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Abstract

Alzheimer’s disease (AD) is a progressive dementia affecting cognition, behavior, and

functional  status  and  there  is  no  cure  which  exists  for  it.  In  AD,  Amyloid  Beta  (A )  peptides

form aggregates that are neurotoxic in the brain. Hence, molecules that are able to prevent Aß

aggregation could be effective in AD treatment. Gemini surfactant (GS) molecules consist of two

hydrophilic heads separated by a covalently bound spacer and two hydrophobic tails. Their

structure gives rise to a number of unique properties, including low critical micelle

concentrations, the ability to form multiple types of aggregates (governed primarily by the nature

of the spacer group) and enhanced ability to bind to polymers. These properties make gemini

surfactant a good choice for solubilizing very hydrophobic materials such as Aß. The aim of this

study was to examine various GS structures to help us to understand their interaction with A

and the influence of spacer group in A  disassembly.

We employed 12-carbon tail GS with varying spacer groups of different hydrophilicities,

such  as:  (-CH2-CH2-O)m, (-CH2)m, N(CH2)m, OH(CH2)4 and (OH)2(CH2)4. Surface tension

measurement, isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) have

been employed to observe the gemini-A  interaction.

Surface tension measurements did not show a typical surfactant-polymer interaction;

rather, the presence of Aß induced aggregate formation at concentrations well below the cmc.

Headgroup areas were observed to decrease for some of the surfactants in the presence of Aß,

which may result from partial neutralization of the surfactant headgroups and a relaxation of

electrostatic repulsion resulting in decreased head group areas. ITC results suggest substantial
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reorganization of Aß/gemini surfactant aggregates, with distinct difference seen depending upon

the nature of the headgroup. It was observed that in 12-(CH2)n-12 (n=2,3,4,7) shorter spacer

gemini surfactants have stronger interaction with Aß than the ones with longer spacers. In the 12-

4(OH)n-12 series, a stronger interaction was observed in the GS with 2 hydroxyl groups

compared to one hydroxyl group GS. For 12-(EO)n-12 GS, a stronger interaction was observed in

that GS with two ethoxy groups. In the 12-XN-12 series, although the 8N spacer is more

hydrophilic than 5N, the interaction of 12-5N-12 with Aß was stronger than that of 12-8N-12.

The particle size data also revealed that there is an interaction between gemini surfactant and Aß.

It appeared that mixed micelles formed when the surfactant concentration increased in the Aß

solution.  Overall, it was observed that changes in the length and hydrophilic character of the

gemini surfactant spacer influenced the type of interaction and gemini-A  conformation.
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Chapter 1: Introduction

1.1 Introduction and Review of Prior Knowledge about Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is the most prevalent type of dementia affecting cognition,

behavior, and functional status (1). The clinical presentations of Alzheimer’s disease are: 1)

memory loss (2), 2) gradual cognitive decline (3), 3) behavioral and psychological disturbances

at moderate (4), 4) frequent loss of daily function (5-8). According to a census in 2009 (9) the

number of people suffering from dementia in the world is about 35.6 million and this number is

predicted to increase to 115.4 million by the year 2050. AD is the fifth cause of death in United

States for people above age 65 and is the main cause of dementia in late-life dysfunction.

Approximately 5.3 million Americans have AD; this number is predicted to increase to 13.2

million by the year 2050 (7). There is currently no cure and the pathophysiologic mechanisms

leading to Alzheimer’s disease are not completely known (7).

1.2 Pathophysiology of AD

1.2.1 Cholinergic hypothesis of AD

In the early 1970s, the pathology of AD was explained as a neurochemical abnormality.

Different studies with brains of AD patients have shown the relationship between acetylcholine

and memory and confirmed that there is a reduction in choline uptake and acetylcholine (ACh)
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release. These findings have led to the cholinergic-deficit hypothesis (10,11). Blocking the

central cholinergic activity resulted in memory impairment, whereas using cholinergic agonists

reversed the effect (12,13). The acetylcholine receptors are integral membrane proteins to which

acetylcholine binds. These receptors consist of nicotinic and muscarinic receptors (14). Various

studies have observed a correlation between declining acetylcholine receptors in the brain and

AD (15,16). Activation of acetylcholine receptors leads to the elevation of the cytoplasmic

calcium level that mediates calcium-dependent intracellular processes responsible for learning

and memory (17). The lack of cholinergic function is related to cognitive dysfunction.

Therapeutic interventions for treatment of cholinergic dysfunctions include cholinesterase

inhibition, choline precursors, postsynaptic cholinergic (18) stimulation and presynaptic

cholinergic stimulation. These strategies are not effective in treating AD since they cannot

prevent neuronal degeneration; however, they can stabilize cognitive decline for about 6 months

(19,20,21).

1.2.2 Neurofibrillary Tangles

Two pathophysiological hallmarks of Alzheimer’s disease are senile plaques (consisting

of amyloid ß peptide) and neurofibrillary tangles (22). Neurofibrillary tangles are comprised

mainly of the hyperphosphorylated tau protein (23) which, in normal neurons, is involved in the

assembly and stability of microtubules as well as in axonal transport (24,25). Destabilization of

microtubules, which form the neuronal cytoskeleton, can be an important factor in the

pathogenesis of AD (26) (Figure 1.2.2.1).  Protein kinases and protein phosphatases are
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responsible for phosphorylation and dephosphorylation of tau protein, respectively (27). The

consequence of imbalance in the enzyme activities is hyperphosphorylation and neurofibrillary

tangle formation which cause neuronal cell death (11,28,29).

Figure 1.2.2.1: Tau binding to the microtubules.Tau binding promotes microtubule assembly
and stability. Excessive kinase, reduced phosphatase activities, or both, cause
 hyperphosphorylated tau to detach and self-aggregate, and microtubules to destabilize. Adapted
from (30).
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1.2.3 Amyloid Beta Peptide (A ) formation

In healthy people, the rate of A production equals the clearance rate; whereas in

Alzheimer patients the Aß production rate is significantly greater than the clearance rate. It has

been shown that in the brain of AD patients, there are amyloid plaques that consist of A  fibrils.

In fact, A  protein aggregates as toxic oligomers that induce local inflammation, neurotoxicity,

and cell death (11).

 is a peptide consisting of 36 to 43 amino acids (Figure 1.2.3.1). It is synthesized from

amyloid precursor protein (APP) by the action of beta amyloid precursor protein-cleaving

enzyme 1(BACE1),  secretase and -secretase. According to the amino acid sequence of A

(Figure 1.2.3.1), 25 hydrophobic amino acids in A  form a hydrophobic core. Previous research

indicates that the region between amino acid 17 and 21 of Aß has high hydrophobicity. The

probability of ß sheet formation is high in residues 6 and 8 as well as residues 23 and 27. The

residues 34-42 are very hydrophobic and highly insoluble, and have been implicated in

nucleating amyloid fibril formation (31).

APP is a glycosylated transmembrane protein, consisting 695 of amino acids, that has

extracellular and intracellular domains. Three proteinase enzymes named , ß and  secretase can

cut APP at specific sites.  secretase cleaves APP and generates neuroprotective sAPP .  ß

secretase is responsible for the amyloidogenic process, BACE1 cuts the APP to the N-terminal

fragment (sAPPß) and a C-terminal fragment (CTF99) that has 99 amino acids in its structure.

Then a second BACE1 cleavage site in APP is cut by BACE1 and yield CTF89. Subsequently,
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the  secretase complex cleaves the CTF89 and yields Aß and APP intracellular domain (AICD)

(Figure 1.2.3.2) (32).

Aß42  Aspartic acid1- Alanine2- Glutamic acid3- Phenylalanine4- Arginine5- Histidine6- Aspartic acid7- Serine8-

Glycine9- Tyrosine10- Glutamic acid11- Valine12- Histidine13- Histidine14- Glutamine15- Lysine16-Leucine17-

Valine18- Phenylalanine19- Phenylalanine20-Alanine21- Glutamic acid22- Aspartic acid23- Valine24- Glycine25-

Serine26- Asparagine27- Lysine28- Glycine29-alanine30- Isoleucine31- Isoleucine32- Glycine33 Leucine34-

Methionine35- Valine36- Glycine37- Glycine38- Valine39- Valine40- Isoleucine41- Alanine42-

Figure 1.2.3. 1: The amino acids in AB(1-42). The amino acids in bold are hydrophobic (33).

Figure 1.2.3. 2: In vivo synthesis of Aß. The APP is metabolized throughout the non-
amyloidogenic pathway. The action of  and ß secretases is producing sAPP  and AICD. In The
amyloidogenic pathway ß secretase is involved in releasing sAPP ß and then -secretase
responsible for the production of AICD and Aß. Adapted from (34).
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1.2.4 Aß assembly

Two stages of A  fibrillogenesis are nucleation and fiber formation. Aß monomers first

produce micelles, and then the micelles turn into an ordered nucleus that has specific sites for the

addition of monomers. The formation of Aß protofibrils is the consequence of adding more

monomers to the nucleus, and then these protofibrils turn into mature fibrils (Figure 1.2.4.1)

(35). Also, there is equilibrium between particles in part A and B (Figure 1.2.4.1). When the

peptide concentration reaches the critical point, micelles form. The transition of part A to part B

includes two processes, new fibril formation and elongation of existence fibrils. In fact, nucleus

can grow by the addition of dimers, monomers or micelles (36).

Figure 1.2.4.1. A  aggregation. Native Aß turns to fibril through fibrillogenesis process.
Adapted from (36)
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1.2.5 Anti amyloid therapy

Aß fibril plays an important role in AD pathophysiology. The relationship between Aß

fibril and AD is called amyloid hypothesis (37). According to this hypothesis the consequences

of Aß fibrils accumulation in the brain are oxidative stress, neuronal destruction, synaptic

dysfunction and appearance of signs and symptoms of AD. Formation of amyloid oligomers

causes local inflammation and neurotoxicity in the brain. Aß formation leads to the tau protein

folding in the neuronal cells and cell death. Neuronal cell death leads to neurotransmitter

imbalance in the brain and cognitive deficiencies in AD. According to the above pathways

leading to AD, there are three strategies which can be used in AD treatment (Figure 1.2.5) (11).

Figure 1.2.5.1 The amyloid cascade and the potential therapeutic interventions.
Pharmacotherapy for AD can be aimed at decreasing Aß generation, stimulating Aß clearance or
preventing aggregation of Aß. Adapted from (11).
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1.2.5.1 Decreasing Aß production

As Aß is the product of APP cleavage by ß and  secretase, one strategy in AD treatment

can be the inhibition of the enzyme activity (Figure 1.2.5). BACE1 mRNA increases by

proinflammatory mediators. Therefore, non-steroidal anti-inflammatory drugs (NSAID) have

been suggested to be effective in BACE1 inhibition; due to their ability to control the production

of the nuclear transcriptional regulator peroxisome proliferator activated receptor-  (PPAR ).

The presence of PPAR  leads to the deactivation of the BACE1 gene promoter and decreases ß

secretase mRNA levels. However, experimental data in this area is inconclusive (38).

Prevention of  secretase activity can also be used to inhibit Aß production. According to

a 6 week trial in AD patients, the  secretase inhibitor LY450139, showed reduction in Aß-40

level in serum.(39).  As  secretase has various substrates, inhibition of this enzyme leads to

some adverse effects such as gastrointestinal problems and neurodegeneration (11).

Increasing  secretase activity can be helpful in prevention of Aß production as well as

the generation of neuroprotective substance sAPP  (11).  secretase is a member of the ADAM-

10 family of protease. It seems that overexpression of ADAM-10 reduces amyloid plaque

formation as well as alleviating synaptic plasticity and deficits in spatial learning in animals.

Therefore,  secretase activation can be helpful in improving cognitive status in human.  The

other way to increase  secretase activity is stimulation of muscarine-1 receptor with M1-

agonists (e.g. talsaclidine). These agonists are shown to decrease -secretase and BACE1 activity

as well (11).
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1.2.5.2 Increasing Aß clearance

Clearance of Aß from the brain through immunotherapy and enzymatic degradation is

another strategy in AD treatment (Figure 1.2.5). Immunotherapy targeting A  has been tried

using both active and passive immunization. The first trial was active vaccination using a

vaccine that contained full length Aß42 peptide. Unfortunately, this vaccine caused severe

adverse effect (meningoencephalitis), however long term follow up of the patients who received

vaccine showed that there was a reduction in cerebrospinal fluid tau compared to the placebo

group(40,41). The second active immunization that has been studied was active” Humoral only”

immunization. This vaccine contained small peptide sequences of Aß conjugated to a carrier.

The study showed that the antibodies to Aß were produced in 80% of patients who received the

vaccine (42). In the studies using passive immunotherapy the humanized Anti Aß monoclonal

antibodies were used. Some monoclonal antibodies that have been used were bapineuzumab,

gantenerumab and solanezumab (43,44).

The mechanism of clearance of Aß by anit-Aß antibody is still unknown (45). However

there are some hypotheses that explain it. It has been shown that a class of anti-Aß binds to Aß

aggregates and microglial phagocytotic system clears Aß plaques by phagocytosis of the anti- Aß

attached to the Aß plaques (46). The second proposed mechanism is that anti-Aß attaches to

soluble Aß in the peripheral circulation and makes a peripheral sink condition, resulting in a

decrease in the amount of soluble Aß in the bloodstream which therefore causes an efflux of A

from the brain back into the peripheral blood stream (47).
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Enzymatic degradation is another strategy to increase Aß clearance. Neprilysin (NEP) is

a degrading enzyme that has a catalytic site and can cleave regulatory peptides (with up to 50

amino acids) on the N-terminal side of hydrophobic amino acid residues (48), making Aß a

substrate  for  NEP.  It  was  shown  that  NEP  localizes  in  the  pre  and  post  synaptic  area.  Hence,

different studies were conducted to assess the physiological and pathophysiological importance

of NEP in nervous system in animal model. In one study, which assessed the effect of NEP on

the amyloidogenesis process, a lentiviral vector expressing human neprilysin (Lenti-Nep) was

produced and tested in transgenic models of amyloidosis. In that study, to evaluate the anti-

amyloidogenic effects of NEP in vivo, lentiviral virus expression NEP gene was injected into the

CNS of transgenic mice which develop high level of amyloid deposition. It was observed that

amyloid plaques on the Lenti-NEP injected hemispheres were smaller compared to the

contralateral side (49).

1.2.5.3 Influencing blood-brain barrier (BBB) transport

There are two enzymes that are responsible in Aß transportation across the BBB; the

receptor for advanced glycation end products (RAGE), and the low density lipoprotein receptor

related protein (LRP-1). RAGE transports Aß from the systemic circulation across the BBB.

LRP-1 is responsible for transporting Aß out of the brain. In AD, RAGE is upregulated and LRP-

1 is downregulated, resulting in increased Aß concentration in the brain. As such, any molecule

that affects LRP-1 and RAGE activities (i.e., upregulating LRP-1 and downregulationg RAGE)

may be efficient in AD treatment (Figure 1.2.5) (11).
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1.3 Polymer-surfactant system

1.3.1 Application of polymer-surfactant system

Polymer and surfactant are commonly found in cosmeceutical products. When these two

materials are used together in the same product, the possibility of interaction between their

molecules increases. This interaction alters the physicochemical properties of the products.

Having knowledge about the physicochemical properties of surfactant-polymer system can be

helpful in determining how this system works and also give worthwhile insights to scientists who

desire to design the surfactant-polymer mixture with some specific properties (50). A  is a

biomacromolecule (biopolymer) and its structure and aggregation can be affected by surfactants.

Different studies show the effectiveness of surfactant molecules in disaggregation of A

aggregates (51,52).

1.3.2  Polymer- Surfactant Interaction

The polymer-surfactant interaction has been investigated in different studies (53,54).

There are nine possible interactions according to the charge of the polymer and surfactant

molecules:

positive charged polymer-positive charged surfactant,

positive charged polymer- negative charged surfactant,

positive charged polymer- uncharged surfactant,

negative charged polymer- negative charged surfactant,

negative charged polymer- positive charged surfactant,
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negative charged polymer- uncharged surfactant,

uncharged polymer- positive charged surfactant,

uncharged polymer- negative charged surfactant,

uncharged polymer- uncharged surfactant

If  the  two  components  have  the  same  charge,  a  strong  interaction  is  unlikely  due  to  repulsive

interactions. Also, the interactions between nonionic components are unable cause strong

interactions between the surfactant and the polymer. The only strong interactions that exist

between polymer and surfactant molecules are those within ionic surfactant-neutral polymer

systems or ionic surfactant- opposite charged polymer systems (55).

In polymer- surfactant solution, the surfactant interaction with polymer is controlled by

Van de Waals, hydrophobic effect, dipolar, acid-base and electrostatic interactions (56). When a

surfactant is added to a solution containing polymer molecules, micellization occurs at lower

concentration than the surfactant’s “critical micelle concentration” (cmc). Surfactant and

polymer molecules begin to form complex aggregate structure that looks like a “string of pearls”

at a certain concentration that is called “critical aggregation concentration” (cac) which is lower

than cmc. Polymer units make surfactant aggregates more stable.  In fact, it is assumed that the

polymer molecules act as a seed for surfactant molecules (56). The following equation shows the

free energy of micellization of a surfactant:

G°
mic= RTlnxcmc (Equation 1.1)

Where Xcmc is the surfactant mole fraction at cmc, G°
mi is the free energy of micellization, R is

the Gas constant and T is the absolute temperature.
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However, the polymer-surfactant interaction is more complicated than formation of free

surfactant micelles. In polymer-surfactant interaction, the surfactant forms both aggregates and

micelles. Assuming that the driving force for surfactant attaching onto polymers is the same as

the one in a normal free surfactant micellization process, the free energy per mole of surfactant

aggregation to a polymer can be calculated by the following equation:

G°
b = RTlncac                               (Equation 1.2)

Where G is Gibbs free energy per mole of surfactant aggregation to a polymer, R is the gas

constant, and T is the absolute temperature.

Now by having equation 1.1 and 1.2, we can calculate the free energy per mole of

surfactant involved in polymer-surfactant interaction:

G°
PS = G°

b - G°
mic = RTln

where G°
PS is Gibbs free energy per mole of surfactant involved in polymer/surfactant

interaction. It is important to note that the ratio 	should be less than 1 (which means cac

should be less than cmc), otherwise if cmc is less than cac, it shows that surfactant molecules

have more tendency to make surfactant micelles rather than interacting with polymer molecules

(56,57).

Surface tension changes are different in a solution that contains surfactant and a solution

that comprises a polymer and surfactant together (Figure 1.3.2.1). In the surfactant plot, there is

only one break that represents the cmc. However, in the surfactant-polymer plot, the first break

(T1) represents the onset of aggregate formation on the polymer (cac). T2 is related to the point at
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which polymer is saturated with surfactant molecules. In the region between T1 and  T2, the

surfactant molecules attach to the polymer. Therefore, not much change is observed in the

surface tension of the surfactant-polymer solution. After polymer saturation with surfactant

molecules, addition of more surfactant into the solution causes reduction in the solution’s surface

tension until it reaches the second break (T3) which is called the cmc. At this point the surface

tension of the surfactant-polymer solution does not change significantly (58).

Figure 1.3.2.1: Idealised surface tension of a weakly interacting polymer/surfactant
mixture which also interacts at the surface. The surface tension for the surfactant
on its own is also shown. Adapted from (58).

1.3.3 Protein-Surfactant Interactions

Proteins are biological heterogeneous polymers which consist of amino acids as their

building blocks. Amino acids may have a polar or non polar, ionic, or nonionic side chain.

Therefore, proteins can be amphoteric polyelectrolytes or amphiphilic polymers bearing charge
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density. Structurally speaking, the difference between polymers and proteins is that proteins have

less flexibility in their conformation and have much more structural stability than polymers (59).

The interaction between surfactant and protein molecules is divided into two categories:

 1- below the cmc   2- above the cmc (60). Below the cmc, protein molecules play an important

role in forming micelle-like surfactant clusters. As the surfactant concentration increases, the

binding sites in protein become saturated and surfactant molecules tend to become micelles. At

this point the protein starts to become unfolded which means the secondary and tertiary structure

of a protein will be affected by the addition of surfactant (60).

In protein-surfactant interaction, surfactant causes protein unfolding, refolding (i.e., after

the native protein structure is disturbed by surfactant molecules, it can be refolded by the force of

surfactant molecules; however, the refolded structure is not the same as the original native

conformation), enzyme activation and protein solubilization. In addition, surfactant molecules

can affect the protein stability or enzyme activity. The mechanisms that are involved in these

interactions are important to analyze and optimize the protein-surfactant interaction (61).

The surfactant can be found in various states in the solution: monomeric, shared micelle

and regular micelle. If the surfactant is ionic, its shape and ionic strength make the surfactant-

protein interaction more complex. Anionic surfactants attach to the cationic part of the protein

and cationic surfactants bind to the anionic region of the protein. The hydrophobic areas in

surfactant and protein bind together (60).

There are various ways for denaturing protein molecules, such as heating or adding

surfactant in certain concentration. As the surfactant and protein molecules are both amphiphilic,
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the possibility of interaction between them is high. The surfactant molecule binds to protein in a

stage that the conformation of protein will completely change, and this change is irreversible

because the secondary and tertiary structure of protein will be destructed. In fact, if the surfactant

molecule is removed from the protein solution, the protein molecule cannot conform to its

original structure (59).

1.4 Gemini surfactant

The structure of the gemini surfactant (GS) contains two polar head groups and two non-

polar tails, with a spacer covalently linking the two polar groups (Figure 1.4.1). Their structure

can be thought of as essentially a dimer of two traditional surfactant molecules. The spacer can

be hydrophobic, hydrophilic, short or long, rigid or flexible (62). The most widely investigated

GS are the quaternary ammonium m-s-m type in which m represents the number of carbon atoms

in the alky tail groups and s is the number of carbon atoms in a polymethylene spacer. There are

numerous other examples of GS including anionic, cationic, zwitterionic, and non-ionic, with a

wide variation in the type of head group, the length and composition of the spacer group, and the

length of the alkyl tail groups (62). As the structure of GS is flexible, it is easy to choose two

identical or different amphiphilic molecules and link them with a desired spacer group.

Since gemini surfactants have specific self-assembly abilities, they have much more

important characteristics than conventional monomeric surfactants. Some distinctive features of

gemini surfactants are: considerably low cmc values compared to monomeric surfactant, high

surface activity, low Kraft temperature, ability to form a wide range of aggregate structures, and

better wetting ability (50).



17

 Figure 1.4.1:Gemini surfactant structure. A) Structural similarity and contrast between typical
surfactant monomer and Gemini surfactant monomer. B) General structure of m-s-m Gemini
surfactant. Adapted from (63).

1.4.1 Gemini surfactant structure and aggregation properties

Changes in gemini surfactant structure can affect their behaviour in solution and

interactions with polymers and biomacromolecules. For instance, the addition of hydrophilic

groups in the spacer increases the hydrophilicity of the molecules, or gemini surfactants can

become more water soluble if their alkyl chain carbon number decreases (62).

As A  is a peptide containing various amino acids, its structure can be affected by gemini

surfactants. Diversity in the gemini surfactants’ structure is helpful in determining the nature of

interactions between gemini surfactants’ different parts and A . If it is observed that the

hydrophobic part of gemini surfactant is more important in interaction with A  than the spacer
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group, the attempts will be focused on the alkyl tail group and its hydrophobic properties in

interaction with A . Thus, variation in gemini surfactant structure can be helpful in leading

researchers to the optimum structures in interaction with A  and preventing A  aggregate

formation.

1.4.1.1 Effect of the spacer

The aggregation properties of gemini surfactant are affected by inter-molecular and intra-

molecular interaction of gemini surfactant molecules as well as their interaction with solvents.

As it was mentioned in the previous section, gemini surfactant has a spacer which plays a critical

role in gemini surfactant’s characteristics. The spacer can be used to control the hydrophobic

interactions. The spacer group can also be effective in manipulating the electrostatic repulsion

between gemini surfactant’s charged head groups (50). The nature of the spacer does not have a

significant impact on the cmc of gemini surfactant. Hence, based on the expected physical or

biological properties, the spacer can be changed without a substantial change in the cmc of

gemini surfactant (64).

1.4.1.2 Effect of the alkyl tail group

The intra and inter molecular hydrophobic interactions between alkyl chains of gemini

surfactants play an important role in gemini surfactant’s characteristic (50). The length of the tail

group affects cmc (Figure 1.4.1.2.1). There is a linear correlation between the number of carbon

in the alkyl chain (up to m=16) and ln(cmc) for m-2-m, m-3-m, m-5-m, m-6-m. Linear

correlation between alkyl tail carbon number and ln(cmc)can be observed in m-4-m up to m=18.
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It was also observed that for m-6-m (m=7,8,9,10,11,12,16) the enthalpy of micellization for even

numbered alkyl chain have different exothermic and endothermic values whereas for odd

numbered alkyl chain the enthalpy of micellization values are all endothermic. The difference in

the  enthalpies  arises  from the  various  conformations  of  gemini  surfactant  molecules  with  even

and odd alkyl chains (65).

Figure 1.4.1.2.1.Variation of the logarithm cmc as a function of alkyl tail length for the
gemini surfactants: m-3-m (    ); phy-3-m (   ); m-6-6 (    ). Adapted from (66).

1.4.2 Gemini surfactant interaction with biomacromolecules

As mentioned earlier, gemini surfactants’ specific properties make them a target for

biological  and  biomedical  applications.  In  biology,  the  safety  of  compounds  has  a  critical

importance. The lower cmc of gemini surfactants compared to conventional ones permit usage in

lower quantities than conventional surfactants. Thus, the amount of surfactant used in biological
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research is low enough to meet the safety issues (50). The complexity of gemini surfactant

interaction with biomacromolecules are more than gemini surfactant/polymer system. The reason

is related to the different possible interactions between gemini surfactant and biomacromolecues

(electrostatic, hydrophobic and hydrophilic interaction, hydrogen bonding). The interaction

between gemini surfactant and biomacromolecules may cause change in aggregation properties,

morphology and structure of biomacromolecules. The bioactivity of biomacromolecules can be

affected by the gemini surfactant as well.  Therefore,  better understanding of gemini surfactant-

biomacromolecule interaction can be helpful in optimizing the surfactant-biomacromolecule

systems (50).

Among the biomacromolecules, DNA is of interest for the purpose of gene therapy.

Different studies have been done to evaluate the effect of the different gemini surfactants in

compacting DNA and non-viral delivery systems (67-69). Another important macromolecule is

. Different research focused on the effect of surfactants on disaggregation of A  aggregates

(70-72).

1.4.3 Aß and surfactant interaction

Surfactants are the effective reagents that can be used in disaggregation of A  aggregates

and in preventing A  fibrillogenesis. It has been observed that sodium dodecyl sulfate (SDS)

micelles prevent A (1-40) monomers aggregation and thus amyloid fibril formation stopped

(73,74). Hexadecyl-N-methylpiperidinium (HMP) bromide is the other surfactant that has

inhibitory effect on A  peptide aggregation (75). The inhibitory effect of surfactants depends on

their concentration. Sabaté et al. compared the effect of alkyl bromides in different
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concentrations. They observed that in concentrations lower than alkyl bromides cmc, the A

fibril formation was promoted whereas in concentration above cmc, the micelles form and cause

prevention of Aß aggregate formation (36).

1.4.4 Aß and gemini surfactant interaction

Gemini surfactants can affect A  aggregation because of their specific structure. The

effect of gemini surfactants on A  aggregation was studied by Wang et al. (2006). They used

gemini surfactant 12-6-12 and compared its effect with DTAB (dodecyl trimethyl ammonium

bromide). According to their research, both 12-6-12 and DTAB caused rapid aggregation of A

at first. Then the surfactant’s head groups repulsive force causes A  fibril disruption. 12-6-12 has

stronger effect on AB dissociation in lower concentration than DTAB (76). In a solution

containing A  aggregates, addition of gemini surfactant results in attachment of these molecules

to A  aggregates. In this stage dehydration of A  aggregates occurs that leads to the formation of

condensed A  aggregates. The A  molecule has slightly negative charge in pH=7.4 because of

having Asp, Glu in its side chain. Electrostatic interactions and neutralization occur between the

cationic gemini surfactant  and the negatively charged A  aggregates. All these circumstances

lead to the formation of more condensed A  aggregates. With the addition of more surfactant,

 dehydration takes place, which leads to A  condensation.  This dehydration occurs due to

neutralization of A  aggregates by cationic surfactant molecules, which results in displacement

of water molecules (that were previously shielding the repulsive force between same-charged

chemical groups in A ). In fact, the surfactant molecules on the A  aggregates affect the intra-

peptide interactions between A  aggregates. The hydrophobic alkyl tail of the surfactant can
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interact with the hydrophobic portion of A  amino acids. These hydrophobic interactions also

contribute to the formation of surfactant-A  aggregates. The formation of gemini surfactant-A

aggregates is faster and stronger than conventional surfactant-A  aggregates since gemini

surfactants have two charged head groups and two hydrophobic tail groups, which are important

in interaction with A  aggregates (76). After reaching this point, the addition of more surfactant

molecules causes an increase in the positive charge on A  aggregates. Then the repulsive force

between the surfactant’s head groups increases and the A  aggregates are disrupted (76). After

 aggregate dissociation, the A  and gemini surfactants reassemble to make spherical mixed

micelles (Figure 1.4.4.1).
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Figure 1.4.4. 1: Mechanism of the 12-6-12 micelles disassembling the A (1 40) fibril. (a)
Binding of the C12C6C12Br2 micelles onto the fibril surface. (b) Breaking down of a long fibril
into short pieces. (c) Complete disassembly of fibrils and the formation of mixed aggregates
(72).

a b c
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1.5 Objectives of the proposal research

Hypothesis statement: the spacer structure of a gemini surfactant, including it’s hydrophilicity,

will increase the disruption of amyloid ß peptide aggregates.

Short term objective:

1-To evaluate the cmc and cac of the gemini surfactant with Aß peptide using the surface

tensiometry technique.

2-To determine the possible interactions of gemini surfactants with different spacer groups with

amyloid ß aggregates, by using isothermal titration calorimetry.

3- To use dynamic light scattering to evaluate the change in particle size of Aß in different

surfactant concentrations.

Significance of the work: Gemini surfactants may be useful as drug delivery systems for the

delivery of drug’s in Alzheimer’s disease. My work also suggests that gemini surfactants may

disaggregate Aß peptide clusters and may directly help in the treatment of Alzheimer’s disease.
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Chapter 2: Experimental procedures

2.1 Materials

The Gemini surfactant that has been previously examined with respect to Aß aggregation

is the 12-6-12 surfactant (72, 76, 77). There are various GS that can be used to determine their

effect on A  aggregation. We expanded this work using our library of GS previously synthesized

(78-81) to determine structure-activity relationship(s) for Aß fibril disintegration. GS that were

used: 12-2-12 (82), 12-3-12, 12-4-12, 12-7-12 (82), (12-5N-12, 12-8N-12,)(83), (12-4(OH)-12,

12-4(OH)2-12)(81),12- EO- 12,12-EO2-12, 12-EO3-12(80) (Figure 2.1.1). All GS solutions were

prepared in Milli-Q ultrapure water and then filtered through 0.22 m filters.

Amyloid beta peptide (1-42) was obtained from rPeptide (Bogart,Georgia, USA). The

peptide purity was > 97%. Preparation of A  (1-42) is by addition of hexafluoroisopropanal

(HFIP) to the Aß(1-42) stock, then the solution of Aß and HFIP was aliquoted into

microcentrifuge tubes. Then the microcentrifuge tubes containing HFIP and Aß were left in room

temperature until HFIP evaporated completely. After that, the tubes containing peptide were

stored at -20°C.  Thirty  minutes  before each experiment, fresh milli Q water was added to the

centrifuge tubes to make A  (1 g/ml) solution. Milli-Q water obtained for this study was from

Millipore synergy purification system.
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Figure 2.1.1: Structure of the amine-substituted Gemini Surfactants. Adapted from (81).

2.2 Method

2.2.1 Surface tension measurements:

For determining cac and cmc of surfactant-A  solutions, surface tension was measured

using a Lauda model TE3 automated tensiometer (Lauda, Germany) by the due Nouy ring

method. The surface tension was measured after each titration of gemini surfactant 10 mM and 1

mM solutions in A  (1 g/ml) solution at 25.0°C.
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2.2.2 Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) is a useful technique for evaluating the binding

energetic of biological processes such as protein-protein binding, protein-carbohydrate binding,

protein-lipid binding, antigen-antibody binding, DNA-protein binding and A -surfactant

binding.

ITC method can be used to determine the stability constants, stoichiometry, interaction

enthalpies, entropies, Gibbs free energies and heat capacity changes. Therefore, it can be a

method of choice in different areas of study such as biological and bio-molecular interactions,

ligand binding, enzyme activity, biotechnology, drug discovery, protein-protein interaction, etc

(84).

The advantage of titration calorimetry is that binding isotherms determine the heats of

reaction that can estimate the enthalpy changes and heat association constant. As such, using

calorimetric titration defines the characterization of the energetic of binding. In an ITC

experiment the titrant is added to a sample solution at a constant temperature. The heat released

or absorbed in each addition can be provided by ITC (84).

In polymer surfactant interaction, ITC is one of the most sensitive methods that can

measure thermodynamic changes. In charged polymers and charged surfactants category, the

electrostatic forces play a critical role. When polymer and surfactant molecules in opposite

charges are neutralized, the excess surfactant can re-solubilize the precipitated polymer-

surfactant aggregates. Calorimetry can be used to measure the heat of interaction (or molar

enthalpy H) directly. When two molecules bind, heat can be released or absorbed. Isothermal
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microcalorimetry is a technique that can be used for measurement of heat released or absorbed in

biomolecular interactions.

An ITC instrument consists of two cells (sample cell and reference cell) that are made

from highly efficient thermal conducting material (Figure 2.2.2.1). The cells are surrounded by

an adiabatic jacket. A circulating water bath can be used to cool down the jacket.

The molecular interaction between two molecules is defined by the following equation:

G = -RT ln KA = H – T S               (2.1)

In part a, Gibbs free energy ( G)  correlates  with  association  constant  KA, since R (gas

constant),  and  T (absolute  temperature),  are  constant.  Part  b  in  equation  2.1  shows the  sum of

enthalpy ( H)  and  entropy  ( S) changes that explain the free energy ( G) and tendency of

molecules for interaction. In ITC experiment, both KA and H can be measured. Therefore, the

other parts ( G and S) of equation 2.1 can be derived from KA and H (85).

Figure 2.2.2.1: Schematic diagram of an ITC instrument
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ITC is sensitive to thermodynamic change in polymer- surfactant interaction.  The non

covalent force between the surfactant and polymer helps us to understand the interaction

mechanism between polymer and surfactant molecules (61).

ITC measurements  were  carried  out  using  a  MicroCal  VP-ITC calorimeter.  Aliquots  of

gemini surfactant (10mM) were injected from a Hamilton syringe into the sample cell containing

( 1 g/ml).  For each gemini surfactant two experiments were performed, the same procedure

was  performed  with  water  in  the  sample  cell  as  a  reference.  For  each  ITC  experiment  the

injection parameters were as follows: initial delay 60 sec, duration of each injection 4 sec,

interval between two injections 240 sec, filter period 2 sec. A combination of 5 µL, at low

surfactant concentrations, and 10 µL, at higher concentrations, were used for the titration of

concentrated  surfactant  solution  into  the  titration  cell.  The  experimental  temperature  was  at

25°C± 0.05°C. The results of ITC experiments were analyzed using Origin® scientific plotting

software, version 7.0, and excel Microsoft, version 2007 software.

2.2.3. Particle size measurement

 Particle size measurements were performed on a Malvern Zetasizer Nano ZS instrument

(Malvern Instruments, Worcestershire, UK) in a cell connected to a titration module. In forward

titrations, 10 mM gemini surfactant was titrated into A  (1 g/ml) solution. Individual particle

size measurements were performed using quartz cells. To determine the size distribution non-

negative least squares (NNLS) analysis method was used (scattering was determined at  =

173°). The intensity and volume of particles were reported. For each data, particle size

measurement was repeated five times and the average is reported.
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Chapter 3: Results and Discussion

3.1Surface tension studies of the gemini surfactants / A  systems.

Surface tensiometry is a powerful tool for the study of the aggregation behavior of

surfactants in the presence of additives, particularly additives such as polymers or peptides.  As

introduced in Section 1.3.2, the addition of a polymer to a surfactant solution is expected to

result in aggregation of the surfactant at a critical aggregation concentration (cac; equivalent to

T1 in Figure 1.3.2.1). The aggregation of surfactant and Aß is due to the favorable interactions

between the polymer and surfactant.  The cac is typically at some concentration lower than the

cmc for the surfactant in water alone.  This is followed by saturation of the polymer with

surfactant and eventually any added surfactant will form regular surfactant micelles (T2 and T3 in

Figure 1.3.2.1, respectively).
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Figure 3.1. 1. Surface tension plot for the titration of the 12-8N-12 gemini surfactant ( = 1
mM stock solution; = 10 mM stock solution) into a 1 g/mL solution of A  in water.

A representative example of the surface tension behavior for the gemini surfactants in the

presence of A , is presented in Figure 3.1.1. Plots of the surface tension for the remaining

surfactants with A  are provided in Appendix 1.  In Figure 3.1.1, it is observed that at low

surfactant concentrations, the surface tension is approximately equal to 70 mN/m, equivalent to

that of pure water at 25.0 oC.  As the concentration of surfactant is increased, we see no evidence

of the expected cac, T2 or T3 critical concentrations. Instead, a reduction in the critical micelle

concentration from 1.10 mM in water to 0.62 mM in the presence of A  is observed (see Table

3.1.1).  This suggests that A  is not behaving as a neutral polymer as expected, but rather as a

hydrophobic solute that induces micelle formation at a substantially lower concentration as a
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means of removing itself from unfavorable contacts with water, and forms mixed micelles with

the gemini surfactants.

The above results are consistent with the observations of Li et al. (76) who observed the

formation of small, globular aggregates of approximately 10 – 15 nm in size for the 12-6-12/ A

system using AFM.  It is worth mentioning that the concentrations of A  used in their study were

significantly higher than those used in this work. Nevertheless, our interpretation of the

formation of mixed micelles of gemini surfactant and A  is consistent with their results.

Table 3.1.1: Critical micelle concentrations (cmc) and head group areas (a0) obtained from
surface tension measurements for the gemini surfactants in water and in 1 g/mL A  in water
solutions. Values in water are from literature sources.

Surfactant cmcwater (mM) cmcA  (mM) a0,water (nm2) a0,A (nm2)
12-2-12 0.86 ± 0.08a 0.66 ± 0.06 0.86 ± 0.05 a 0.97 ± 0.02
12-3-12 0.89 ± 0.13 a 0.86 ± 0.13 1.11 ± 0.04 a 1.06 ± 0.11
12-4-12 1.1 ± 0.1 a 1.08 ± 0.04 1.15 ± 0.09 a 1.36 ± 0.03
12-7-12 0.85 ± 0.07 b 0.70 ± 0.07 1.24 ± 0.06b 1.85 ± 0.08
12-4(OH)-12 0.85 ± 0.18c 0.83 ± 0.04 1.19 ± 0.08c 1.22 ± 0.02
12-4(OH)2-12 0.75 ± 0.15c 0.41 ± 0.04 1.15 ± 0.04c 0.99 ± 0.05
12-EO1-12 0.84 ± 0.04d 0.75 ± 0.14 1.12 ± 0.03 d 0.73 ± 0.08
12-EO2-12 0.86 ± 0.04 d 0.74 ± 0.14 1.33 ± 0.08 d 2.02 ± 0.07
12-EO3-12 1.10 ± 0.05 d 0.75 ± 0.19 1.75 ± 0.09 d 2.39 ± 0.08
12-5N-12 1.14 ± 0.04e 0.68 ± 0.10 1.30 ± 0.03 e 1.01 ± 0.02
12-8N-12 1.10 ± 0.10 e 0.62 ± 0.03 1.95 ± 0.13 e 1.74 ± 0.04
a From reference (82)
b From reference (86)
c From reference (81)
d From reference (80)
e From reference (83)
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The head group areas (a0), (Table 3.1.1) for the gemini surfactants were calculated

according to Equation 3.1:

3.1

where  is the Gibbs surface excess concentration for the surfactant at the air water interface,

which is calculated from the slope of the surface tension curve ( logC), just prior to the cmc,

according to Equation 3.2:

  3.2

where R and T have their usual meaning, and n is a constant accounting for the dissociation of

ionic surfactants; for the gemini surfactants n = 3 (81). Comparing a0 for the 12-s-12 surfactants

in the presence of A  to those obtained in water we see a decrease in a0 of some of the GS in the

presence of A . This likely results from a relaxation of the electrostatic repulsion between

adjacent surfactant molecules as a result  of the incorporation of A  chains.   It  may also be the

case that the amino acid residues within the A  peptide chains partially neutralize the charge on

the gemini surfactant molecules themselves, through electrostatic interactions with the surfactant

head groups, further relaxing electrostatic repulsion. No clear pattern is observed for the

substituted gemini surfactants, regardless of the nature of the substituent group.  However, the

addition of substituent groups within the spacer of the gemini surfactants affects their ability to

interact  with  A ,  which  means  that  the  head  group  structure  is  important  in  surfactant/A

interaction. It is worthy to note that some of the GS showed an increase in the a0 in the presence

of Aß which might be due to other interactions rather than the electrostatic interaction.  To obtain

1
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a better understanding of how surfactant structure impacts these interactions we undertook a

titration calorimetry and dynamic light scattering study, described in Section 3.2 below.

3.2 Gemini surfactant-Aß interaction: ITC and particle size measurement

The interaction between the gemini surfactants and A  has been examined in more details

using ITC and particle size measurements.  For better understanding of the results obtained, and

the importance of changes within the molecular structure of the surfactants, the type of

interactions that may occur between the surfactant and the A  peptides should be considered.

The possible interactions that can occur include:

1. Hydrophobic interactions between peptide and surfactant molecules

2. Hydrophobic interactions between surfactant molecules

3. Hydrophobic interactions between peptide molecules

4. Electrostatic interactions between peptide and surfactant molecules (may be attractive OR

repulsive)

5. Electrostatic interactions between surfactant molecules (Repulsive)

6. Electrostatic interactions between peptide molecules (may be attractive or repulsive

depending upon pH, amino acid sequence, etc.) (87).

In this work, we decided to focus on variations in the structure of the head group of the

surfactant, the rationale for which was the idea that electrostatic interactions between the

surfactant head group and the amino acids in the A  peptide are potentially more important in the

interaction as compared to hydrophobic interactions (76,81). Nevertheless, the observed
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differences in binding, described below, will involve changes in electrostatic interactions, weaker

interactions arising from hydrogen bonding, and changes in the hydrophobic nature of the spacer

group  of  the  GS.   As  such,  with  the  help  of  particle  size  data  also  presented  below,  we  will

interpret the binding observed in our calorimetric studies on the basis of the above contributions

to the complete binding interaction.

The enthalpograms for the titration of each gemini surfactant into water, and into a 1 g/ml

solution of Aß are shown in Figures 3.2.1 to 3.2.4.  From these figures, it is apparent that marked

differences occur for some of the surfactants, suggesting stronger interactions with Aß,

depending upon head group structure.   As observed in Section 3.1 in our surface tension

Figure 3.2.1:  Observed enthalpies for the addition of un-substituted gemini surfactants in
water( ), and in Aß (1 g/ml) solution( ).
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Figure 3.2.2:  Observed enthalpies for the addition of hydroxyl-substituted gemini surfactants in
water( ), and in Aß (1 g/ml) solution( ).

Figure 3.2.3:  Observed enthalpies for the addition of ethoxyl-substituted gemini surfactants in
water( ), and in Aß (1 g/ml) solution( ).
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Figure 3.2.4:  Observed enthalpies for the addition of amine-substituted gemini surfactants in
water( ), and in Aß (1 g/ml) solution( ).

measurements, little difference is observed in the enthalpograms, generally, when Aß is added to

the system.  Then enthalpograms look very similar to those obtained for the titration of each

surfactant into water alone, and the data supports the interpretation that Aß is behaving as a

hydrophobic solute and the interaction of the surfactant is one of mixed-micelle formation, rather

than a “typical” surfactant polymer/peptide interaction (as such interactions were introduced in

Chapter 1).  CMC values and enthalpies of micellization ( Hmic) have been determined for each

surfactant for the titration into water (CMCaq, Hmic, aq) and into Aß solution (CMCAß, Hmic, Aß)

and are listed in Table 3.2.1.
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Table 3.2.1: Critical micelle concentrations (CMC) and enthalpies of micellization ( Hmic)
obtained from ITC measurements for the gemini surfactants in water and in 1 g/mL A  in
water.  Values in parentheses are literature values.

Surfactant CMCaq (mM) CMCAß (mM) Hmic, aq

(kJ mol-1)
Hmic, Aß

(kJ mol-1)
12-2-12 1.09 1.18 -15.5 (-22a) -14.1
12-3-12 1.03 1.03 -16.0 -16.1
12-4-12 1.23 1.21 -8.3 (-9.3 a) -8.5
12-7-12 1.12 1.04 -6.9 -7.0

12-4(OH)-12 1.02 1.03 -11.0 (-12.1b) -10.8
12-4(OH)2-12 0.98 1.14 -11.8 (-11.5 b) -10.5

12-EO1-12 1.38 1.39 -8.4 (-13.3c) -7.9
12-EO2-12 1.26 1.18 -8.3 (-9.9c) -9.5
12-EO3-12 1.34 1.34 -6.4 (-9.2c) -6.4

12-5N-12 0.73 0.92 -20.9 (-11.9c) -16.7
12-8N-12 1.09 1.18 -15.5 (-3.0) -14.1

a From reference (88)
b From reference (81)
c From reference (80)
d From reference (83)

Very good agreement is seen between Hmic, aq obtained in this work, and those reported

in the literature, as well as between aqueous CMC values obtained from ITC and surface tension

measurements; observed differences are typical of those seen for measurements made using

different instruments (ITC values) or different methods (i.e., surface tension vs ITC).  The

differences observed for the titration of surfactant into water as compared to Aß solution are

small, and the interpretation is not as clear as for the surface tension study.  Nevertheless, the

magnitudes of the CMCs and enthalpies of micellization are very similar, and support a

solubilization process as compared to a binding interaction for the mixed surfactant/Aß system.
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That said, any differences in the enthalpograms are difficult to interpret as presented in Figures

3.2.1 to 3.2.4.  In order to provide a better discussion, the differences in observed enthalpy ( H)

were determined, and these results are described in further detail in the following sections.

3.2.1 Interactions between the un-substituted (12-s-12) gemini surfactants and A

Figures 3.2.1.1 shows subtracted enthalpies ( H) and the particle sizes (diameter) as a

function of surfactant concentration for the 12-s-12 / A  systems.  The subtracted enthalpy

profiles are obtained by subtracting the observed enthalpies for the titration of the surfactant into

water ( Hobs, water) from the observed enthalpies for the titration of the surfactant into A  solution

Hobs, A ), i.e.:

, , Eqn. 3.1

where Hobs is the sum of the enthalpy of dilution of gemini surfactant solution in Aß solution,

dilution of gemini surfactant micellar solution, dehydration of Aß peptide aggregates,

reformation of Aß aggregates and Aß/gemini surfactant interaction; i.e.,

Hobs =  Hdemicellization + Hdilution + HdehydrationAß + HAß aggregate reformation + Hsurfactant-Aß. (Eqn. 3.2)

Subtracted enthalpies are useful to observe the small differences between the enthalpies and

provide better details to discuss about the possible interaction between gemini surfactants and

Aß. Different behavior is observed for these surfactants, depending upon the length of the spacer

group, s = 2, 3, 4, or 7.  These 4 surfactants were chosen because of their relation to the various

substituted surfactants: 12-2-12 corresponds to 12-EO0-12 and the parent surfactant for the 12-

5N-12 and 12-8N-12 surfactants; 12-4-12 is the parent surfactant for the 12-4(OH)X-12, and 12-
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Figure 3.2.1.1. A) Dynamic light scattering and B) Observed enthalpies for the addition of 12-2-
12 ( ), 12-3-12( ), 12-4-12 ( ) and 12-7-12 ( ) into Aß (1 g/ml) solution.
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3-12 and 12-7-12 provide a more complete series of the 12-s-12 surfactants.

Examining  the  particle  size  and  enthalpy  data,  we  can  define  3  distinct  regions  to  the

interaction(s), as a function of surfactant concentration. In the absence of added surfactant, the

 peptide has an average particle size of ~300 nm, with a large degree of variability (see the 0

added surfactant data points in Figures 3.2.1.1 A).  Upon addition of surfactant the average

particle sizes are, generally, observed to decrease with the exception of 12-4-12 surfactant, which

is observed to increase in particle size, initially.  At the same time the enthalpies are observed to

generally decrease (i.e. an exothermic transition), this time with the exception of the 12-3-12

surfactant (initial endothermic increase in enthalpy is observed for 12-3-12).  The addition of the

gemini surfactants to water initially results in a demicellization of the concentrated surfactant,

which causes an increase in enthalpy that is, for 12-s-12 surfactant series, observed to be strongly

endothermic in nature. This is in agreement with the observations made by Li et al (76) for the

12-6-12 surfactant, although it should be noted that their study was carried out at a significantly

larger A  concentration (0.116 mM) which may account for the much larger changes observed in

their study.

The addition of the gemini surfactant to A  results in a neutralization of the overall

negative charge carried by A  at neutral pH (approximately 6 at neutral pH (76).  This results in

a relaxation of the peptide, promoting further association of the surfactant with A  and reducing

unfavorable interactions with water and the neutralized, hydrophobic, A . This results in a

dehydration of both A  and the gemini surfactant, and a substantial exothermic contribution to

the enthalpy, as observed in Figure 3.2.1.1 B.
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It is interesting to note, that very different behavior can be observed in both the particle

size and enthalpy profiles (Figures 3.2.1.1 A and B, respectively) depending upon the length of

the polymethylene spacer, i.e., s = 2, 3, 4, or 7.  If we expand Region 1 in Figure 3.2.1.1 B (see

now Figure 3.2.1.2)  we can observe that for both the 12-3-12 and 12-7-12 surfactants, the first

additions  of  surfactant  result  in  an increase in enthalpy (endothermic), and then decrease in

enthalpy back to approximately zero.  This is in contrast with the 12-2-12 and 12-4-12

surfactants for which the enthalpy decreases immediately upon addition of surfactant (i.e.

exothermic).  This difference is attributable to the differences in the ability of the hydrophobic

tails to rotate around the spacer group, specifically for short spacer groups, as a result of steric

hindrance (88).

The particle size data generally supports the above interpretation, as A  is dehydrated, it can

be compacted by the added surfactant, resulting in an overall decrease in particle size, as seen in

Figure 3.2.1.1 A.  Unfortunately, because of a great fluctuation in size data (resulting from the

large heterogeneity observed in measured particle sizes) making any additional conclusions

about binding between the 12-2-12/Aß, 12-3-12/Aß, 12-4-12/Aß, and 12-7-12/Aß surfactants

systems are difficult.  AFM and EM are useful techniques to assess the size and shape of the

surfactant/Aß particles to confirm our interpretation.
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Figure 3.2.1.2.Expanded enthalpy profile for the the addition of 12-2-12 ( ), 12-3-12( ), 12-4-
12 ( ) and 12-7-12 ( ) into Aß (1 g/ml) solution.

Looking now at region 2, for all 3 surfactants there is a flattening of the enthalpy profile

(Figure 3.2.1.1 B), with the observed enthalpy being approximately zero for the 12-3-12, 12-4-

12, and 12-7-12 surfactants, and a weakly exothermic, but constant enthalpy of ~1.5 to 2 kJ mol-1

for  the  12-2-12  surfactant.   It  is  worthy  to  mention  again  that  data  in  Figure  3.2.1.1  B  is  the

subtracted data, i.e. the enthalpy profile obtained for the titration of the surfactant into A  minus

the enthalpy profile obtained for the titration of surfactant into water.  This means that there is

NO difference in enthalpy for the addition of surfactant to A  compared to the addition of

surfactant to water.  Such an observation does not necessarily imply no additional interaction
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between the surfactant molecules and A , but rather that the binding interactions observed are

similar to those for regular micelle formation; i.e., growth of A  bound surfactant aggregates is

likely occurring.  The weak increase in particle size observed in region 2 (Figure 3.2.1.1 A) ,

generally, is consistent with this, particularly if one considers that growth of A  bound

aggregates likely involves some reorganization as well, resulting in only modest changes in

particle size throughout region 2. The lack of significant enthalpy change can be rationalized in

terms of no significant change in hydration of the surfactant monomers in going from the

micellized state (the initial state of the surfactant in the titrant syringe of the calorimeter) to the

-bound state in the titration cell.

Finally, a second peak is observed in the subtracted enthalpy profiles (Region 3 in Figure

3.2.1.1 B), one that is very weakly exothermic in nature for the 12-3-12 and 12-7-12 surfactants,

weakly endothermic for the 12-4-12 surfactant, and strongly endothermic for the 12-2-12

surfactant.  This transition corresponds to the saturation of the A  peptide chains, and the onset

of free micelle formation for the surfactants.  In Figure 3.2.1.1 A, changes in particle size

continue to be observed; however there is no clear trend observed, with both increase and

decrease in particle size for all 4 surfactants.  At this point added surfactant is presumed to form

free micelles; however, it is important to keep in mind that there will be an on-going equilibrium

between mixed gemini surfactant- A  aggregates, and free surfactant micelles.  It should also be

remembered that the aggregation of A  itself into pure A  aggregates (be they micelles,

oligomers, fibrilles, etc.) is a highly time dependent process, and growth of the mixed surfactant-
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 aggregates may also take place.  As indicated above, AFM or EM studies give us better

images about the exact nature of the mixed aggregates.

Given the above discussion, it is clear that significant interaction between the gemini

surfactants and A  do occur, and that the nature of these interactions depends on the length of the

spacer group within the surfactant structure.  Generally, stronger interactions appear to occur for

surfactants with shorter spacer groups; however, the interpretation of the results is confounded

by an apparent odd-even dependence on the number of methylene units within the spacer group

(65).

3.2.2 Interactions between 12-4(OH)x-12 gemini surfactants and A

      In the absence of surfactant, the average particle size of A  peptide is ~300 nm (Figures

3.2.2.1 A). Addition of surfactant results initially in a decrease in the average particle size.  At

the same time the enthalpies for 12-4(OH)-12 are observed to first increase (i.e an endothermic

transition) and then decrease (i.e. an exothermic transition) whereas the enthalpies for 12-

4(OH)2-12 initially do not change but then show an exothermic transition. As mentioned in

section 3.2.1, demicellization of gemini surfactant occurs (endothermic) when concentrated

surfactant is injected into the reaction cell (76); however, for 12-4(OH)2-12 this endothermic

demicellization may be cancelled out through increased hydrogen bonding (exothermic in nature

(89)) that could occur between the head groups of 12-4(OH)2-12 molecules. 12-4(OH)2-12

surfactant has one extra hydroxyl group as compared to 12-4(OH)-12, and the extra hydroxyl

group appears to make significant difference in the enthalpy profiles of 12-4(OH)2-12.
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The particle size data reveals decreases in particle size, which means that A  is

dehydrated, and compacted by the added surfactant, resulting in an overall decrease in particle

size, as seen in Figure 3.2.2.1 A. This interpretation could be confirmed by using AFM and EM

methods in different surfactant concentrations in Aß solution.

The difference in the mono and di-substituted hydroxyl gemini surfactants enthalpy

profiles can be attributed to their difference in the number of hydroxyl groups in the spacers.

Therefore, OH groups in the di-substituted spacer have to occupy a gauche or eclipsed

conformation, that results in enhanced steric hindrance between alkyl chains when they are in the

cis or eclipsed position; that results changing in 12-4(OH)2-12 conformation (81,88).

Looking now at region 2, for both surfactants there is a flattening of the enthalpy profile

(Figure 3.2.2.1 B) we observed that one hydroxyl group cannot be more effective than 12-s-12

surfactants in interaction with Aß. Moreover, we conclude that the effect of one additional

hydroxyl group is not substantial enough to make the expected difference compare to 12-s-12

series. For 12-4(OH)2-12 in region 2 (Figure 3.2.2.1 B) we can see the flattening exothermic

enthalpy. Also, in region 2, in DLS data (Figure 3.2.2.1 A) we see a substantial reduction in

particle size. The ITC and DLS data together show that the interaction between a surfactant with

two hydroxyl group in the spacer is different from 12-s-12 in Figure 3.2.1.1, region 2. It seems

that the two hydroxyl groups in the spacer can be effective enough in changing Aß conformation

and particle size compare to that of 12-4(OH)-12. As it is observed in Figure 3.2.2.1, region 2,

significant reduction in particle size and exothermic enthalpy can be attributed to the hydrogen

bonding between 12-4(OH)2-12 and Aß. In addition, we conclude that 12-4(OH)2-12 is strong
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Figure 3.2.2.1. A) Dynamic light scattering and B) Observed enthalpies for the addition of 12-
4(OH)-12 ( ), and 12-4(OH)2-12 ( ) into Aß (1 g/ml) solution.
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enough to change Aß conformation: 12-4(OH)2-12 attaches to Aß by hydrogen bonding. Then

the addition of more surfactant molecules causes repulsion force between surfactants’ head

group, which leads to the dissociation of Aß aggregates (we denote this by process 1). Hence,

more free spaces on Aß will be available to interact with 12-4(OH)2-12. Therefore, process 1 will

be repeated and the size of Aß aggregate which was produced in process 1 (now Aß aggregate

has smaller size) is reduced again (Figure 3.2.2.2). Although some endothermic interactions

occur which affect the exothermic interactions, all these interactions are exothermic overall.

Figure 3.2.2.2. 12-4(OH)2-12/Aß conformation: Aß aggregate (A), disrupted Aß (B), disrupted
Aß while surfactant makes each particle smaller than part B (C). Aß ( ), Surfactant ( ),
unavailable spaces with a potential to interact with gemini surfactant ( ).

Within region 3 a second peak is observed in the subtracted enthalpy profiles (Region 3

in Figure 3.2.2.1 B), and after that the enthalpies and particle sizes for both surfactants reach the

point that do not change significantly (micelles consist of surfactant and Aß are forming in this

region) (Figure 3.2.2.1). The peaks in Region 3 for 12-4(OH)-12 is not significant compare to

that of 12-4(OH)2-12, which has a significant endothermic peak in region 3. As there is no

reference (to our knowledge) related to 12-4(OH)n-12 interaction with polymers, the following is

our own interpretation about the possible structure changes in 12-4(OH)2-12 and 12-4(OH)-12

A CB
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molecules  in  interaction  with  Aß.  In  region  3,  the  saturation  of  Aß  occurs.  It  means  that  the

gemini surfactant’s micellar shapes are formed, which attach to Aß. The ITC data for 12-4(OH)-

12  in  this  region  shows  a  weak  exothermic  enthalpy  profile.  This  exothermic  enthalpy  can  be

attributed to one hydroxyl group in the spacer; this hydroxyl group is in a direct contact with Aß,

and based on 12-4(OH)-12 structure, there is no factor (e.g. steric hindrance) that pushes one

hydroxyl group between two tail groups (inside the molecule structure). Moreover, the steric

hindrance between two alkyl tails is strong enough to prevent the hydroxyl group to be placed

between two alky tail groups (Figure 3.2.2.3). Therefore, the hydroxyl group position is outside

of the spacer, which facilitates the interaction of gemini surfactant with Aß. In 12-4(OH)2-12, we

can see the endothermic peak in region 3. As we mentioned, there are two hydroxyl groups in the

carbon  number  2  and  3  in  the  spacer.  In  region  3,  Aß  is  saturated  with  gemini  surfactant

molecules. Therefore, a surfactant micelle is formed and attached to Aß. As two hydroxyl groups

in the spacer are close to each other, the steric hindrance prevents them to be in the same

position. Hence, two hydroxyl groups will be in the gauche or eclipsed conformation (Figure

3.2.2.3B), which changes the whole molecule configuration. This configuration change affects

the way that two hydroxyl groups interact with Aß. In addition, changing in the molecular

configuration can be endothermic enough to cancel out the exothermic enthalpy that results from

hydrogen bonding. Therefore, the different conformation of 12-4(OH)2-12 in interaction with Aß

causes a substantial difference in H in region 3 compared to that of 12-4(OH)-12.
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Figure 3.2.2.3. 12-4(OH)-12/Aß conformation (A), and 12-4(OH)2 -12/Aß conformation (B). Aß
( ), gemini surfactant ( ), hydroxyl group ( ).

In  Figure  3.2.2.1  A,  we  can  see  the  changes  in  particle  size  (not  significant  changes).

However in Figure 3.2.2.1 B, the ITC data shows flattening of enthalpy at the points close to the

end of the plot. It can be concluded that the surfactant molecules attach to Aß and make micelles

consisting of surfactant and Aß. These micelles are in equilibrium with the surfactant molecules

in their environment.

Comparing the effect of 12-4(OH)-12 and 12-4(OH)2-12 on Aß aggregates, it can be

concluded that the interaction between hydroxyl-substituted gemini surfactant and Aß depends

on the number of OH substitutes in the spacer. Generally, stronger interactions appear to occur

for the surfactant with two OH in the spacer group as compared to the surfactant with a single

OH group.

3.2.3 Interactions between 12-EOx-12 gemini surfactants and A

In  Figures  3.2.3.1  A  and  B,  the  particle  sizes  (diameter)  and  subtracted  enthalpies  ( H)  as  a

function of surfactant concentration for the 12-(EO)x-12  /A  systems  are  observed.  As  can  be

seen, the behavior of surfactants with different number of ethoxy groups varies due to the

BA
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different interactions that occur between surfactant and Aß. As observed in Figure 3.2.3.1 there

is not a significant interaction between 12-(EO)1-12 and Aß, and between 12-(EO)3-12 and Aß.

For 12-(EO)2-12 the enthalpy profiles show significant interaction with Aß compared to those in

12-(EO)n-12 series. Looking at the enthalpy profiles for all three surfactants, it is observed that

12-(EO)2-12 has stronger interaction compared to the other two surfactants. As hydrophilicity of

12-(EO)2-12 is more than that of 12-(EO)-12, it is expected that 12-(EO)2-12/Aß interaction is

stronger than 12-(EO)-12/Aß. Although 12-(EO)3-12 is more hydrophilic than 12-(EO)-12 and

12-(EO)2-12, yet the 12-(EO)3-12/Aß interaction is not stronger than that of 12-(EO)-12/Aß and

12-(EO)2-12/Aß. Using ITC and DLS techniques are not enough to help us to explain the

molecular conformation changes in 12-(EO)3-12 in interaction with Aß. We can propose that the

conformational changes in the spacer could be responsible for decrease in 12-(EO)3-12/Aß

interaction.

Looking now at region 2, the enthalpies for 12-(EO)1-12 and 12-(EO)3-12 are

approximately 0 kJ mol-1.  In  the  areas  which  enthalpy  profiles  are  zero,  it  seems  that  the

surfactant interaction with Aß is the same as the interaction at the end of the enthalpy plot

(Figure 3.2.3.1 B) in region 3 (in region 3, the surfactant/Aß interaction causes formation of

micelles consisting of Aß and surfactant).

For 12-(EO)2 -12 in region 2, we see endothermic enthalpy in contrast to 12-(EO)1-12 and

12-(EO)3-12. We conclude that since 12-(EO)2 -12 is more hydrophilic than 12-(EO)-12, and has

a straight spacer (compared to the spacer of 12-(EO)3-12 that, as we already proposed, it’s spacer

could have a different conformation rather than being straight) it can interact better with Aß than
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Figure 3.2.3.1. A) Dynamic light scattering and B) Observed enthalpies for the addition of 12-
EO1-12 ( ),12-EO2-12 ( ), and 12-EO3-12 ( )into Aß (1 g/ml) solution.



53

those with one and three ethoxy groups in the spacer. 12-(EO)2 -12 can  have the same

interaction pattern as 12-4(OH)2-12 in section 3.2.2 (Figure 3.2.2.1 B, region 2).

Finally, a second peak is observed for 12-(EO)2-12 in the subtracted enthalpy profiles

(Region 3 in Figure 3.2.3.1 B), for 12-(EO)-12 and 12-(EO)3-12, the ITC data does not show a

significant changes in enthalpy profile for both of them. As mentioned in section 3.2.1, in this

region, surfactant monomers are likely to form free micelles; also the monomers can transfer

from the micelles to mixed gemini surfactant-Aß aggregates since there is an equilibrium

between these two structures (surfactant free micelles and surfactant-Aß aggregates). To confirm

these interpretations, AFM and EM studies are needed.

Based  on  the  above  discussion  the  chemical  groups  in  the  spacer  and  the  length  of  the

spacer affect the interaction between gemini surfactant and Aß. Generally, stronger interactions

are seen in 12-(EO)2-12/Aß than those of 12-(EO)-12/Aß and 12-(EO)3-12/ Aß.

3.2.4 Interactions between 12-XN-12 gemini surfactants and A

As shown in Figure 3.2.4.1 the particle sizes (diameter) and subtracted enthalpies ( H) as a

function of surfactant concentration for the 12-5N-12 /A  and 12-8N-12/Aß systems are

assessed. Various behaviours in a surfactant with one aza group compared to that with two aza

groups in the spacers are observed.

Before the addition of 12-5N-12 surfactant, the A  peptide has an average particle size of

~300 nm, and in the absence of added 12-8N-12, the Aß peptide has an average particle size of

~370. After the surfactant is added, the average particle sizes are observed to decrease for both
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systems, but then an increase in particle size was observed for 12-5N-12 in region 1. At the same

time the enthalpies for 12-5N-12/Aß are observed to change significantly whereas there is not

substantial change in the 12-8N-12/Aß enthalpy.

In our opinion, the exothermic enthalpy in this region is attributed to the hydrophilic

interaction between the spacers and Aß. Donkuru (86) et al. assessed the efficacy of aza

substituted gemini surfactants in increasing transfection efficacy. They mentioned the effect of

methyl groups in increasing steric hindrance between gemini surfactants and DNA molecules.

We can use a similar interpretation in rationalizing the difference in the behavior of 12-5N-

12/Aß and 12-8N-12/Aß. As it is shown in Figure 3.2.4.2, the methyl group in 12-5N-12 is not as

effective as two methyl groups in 12-8N-12 in reducing the surfactant interactions with Aß.

Hence, the significantly higher exothermic transition of 12-5N-12/Aß in region 1 compared to

that of 12-8N-12/Aß (Figure 3.2.4.1 B) can be explained by the higher hydrophilic interaction

between 12-5N-12 and Aß versus that between 12-8N-12 and Aß.

The particle size data in region 1 (Figure 3.2.4.1 A) shows first a slight decrease and then

significant increase in 12-5N-12/Aß particle size. 12-5N-12 molecules tend to attach to Aß and

unfold the Aß aggregates. This creates availability for more parts of the Aß aggregate to accept

12-5N-12 molecules (Figure 3.2.4.3). Hence, unfolded Aß can bind more surfactant molecules

and this process is responsible for an increased particle size in region 1 for 12-5N-12. AFM or

EM methods can give us better images of gemini surfactant/Aß interaction, which would help us

to confirm our interpretation of their interaction.
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Figure 3.2.4.1. A) Dynamic light scattering and B) Observed enthalpies for the addition of 12-
5N-12 ( ), and 12-8N-12 ( ) into Aß (1 g/ml) solution.
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Figure 3.2.4.2. 12-5N-12/Aß conformation (A), 12-8N-12/Aß conformation (B): Aß ( ),Carbon
(   ), Nitrogen (    ), Methyl group (    ).

Looking now at region 2, for 12-5N-12 there is an endothermic enthalpy profile (an

endothermic transition) (Figure 3.2.4.1 B), and for 12-8N-12 the enthalpy profiles being

approximately zero, and weakly exothermic. The flattening enthalpy reveals that there is no

difference in enthalpy for the addition of surfactant to A  compared to the addition of surfactant

to water.  Thus, one can assume that 12-8N-12 molecules are added to Aß in this region are

forming micelles. The increase in particle size observed in region 2 (Figure 3.2.4.1 A), is

consistent with the above interpretation, and also the fact that reorganization of Aß could occur

in this region that results in the increasing in particle size.

In 12-5N-12, interactions with Aß are different in region 2 from 12-8N-12/Aß

interactions. In region 2 in DLS data (3.2.4.1 B) after the increasing of particle size, we see a

significant reduction in particle size for 12-5N-12. The enthalpy change for 12-5N-12 is

significant in this region, which can be related to the high endothermic interactions between

surfactant and Aß. Based on DLS and ITC data in region 2, we conclude that the attachment of
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12-5N-12 to Aß causes unfolding of the aggregate. The difference in the enthalpy profiles for 12-

5N-12 and 12-8N-12 in region 2 is attributed to an extra aza group in 12-8N-12, which

previously discussed in this section that how one extra methyl group in the spacer could affect

the interaction between aza substituted surfactant and Aß.

Region 3 corresponds to the saturation of A  peptide, and the onset of free micelle

formation for the surfactants. In Figure 3.2.4.1 A, a change in particle size is observed.  At this

point, added surfactant forms free micelles. There is also equilibrium between mixed gemini

surfactant- A  aggregates and free surfactant micelles.

Based on above discussion, it can be concluded that the number of aza groups in the

spacer has a significant impact on surfactant/Aß interaction. Generally, stronger interactions

appear to occur for 12-5N-12; although two aza groups seems to have more hydrophilic

interaction with Aß than that of 12-5N-12, the steric hindrance caused by two methyl groups in

the spacer reduces the interaction of 12-8N-12 and Aß.

3.2.5 Summary of ITC and DLS results

 To our knowledge, none of the articles about gemini surfactant/Aß interactions (for example

(50,72,76,77,90)) mentioned a detailed or properly supported explanation about the interaction

between gemini surfactant and Aß. In this work, we have the data for different surfactants with

different spacer structures. This gives us a substantial amount of data, compared to most of the

papers in the literature, and helps us to present stronger interpretations by comparison between

the data of different surfactants.
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Among eleven surfactants, the strongest interactions are seen in 12-(EO)2-12/Aß, 12-

4(OH)2-12/Aß and 12-5N-12/Aß systems. To confirm our work, other techniques such as NMR,

AFM and dialysis-based binding studies can be used.
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Chapter 4: Conclusions

Within this work, the physicochemical properties of the interaction between gemini

surfactants with different spacer groups and Aß peptide were assessed. First, we evaluated the

interactions by surface tension measurements. We observed changes in cmc and head group area

of our gemini surfactants in Aß solution. It was obvious that gemini surfactants with different

spacer length and various spacer substitutes can interact with Aß, and we conclude this

interaction is through a solubilization process, rather than a more typical surfactant/polymer or

surfactant/protein interaction as introduced in Chapter 1. Our surface tension results do not show

the cac and C2 critical concentrations expected for surfactant/polymer systems and instead

clearly show a reduction in cmc for most surfactants, as expected for micelle formation in the

presence of a hydrophobic solute.  From variations in the head group areas for the surfactants it

is also clear that there is substantial interaction occurring between the surfactants and Aß;

however the nature of this interaction (i.e. arrangement of surfactant and peptide within each

aggregate) remains unclear.

As the surface tension data did not give us enough information about the gemini

surfactant/Aß interaction, we decided to use ITC and dynamic light scattering techniques to

confirm our results in surface tension part and also get a better idea about the possible

interactions occurring between gemini surfactant and Aß. The ITC results reveal that gemini

surfactant with different spacer groups do not follow the same trend in interaction with Aß. For

example, it was observed that gemini surfactant with hydroxyl group in the spacer interacts with

Aß differently from those with ethoxy or aza groups. The hydrogen bond between 12-4(OH)n -12
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and Aß is a factor that affects the whole molecule interaction with Aß. In 12-(EO)n -12 gemini

surfactants, there is still hydrophilic interaction that can affect whole molecule configuration.  In

gemini  surfactants  with  aza  groups  in  their  spacer  the  hydrophilicity  of  the  spacer  plays  an

important role in 12-XN-12 interaction with Aß. The DLS experiments help us to get better idea

about the particle size changes in different gemini surfactant concentration in interaction with

Aß. Overall, it was observed that the particle size decrease at the end of the experiment. These

results reveal that gemini surfactant molecules with various spacers are able to disrupt Aß

aggregates and turn them into smaller particles.

Future directions of research

Aß plays an important role in the pathophysiology of Alzheimer’s disease. In this

research we tried to investigate the effect of gemini surfactants’ spacer on Aß aggregation and

formation. AFM studies can be helpful in confirming what we proposed in our research about the

Aß/gemini surfactant configuration. It can reveal the spacer’s structure effects on the overall

configuration of gemini surfactant/Aß interaction. Aggregation assay is another experiment that

can be helpful in checking the aggregation status of Aß before and after adding gemini

surfactant. Testing the neuronal cell toxicity of gemini surfactant and also gemini surfactant’s

efficacy in reducing Aß toxicity for neuronal cells is another experiment that can be conducted.

The MTT assay is the experiment that can be used in testing the neuronal cell toxicity of

molecules.
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Appendix 1

Figure A.1.1:  Surface tension plot for the titration of the 12-s-12 gemini surfactants ( = 1 mM
stock solution; = 10 mM stock solution) into a 1 µg/mL solution of A  in water.
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Figure A1.2:  Surface tension plot for the titration of the 12-4(OH)x-12 gemini surfactants ( =
1 mM stock solution; = 10 mM stock solution) into a 1 g/mL solution of A  in water.

Figure A1.3:  Surface tension plot for the titration of the 12-EOx-12 gemini surfactants ( = 1
mM stock solution; = 10 mM stock solution) into a 1 g/mL solution of A  in water.
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Figure A1.4:  Surface tension plot for the titration of the 12-XN-12 gemini surfactants ( = 1
mM stock solution; = 10 mM stock solution) into a 1 µg/mL solution of A  in water.
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