 , . . . , λ
(j)
mj

are eigenvalues of Pj for every j ∈ {1, . . . , n}, then the eigenvalues of Pcmp are
λ1, λ2, . . . , λn, and pjjλ

(j)
2 , pjjλ

(j)
3 , . . . , pjjλ

(j)
mj , for every j ∈ {1, . . . , n}

(Note that pjjλ(j)
1 is not an eigenvalue.)

Proof. First, we show that λ1, λ2, . . . , λn are eigenvalues of Pcmp. If we suppose that a
vector in the form of [a1 a2 · · · an] is a left eigenvector of P , then it can be verified
that the block vector [a1〈s(1)| a2〈s(2)| · · · an〈s(n)|] is a left eigenvector of Pcmp with

61

the same eigenvalue. So every eigenvalue of P is also an eigenvalue of Pcmp.
Next, we show that

pjjλ
(j)
2 , pjjλ

(j)
3 , . . . , pjjλ

(j)
mj

are also eigenvalues of Pcmp for every j ∈ {1, . . . , n}. To do so, we first prove that if 〈v|
is a non-1 left eigenvector of Pj , then 〈v|u〉 = 0. That is, the elements of 〈v| sum to
zero. Since every row of Pj sums to 1, we can verify that |u〉 is a 1-right-eigenvector of
Pj , meaning that Pj |u〉 = |u〉. From here, we have 〈v|u〉 = 〈v|Pj |u〉 = λ〈v|u〉, where λ
is the eigenvalue of |v〉. Therefore, (1 − λ)〈v|u〉 = 0. Since the eigenvalue of 〈v| is not 1,
we deduce that 〈v|u〉 = 0. Having proven that 〈v|u〉 = 0, we claim that the block vector
[0 . . . 0 〈v| 0 . . . 0] is an eigenvector of Pcmp. In this vector, there are n blocks
in total. The kth block is of size mk for every k ∈ {1, . . . , n}. The jth block contain
〈v|, a non-1 left eigenvector of Pj . All other blocks are zero. To verify that this is an
eigenvector, we multiply this by Pcmp. Using the fact that 〈v|u〉 = 0, we get

[0 . . . 0 〈v| 0 . . . 0]Pcmp

= [0 . . . 0 pjj〈v|Pj 0 . . . 0]
= [0 . . . 0 pjjλ〈v| 0 . . . 0].

Therefore, if 〈v| is an eigenvector of Pj with eigenvalue λ 6= 1, then pjjλ is an eigenvalue
of Pcmp. This completes the proof. �

62

5.3 Complexity Analysis of Composed Walk

We now compare the complexities of two algorithms. The first is the “naive” method
of quantum walk composition. This algorithm is an MNRS quantum walk on the outer
Markov chain, where the checking procedure is MNRS quantum walks on the inner Markov
chains. The second algorithm is the MNRS quantum walk on the newly proposed Markov
chain characterized by Pcmp.
Definition 5.3.1 (Set-up, update, checking)
(1) Let S0, the set-up cost of the outer walk, represent the cost of the unitary operation
that performs the following mapping.

|0〉 7→
∑

x∈{1,...,n}

√
sx|x〉

(2) Let U0, the update cost of the outer walk, represent the cost of the unitary operation
that performs the following mappings and their inverses.

|x〉|0〉 7→ |x〉
∑

y∈{1,...,n}

√
pxy|y〉

|0〉|y〉 7→
∑

x∈{1,...,n}

√
p∗yx|x〉|y〉

(3) Let S1, the set-up cost of the inner walks, represent the cost of the unitary operation
that performs the following mapping.

|z〉|0〉 7→ |z〉
∑

x∈{1,...,mz}

√
s

(z)
x |x〉

(4) Let U1, the update cost of the inner walks, represent the cost of the unitary operation
that performs the following mappings and their inverses.

|z〉|x〉|0〉 7→ |z〉|x〉
∑

y∈{1,...,mz}

√
p

(z)
xy |y〉

|z〉|0〉|y〉 7→ |z〉
∑

x∈{1,...,mz}

√
p

(z)∗
yx |x〉|y〉

(5) Let C1, the checking cost, represent the cost of the unitary operation that performs the
following mapping.
|z〉|w〉 7→

{
−|z〉|w〉 if inner vertex w is marked, where w is within outer vertex z
|z〉|w〉 otherwise

(6) Let ε0 be the ratio of marked elements of the outer Markov chain.
(7) Let ε1 be the minimum ratio of marked elements of the inner Markov chains that
contain at least 1 marked element.
(8) Let δ0 be the spectral gap of the outer Markov chain.
(9) Let δ1 be the minimum spectral gap of the inner Markov chains that contain at least
1 marked element.

63

Property 5.3.2 The cost of the “naive” algorithm is in
O

(
S0 + 1

√
ε0

(
1√
δ0

U0 + log 1
√
ε0
·
(

S1 + 1
√
ε1

(
1√
δ1

U1 + C1

))))
= O

(
S0 + 1√

ε0δ0
U0 + 1

√
ε0

log 1
√
ε0
· S1 + 1√

ε0ε1δ1
log 1
√
ε0
· U1 + 1

√
ε0ε1

log 1
√
ε0
· C1

)
.

Proof. The cost of the MNRS quantum walk is in O(S + 1
ε (

1√
δ
U + C)). In the case of the

naive algorithm, we have S = S0, U = U0, ε = ε0, and δ = δ0. As for the checking cost, the
checking procedure is a quantum walk on the inner Markov chains, repeated O(log 1√

ε0
)

times for error reduction. So C ∈ O(log 1√
ε0

(S1 + 1√
ε1

(1√
δ1

U1 + C1)). Substituting these
values gives us the desired expression. �

Property 5.3.3 If pjj ≤ 1 − δ0 for all j ∈ {1, . . . , n}, then the cost of the MNRS
quantum walk on Pcmp is in

O

(
S0 + S1 + 1

√
ε0ε1

(
1√
δ0

(U0 + U1 + S1) + C1

))
= O

(
S0 + 1√

ε0ε1δ0
U0 + 1√

ε0ε1δ0
S1 + 1√

ε0ε1δ0
U1 + 1

√
ε0ε1

C1

)
.

Proof. The cost of the MNRS quantum walk is in O(S + 1
ε (

1√
δ
U + C)). The parameters S,

U, C, ε, and δ are with respect to Pcmp. We need to express them in terms of parameters
defined in Definition 5.3.1. The set-up cost of Pcmp is the cost of initializing the state

|0〉 7→
∑

x∈{1,...,n}
y∈{1,...,mx}

√
scmp
x,y |x, y〉.

This can be done using the set-up procedure of the outer walk and the inner walk. As
a result, we have S = S0 + S1. The update cost of Pcmp is the cost of implementing the
following unitary operations and their inverses.

|x, y〉|0〉 7→ |x, y〉
∑

z∈{1,...,n}
w∈{1,...,mz}

√
pcmp

(x,y),(z,w)|z, w〉

|0〉|z, w〉 7→
∑

x∈{1,...,n}
y∈{1,...,mx}

√
pcmp ∗

(z,w),(x,y)|x, y〉|z, w〉

These unitary operations can be implemented in three steps. For example, if we want to
implement the first unitary operation, we would first use the update procedure on the outer
walk. By doing so, we effect the transformation |x, y〉|0〉 7→ |x, y〉

∑
z∈{1,...,n}

√
pxz|z, 0〉.

Then, we check whether x = z. If x = z, we use the update operator of the inner Markov
chains. Otherwise, we use the set-up operator of the inner Markov chains. Doing so maps
the state |x, y〉

∑
z∈{1,...,n}

√
pxz|z, 0〉 to

64

|x, y〉

√pxx|x〉 ∑
w∈{1,...,mx}

√
p

(x)
yw |w〉+

∑
z∈{1,...,n}

z 6=x

√
pxz|z〉

∑
w∈{1,...,mz}

√
s

(z)
w |w〉

 ,

which is equal to the desired state
|x, y〉

∑
z∈{1,...,n}
w∈{1,...,mz}

√
pcmp

(x,y),(z,w)|z, w〉,

as one can verify using the definition of Pcmp. The update cost is therefore U0 + U1 + S1.
The checking cost of Pcmp is simply C1. The ratio of marked elements of Pcmp is at least
ε0ε1. This is because we assumed that every marked outer vertex contains a marked inner
vertex, and the ratios of marked elements of the inner Markov chains are at least ε1. Finally,
the spectral gap of Pcmp is δ0. By Property 5.2.2, all eigenvalues of the outer Markov chain
are also eigenvalues of Pcmp. The magnitude of all other eigenvalues of Pcmp are bounded
within 1− δ0, because we assumed that pjj ≤ 1− δ0 for all j ∈ {1, . . . , n}. �

Upon comparing the stated costs of the two algorithms in Property 5.3.2 and Property
5.3.3, we see that the proposed quantum walk on Pcmp is not necessarily more efficient.
While it does not have any logarithmic factors in complexity, its U0 and S1 terms appear
to be greater than those of the naive algorithm. We now explicitly compute the costs of
these two algorithms for a specific problem, and see that the proposed algorithm is indeed
less efficient in this case.
Example 5.3.4 (Triangle finding in Õ(n13/10))

One drawback of the proposed quantum walk is that its update procedure invokes the
set-up procedure of the inner Markov chains. This is disadvantageous, because set-up costs
are typically much greater than update costs. This example demonstrates this drawback.
Suppose we would like to determine whether a graph G contains a triangle. In [MSS07],
an algorithm of triangle finding has been proposed that solves the problem with a query
complexity of Õ(n13/10), where n is the number of vertices in G. The algorithm has three
layers of composition of search algorithms. The top layer is a quantum walk on a Johnson
graph. Every vertex in this Markov chain is a subset of size r of vertices in G, where r ≤ n.
A vertex in this Johnson graph is considered marked if it contains two of the three vertices
of a triangle. That is, if a contains a triangle edge. The middle layer determines whether
such a triangle edge exists in the said subset, by running the Grover’s algorithm over all
vertices in G in search for the third vertex that completes a triangle. Finally, to determine
whether a vertex completes a triangle such that one of its edges is contained in the subset
of size r, we perform another quantum walk on another Johnson graph in the bottom layer.
Every vertex in this Johnson graph is a subset of size q of the top layer Johnson graph
vertex, where q ≤ r. The bottom layer finds a triangle vertex using a method similar to
the one by which the Element Distinctness algorithm finds a colliding pair. We remark
that the MNRS quantum walk over the complete graph with self loops has the exact same

65

behaviour as Grover search. This observation allows us to express the middle layer in terms
of an MNRS quantum walk for the purpose of comparison. Hence, let S0, U0, ε0, and δ0
represent the parameters of the top layer quantum walk, where the costs are the number
of queries to the adjacency matrix of G; let S1, U1, ε1, and δ1 represent the parameters of
the middle layer; similarly, let S2, U2, ε2, δ2, and C2 represent parameters of the bottom
layer. The values of these parameters are shown below.

S0 = r2 S1 = 0 S2 = q
U0 ∈ O(r) U1 = 0 U2 ∈ O(1)
ε0 ∈ Ω(r2/n2) ε1 ∈ Ω(1/n) ε2 ∈ Ω(q2/r2)
δ0 ∈ Θ(1/r) δ1 = 1 δ2 ∈ Θ(1/q)

C2 = 0
The derivation of these values, which we omit, involves a discussion about the data

structures used by each layer and how they are manipulated. For our purpose of comparing
methods of composition, it suffices to simply know what these values are. Generalizing
Property 5.3.2 and Property 5.3.3 to the case where there are three layers of composition,
the cost of the naive algorithm is in

Õ

(
S0 + 1

√
ε0

(
1√
δ0

U0 +
(

S1 + 1
√
ε1

(
1√
δ1

U1 +
(

S2 + 1
√
ε2

(
1√
δ2

U2 + C2

))))))
,

(1)
whereas the cost of the quantum walk on Pcmp is in

O

(
S0 + S1 + S2 + 1

√
ε0ε1ε2

(
1√
δ0

(U0 + U1 + S1 + U2 + S2) + C2

))
(2)

provided that pjj ≤ 1− δ0 for all diagonal elements pjj of the top layer stochastic matrix.
This is true in the case of Johnson graphs. Plugging in the parameters into the above
formulas, we see that Equation (1) is equal to

Õ

(
r2 + n

r

(√
r · r +

(
0 +
√
n

(
0 +

(
q + r

q
(√q + 0)

)))))
= Õ

(
r2 + n

√
r + n3/2q

r
+ n3/2
√
q

)
,

while Equation (2) is equal to

O

(
r2 + 0 + q + n

r
·
√
n · r

q

(√
r (r + 0 + 0 + 1 + q) + 0

))
= O

(
r2 + q + n3/2r3/2

q
+ n3/2√r

q
+ n3/2√r

)
.

Equation (1) is minimized when we set r = n3/5 and q = n2/5, giving us the complexity
Õ(n13/10). Equation (2) is minimized when r = n0 and q = n0. The resulting complexity
is O(n3/2). We see that this complexity is worse than Õ(n13/10), and it is also no better
than that of the simple Grover search over all triples of vertices.

67

6 Conclusion

In this thesis, we investigate alternatives to the “naive” composition of the discrete time
quantum walk due to Magniez, Nayak, Roland, and Santha, [MNRS11] which we refer
to as the MNRS quantum walk. Composition refers to the use of search algorithms as
the checking oracle of another search algorithm—the nesting of search algorithms. Since
quantum searching generally succeeds not with certainty but with high probability, the
naive method of composition introduces an extra logarithmic factor in complexity as a
result from a majority voting procedure that reduces the error. Because quantum walk
algorithms solve a variety of problems, we desire to eliminate this logarithmic factor. In
the attempt to accomplish this goal, two approaches have been investigated.

The first method is a simplification of the existing MNRS quantum walk algorithm.
This simplification, described in Algorithm 4.1.1, is to run phase estimation only once
per iteration, using the same ancilla register. The benefit of this method is that if the
simplification is valid, then it is possible to eliminate the logarithmic overhead in checking
by using an error reduction technique described in [HMdW03]. This method of composition
is the more general of the two, because it assumes no structure in the checking oracle. Since
it is difficult to exactly analyze this algorithm due to the complexity of its components such
as phase estimation, we tried to prove the correctness of a slightly more general algorithm,
Algorithm 4.3.2, whose correctness and efficiency would imply that of Algorithm 4.1.1.
However, in Section 4.5, we disproved the correctness of Algorithm 4.3.2 with an explicit
counterexample. This casts doubt on whether this particular simplification of the MNRS
quantum walk is valid. We leave the question of validity of this approach to future work.

The second approach is the more specific of the two. Unlike the first method, which as-
sumes no structure in the checking oracle, we explicitly require the oracle to also be MNRS
quantum walks on Markov chains. Instead of modifying the quantum walk algorithm, we
tried to find a means to compose the “outer” Markov chain P , with the “inner” Markov
chains on P1, P2, . . . , Pn into a composed Markov chain Pcmp, and use the existing quantum
walk algorithm on this new chain. While the complexity of the resulting algorithm does
not contain any logarithmic factors, it contains terms that are greater than those of the
naive composition of MNRS quantum walks. Upon explicitly calculating the complexity
for the Triangle Finding problem, we confirm that the complexity of the new algorithm
is indeed sometimes worse than the naive method of composition. We speculate that this
approach is more efficient only in cases where the set-up cost of the inner walks is small,
as in the case of composed Grover search.

69

References
[Gro96] L. K. Grover, A fast quantum mechanical algorithm for database search, in

Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting (ACM, 1996), pp. 212–219.

[Amb07] A. Ambainis, Quantum walk algorithm for element distinctness, SIAM Journal
on Computing 37 (2007), no. 1, 210–239.

[MSS07] F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle
problem, SIAM Journal on Computing 37 (2007), no. 2, 413–424.

[LG14] F. Le Gall, Improved quantum algorithm for triangle finding via combinatorial
arguments, in Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on (IEEE, 2014), pp. 216–225.

[NC10] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information.
(Cambridge, U. K; New York: Cambridge University Press, 2010).

[Rei09] B. W. Reichardt, Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function, in Foundations
of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on
(IEEE, 2009), pp. 544–551.

[Bel12] A. Belovs, Span programs for functions with constant-sized 1-certificates, in
Proceedings of the forty-fourth annual ACM symposium on Theory of comput-
ing (ACM, 2012), pp. 77–84.

[KLM07] P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum Comput-
ing. (Oxford: Oxford University Press, 2007).

[MNRS11] F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via quantum walk,
SIAM Journal on Computing 40 (2011), no. 1, 142–164.

[Jor75] C. Jordan, Essai sur la géométrie à n dimensions, Bulletin de la Société math-
ématique de France 3 (1875), 103–174.

[Gal08] A. Galántai, Subspaces, angles and pairs of orthogonal projections, Linear and
Multilinear Algebra 56 (2008), no. 3, 227–260.

[GH06] A. Galantái and C. J. Hegedűs, Jordan’s principal angles in complex vector
spaces, Numerical Linear Algebra with Applications 13 (2006), no. 7, 589–
598.

[Spi] M. Spivey, A simple proof that the largest eigenvalue of a stochastic matrix is 1
(unpublished). Available at https://mikespivey.wordpress.com/2013/01/
17/eigenvalue-stochasti/.

[HJ12] R. A. Horn and C. R. Johnson, Matrix Analysis. (Cambridge University Press,
2012).

[Sen06] E. Seneta, Non-negative Matrices and Markov Chains. (Springer Science &
Business Media, 2006).

70

[HMdW03] P. Høyer, M. Mosca, and R. de Wolf, Quantum search on bounded-error in-
puts, in International Colloquium on Automata, Languages, and Programming
(Springer, 2003), pp. 291–299.

[Bha13] R. Bhatia, Matrix Analysis, volume 169. (Springer Science & Business Media,
2013).

[KT01] A. Knutson and T. Tao, Honeycombs and sums of hermitian matrices, Notices
of the American Mathematical Society 48 (2001), no. 2.

