

Economic Model Predictive Control of Chemical

Processes

by

Omar Santander

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Chemical Engineering

Waterloo, Ontario, Canada, 2015

© Omar Santander 2015

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The objective of any chemical process is to transform raw materials into more

valuable products subject to not only physical and environmental but also

economic and safety constraints.

To meet all these constraints in the presence of disturbances the processes must be

controlled. Although nowadays there are many available control techniques

available Model Predictive Control (MPC) is widely used in industry due to its

many advantages such as optimal handling of interactions in multivariable systems

and process constraints.

Generally, the MPC strategy is implemented within a hierarchical structure, where

it receives set points or targets from the Real Time Optimization (RTO) layer and

then maintains the process at these targets by calculating optimal control moves.

However, often the set point from the RTO may not be the best optimal operation

or it may not be reachable thus motivating the integration of the RTO and MPC

calculations into one single computation layer.

This work focuses on this idea of integrating RTO and MPC into one single

optimization problem thus resulting in an approach referred in literature as

Economic Model Predictive Control (EMPC). The term “Economic” is used to

reflect that the objective function used for optimization includes an economic

objective generally used in RTO calculations. In this thesis, we propose an EMPC

algorithm which calculates manipulated variables values to optimize an objective

consisting of a combination of a steady state and a dynamic economic cost. A

weight factor is used to balance the contributions of each of these two terms. Also,

the cost is defined such as when the best economic steady state is reached the

objective is only influenced by the dynamic economic cost.

An additional feature of the proposed algorithm is that the asymptotic stability is

satisfied online by enforcing four especial constraints within the optimization

iv

problem: 1-positive definiteness of the matrix P defining the Lyapunov function, 2-

contraction of the Lyapunov function with respect to set point changes, 3-

contraction of the matrix P with respect to time and 4- Lyapunov stability

condition. The last constraint both ensures decreasing of the Lyapunov function

and also accounts for the robustness of the algorithm with respect to model error

(uncertainty).

A particular novelty of this algorithm is that it constantly calculates a best set point

with respect to which stability is ensured by the aforementioned constraints. In

contrast to other algorithms reported in the literature, the proposed algorithm does

not require terminal constraints or terms in the cost that penalize deviations from

fixed set points that often lead to conservative closed loop performance.

To account for unmeasured disturbances entering the process, changes in

parameters are also explored and the algorithm is devised to compensate for these

changes through parameter updating. Accordingly, the parameters are included as

additional decision variables within the optimization problem without the need for

an external observer. The stability of the parameters estimation is ensured through

the set point constraint mentioned above.

To demonstrate the capabilities of the proposed algorithm, it is tested on two case

studies: a simpler one involving a system of 4 nonlinear ODEs describing an

isothermal nonlinear reactor and a larger problem involving a non-isothermal

Williams-Otto reactor with parallel reactions. The dynamics of the latter reactor

consists of a set of nonlinear ODE describing the evolution of the process

temperature and concentration of the different species.

The simulations for the isothermal reactor showed that the proposed algorithm not

only outperformed (in terms of an economic function) alternative formulations, but

addressed all their limitations. In addition, when there was a parameter

modification, this was adapted in a finite time. In terms of the non-isothermal

reactor, the simulations demonstrated that not only the best steady state could be

computed, but also the states were steered to it satisfying the online stability

property.

v

Acknowledgments

First of all, I would like to thank my supervisors, Professor Hector Budman and

Ali Elkamel. Thank you for this great opportunity, I deeply appreciate all the

knowledge that you shared with me, your advices, your patience and all the help

that you have provided me all this time.

In the second place, I would like to thank my colleges and members of Hector’s

research team, Rubin and Yuncheng who gave me some feedback about my

research or helped me with some course inquiry and whom I spent a very good

time. I would also like to thank my Mexican friends Ricardo and Memo whom I

liked to party with. Without you guys Waterloo would have been boring.

Thirdly, I would like to thank CONACYT and SEP for all the financial support

that have given to me during my Master studies.

Finally, I would like to thank UW-Chemical Engineering staff for all the technical

and/or documentation help that have given to me.

vi

To my mother, sisters and family. Without your support I would not be here.

vii

Contents

Abstract iii

Acknowledgement v

List of Figures ix

List of Tables x

Chapter 1 Introduction ... 1

1.1 Real Time Optimization .. 2

1.2 Model Predictive Control .. 3

1.3 Economic Model Predictive Control ... 5

1.4 Objectives of the research .. 6

1.5 Overview .. 7

Chapter 2 Literature Review

2.1 Introduction .. 8

2.2 One layer approach .. 9

2.3 Lyapunov MPC algorithm ... 10

2.4 Economic MPC .. 13

2.5 Large scale applications of EMPC .. 20

Chapter 3 Formulations, Stability and Case Studies

3.1 Introduction .. 25

3.2 EMPC algorithm .. 25

 3.2.1 Notation and Formulation .. 25

3.2.2 Asymptotic Stability ... 31

viii

3.3 Application to reactor system .. 35

Chapter 4 Parameter Adaptation, Otto Reactor Simulation, Feasibility

4.1 Introduction .. 47

4.2 Parameter Adaptation .. 47

 4.3 Williams-Otto reactor .. 55

4.4 Solution of dynamic optimization problem ... 62

 4.4.1 Feasibility ... 62

4.4.2 Numerical solution ... 66

Chapter 5 Conclusions and Future Work

5.1 Conclusions .. 69

 5.2 Future work .. 70

References ... 72

Appendix A ... 75

ix

List of Figures

1.1 Hierarchical structure in process operations .. 2

1.2 MPC descriptive diagram ... 4

1.3 Graphic showing that the best set point is not the most profitable one 6

3.1 Closed loop state (a), (b), (c) and (d) profiles for isothermal reactor. 39

3.2 Closed loop input (a) and (b), and Lyapunov (c) and (d) profiles for

isothermal reactor ... 41

3.3 Closed loop state (a), and (b) and (c) inputs profiles with alternative

formulation ... 44

4.1 Closed loop state (a), (b), (c) and (d) profiles for parameter adaptation 49

4.2 Closed loop input (a) and (b), parameter adaptation (c) and Lyapunov (d)

profiles 51

4.3 Closed loop state (a), (b), (c), (d), (e) and (f) profiles for Otto reactor. 56

4.4 Closed loop input (a) and (b) trajectories, Lyapunov (c) and Profit (d)

profiles for Otto reactor.. 60

4.5 Diagram showing the implementation of the feasibility problem 65

x

List of Tables

3.1 Performance comparison between our formulation (Q1 and Q2) and Rawlings

formulation ... 46

1

CHAPTER 1

INTRODUCTION

Chemical Plants are designed with the task of transforming raw materials into more valuable

products. These transformations must occur in the most efficient way so as to attain different

goals such as the yield need to be highest possible, the amount of contaminants or by-products

has to be minimal, the energy employed in the process has to be minimum etc. Furthermore,

these transformations have to be carried out under economical, physical and environmental

constraints and they must be robust to process disturbances such as variations in process settings

such as temperature, input flows, pressure etc., or variations in raw material quality. To achieve

these goals advanced control structures are a must since they can not only deal with MIMO

systems, but incorporate optimization tools that consider directly process constraints.

During the past decades several control strategies have been developed and applied ranging from

single input single output controllers to multivariable decouplers and model predictive

controllers (MPCs). Now more than ever the chemical industry worldwide is witnessing such

levels of competition that require processes to be as profitable as possible.

The conventional hierarchical control structure implemented in most process industries, shown

schematically in Figure 1.1, involves an RTO (real time optimization) level on top of a

multivariate control level realized by an MPC or other multivariable strategies followed by lower

level single input single output controllers (PIDs). The RTO is generally executed to maximize a

steady state economic cost with respect to optimal controlled and/or manipulated variables

values that are then used as set points in the lower level multivariable control strategy. Thus, the

RTO levels computes the targets and the multivariable controller (e.g. MPC) control the system

around these targets. Then, the multivariable controller strategy calculates either directly the

values of the manipulated variables or indirectly the set points for low level single input single

output controllers (e.g. PIDs) regulating each one of the manipulated variables of the process.

Although this hierarchical strategy has resulted in good performance there is a great opportunity

for improvement since chemical processes are rarely at steady state and thus the steady state set

2

points calculated by the RTO and enforced by the MPC controller may not be optimal in

transient scenarios.

Fig. 1.1: Hierarchical structure in process operations.

1.1 REAL TIME OPTIMIZATION

RTO is the first component (upper layer) of the actual hierarchical control structure shown in Fig

1.1. It usually accounts for market, process and corporative information (raw material cost,

inventory etc.), and consequently it is often described by a complex nonlinear algebraic model.

Since the RTO calculation maximizes steady state profitability, it is commonly executed only

when the system is detected to be close to a steady state. Therefore, the RTO sampling period is

much larger than the sampling period used by the MPC controller that performs dynamic

regulation. In a typical chemical process the sampling period of RTO will be in the order of days

or several hours whereas MPC will use sampling periods in the order of minutes.

RTO

MPC

PID

Process

3

The algorithm for the RTO may be summarized into these four steps:

i) Evaluate the data and detect new steady state

ii) Validate and reconcile the data

iii) Estimate model parameters and update the model

iv) Using optimization and the nonlinear algebraic model describing the process steady

states obtain a new steady state

The optimization is usually subject to constraints and the cost function involves a steady state

economic index.

Once a new steady state is calculated the values of the prospective controlled and/or manipulated

variables at the new steady state are sent and used as set point by MPC or any other multivariable

control strategy used as shown in Figure 1.1.

1.2 MODEL PREDICTIVE CONTROL

MPC performs an online optimization over a finite horizon with a sampling period of the order

of minutes.

The conventional cost function, also referred as the stage cost, is usually quadratic involving the

sum of squares of the deviations of the states and/or manipulated variables from the steady states

and steady state inputs computed by the RTO layer. Usually, weight factors (matrices) are

assigned to the different terms in the stage cost so as to tune the performance of the system.

MPC employs the use of a dynamic model and uses a prediction of the states based on this.

4

The general procedure of MPC is schematically represented in Figure 1.2 and proceeds

according to the following steps:

1. Measure the actual state

2. Compute de manipulated variables through optimization that will minimize the cost

subject to the system constraints

3. Apply the first component of the solution vector (optimal input vector)

4. Repeat again the procedure until the desired set point has been reached

MPC not only is applied to reach a particular set point but it is also used to maintain this set point

in the presence of process disturbances. By using a model of the process MPC can enforce

process constraints over a prediction time horizon and compensate for interactions occurring in

multiple input-multiple output systems (MIMO). The mathematics of MPC is described

elsewhere and therefore it is not presented here for brevity.

Fig 1.2: MPC descriptive diagram (Mahmoud 2012).

5

1.3 ECONOMIC MODEL PREDICTIVE CONTROL

The motivation for EMPC as an alternative to the hierarchical control structure described in

Figure 1.1 is that the latter is not optimal since it relies on the basic assumption that the system

can instantaneously achieved the optimal steady state calculated by the RTO while transients are

effectively ignored. Moreover, due to dynamic disturbances continuously occurring, the process

may never be at steady state thus invalidating the basic assumption for optimality of the RTO

calculations. Figure 1.3 illustrates the case where the line projection of all the steady state

solutions is not optimal. Figure 1.3 describes the profit as a function of the state and an input

assuming for simplicity a one state-one input system. The figure is based on deviation with

respect to the economic global optimum. It is clear that the best steady state, defined as the most

profitable one, is not the optimal state. Therefore, so as to operate around the economic global

optimum, the system must be controlled dynamically. Furthermore, due to the nonlinear nature

of chemical processes, regimes may exist that outperform the best steady state such as periodic

regimes.

EMPC still maintains many of the strengths of MPC, like for instance, the use of dynamic

MIMO models, the direct handle of constraints, online computation etc. However, in contrast

with conventional MPC, it uses directly a cost function that involves an economic performance

index instead of a quadratic stage cost. This means that it does not rely on any particular set point

value thus eliminating the need for the RTO level. The price for by-passing the RTO level is that

stability has to be assessed with respect to a potentially time varying set-point. Enforcing

stability is particularly challenging since now we are dealing not only with a nonlinear model as

in regular NMPC (Nonlinear MPC) but also with a generally nonconvex stage costs instead of a

quadratic cost. Nonconvex stage cost might also imply the existence of multiple minima.

6

Fig. 1.3: Graphic showing that the best set point is not the most profitable one (Rawlings 2012).

1.4 OBJECTIVES OF THE RESEARCH

The main objectives accomplished during the study were as follows:

 Formulate a novel EMPC algorithm that uses dynamic and steady state models which is

both stable and robust to model errors

 The performance of the proposed algorithm is enhanced by avoiding terms that limit

closed loop performance such as terminal constraints and terms that penalize deviations

with respect to fixed set-points

 The proposed algorithm was compared and found to be superior to other reported EMPC

formulations

 The proposed algorithm is designed to account for parameter changes

 The performance of the proposed algorithm is illustrated with two practical case studies

7

1.5 OVERVIEW

Chapter 2.

It contains all the literature review and antecedents that were used for the research.

Chapter 3.

In this chapter we propose our new EMPC algorithm and we demonstrate its robustness and

stability. We also state all our assumptions and modifications. Simple simulation examples are

provided and the performance of our approach is compared to similar formulations.

Chapter 4.

In this chapter we extend the implementation of the algorithm to a larger and more realistic

example than the one used in Chapter 3. The problem of parameter estimation is also considered

in this Chapter. In addition, conditions for the feasibility of the algorithm is also developed.

Chapter 5.

This chapter provides conclusions, remarks and future work.

Appendix A.

The code for our EMPC is described. Appropriate modifications in the subroutines need to be

implemented so as to tailor the EMPC to a particular problem. Pertinent instructions are given

for the execution of all the simulations shown in this work.

8

Chapter 2

LITERATURE REVIEW

2.1 INTRODUCTION

The research about both MPC and RTO is fairly extensive and it has been reported in both

journal articles and books (Camacho and Bordons, 2004; Grune and Pannek, 2011; Rawlings and

Mayne,2009). In terms of integration of RTO and MPC, many books have described the

hierarchical structure briefly described in the previous chapter (Marlin, 1995; Luyben and

Tyreus,1999).

As it was previously pointed out, the hierarchical structure that combines a separate RTO and

MPC levels has some disadvantages as follows (Ellis, Durand, Christofidies, 2014):

 Discrepancy in the models used for RTO and MPC may result in some steady states that

are unreachable by the MPC layer

 Since the RTO layer is executed infrequently a change in optimal steady state due to

disturbances may not be calculated in time thus affecting the overall economic

performance

 Set points corresponding to steady state operation might not be the most profitable for

dynamic situations and sometimes it is more profitable to operate dynamic set points

Consequently, a different approach is needed and using an economic performance criterion

directly as the cost function of the MPC controller may be one way to overcome these

drawbacks.

In the literature, there are some EMPC formulations that tackle many different problems (infinite

horizon, periodic operation, terminal region, pointwise terminal constraint etc.). This thesis is

based mainly on the theory developed by Rawlings and workers that were the first to study the

9

idea of combining an economic index together with a stage cost that penalizes deviations from

steady states values of states and inputs (Christofidies et al. 2014).

For completeness, before reviewing Rawlings work, we will review some other important

approaches.

2.2 ONE LAYER APPROACH

Adetola and Guay (2010) proposed a single layer strategy involving the integration of RTO and

MPC into one optimization problem. The algorithm seeks for the best operating condition while

also adapting parameters to cope with disturbances.

Combining an extremum seeking set point design, a barrier function to account for constraints, a

pre-defined Lyapunov function and a finite time parameter estimator, they formulated an update

law for a time-varying set point trajectory. The algorithm has guaranteed Lyapunov stability with

respect to this set point.

Once the update law for the set point was calculated, an MPC approach was implemented to

track after this set point while ensuring that the deviations of the states from the set point at a

terminal time were bounded.

The resulting approach was a min-max problem where maximization was done with respect to

bounds on the parameters so as to provide robustness (worst case scenario) and the minimization

was done with respect to the control actions. The stage cost consisted of a tracking term with a

penalty related to the terminal set constraint. The parameter update law and the reference

trajectories were used as constraints within the optimization problem. The parameter uncertainty

set was also updated in this formulation to reduce conservatism. This one layer approach has

several tuning parameters and extensive simulation must be performed in order to get good

performance. In contrast, in the current research our proposed approach eliminates some of the

limitations of the algorithm reviewed in this section as explained later in the thesis.

10

2.3 LYAPUNOV MPC ALGORITHM (LMPC)

Christofidies et al. (2012) proposed an EMPC algorithm based on the Lyapunov stability concept

and a time unvarying economic cost. Their formulation is referred to as LEMPC (Lyapunov

Economic Model Predictive Control). They considered a dynamic system under disturbances for

which they proposed Lyapunov controllers which rendered the origin of the nominal closed loop

system asymptotically stable for any state inside a stability region (ρ).The controller was subject

to constraints in the inputs, and the Lyapunov function was forced to satisfy various constraints

including upper and lower bounds, monotonic decrease of the time derivative and boundedness

of the derivative with respect to the states.

This work included two different approaches based on the type of data available for feedback:

synchronous measurements versus asynchronous and delayed measurements. Moreover, a sub-

stability region (ρe) inside ρ was considered so as to ensure that under bounded perturbations the

states would always remain inside ρ. Depending on the location of the states with respect to

either the ρe or ρ regions and time, two modes of operation were developed to ensure

boundedness:

i- if the states were inside ρe, the system was allowed to evolve freely provided that time<t’,

where t’ was a pre-specified time by the user and that the system would remain inside ρe and ii-If

the system was outside ρe but inside ρ the states would be driven inside ρe for time<t’,

otherwise, the states would be pushed to the origin.

The modes of operation were used as constraints in the optimization problem which consisted on

minimizing a time-invariant economic cost.

Both feasibility and stability were proven using Lyapunov functions’ arguments.

For the EMPC with asynchronous measurements, an auxiliary time-varying variable was

introduced to account for the delay.

11

For the implementation, the current state was estimated based on the delayed measurement, the

nominal dynamic model and the optimal inputs calculated at the previous time interval. Once it

was estimated and based on its location (inside or outside ρe) and the chosen time (<t’) the mode

of operation was chosen. The task of estimating the states was accomplished by introducing an

equivalent related constraint into the formulation.

Ellis and Christofidies (2013) developed an LEMPC with time varying stage cost. In this case,

the economic cost time variation was of similar order of magnitude as the process dynamics. As

explained above (Christofidies et al. 2012) stability was guaranteed by using a Lyapunov stable

controller that drove the states to a fixed origin.

Since due to the varying nature of the stage cost, there were multiple steady states, several

stability regions were correspondingly considered. Thus, for each steady state (xs) a stability

region (ρs) was found. Then, a union of stability regions referred to as the union set XU was

considered for analysis. The union set was approximated by analytic mathematical expressions

obtained through curve fitting or convex optimization.

The process for generating each stability region was as follows:

 Select a steady state from the union set and divide the state space around xs into several

discrete points.

 For each one of these points, check whether the time derivative of the Lyapunov function

is decreasing along the trajectory when the Lyapunov controller is applied

 If the time derivative is not decreasing for a given point, set the Lyapunov function value

equal to ρs

Once all stability regions were generated, the union set XU could be computed.

Since disturbances were considered, a subset of the union set XU had to be generated, referred to

as '

UX . '

UX was the largest subset for which the state trajectory remain inside XU in the presence

of disturbances over one sampling period. Clearly the size of '

UX ’ depended on the bounded

disturbances’ magnitudes and on system dynamics.

12

Two operation modes were considered: mode 1 ensured that if the system initially

(measurement) was inside '

UX , it would evolve freely inside this region and mode 2 where if the

state was outside '

UX but inside XU , the states were driven into the region '

UX . Note that in

comparison to the previous work by the same group reviewed at the beginning of this section

(Christofidies et al. 2012), time did not play a role in this case in defining the operation modes.

The two operation modes were implemented in the LEMPC formulation through the constraints.

More recently, Ellis and Christofidies (2014) proposed a method to monitor the performance of

EMPC. The theory regarding EMC and stability was similar to (Christofidies et al. 2012), and

(Ellis and Christofidies 2013). Thus, a Lyapunov controller was used that rendered the origin of

the dynamic system asymptotically stable. As in their previous studies, stability regions and sub

stability regions were considered, and also the strategy was implemented using two modes of

operations. The formulation of the LMPC was identical to the one described in (Ellis and

Christofidies 2013).

Since the economic cost was time varying, its distribution was not normal and it was auto

correlated with time and consequently it was not a simple metric for monitoring the performance.

Instead, a residual variable was defined as the economic cost minus the economic cost using the

nominal system. The economic cost of the nominal system was calculated with past data that was

filtered using an exponentially weighted moving average (EWMA) filter.

Upper and Lower bounds were defined during the time period ∆t. These bounds were defined as

functions of mean and standard deviation of past data. If the output from the EWMA filter was

found to exceed one of these bounds during the time interval ∆t, poor performance was detected

thus prompting for the need to improve the controller.

Ellis and Christofidies (2014) proposed a two layer approach, where in the upper layer an EMPC

was implemented and the calculated optimal trajectory was then sent to a lower control layer

consisting of an LMPC which objective was to track the trajectory. Finally, the optimal control

actions from the LMPC layer were sent to the process.

13

The reference trajectory (xr) was assumed to be in a compact set “B” of reference trajectories.

Moreover, the variation with time of the reference trajectory was sufficiently bounded so as to

allow tracking accuracy. An additional constraint was added that dealt with the bound of the

variation of the Lyapunov function with respect to xr.

As in the previous studies with Lyapunov controller based formulations, a stability region (ρxr)

was computed for each trajectory in B and then the total stability region (ρ) was derived from the

union of all these stability regions. The computation of each ρxr was similar to the one described

in (Ellis and Christofidies 2014).

An EMPC was formulated as a minimization problem that was subject to a nominal dynamic

model, constraints in the inputs, a constraint on the reference trajectory xs that forced it to remain

inside B and a constraint in the time variation of xs.

The calculated reference xs was sent to an LMPC which was formulated as a minimization

problem where the stage cost was a tracking term. One of its constraints was a Lyapunov

stability condition.

The stability and robustness properties of this joint formulation (EMPC + LMPC) were enforced

through the constraints of the LMPC algorithm.

2.4 ECONOMIC MPC

As it was pointed out in the Chapter 1, the current research is based on the work of Rawlings and

workers. They reported a series of studies regarding EMPC which are briefly summarized in this

section.

Rawlings et al. (2009) proposed a receding horizon control algorithm for nonlinear plants with

stage cost that is not necessarily convex. The authors demonstrated that if the best steady state

14

was used as terminal point wise constraint and for feasible initial conditions, the average

economic performance of their algorithm was at least as good as the best steady state. No explicit

assumption was made in that study regarding stability.

Then, the authors investigated the use of a periodic terminal constraint instead of a terminal best

steady state constraint. The periodic trajectory used as terminal constraint was derived from a

minimization problem where the initial state had to be the same as the final one with a fixed

period Q. It was shown for this case that the steady state solution, calculated by the minimization

of the stage cost subject to the steady state model, was a special case of the periodic constraint

based case. In general, it was found that the economic cost with the periodic constraint was

superior to the cost obtained at the best steady state. Moreover, the authors showed that if the

period Q1 was a multiple of some other period Q2, the resulting cost using Q1 was not worse

than the cost obtained when using Q2. Also, it was shown that the periodic terminal constraint

produced a periodic control law. Finally, it was proven that the closed loop system had an

average economic performance which was as good as with the optimal periodic solution Q.

Thirdly, the use of average constraints was explained and implemented. The average constraints

were satisfied asymptotically in the receding horizon control strategy. An EMPC was tested

subject to average constraints. It was demonstrated for this algorithm that if the initial condition

was feasible, then feasibility was ensured for all subsequent times and the average constraints

were also met.

Finally, a section for systems which are optimally operated at steady state was discussed. It was

stressed that a system was considered to be optimally operated at steady state if the average

performance was lower bounded by the best steady state stage cost. Then it was proven that

linear systems are optimally operated at steady state for any arbitrary convex stage cost.

A key contribution of the work of Rawlings and co-workers is the derivation of relatively simple

stability conditions for EMPC based on Lyapunov arguments (Rawlings et al. 2011).

Some assumptions were made in this work to prove stability.

15

First, weak controllability was assumed whereby the input cost needed to steer the state to the

best steady state was not very large. Secondly and most importantly, the system was considered

to be strongly dual. This assumption implied that there exist Lagrange multipliers which made

the steady state the unique minimizer of a minimization problem in which the stage cost was a

modification of the original cost referred to as rotated cost. It was demonstrated that the rotated

cost was a Lyapunov function which was decreasing monotonically and it was both upper and

lower bounded. Hence, it was possible to conclude that the steady state of the closed loop system

was asymptotically stable.

The algorithm was applied to a CSTR where the closed loop model was made strongly dual by

adding tracking terms with weights in the economic stage cost.

Strong duality had to be checked numerically by solving off-line the minimization of the steady

state problem with the tracking terms and the minimization with multipliers and by testing

whether the solutions were identical. Once that identical solutions were computed, the weights

for the tracking terms were directly obtained from the diagonal elements of the Hessian matrix.

Based on a predefined Lyapunov function, Rawlings et al. (2012) developed a formulation for

their EMPC algorithm for a continuous system f(x,u) and continuous stage cost l(x,u) with

terminal pointwise constraints.

Weak controllability was assumed. Then, asymptotic average performance was demonstrated

where for a feasible initial condition the closed loop system has an asymptotic economic

performance that was not worse than the best economic steady state.

Secondly, the stability was treated by using the concept of dissipativity. In this case, in contrast

with their previous study (Rawlings et al. 2011) the strong duality condition was relaxed so as to

make the closed loop system dissipative.

16

Dissipativity was tested by a suitable inequality for all the states and manipulated variables

within the feasible region. The left hand side of this inequality was the difference between the

storage function at time k and k+1 and the right hand side involved the supply rate.

Strict dissipativity was accomplished by adding a positive definite term that was defined with

respect to the steady state in the left hand side of the dissipativity inequality.

Then, stability through dissipativity was demonstrated by first proving that the minimization

problem with the rotated cost gives the same solution as the minimization problem with the

economic cost. Then, using dissipativity and the rotated cost as a Lyapunov function, it was

shown that the Lyapunov rate was strictly negative.

Furthermore, an example was shown where using the dissipativity concept was an effective

alternative for relaxing the strong duality property which for this example could not be satisfied.

In addition, one method for making the steady state the best operation condition was explained.

This method consisted in modifying the economic stage cost by adding a function that could

satisfy strict dissipativity thus providing asymptotic stability around the best steady state. The

proposed function depended on the deviations from the best steady state and it was usually

quadratic. This function was used to provide convexity to the original economic cost while the

best economic steady state was the optimal solution for this modified cost.

Some extensions of the EMPC were developed to deal with non-steady states and averages of

states’ formulations.

In terms of non-steady states’ formulations a periodic terminal constraint was introduced. This

constraint or trajectory was computed offline through a minimization problem subject to the

condition that the initial state must be the same as the final. This constraint effectively resulted in

a time varying feedback law. It was also proven that the average economic performance of this

formulation was not worse than the best periodic economic solution.

17

For the case of averages of states’ an EMPC was constructed through a model update equation

that was introduced as a constraint.

Finally, some notions for optimal operation at steady state with and without average constraints

were proposed. In the case of average constraints, it was proven through strict dissipativity that

the best regime for economic operation was the best economic steady state.

Rawlings et al. (2011) also proposed EMPC with terminal cost instead of terminal pointwise

constraints. In this EMPC approach, the stage cost consisted of an economic function and a

penalty terminal function related to the terminal constraint. The terminal constraint enforced the

state to end up within a terminal region (XF) instead of a terminal point. Through several

assumptions related to the constraint compact set, the economic cost, the terminal function, the

dynamic system, the storage function, the Lyapunov function in the terminal region, and the

concept of strict dissipativity some properties were demonstrated for this formulation.

Different costs were introduced for the analysis including the concept of rotated cost mentioned

above, a shifted stage cost that was equal to the economic cost minus the economic cost

evaluated at steady state, a modified terminal cost and a rotated regulated cost function which is

equal to the sum of the rotated cost over the horizon plus modified terminal cost. Using the

regulated cost function both a standard and an auxiliary EMPC were defined.

Secondly, several lemmas related to the rotated stage cost were developed using the assumptions

previously stated. For example the modified terminal cost was shown to be decreasing towards

the terminal region and to be positive definite with respect to the steady state. Then, it was

shown that the standard and auxiliary formulations have the same solution. After this, it was

proven that if the system was dissipative and using the auxiliary minimization problem it was

shown that the steady state was an asymptotic equilibrium point. Finally, defining averages, it

was demonstrated that the average performance of the closed loop system was at least as good as

the best steady state.

18

Thirdly, a candidate terminal cost function that could satisfy the stability assumption was

proposed. In the first place, additional assumptions were pointed out: the dynamic system and

the stage cost were twice continuously differentiable, the linearized system is stabilizable and the

dynamic system belongs to an invariant set.

Then, candidate terminal cost functions were proposed based on the availability of a storage cost

function. For the case of an unknown storage cost a quadratic Lyapunov terminal cost function

was proposed and the state space region where it could meet the stability assumption through the

use of a linear controller was defined. For the case of a known storage function, the concept of

dissipativity was used and stability for a particular terminal cost function was achieved by the

use of a linear controller.

In Rawlings et al. (2011) a new method was proposed for achieving asymptotic convergence to a

desired set point using average constraints. Compare to their previous approaches, the system did

not need to satisfy any strong duality or dissipativity properties. The EMPC formulation was

subject to not only point wise constraints but an average constraint which was satisfied

asymptotically and that was updated with time.

In order to demonstrate the convergence using average constraints, some definitions and lemmas

had to be proven. First of all, a sequence that was essentially converging to zero was defined.

Then it was demonstrated that a sequence with zero even moments is also converging to zero.

Finally, using an update equation recursively for the set of the average constraints and the

auxiliary output function that was used in the average constraint as a tracking term, and given a

feasible initial condition, it was demonstrated that this EMPC formulation was feasible and

asymptotically stable towards the steady state.

It was also demonstrated that if an average constraint is added along with the update equation,

the system is steered asymptotically towards the desired steady state.

19

In this approach dissipativity did not have to be considered, consequently, there was no need to

modify the stage cost as in previous formulations.

Biegler et al. (2013) developed numerical methods to solve the EMPC formulations previously

discussed. In this paper, MPC was considered for systems modeled by both differential and

algebraic equations (DAE). The continuous model was discretized and the constraints were

enforced at the boundary of each discrete element The MPC formulation consisted of either

terminal pointwise, terminal region and/or terminal cost constraints.

There are various methods that can be employed to solve systems that are modeled by DAE.

More information about these methods can be found in (Amrit 2011, Biegler 2010)

In Rawlings MPC formulation, a direct simultaneous method was preferred due to some

numerical advantages such as:

 It does not use any intermediate solution, reducing the computational effort.

 It is robust for problems that are ill-conditioned.

 It allows direct enforcement of state and input variables that are discretized with the same

level of discretization as the states.

In general, the direct methods deal with the transformation of the infinite continuous problem

(EMPC) into a very large finite nonlinear problem that can be solved using NLP solvers. For the

simultaneous approach both the manipulated and states are discretized as reported in (Amrit

2011, Biegler 2010).

The formulation of the simultaneous approach involves approximating the algebraic and

differential states and input profiles by a family of polynomials. For the case of differential

states, monomial basis representations were used along with an equation that enforced

continuity. This basis representation was function of the first derivative of the polynomial

evaluated at a colocation point.

20

For the inputs and algebraic states, the profiles were approximated by a Lagrange basis

representation, i.e. Lagrange polynomial. Besides, a zero order hold (ZOH) delay was enforced

by adding an additional constraint that fixed the input profile within each element along each

time interval.

Following the above operations, the MPC or EMPC formulations were transformed into NLPs

that could then be solved using special solvers (IPOPT). Since the information for second and

first order derivative was crucial, automatic differentiation was also employed. Automatic

differentiation provides information about the value of derivatives without any truncation error.

Two examples involving an evaporator and a reactor were simulated for which EMPC and MPC

were solved as NLPs using IPOPT and automatic differentiation.

Finally, in Rawlings et al. (2012) a summary of their ideas including the use of a stage cost as a

Lyapunov function, terminal cost, terminal pointwise constraint, average quantities, enforce

convergence and periodic operation was provided. This paper also summarized the work done in

(Amrit 2011).

2.5 LARGE SCALE APPLICATIONS OF EMPC

There are several papers that deal with large scale applications of EMPC. For brevity we will

summarize in this section only a few contributions.

Gopalakrishnan and Biegler (2013) formulated an EMPC that could reduce the operating cost of

a pipeline network. It was stressed that the best operation condition was a dynamic one in view

that the steady state based operation neither considered particular dynamic operating conditions

such as peak loads.

The periodic EMPC formulation used was very similar to the work performed by Rawlings with

a periodic terminal point wise constraint, and the stage cost was modified in order to make it

convex by adding tracking terms.

21

The dynamic model consisted of a typical natural gas network with suppliers, consumers,

intermediate nodes and compressor stations. The nodes were linked through pipes. The flows and

pressures satisfy the continuity equation and pressure drops in the pipes were also considered.

Network equations were then used to link between flows and pressures values in each node.

The EMPC problem was formulated as an NMPC with constraints including terminal values,

pressure limits, contract pressure etc. and the stage cost was equal to the total compression

energy. Some tracking terms were added to the stage cost to make the system asymptotically

stable towards the optimal periodic trajectory. The NLP resulted in more than one hundred

thousand equations and variables.

It was shown in this study that EMPC resulted in better performance as compared to the standard

MPC, not only for the nominal case but also for the case with measured disturbances.

Biegler et al. (2011) proposed an EMPC formulation for an industrial size air separator which

consisted of two integrated cryogenic units. The ASU (Air Separation Unit) was modeled using

tray by tray energy and mass equations. This model had over three hundred ODEs. The stage

cost was equal to the utility cost that was function of the electricity price and also included

tracking quadratic terms.

In the EMPC formulation, a periodic constraint was enforced. In contrast with previous

formulations, it was not necessary in this case to perform an offline computation of the periodic

trajectory. Instead, the system converged to the optimal periodic trajectory based on optimality

of the proposed cost. Asymptotic stability of this algorithm was proven based on Lyapunov

arguments.

This paper also dealt with an infinity horizon formulation in which a discount factor in the stage

cost was considered. The discount factor converted the future profit into a present cost. In this

case, a non-periodic constraint was used but the tracking terms in the stage cost were used to

enforce periodicity.

22

Biegler et al. (2012) also proposed an infinite horizon Robust EMPC for the ASU. The EMPC

was formulated as an infinite NLP subject to standard constraints such as constraints in the

states, inputs, and on the dynamic model but in this case the stage cost did not include any

discount factor. Using a similar analysis as in (Biegler et al. 2012) the asymptotic stability to the

origin was demonstrated.

Using the concept of rotated cost, it was proven that an economic stage cost could be sufficiently

transformed by adding tracking terms so as to satisfy asymptotic stability.

An alternative approach was proposed by using Lagrange functions of the nominal system and

the best periodic operation, which was repeated over and over again at the end of the infinite

horizon, and by defining a Lyapunov function as the subtraction of the nominal and the system

with the terminal periodic operation.

Finally, robustness was analyzed based on input to State stability analysis, where an uncertainty

term in the dynamic model was considered.

Qin et al. (2011) applied an EMPC for climate control of a commercial building in Milwaukee,

WI, USA. The main targets were to reduce the overall energy consumption and lower the peak

power demand. Indeed, it was pointed out that EMPC was particularly suitable for building pre-

cooling optimization since steady state was barely reached during the pre-cooling phase.

In the proposed EMPC, the stage cost was a function of the energy cost, average consumption,

peak demand cost and peak power demand. The minimization of the stage cost was formulated

as a min-max problem, where the stage cost was minimized but a term within the stage cost

related to the peak demand was maximized. The min-max problem was converted to a linear

program subject to standard constraints.

23

The construction of the inequality constraints were based on the peak cost demand whereas the

equality constraints came from the dynamic model. Upper and lower bounds were used for the

power and temperature.

To model the dynamics of the system and to accommodate the thermal distribution, each floor of

the building was divided in several zones. The dynamic model was an auto regressive exogenous

model (ARX) identified either from simulated data or from actual process data. To simulate the

process, the Energy Plus software was used. In the dynamic model, the power and temperature

were functions of the set point temperature.

EMPC was shown to result in great savings, perform better than previously proposed controllers

for this system and also outperformed open loop strategies.

For real application of the algorithm, one floor in an office building in Milwaukee was selected.

The floor was divided in 25 climate controlled zones. For system identification, a PRBS (pseudo

random binary sequences) was used.

Following the implementation of EMPC it was found that the power consumed during peak

hours was less as compared to the baseline scenario (building operating schedule)

Finally, Idris and Engell (2012) studied the economics of a nonlinear MPC for a catalytic

distillation column. The system was modeled by discretized DAEs. This study compared a

purely economic cost based MPC to an economic based MPC with the addition of a tracking cost

and to an MPC solely based on a tracking cost.

The tracking cost was the square of the deviations between the states and inputs and their

corresponding steady state values. The minimization was subject to standard constraints (upper

and lower bounds, DAE, inequality etc.). To compensate for plant model mismatch, a bias

correction equation was used.

24

The catalytic distillation column (CD) was of packed bed type with a reboiler and a condenser.

The column consisted of an enriching packing segment, two catalytic segments, and a stripping

packing segment. The esterification chemical reaction took place in the catalytic segments. The

CD was described by an equilibrium stage approach using MESH equations. The CD consisted

of fourteen trays with ninety ODEs and over five hundred algebraic equations.

In order to speed up the computations, the numerical calculations were done in two parallel

sections where one section computed the phase equilibrium and the other the properties. The CD

was described by two different models, a full model that represented the true plant and a reduced

model that was used by the controller.

Two control structures were considered. The outputs were the same for both but one structure

had more inputs than the second one. The economic cost consisted of the profit of the operation

and for the case that a purely economic cost was considered, the outputs were used as a quality

constraints. For the case that the cost combined an economic cost term and a tracking term, the

latter was equal to the square of the deviations between outputs and their corresponding set

points.

The SNOPT software was used to solve the optimization problems. For the case of a purely

economic cost, its performance outperformed the others approaches (tracking and economic plus

tracking) but the computational requirements were very large compare to the other approaches

considered in this work.

25

Chapter 3

Formulations, Stability and Case Studies

3.1 INTRODUCTION

In this chapter the proposed new EMPC algorithm is introduced including the stability conditions

and a simple case study to illustrate the method. The proposed EMPC is stated as a dynamic

optimization problem that is based on a receding horizon formulation subject to constraints in

manipulated variables and additional specific constraints to enforce stability. The stage cost is

not restricted to be convex and it is solely determined by the economic objectives of the process.

Additionally, the control prediction horizon is finite. In 3.2, the notation and the formulation of

the algorithm as an optimization problem are explained. In addition, the specific constraints used

to enforce closed loop stability are explained in detail. Simulation studies of our EMPC applied

to a reactor unit with parallel reactions are shown in 3.3.

3.2 EMPC ALGORITHM

The development of our algorithm is explained next

3.2.1 Notation and Formulation

Bold symbols represent vectors and/or matrices, whereas non-bolded characters represent

scalars. The Euclidean norm of a vector is represented by |∗|.

We begin this section by making some definitions and assumptions.

Definition 3.1 (Positive definite matrix)

A square matrix P is positive definite if:

 𝑷 = 𝑷𝑇
𝑷 > 0

26

Definition 3.2(Positive definite function)

A function 𝜌() is positive definite with respect to 𝒙 = 𝒂 if:

𝐼𝑡 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝜌(𝒂) = 0 𝑎𝑛𝑑 𝜌(𝒙) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒙 ≠ 𝒂

Definition 3.3 (Class Ƙ function).

A function ϒ(): ℝ ⟶ ℝ≥0 is a class Ƙ if it is continuous, zero at the origin and strictly

increasing.

Lemma 3.1

Given a positive definite function 𝜌(𝒙) defined on a compact set ⅅ containing the origin, there

exists a class Ƙ function ϒ() such that:

𝜌(𝒙) ≥ ϒ(|𝒙|), ∀𝒙 ∊ ⅅ

Definition 3.4 (Positive invariant set).

A set 𝔸 is positive invariant for the discrete nonlinear system 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘)) if:

𝒙(𝑘) ∊ 𝔸 𝑎𝑛𝑑 𝒙(𝑘 + 1) ∊ 𝔸

Definition 3.5 (Asymptotic stability).

The steady state 𝒙𝑠 of a nonlinear discrete system 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘)) is asymptotically stable

on 𝕏, where 𝕏 has 𝒙𝑠 in its interior, if there exist a ϒ() such that for any 𝒙 ∊ 𝕏, all solutions

𝛷(𝑘; 𝒙) satisfy:

𝛷(𝑘; 𝒙) ∊ 𝕏, |𝛷(𝑘; 𝒙) − 𝒙𝑠| ≤ ϒ(|𝒙 − 𝒙𝑠|, 𝑘) ∀ 𝑘 ∊ 𝕀>0

Where 𝕀>0 represents positive integers.

Definition 3.6 (Lyapunov function)

A function 𝑉: ℝ ⟶ ℝ≥0 is said to be Lyapunov function for the nonlinear discrete system in the

set 𝕏 if there exists ϒ𝑖(), where 𝑖 ∊ {1,2,3} such that for any 𝒙 ∊ 𝕏

ϒ1(|𝒙|) ≤ 𝑉(𝒙) ≤ ϒ2(|𝒙|); 𝑉(𝒙(𝑘 + 1)) − 𝑉(𝒙(𝑘)) ≤ −ϒ3(|𝒙|)

27

Lemma 3.2(Lyapunov function and asymptotic stability). Consider a set 𝕏 that is positive

invariant for the nonlinear discrete system 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘)). The steady state 𝒙𝑠 is an

asymptotically stable equilibrium point for the system if and only if there exists a Lyapunov

function 𝑉 on 𝕏 such that 𝑉 satisfies the properties described above (Definition 3.6).

Assumptions.

I. The stage cost1 and nonlinear model are continuous.

II. There is weak controllability. Therefore, there exists ϒ(): ℝ ⟶ ℝ≥0 so that for each 𝒙 ∊

 𝕏 there exists a feasible 𝒖 with:

|𝒖 − 𝒖𝑠| ≤ ϒ(|𝒙 − 𝒙𝑠|)

Let define deviation variables as follows:

𝒙′ = 𝒙 − 𝒙𝑠 (3.1)
𝒖′ = 𝒖 − 𝒖𝑠 (3.2)

Where 𝒙′, 𝒙 𝑎𝑛𝑑 𝒙𝑠 represent the deviation state vector, the absolute state vector and a steady

state vector respectively. For the case of the input (𝒖) the definitions are the same (e.g. 𝒖′ is the

deviation input vector).

The deviation input vector will be calculated by a state feedback control law:

𝒖′ = 𝑲𝒙 (3.3)

Where 𝑲 is a controller matrix.

1 Defined as the sum of the objective function for the entire prediction horizon. When the objective function is

related to the economics of the processes, the stage cost is known as an Economic Stage Cost.

28

The nonlinear dynamic discrete system is defined as:

𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘)) (3.4)

Where 𝜽(𝑘) represents a vector of parameters and the equations 3.1 and 3.2 can be applied to

transform it into deviation form. Indeed, equations 3.1 and 3.2 can be applied also to the

constraints and stage cost to transform them into deviations’ variables form. In this system,

𝒙(𝑘 + 1) represents the state vector at the next step; the sampling time T is used as a

discretization time. In addition, 𝒙 𝜖 𝕏 ⊆ ℝ𝑛 and 𝒙𝑠 𝜖 𝕏𝑠 ⊂ 𝕏. For the manipulated

variable, 𝒖 𝜖 𝕌 ⊂ ℝ𝑚 and 𝒖𝑠 𝜖 𝕌𝑠 ⊂ 𝕌. For the parameters 𝜽 𝜖 ℚ ⊂ ℝ𝑞

The constraints are defined as:

𝐸(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘), 𝑷(𝑘)) 𝜖 𝔼 𝑘 𝜖 𝕀>0 (3.5)

Where the compact set 𝔼 is defined as 𝔼 ⊆ 𝕏 x 𝕌 x ℙ x ℚ and represents the admissible set for

the constraints. Moreover, the set ℤ is defined as ℤ ⊆ 𝕏 x 𝕌x ℚ. The constraints’

set 𝑍(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘)) represents all common constraints that are enforced in standard MPC

formulations such as lower and upper bounds in the states and inputs including average

constraints in these variables. In addition, 𝑍 may also include upper and lower bounds in the

parameters. The matrix P(k) is a positive define matrix used to define a Lyapunov function for

the problem. Detail explanations on the calculation of P are provided in the next subsection.

ℤ does not include the constraints related to 𝑷 , namely, (𝑍(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘)) 𝜖 ℤ 𝑘 𝜖 𝕀>0),

hence, ℤ ⊂ 𝔼.

The economic stage cost is defined as:

𝐿 = 𝑙(𝒙(𝑘), 𝒖(𝑘)) (3.6)

Where 𝑙(𝒙(𝑘), 𝒖(𝑘)): ℤ ⟶ ℝ

29

Finally, the state transition map for the nonlinear discrete system is:

𝑓(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘)): ℤ ⟶ ℝ𝑛

The best steady state solution for a fixed parameter vector comes from:

min

𝒖
𝑙(𝒙, 𝒖)

 s.t.

 0 = 𝑓(𝒙, 𝒖, 𝜽𝒇𝒊𝒙) (3.7 a)

 𝑍(𝒙, 𝒖)

Where 𝒖𝑠 and 𝒙𝑠 represents the best steady state pair and 0 = 𝑓(𝒙, 𝒖, 𝜽𝑓𝑖𝑥)

is the steady state model. Alternatively, the steady state problem may be stated as:

min

𝒖
𝑙(𝒙𝑠, 𝒖𝑠)

 s.t.

 0 = 𝑓(𝒙𝑠, 𝒖𝑠, 𝜽𝑓𝑖𝑥) (3.7 b)

 𝑍(𝒙𝑠, 𝒖𝑠)

Where 𝒖 = 𝒖𝑠 𝑎𝑛𝑑 𝒙 = 𝒙𝑠. It is assumed that there is unique solution.

30

Our proposed dynamic optimization problem is defined as:

min
 𝒖𝑠,𝑲,𝑷,𝜽

∑ 𝑙(𝒙(𝑘), 𝒖(𝑘))

𝑁

𝑘=1

 (3.8)
 s.t.
 𝒙(0) = 𝒙𝑜

 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘))
 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝑷(𝑘), 𝜽(𝑘))
 0 = 𝑓(𝒙𝑠(𝑘), 𝒖𝑠(𝑘), 𝜽(𝑘))

Where N and 𝒙𝑜 represent the finite horizon and initial state respectively. Moreover, the steady

state and parameters are fixed for all the horizon length N, implying that 𝒖𝑠(1) = 𝒖𝑠(2) =

⋯ 𝒖𝑠(𝑁) and 𝜽(1) = 𝜽(2) = ⋯ 𝜽(𝑁).

Since the problem is formulated in deviation variables a steady state model has to be used to

calculate the reference for the deviations. However, it is important to notice that the steady state

may change at each execution of the EMPC controller since us is a decision variable. This is a

key novelty in our proposed algorithm since previously proposed approaches have used a time

invariant set point obtained off-line. This dynamic optimization problem is solved in a receding

horizon fashion, implying that the first element of the solution vector 𝒖(𝑘) = 𝒖′(𝑘) + 𝒖𝑠(𝑘) =

[𝒖(1, 𝑘), 𝒖(2, 𝑘), 𝒖(3, 𝑘) … 𝒖(𝑁, 𝑘)], namely 𝒖(1, 𝑘), and the computed 𝜽(1, 𝑘) are applied to

the dynamic discrete system. Then, after applying this control action, the vector of states 𝒙(𝑘 +

1, 𝑘) is used at the next step for solving the problem again where the first element of the vector

𝒙(𝑘 + 1, 𝑘) is measured.

The feedback control law is defined as: 𝒖(𝑘)∗ = 𝒖(1, 𝑘)

In the next subsection, special constraints are introduced to ensure stability of the closed loop

algorithm.

31

For the case where the parameters are constant, the dynamic optimization problem can be reduced

to:

min
𝒖𝑠,𝑲,𝑷

∑ 𝑙(𝒙(𝑘), 𝒖(𝑘))

𝑁

𝑘=1

 (3.9)
 s.t.
 𝒙(0) = 𝒙𝑜

 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘))
 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝑷(𝑘))
 0 = 𝑓(𝒙𝑠(𝑘), 𝒖𝑠(𝑘))

Where once again, the problem is solved in a receding horizon manner.

3.2.2 Constraints to ensure asymptotic stability

The stability in our formulation comes from the implementation of 4 “special” constraints within

the optimization problem presented in the previous section. In this section we are discussing each

one of these constraints and their effect in our formulation.

The constraints’ function 𝑍(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘)) used in the previous subsection represents all

common constraints that are enforced in standard MPC formulations such as lower and upper

bounds in the states and inputs including average constraints in these variables. In addition, 𝑍

may also include upper and lower bounds in the parameters.

On the other hand the complete set of constraints, 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘), 𝑷(𝑘)) encompasses not

only (𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘)) , but also four additional constraints to ensure stability as follows.

32

I. Positive definite P

This constraint enforces that 𝑷(𝑘) that is a decision variable of the optimization problem

formulated in equation (3.8) must be positive definite at each step. Namely, it has to follow the

properties of Definition 3.1 (P(k) must be equal to its transpose and bigger than cero).

II. “Set Point Constraint”

The set point constraint is defined as follows:

(𝒙(𝑘) − 𝒙𝑠(𝑘))
𝑇

𝑷(𝑘 − 1)(𝒙(𝑘) − 𝒙𝑠(𝑘))

< 𝛼(𝒙(𝑘 − 1) − 𝒙𝑠(𝑘 − 1))
𝑇

𝑷(𝑘 − 1)(𝒙(𝑘 − 1) − 𝒙𝑠(𝑘 − 1))

 (3.10)

The set point constraint has a quadratic form and it tests the negativity of the rate of change of

the Lyapunov function with respect to changes in set point. As it can be seen, the LHS and RHS

share the same value of P, as a result, the only way to satisfy this constraint is to find a new

steady state vector 𝒙𝑠(𝑘) and/or a state trajectory 𝒙(𝑘) that decreases the LHS. Furthermore, this

constraint has a scalar factor (α) in the RHS which accounts for the adaptation rate that is going

to be explained later. When no adaptation is needed, the value of α is one.

As stated in the previous section, the set point constraint plays an important role in the

performance of the proposed algorithm. Since 𝒖𝑠(𝑘) and 𝜽(𝑘) are decision variables, the set

point 𝒙𝑠(𝑘) is determined by these two variables from the steady state model given by equation

(3.8).

Additionally, this constraint is essential for determining the rate of adaptation of parameters as

explained later in this thesis. If there is a mismatch between the model and plant parameters, the

optimization will force 𝜽(𝑘) to change so as to satisfy the set point constraint through a new

value of 𝒙𝑠(𝑘).

33

III. “P Constraint”

The P constraint is defined as:

(𝒙(𝑘) − 𝒙𝑠(𝑘))
𝑇

𝑷(𝑘)(𝒙(𝑘) − 𝒙𝑠(𝑘)) ≤ (𝒙(𝑘) − 𝒙𝑠(𝑘))
𝑇

𝑷(𝑘 − 1)(𝒙(𝑘) − 𝒙𝑠(𝑘))

 (3.11)

To reduce potential conservatism, the matrix P defining the Lyapunov function of the problem is

a decision variable of the problem and thus it is time varying. This constraint is also of quadratic

form and it tests set invariance with respect to changes in the value of 𝑷.The 𝑷 at the LSH is at

the current time whereas the 𝑷 at the RHS is at the previous time. This implies that:

𝑷(𝑘) < 𝑷(𝑘 − 1) (3.12)

The P constraint limits the changes of the optimization variable 𝑷 by forcing all the

𝑷(𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑖 > 1, to be contained in an initial region (𝑷(1)).

This condition ensures that the deviations will remain within the initial invariant set which is

defined as:

(𝒙(0) − 𝒙𝑠(1))
𝑇

𝑷(0)(𝒙(0) − 𝒙𝑠(1)) (3.13)

Where 𝒙(0) represents the initial measurement, P(0) represents an initial value of the P matrix

and 𝒙𝑠(1) the computed steady state value at the first EMPC iteration.

IV. “Lyapunov Based Robust Stability Constraint”

This constraint explicitly addresses not only the asymptotic stability of the system but the

robustness.

34

Linearizing the nonlinear system around some operation point and transforming it into deviation

variables gives:

𝒙′(𝑘 + 1) = 𝑨(𝜽)𝒙′(𝑘) + 𝑩(𝜽)𝒖′(𝑘) (3.14)

Using 3.3 we obtain:

𝒙′(𝑘 + 1) = 𝑨𝑪𝑳(𝜽, 𝑘)𝒙′(𝑘) (3.15)

 Where 𝑨𝑪𝑳(𝜽, 𝑘) = 𝑨(𝜽) + 𝑩(𝜽)𝑲(𝑘)

The plant model is represented by a convex set 𝔸𝕋 of linear plants with M vertices:

𝔸𝕋 = {𝑨𝑪𝑳1(𝜽, 𝑘), 𝑨𝑪𝑳2(𝜽, 𝑘) … 𝑨𝑪𝑳𝑀(𝜽, 𝑘)} = ∑ 𝜁𝑖[𝐴𝑪𝑳𝑖(𝜽, 𝑘)];

𝑀

𝑖=1

∀𝜁𝑖 ≥ 0, ∑ 𝜁𝑖
𝑀
𝑖=1 = 1 (3.16)

Thus the representation 3.16, describes the plant model by a polytope of matrices. Each element

of the polytope, 𝑨𝑪𝑳𝑖(𝜽), can be derived from the definition in 3.15. Using 3.16 it follows that

the plant model can be approximated as follows:

𝒙′(𝑘 + 1) = ∑ 𝜁𝑖[𝐴𝑪𝑳𝑖(𝜽, 𝑘)]𝑀
𝑖=1 𝒙′(𝑘) (3.17)

Once the plant model has been formulated, a candidate Lyapunov function is:

 𝑉(𝑘) = 𝒙′(𝑘)𝑇𝑷(𝑘)𝒙′(𝑘) (3.18)

This quadratic Lyapunov function has all the properties stated in the Definition3.6. Then, for

3.18 to be a Lyapunov function of the problem the following constraint has to be imposed:

 𝑉(𝑘 + 1) − 𝑉(𝑘) < 0 (3.19)

35

To ensure this constraint for the worst case with the polytopic model defined in 3.16, the first

term of the LHS is derived from a maximization problem as follows:

𝑉(𝑘 + 1) = argmax

 𝜁
[𝒙′(𝑘 + 1)𝑇𝑷(𝑘)𝒙′(𝑘 + 1)]

 s.t.

 𝒙′(𝑘 + 1) = ∑ 𝜁𝑖[𝐴𝑪𝑳𝑖(𝜽, 𝑘)]𝑀
𝑖=1 𝒙′(𝑘)

 ∑ 𝜁𝑖
𝑀
𝑖=1 = 1

 0 ≤ 𝜁𝑖 ≤ 1
 (3.20)

The use of the maximal value of V(k+1) guaranties robustness with respect to the polytopic

model since it is the worst case scenario for inequality 3.19.

The four constraints listed in this subsection are added to the set of constraints given by Z to

form the total set of constraints E that is ultimately used in the proposed EMPC algorithm. A key

difference of the proposed algorithm is that stability is ensured on-line rather than in an off-line

fashion as done in previous approaches by using Dissipativity or Lyapunov arguments. A main

advantage of this on-line approach is that it does not require restrictive terminal conditions and

the use of fixed steady state solutions as required in the off-line stability proofs previously

reported. On the other hand the on-line computation of the stability related constraints presented

in this chapter results in significant increase in computational effort.

3.3 APPLICATION TO REACTOR SYSTEM

The proposed EMPC is applied to a reactor system example presented by Rawlings et al (2012).

The dimensionless dynamic equations, process constraints, values of parameters, best steady

state, and the designation of the economic stage cost were taken from Rawling’s work.

36

The reactor system consists of an isothermal CSTR with parallel reactions.

The dimensionless nonlinear mass balance equations are described by:

𝑑𝑥1

𝑑𝑡
= 𝑢1 − 𝑥1 − 𝜎1𝑥1𝑥2 (3.21)

𝑑𝑥2

𝑑𝑡
= 𝑢2 − 𝑥2 − 𝜎1𝑥1𝑥2 − 𝜎2𝑥2𝑥3 (3.22)

𝑑𝑥3

𝑑𝑡
= −𝑥3 + 𝜎1𝑥1𝑥2 − 𝜎2𝑥2𝑥3 (3.23)

𝑑𝑥4

𝑑𝑡
= −𝑥4 + 𝜎2𝑥2𝑥3 (3.24)

Where 𝑥1, 𝑥2, 𝑥3, 𝑥4 represent the concentrations of 𝑃0,B, 𝑃1, 𝑃2 respectively and

𝑢1, 𝑢2 represent the flow rates of 𝑃0 and B. For this example the parameters 𝜎1 and 𝜎2 are

constant and have a value of 1 and 0.4 respectively. The inputs 𝑢𝑖 have upper and lower bounds.

0 ≤ 𝑢1 ≤ 1 (3.25)
 0 ≤ 𝑢2 ≤ 10 (3.26)

The best steady state for these bounds is:

 𝒙𝑠 = [0.3874,1.5811,0.3752,0.2373]𝑇 and 𝒖𝑠 = [1,2.4310]𝑇

We assume the same sampling time as described in Rawlings et al (2012) of T=0.1.

For this particular formulation, the economic stage cost is obtained from the assumption that

profit is directly related to the concentration of 𝑃1which is the most valuable product. Thus, the

cost to be maximized is:

𝑙 = −𝑥3

37

The dynamic optimization problem can be stated as follows:

min
𝒖𝑠,𝑲,𝑷

∑ −𝑥3

𝑁

𝑘=1

 (3.26)
 s.t.
 𝒙(0) = 𝒙𝑜

 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘))
 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝑷(𝑘))
 0 = 𝑓(𝒙𝑠(𝑘), 𝒖𝑠(𝑘))

Where, as it was previously discussed, 𝐸() encompasses all the constraints including the four

stability related constraints presented in the previous subsection. It is also important to note that

the adaptation problem is not considered and it will be discussed later in Chapter 4.

Since the on-line calculation of the stability related constraints resulted in long computations and

since the optimization was executed with fmincon in the Matlab environment, we had to use

relatively small values of the prediction horizon N. It is expected that the use of faster hardware

and software should permit the use of longer horizon.

One of the disadvantages found with the choice of small N is that the optimizer produced

transient values of economic costs that were significantly different than the final best steady state

cost. As a result of that, it was found that the program was not converging to the best steady state

cost. To compensate for this situation, it was decided to add to the original dynamic cost a steady

state economic cost with a weight.

Considering the definitions of deviation variables, the stage cost is modified as follows:

min
𝒖𝑠,𝑲,𝑷

∑ 𝑙(𝒙′(𝑘), 𝒖′(𝑘)) +

𝑁

𝑘=1

 𝑄𝑙(𝒙𝑠(𝑘), 𝒖𝑠(𝑘))

38

Now, it should be noticed that the dynamic economic cost term is written as a function of the

deviation variables and a static one that is function of the steady state. 𝑄 is a tunning parameter

which has values of 𝑄 ≥ 1. Note that for linear cost functions, as in this case, when 𝑄 = 1, the

stage cost reduces to the stage cost in 3.8. Furthermore, if the steady state profile is constant the

stage cost becomes purely economic because the second term in the cost is constant.

One possibility for systematically choosing the weight 𝑄 is to relate it to the frequency of the

disturbances. For example, if disturbances are of slow frequency 𝑄 will be chosen

correspondingly large so as to drive the system to the best steady state. For slow disturbances, it

is convenient to converge to the best steady sate since the system most of the time will be there.

For disturbances with high frequency, a smaller value of Q will be chosen so as to keep the

system in a dynamic mode, taking advantage of the transient of the process. Although a

systematic approach for choosing Q is beyond the scope of the current proposal, some

simulations are presented below for different values of Q to illustrate its effect on the closed loop

performance.

For the reactor example, the EMPC becomes:

min
𝒖𝑠,𝑲,𝑷

∑ −(𝑥′3 + 𝑄𝑥𝑠3)

𝑁

𝑘=1

 (3.28)
 s.t.
 𝒙(0) = 𝒙𝑜

 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘))
 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝑷(𝑘))
 0 = 𝑓(𝒙𝑠(𝑘), 𝒖𝑠(𝑘))

We analyzed the EMPC formulation for two cases with different values of 𝑄. The horizon had a

value of 15 and it was the same in both cases. Additionally, the problem was solved using

fmincon for optimization and ode45 and fsolve for the differential equations and steady state

model respectively.

39

In Figure 3.1, the closed loop state trajectories are shown for some initial condition (suboptimal

operation at steady state) and different values of 𝑄, Q1=45 and Q2=6. A non-zero initial

condition can be viewed as equivalent to a rejection disturbance problem where the disturbance

causes an initial deviation from steady state conditions and the system is then returned to steady

state by the controller.

(a)

0 0.5 1 1.5 2 2.5 3
0.374

0.376

0.378

0.38

0.382

0.384

0.386

0.388

0.39

t

x1

x1 vs t

x1-Q1

x1s-Q1

x2-Q2

x2s-Q2

40

(b)

(c)

0 0.5 1 1.5 2 2.5 3
1.58

1.59

1.6

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

t

x2

x2 vs t

x2-Q1

x2s-Q1

x2-Q2

x2s-Q2

0 0.5 1 1.5 2 2.5 3
0.373

0.3735

0.374

0.3745

0.375

0.3755

0.376

0.3765

t

x
3

x3 vs t

x3-Q1

x3s-Q1

x3-Q2

x3s-Q2

41

(d)

Fig. 3.1: Closed loop state (a), (b), (c) and (d) profiles for isothermal reactor.

From Figure 3.1, it is evident that the system is closed loop stable for both values of 𝑄. For 𝑄2

the steady state changes at the beginning of the simulation and settle down around t = 0.7,

whereas for 𝑄1 the computed steady state is practically the same during the simulation. It is also

clear that two different steady states profiles are generated for the different values of 𝑄.

From the graphic of 𝑥3 in Figure 3.1, it is evident that 𝑄2 results in a better stage cost. This fact

reinforces the idea that the choice of 𝑄 has a very significant effect on performance. However,

regardless of the value of Q , the value of 𝑥3 converged to the best economic steady state which

is equal to 𝑥3=0.3752.

Figure 3.2 shows the closed loop input and quadratic Lyapunov function (𝒙′(𝑘)𝑇𝑷(𝑘)𝒙′(𝑘))

of the plant.

0 0.5 1 1.5 2 2.5 3
0.236

0.238

0.24

0.242

0.244

0.246

0.248

0.25

t

x
4

x4 vs t

x4-Q1

x4s-Q1

x4-Q2

x4s-Q2

42

(a)

(b)

0 0.5 1 1.5 2 2.5 3
0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

t

u
1

u1 vs t

u1-Q1

u1s-Q1

u1-Q2

u1s-Q2

0 0.5 1 1.5 2 2.5 3

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

t

u
2

u2 vs t

u2-Q1

u2s-Q1

u2-Q2

u2s-Q2

43

(c)

 (d)

Fig. 3.2: Closed loop input (a) and (b),and Lyapunov (c) and (d) profiles for isothermal reactor

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-4

t

Ly
ap

un
ov

Lyapunov Function

Q1

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

t

Ly
ap

un
ov

Lyapunov Function

Q2

44

From Figure 3.2 (a) and (b) it is clear that the inputs complied with the imposed input

constraints.

From 3.2 (c) and (d) it is also evident that for both Q values the polypote is a good

approximation of the plant since the values of the Lyapunov functions calculated with the actual

states obtained from the nonlinear simulated process model monotonically decreased with time.

Moreover, the Lyapunov functions show that the non-zero initial condition is significant since

their closed-loop behavior is strictly decreasing.

The Strongly Dual algorithm described in Rawlings et al (2012) was simulated and compared to

our approach. The values for the tuning parameters, steady state and terminal constraints were

taken from that paper. In addition, the proposed algorithm was solved using the same horizon

length, optimizer and ODE solver’s settings as in our case.

Fig. 3.3 shows the closed loop inputs and corresponding 𝑥3 profiles. The profile for 𝑥3 in the

current approach with 𝑄1 is very similar to the one obtained by Rawlings, however, there is a

clear difference when the current approach is executed with 𝑄2 .The flow 𝑃0 (or 𝑢1) is identical

in all the simulations.

(a)

0 0.5 1 1.5 2 2.5 3
0.373

0.3735

0.374

0.3745

0.375

0.3755

0.376

0.3765

t

x3

x3 vs t

x3-Q1

x3s-Q1

x3-Q2

x3s-Q2

x3-R

BSS

45

(b)

(c)

Fig. 3.3: Closed loop state (a) and (b), (c) inputs profiles with alternative formulation.

0 0.5 1 1.5 2 2.5 3
0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

t

u1

u1 vs t

u1-Q1

u1s-Q1

u1-Q2

u1s-Q2

u1-R

BSS

0 0.5 1 1.5 2 2.5 3
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

t

u
2

u2 vs t

u2-Q1

u2s-Q1

u2-Q2

u2s-Q2

u2-R

BBS

46

Table 3.1 shows the economic performance in terms of Average Cost (Closed-loop average of

the objective function for the entire simulation). The profit obtained with our approach in these

examples slightly outperform or are very similar to Rawlings’ EMPC.

For 𝑄1, where the steady state has priority, our results are very similar to Rawlings. Nonetheless,

for 𝑄2, where the transient is also important, our approach is better.

EMPC Average Cost % Improvement

𝑄1 0.3745 0.0212

𝑄2 0.3753 0.2412

Rawlings 0.3744 0

Table 3.1: Performance comparison between our formulation (Q1 and Q2) and the Rawlings

formulation.

Moreover, the approach proposed in this thesis avoids some of the potentially limiting features of

Rawlings’ in that it does not require: (i) to perform off-line optimization to obtain the best steady

state, (ii) to solve strong duality/dissipativity problems, and (iii) to use terminal constraints or

convex quadratic terms to the cost function.

47

Chapter 4

Parameter Adaptation, Otto Reactor Simulation, Feasibility

4.1 INTRODUCTION

In this chapter we will illustrate the ability of the proposed algorithm to deal with time varying

model parameters and to tackle more complex dynamic optimization problems. In section 4.2,

the same example of a reactor with parallel reactions studied in section 3.3 is developed but in

this case a parameter adaptation is implemented to account for changes in parameters. The

solution of a Williams-Otto reactor which also has parallel reactions is reviewed in section 4.3.

Finally, the numerical solution and the feasibility of these more complicated examples is

discussed in section 4.4.

4.2 PARAMETER ADAPTATION

As previously discussed, the algorithm for parameter adaptation was shown by equation 3.8 and

is as follows:

min
 𝒖𝑠,𝑲,𝑷,𝜽

∑ 𝑙(𝒙(𝑘), 𝒖(𝑘))

𝑁

𝑘=1

 (4.1)
 s.t.
 𝒙(0) = 𝒙𝑜

 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘))
 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝑷(𝑘), 𝜽(𝑘))
 0 = 𝑓(𝒙𝑠(𝑘), 𝒖𝑠(𝑘), 𝜽(𝑘))

We applied this algorithm to the reactor problem in section 3.3 where one of the kinetic

parameters (𝜎1) is adapted. Constraints were identical to the previous study in terms of bounds in

48

inputs and horizon, except that in the current study 𝜎1 was assumed to be between bounds as

follows:

1 ≤ 𝜎1 ≤ 1.03

The simulations were conducted with the tuning parameter 𝑄1. The resulting dynamic

optimization problem is as follows:

min
𝒖𝑠,𝑲,𝑷,𝜽

∑ −(𝑥′3 + 𝑄1𝑥𝑠3)

𝑁

𝑘=1

 (4.2)
 s.t.
 𝒙(0) = 𝒙𝑜

 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘))
 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝑷(𝑘), 𝜽(𝑘))
 0 = 𝑓(𝒙𝑠(𝑘), 𝒖𝑠(𝑘), 𝜽(𝑘))

Where 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝑷(𝑘), 𝜽(𝑘)) includes now the bounds for 𝜎1 in addition to all the

constraints considered for the same case study in Chapter 3.

Considering equation 3.10:

(𝒙(𝑘) − 𝒙𝑠(𝑘))
𝑇

𝑷(𝑘 − 1)(𝒙(𝑘) − 𝒙𝑠(𝑘))

< 𝛼(𝒙(𝑘 − 1) − 𝒙𝑠(𝑘 − 1))
𝑇

𝑷(𝑘 − 1)(𝒙(𝑘 − 1) − 𝒙𝑠(𝑘 − 1))

We can see that α plays an important role regarding the rate of adaptation because the

contraction of the Lyapunov by manipulating xs(k) and consequently θ(k) must be greater for

values of α smaller than unity. The smaller the value of α, the faster the adaptation rate.

Nevertheless, if α is chosen so small, the problem may become infeasible. Therefore, α is a

tuning parameter that must be selected carefully. The systematic selection of alfa is outside the

scope of this work, but it can be tuned according to the feasibility of 3.10. For this particular

problem α had a value of 0.9.

49

Figure 4.1 shows the closed loop state trajectories for a particular initial condition where an

initial mismatch between the model and the plant in terms of the value of the parameter𝜎1. The

solid line represents the simulated values, whereas the circles represent the true measured values.

(a)

(b)

0 1 2 3 4 5 6 7
0.3795

0.38

0.3805

0.381

0.3815

0.382

0.3825

0.383

0.3835

0.384

t

x1

x1 vs t

x1

x1-sim

0 1 2 3 4 5 6 7
1.582

1.583

1.584

1.585

1.586

1.587

1.588

1.589

t

x
2

x2 vs t

x2

x2-sim

50

(c)

(d)

Fig. 4.1: Closed loop state (a), (b), (c) and (d) profiles for parameter adaptation.

0 1 2 3 4 5 6 7
0.374

0.375

0.376

0.377

0.378

0.379

0.38

t

x3

x3 vs t

x3

x3-sim

0 1 2 3 4 5 6 7
0.2365

0.237

0.2375

0.238

0.2385

0.239

0.2395

0.24

0.2405

0.241

0.2415

t

x
4

x4 vs t

x4

x4-sim

51

In Figure 4.2, the closed loop input trajectories, the parameter adaptation profile and the plant

Lyapunov are shown. For the case of the parameter, the discontinuous line represents the true

value, whereas the squares represent the simulated value.

(a)

(b)

0 1 2 3 4 5 6 7
0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

t

u1

u1 vs t

u1

u1-sim

0 1 2 3 4 5 6 7
2.442

2.443

2.444

2.445

2.446

2.447

2.448

t

u2

u2 vs t

u2

u2-sim

52

(c)

(d)

Fig. 4.2: Closed loop inputs (a) and (b), parameter adaptation (c) and Lyapunov (d) profiles.

0 1 2 3 4 5 6 7
1

1.005

1.01

1.015

1.02

1.025

1.03

t

s
ig

m
a
1

sigma1 vs t

sigma1-sim

sigma1-R

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9
x 10

-5

t

Ly
ap

un
ov

Lyapunov Function

53

From figure 4.2, it is evident that the optimizer chooses the upper bound for the parameter since

at the initial stage it represents more profit for the cost function. The initial value for 𝜎1 assumed

for the model was 1 and the true value in the plant was 1.02. The optimizer computes the upper

bound of 𝜎1 until approximately t = 3 at which time the set point constraint forces the optimizer

to choose a smaller value of 𝜎1 so as to satisfy this constraint. From t = 3 and on, the set point

constraint plays the most important role as it forces the optimizer to continuously decrease the

value for 𝜎1 until the true value has been reached. It is also important to point out that there are

some points where the value for 𝜎1 was temporarily increased with respect to the previous

iteration but nevertheless the optimization problem was still feasible.

The monotonic decrease of the Lyapunov function calculated with the actual states’ values

corroborates that the system is stable for the actual process during the entire simulation.

Additionally, these results corroborate the proposition that the real system is well approximated

by the polytopic model for the purpose of robust stability.

Parameter convergence for the general formulation 3.7 can be also analytically proven by simple

arguments as given by the following proposition.

Proposition 1. Let assumptions I and II hold. If the dynamic optimization problem 4.1 is

considered, at steady state 𝜽𝑝𝑙𝑎𝑛𝑡 = 𝜽𝑚𝑜𝑑𝑒𝑙

Proof.

Considering the steady state equation, 0 = 𝑓(𝒙𝑠(𝑘), 𝒖𝑠(𝑘), 𝜽(𝑘)), it can be equivalently written

as:

𝒙𝑠(𝑘) = 𝑔(𝒖𝑠(𝑘), 𝜽(𝑘)) (4.3)

Then, the dynamic equation can be written as:

𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒙𝑠(𝑘), 𝑲) (4.4)

The deviation variables at the next time step are as follows:

𝒙′(𝑘 + 1) = 𝒙(𝑘 + 1) − 𝒙𝑠(𝑘 + 1) = (𝑨0 + 𝛥𝑨)(𝒙(𝑘) − 𝒙𝑠(𝑘))

54

 (4.5)
𝑊ℎ𝑒𝑟𝑒 𝜽𝑚𝑖𝑛 ≤ 𝜽(𝑘) ≤ 𝜽𝑚𝑎𝑥

The Lyapunov function for the plant model is:

𝒙′(𝑘)𝑇(𝑨𝑇𝑷𝑨 − 𝑷)𝒙′(𝑘) < 0 (4.6)

 𝑊ℎ𝑒𝑟𝑒 𝑨 = (𝑨0 + 𝛥𝑨) = 𝔸𝕋 = {𝑨𝑪𝑳1(𝜽, 𝑘), 𝑨𝑪𝑳2(𝜽, 𝑘) … 𝑨𝑪𝑳𝑀(𝜽, 𝑘)}.

The “Set Point Constraint” at k+1 is:

𝒙′(𝑘 + 1)𝑇𝑷𝒙′(𝑘 + 1) < 𝛼(𝒙′(𝑘)𝑇𝑷𝒙′(𝑘)) (4.7)

If should be noticed that 4.6 is always feasible, if 4.7 was feasible in the previous iteration.

Feasibility of 4.7 comes from letting the set point constant for two consecutive interval times.

If 𝒙𝑠′(𝑘 + 1) = 𝒙𝑠′(𝑘), then equation 4.6 equals to equation 4.7

At steady state

𝒙(𝑘) = 𝒙(𝑘 + 1) = 𝒙𝑠(𝑘) = 𝒙𝑚𝑒𝑎𝑠𝑢𝑟𝑒

Since 𝒙𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is the first value in the prediction vector then 𝜽𝑚𝑜𝑑𝑒𝑙 = 𝜽𝑝𝑙𝑎𝑛𝑡 , this is the only

way by which the measured value will equate the model prediction assuming that there is no

model structure error.

On the other hand the convergence of xs(k) to a constant value is ensured by the set point

constraint (Constraint II in section 3.2.2). According to this constraint when the deviations

converge to zero then the LHS of Constraint II must also be zero thus not allowing the optimizer

to produce changes in the set point xs(k+1).

55

4.3 WILLIAMS-OTTO REACTOR

The Williams-Otto reactor consists of a non-isothermal CSTR with three parallel reactions.

A + B C (𝑟1)
B + C P + E (𝑟2)
C + P G (𝑟3)

The mass balances are derived from standard modeling assumptions and it is the following:

𝑊
𝑑𝑥𝐴

𝑑𝑡
= 𝐹𝐴 − (𝐹𝐴 + 𝐹𝐵)𝑥𝐴 − 𝑟1 (4.8)

𝑊
𝑑𝑥𝐵

𝑑𝑡
= 𝐹𝐵 − (𝐹𝐴 + 𝐹𝐵)𝑥𝐵 − 𝑟1 − 𝑟2 (4.9)

𝑊
𝑑𝑥𝐶

𝑑𝑡
= −(𝐹𝐴 + 𝐹𝐵)𝑥𝐶 + 2𝑟1 − 2𝑟2 − 𝑟3 (4.10)

𝑊
𝑑𝑥𝐸

𝑑𝑡
= −(𝐹𝐴 + 𝐹𝐵)𝑥𝐸+2𝑟2 (4.11)

𝑊
𝑑𝑥𝐺

𝑑𝑡
= −(𝐹𝐴 + 𝐹𝐵)𝑥𝐺+1.5𝑟3 (4.12)

𝑊
𝑑𝑥𝑃

𝑑𝑡
= −(𝐹𝐴 + 𝐹𝐵)𝑥𝑃+𝑟2 − 0.5𝑟3 (4.13)

Where 𝑥𝐴, 𝑥𝐵, 𝑥𝐶 , 𝑥𝐸 , 𝑥𝐺 , 𝑥𝑃 represent the mass fraction of the components in the reactions which

are defined as: 𝑟1 = 𝑘1𝑥𝐴𝑥𝐵𝑊, 𝑟2 = 𝑘2𝑥𝐵𝑥𝐶𝑊 and 𝑟3 = 𝑘3𝑥𝐶𝑥𝑃𝑊. The reaction constants

follow the standard Arrhenius equation as a function of the reactor temperature.

𝐹𝐴, 𝐹𝐵 and 𝑊 represent the flow rate of A , B and mass hold up respectively.

In this problem, the manipulated inputs are the flow rate of B (𝐹𝐵) and the temperature of the

reactor (𝑇𝑅) which is explicitly used in the exponential term of the Arrhenius equation. 𝐹𝐴 and 𝑊

are constant values. 𝐹𝐴 can be used as the source of disturbances. The numerical values for

𝐹𝐴, 𝑊 and 𝑘𝑖 where taken from Amrit (2011)

56

The stage cost was also taken from Amrit (2011), and it is the profit of the process. Calculated

from the difference between the sales of the products E and P and the costs of raw materials A

and B.

𝑙𝑃 = 5554.1(𝐹𝐴 + 𝐹𝐵)𝑥𝑃 + 125.91(𝐹𝐴 + 𝐹𝐵)𝑥𝐸 − 370.3𝐹𝐴 − 555.42𝐹𝐵 (4.14)

The inputs are subject to regular upper and lower bounds:

2 ≤ 𝐹𝐵 ≤ 10 (4.15)
 349 ≤ 𝑇𝑅 ≤ 367 (4.16)

Following 3.3, the dynamic optimization problem can be stated as:

min
𝒖𝑠,𝑲,𝑷

∑ −(𝑙𝑃′ + 𝑄𝑙𝑃𝑠)

𝑁

𝑘=1

 (4.17)
 s.t.
 𝒙(0) = 𝒙𝑜

 𝒙(𝑘 + 1) = 𝑓(𝒙(𝑘), 𝒖(𝑘))
 𝐸(𝒙(𝑘), 𝒖(𝑘), 𝑷(𝑘))
 0 = 𝑓(𝒙𝑠(𝑘), 𝒖𝑠(𝑘))

Where the horizon was 15 and 𝑄 was selected to be equal to 100. Inasmuch as the static term in

the stage cost is way larger than the economic term, the system is driven to the best steady state.

Figure 4.3 shows the closed loop state trajectories for a suboptimal operation initial condition

(suboptimal steady state).

57

(a)

(b)

0 100 200 300 400 500 600 700 800 900
0.087

0.0872

0.0874

0.0876

0.0878

0.088

0.0882

t(s)

x
A

xA vs t

xA

xAs

0 100 200 300 400 500 600 700 800 900
0.3891

0.3892

0.3893

0.3894

0.3895

0.3896

0.3897

0.3898

t(s)

x
B

xB vs t

xB

xBs

58

(c)

(d)

0 100 200 300 400 500 600 700 800 900
0.0152

0.0153

0.0153

0.0154

0.0154

0.0155

0.0155

t(s)

x
C

xC vs t

xC

xCs

0 100 200 300 400 500 600 700 800 900
0.2904

0.2905

0.2906

0.2907

0.2908

0.2909

0.291

0.2911

0.2912

0.2913

t(s)

x
E

xE vs t

xE

xEs

59

(e)

(f)

Fig. 4.3: Closed loop state (a), (b), (c), (d), (e) and (f) profiles for Otto reactor.

0 100 200 300 400 500 600 700 800 900
0.1066

0.1068

0.107

0.1072

0.1074

0.1076

0.1078

t(s)

x
G

xG vs t

xG

xGs

0 100 200 300 400 500 600 700 800 900
0.1096

0.1096

0.1097

0.1097

0.1098

0.1098

0.1099

t(s)

xP

xP vs t

xP

xPs

60

From this figure, it is seen that 𝑥𝐸, 𝑥𝐺 , and 𝑥𝑃 exhibit an underdamped behavior that quickly

settles down at the steady state. Also it is evident that the plant is steered to the computed best

steady state.

Figure 4.4 shows the closed loop inputs trajectories, the Lyapunov and profit (𝑙𝑃) profiles.

(a)

(b)

0 100 200 300 400 500 600 700 800 900
4.71

4.715

4.72

4.725

t(s)

F
B

(k
g/

s)

FB vs t

FB

FBs

0 100 200 300 400 500 600 700 800 900
362.35

362.4

362.45

362.5

362.55

362.6

362.65

362.7

362.75

t(s)

TR
(K

)

TR vs t

TR

TRs

61

(c)

(d)

Fig. 4.4: Closed loop input (a) and (b) trajectories, Lyapunov (c) and Profit (d) profiles for Otto

reactor.

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8
x 10

-6

t(s)

Ly
ap

un
ov

Lyapunov Function

0 100 200 300 400 500 600 700 800 900
921

922

923

924

925

926

927

928

929

930

t(s)

P
ro

fi
t

($
)

Profit Function (Eq. 4.14)

62

This figure shows that the plant is stable and the Lyapunov function in (c) is monotonically

decreasing. Inasmuch as the Lyapunov function strictly decreasing, the initial condition is

significant. Furthermore, the profit also exhibits an underdamped behavior as shown in figure

4.4. This is expected since the cost is a direct function of the states that also exhibit underdamped

convergence. It is also shown that the profit is settling down at the best steady state

(cost=921.5169) outperforming the suboptimal steady state initial condition. The transient

behavior for the entire simulation produced an improvement in the profit of 244.74 $ compare to

the suboptimal initial condition.

The closed loop inputs in figure 4.4 show that practically there is not a deviation between the

best steady state and the manipulated variables. This is because Q was selected to provide the

best steady state implying that 𝑄𝑙𝑃𝑠 ≫ 𝑙𝑃′. Furthermore, in contrast to the example in 3.3 the

manipulated variables at the best steady state in this case is not at any bound.

The computed best steady state by the proposed EMPC algorithm is:

𝒙𝑠 = [0.0870,0.3896,0.0152,0.2909,0.1074,0.1096]𝑇

𝒖𝑠 = [4.7231,362.6852]𝑇

Which equals the best steady state computed off-line.

4.4 SOLUTION OF DYNAMIC OPTIMIZATION PROBLEM

This section discusses the feasibility of the EMPC approach and different improvements to the

numerical solution.

4.4.1 Feasibility

Feasibility of the algorithm implies that the algorithm complies with all the constraints including

the four stability related constrains introduced in 3.2.

Next, it is explained how one can ensure feasibility of these constraints.

63

1. “Set Point Constraint”

The Set Point constraint is satisfied because for the special case that xs(k) remains fixed at the

value from the previous iteration, then the set point constraint (Constraint II in section 3.2)

becomes equal to the robust Lyapunov stability condition (constraint IV in section 3.2).

This become obvious from 3.10

(𝒙(𝑘) − 𝒙𝑠(𝑘))
𝑇

𝑷(𝑘 − 1)(𝒙(𝑘) − 𝒙𝑠(𝑘))

< 𝛼(𝒙(𝑘 − 1) − 𝒙𝑠(𝑘 − 1))
𝑇

𝑷(𝑘 − 1)(𝒙(𝑘 − 1) − 𝒙𝑠(𝑘 − 1))

 If the Lyapunov function is strictly decreasing the set point constraint is feasible.

2. “ P constraint”

The P constraint is satisfied by fixing the P matix from the previous iteration.

From 3.11

(𝒙(𝑘) − 𝒙𝑠(𝑘))
𝑇

𝑷(𝑘)(𝒙(𝑘) − 𝒙𝑠(𝑘)) ≤ (𝒙(𝑘) − 𝒙𝑠(𝑘))
𝑇

𝑷(𝑘 − 1)(𝒙(𝑘) − 𝒙𝑠(𝑘))

It is seen that if the P in the LHS and RHS are the same, the constraint is satisfied.

3. “Positive definite P”

This constraint is satisfied by following the same procedure as 2. Since the fact that P from the

previous iteration is positive define the P at time (k) will also be positive definite.

64

4. “Lyapunov Based Robust Stability Constraint”

For open loop stable systems, this constraint can be automatically satisfied by making K in

equation 3.15 equal to cero. Therefore, this is reduced to:

 𝑨𝑪𝑳(𝜽, 𝑘) = 𝑨(𝜽) (4.18)

If the system is open loop stable, the inequality in 3.19

𝑉(𝑘 + 1) − 𝑉(𝑘) < 0

is satisfied. For systems that are open loop unstable one option is to stabilize them by using a

proportional only controller and then apply the proposed methodology to the stabilized system.

Another possibility to ensure feasibility for both open and closed loop systems is to formulate a

series of LMI inequalities that are solved off-line for the worst case scenario. The investigation

of this option is left for future research.

A logical flowchart to ensure feasibility of the system based on the arguments given in the

current section is schematically described in the figure 4.5.

65

Fig. 4.5: Diagram showing the implementation of the feasibility problem

66

4.4.2 Numerical Solution

As the proposed EMPC is applied online, fast numerical solution of the dynamic optimization

problem is essential for real time implementation. For real applications the solution of these

optimization problems should been completed faster than the sampling interval. In the present

work, we are solving the Economic Model Predictive Controllers using modest computing power

(Intel i5 2.5 GHz) and commercial software (Matlab) and thus the potential for improvements are

limited. However there are still some actions that can be taken in order to enhance the speed of

the solution. The implementation of these steps may speed up the solution but at the cost of a

reduction of degrees of freedom available for optimization.

 Manipulated Variables.

Considering equation 3.3

 𝒖′ = 𝑲𝒙

In order to reduce the number of manipulated variables in the matrix, each row is made

of equal elements.

(
𝑘1 ⋯ 𝑘1

⋮ ⋱ ⋮
𝑘𝑛 ⋯ 𝑘𝑛

)

 (4.19)

Thus, instead of a total of nxm variables (where n is the number of rows and m the

number of columns), the number of decision variables is reduced to n.

Furthermore, since equation 3.3 is solved for the entire horizon N, it is possible to

arrange the manipulated variables into blocks where the manipulated variables are kept

constant within each block thus reducing even more the number of manipulated

variables.

67

For example if N = 10, for the matrix 𝑲 can be divided into 3 blocks corresponding to 3

different periods of time along the prediction horizon:

𝑲 = {

𝑲𝟏, 𝑁 ≤ 3
𝑲𝟐, 3 < 𝑁 ≤ 7
𝑲𝟑, 7 < 𝑁 ≤ 10

 (4.20)

 Positive Definite Matrix “P”

The largest number of decision variables in the examples discussed in this thesis originated from

the elements of the matrix P. With the addition of any new state P grows quadratically, for

instance, a 𝑷𝟒𝒙𝟒 has sixteen elements whereas 𝑷𝟓𝒙𝟓 has twenty five.

For small size problems involving less than 10 states, and taking advantage of the definition of a

positive definite matrix, the following decomposition can be performed for reducing the number

of optimization variables:

(

𝑃1 0 … 0
0
⋮
0

𝑃2

0
…

0
⋱
0

⋮
0
𝑃𝑛

) + (

 0 𝑃𝑛+1 … 𝑃2𝑛

0
⋮
0

0
0
…

𝑃2𝑛+1

⋱
0

⋮
𝑃𝑛2−∑ 𝑖𝑛−1

𝑖=1

0

)

+ (

 0 𝑃𝑛+1 … 𝑃2𝑛

0
⋮
0

0
0
…

𝑃2𝑛+1

⋱
0

⋮
𝑃𝑛2−∑ 𝑖𝑛−1

𝑖=1

0

)

𝑇

= 𝑷

 (4.21)

Instead of having 𝑛2 variables we have 𝑛2 − ∑ 𝑖𝑛−1
𝑖=1 .

For large problems, it is proposed to use the diagonal matrix in 4.20

68

(

𝑃1 0 … 0
0
⋮
0

𝑃2

0
…

0
⋱
0

⋮
0
𝑃𝑛

) = 𝑷

 (4.22)

And enforce that each element of (4.21) is positive. Consequently, the number of optimization

variables would be reduced to 𝑛

Besides these suggestions other improvements in the speed can be made by using more

sophisticated optimizers, ODE solvers and programing languages. However, these potential

numerical improvements are left for future research. Moreover, other more numerically effective

techniques for testing positive definiteness of a matrix could be also studied instead of

computing eigenvalues that is computationally intensive.

69

Chapter 5

Conclusions and Future work

5.1 CONCLUSIONS

Stability and EMPC:

An Economic Model Predictive Control online algorithm that can be applied not only to generic

nonlinear systems but also to generic stage costs was successfully developed in Chapter 3. By

adding an additional set of specific constraints, the asymptotic stability of the algorithm was

numerically enforced at each time interval. The robustness property of this algorithm comes from

the satisfaction of the “Lyapunov Based Robust Stability Constraint”. The “Set Point Constraint”

and “P Constraint” regulate the contraction of the Lyapunov function by varying the set point or

P matrix respectively.

Applications:

The proposed EMPC algorithm was effectively applied to small and medium size examples in

chapters number three and four respectively. Given the inability to converge to the best

economic steady state due to the finite small horizon, the stage cost was splitted into a dynamic

cost and a steady state cost. The latter promoted convergence to the steady state. A weight

multiplying the steady state cost term was used as a tuning parameter. Although, a formal

methodology for choosing this weight has not been provided in this thesis, it was argued that the

choice could be possibly related to the frequency of disturbances entering the process that may

require operating at steady state or at transient state. If the frequency of the disturbances is high

or if best steady state operation is not required, Q could be chosen so that the performance on

average outperforms or is as good as the best economic steady state.

Furthermore, it was shown that the proposed EMPC algorithm has some advantages compared to

previously reported EMPC algorithm that served as motivation for this work. In contrast with the

study of Rawlings et al, it was shown that the proposed algorithm bypasses several of the

70

requirements and potential limitations of Rawlings’ algorithm. For instance, the current

algorithm does not require off line computations of the best economic steady state and it does not

need terminal constraints, terminal costs or/and addition of convex terms to the stage cost.

Potentially, terminal constraints or terminal costs may limit the closed loop performance and the

addition of tracking terms to the cost function may force the system to track closely a steady

state which may not be optimal during transients. On the other hand, the algorithm has some

drawbacks such as high computational requirements since robust stability is numerically

enforced on-line and feasibility of the algorithm can only be ensured for open loop stable

systems only. Some options were suggested for open loop unstable systems such as stabilization

by a purely proportional controller.

Parameter adaptation, feasibility and solution:

The proposed algorithm was also formulated to perform one of the most important tasks of RTO

strategies namely adaptation of model parameters. In chapter number four, it was demonstrated

that by means of the “Set Point Constraint” and using the parameter as an optimization variable,

the model parameter was adapted in a finite time. Furthermore, the adaptation rate can be

increased by decreasing the value of the factor α in the RHS of the set point constraint. Attention

must be put in not making the optimization problem infeasible due to a small value of α. The

“Set Point Constraint” plays a fundamental role in the adaptation problem inasmuch as it forces

the system to reach the true value of the parameter. In terms of feasibility, it was proven that the

system is always feasible for open loop stable systems. By fixing the set point and P matrix, the

respective constraints can be satisfied. By making K = 0 the Lyapunov Based Robust Stability

Constraint can be satisfied. It was also proposed to speed up the solution by decomposing the P

matrix and using less optimization variables for the control gain matrix K.

5.2 FUTURE WORK

Solution of higher dimensional problems.

In this work the EMPC algorithm was only applied to relatively small size problems with less

than ten states. The proposed methodology should be study for nonlinear systems with much

larger number of states and manipulated variables since chemical processes are generally

described by large systems of equations. Special attention must be put on the efficient solution of

71

the positive definite property of P since it is the constraint that has the most number of

optimization variables and it has the most effect on computational requirements.

Use of a better optimization software.

For the solution of the dynamic optimization problems the fmicon optimization function of

Matlab was used. As reported in literature, in terms of speed and performance, this may not be

the best or fastest option. Consequently, the use of better optimizers and ODE solvers must be

explored along with special techniques for solving DAE systems such as direct methods. Indeed,

in the literature, most nonlinear dynamic optimization problems even for small cases are solved

with Ipopt. Therefore, the implementation of this kind of optimisers should be considered.

Open loop unstable systems.

One of the most important drawback of this algorithm is that it can only be applied to open loop

stable systems. In real applications, there are situations where open loop unstable systems will

have to be considered. Then, necessary modifications have to be studied. One possibility is to

ensure feasibility a priori by means of a series of linear matrix inequalities to account for the

worst case scenario.

Systematic selection of tuning parameters (Q and α)

Although some inside was given for the systematic selection of not only Q but α, limited work

was performed. Simulations demonstrating the influence in the performance related to the

selection of these two tuning parameters must be carried out.

72

REFERENCES

M. Ellis, H. Durand, P.D. Christofidies, A tutorial review of economic model predictive control

methods, J. Process Control 24 (2014) 1156-1178.

J.B. Rawlings, D. Angeli, C. N. Bates, Fundamentals of economic model predictive control, 51st

IEEE Conference on Decision and Control, December 10-13. 2012. Maui, Hawaii, USA.

D. Angeli, R. Amrit, J.B. Rawlings, On average performance and stability of economic model

predictive control, IEEE Trans. Automat. Control 57 (2012), 1615-1626.

R. Amrit, J.B. Rawlings, L.T. Biegler, Optimizing process economics online using model

predictive control, Comput. Chem. Eng. 58 (2013), 334-343.

Adetola, M. Guay, Integration of real-time optimization and model predictive control, J. Process

Control 20 (2010) 125-133.

M. Heidarinejad, J. Liu, P. D. Christofidies, Economic model predictive control of nonlinear

process using lyapunov techninques, AlChE J. 58 (2012) 855-870.

M. Ellis, P. D. Christofidies, Economic model predictive control with time varying objective

function for nonlinear process systems, AlChE J. 60 (2013) 507-519.

M. Ellis, P. D. Christofidies, Performance monitoring of economic model predictive control

systems, Ind. Eng. Chem. Res. 53 (2014) 15406-15413.

M. Ellis, P. D. Christofidies, Integrating dynamic economic optimization and model predictive

control for optimal operation of nonlinear process systems, Control Eng. Pract. 22 (2014) 242-

251.

73

 M. Diehl, R. Amrit, J.B. Rawlings, Lyapunov function for economic optimizing model

predictive control, IEEE Trans. Automat. Control 56 (2011), 703-707.

 R. Amrit, J. B. Rawlings, D. Angeli, Economic optimization using model predictive control with

a terminal cost, Annual Reviews in Control. 35 (2011) 178-186.

 D. Angeli, R. Amrit, J. B. Rawlings, Receding horizon cost optimization for overly constrained

nonlinear plants, 48st IEEE Conference on Decision and Control, December 16-18. 2009.

Shanghai, China.

 D. Angeli, R. Amrit, J. B. Rawlings, Enforcing convergence in nonlinear economic MPC, 50st

IEEE Conference on Decision and Control, December 12-15. 2011. Orlando, FL, USA.

 R. Amrit, Optimizing process economics in model predictive control, PhD Thesis. University of

Wisconsin-Madison. 2011.

 L.T. Biegler, Nonlinear programming. Concepts, algorithms, and application to chemical

processes. Philadelphia, PA, USA: SIAM 2010.

 T. Binder, L. Blank, H. Bock, R. Bulirsch, W. Dahmen, M. Dielh, Introduction to model based

optimization of chemical processes on moving horizons online optimization of large scale

systems: State of the art. Berlin Heidelberg, Germany: Springer (2001).

 C. K. Lee, J. E. Bailey, Modification of consecutive competitive reaction selectivity by periodic

operation, Ind. Eng. Chem. Process Des. 19 (1980) 160 -166.

Gopalakrishnan, L.T. Biegler, Economic nonlinear model predictive control for periodic optimal

operation of gas pipeline networks, Computers and Chemical Engineering 52 (2013) 90-99.

74

 W. Al-Gherwi, Robust distributed model predictive control strategies of chemical processes,

PhD Thesis, University of Waterloo. 2010.

 R. Huang, E. Harinath, L.T. Biegler, Lyapunov stability of economically oriented NMPC for

cyclic processes, J. Process Control 21 (2011) 501-509.

 R. Huang, L.T. Biegler, E. Harinath, Robust stability of economically oriented infinite horizon

NMPC that include cyclic processes, J. Process Control 22 (2012) 51-59.

 J. Ma, S. J. Qin, T. Salsbury, Application of economic mpc to energy and demand minimization

of a commercial building, J. Process Control 24 (2014) 1282-1291.

 E. A. N. Idris, S. Engell, Economics-based nmpc strategies for the operation and control of a

continuous catalytic distillation process, J. Process Control 22 (2012) 1832-1843.

L. Grune, J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms. Springer-

Verlag London, (2011).

 M. Mahmoud, Advances in Discrete Time Systems. InTech, (2012).

75

Appendix A

Routine for the solution of EMPC. EMPC is solved as a dynamic optimization problem in a

receding horizon basis (feedback).

Appropriate modifications must be made to the steady state model, cost function, dynamic

model, constraints, inputs etc. (subroutines) to solve the all the problems described in this work.

The subroutines shown here are for the section 3.3. This code was modified from Grune and

Pannek (2011).

Template with initial conditions and function to call

mpciterations = 2;

N = 15;

T = 0.1;

Pmeasure = [0.4328 0.6360 0.3574 0.3644 1.4253 0.5502

0.5703 0.5263 0.4408 0.7601];

Ameasure = 0;

Neromeasure = -1;

Constmeasure = -1;

Constmeasure2 = -1;

tmeasure = 0.0;

xmeasure = [0.3845 1.5850 0.3730 0.2365 0.3845 1.5850 0.3730 0.2365

0.994 2.4310 1];

u0 =

[0*ones(1,N);0*ones(1,N);0.999*ones(1,N);2.431*ones(1,N);[Pmeasure',ones(10,N

-1)];ones(1,N)];

tol_opt = 1e-6;

opt_option = 1;

iprint = 0;

type = 'differential equation';

atol_ode_real = 1e-6;

rtol_ode_real = 1e-6;

atol_ode_sim = 1e-6;

rtol_ode_sim = 1e-6;

76

[t,x,u,Res,L,BB,U] = nmpc(@runningcosts, @terminalcosts,

@constraints,@terminalconstraints, @linearconstraints,

@contsystem_ct,mpciterations,@avconstraint,@evaluaciones,@inicializa,@valores

xs,@constraintstotales4,@constraintstotales2,@evalP,Pmeasure,@obtencionP,Amea

sure,Neromeasure,Constmeasure,Constmeasure2,@obtencionA,@proceso2,@computeu,

N, T, tmeasure, xmeasure, u0, tol_opt, opt_option, type, atol_ode_real,

rtol_ode_real, atol_ode_sim, rtol_ode_sim);

Economic Model Predictive Control Algorithm and settings for the optimizer. Note

that SQP was chosen for all the simulations.

function [t, x, u, Res, LL, BB, U] = nmpc(runningcosts, terminalcosts, ...

constraints, terminalconstraints, ...

linearconstraints, system, ...

mpciterations,

avconstraint,system3,system4,system5,constraintstotales,constraintstotales2,s

ystem6,Pmeasure,obtencionP,Ameasure,Neromeasure,Constmeasure,Constmeasure2,ob

tencionA,proceso2,computeu, N, T, tmeasure, xmeasure, u0, ...

varargin)

global JJJ

 if (nargin>=29)

 tol_opt = varargin{1};

 else

 tol_opt = 1e-6;

 end;

 if (nargin>=30)

 opt_option = varargin{2};

 else

 opt_option = 0;

 end;

 if (nargin>=31)

 if (strcmp(varargin{3}, 'difference equation') || ...

 strcmp(varargin{3}, 'differential equation'))

 type = varargin{3};

 else

 fprintf([' Wrong input for type of dynamic: use either ', ...

77

 '"difference equation" or "differential equation".']);

 end

 else

 type = 'difference equation';

 end;

 if (nargin>=32)

 atol_ode_real = varargin{4};

 else

 atol_ode_real = 1e-8;

 end;

 if (nargin>=33)

 rtol_ode_real = varargin{5};

 else

 rtol_ode_real = 1e-8;

 end;

 if (nargin>=34)

 atol_ode_sim = varargin{6};

 else

 atol_ode_sim = atol_ode_real;

 end;

 if (nargin>=35)

 rtol_ode_sim = varargin{7};

 else

 rtol_ode_sim = rtol_ode_real;

 end;

 if (nargin>=36)

 iprint = varargin{8};

 else

 iprint = 0;

 end;

% Determine MATLAB Version and

 % specify and configure optimization method

 vs = version('-release');

 vyear = str2num(vs(1:4));

 if (vyear <= 2007)

 fprintf('MATLAB version R2007 or earlier detected\n');

78

 if (opt_option == 0)

 options = optimset('Display','off',...

 'TolFun', tol_opt,...

 'MaxIter', 2000,...

 'LargeScale', 'off',...

 'RelLineSrchBnd', [],...

 'RelLineSrchBndDuration', 1);

 elseif (opt_option == 1)

 error('nmpc:WrongArgument', '%s\n%s', ...

 'Interior point method not supported in MATLAB R2007', ...

 'Please use opt_option = 0 or opt_option = 2');

 elseif (opt_option == 2)

 options = optimset('Display','off',...

 'TolFun', tol_opt,...

 'MaxIter', 2000,...

 'LargeScale', 'on',...

 'Hessian', 'off',...

 'MaxPCGIter', max(1,floor(size(u0,1)*size(u0,2)/2)),...

 'PrecondBandWidth', 0,...

 'TolPCG', 1e-1);

 end

 else

 fprintf('MATLAB version R2008 or newer detected\n');

 if (opt_option == 0)

 options = optimset('Display','off',...

 'TolFun', tol_opt,...

 'MaxIter', 10000,...

 'Algorithm', 'active-set',...

 'FinDiffType', 'forward',...

 'RelLineSrchBnd', [],...

 'RelLineSrchBndDuration', 1,...

 'TolConSQP', 1e-6);

 elseif (opt_option == 1)

 options = optimset('Display','notify',...

 'TolFun', tol_opt,...

 'TolCon', 1e-6,...

 'MaxFunEvals', 3000,...

79

 'MaxIter', 4000,...

 'Algorithm', 'sqp',...

 'AlwaysHonorConstraints', 'bounds',...

 'FinDiffType', 'forward',...

 'HessFcn', [],...

 'Hessian', 'bfgs',...

 'HessMult', [],...

 'InitBarrierParam', 0.1,...

 'InitTrustRegionRadius', sqrt(size(u0,1)*size(u0,2)),...

 'MaxProjCGIter', 2*size(u0,1)*size(u0,2),...

 'ObjectiveLimit', -1e20,...

 'ScaleProblem', 'obj-and-constr',...

 'SubproblemAlgorithm', 'cg',...

 'TolProjCG', 1e-2,...

 'TolProjCGAbs', 1e-10,'UseParallel','always');

 elseif (opt_option == 2)

 options = optimset('Display','off',...

 'TolFun', tol_opt,...

 'MaxIter', 2000,...

 'Algorithm', 'trust-region-reflective',...

 'Hessian', 'off',...

 'MaxPCGIter', max(1,floor(size(u0,1)*size(u0,2)/2)),...

 'PrecondBandWidth', 0,...

 'TolPCG', 1e-1);

 end

 end

warning off all

 t = [];

 x = [];

 u = [];

 Res = [];

 LL = [];

 BB = [];

 U=[];

 % Start of the NMPC iteration

 mpciter = 1;

80

 while(mpciter < (mpciterations+1))

 if (mpciter==1)

 factor=0;

 YYZ=0;

 Sub=-1;

 end

 % Step (1) of the NMPC algorithm:

 % Obtain new initial value

 [t0, x0, P0,A0,Nero0,Const0,Const20,factor0,YYZ0,Sub0] =

measureInitialValue (tmeasure, xmeasure, Pmeasure,

Ameasure,Neromeasure,Constmeasure,Constmeasure2,factor,YYZ,Sub);

 % Step (2) of the NMPC algorithm:

 % Solve the optimal control problem

 t_Start = tic;

 [u_new, V_current, exitflag, output] = solveOptimalControlProblem ...

 (runningcosts, terminalcosts, constraints, ...

 terminalconstraints, linearconstraints, system, ...

avconstraint,system3,system4,system5,constraintstotales,constraintstotales2,m

pciter,Nero0,Const0,Const20, N,P0,A0,factor0,YYZ0,Sub0,t0, x0, u0, T, ...

 atol_ode_sim, rtol_ode_sim, tol_opt, options, type);

 t_Elapsed = toc(t_Start);

 % Store closed loop data

 TTT = [t; tmeasure];

 XXX = [x; xmeasure];

 UUU = [u; u_new(:,1)'];

 x1b=

computeOpenloopSolution(system,system3,system4,system5,mpciter,Nero0,Const0,C

onst20,factor0,YYZ0,Sub0, N, T, t0, x0, u_new, ...

 atol_ode_sim, rtol_ode_sim, type);

 if (Const20<0)

81

 if (Nero0<=0.000001)

 if (Const0>0)||(factor0==10)||(Sub0>0)

 S=0;

 else

 S=1;

 end

 else

 S=1;

 end

 else

 S=1;

 end

 if (mpciter==1)

 cnew2= constraintstotales(t0,x1b,u_new,N,T,S);

 c = [cnew2(1,1:2),-1,cnew2(1,3:6)];

 else

 cnew2=

constraintstotales2(t0,x1b,u_new,N,P0,A0,T,S,Nero0,Const20,Const0,Sub0);

 c = cnew2;

 end

 Res1 = [Res; c];

 B0=obtencionA(t0,x1b,u_new,N,Nero0,P0,Const20,Const0,Sub0);

 BB1 =[BB;B0];

 Lnew = lyapunov

(system,system3,system4,system5,obtencionP,mpciter,Nero0,Const0,Const20,P0,fa

ctor0,YYZ0,Sub0, N, T, t0, x0, u_new, ...

 atol_ode_sim, rtol_ode_sim, type);

 LL1=[LL;Lnew];

 if (mpciter>1)

82

 if (mpciter>=100)%Not used, but was introduced for parameter

 Sub=-1 variation while running simulation

 else

 Sub=Lnew-LL(end)

 end

 Nero=Res1(end,1)

 Const=Res1(end,2)

 Const2=Res1(end,3)

 if (Nero>0.000001)||(Const>0)||(Const2>0)||(Sub>0)

 YZW=1;

 else

 YZW=-1;

 end

 else

 YZW=-1;

 Sub=-1;

 Nero=Nero0;

 Const=Res1(end,2);

 Const2=Res1(end,3);

 end

 % Step (3) of the NMPC algorithm:

 % Apply control to process

 [tmeasure,

xmeasure,Pmeasure,Adismeasure,Neromeasure,Constmeasure,Constmeasure2,factor,Y

YZ,W] =

applyControl(system,system3,system4,system5,system6,proceso2,computeu,B0,Nero

,Nero0,Const,Const0,Const20,Const2,P0,S,x1b,mpciter,YZW,YYZ0,factor0,Sub,Sub0

,u0,N, T, t0, x0, u_new, ...

 atol_ode_real, rtol_ode_real, type);

 U21=[U;W];

 if (mpciter==1)

83

 t = TTT;

 x = XXX;

 u = UUU;

 Res = Res1

 LL=LL1

 BB=BB1;

 U=U21

 elseif (YZW==1)||(factor==10)

 mpciter=mpciter-1;

 t = TTT(1:end-1,:);

 x = XXX(1:end-1,:);

 u = UUU(1:end-1,:);

 Res = Res1(1:end-1,:)

 LL=LL1(1:end-1,:)

 BB=BB1(1:end-1,:);

 U=U21(1:end-1,:)

 JJJ=mpciter+1

 else

 t = TTT;

 x = XXX;

 u = UUU;

 Res = Res1

 LL=LL1

 BB=BB1;

 U=U21

 JJJ=0

 end

 Ameasure=LL(end)*(Adismeasure/Adismeasure)

 Neromeasure

 Constmeasure

 Constmeasure2

 u0 = shiftHorizon(u_new,N,Pmeasure);

 if(mpciter>1)

84

 if ((Nero<=0)&&(Const<0)&&(Const2<0)&&(S==0)&&(Sub>0))

 mpciter=mpciterations;

 end %Introduced to stop simulation when the Lyapunov Robust Stability

 end constraint is not a good approximation

 mpciter = mpciter+1;

 clear TTT;

 clear UUU;

 clear XXX;

 end

end

function [t0, x0, P0, A0, Nero0, Const0, Const20, factor0,YYZ0,Sub0] =

measureInitialValue (tmeasure, xmeasure,

Pmeasure,Ameasure,Neromeasure,Constmeasure,Constmeasure2,factor,YYZ,Sub)

 t0 = tmeasure;

 x0 = xmeasure;

 P0 = Pmeasure;

 A0 = Ameasure;

 Nero0=Neromeasure;

 Const0=Constmeasure;

 Const20=Constmeasure2;

 factor0=factor;

 YYZ0=YYZ;

 Sub0=Sub;

end

function y = lyapunov

(system,system3,system4,system5,obtencionP,mpciter,Nero0,Const0,Const20,P0,fa

ctor0,YYZ0,Sub0, N, T, t0, x0, u, ...

 atol_ode_sim, rtol_ode_sim, type)

 x = zeros(N+1, length(x0));

 x=

computeOpenloopSolution(system,system3,system4,system5,mpciter,Nero0,Const0,C

onst20,factor0,YYZ0,Sub0, N, T, t0, x0, u, ...

85

 atol_ode_sim, rtol_ode_sim, type);

 y = obtencionP(t0,x,u,N,Nero0,P0,Const20,Const0,Sub0);

end

function [tapplied, xapplied, Papplied, Aapplied, Neroapplied, Constapplied,

Constapplied2,factor,YYZ,W]=

applyControl(system,system3,system4,system5,system6,proceso2,computeu,B0,Nero

,Nero0,Const,Const0,Const20,Const2,P0,S,x1b,mpciter,YZW,YYZ0,factor0,Sub,Sub0

,u0,N, T, t0, x0, u,atol_ode_real, rtol_ode_real, type)

 if (mpciter<= 0)

 if (YZW>0)||(u(4,1)==2.4310)

 AAA=abs(Const2);

 else

 AAA=Const2;

 end

 xa = system4(t0, x0, u(:,1), T, mpciter,AAA,YYZ0);

 if (YZW>0)

 SS=x0(1,1:4);

 UUU=computeu(N, T, t0, x1b, u,mpciter,xa,S);

 W=UUU(1,:)

 YYZ=0;

 else

 UUU=computeu(N, T, t0, x1b, u,mpciter,xa,S);

 W=UUU(1,:)

 xapplied1 = dynamic(system,system3,system5, T, t0, xa, S*u(:,1), ...

 atol_ode_real, rtol_ode_real, type);

 SS=xapplied1(1,1:4)+xa(1,5:8);

 YYZ=0;

 end

 if (YZW<0)

 if (max(W(:,1))>1.00001)

86

 factor=10

 else

 factor=0

 end

 else

 factor=0

 end

 xapplied = [SS,xa(1,5:11)]

 tapplied = t0+T;

[Papplied,Constapplied2]=system6(u,N,P0,Nero,Nero0,Const0,Const,Const2,Const2

0,YZW,factor,Sub,factor0,Sub0,u0);

 Aapplied=B0;

 Neroapplied=Nero;

 Constapplied=Const;

 Papplied

 %Used for parameter variation

 else

 baldano=u(4,1)-2.4310

 if (baldano<=0.000001)||(YZW>0)

 AAA=abs(Const2)

 else

 AAA=Const2

 end

 xa = system4(t0, x0, u(:,1), T, mpciter,AAA,YYZ0)

 if (YZW>0)

 SS=x0(1,1:4);

 UUU=computeu(N, T, t0, x1b, u,mpciter,xa,S);

 W=UUU(1,:)

 %if (mpciter>4)

 %xver=dynamic2(proceso2, T, t0, ...

87

 %x0(1,1:4), UUU(1,:), atol_ode_real, rtol_ode_real);

 %YYZ=(abs((xver-SS)))*ones(4,1)

 %else

 YYZ=0;

 %end

 xapplied = [SS,xa(1,5:11)]

 else

 UUU=computeu(N, T, t0, x1b, u,mpciter,xa,S);

 W=UUU(1,:)

 xapplied1 = dynamic(system,system3,system5, T, t0, xa, S*u(:,1), ...

 atol_ode_real, rtol_ode_real, type);

 SS=xapplied1(1,1:4)+xa(1,5:8);

 xver=dynamic2(proceso2, T, t0, ...

 x0(1,1:4), UUU(1,:), atol_ode_real, rtol_ode_real);

 YYZ=(abs((xver-SS)))*ones(4,1)

 xapplied = [xver,xa(1,5:11)]

 end

 if (YZW<0)

 if (max(W(:,1))>1.00001)

 factor=10

 else

 factor=0

 end

 else

 factor=0

 end

 tapplied = t0+T;

[Papplied,Constapplied2]=system6(u,N,P0,Nero,Nero0,Const0,Const,Const2,Const2

0,YZW,factor,Sub,factor0,Sub0,u0);

 Aapplied=B0;

 Neroapplied=Nero;

88

 Constapplied=Const;

 Papplied

 end

end

function u0 = shiftHorizon(u,N,P0)

 A=zeros(10,N-1);

 B=[P0',A];

 u0 = [zeros(2,N);0.999999*ones(1,N);2.4310*ones(1,N);B;ones(1,N)];

end

function [u, V, exitflag, output] = solveOptimalControlProblem ...

 (runningcosts, terminalcosts, constraints, terminalconstraints, ...

 linearconstraints, system,

avconstraint,system3,system4,system5,constraintstotales,constraintstotales2,m

pciter,Nero0,Const0,Const20, N,P0,A0,factor0,YYZ0,Sub0, t0, x0, u0, T, ...

 atol_ode_sim, rtol_ode_sim, tol_opt, options, type)

 x = zeros(N+1, length(x0));

 x=

computeOpenloopSolution(system,system3,system4,system5,mpciter,Nero0,Const0,C

onst20,factor0,YYZ0,Sub0, N, T, t0, x0, u0, ...

 atol_ode_sim, rtol_ode_sim, type);

 % Set control and linear bounds

 A = [];

 b = [];

 Aeq = [];

 beq = [];

 lb = [];

 ub = [];

 for k=1:N

89

 [Anew, bnew, Aeqnew, beqnew, lbnew, ubnew] = ...

 linearconstraints(t0+k*T,x(k,:),u0(:,k));

 A = blkdiag(A,Anew);

 b = [b, bnew];

 Aeq = blkdiag(Aeq,Aeqnew);

 beq = [beq, beqnew];

 lb = [lb, lbnew];

 ub = [ub, ubnew];

 end

 % Solve optimization problem

 [u, V, exitflag, output] = fmincon(@(u) real(costfunction(runningcosts,

...

 terminalcosts,

system,system3,system4,system5,mpciter,Nero0,Const0,Const20,factor0,YYZ0,Sub0

, N, T, t0, x0, ...

 u, atol_ode_sim, rtol_ode_sim, type)), u0, A, b, Aeq, beq, lb, ...

 ub, @(u) nonlinearconstraints(constraints, terminalconstraints, ...

 system,

avconstraint,system3,system4,system5,constraintstotales,constraintstotales2,P

0,A0,mpciter,Nero0,Const0,Const20,factor0,YYZ0,Sub0, N, T, t0, x0, u, ...

 atol_ode_sim, rtol_ode_sim, type), options);

end

function cost = costfunction(runningcosts, terminalcosts, system, ...

system3,system4,system5,mpciter,Nero0,Const0,Const20,factor0,YYZ0,Sub0,N, T,

t0, x0, u, ...

 atol_ode_sim, rtol_ode_sim, type)

 cost = 0;

 x = zeros(N+1, length(x0));

 x=

computeOpenloopSolution(system,system3,system4,system5,mpciter,Nero0,Const0,C

onst20,factor0,YYZ0,Sub0, N, T, t0, x0, u, ...

 atol_ode_sim, rtol_ode_sim, type);

 for k=1:N

 cost = cost+runningcosts(t0+k*T, x(k,:), u(:,k),N,mpciter);

 end

90

 cost = cost+terminalcosts(t0+(N+1)*T, x(N+1,:));

end

function [c,ceq] = nonlinearconstraints(constraints, ...

 terminalconstraints, system, ...

avconstraint,system3,system4,system5,constraintstotales,constraintstotales2,P

0,A0,mpciter,Nero0,Const0,Const20,factor0,YYZ0,Sub0,N, T, t0, x0, u,

atol_ode_sim, rtol_ode_sim, type)

 x = zeros(N+1, length(x0));

 x=

computeOpenloopSolution(system,system3,system4,system5,mpciter,Nero0,Const0,C

onst20,factor0,YYZ0,Sub0, N, T, t0, x0, u, ...

 atol_ode_sim, rtol_ode_sim, type);

 if (Const20<0)

 if (Nero0<=0.000001)

 if (Const0>0)||(factor0==10)||(Sub0>0)

 S=0;

 else

 S=1;

 end

 else

 S=1;

 end

 else

 S=1;

 end

 c = [];

 ceq = [];

 for k=1:N

 [cnew, ceqnew] = constraints(t0,x(k,:),S*u(1:2,k),mpciter);

 c = [c cnew];

91

 ceq = [ceq ceqnew];

 end

 [cnew1 ceqnew1] = avconstraint(t0,x,u,N,T,mpciter);

 c = [c cnew1];

 ceq = [ceq ceqnew1];

 if (mpciter==1)

 [cnew2 ceqnew2] = constraintstotales(t0,x,u,N,T,S);

 c = [c cnew2];

 ceq = [ceq ceqnew2];

 else

 [cnew2 ceqnew2] =

constraintstotales2(t0,x,u,N,P0,A0,T,S,Nero0,Const20,Const0,Sub0);

 c = [c cnew2];

 ceq = [ceq ceqnew2];

 end

 [cnew3, ceqnew3] = terminalconstraints(t0+k*T,x,u,N,mpciter);

 c11 = [c cnew3];

 ceq11 = [ceq ceqnew3];

 c1 = real(c11);

 ceq1 = real (ceq11);

 c = c1;

 ceq = ceq1;

end

function x=

computeOpenloopSolution(system,system3,system4,system5,mpciter,Nero0,Const0,C

onst20,factor0,YYZ0,Sub0, N, T, t0, x0, u, ...

 atol_ode_sim, rtol_ode_sim, type)

 global JJJ

 if (mpciter>1)

 if (Const20==-2)&&(JJJ==mpciter)

 Value=abs(Const20);

 else

 Value=Const20;

 end

 else

 Value=Const20;

92

 end

 x(1,:) = system4(t0, x0, u, T, mpciter,Value,YYZ0);

 if (Const20<0)

 if (Nero0<=0.000001)

 if (Const0>0)||(factor0==10)||(Sub0>0)

 S=0;

 else

 S=1;

 end

 else

 S=1;

 end

 else

 S=1;

 end

 for k=1:N

 x(k+1,:) = dynamic(system,system3,system5, T, t0, x(k,:), S*u(1:2,k),

...

 atol_ode_sim, rtol_ode_sim, type);

 end

end

93

function [x, t_intermediate, x_intermediate] =

dynamic(system,system3,system5, T, t0, ...

 x0, u, atol_ode, rtol_ode, type)

 if (strcmp(type, 'difference equation'))

 x = system(t0, x0, u, T);

 x_intermediate = [x0; x];

 t_intermediate = [t0, t0+T];

 elseif (strcmp(type, 'differential equation'))

 xs1=system5(x0(1,5:8),u);

 options = odeset('AbsTol', atol_ode, 'RelTol', rtol_ode);

 [t_intermediate,x_intermediate] = ode45(system, ...

 [t0, t0+T], x0, options, u);

 x2 = x_intermediate(size(x_intermediate,1),:);

 x1=system3(t0, x0, u, T);

 x = [x2(1,1:4),xs1,x1];

 end

end

function [x, t_intermediate, x_intermediate] = dynamic2(proceso2, T, t0, ...

 x0, u, atol_ode, rtol_ode)

 options = odeset('AbsTol', atol_ode, 'RelTol', rtol_ode);

 [t_intermediate,x_intermediate] = ode45(proceso2, ...

 [t0, t0+T], x0, options, u);

 x2 = x_intermediate(size(x_intermediate,1),:);

 x = x2;

end

Steady State Model and generation of deviation variables.

function y = inicializa(t, x0, u, T,mpciter,Const20,YYZ0)

94

 global s1

 US = [u(3,1),u(4,1)];

 if (YYZ0*0<0.00018) % Check for parameter adaptation

 s1=x0(1,11);

 else

 s1=u(15,1);

 end

 function y = valores(x0, u)

 options = optimset('MaxIter',600,'Display','off','Jacobian','on');

 function [H,J] = steady(z)

 s2=0.4;

 H = [u(1)-z(1)-s1*z(1)*z(2);

 u(2)-z(2)-s1*z(1)*z(2)-s2*z(2)*z(3);

 -z(3)+s1*z(1)*z(2)-s2*z(2)*z(3);

 -z(4)+s2*z(2)*z(3)];

 J = [-s1*z(2)-1, -s1*z(1), 0, 0;

 -s1*z(2), -1-s1*z(1)-s2*z(3), -s2*z(2), 0;

 s1*z(2), s1*z(1)-s2*z(3),-1-s2*z(2), 0;

 0, s2*z(3),s2*z(2), -1];

 end

 X = fsolve(@steady,[x0(1,5);x0(1,6);x0(1,7);x0(1,8)],options);

 y = X';

 end

95

 if (Const20<0)

 L = valores(x0, US);

 y5=L(1);

 y6=L(2);

 y7=L(3);

 y8=L(4);

 y9=US(1);

 y10=US(2);

 y11=s1;

 xsprocess = [y5,y6,y7,y8];

 xprocess = x0(1,1:4);

 dev = xprocess-xsprocess;

 y = [dev,y5,y6,y7,y8,y9,y10,y11];

 else

 y11=s1;

 xsprocess = x0(1,5:8);

 xprocess = x0(1,1:4);

 dev = xprocess-xsprocess;

 y = [dev,x0(1,5:8),x0(1,9:10),y11];

 end

end

96

Dynamic deviation model

function y = contsystem_ct(t, x, u, T)

 s1=x(11);

 s2=0.4;

 a = x(1:4);

 ud = [u(1)*(a(1)+a(2)+a(3)+a(4));u(2)*(a(1)+a(2)+a(3)+a(4))];

 %SS System

 dyy = zeros(7,1);

 y2= dyy;

 %Deviation System

 dy = zeros(4,1);

 dy(1) = (ud(1)+x(9))-(x(1)+x(5))-s1*(x(1)+x(5))*(x(2)+x(6));

 dy(2) = (ud(2)+x(10))-(x(2)+x(6))-s1*(x(1)+x(5))*(x(2)+x(6))-

s2*(x(2)+x(6))*(x(3)+x(7));

 dy(3) = -(x(3)+x(7))+s1*(x(1)+x(5))*(x(2)+x(6))-

s2*(x(2)+x(6))*(x(3)+x(7));

 dy(4) = -(x(4)+x(8))+s2*(x(2)+x(6))*(x(3)+x(7));

 y1= [dy(1);dy(2);dy(3);dy(4)];

 yt = [y1;y2];

 y = real(yt);

end

True model when adapting parameters

function y = proceso2(t, x, u, T)

 %Factores de dimensionless mass balance

 s1=1.02;

 s2=0.4;

97

 %System

 dy = zeros(4,1);

 dy(1) = u(1)-x(1)-s1*x(1)*x(2);

 dy(2) = u(2)-x(2)-s1*x(1)*x(2)-s2*x(2)*x(3);

 dy(3) = -x(3)+s1*x(1)*x(2)-s2*x(2)*x(3);

 dy(4) = -x(4)+s2*x(2)*x(3);

 y1= [dy(1);dy(2);dy(3);dy(4)];

 y = real(y1);

end

Function that fixes the steady states

function y = valoresxs(x, u)

 y = x;

end

Function that fixes the manipulated inputs at steady state

function y = evaluaciones(t, x, u, T)

 p=x(1,9:11);

 y = p;

end

Upper and lower bound constraints. Here the bounds on the parameter must be set

function [c,ceq] = constraints(t, x, u, mpciter)

 a = x(1:4);

 ud = [u(1)*(a(1)+a(2)+a(3)+a(4));u(2)*(a(1)+a(2)+a(3)+a(4))];

98

 c(1)=x(9)-1;

 c(2)= -1*x(9);

 c(3) = -1*x(10);

 c(4)=x(10)-10;

 c(5)=(ud(1)+x(9))-0.99999999;

 c(6)= -1*(ud(1)+x(9));

 c(7) = -1*(ud(2)+x(10));

 c(8)=(ud(2)+x(10))-10;

 c(9)=x(11)-1.0299;

 c(10)=-x(11)+1;

 ceq = [];

end

Average Constraints

function [c,ceq] = avconstraint(t,x,u,N,T,mpciter)

 c =[];

 ceq = [];

end

Special Constraints at initialization. We applied these constraints since at

initialization it is not necessary to satisfied the set point constraint

function [c,ceq] = constraintstotales(t, x, u,N,T,S)

 alfa = 0.00000000001;

 QA=alfa*(ones(4,1));

 function ZZZ = funcionLya(P01,x,N)

 PP = [P01(1) P01(2) P01(3) P01(4); P01(2) P01(5) P01(6) P01(7); P01(3)

P01(6) P01(8) P01(9); P01(4) P01(7) P01(9) P01(10)];

 for k=1:N

99

 Z(k,1)= (x(k,1:4)*PP)*x(k,1:4)';

 end

 ZZZ=ones(1,N)*Z(:,1);

 end

 Ai=[u(5,1) u(6,1) u(7,1) u(8,1) u(9,1) u(10,1) u(11,1) u(12,1) u(13,1)

u(14,1)];

 Pi=[u(5,1) u(6,1) u(7,1) u(8,1); u(6,1) u(9,1) u(10,1) u(11,1); u(7,1)

u(10,1) u(12,1) u(13,1); u(8,1) u(11,1) u(13,1) u(14,1)];

 Lyk = funcionLya(Ai,x,N);

 con3=-1*(real(eig(Pi)))+QA;

 con1= 0;

 [teta,beta]=evaluacionq(Ai,x,u,T,S,N);

 con2=(-1*beta-Lyk)+alfa;

 c=[con1;con2;con3]';

 ceq = [];

end

function [e,y]=evaluacionq(P01,x,u,T,S,N)

u01=[0.3;0.3;0.3];

options = optimset('Display','notify',...

 'TolFun', 1e-6,...

100

 'MaxFunEvals', 3001,...

 'MaxIter', 4000,...

 'Algorithm', 'sqp',...

 'AlwaysHonorConstraints', 'bounds',...

 'FinDiffType', 'forward',...

 'HessFcn', [],...

 'Hessian', 'bfgs',...

 'HessMult', [],...

 'InitBarrierParam', 0.1,...

 'InitTrustRegionRadius', sqrt(size(u01,1)*size(u01,2)),...

 'MaxProjCGIter', 2*size(u01,1)*size(u01,2),...

 'ObjectiveLimit', -1e20,...

 'ScaleProblem', 'obj-and-constr',...

 'SubproblemAlgorithm', 'cg',...

 'TolProjCG', 1e-2,...

 'TolProjCGAbs', 1e-10);

A=[];b=[];

Aeq=[1,1,1];beq=1;

lb=[0;0;0];ub=[1;1;1];

nonlcon=[];

function h=mifuncion(P01,x,u,T,S,N,U1)

[AclT,Acl1T,Acl2T] = funcionP2(P01,x,u,T,S,N);

ACL = AclT*U1(1)+Acl1T*U1(2)+Acl2T*U1(3);

h=-1*ACL;

end

101

[e,y] = fmincon(@(U1)

mifuncion(P01,x,u,T,S,N,U1),u01,A,b,Aeq,beq,lb,ub,nonlcon,options);

end

function [AclT,Acl1T,Acl2T] = funcionP2(P01,x,u,T,S,N)

 %Definicion de parametros y variables

 s1=x(1,11);

 s2=0.4;

 gama=T;

 %Transient

 %Minimos

 x10 = x(5);

 x20 = x(6);

 x30 = x(7);

 %K1=[u(1) u(1) u(1) u(1);u(2) u(2) u(2) u(2)];

 A = [((-s1*x20-1)*T+1) (-s1*x10)*T (0) (0);(-s1*x20)*T ((-1-s1*x10-

s2*x30)*T+1) (-s2*x20)*T (0);(s1*x20)*T (s1*x10-s2*x30)*T ((-1-s2*x20)*T+1)

(0);(0) (s2*x30)*T (s2*x20)*T (-1*T+1)];

 I1 = 0.01*ones(4,4);

 A1 = A+I1;

 A2 = A-I1;

 B = [1 0;0 1;0 0;0 0];

 PP = [P01(1) P01(2) P01(3) P01(4); P01(2) P01(5) P01(6) P01(7); P01(3)

P01(6) P01(8) P01(9); P01(4) P01(7) P01(9) P01(10)];

 for k=1:N

 Acl(k,1)=

((((A+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)'))'*P

P)*(((A+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)'));

 Acl1(k,1)=

((((A1+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)'))'*

PP)*(((A1+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)')

);

 Acl2(k,1)=

((((A2+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)'))'*

102

PP)*(((A2+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)')

);

 end

 AclT = ones(1,N)*Acl(:,1);

 Acl1T = ones(1,N)*Acl1(:,1);

 Acl2T = ones(1,N)*Acl2(:,1);

end

Special constraints for iter>1. These are the same as constraint at initialization,

however, the set point constraint is considered and a logic memory is introduced to

satisfied feasibility

function [c,ceq] = constraintstotales2(t, x,

u,N,P0,A0,T,S,Nero,Const20,Const,Sub)

 alfa = 0.00000000001;

 QA=alfa*(ones(4,1));

 function ZZZ = funcionLya(P01,x,N)

 PP = [P01(1) P01(2) P01(3) P01(4); P01(2) P01(5) P01(6) P01(7); P01(3)

P01(6) P01(8) P01(9); P01(4) P01(7) P01(9) P01(10)];

 for k=1:N

 Z(k,1)= (x(k,1:4)*PP)*x(k,1:4)';

 end

 ZZZ=ones(1,N)*Z(:,1);

 end

103

 Ai=[u(5,1) u(6,1) u(7,1) u(8,1) u(9,1) u(10,1) u(11,1) u(12,1) u(13,1)

u(14,1)];

 Pi=[u(5,1) u(6,1) u(7,1) u(8,1); u(6,1) u(9,1) u(10,1) u(11,1); u(7,1)

u(10,1) u(12,1) u(13,1); u(8,1) u(11,1) u(13,1) u(14,1)];

 PPi = [P0(1) P0(2) P0(3) P0(4); P0(2) P0(5) P0(6) P0(7); P0(3) P0(6)

P0(8) P0(9); P0(4) P0(7) P0(9) P0(10)];

 if (Const20<0)

 if (Nero<=0.000001)

 if (Const<0)

 if(Sub<0)

 %eig(P)>0

 %Set point = xk'P(k-1)xk-x(k-1)'P(k-1)x(k-1)<0

 %P = xk'P(k)xk-x(k)'P(k-1)x(k)<=0

 %Robust = max(xk,Acl,P(k))-x(k)'P(k)x(k)<0

 con3=-1*(real(eig(Pi)))+QA;

 Lyk = funcionLya(Ai,x,N);

 Lykb = funcionLya(P0,x,N);

 con1= Lyk-Lykb;

 con5=Lykb-A0+alfa;

 [teta,beta]=evaluacionq(Ai,x,u,T,S,N);

 con2=(-1*beta-Lyk)+alfa;

 c=[con1;con2;con5;con3]';

 ceq = [];

 else

 con3=-1*(real(eig(PPi)))+QA;

 Lyk = funcionLya(P0,x,N);

104

 Lykb = funcionLya(P0,x,N);

 con1= Lyk-Lykb;

 con5=-2;

 [teta,beta]=evaluacionq(P0,x,u,T,S,N);

 con2=(-1*beta-Lyk)+alfa;

 c=[con1;con2;con5;con3]';

 ceq = [];

 end

 else

 con3=-1*(real(eig(PPi)))+QA;

 Lyk = funcionLya(P0,x,N);

 Lykb = funcionLya(P0,x,N);

 con1= Lyk-Lykb;

 con5=-2;

 [teta,beta]=evaluacionq(P0,x,u,T,S,N);

 con2=(-1*beta-Lyk)+alfa;

 c=[con1;con2;con5;con3]';

 ceq = [];

 end

 else

105

 con3=-1*(real(eig(PPi)))+QA;

 Lyk = funcionLya(P0,x,N);

 Lykb = funcionLya(P0,x,N);

 con1= Lyk-Lykb;

 con5=-2;

 [teta,beta]=evaluacionq(P0,x,u,T,S,N);

 con2=(-1*beta-Lyk)+alfa;

 c=[con1;con2;con5;con3]';

 ceq = [];

 end

 else

 con3=-1*(real(eig(Pi)))+QA;

 Lyk = funcionLya(Ai,x,N);

 Lykb = funcionLya(P0,x,N);

 con1= Lyk-Lykb;

 con5=-2;

 [teta,beta]=evaluacionq(Ai,x,u,T,S,N);

 con2=(-1*beta-Lyk)+alfa;

 c=[con1;con2;con5;con3]';

106

 ceq = [];

 end

end

function [e,y]=evaluacionq(P01,x,u,T,S,N)

u01=[0.3;0.3;0.3];

options = optimset('Display','notify',...

 'TolFun', 1e-6,...

 'MaxFunEvals', 3001,...

 'MaxIter', 4000,...

 'Algorithm', 'sqp',...

 'AlwaysHonorConstraints', 'bounds',...

 'FinDiffType', 'forward',...

 'HessFcn', [],...

 'Hessian', 'bfgs',...

 'HessMult', [],...

 'InitBarrierParam', 0.1,...

 'InitTrustRegionRadius', sqrt(size(u01,1)*size(u01,2)),...

 'MaxProjCGIter', 2*size(u01,1)*size(u01,2),...

 'ObjectiveLimit', -1e20,...

 'ScaleProblem', 'obj-and-constr',...

 'SubproblemAlgorithm', 'cg',...

 'TolProjCG', 1e-2,...

 'TolProjCGAbs', 1e-10);

A=[];b=[];

Aeq=[1,1,1];beq=1;

lb=[0;0;0];ub=[1;1;1];

nonlcon=[];

107

function h=mifuncion(P01,x,u,T,S,N,U1)

[AclT,Acl1T,Acl2T] = funcionP2(P01,x,u,T,S,N);

ACL = AclT*U1(1)+Acl1T*U1(2)+Acl2T*U1(3);

h=-1*ACL;

end

[e,y] = fmincon(@(U1)

mifuncion(P01,x,u,T,S,N,U1),u01,A,b,Aeq,beq,lb,ub,nonlcon,options);

end

function [AclT,Acl1T,Acl2T] = funcionP2(P01,x,u,T,S,N)

 %Definicion de parametros y variables

 s1=x(1,11);

 s2=0.4;

 gama=T;

 %Transient

 %Minimos

 x10 = x(5);

 x20 = x(6);

 x30 = x(7);

 %K1=[u(1) u(1) u(1) u(1);u(2) u(2) u(2) u(2)];

 A = [((-s1*x20-1)*T+1) (-s1*x10)*T (0) (0);(-s1*x20)*T ((-1-s1*x10-

s2*x30)*T+1) (-s2*x20)*T (0);(s1*x20)*T (s1*x10-s2*x30)*T ((-1-s2*x20)*T+1)

(0);(0) (s2*x30)*T (s2*x20)*T (-1*T+1)];

 I1 = 0.01*ones(4,4);

 A1 = A+I1;

 A2 = A-I1;

 B = [1 0;0 1;0 0;0 0];

108

 PP = [P01(1) P01(2) P01(3) P01(4); P01(2) P01(5) P01(6) P01(7); P01(3)

P01(6) P01(8) P01(9); P01(4) P01(7) P01(9) P01(10)];

 for k=1:N

 Acl(k,1)=

((((A+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)'))'*P

P)*(((A+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)'));

 Acl1(k,1)=

((((A1+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)'))'*

PP)*(((A1+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)')

);

 Acl2(k,1)=

((((A2+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)'))'*

PP)*(((A2+(B*[u(1,k)*gama*S*ones(1,4);u(2,k)*gama*S*ones(1,4)])))*(x(k,1:4)')

);

 end

 AclT = ones(1,N)*Acl(:,1);

 Acl1T = ones(1,N)*Acl1(:,1);

 Acl2T = ones(1,N)*Acl2(:,1);

end

Linear Constraints (Used constraints.mat to set upper and lower bounds)

function [A, b, Aeq, beq, lb, ub] = linearconstraints(t, x, u)

 A = [];

 b = [];

 Aeq = [];

 beq = [];

 ub = [];

 lb = [];

end

109

Terminal Constraints

function [c,ceq] = terminalconstraints(t,x,u,N,mpciter)

 c = [];

 ceq =[];

end

Stage Cost

function cost = runningcosts(t, x, u, N, mpciter)

Q=45;

cost = -(x(3)+Q*x(7));

end

Terminal Cost

function cost = terminalcosts(t, x)

 cost = 0.0;

end

Memory for the controller

function [y,yy] =

evalP(u,N,P0,Nero,Nero0,Const0,Const,Const2,Const20,YZW,factor,Sub,factor0,Su

b0,u0)

 if (Const2==-2)

 yy=Const2;

 elseif (YZW>0)

 yy=abs(Const2);

110

 else

 yy=Const2;

 end

 if (Const2<0)

 if (Nero<=0.000001)

 Delta=(u(5:14,1)'-u0(5:14,1)')*ones(10,1);

 if (Const>0)||(factor==10)||(Delta==0)||(Sub>0)

 y=P0;

 else

 y=u(5:14,1)';

 end

 else

 y=P0;

 end

 else

 y=P0;

 end

end

Computation of Lyapunov

function y = obtencionP(t,x,u,N,Nero0,Pm,Const20,Const0,Sub)

 function ZZZ = funcionLya(P01,x,N)

 PP = [P01(1) P01(2) P01(3) P01(4); P01(2) P01(5) P01(6) P01(7); P01(3)

P01(6) P01(8) P01(9); P01(4) P01(7) P01(9) P01(10)];

 for k=1:N

 Z(k,1)= (x(k,1:4)*PP)*x(k,1:4)';

 end

111

 ZZZ=ones(1,N)*Z(:,1);

 end

 Ai=[u(5,1) u(6,1) u(7,1) u(8,1) u(9,1) u(10,1) u(11,1) u(12,1) u(13,1)

u(14,1)];

 if (Const20<0)

 if (Nero0<=0.000001)

 if (Const0<0)

 if (Sub<0)

 y = funcionLya(Ai,x,N);

 else

 y = funcionLya(Pm,x,N);

 end

 else

 y = funcionLya(Pm,x,N);

 end

 else

 y = funcionLya(Pm,x,N);

 end

 else

 y = funcionLya(Ai,x,N);

 end

end

112

Computation of Ameasure

function A= obtencionA(t,x,u,N,Nero0,Pm,Const20,Const0,Sub,A0)

A=1;

end

