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Abstract

This thesis deals with planar drawings of planar graphs such that each interior face has
a prescribed area.

Our work is divided into two main sections. The first one deals with straight-line drawings
and the second one with orthogonal drawings.

For straight-line drawings, it was known that such drawings exist for all planar graphs
with maximum degree 3. We show here that such drawings exist for all planar partial 3-trees,
i.e., subgraphs of a triangulated planar graph obtained by repeatedly inserting a vertex in
one triangle and connecting it to all vertices of the triangle. Moreover, vertices have rational
coordinates if the face areas are rational, and we can bound the resolution.

For orthogonal drawings, we give an algorithm to draw triconnected planar graphs with
maximum degree 3. This algorithm produces a drawing with at most 8 bends per face and
4 bends per edge, which improves the previous known result of 34 bends per face. Both
vertices and bends have rational coordinates if the face areas are rational.
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Chapter 1

Introduction

1.1 Graph drawing

Graph drawing algorithms are concerned with automatically producing graph drawings that
are easy to read. Graphs can be used to represent objects or components and the rela-
tionships among them, and a graph drawing is intended to be helpful to visualize those
relationships. For example, tools in software engineering use graphs to show relationships
between modules in a large program; tools to design, emulate and troubleshoot networks use
graphs to represent hosts and the interconnections among them.

A planar graph is a graph that can be drawn without crossings. Fáry, Stein and Wagner
[20,37,42] proved independently that every planar graph has a planar drawing such that all
edges are drawn as straight-line segments. This class of graphs is important because both
edge crossings and a high number of bends can make a drawing difficult to understand as we
can see in Figure 1.1. In this thesis, we will only consider planar drawings of planar graphs.
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f

d
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Figure 1.1: (a) A planar straight-line drawing of a graph G. (b) A non planar straight-line
drawing of G. (c) A planar but not straight-line drawing of G.

Sometimes additional constraints are imposed on the drawings of planar graphs. The
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most common one is to have integer coordinates while keeping the area small; it was shown
in 1990 that any n-vertex planar graph has a planar straight-line drawing with integer
coordinates and O(n2) area [13, 36]. Another restriction might be to ask whether all edge
lengths are integral; this exists if the graph is 3-regular [23], but is open in general. Also,
one could try to maximize the smallest angle between two edges incident to the same vertex,
or minimize the aspect ratio of the drawing, which is the ratio of the length of the longest
to the shortest side of the smallest rectangle covering the drawing. The importance of all
these constraints is noticeable when graphs are displayed on a computer screen. See [15] for
the description of a variety of constraints that are commonly studied.

Some constraints conflict with each other. For example if small area is a major concern,
other restrictions such as straight lines can be relaxed by drawing edges as polygonal chains,
where both vertices and edge bends should have integer coordinates. Such drawings are
called polyline drawings. For such drawings the goal is to keep the number of bends small, so
that readability is not sacrificed. A special case of polyline drawings are orthogonal drawings,
where edges are drawn as chains of vertical and horizontal segments. These drawings only
exist if the vertices have at most 4 incident edges. Orthogonal drawings have applications in
circuit and floor layouts, database, entity-relationship and data flow diagrams, and others.
Many authors have worked on obtaining lower bounds on the number of bends necessary to
make orthogonal drawings of planar graphs [2,4,5,29,38]. Rahman, Nishizeki and Naznin [32]
studied conditions for a plane graph with maximum degree 3 to have an orthogonal drawing
without bends. Ungar [40] proved that every plane, cubic cyclically 4-edge-connected graph
has a rectangular representation.

1.2 Planar drawings with fixed face areas

In this thesis, we consider drawings with prescribed face areas, which means that the area
of each interior face of the graph is given and the resulting drawing must satisfy this area
requirement. We will give formal definitions of this in Section 1.4.

Ringel [34] raised the question of whether all planar graphs have straight-line drawings
where all areas are prescribed and showed that such drawings do not exist for all planar
graphs. See also Section 2.6. He also conjectured that they do exist for planar graphs
with maximum degree 3. Thomassen [39] showed that Ringel’s conjecture is true: Every
planar graph with maximum degree three, for any given areas of interior faces, has a planar
straight-line drawing such that the areas are respected.

Thomassen’s work is the main motivation for our work. We asked whether the same
kind of drawing is also possible while having rational coordinates, assuming all face areas
are rationals.

Conjecture 1 Every planar graph with maximum degree 3, for any given rational areas of
interior faces, has a planar straight-line drawing such that the areas are respected and the
vertex coordinates are rational.
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This main question remains open, but we provide some partial results towards it in this
thesis.

Thomassen’s proof does not yield rational coordinates. His proof works by often con-
tracting edges; he does not explain in detail how to “undo” such contractions in the final
drawing without changing face areas. It is even less clear why rational coordinates could
be obtained. Another obstacle is that even with contracted edges, the coordinates of some
vertices are not rationals. See Section 2.6 for more details.

Our results

In Chapter 2, we will show that at least part of Thomassens’s proof does yield rational
coordinates. One of his main ingredients is his Lemma 4.1, which yields drawings for a
subclass of graphs. We studied this subclass and realized that it is a subset of planar partial
3-trees (details will be given in Section 2.5.) Hence we studied how to draw planar partial
3-trees.

We show that every planar partial 3-tree, for any given set of areas for interior faces,
admits a planar straight-line drawing that respects the face areas. It is quite easy to show that
such drawings exist; our main contribution is that the coordinates are rational (presuming
the face areas are). Furthermore, we can bound the resolution in terms of the number of
vertices (albeit not polynomially). The time to find such a drawing is O(n).

1.3 Cartograms

Ringel and Thomassen studied drawings with given interior face areas out of graph theoretic
interest. However, such drawings are actually of high interest in the application area of
cartograms, where faces (i.e., countries in a map) should be proportional to some property
of the country, such as population, number of cases of a certain disease, amount of tons
of carbon emissions, Internet users, etc. Cartograms are a useful tool to visualize such
properties efficiently. Cartograms can also be used in combination with other tools to show
two different properties. For example, one could use a cartogram where the area of each
region corresponds to population, and where different tones of colors correspond to the
number of cases of a disease [22]. This combination makes sense because the number of
cases of a disease will probably be higher in more populated areas. Figures 1.2 and 1.3 are
examples of cartograms that show the number of Internet users in 1990 and 2002.

There are a number of qualities to determine whether a cartogram is good. Two major
ones are to preserve the correct adjacencies and to draw the correct areas.

Cartograms have rarely been done with straight-line drawings, but they sometimes use
orthogonal drawings. Orthogonal drawings with small number of edges have the advantage
that their area can be easily estimated by visual inspection. Figure 1.4 shows an orthogonal
cartogram that show two variables at the same time, the area of each state represents its
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Figure 1.2: Internet users in 1990. c©Copyright 2006 SASI Group (University of Sheffield)
and Mark Newman (University of Michigan).

Figure 1.3: Internet users in 2002. c©Copyright 2006 SASI Group (University of Sheffield)
and Mark Newman (University of Michigan).

number of electoral votes and the color represents the candidate who was more likely to win
in each state.

Raisz introduced rectangular cartograms [33], which are rectangular drawings, i.e., every
face (including the outerface) is a rectangle, with prescribed areas for interior faces. Not
every graph admits a rectangular cartogram. Figure 1.5 shows an example where, in order to
obtain the correct areas, some adjacencies would need to be changed. Even if face areas are
ignored, not every plane triangulated graph admits a rectangular drawing. However, some
classes of graphs do. Kant and He [27] and Ungar [40] proved independently that graphs with
a 4-connected triangulated dual have a rectangular drawing. There are several ways to relax
the requirements of rectangular cartograms, which include accepting error on the adjacencies
or on the areas or allow more bends per face. In 2004, van Kreveld and Speckmann gave
an algorithm to draw rectangular cartograms, where there can be a small error both on the

4



Figure 1.4: Cartogram of the projected 2008 Electoral Vote for US President (based on
popular vote) with each square representing one electoral vote. c©Creative Commons.

adjacencies and on the areas [41]. In 2005, de Berg, Mumford, and Speckmann proved that
any triconnected planar graph with maximum degree 3 and prescribed face areas can be
drawn orthogonally with at most 60 bends per face [11]. The next year, the same authors
improved their approach to make it easier to implement in polynomial time and included
heuristics that reduce the number of bends in some cases [12]. In 2007, Kawaguchi and
Nagamochi took the bound of 60 bends per face down to 34 [28]. In 2009, Rahman, Miura
and Nishizeki, gave an algorithm to draw a special class of graphs called good slicing graphs
with at most 8 bends per face [31]. Eppstein, Mumford, Speckmann and Verbeek found a
necessary and sufficient condition for a rectangular layout (a partition of a rectangle into
finitely many interior-disjoint rectangles) to be drawn with prescribed interior rectangle areas
for any given areas [19].

1

110

10

Figure 1.5: Example of a graph that doest not admit a rectangular cartogram.

Our results

In Chapter 3 we improve the work by de Berg, Mumford, and Speckmann and Kawaguchi
and Nagamochi. They showed that any cartogram with maximum degree 3 has an orthogonal
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drawing with at most 60 and 34 bends per face, respectively. We prove that the number of
bends per face can in fact be reduced to 8. We also improve the work done by Rahman,
Miura and Nishizeki, since they drew cartograms with at most 8 bends per face, but for a
smaller class of graphs. We can also analyze other parameters of the drawing: every edge has
at most 4 bends, and the coordinates can be made rational (albeit not polynomial.) Such
drawings can be found in O(n log n) time.

Our approach is substantially different from the one in [11]. They obtained drawings by
modifying the graph until it has a rectangular cartogram, and then “fixing up” adjacencies
by adding thin connectors where needed. Our approach works throughout with the original
graph and produces a drawing directly. We find this a more natural approach, and it also
eases bounding the number of bends. Our algorithm is based on using Kant’s canonical
ordering [25], a useful tool for many graph drawing algorithms. However, it does not use the
ordering directly, but instead uses it to split the graph“vertically” into two smaller graphs
(or one graph and a face); this decomposition to our knowledge was not known before and
may be of independent interest in the graph drawing community.

In the last chapter we conclude and give suggestions for future work.

1.4 Definitions

The following are general definitions in graph theory and will be helpful throughout this
thesis.

A graph G = (V,E) consists of a set V of n vertices and a set E of m edges, where an
edge is an unordered pair of vertices.

Two vertices u and v connected by an edge e are adjacent to each other, and incident to
e. The neighbors of v are its adjacent vertices. The degree of v is the number of its neighbors
and is denoted by deg(v).

A loop is an edge that connects a vertex to itself. A graph has multiple edges if there is
more than one edge between the same pair of vertices. A graph is simple if it has no loops
or multiple edges. In this thesis, all graphs will be assumed to be simple.

A graph is regular if the degree of all its vertices is the same. In particular it is called
3-regular or cubic if the degree of all its vertices is three.

A graph G′ = (V ′, E ′) is a subgraph of G if V ′ and E ′ are subsets of V and E, respectively,
and E ′ ⊆ V ′×V ′. An induced subgraph G′ of G contains all the edges in E connecting pairs
of vertices in V ′.

A graph is complete if any two vertices in V are adjacent. A complete graph with n
vertices is denoted by Kn. In particular, the complete graph with four vertices is K4.

A graph is directed (sometimes also called oriented) if the edges are ordered pairs of
vertices. The directed edge (u, v) is an outgoing edge of u and an incoming edge of v and
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it is drawn as an arrow from u to v. The indegree (outdegree) of a vertex is the number
of its incoming (outgoing) edges. A partially oriented graph has some directed, and some
undirected edges.

A path in a graph G is a sequence (v1, v2, ..., vh) of distinct vertices of G, such that
(vi, vi+1) ∈ E for 1 ≤ i ≤ h − 1. A path is a cycle if (vh, v1) ∈ E. A directed path in a
directed or partially oriented graph is a sequence (v1, v2, ..., vh) of distinct vertices of G, such
that (vi, vi+1) is a directed edge. For a directed path, the vertices v1 and vh are called source
and sink, respectively. A directed path is a directed cycle if (vh, v1) is a directed edge. A
directed graph is acyclic if it has no directed cycles.

In this thesis, a given graph will always assumed to be undirected, but we will sometimes
impose a direction onto some of the edges.

For this thesis, a drawing of a graph is an assignment of vertices to points and edges to
curves in the 2D Euclidean plane. A drawing is planar if the curves of edges are disjoint
except at the endpoints. A graph is planar if it has a planar drawing. In this thesis, we only
study planar drawings of planar graphs, so assume for the remaining definitions that G is
a planar simple undirected graph. A planar drawing of G splits the plane into connected
pieces; the unbounded piece is called the outerface, all other pieces are called interior faces.
Two faces are adjacent if they share an edge.

A combinatorial embedding of a graph is a clockwise ordering of edges around each vertex
and choice of the outerface.

An undirected graph is connected if there is a path between each pair of vertices in V . A
vertex is a cut-vertex if removing it and its adjacent edges makes G disconnected. A graph
is biconnected if it has no cut-vertex. A cut-pair is a pair of vertices whose removal makes G
disconnected. A graph is triconnected if it has no cut-pair. A triconnected graph has a single
combinatorial embedding [43]. We assume that one combinatorial embedding (including the
choice of the outerface) has been fixed for all graphs in this thesis.

a

(a)

d

a

c

b

(b) (c)

Figure 1.6: (a) A connected graph, where a is a cut-vertex. (b) A biconnected graph where
(a, c), (b, c) and (b, d) are cut-pairs. (c) A triconnected graph.

A planar graph is triangulated if it is not possible to add any edge without making the
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graph non-planar. Triangulated graphs are triconnected and have 2n − 4 faces, which are
all triangles, including the outerface. If the outerface is not a triangle, the graph is called a
near-triangulation.

A drawing such that each edge is represented by a polygonal chain is a polyline drawing.
A place where an edge switches direction is called a bend. A polyline drawing is a grid
drawing if the vertices and the bends of the edges have integer coordinates. The width and
the height of such a drawing are important because they determine the resolution in a display
on a computer screen. A drawing that has vertices and bends with rational coordinates can
be scaled by the least common denominator to obtain a grid drawing.

There are two common special cases of polyline drawings: straight-line and orthogonal
drawings.

A straight-line drawing of G is a drawing of G where edges are straight-line segments. As
always, we demand that this drawing is planar, i.e., edges are interior-disjoint.

In an orthogonal drawing of G, edges are paths of horizontal and vertical segments.
Since vertices are represented by points, the maximum possible degree of a vertex is four.
When making orthogonal drawings, it is important to keep the number of bends small, so
that the drawings can be understood easily. See Figure 1.7 for an example of a straight-line
drawing and two orthogonal drawings that illustrate how a smaller number of bends improves
readability.

d

a

c

b

(a)

d

a

cb

(b)

b

c

a

d

(c)

Figure 1.7: (a) A planar straight-line drawing of K4. (b) A planar orthogonal drawing of
K4. (c) A planar orthogonal drawing of K4 with many bends.

In this thesis we will study both straight-line and orthogonal drawings with an additional
constraint: the areas of the interior faces of G are given.

Let A be a function that assigns non-negative1 rationals to interior faces of G (irrational
face areas could be allowed, but would force irrational coordinates, so we will assume rational
face areas throughout.) We say that a planar drawing of G respects the given face areas if
every interior face f of G is drawn with area c ·A(f) for a constant c. A drawing of a graph

1Normally areas have to be positive, since otherwise edges must overlap. There will be one small exception
to this in Section 2.6.
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that respects given face areas is invariant under scaling. Thus, any value of the constant is
acceptable, as long as it is the same for all faces. If A ≡ 1, then the drawing is called an
equifacial drawing.
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Chapter 2

Drawing planar partial 3-trees with
given face areas

In this chapter, we consider the problem of creating straight-line drawings of graphs with
prescribed interior face areas. It was shown by Ringel [34] that such drawings do not exist
for all planar graphs, and by Thomassen [39] that they do exist for cubic planar graphs. Our
focus is on another class of graphs: planar partial 3-trees. Thomassen proved in his Lemma
4.1, that a subclass of partial 3-tress can be drawn with straight-lines. We show here that
every planar partial 3-tree has a straight-line drawing that respects given interior face areas.
If the given areas are rational, the algorithm leads to rational coordinates for the vertices.
Furthermore, we give bounds on the size of the grid. Most of the results in this chapter were
presented at Graph Drawing 2009 [3]. We will start by defining planar partial 3-trees.

2.1 Planar partial 3-trees

A graph G is a k-tree if it has an elimination order, i.e., a vertex order v1, . . . , vn such that
for i > k vertex vi has exactly k predecessors, i.e., earlier neighbours, and they form a clique.

A partial k-tree is a subgraph of a k-tree. Partial k-trees are the same as graphs of
treewidth at most k (which we will not define precisely here); such graphs have received
huge attention in the last few years due to the ability to solve many NP-hard problems
in polynomial time on graphs of constant treewidth [1, 6]. Some of these problems include
Independent Set, Hamiltonian Circuits, Coloring and TSP. It is known how to determine
whether a graph is a partial 3-tree in linear time [7, 35].

Let G be a triangulated graph built up as follows: Start with a triangle v1, v2, v3. For
i > 3, to add vertex vi, pick an interior face f of the graph built so far, and make vi adjacent
to all its vertices. Since f is necessarily a triangle, vi then has three predecessors and this
gives a planar 3-tree. One can show (mentioned for example in [24]) that all planar 3-trees
can be built this way. See Figure 2.1 for an example of this construction.

10



Figure 2.1: A planar 3-tree can be built up by picking an interior face and subdividing it
into three triangles by inserting a new vertex in it.

A planar partial 3-tree is a graph G′ that is planar and is the subgraph of a 3-tree G (see
Figure 2.2.)

Figure 2.2: A planar partial 3-tree can be obtained from a planar 3-tree by deleting edges.

Planar partial 3-trees include, among others, outerplanar graphs (i.e., planar graphs
where all vertices lie on the outerface), series-parallel graphs (graphs with a selected source
and sink that can be obtained by joining two series-parallel graphs in series, by merging the
sink of one graph to the source of the other, or in parallel, by merging the two sources and
the two sinks together), Halin graphs [8] (graphs that can be obtained from a tree with no
vertices of degree two, by connecting all the leaves with a cycle) and IO-graphs [18] (graphs
that are either outerplanar or removing some independent set of its interior vertices leaves
a 2-connected outerplanar graph.) See also Figure 2.3.

2.2 Drawing planar partial 3-trees

In this section, we show that every planar partial 3-tree can be drawn with given interior
face areas. Since “drawing with prescribed interior face areas” is a property that is closed
under taking subgraphs (see also Lemma 3), we mostly focus on drawing planar 3-trees. A
vital ingredient is how to draw K4 by placing one point inside a triangle.

11



(a) (b) (c) (d)

Figure 2.3: (a) An outerplanar graph. (b) A series-parallel graph. (c) A Halin graph. (d)
An IO-graph.

Lemma 1 Let T be a triangle with area a and vertices v0, v1, v2 in counterclockwise order.
For any non-negative values a0 + a1 + a2 = a, there exists a unique point v∗ inside T such
that the triangle {vi+1, vi−1, v

∗} has area ai, for i = 0, 1, 2 and addition modulo 3. (See also
Figure 2.4.) Moreover, if a0, a1, a2 are rational and v0, v1, v2 have rational coordinates, then
v∗ has rational coordinates.

v1

v0

v∗

a0
a1

a2

v2

Figure 2.4: It is possible to draw K4 with prescribed interior face areas.

Proof: The area of a triangle 4pqr, with p, q, r in counterclockwise order can be
calculated via determinants as follows:

2 · area(4pqr) = det

∣∣∣∣∣∣
p.x p.y 1
q.x q.y 1
r.x r.y 1

∣∣∣∣∣∣
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This formula is called the signed area formula because the determinant is positive if the
vertices are counterclockwise around the triangle and negative otherwise.

Let (x0, y0), (x1, y1), (x2, y2) be the coordinates of v0, v1, v2, respectively, and use (x∗, y∗)
to denote the (unknown) coordinates of v∗. The area ai of the triangle {vi+1, vi−1, v

∗} must
satisfy (for i = 0, 1, 2 and addition modulo 3):

2 · ai =

∣∣∣∣∣∣
xi+1 yi+1 1
xi−1 yi−1 1
x∗ y∗ 1

∣∣∣∣∣∣
= (xi−1 · y∗ − x∗ · yi−1)− (xi−1 · yi+1 − xi+1 · yi−1) + (x∗ · yi+1 − xi+1 · y∗)
= (xi+1 − x∗) · (yi−1 − y∗)− (xi−1 − x∗) · (yi+1 − y∗).

Multiplying by (xi − x∗) we obtain:

2 · ai · (xi − x∗) = (xi − x∗) · (xi+1 − x∗) · (yi−1 − y∗)− (xi − x∗) · (xi−1 − x∗) · (yi+1 − y∗).

Adding for i = 0, 1, 2 yields:

2∑
i=0

2 · ai · (xi − x∗) = (x0 − x∗) · (x1 − x∗) · (y2 − y∗)− (x0 − x∗) · (x2 − x∗) · (y1 − y∗)

+ (x1 − x∗) · (x2 − x∗) · (y0 − y∗)− (x1 − x∗) · (x0 − x∗) · (y2 − y∗)
+ (x2 − x∗) · (x0 − x∗) · (y1 − y∗)− (x2 − x∗) · (x1 − x∗) · (y0 − y∗)

=
2∑

i=0

(yi − y∗) · [(xi+1 − x∗) · (xi−1 − x∗)− (xi−1 − x∗) · (xi+1 − x∗)]

= 0.

Therefore,

2∑
i=0

2 · ai · xi =
2∑

i=0

2 · ai · x∗,

which yields the following value for x∗:

x∗ =
a0 · x0 + a1 · x1 + a2 · x2

a0 + a1 + a2
. (2.1)

Similarly for y∗, we obtain:

y∗ =
a0 · y0 + a1 · y1 + a2 · y2

a0 + a1 + a2
. (2.2)
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Since ai is non-negative, the signed-area formula guarantees that v∗ lies to the left of the
directed segments v0v1, v1v2, and v2v0, and hence inside T .

These equations show immediately that if if xi, yi, ai for i = 0, 1, 2 are rational, x∗ and
y∗ are also rational1. 2

Recall that any planar 3-tree G can be built up by repeatedly picking an interior face
f and subdividing it into three triangles by inserting a new vertex in f . In the following
lemma, we will construct a drawing of a planar 3-tree with prescribed interior face areas, by
applying Lemma 1 recursively to place each of the vertices of G in its correct position inside
f . Then, in Lemma 3, we will show how to add and delete some edges appropriately, so that
the statement is also true for partial planar 3-trees.

Lemma 2 Every planar 3-tree can be drawn respecting prescribed interior face areas such
that all coordinates are rational.

Proof: Assume v1, . . . , vn is the vertex-order that defined the planar 3-tree G, where v1, v2
and v3 are vertices on the outerface. We proceed by induction on n. The base case is
n = 3, where this is obvious: place v1, v2, v3 in a triangle of desired area (and with rational
coordinates since the area is rational.)

If n ≥ 4, then consider the K4 formed by vn and its neighbours, vh, vi and vj. Let
f1, f2, f3 be the faces incident to vn. In G′ = G− vn, the neighbours of vn form a triangle T
that is an interior face (it consists of the union of faces f1, f2, f3.)

Define an area-function A′ for graph G′ as follows: For any interior face f in G′, A′(f) =
A(f) if f was a face in G and A′(f) = A(f1) + A(f2) + A(f3) if f = T .

Observe that G′ is also a partial 3-tree, since we can define it with the induced order that
defined G: v1, . . . , vn−1. Thus, we can draw G− vn recursively, requiring area A′(f) for each
interior face in G′, obtaining rational coordinates for vh, vi and vj.

Then, by Lemma 1, vn can be added inside T with rational coordinates, so that the area
of f1, f2 and f3 is correct. See also Figure 2.5. 2

Since the equation for x∗ and y∗ in Lemma 1 is unique, the drawing of G in Lemma 2 is
unique (up to a linear transformation.)

Lemma 3 Every planar partial 3-tree can be drawn respecting prescribed interior face areas
such that all coordinates are rational.

1These equations for x∗ and y∗ can also be obtained using the asymmetric barycenter method, by setting
the stiffness of the edges incident to v∗ to the area of the triangle that is not adjacent to them [36]. This
was suggested to us by André Schulz at GD 2009.
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T vj

vh

vi

f1 + f2 + f3

(a)

vn

vi

vh

vjT

(b)

Figure 2.5: (a) G′ (b) G. Since G′ is a planar 3-tree, we can recursively draw it and then
place vn in correct position to obtain the drawing of G.

Proof: It is known that a planar partial 3-tree G′ can be augmented into a 3-tree G by
adding edges. It is not obvious that G can be assumed to be planar (for example, this is
not true if we replace ‘3’ by ‘4’), but one can show that this is indeed true (J. Kratochv́ıl,
private communication; all crucial ingredients for this are in [17].) Thus, to draw a planar
partial 3-tree G′ with prescribed interior face areas, add edges until it is converted into a
planar 3-tree G. Then, apply Lemma 2 to draw G, and finally, remove all extra edges to
obtain the drawing for G′.

It is necessary to assure that the areas of the interior faces of G′ can be respected in such
a drawing. Each time an edge is added, it divides a face fi into two faces f 1

i and f 2
i . Let

ai be the prescribed area for fi, then we choose area a1i for face f 1
i and a2i for face f 2

i , such
that a1i + a2i = ai. Any such assignment is possible; if we use e.g. a1i = a2i = ai

2
, then the face

areas will remain rational. When the extra edge is removed, fi will then have the correct
area. See also Figure 2.6. 2

a a
2

a
2

Figure 2.6: To draw a planar partial 3-tree, convert it into a planar 3-tree, draw it, and then
remove all extra edges.

The results from Lemmas 2 to 3 are summarized in the following theorem:
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Theorem 1 Let G be a planar partial 3-tree and A be an assignment of non-negative ratio-
nals to interior faces of G. Then G has a straight-line drawing such that each interior face
f of G has area A(f) and all coordinates are rationals.

2.3 How small are the coordinates?

Since our drawings have rational coordinates, we are now interested in the size of the required
grid. In this section, we give bounds on the required resolution. This bounds are not
polynomial. However, we provide an example where the coordinates of each vertex are
obtained with this algorithm. In this example, the size of the grid grows exponentially,
which suggests that even if tighter bounds were found, they would still be exponential. We
showed in Lemma 2, that the drawing produced by this algorithm is unique (up to a linear
transformation.) Therefore, the bounds found for this algorithm apply to any algorithm.

We need some notation. Let v1, . . . , vn be the vertex order in which G was constructed
with v1, v2, v3 the outerface. The drawing is the one from Theorem 1. Recall that we can
view the graph G as being obtained from a smaller partial 3-tree by inserting a vertex vj
into the triangle Tj spanned by the three predecessors of vj. Let G[Tj] be the subgraph of
G induced by all vertices on or inside Tj. Let vj0 , vj1 and vj2 be the predecessors of vj. See
Figure 2.7.

Claim 1 G[Tj] has at most n− j + 4 vertices.

Proof: Since Tj was a face in the graph induced by {v1, . . . , vj−1} (see Figure 2.7), none
of the interior vertices of G[Tj] is in {v1, . . . , vj−1}. Thus, all vertices in G[Tj] are vj, vj0 , vj1
and vj2 , in addition to some vertices in {vj+1, . . . , vn} and so, G[Tj] has at most n − j + 4
vertices. 2

Claim 2 G[Tj] has at most 2n− 2j + 3 interior faces.

Proof: G[Tj] is a triangulated graph with nj ≤ n − j + 4 vertices. Then, the number
of interior faces of G[Tj] is 2 · nj − 5 ≤ 2(n− j + 4)− 5 = 2n− 2j + 3. 2

Recall that a drawing of a graph that respects given interior face areas is called equifacial
if all faces have the same area. Since the coordinates of a newly placed vertex depend on
the area of the faces around it, equifacial drawings are easier to analyze. Thus, we will first
study bounds on equifacial drawings and then we will generalize this result to graphs with
arbitrary face areas.

Theorem 2 Any planar 3-tree G has an equifacial straight-line drawing with integer coor-
dinates and width and height at most

∏n
k=1(2k + 1).
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vj0

vj
G[Tj]

vj1

vj2

Figure 2.7: None of the interior vertices of G[Tj] is in {v1, . . . , vj−1}. G[Tj] shaded in the
figure.

Proof: We show that G has an equifacial straight-line drawing with rational coordinates
in [0, 1] with common denominator at most

∏n
k=1(2k+1); the result then follows after scaling.

We show the bound on the denominator only for x-coordinates; y-coordinates are proved
similarly.

We assume that v1, v2, v3 are at the triangle T = {(1, 0), (0, 1), (0, 0)} (this can be enforced
in the base case of Lemma 2.)

Let f be the number of interior faces of G. T has area 1
2

and the drawing is equifacial,
thus the area of each face is 1

2f
. Since G is triangulated, it has f = 2n− 5 interior faces; so

each interior face is drawn with area a = 1
2·(2n−5) = 1

4n−10 .

Let fj be the number of interior faces of G[Tj]. We will bound the denominator in terms
of fj first.

Claim 3 Vertex vi has x-coordinate

xi =
ci∏

4≤j≤i fj
(2.3)

for some integer ci
2.

Proof: The proof is by induction on i. Nothing is to show for i = 1, 2, 3, since xi is
an integer by choice of the points for the outerface triangle. For i ≥ 4, let vi0 , vi1 , vi2 be the
three predecessors of vi.

2We will not compute the exact integer to keep notation simple.
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By induction, Equation (2.3) holds for the predecessors of vi, thus xik (the coordinate of
vik) satisfies

xik =
cik∏

4≤j≤ik fj
(2.4)

for k = 0, 1, 2 and some integer cik .

Expanding both enumerator and denominator yields

xik =
cik∏

4≤j≤ik fj
=
cik · fik+1 · · · · · fi−1∏

4≤j≤i−1 fj
=

c′ik∏
4≤j≤i−1 fj

(2.5)

for some integer c′ik .

Equation (2.1) states that xi =
a0xi0

+a1xi1
+a2xi2

a0+a1+a2
, where a0, a1, a2 are the areas of faces

incident to vi. For k = 0, 1, 2, each ak is the sum of the faces in some subgraph, and therefore
an integer multiple of 1

4n−10 , say ak = bk
4n−10 . Furthermore, a0 + a1 + a2 is exactly the area

of triangle Ti spanned by vi1 , vi2 , vi3 . Note that Ti contains exactly the fi faces in Gi, and
recall that all these faces have area 1

4n−10 , so Ti has area fi
4n−10 .

Hence, as desired,

xi =
a0xi0 + a1xi1 + a2xi2

a0 + a1 + a2
=

∑2
k=0

bk
4n−10

c′ik∏
4≤j≤i−1 fj

fi
4n−10

=
4n− 10

(4n− 10) · (
∏

4≤j≤i−1 fj) · fi
·

2∑
k=0

bk · c′ik =
integer∏
4≤j≤i fj

.

2

Since f4, . . . , fn are integers, by Claim 3 all xi’s have common denominator
∏

4≤j≤n fj.

By Claim 2, fj ≤ (2n− 2j + 3) and substituting k = n− j + 1 we get:

∏
4≤j≤n

fj ≤
∏

4≤j≤n

(2n− 2j + 3) =
n−3∏
k=1

(2k + 1) (2.6)

This proves Theorem 2. 2
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We can obtain similar (but uglier-looking) bounds for arbitrary integer interior face areas,
by replacing ‘fj’ in Claim 3 by ‘the sum of the face areas in G[Tj]’, as shown in the following
theorem.

Theorem 3 Any planar 3-tree G has a straight-line drawing that respects given integer
interior face areas, with integer coordinates and width and height at most An−3

max ·
∏n−3

k=1(2k+1),
where Amax is the largest area of G.

Note that this theorem implies Theorem 2, since when the drawing is equifacial we have
Amax = 1.

Proof:

Claim 4 Vertex vi has x-coordinate

xi =
ci∏

4≤j≤i
∑

f face of G[Tj ]
A(f)

(2.7)

for some integer ci.

Proof: This proof is very similar to the one of Claim 3, and it is by induction on
i. Nothing is to show for i = 1, 2, 3, since xi is an integer by choice of the points for the
outerface triangle. For i ≥ 4, let vi0 , vi1 , vi2 be the three predecessors of vi.

By induction, Equation (2.7) holds for the predecessors of vi, thus xik (the coordinate of
vik) satisfies

xik =
cik∏

4≤j≤ik

∑
f face of G[Tj ]

A(f)
(2.8)

for k = 0, 1, 2 and some integer cik .

Expanding both enumerator and denominator yields

xik =
cik∏

4≤j≤ik

∑
f face of G[Tj ]

A(f)
(2.9)

=
cik ·

∑
f face of G[Tik+1]

A(f) · . . . ·
∑

f face of G[Ti−1]
A(f)∏

4≤j≤i−1
∑

f face of G[Tj ]
A(f)

(2.10)

=
c′ik∏

4≤j≤i−1
∑

f face of G[Tj ]
A(f)

(2.11)

19



for some integer c′ik .

Equation (2.1) states that xi =
a0xi0

+a1xi1
+a2xi2

a0+a1+a2
, where a0, a1, a2 are the areas of faces

incident to vi. For k = 0, 1, 2, each ak is the sum of the faces in some subgraph, and therefore
an integer. Furthermore, a0 +a1 +a2 is exactly the area of triangle Ti spanned by vi1 , vi2 , vi3 .

Hence, as desired,

xi =
a0xi0 + a1xi1 + a2xi2

a0 + a1 + a2
=

∑2
k=0 ak

c′ik∏
4≤j≤i−1

∑
f face of G[Tj ]

A(f)∑
f face of G[Ti]

A(f)

=

∑2
k=0 ak · c′ik∑

f face of G[Ti]
A(f)) ·

∏
4≤j≤i−1

∑
f face of G[Tj ]

A(f)

=
integer∏

4≤j≤i
∑

f face of G[Tj ]
A(f)

2

The sum of the face areas in G[Tj] can be upper bounded as follows:

∑
f face of G[Tj ]

A(f) ≤
∑

(2n− 2j + 3) largest faces f in G

A(f) ≤ (2n− 2j + 3) · Amax

Therefore, the denominator is at most
∏

4≤j≤n((2n− 2j + 3) · Amax).

By setting k = n− j + 1 on the denominator, we get

∏
4≤j≤n

((2n− 2j + 3) · Amax) = An−3
max ·

n−3∏
k=1

(2k + 1)

which proves Theorem 3. 2

We also did experiments to see whether our bounds are tight. We computed (using
Maple) the coordinates in Theorem 2 for the planar 3-tree G, with vertex order v1, . . . , vn
where vj has predecessors vj−1, vj−2, vj−3 for j ≥ 4 (see also Figure 2.8). Since vertices
{vj+1, . . . , vn} are all inside G[Tj], this graph has fj = 2n − 2j + 3 and hence is a good
candidate to obtain the bound in Theorem 2.

Figure 2.9 shows the least common denominator for various values of n, both in G and
in the upper bound. The least common denominators are smaller in G than those from
the upper bound, but are growing in exponential fashion for the first values considered in
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v1

v2

v3

v4

v5

v6

v0

Figure 2.8: A planar 3-tree where vj has predecessors vj−1, vj−2, vj−3 for j ≥ 4.

n LCD in drawing upper bound

10 5.0 · 103 2.0 · 106

50 3.1 · 1034 2.8 · 1075

100 1.0 · 1082 1.7 · 10183

500 1.0 · 10427 2.0 · 101271

1000 2.8 · 10852 4.8 · 102853

101 102 103
10−281

10574

101,429

102,284

n

LCD in drawing
LCD in upper bound

Figure 2.9: Lower and upper bounds on the resolution in the drawing.

our example. However, we have not been able to prove an exponential lower bound for this
graph.

2.4 Time complexity

In this section, we show that our algorithm to draw planar 3-trees with prescribed interior
face areas can be implemented to take O(n) time. Most operations can clearly be done in
O(1) time per vertex. One non-trivial part is how to obtain the values a1, a2, a3 for Equations
2.1 and 2.2; note that these are areas of faces of a whole subgraph, and hence not immediately
available.

The algorithms by Bodlaender [7] and Sanders [35] determine whether a graph has
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treewidth at most k, and if so, return the elimination order of the vertices in the graph.
We can use this elimination order to create a splitting tree: a tree of the triangles that are
faces of a subgraph of G during the algorithm (see Figure 2.10). The tree can be created in
a top-down fashion and this will take O(n) time since each vertex creates 3 children of a leaf
node of the splitting tree.

v1

v2

v4

v5
v6

v7

v3

v7

v6

v5

v4

v2

v5, v3, v6v4, v5, v6v4, v6, v3

v2, v5, v3v4, v2, v5v4, v5, v3v2, v4, v7v1, v2, v7v1, v7, v4

v2, v3, v4v1, v2, v4v1, v4, v3

v1, v2, v3

Figure 2.10: Planar 3-tree G, its elimination order, and its splitting tree.

The leaf nodes of the splitting tree represent single interior faces of G, and their areas
are known. Thus, it is possible to traverse the tree bottom-up to calculate the area of each
of the faces of subgraphs of G that are needed by the algorithm. This will take O(n) time,
since the number of internal nodes of the tree is the same as the number of vertices that
are not on the outerface and to calculate the area of each internal node takes constant time,
because it is the sum of the area of its three children.

Finally, by traversing the splitting tree once more, but top-down, it is possible to obtain
the coordinates of each of the vertices used to split G, using Equations 2.1 and 2.2. Once
more, this operation takes O(n) time, leading to a total running time of O(n).

2.5 Partial 3-trees and Thomassen’s proof

We mentioned in Section 1.2 that the work by Thomassen [39] was the main motivation for
this thesis. In this section we show that the subclass of graphs studied by Thomassen in his
Lemma 4.1 are partial 3-trees. We call these graphs a PF-graph. Thomassen showed that
PF-graphs can be drawn respecting given interior face areas and with some restrictions on
the placement of vertices that we will not review in detail here.

We first describe PF-graphs. Such a graph G = (V,E) has no cut-vertex. Let P be a
path on the outerface of G. Each vertex not on P has degree 2 or 3, and V can be divided
into sets such that V = V0 ∪ V1 ∪ · · · ∪ Vq, V0 = P and, for each i (1 ≤ i ≤ q), each vertex
of Vi has at least two neighbours in V0 ∪ V1 ∪ · · · ∪ Vi−1. Vertices in the same set Vi do not
share any edges. See Figure 2.11a for an example.
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Claim 5 The vertices in V1 ∪ · · · ∪ Vq induce a forest.

Proof: Every vertex in V1 ∪ · · · ∪ Vq has at least two neighbours in V0 ∪ V1 ∪ · · · ∪ Vi−1,
no neighbours in Vi, and degree 2 or 3, thus, every vertex has 0 or 1 edges connecting to
Vi+1 ∪ · · · ∪ Vq. Therefore, it is a forest. 2

We will show that G is a minor of a Halin graph. Recall from Section 2.1 that Halin
graphs are graphs that can be obtained from a tree with no vertices of degree two, by
connecting all the leaves with a cycle C. Halin graphs are partial 3-trees [8].

PF-graphs are very similar to Halin graphs. One can see these graphs as being constructed
by connecting the forest induced by V1 ∪ · · · ∪ Vq to the path P by adding edges.

There are 3 differences between a PF-graph G and a Halin graph G′:

• The leaves in G are connected by a path P . The leaves in G′ are connected by a cycle
C.

• Vertices on P in G can have degree higher than 3, while all vertices on C in G′ have
degree exactly 3.

• Let Gt be the graph obtained from G by deleting the edges belonging to P and G′t
be the graph obtained from G′ by deleting the edges belonging to C. Gt may be
disconnected, while G′t is a tree, and thus connected.

To obtain a Halin graph G′ from any given PF-graph G, make the following changes to
overcome each of the differences above:

1. Add the remaining edge to convert P into a cycle. See Figure 2.11b.

2. For each vertex v on P with degree d higher than 3, substitute v by a path Pv with d− 2
vertices. Connect each of the edges incident to v to a different vertex on Pv according to
the cyclic order around v in the planar embedding. See Figure 2.11c.

3. Connect Gt by adding edges. See Figure 2.11d.

G′ is a Halin graph, and therefore it has treewidth 3 (it is a partial 3-tree.) To obtain
G from G′ the only operations necessary are edge deletions and edge contractions, therefore
G is a minor of G′. Thus, the treewidth of G is at most the treewidth of G′, and G it is a
partial 3-tree.
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V2

V1
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V3

(a) (b)

(c) (d)

Figure 2.11: (a) Example of a PF-graph. Steps to convert a PF-graph into a Halin graph:
(b) Step 1, convert P into a cycle. (c) Step 2, split vertices with degree higher than 3 in P .
(d) Step 4, make Gt connected.

2.6 Beyond 3-trees

A natural question is whether the result from Theorem 1 can be generalized to planar partial
4-trees. In this section, we give some examples of planar partial 4-trees where no realization
with rational coordinates is possible. Also, we give an example that shows that Thomassen’s
proof for cubic graphs does not lead directly to a drawing with rational coordinates.

The first example is the octahedron where all interior face areas are 1 except for two
non-adjacent, non-opposite faces, which have area 3. As shown by Ringel [34], any drawing
that respects these areas must have some complex coordinates. (Ringel’s result was actually
for the graph G1 obtained from the octahedron by subdividing two triangles further; the
resulting graph then has no equifacial drawing.) See Figure 2.12a for an illustration of this

24



graph. Note that both the octahedron and G1 are planar partial 4-trees, so not all partial
4-trees have equifacial drawings.

(a) (b) (c)

Figure 2.12: (a) Ringel’s example of a graph that cannot be realized with prescribed interior
face areas. (b) Graph that can be realized but not with rational coordinates. (c) Graph that
part of Thomassen’s proof is based on. This graph can be realized but not with rational
coordinates.

The second example is the octahedron where all interior face areas are 1 except that
the three faces adjacent to the outerface have area 3. (Alternatively, one could ask for an
equifacial drawing of graphG2 in Figure 2.12b.) Assume, after possible linear transformation,
that the vertices in the outerface are at (0, 0), (0, 13) and (2, 0). Computing the signed area

of all the faces one can show that the vertices not on the outerface are at (10
3

+ 2
√
3

13
, 5 −√

3), (10
3
− 2

√
3

13
, 3) and ( 6

13
, 5 +

√
3). Thus even if a partial 4-tree has an equifacial drawing,

it may not have one with rational coordinates.

The third example is again the octahedron, with three of the interior face areas prescribed
to be 0, which forces some edges to be aligned as shown in Figure 2.12c. If all other interior
faces have area 1/8, and the outerface is at (1, 0), (0, 1), (0, 0), then similar computations
show that some of the coordinates of the other three vertices are (3 ±

√
5)/8. If the edges

that appear dotted in the figure are removed, we obtain a graph that is a crucial ingredient
in Thomassen’s proof. Since this graph cannot be drawn with rational coordinates, then
Thomassen’s proof, as is, does not give rational coordinates.
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Chapter 3

Orthogonal drawings with prescribed
face areas

In this chapter, we give a recursive algorithm to create orthogonal drawings for 3-connected
planar graphs with maximum degree 3 that respect given interior face areas. It was known
already that such drawings always exist (see [11, 28].) However, the bounds on the number
of bends were quite high. Our algorithm approaches the problem in a completely different
way, leading to better bounds on the number of bends per edge and per face. We also show
that the coordinates of all vertices and bends are rational. Throughout the chapter we will
assume our graphs to be 3-connected and the given face areas to be positive integers. In
particular, the area of any face is assumed to be at least one.

3.1 Canonical ordering and dart-shaped graphs

The first tool we use is the canonical ordering. This tool was introduced by Kant [25]; he
proved in his Theorem 1.3 that every triconnected plane graph G has a canonical ordering,
and used it to create both straight-line and orthogonal drawings of planar graphs on the grid.
We will use a slightly different (but equivalent) definition given in the book by Nishizeki and
Rahman [30].

Definition 1 Let G = (V,E) be a triconnected planar graph with an edge (v1, v2) on the
exterior face. Let π = V1, ..., VK be an ordered partition of V , that is, V1 ∪ ... ∪ VK = V and
Vi ∩ Vj = ∅ for i 6= j. Define Gk to be the subgraph of G induced by V1 ∪ ...∪ Vk, and denote
by Ck the outerface of Gk. We say that π is a canonical ordering of G if:

• V1 is the set of all vertices on the interior face containing edge (v1, v2).

• VK is a singleton {vn} where vn lies on the outerface, (v1, vn) ∈ E, and vn 6= v2.
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• Each Ck (k > 1) is a cycle containing (v1, v2).

• Each Gk is biconnected and internally triconnected, that is, removing two interior
vertices of Gk does not disconnect it.

• For each k in 2,..., K − 1, one of the two following conditions holds:

(a) Vk is a singleton {z}, where z belongs to Ck and has at least one neighbor in
G−Gk. See Figure 3.1a.

(b) Vk is a chain {z1, ..., zr}, where each zi has at least one neighbor in G−Gk, and
where z1 and zr each have one neighbor on Ck−1, and these are the only neighbors
of Vk in Gk−1. See Figure 3.1b.

Gk−1

z

v1 v2

(a)

zr

Gk−1

v1 v2

z1

(b)

Figure 3.1: Canonical order construction: (a) Vk is a singleton. (b) Vk is a chain.

A canonical orientation of the edges of G can be obtained from the canonical ordering.
To do this, direct the edges from a vertex in Vi to a vertex in Vj if i < j. Edges between
vertices in the same set remain undirected. Thus, a canonical orientation is a partial edge
orientation of G, i.e., some edges are directed and some are not.

The canonical ordering and its variants have been used frequently for algorithms to draw
planar graphs; see for example [9, 10, 16, 25]. Most of these algorithms proceed by adding
V1, V2, ... in this order to the drawing. Our approach is different (and has, to our knowledge,
not been used before): We split the graph into two pieces based on directed paths in the
canonical orientation and draw both pieces recursively. To explain this, we need a few more
definitions:

In a partial orientation of the edges of G we use the term vertical path for a simple
directed path. Note that if the orientation is a canonical orientation, then a vertical path
connects vertices in Vi1 , Vi2 , ..., Vik with i1 < i2 < · · · < ik; hence the name. Let vs be the
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source and vt the sink of a vertical path P . Every vertex vm on P , except for vs and vt,
has two incident edges, ei and eo, incoming and outgoing respectively, from the path. Any
edge different from ei and eo is said to be to the right of vm, with respect to P , if it appears
after eo and before ei, in clockwise order around vm, and to the left of vm, with respect to
P , otherwise. See Figure 3.2 for an example.

right

P

left

ei

eo

vm

Figure 3.2: Edges to the left and right of a vertex vm, with respect to a path P .

A horizontal path is a simple path where all edges are undirected. In a canonical orien-
tation, all vertices in a horizontal path belong to the same set Vi; hence the name.

We now define a condition on subgraphs that will be crucial for splitting graphs in our
drawing algorithm; see also Figure 3.3.

Definition 2 Let G = (V,E) be a plane graph with a fixed partial edge orientation that has
no directed cycle. G is called dart-shaped with respect to the orientation if:

D1. Every interior face has an undirected edge (u, v) and, walking from u to v in clockwise
order around the face, there are a vertical path in the same direction as the walk, a
horizontal path (possibly with no edges), and a vertical path in the opposite direction
to the walk. See also Figure 3.3b.

D2. The outerface consists of a horizontal path Pb (connecting a vertex cl to a vertex cr),
and two vertical paths, Pl (from cl to a vertex ct), and Pr (from cr to ct). These paths
are interior vertex-disjoint. The vertices cl, cr, ct will be called left, right and top
corner, and the paths Pb, Pl, Pr will be called bottom, left and right path of G. See
Figure 3.3a.

D3. deg(cl) = deg(cr) = deg(ct) = 2. All other vertices have degree at most 3.

D4. Every vertex 6= ct has exactly one outgoing edge.

Notice that D3. and D4. imply that no vertex on Pb has an incoming edge.
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From now on, whenever we speak of a dart-shaped graph G, we will use cl, cr, ct, Pb,
Pl, Pr for its corners and paths without specifically recalling that notation. We now explain
how to obtain a dart-shaped graph from a canonical order if the graph has maximum degree
three.

Pl Pr

Pb
cl cr

ct

G

(a)

vu

(b)

Figure 3.3: (a) Outerface of a dart-shaped graph. (b) An interior face of a dart-shaped
graph. In both figures, hashed edges represent undirected edges.

Lemma 4 Let G be a planar 3-connected 3-regular graph. Let V1 ∪ · · · ∪ VK be a canonical
ordering of G, with V1 = {v1, · · · , vj} and VK = vn. Assume G has been partially oriented
according to this canonical ordering. Let G′ = G − v1, with the induced partial orientation.
Then G′ is dart-shaped and its corners are cl = vj, cr = v2 and ct = vn.

Proof: By construction, the canonical ordering of G is acyclic. We verify that G′

satisfies the conditions that a graph needs to be a dart-shaped graph (see Figure 3.4a for an
example):

D1. Kant gives in [26] the main ingredients to prove that this is true for G, in his Lemmas
3 and 4. Since all the remaining faces in G′ were not modified, this condition holds.

D2. The outerface consists of the horizontal path vj, . . . v3, v2, between vj and v2, and two
vertical paths, one from vj to vn and the other from v2 to vn. The path between vj and
v2 is horizontal because all vertices in it belong to the same set in the canonical order,
V1. Condition (D1) holds for the interior face of G that contains v1, vj and vn, thus the
path from vj to vn is vertical. The path from v2 to vn is vertical from the construction
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v1 v2

v5 v4
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v10
v11

v12v13v14

v15 v16

v17

v18

(a)

vj

vn

v2v1

v3

(b)

Figure 3.4: (a) Canonical orientation of G. (b) G− v1 is dart-shaped.

of the canonical order: for every edge (vk, vl) in the path, if vk was a singleton, it has
indegree two, and therefore (vk, vl) has to be vertical; if vk is the rightmost vertex of a
chain, there will be a vertical edge from Gk−1 to vk, and a horizontal edge to the left
that belongs to the chain, thus (vk, vl) has to be vertical.

D3. G is 3-regular. To obtain G′, we deleted an edge incident to vj, v2 and vn, so in G′ the
corners cl, cr and ct have degree 2 and all other vertices have degree 3.

D4. To see that each every vertex 6= vn has exactly one outgoing edge, we need to look at
both the case when Vk is a singleton and when it is a chain. When it is a singleton z,
it has at least one neighbor in G − Gk, which means that it has at least one outgoing
edge. Since Gk it is 2-connected, z has at least two neighbors in Gk−1, which define two
incoming edges. Also, since G is 3-regular, z cannot have more than two incoming and
one outgoing edge, so the claim holds for a singleton. When Vk is a chain, z1, ..., zr, z1
and zr are the only ones with one incoming edge and one undirected edge, the rest of
them have two undirected edges. Also, all of them have at least one outgoing edge, but,
since G is 3-regular, they actually can only have one. Therefore, the claim holds for G.
Vertex v1 has no incoming edges, thus, deleting it does not remove any outgoing edge
from vertices of G′, thus, the condition also holds for G′.
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3.2 Decomposing a dart-shaped graph

In this section, we show how to split a dart-shaped graph into smaller dart-shaped graphs.
This will allow us to divide recursively the graph into single faces. The partial edge orienta-
tion remains the same after this operation and throughout the chapter, and hence will not
always be mentioned.

Theorem 4 Let G be a dart-shaped graph. Then:

(a) G can be decomposed into two dart-shaped graphs by splitting along a vertical path from
the interior of Pb to the interior of Pl or Pr (see Figure 3.5a), or

(b) G can be decomposed into a dart-shaped graph and a face containing cl and cr by splitting
along a horizontal path from the interior of Pl to the interior of Pr (see Figure 3.5b), or

(c) G has only one interior face.

cl

ct

v

u

Gl Gr

Pb
cr

PrPl

(a)

ct

c′r

crcl

Gt

Gb

Ph

Pl Pr

Pb

c′l

(b)

Figure 3.5: (a) Vertical decomposition of G into two dart-shaped graphs. (b) Horizontal
decomposition of G into a dart shaped graph and a face.

The proof of this theorem is divided into the following two lemmas, the first one addressing
the case when G can be split by a vertical path, and the second one the cases when G can
be split by a horizontal path or is a single face.

Lemma 5 Let G be a dart-shaped graph for which Pb has at least two edges. Then there
exists a vertical path from a vertex u 6= cl, cr in Pb to a vertex v 6= cl, cr, ct in Pl ∪ Pr that
breaks G into two dart-shaped graphs.
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Proof: Pick any vertex u 6= cl, cr in the interior of Pb. Follow the vertical path starting
from the outgoing edge of u. This path is not a cycle because G is a dart-shaped graph
and thus acyclic, and it is unique since every vertex 6= ct has outdegree one. Also, the path
must reach some vertex 6= cl, cr, ct on Pl or Pr since vertices on Pb have indegree 0 and ct
has indegree 2 and its incident edges are one on Pl and the other on Pr. Let v be the first
vertex on Pl ∪Pr that is on this path, and let Pv be the path from u to v. Pv divides G into
two subgraphs, Gl to the left of Pv, and Gr to the right. See Figure 3.6 for an example.

We will prove that Gl satisfies the conditions to be dart-shaped (the proof is quite similar
for Gr):

D1. We neither created nor deleted any face. InG, every interior face satisfies this condition,
therefore, the same will be true for Gl.

D2. There are two options for ct: it may remain in Gl or in Gr. If ct is in Gl, the outerface
of Gl will consist of the horizontal path from cl to u and two vertical paths from cl
to ct and from u to v to ct. If ct is not in Gl, the outerface of Gl will consist of the
horizontal path from cl to u, and two vertical paths from cl to v and from u to v. In
either case the claim holds, since the path from u to v did not contain vertices from
Pb, Pl, Pr in its interior.

D3. Since we did not add any edge, deg(v) ≤ 3 holds for all v ∈ V . Vertex cl is the left
corner of Gl and deg(cl) = 2. Vertex u is the right corner for Gl. Since one incident
edge of u (on Pb) does not belong to Gl, and degG(u) ≤ 3 we have degGl

(u) ≤ 2. We
know it is exactly two because u has one directed edge on Pv and one undirected edge
on Pb that does belong to Gl. Either ct or v is the top corner in Gl. In the first case
clearly deg(ct) = 2. In the second case, one incident edge of v (on Pl) does not belong
to Gl and degG(v) = 3, thus degGl

(v) = 2.

D4. Every vertex 6= ct had exactly one outgoing edge in G. To split G into Gl and Gr, we
did not add any edges, and we only deleted edges adjacent to vertices on Pv. However,
we did not delete any outgoing edge because these are in Pv. So, every vertex except
the top corner in Gl has exactly one outgoing edge. 2

Lemma 6 Let G be a dart-shaped graph that has at least two interior faces. If Pb is an edge,
then there exists c′l 6= cl, ct ∈ Pl, c

′
r 6= cr, ct ∈ Pr and a horizontal path from c′l to c′r that

breaks G into Gb and Gt such that Gb is a single face containing Pb, and Gt is dart-shaped.

Proof: By condition (D2), (cl, cr) is an undirected edge. Consider the interior face
of G adjacent to (cl, cr). By (D1), it consists of the edge (cl, cr), a vertical path P1 ⊆ Pl

(since every vertex has only one outgoing edge) starting at cl and ending at some vertex c′l, a
vertical path P2 ⊆ Pr starting at cr and ending at some vertex c′r, and (maybe) a horizontal

32



Gl

u

v

Pl Pr

cl cr

Gr

ct

(a)

Pl

GrGl

u

v

cl cr

Pr

ct

(b)

Figure 3.6: (a) Case when v is in Pl. (b) Case when v is in Pr.

path Ph from c′l to c′r. We know that (cl, cr) cannot be this horizontal path because cl and
cr are in Pb and hence have no incoming edges. See Figure 3.6b.

If Ph is empty, then c′l = c′r, which (since Pl and Pr are interior vertex-disjoint) implies
c′l = c′r = ct and all of G is one interior face and we are done.

So Ph is non-empty. Let Gt be the subgraph of G that contains Ph and ct. We will now
argue that Gt is dart-shaped:

D1. We neither created nor deleted any face. InG, every interior face satisfies this condition,
therefore, the same will be true for Gt.

D2. The outerface of Gt consists of the horizontal path Ph and two vertical paths, P ′l from
c′l to ct, and P ′r from c′r to ct. We know that the latter two are vertical because they
are subpaths of Pl and Pr, respectively.

D3. We did not add any edges. Therefore the degree of each vertex in Gt is at most its
degree in G, which is ≤ 3. c′l and c′r had degree at most three in G, but the incoming
edge from Pl or Pr, respectively, is not present in Gt, so their degree in Gt is at most
two. We know it is exactly two because each vertex has one outgoing edge on Pl or Pr

and one undirected edge on Ph.

D4. Every vertex 6= ct in G has outdegree one. Since we did not add edges, vertices in Gt

cannot have outdegree > 1. Since Gb is a face in G, no interior vertex of Ph can have
outgoing edges to the face Gb, so they have an outgoing edge in Gt. In the case of c′l
and c′r, their outgoing edges belong to Pl and Pr and hence to Gt as well.

Therefore, all vertices 6= ct have exactly one outgoing edge in Gt. 2
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This finishes the proof of Theorem 4: Every dart-shaped graph can be split into smaller
graphs that are either dart-shaped or faces.

3.3 Overview of the algorithm

Now, we address the problem of how to create an orthogonal drawing of a graph G that
respects given interior face areas. Let’s first take a look at the overview of the algorithm:

1. Compute the canonical order of G and the partial edge orientation.

2. Let G′ = G− v1; G′ is dart-shaped.

3. Split G′ into two dart-shaped graphs G1 and G2.

4. Draw G1 and G2 separately (recursively): We will prescribe the shapes within which they
are drawn.

5. Combine the drawings of G1 and G2 into a single drawing.

We have seen already that steps 1 - 3 can be done. The difficulty of this algorithm lies in
how to combine the drawings of G1 and G2. These two graphs share vertices, so if we draw
G1 first, this forces some of the vertices to be at fixed locations in the drawing of G2. Since
our algorithm works recursively, we hence generally need to allow that the positions of some
vertices on the outerface of the graph to be drawn are fixed. Since some of the vertices are
fixed, it is not possible to split the drawing region into simple regions, such as rectangles.
Figure 3.7 illustrates how having fixed vertices can increase the complexity of the regions in
which G′ is split: if v is fixed on the left and u on the bottom, then no orthogonal drawing
is possible where G2 is drawn in a rectangle.

u

G

G1 G2

(a)

u

v

G2G1

G

(b)

Figure 3.7: The drawing region of G′ is divided into two regions. (a) Without vertices in
fixed position. (b) With vertex v in fixed position.

Therefore, we must allow a drawing region for subgraphs that is more complex than a
rectangle. We will use what we call a T-staircase, which is defined in Section 3.4. In order
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to draw subgraphs in it recursively, we need to break it apart into smaller T-staircases; we
discuss this in Section 3.5. In Section 3.6 we describe exactly where on a T-staircase the
vertices of G′ can be fixed, so that G′ can be drawn with correct face areas inside any T-
staircase. We call this a correct pinning. We combine everything together and explain the
choice of T-staircase in the outermost recursion in Section 3.7. Complete pseudocode will
be given on pages 49 and 50.

3.4 T-staircases

In this section we define the shape called T-staircase. As we will see in the following sections,
it is possible to draw any dart-shaped graph G inside a T-staircase T with area A(G),
respecting the given interior face areas of G.

Definition 3 A T-staircase is an x-monotone orthogonal polygon for which the upper chain
consists of just one edge (the top side) and the lower chain consists of a descending staircase
(the left curve), one horizontal edge (the base) and an ascending staircase (the right curve).
Furthermore, all vertices of the polygon except the two bottommost ones are within distance
1
4t

from the top, where t is the length of the top side. See Figure 3.8 for an example.

The top ε-region is the topmost region inside the T-staircase with height 1
4t

(any value
smaller than 1

3t
would actually work.) The top ε-region has area at most 1

4
since it is

contained in a rectangle of width t and height 1
4t

. All bends on the left and right curves
lie inside the top ε-region. Thus, the segments of these curves outside the top ε-region are
straight vertical lines. The left and right stairs are the portion of the left and right curves
inside the top ε-region and the left and right sides are the segments of the left and right
curves outside the top ε-region.

Let h be the height of the left and right curves. The left/right ε-region is a 1
4h
×h rectangle

adjacent to the left/right side, and inside the T-staircase.

Then, the sum of the area of the top, left and right ε-regions is at most 3
4
. We will later

use the ε-regions to place all necessary bends. Since the area of these regions is smaller than
the area of any face (recall that face areas are integers), it is possible to include any portion
of the ε-regions in any face and still be able to draw it with correct area.

The allowed segment of the top side is the segment starting at the x-coordinate of the
right side of the left ε-region and ending at the x-coordinate of the left side of the right
ε-region. We will later see that vertices on the top side of a T-staircase will only be assigned
to points along the allowed segment.
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Figure 3.8: Example of T-staircase. Figure not to scale: The height of the ε-region is much
smaller compared to the height of the T-staircase. A real example drawn to scale is shown
in Figure 3.17 on page 52.

3.5 Decomposing T-staircases

The idea now is to break any dart-shaped graph G into two pieces (as in Theorem 4), and
place the pieces in a T-staircase T recursively. To do so, we first must argue that T can be
divided into two T-staircases suitably.

Lemma 7 Let T be a T-staircase and A(T ) its area. For any value 1 ≤ A ≤ A(T ) − 1,
there exists a vertical line l from a point v on the allowed segment to a point u on the base
that divides T into two T-staircases Tl and Tr, of area A and A(T )− A, respectively.

Proof: To see that it is possible to choose the x-coordinate X of v and u so that both
sides of l have correct area, imagine first that we choose X to be the x-coordinate of the left
end of the allowed segment, which is the same as the right side of the left ε-region. In this
case, the area to the left of l is all from the ε-regions and therefore smaller than 1, but A is at
least 1. If we now choose X to be the x-coordinate of the right end of the allowed segment,
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the area to the right of l will be smaller than 1, but A(T )−A is at least 1. Therefore, since
the area to each side of l is continuous, by the mean value theorem, the correct value of X
must be between the left and right ε-regions. Both Tl and Tr are clearly T-staircases. See
also Figure 3.9a. 2

Tl

u

v

l

X

Tr

(a)

S2

TrTl

u

v

X

S1

(b)

Figure 3.9: (a) Division of T , by a vertical line, into two T-staircases with prescribed areas, as
in Lemma 7. (b) Division of T , by an orthogonal path, into two T-staircases with prescribed
areas, as in Lemma 8.

Lemma 8 Let T be a T-staircase. For any point v on the interior of a vertical segment or
a reflex corner of the left or right stairs and any value 1 ≤ A ≤ A(T ) − 1, there exists an
orthogonal path l from v to a point u on the base that divides T into two T-staircases Tl and
Tr, of area A and A(T )− A, respectively.

Proof: We will only argue the case when v is on the left stairs since the case when it
is on the right is symmetric.

Connect v and u with a path l as follows: Draw a horizontal line segment S1 from v to
u’s x-coordinate X (we will discuss how to obtain X appropriately soon) and a vertical line
segment S2 from there to the base.

To see that we can select X so that the area on both sides of l is correct, imagine first
that X is the x-coordinate of the left end of the allowed segment, which is the same as the
right side of the left ε-region. In this case the area to the left of l is all contained in the
ε-regions, thus smaller than 1, but A is at least 1. Now, imagine that X is the x-coordinate
of the right end of the allowed segment. In this case the area to the right of l is all contained
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in the ε-regions, thus smaller than 1, but A(T ) − A is at least 1. Therefore, by the mean
value theorem, X must lie somewhere between the left and right ε-regions.

Let Tl be the shape to the left of l and Tr the shape to the right of l. Both Tl and Tr are
clearly T-staircases, since the new bend on l lies in the top ε-region. Since the length of the
top side of Tl and Tr is at most the length of the top side of T , the height of the top ε-region
of Tl and Tr is at least the height of the top ε-region of T . Thus, the stairs of T lie inside
the top ε-regions of Tl and Tr. See Figure 3.9b for an example. 2

Lemma 9 Let T be a T-staircase. Let u be a point on a vertical segment of the left stairs
that is not on a convex corner, or let u be the left endpoint of the allowed segment. Let v be
a point on a vertical segment of the right stairs that is not on a convex corner, or let v be
the right endpoint of the allowed segment. For any value 1 ≤ A ≤ A(T )− 1, there exists an
orthogonal path l with at most 4 bends, from u to v that divides T into a T-staircase T ′ and
a shape B, of area A and A(T )− A, respectively.

Proof: Depending on the position of u and v, the following four cases apply:

i. The point u is on a vertical segment of the left stairs and v is on a vertical segment of
the right stairs of T . We usually cannot draw a straight line from u to v because their
positions are fixed, and the line between them may not be horizontal and/or may not
create an area of appropriate size. Thus, we connect u to v with a path l with four
bends, as follows:

• Draw a horizontal line segment S1 from u to the right until the boundary of the
left ε-region.

• Similarly, draw a horizontal line segment S5 from v to the left until the boundary
of the right ε-region.

• Segments S2[S4] attach to S1[S5] and go downward until some y-coordinate Y (we
will discuss Y soon).

• Segment S3 is a horizontal segment at y-coordinate Y that connects S2 and S4.

See Figure 3.10a for an example.

ii. The point u is on a vertical segment of the left stairs and v is the right endpoint of
the allowed segment of T . We connect u to v similarly as we did in case i. except that
segment S5 does not exist. Instead, S4 connects vt with S3, which is at y-coordinate Y .
See Figure 3.10b for an example.

iii. The point u is on the allowed segment of T and v on a vertical segment of the right
stairs. This case is symmetric to case ii.

iv. Both u and v are points on the allowed segment of the top of T . In this case neither S1

nor S5 exist, and S2/S4 connects u/v with S3, which is at y-coordinate Y .

38



v
u

Y

B

T ′

S3

S4

S5

S1

S2

(a)

Y

u

v

S1

S2 S4

S3

T ′

B

(b)

Figure 3.10: (a) Example of B and T ′ when u is on the left stairs and v on the right stairs.
(b) Example of B and T ′ when u is on the left stairs and v on the top.

In any of the cases above, we can see that T ′ is a T-staircase since the bends, if any, are
in the top ε-region.

To see that we can draw l so that the area of T ′ is correct, imagine we use Y = 0. Then
the region below l is contained inside the ε-regions and has area smaller than 1, but A(T )−A
is at least 1. So Y = 0 is too small. Imagine on the other hand we used Y = min{y(u), y(v)}.
Since u and v are inside the top ε-region, all of l would be inside the top ε-region and the
region above has area smaller than 1, but A is at least 1. Therefore, by the mean value
theorem, there exists some 0 < Y < min{y(u), y(v)} such that the area of the region above
l is exactly A. 2

3.6 Pinning dart-shaped graphs to T-staircases

Now, we will discuss under which constraints it is possible to guarantee that a dart-shaped
graph with prescribed interior face areas can be drawn inside a T-staircase:

Definition 4 Let G be a dart-shaped graph and T be a T-staircase that has area A(G). A
partial assignment of outerface vertices of G to points on the boundary of T is called a correct
pinning of G to T if the following constraints are satisfied:

C1. A vertex v 6= cl, ct on Pl may be assigned a point that lies on the left stairs. If deg(v) =
3, then it has not been assigned to a point that lies on the interior of a horizontal
segment of the stairs or a convex corner. See also Figure 3.11.
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A vertex v 6= cr, ct on Pr may be assigned a point that lies on the right stairs. If
deg(v) = 3, then it has not been assigned to a point that lies on the interior of a
horizontal segment of the stairs or a convex corner.

C2. The order of points assigned to vertices along the boundary of T corresponds to the
order of vertices along the outerface of G. Any unassigned vertex v 6= cl, cr, ct with
deg(v) = 3 could be assigned to a point on the allowed segment or the interior of the
base such that the order is respected.

C3. There are at most 6 bends that are on T , i.e., all except at most 6 corners of T have a
vertex assigned to them. Moreover, the bends can only be at: the endpoints of the top
side, the endpoints of the base, and the bottommost corner of the left and right stairs.
See Figure 3.12 for an example.

C4. If there is a bend at the bottommost corner of the left or right stairs, then there are no
vertices assigned to the vertical segment below it, inside the top ε-region.

We now come to a crucial lemma: Our conditions on pinning were chosen such that the
T-staircase can be split suitably and the subgraph is pinned correctly. Therefore, a recursive
algorithm is possible.

Lemma 10 Let G be a dart-shaped graph with a correct pinning to a T-staircase T .

1. If G can be split by a vertical path into two dart-shaped graphs Gl and Gr (Theorem
4(a)), then T can be split into two T-staircases Tl and Tr with area A(Gl) and A(Gr),
respectively (Lemmas 7 and 8), such that Gl can be pinned correctly to Tl and Gr to Tr.

2. If G can be split by a horizontal path into a dart-shaped graph Gt and a face Gb (Theorem
4(b)), then T can be split into a T-staircase T ′ and a shape B with area A(Gt) and A(Gb),
respectively (Lemma 9), such that Gt can be pinned correctly to T ′.

Proof: We have already indicated all crucial theorems and results. It remains to verify
that the vertices that belong to both subgraphs can be pinned correctly on the path that
divides the T-staircase. This requires a fairly tedious case analysis (depending on where the
endpoints of the dividing path are pinned), as well as going through all the conditions of
a correct pinning. The reader is encouraged to skip these details on first read, and go to
Section 3.7 on page 45, where we put everything together in one algorithm.

1. Assume G can be divided into two dart-shaped graphs Gl and Gr by a vertical path from
a vertex u 6= cl, cr in Pb to a vertex v 6= cl, cr, ct in Pl ∪ Pr (Lemma 5). Assume that
v ∈ Pl; the other case is similar.

Since G is pinned correctly to T , vertex v could have been assigned to points on the
left stairs. If v has not been assigned to a point yet, choose a suitable place for it as
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Figure 3.11: Possible correct positions for v in T . The positions on figures (a), (d) and (e)
are only allowed if deg(v)=2.

follows: traverse the outerface forward and backwards from v, until finding a vertex in
each direction that has already been pinned to T . Then place v anywhere between those
two vertices. If possible, assign v to the allowed segment, since that will reduce the
number of bends, but do not fix its x-coordinate yet. If it is not possible to assign it to
the allowed segment, fix its position on a vertical segment of the stairs.

Then, there are three cases:

i. v has been assigned to the allowed segment of T .

By Lemma 7, it is possible to find a value for the x-coordinate of v in T , such that a
vertical line l from v to the base of T divides it into two T-staircases, Tl to the left
of l with area A(Gl), and Tr to the right of l, with area A(Gr) = A−A(Gl). Fix the
position of all vertices in Pv along l, in order, and inside the top ε-region. See Figure
3.13a.

Now verify that Gl is pinned correctly to Tl (the case of Gr is similar):
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Figure 3.12: Possible bends in a T-staircase if a dart-shaped graph is pinned correctly to it.
Filled points represent corners where a vertex must have been assigned.

C1. All vertices on Pv, except for u have been fixed along l (which is the right curve
for Tl), inside the top ε-region, on a vertical segment. Vertex u has been as-
signed to the base. This is correct since u is the right corner of Tl. Thus, this
condition holds.

C2. All vertices on Pv were assigned in order. Hence the only unpinned vertices
on the outer-face are those that were unpinned in G, and hence they can be
pinned to the allowed segment or the base while maintaining the order around
the outer-face.

C3. No bends were created.

C4. The left stairs are the same as the left stairs of T where no new vertices were
assigned, and the right stairs are a segment of l, which has no bends.

ii. v has been assigned to a point on the left stairs of the T-staircase.
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Figure 3.13: (a) Pinning of vertices to Tl and Tr in case i. (b) Pinning of vertices to Tl and Tr
in case ii if there is no vertex on l with an edge to the right. (c) Pinning of vertices to Tl and
Tr in case ii if there is a vertex on l with an edge to the right. In all three cases circled points
represent possible bends and thick line segments represent possible points where vertices
that were not fixed yet can be pinned.

By condition (C1), v cannot be on the interior of a horizontal segment or on a convex
corner, since deg(v) = 3.

By Lemma 8, it is possible to draw an orthogonal path l, with one bend, from v to
a point on the base that divides T into two T-staircases, Tl to the left of l with area
A(Gl), and Tr to the right of l, with area A(Gr) = A− A(Gl).

Pin some of the vertices on Pv as follows: Traverse the path from v backwards to u
to find a vertex with an edge to the right of Pv (i.e., in Gr but not in Gl). There are
two cases:

(a) There are no vertices between on Pv with an edge to the right.
In this case, all vertices 6= u, v on l remain unassigned. They will later be drawn on
the interior of the horizontal segment of l, but we do not know their x-coordinates
yet.

(b) There is at least one vertex on Pv with an edge to the right.
Let w be the first (closest to v) such vertex. All vertices between v and w on Pv

remain unassigned, w is assigned to the bend on l, and all vertices from w to u
are pinned, in order, on the vertical segment inside the top ε-region. Note that
w has degree 2 in Gl since it has degree 3 in G, two edges in Pv, and one to the
right.

Now, we analyze why Gl/Gr are pinned correctly to Tl/Tr (see Figures 3.13b and
3.13c for an illustration):

C1. All vertices except for u assigned in this step are in the vertical segment of l,
inside the top ε-region. This segment represents the right stairs in Tl and part
of the left stairs in Tr. The only vertex at a convex corner is w in Tl (in case
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(b)), but w has degree 2 in Gl. Vertex u has been assigned to the base. This
is correct since u is the right corner of Tl and the left corner of Tr. Thus, this
condition holds.

C2. All vertices pinned in this step were assigned in order. The only unassigned
vertices were unassigned in G, or are on the path between w and v (if w exists).
The latter can be pinned to the allowed segment for Tl (hence the conditions are
satisfied for Gl), and they have degree 2 in Gr and hence need not satisfy any
condition for Tr.

C3. In Tl, the left stairs are the lower part of left stairs of T , thus all the bends ex-
cept (maybe) for the bottommost one have a vertex assigned. If the bottommost
corner of the left stairs of T is a bend, there are no vertices assigned below it, so
v must be above it. Thus, it is not possible to create a new bend below it. The
right stairs is a segment of l, thus there are no bends.

In Tr, the left stairs are the upper part of the left stairs of T in addition to part of
the orthogonal path l. As discussed for Tl, there is no bend on this part of the left
stairs of T . Thus, the only possible bend is the one of l. The right stairs are the
same as the right stairs of T , thus it can only have a bend at the bottommost step.

C4. In Tl, the left stairs are the lower part of left stairs of T , thus there are no vertices
assigned below the bend (if any). The right stairs have no bends.

In Tr, the left stairs are the upper part of the left stairs of T in addition to part
of the orthogonal path l. There are two options: If there was a vertex w with an
edge to the right, it was fixed at the bend of l, thus there is nothing to prove.
On the other hand, if there was no such vertex, all vertices on l 6= u, v remain
unassigned, so the condition holds for the left stairs. The right stairs are the
same as the right stairs of T , thus there are no vertices assigned below the bend
(if any).

2. Assume G can be divided into a dart-shaped graph Gt and a single face Gb by a horizontal
path Ph from a vertex c′l 6= cl, ct ∈ Pl to a vertex c′r 6= cr, ct ∈ Pr (Lemma 6.)

Since G is pinned correctly to T , c′l may have been pinned on the left stairs and c′r may
have been pinned on the right stairs. If they have not been assigned to a point yet, we
can place them either on the top side or on a vertical segment of the stairs, as long as
they appear in the same order as they do in G, and we pick points for them as explained
in case 1.

There are four cases for the positions of c′l and c′r. For any of them, by Lemma 9 it is
possible to draw an orthogonal path l, from c′l to c′r, that divides T into a T-staircase
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T ′ and a shape B with prescribed face areas. We will not assign any vertices 6= c′l, c
′
r to

positions in T ′.

We will only argue that Gt is pinned correctly to T ′ in the case where c′l is assigned to a
point vl on a vertical segment of the left stairs and c′r to a point vr on a vertical segment
of the right stairs of T ; the other cases are similar (and even easier). See Figure 3.14a for
an example.

C1. Since P ′l and P ′r are subpaths of Pl and Pr, respectively and the top side and stairs of
T ′ are part of the top side and stairs of T , this condition holds for all vertices placed
before this step. The only vertices that might have been fixed in this step are c′l and
c′r. These vertices become the left and right corners in T ′. Thus this condition holds.

C2. Vertices other than c′l and c′r on Ph (if any), have not been assigned any point on T ,
but could be pinned to the bottom edge. All other vertices on the outerface of Gt

were also on the outerface of G and the assignment of points is unchanged, so the
condition holds.

C3. Since (C3) and (C4) hold for T , c′l and c′r can only be below the bottommost corner
if it is not a bend. The left and right stairs of T ′ are part of the left and right stairs
of T in addition to the segments of l, thus they can only have bends at the corners
on the top or along l. The segments of l form the base and the bottommost steps of
both stairs; the bends in l hence are allowed.

C4. Vertices other than c′l and c′r on Ph (if any), had not been assigned any point on T .
Thus, there was no vertex pinned below the bottommost corners, inside the ε-region.

2

3.7 Putting it all together

Finally, we have enough tools to prove that any 3-connected planar graph with maximum
degree three has an orthogonal drawing with given interior face areas and at most 4 (resp.
8) bends per edge (resp. face). We will first show in Lemma 11 how to draw a dart-shaped
graph inside a T-staircase using Lemmas 5 to 10 recursively. By Lemma 4, any 3-connected
planar graph G with maximum degree three is a dart-shaped graph. Then, in Theorem 5 we
will find a T-staircase to which G can be pinned correctly.

Lemma 11 Let G be a dart-shaped graph that is pinned correctly to a T-staircase T of area
A(G). G has a drawing inside T that respects the pinned vertices and has the following
properties:
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c′l
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Figure 3.14: (a) Pinning of vertices to T ′ where c′l is pinned to the left stairs and c′r to the
right stairs. (b) Pinning of vertices to T ′ where c′l is pinned to the left stairs and c′r to the top
side. In both cases, circled points represent possible bends and thick line segments represent
possible points where vertices that were not fixed yet can be pinned.

P1. Every interior face f of T has area A(f).

P2. Every edge has at most 4 bends.

P3. Every face has at most 8 bends.

Proof: We will recursively draw G inside T . We have two cases:

(a) There is at least one vertex u on Pb between cl and cr. In this case, by Lemma 5 we can
divide G into two dart-shaped subgraphs Gl and Gr; by Lemmas 7 and 8 we can divide
T into two T-staircases: Tl with area A(Gl), and Tr with area A(Gr). Furthermore, by
Lemma 10, Gl can be pinned correctly to Tl and Gr to Tr. Then, we can recursively
apply Lemma 11 on both Gr and Gl.

(b) There are no vertices on Pb between cl and cr. In this case, G could have a single interior
face (which then has correct area). Otherwise, by Lemma 6 we can divide G into a face
Gb and a dart-shaped subgraph Gt; by Lemma 9 we can divide T into a region B of
area A(Gb) and a T-staircase T ′ with area A(Gt); and by Lemma 10, Gt can be pinned
correctly to T ′. Then, we can recursively apply Lemma 11 on Gt. We do not recurse on
Gb since it is already a face and has correct area.

This proves property P1. We now need to argue that each edge has at most 4 bends.
Note that any edge is contained within a path created during the algorithm. The worst
number of bends for a path occurs when connecting a horizontal path from a vertex on the
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left side to a vertex on the right side of the T-staircase (Lemma 9 case i.). This path has 4
bends.

Now we argue that each face has at most 8 bends. Since G is pinned correctly to T ,
according to the definition T has at most 6 bends. Moreover, by Lemma 10, it is possible
to recursively divide T into T-staircases that have at most 6 bends. In the base case, these
T-staircases are single faces and in the worst case they have 6 bends. The only face not
covered by this argument is the face B below l that we create in Lemma 9. Going through
the cases in the proof of this lemma, the maximum number of bends is 8. Specifically, in case
i., there are 4 bends on l, and at most 4 bends of T belong to B, since the top corners of T
are not in B. For all other cases, we may have more top corners of T in B, but in exchange
the number of bends on l decreases, leading to a total of at most 8 bends in all cases. See
Figure 3.14 for an example.

2

Lemma 11 gives the main ingredients to prove our theorem:

Theorem 5 Any 3-regular 3-connected planar graph G = (V,E) can be drawn orthogonally
with given interior face areas, at most 4 bends per edge, and at most 8 bends per face.

Proof: Recall that the vertices of G can be labeled v1, v2, . . . , vn, according to a
canonical order of G. Let G′ be G − v1 and orient G′ so that it is dart shaped (as in
Lemma 4.) Note that the corners of G′ are cl = vj, cr = v2 and ct = vn.

Let T be any rectangle with area A = A(G′). Clearly T is a T-staircase. Assign some of
the vertices of G′ to points in T as follows:

Assign vj to the bottom left corner, v2 to the bottom right corner, and vn to the left top
corner of T (see Figure 3.15a.) Since vj, v2 and vn are adjacent to v1 in G, each of them has
degree 2 in G′ = G − v1. Pin all vertices on the vertical path from vj to vn to the left side
of T , in order, and inside the ε-region. It is straightforward to verify that all vertices have
been pinned correctly to T .

Then, by Lemma 11, we can recursively draw G′ inside T , respecting given interior face
areas, and with at most 4 bends per edge and 8 bends per face.

Finally, we need to add the vertex v1 and its three incident edges. Doing this adds two
interior faces. Let f1 be the face formed by (v1, vj), (v1, vn) and the path from vj to vn, and
f2 be the face formed by the cycle v1, v2, . . . , vj.

Draw v1 at vj’s y-coordinate so that the edge (v1, vj) is horizontal. Then, choose v1’s
x-coordinate so that the area of f1 is correct if the edge from v1 to vn is drawn as a path
with one bend. Finally, draw the edge (v1, v2) as an orthogonal path with two bends, so that
the area of f2 is correct. See Figure 3.15b. 2
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Figure 3.15: (a) Pinning of v2, vj, vn and all vertices on path from vj to vn to T . (b) Adding
v1 to T .
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The following pseudocode for Draw(G) and RecursivelyDraw(G, T ) summarizes our al-
gorithm:

Algorithm 1 Draw(G).

Draw (G) {
1. Compute canonical ordering of G, v1, v2, . . . , vn.
2. Let G′ = G − v1.
3. Let T = rectangle with area A(G′).
4. Pin vj, v2, vn to bottom-left, bottom-right, top-left corner of T

and all vertices on Pl, in order, on the left side of T.
5. RecursivelyDraw(G′, T).
6. Add v1. // Theorem 5.

}

3.8 An example

To illustrate the algorithm, we give in Figures 3.16 and 3.17 an example of a graph G and an
equifacial (i.e., all its interior faces have the same area) orthogonal drawing produced by this
algorithm. All figures are to scale. Figure 3.16 shows intermediate steps of the algorithm,
where a vertical and a horizontal path is drawn, respectively. Figure 3.17 shows the final
drawing of G.

3.9 Rational coordinates

This section shows that the coordinates of the vertices and edges produced by this algorithm
are rational.

Lemma 12 Let T be a T-staircase with rational coordinates for all its vertices and edges, and
G a dart-shaped graph with its outerface vertices pinned on T . G can be drawn orthogonally
inside T and respecting given rational interior face areas, such that the coordinates of all
vertices and bends in the drawing are rational.

Proof: By Lemma 11, G can be drawn recursively inside T . In each recursive call, one
of two splitting operations is made:
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Algorithm 2 RecursivelyDraw(G, T ).

RecursivelyDraw (G, T) {
// G has dart-shaped orientation with corners cl, cr, ct.
// G is pinned correctly to the T-staircase T. T has area A(G).

1. If the bottom path of G has at least 2 edges {
2. Let u be a vertex 6= cl, cr on the bottom path.

3. Let Pv be the directed (vertical) path from u, ending at vertex v that

is the first vertex on the outerface.

4. Let Gl and Gr be dart-shaped graphs into which Pv divides G (Lemma 5.)

5. Let A(Gl) and A(Gr) the area of Gl and Gr, respectively.

6. If v = vi has not been pinned to T yet {
// v will be pinned on the top side.

7. Let l be a vertical line, from point pu to point pv that divides T
into two T-staircases Tl and Tr of area A(Gl) and A(Gr), respectively

(Lemma 7.)

8. Pin u to pu, v to pv and all vertices vj on Pv, to T on line l (Lemma 10.)

9. } else {
// vi has been pinned to the stairs, say at point pvi.

10. Let l be an orthogonal path starting at pu, with one bend b and

ending at pvi that divides T into two T-staircases Tl and Tr of area

A(Gl) and A(Gr), respectively (Lemma 8.)

11. Pin u to pu.
12. If there exists a vertex on Pv with an edge to the right {
13. Let w be the closest to v. Pin w to the bend of l and all vertices

vj on Pv between u and w to the vertical segment of l (Lemma 10.)

14. }
15. }
16. RecursivelyDraw(Gl, Tl) (Lemma 11.)

17. RecursivelyDraw(Gr, Tr) (Lemma 11.)

18. }
19. Else If G has only one interior face return.

20. Else {
21. Let Gb be the interior face of G adjacent to cl and cr.
22. Let the vertical paths of Gb be from cl to c′l and from cr to c′r.
23. Let Ph be the horizontal path of Gb from c′l to c′r.
24. Let Gt be the dart-shaped graph with base Ph that contains ct (Lemma 6.)

25. Let pl and pr be the points where c′l and c′r are pinned. Pin them if they

have not been pinned yet (Lemma 10.)

26. Let l be an orthogonal path starting at pl and ending at pr that

divides T into a shape B of area A(Gb) and a T-staircase T ′ of area

A(Gt) (Lemma 9.)

27. RecursivelyDraw(Gt, T ′) (Lemma 11.)

28. }
}
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Figure 3.16: (a) G′ split by a vertical path. Hashed lines represent horizontal edges, and
dashed lines represent edges that were deleted by the algorithm. (b) Vertical path drawn
inside T . (c) G′ split by a horizontal path. (d) Horizontal path drawn inside Tl.
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Figure 3.17: Equifacial orthogonal drawing of G.

(a) If there is at least one vertex u on Pb between cl and cr, there are three cases, depending
on where v was assigned:

i. v was assigned to a point on the allowed segment on the top side of T (Algorithm
2, lines 6 and 7.)

In this case, it follows immediately that the y-coordinate of both u and v is rational.
To see that it is also true for their x-coordinate X, divide the T-staircase to the left
of l, Tl, into rectangles, by drawing a vertical segment from each bend on the stairs
to the top side. See also Figure 3.18a. Let R be the rectangle adjacent to l. Since
the coordinates of all the bends in T are rational, all rectangles different from R
have rational area. The area of R is A(Tl) minus the area of the other rectangles,
hence rational and then the height and width of R are also rational. If x0 is the
x-coordinate of the left most point of the base of T , X equals the width of R plus
x0. Thus, X is rational.

ii. v was assigned to a point on a vertical segment or a non-convex corner of the left
stairs (Algorithm 2, lines 9 – 14.) Let (xv, yv) be the coordinates of v, and (xb, yv)
the coordinates of the bend of l. If v was pinned already, it has rational coordinates.
If it was not, the position to pin it is selected according to Lemma 10. In this case,
since xv is the same as the x-coordinate of a bend of T , it is rational. Also, we can
pick yv, as long as v is placed correctly, as explained in Lemma 10. Thus, we can
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pick yv to be rational. To see that xb is also rational, proceed in the same fashion
as in case i. Divide Tl into rectangles, this time with a vertical segment from each
of the bends below v on the left stairs, to the horizontal segment of l. Each of those
rectangles has rational area, and therefore xb is also rational. See also Figure 3.18b.

iii. v was assigned to a point on a vertical segment of the right stairs. This case is
symmetric to ii.

l

v

u

Tl Tr

X

(a)

v

u

Tl Tr

S2

xb

S1

(b)

Figure 3.18: All vertices and bends have rational coordinates when splitting G with a vertical
path: (a) X is rational when v is assigned to the top side of T . (b) xb is rational when v is
assigned to the left stairs of T .

(b) If there are no vertices on Pb between cl and cr (Algorithm 2, lines 20 – 28), there are
four cases, depending on where c′l and c′r have been assigned. Vertex c′l can be either on
the interior of a vertical segment of the left stairs, on a reflex corner, or on the allowed
segment, and c′r can be either on the interior of a vertical segment of the right stairs,
on a reflex corner, or on the allowed segment. We will only argue that the coordinates
of c′l and c′r and all bends of l are rational for the case when c′l is on the interior of a
vertical segment of the left stairs and c′r is on the allowed segment; the other cases are
very similar.

Let (x′l, y
′
l) and (x′r, y

′
r) be the coordinates of c′l and c′r, respectively. Let (x1, y1), (x2, y2)

and (x3, y3) be the coordinates of the three bends of l. See also Figure 3.19. The following
coordinates are rational: x′l, because it is the x-coordinate of a bend of T ; y′l, because
we can pick it to be rational; x1, because it is the x-coordinate of the rightmost side of
the left ε-region; y1 is the same as y′l; x2 is the same as x1; x3 is the x-coordinate of
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the leftmost side of the right ε-region; x′r is the same as x3; and y′r, because it is the
y-coordinate of the top side.

Therefore, it is left to prove that y2 and y3 (which are the same) are rational. This
argument is very similar to the ones in case (a). Divide B into three pieces by extending
S2 and S4 to the base of T . Then B is divided into rectangles that all have rational areas
since their corners have rational coordinates; with the exception of rectangle B′ below
S3. But since B has rational rational area, B′ must have rational area, and so S3 has a
rational y-coordinate. 2

Y

c′l

c′r

T ′

S3

S4S2

S1

B

(x1, y1)

(x3, y3)
(x2, y2)

Figure 3.19: All vertices and bends have rational coordinates when splitting G with a hori-
zontal path.

A natural question is whether the size of the denominator can be bounded, similarly as
we did for planar 3-trees in Section 2.3. We tried to prove such a bound (guessing it to be
n!), but failed. The main difficulty lied on finding the correct form of X and Y , so that a
proof by induction could go through. We leave this for future research.

3.10 Time complexity

In this section, we prove that our algorithm creates orthogonal drawings for 3-connected
planar graphs with maximum degree 3 that respect given interior face areas in O(n log n)
time.

For the analysis, assume that it is possible to access the number in the canonical order,
the coordinates and the neighbours of a vertex in constant time. This is true by using hash
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Figure 3.20: (a) Dart-shaped graph G. (b) Splitting tree of G.

tables for the canonical order and the coordinates and an adjacency list for the neighbours
(because G is 3-regular.) The adjacency list keeps the neighbours of a vertex in clockwise
order around it. We will also maintain an adjacency list for the dual graph G∗ of G with
pointers from the edges in G to their dual edges in G∗. Vertices in G∗ have weights which
are the area of their corresponding face in G.

Since G is planar, both the number of edges and the number of faces is O(n).

In RecursivelyDraw(G, T ), all steps can clearly be done in O(n) time. In fact, almost all
of them take amortized time O(1), which would lead to O(n) time complexity: Operations
(3), (22) and (23) take time proportional to the number of edges added; since each edge
is used only once or twice, this leads to O(n) in total. Operations (8), (13) and (25) take
time proportional to the number of vertices pinned; since each vertex is pinned only once,
this leads to O(n) in total. Operations in line (26) take time proportional to the number of
vertices removed from the T-staircase since vertices used to calculate the coordinates of pc′l
and pc′r belong to a single face; this leads to O(n) in total as well.

The area necessary for operation (5) can be precomputed by creating a splitting tree
similar to the one used in Chapter 2, Section 2.3. In this case, the splitting tree is a binary
tree of the graphs into which G is divided during the algorithm. The tree can be created in
a top-down fashion by using the left, right and top corners of the dart-shape, cl, cr and ct
respectively. Figure 3.20 shows an example of a dart-shaped graph G and its splitting tree.
Then, traverse the tree bottom-up to obtain the faces that belong to each subgraph of G,
and therefore its area.
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Precomputing the tree takes O(n) time. RecursivelyDraw will do one top-down scan to
obtain the area values for all recursive calls, thus it will take O(n) time in total.

Therefore, the only operations that are left are lines (7) and (10), which involve obtaining
the coordinates of some of the vertices or bends of the orthogonal line that splits T into two
T-staircases. This operation depends on vertices pinned before, and may take Ω(n) time if
the T-staircase has many corners.

We tried, but did not succeed, in devising a data structure that can reduce the running
time to O(1) amortized time, and leave this as an open problem. However, we can obtain
O(log n) amortized time as follows: Each time we split a T-staircase into two with a vertical
path, we can calculate the x-coordinate of pu in two ways. One option is to calculate the
area A(Tl) as a function of the x-coordinate of pu as explained in Section 3.9, and obtain
the correct pu.x from this. The second option is to calculate the area A(Tr) to the right of
l as a function of the x-coordinate of pu, which can be done similarly by splitting Tr into
rectangles. Calculating A(Tl) and A(Tr) takes time proportional to the number of corners
in the stairs of Tl and Tr, respectively. Since we know how many faces are on each side of l
(we can store this with the splitting tree), we use the side with smaller number of faces to
calculate pu.x. Then, if a corner is used to calculate pu.x, the number of interior faces of the
T-staircase it belongs to will be reduced by a factor of 2 or more, and therefore it can be
used at most O(log n) times. Since there are O(n) corners, the total time is O(n log n).

In Draw(G), all operations are clearly O(1), except for obtaining the canonical order,
which is is O(n) by Kant [25], and RecursivelyDraw(G, T ), which takes O(n log n) time as
discussed before.

Therefore, the total running time for our algorithm is O(n log n).
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Chapter 4

Conclusions and open problems

In this thesis, we studied drawings of planar graphs with prescribed face areas. Our results
can be divided into two main parts:

1. Straight-line drawings of planar graphs with prescribed face areas.

We proved that all planar partial 3-trees can be drawn respecting given face areas. If
the assigned areas are rational, our algorithm leads to rational coordinates. We gave
bounds on the size of the grid of such drawings. However, these bounds are huge, which
leaves the question of whether tighter bounds can be found.

There are many paths that can be taken from here.

One is to relax the straight-line constraint, by allowing a very small number of bends
(e.g., one bend per edge.) One could start by studying planar 4-trees. Due to Ringel [34],
we know that planar 4-trees cannot always be drawn so that given areas for the faces are
respected. Thus, it would be interesting to study if allowing one bend per edge would
make such drawings possible for all graphs, or at least all partial 4-trees.

Another possibility would be to relax the area constraint, i.e., allow face f to have
area A(f) ± ε for small enough ε. If this is done, rational coordinates for cubic graphs
would follow immediately, since vertices with non-rational coordinates would be moved
to the closest rational position. Then, it would be interesting to ask what bounds can
be imposed on the area error. And what can be proved for other graph classes?

Also, recall Conjecture 1: Does every planar graph with maximum degree 3 have a
straight-line drawing that respects given rational face areas and where coordinates of
the vertices are rational? This question remains open.

Finally, one can study the complexity of testing whether a planar graph has a straight-
line drawing with prescribed face areas.
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2. Orthogonal cartograms.

We showed an algorithm to create orthogonal drawings of 3-connected planar graphs
with maximum degree 3 and prescribed face areas. This algorithm works by splitting the
graph recursively into dart-shaped graphs and drawing the pieces into a T-staircase. We
hope that this way of decomposing a graph can be used independently for other graph
drawing applications. We studied various aspects of the drawings resulting from our
algorithm. The maximum number of bends per edges produced is 4, and the maximum
number of bends per face is 8. Since these numbers represent a nice improvement from
previous results, they make one wonder what are the lower bounds for them. Is there
a triconnected cubic graph that requires 8 bends in a face to respect given face areas?
Sometimes there is a variation on the number of total bends obtained if the paths used
to split the graph are selected in different order. Can we find the optimal order to split
a graph to minimize the number of bends? Also, in our algorithm all vertices and bends
have rational coordinates, but we did not give bounds on the size of the grid. Thus, a
natural question would be, what bounds can be found for it? Alternatively, one can ask
what bounds can be imposed on the minimum feature size and minimum edge length?
Also, can the running time for the algorithm be brought down to O(n)?

Our algorithm works for graphs with maximum degree 3. The degree is crucial when a
dart-shaped graph is divided by a horizontal path. Thus, one could try to modify the
algorithm to allow vertices with degree 4. It is known [28] that orthogonal drawings
respecting given face areas are possible, but the number of bends is not constant, it
depends on the number of vertices of degree 4. Can we do it with O(1) bends per face
always? The next step beyond that would be to study graphs with higher degree, where
vertices use rectangles, instead of points.

Also, our algorithm works for 3-connected graphs. This condition is necessary to obtain
the canonical orientation of a graph. It is possible to extend this result to 2-connected
graphs by introducing extra vertices and edges until the graph is 3-connected, and re-
moving them in the final drawing. However, with this approach, the number of bends per
face is unbounded. One approach to keep the number of bends small could be to draw
3-connected components separately, maintaining a compatible pinning of the shared ver-
tices, so that the edges connecting different components can be drawn. How can we
ensure this compatible pinning?

Our algorithm assures that all faces are x-monotone. However, not all faces are y-
monotone. Is it possible to guarantee both?

Finally, area-respecting drawings could also be studied in the hexagonal grid, where edges
can be horizontal, at 60 and at 120 degrees. Whether planar graphs with prescribed face
areas can be drawn in a hexagonal grid, what would be the size of such grid, and which
bounds could be obtained on the number of bends per edge and per face, all remain as
interesting topics for future study.
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