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Abstract

This thesis investigates dominating sets in Kneser graphs as well as a selec-
tion of other topics related to graph domination. Dominating sets in Kneser
graphs, especially those of minimum size, often correspond to interesting com-
binatorial incidence structures.

We begin with background on the dominating set problem and a review of
known bounds, focusing on algebraic bounds. We then consider this problem in
the Kneser graphs, discussing basic results and previous work. We compute the
domination number for a few of the Kneser graphs with the aid of some original
results. We also investigate the connections between Kneser graph domination
and the theory of combinatorial designs, and introduce a new type of design
that generalizes the properties of dominating sets in Kneser graphs. We then
consider dominating sets in the vector space analogue of Kneser graphs. We
end by highlighting connections between the dominating set problem and other
areas of combinatorics. Conjectures and open problems abound.
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Introduction

A dominating set in a graph is a vertex subset S such that every vertex not
in S has a neighbor in S, and the domination number of a graph is the size
of its smallest dominating set. The dominating set problem asks to determine
the domination number of a given graph. Formal study of the dominating set
problem began in the 1960s, the term itself first appearing in the 1967 book
on graph theory [45] by Ore. However, the problem has historical roots in the
dominating queens problem, which occupied European chess enthusiasts in the
mid- to late 19th century; this problem asks for the minimum number of queens
that can be placed on a chessboard such that every square not containing a
queen is under attack by one.

Besides being of theoretical interest, the dominating set problem also finds a
natural application in numerous facility location problems. In these problems,
the vertices of a graph correspond to locations, adjacency represents some no-
tion of accessability, and the purpose is to find a subset of locations accessible
from all other locations at which to install fire stations, bus stops, post offices,
or other such facilities. Dominating sets have also been applied in the analysis
of social networks (Kelleher and Cozzens [35]). See the monograph by Haynes et
al. [30] for more information on the history and applications of the dominating
set problem.

This thesis investigates dominating sets in Kneser graphs as well as a selec-
tion of other topics related to graph domination. The Kneser graph Kn:k is the
graph whose vertices are the k-subsets of an n-element set, where two vertices
are adjacent if the corresponding sets are disjoint. Dominating sets in Kneser
graphs, especially those of minimum size, often correspond to interesting combi-
natorial incidence structures. Throughout the thesis we pay particular attention
to lower bounds on the domination number.

The thesis is divided into three parts. Part I contains background on the
dominating set problem. In Chapter 1 we formally introduce dominating sets as
well as two important variants: total dominating sets, which are dominating sets
that induce subgraphs with no isolated vertices, and independent dominating
sets, whose name is self-explanatory. Chapter 2 reviews known bounds on the
domination and total domination number, and includes a detailed discussion of
algebraic upper bounds. Chapter 3 reviews the fundamentals of the theory of
combinatorial designs, which will be integral to our discussion of dominating
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CONTENTS

sets in Kneser graphs.

Part II deals with the dominating set problem in Kneser graphs and related
problems. All of the author’s original results are contained in Part II.

Chapter 4 is devoted to the dominating set problem in Kneser graphs. We
begin with a review of previous work on this problem, providing proofs for
many basic results. We then discuss work by Hartman and West in which they
determine γ(Kn:k) for a certain range of n. Next, we compute γ(Kn:k) for a
few small values of n and k with the aid of some original results, in particular
computing γ(Kn:3) for all n.

In Chapter 5 we consider dominating sets in the odd graphs, which are
the Kneser graphs of the form K2k+1:k. Small dominating sets in odd graphs
correspond to certain Steiner systems, and determining their existence is a long-
standing open problem. We review important results and prove that an odd
graph that contains such a small dominating set admits a nontrivial equitable
partition.

In Chapter 6 we introduce semi-covering designs, which are combinatorial
designs, similar to covering designs, that generalize certain properties of domi-
nating sets in Kneser graphs.

In Chapter 7 we consider the dominating set problem in q-Kneser graphs,
which are vector space analogues of Kneser graphs. We prove some basic results
then highlight previous work by Clark and Shekhtman, using it to reflect on
the differences between graph domination of Kneser and q-Kneser graphs. We
compute the domination number of a small q-Kneser graph, improving on a
proof by Clark and Shekhtman.

In Part III we relate the dominating set problem to two disparate areas of
combinatorics. In Chapter 8 we consider maximal intersecting families of sets,
a topic in extremal combinatorics. We review existing results, focusing on the
role played by the Kneser graph domination problem. In Chapter 9 we review
some fundamental problems in coding theory as viewed through the lens of the
dominating set problem in the hypercube.

Conjectures and open problems abound, and many chapters conclude with
several. In addition, we collect in Chapter 10 some miscellaneous open problems
in graph domination, most of which concern the existence of small dominating
sets in particular graph families.
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Chapter 1

Graph domination and its
variants

In this chapter we formally introduce the dominating set problem, some of its
variants, and the notion of a perfect 1-code in a graph.

We assume familiarity with basic graph theory terminology and notation,
which can be found in Appendix A. All logarithms are to base e.

1.1 Dominating sets

A dominating set in a graph G is a vertex subset S ⊆ V such that every vertex
in V \S is adjacent to some vertex in S. The domination number of G, written
γ(G), is the minimum size of a dominating set in G.

Fix an ordering of V and let |V | = v. The characteristic vector of a vertex
subset S ⊆ V , written zS , is a 0-1 vector in Rv whose xth entry is 1 if and only
if x ∈ S. If A is the adjacency matrix of G then S is a dominating set if and
only if

(A + I) zS ≥ 1

where 1 is the all-1 vector and the inequality is componentwise. Thus the
dominating set problem can be phrased as an integer program:

min zT 1

(A + I) z ≥ 1

z ∈ {0, 1}v

The problem of finding a minimum size dominating set is in general NP-hard
(Garey and Johnson [19]) but is approximable within 1 + log(v) (Johnson [33]).
This problem is unlikely to be approximable within (1− ε) log(v) for any ε > 0
(Feige [17]). However, there are polynomial time algorithms for finding a min-
imum size dominating set in trees and series parallel graphs (details in Haynes
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1. GRAPH DOMINATION AND ITS VARIANTS

et al. [30]), and there also exists a polynomial time approximation scheme for
planar graphs (Baker [2]).

Given S ⊆ V and some x ∈ S, a vertex y ∈ V \ S is a private neighbor of
x if x is the only neighbor of y in S. The set of private neighbors of x ∈ S in
V \ S will be written pnS(x), or simply pn(x) when S is clear from context.

A dominating set S is minimal if, as usual, no proper subset of S is a
dominating set. Minimum size dominating sets are obviously minimal, but the
converse is not always true. Ore gave in [45] a useful characterization of minimal
dominating sets using the notion of private neighbors.

1.1.1 Theorem. A dominating set S is minimal if and only if every v ∈ S that
has a neighbor in S has a private neighbor in V \ S.

Proof. Assume first that S is minimal and consider a vertex x ∈ S that is
adjacent to some y ∈ S. If x has no private neighbors in V \S then S \ {x} is a
dominating set since x as well as every vertex in Γ(x) is adjacent to a vertex in
S\{x}. This contradicts the minimality of S, so x must have a private neighbor.

Conversely, let S be a dominating set for which the condition holds; we will
show that S is minimal. If it is not, then there exists x ∈ S such that S\{x} is a
dominating set. This implies that x is adjacent to some y ∈ S, so by assumption
it has a private neighbor in V \S, call it w. Then w is not adjacent to any vertex
in S \ {x}, contradicting the assumption that this is a dominating set.

The following basic bounds for regular graphs follow immediately from the
definitions.

1.1.2 Proposition. If G is a connected d-regular graph on v vertices then

1
d + 1

≤ γ(G)
v

≤ 1
2
.

Proof. Let S be a minimum size dominating set in G. To show the upper
bound, note that every x ∈ S is adjacent to some y ∈ V \ S, for otherwise
S \ {x} would be a dominating set, contradicting the minimality of S. This
implies that the complement of a minimal dominating set is also a dominating
set, so in particular there exists a dominating set of size at most v/2.

For the lower bound, note that since G is d-regular, each vertex in S has
at most d neighbors outside of S. Thus |V \ S| is at most d|S| which implies
v ≤ (d + 1)|S| and the bound.

The upper bound above first appeared in Ore [45]. There are only finitely
many connected graphs for which γ(G) = bv/2c; see Haynes et al. [30] for the
very short list. There is a much better general upper bound for γ(G) based on
the greedy algorithm; we discuss it in Chapter 2

The lower bound in Proposition 1.1.2 is called the sphere-covering bound. If
S is a dominating set in a d-regular graph G that meets the sphere-covering
bound we call S a perfect 1-code; this terminology will be justified in Chapter
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1.2. TOTAL DOMINATING SETS

9, which introduces coding theory. It is easy to see that S is a perfect 1-code if
and only if (A + I) zS = 1.

Perfect 1-codes in graphs were introduced by Biggs in [3]. Deciding whether
a graph has a perfect 1-code is NP-complete, even for bipartite graphs and pla-
nar graphs of maximum degree 3 (see Haynes et al. [30] for more).

Our discussions will often turn to the existence of perfect 1-codes in par-
ticular graph families, and so before moving on we make note of the following
useful observation. Given S ⊆ V we define the measure of S to be the ratio
µ(S) = |S|/v, and then define

wS = zS − µ(S)1

where 1 is the all-1 vector. Note that wS is the projection of zS to the subspace
1⊥. Biggs observed in [3] that if a d-regular graph G has a perfect 1-code S
then wS is an eigenvector of A with eigenvalue −1; this follows easily from the
facts (A + I) zS = 1 and A1 = d1, where the latter is implied by the fact that
G is regular.

1.2 Total dominating sets

Total domination is a variant of graph domination introduced by Cockayne et
al. in [10]. A vertex subset S ⊆ V is a total dominating set if every vertex in
V is adjacent to some vertex in S. In other words, a dominating set is total if
the subgraph it induces has no isolated vertices. The minimum size of a total
dominating set in G is the total domination number of G, written γt(G).

In analogy to dominating sets, if A is the adjacency matrix of G and zS is
the characteristic vector of a set S then S is a total dominating set if and only
if A zS ≥ 1. Thus the dominating set problem can also be phrased as an integer
program:

min zT 1

A z ≥ 1

z ∈ {0, 1}v

In analogy to Proposition 1.1.2, if G is a d-regular graph on v vertices then

γt(G) ≥ v

d
.

This bound follows from the fact that every vertex in a minimum size total
dominating set has at most d − 1 neighbors outside the set. An upper bound
is far less trivial; see Section 2.2 for more information. There is also a general
upper bound on γt(G) based on the greedy algorithm, as was the case with
γ(G). We will discuss it in Chapter 2

Taking further the analogy with standard domination, we define a totally
perfect 1-code to be a total dominating set whose size meets the lower bound

7



1. GRAPH DOMINATION AND ITS VARIANTS

v/d. In other words, the neighborhoods of the vertices of a totally perfect 1-code
partition the vertex set.

Finding a minimum size total dominating set is NP-hard, and deciding
whether a graph has a totally perfect 1-code is NP-complete. However, just
like in the case of standard domination, there exists a polynomial time algo-
rithm for finding minimum size total dominating sets in trees and series parallel
graphs; details on this and other aspects of total domination can be found in
the monograph [30] by Haynes et al.

We note that since every total dominating set is a dominating set we have
γ(G) ≤ γt(G). Moreover, it is easy to see that γt(G) ≤ 2γ(G). Thus domination
and total domination are asymptotically not very different, and the numerous
analogies between the two are not surprising. However, we next meet a variant
of domination that, as we will see later, can exhibit quite different behavior.

1.3 Independent dominating sets

A vertex subset S ⊆ V is an independent dominating set if it is both a dominat-
ing set and independent. It is easy to see that a vertex subset is an independent
dominating set if and only if it is a maximal independent set. The minimum
size of a total dominating set in G is the independent domination number of G
and will be written γi(G).

Let M be the incidence matrix of G, the e×v matrix with rows and columns
indexed by edges and vertices, respectively, in which Mij = 1 if and only if edge
i is incident to vertex j. Then if A is the adjacency matrix of G, the minimum
size of a dominating set in G is the solution to the following integer program:

min zT 1

(A + I) z ≥ 1

M z ≤ 1

z ∈ {0, 1}v

Unlike the case with total domination, bounds on γ(G) do not tend to gen-
eralize to bounds on γi(G). The sphere-covering bound of Proposition 1.1.2 still
clearly applies, but there is no general upper bound like the greedy bounds on
γ(G) and γt(G) that we mentioned above and will encounter in Chapter 2.

Nonetheless, independent domination has been studied extensively and many
interesting results are known. For instance, γ(G) = γi(G) when G is claw-free.1

For this and more on independent domination see Haynes et al. [30].
As expected, finding a minimum size independent dominating set is NP-

hard (Garey and Johnson [19]), and remains NP-hard for bipartite graphs and
line graphs. There is, however, a polynomial time algorithm for minimum size
independent dominating sets in trees; as usual, see Haynes et al. [30] for more.

1A graph is claw-free if no four vertices induce the complete bipartite graph K1,3.
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Chapter 2

Known bounds

In this chapter we review known bounds on the domination number of regular
graphs, focusing on algebraic bounds. Almost all bounds considered are upper
bounds, as nontrivial lower bounds are practically nonexistent.

We begin with greedy bounds on γ(G) and γt(G). We then present a detailed
discussion of the only eigenvalue upper bound in the literature, found in Lu et
al. [38]. We also make the observation that an eigenvalue lower bound proved
by Lu et al. in the same paper is useless. We end with a proof of a new algebraic
upper bound on γ(G) due to Godsil.

2.1 General bounds

Perhaps the best known upper bound on γ(G) is due to Alon:

2.1.1 Theorem. If G is a d-regular graph on v vertices then

γ(G)
v

≤ 1 + log(d + 1)
d + 1

.

The bound also holds for non-regular graphs, with d replaced by the min-
imum degree. A proof can be found in the book [1] by Alon and Spencer
on probabilistic methods. Not surprisingly, the proof is probabilistic, but the
authors also give a second, algorithmic proof. The latter proof constructs a
dominating set S greedily; vertices are added to S one by one, where at each
step the vertex that covers the maximum number of yet uncovered vertices is
picked (a vertex is covered if it is adjacent to a vertex in S). It is possible to
show that after v

d+1 log(d + 1) steps there are at most v
d+1 uncovered vertices,

and adding these to S gives a dominating set of the desired size.

The following upper bound for regular graphs is proven in a sequence of
three papers by Caro and Roditty [7], Liu and Sun [36], and Xing et al. [49]:

9



2. KNOWN BOUNDS

2.1.2 Theorem. If G is a d-regular graph on v vertices then

γ(G)
v

≤ d

3d− 1
.

The following lower bound appears in Haynes et al. [30]. We will not make
any use of it, nor is it especially useful to begin with, but we nonetheless note
it because it is one of the very few nontrivial lower bounds on γ(G) in the
literature.

2.1.3 Theorem. If G is a connected graph with diameter D then

γ(G) ≥ D + 1
3

.

Proof. Let S be a dominating set of minimum size. Choose two vertices x, y
such that the shortest length of a path between x and y is D, and let P be an
x− y path of this length.

The closed neighborhood of any given vertex in S contributes at most two
edges to P . Also, P contains at most |S| − 1 edges joining neighborhoods of
vertices in S. Thus

D ≤ 2|S|+ |S| − 1 = 3|S| − 1

and the bound follows.

We observe that this lower bound is tight for the complete bipartite graphs
K1,n. It is unlikely that it is tight for any interesting graph families.

2.2 Total domination

As we have seen, v/d is a trivial lower bound on γt(G) when G is d-regular. The
most general upper bound on γt(G), which holds for any graph G with v ≥ 3
vertices, is 2v/3. For a proof see Cockayne et al. [10] or the monograph [30] by
Haynes et al.

A more interesting upper bound follows from the Johnson-Stein-Lovász the-
orem on 0-1 matrices (a proof can be found in Cohen et al. [11]).

2.2.1 Theorem. Let A be a 0-1 matrix with n rows and m columns. Assume
that each row of A contains at least r ones and each column contains at most
c. Then A has an n× k submatrix B with

k ≤ n

c
+

m

r
log c

such that no row of B is an all-zero row.

Applying the theorem to the adjacency matrix of a d-regular graph yields a
submatrix whose columns correspond to vertices in a total dominating set. This
gives an upper bound on γt(G) that to the author’s knowledge is unpublished.

10



2.3. AN EIGENVALUE BOUND

2.2.2 Corollary. If G is a d-regular graph on v vertices then

γt(G)
v

≤ 1 + log d

d
.

Corollary 2.2.2 is total domination’s answer to Theorem 2.1.1. The analogy
between the two bounds is in fact quite profound because the proof of Theorem
2.2.1 uses a greedy algorithm to construct B, just like the algorithmic proof of
Theorem 2.1.1. The details are somewhat different because multiple columns,
not just one, can be added to B at each step of the algorithm; see Cohen et
al. [11] for more.

Observe that Theorem 2.2.1 can also be used to derive the greedy upper
bound on γ(G) in Theorem 2.1.1.

2.3 An eigenvalue bound

Let G be a connected d-regular graph on v vertices and let λ2 be the second-
largest eigenvalue of G (since G is d-regular, d is the largest eigenvalue). The
value of λ2 has many significant implications for the structure of G. For example,
λ2 = d if and only if G is disconnected (see Godsil and Royle [22]). More
profoundly, λ2 can be used to bound the expansion of a regular graph, which
becomes very useful in numerous computer science applications (see Hoory et
al. [31] for an excellent introduction to the theory and applications of graph
expansion).

In this section we prove that

γ(G)
v

≤ 1 + δ

v + δ
(2.3.1)

where δ = v− (d−λ2), a result due to Lu et al. [38]. This is the only eigenvalue
bound on γ(G) in the literature.

The proof requires some preliminary results. Unless stated otherwise, these
are all from [38] by Lu et al.

If G is a graph with vertex set V and S, S′ ⊆ V we define e(S, S′) to be the
set of edges with one endvertex in S and the other in S′. If S′ = V \ S then we
will write e(S, S′) as ∂S; this is called the cut defined by S. We allow S′ = S in
this definition, in which case e(S, S′) is the set of edges in the subgraph induced
by S.

Recall that if S is a vertex subset then µ(S) = |S|/v, zS is its characteristic
vector, and wS = zS − µ(S)1, so that in particular wS ⊥ 1.

The proof of the bound (2.3.1) makes use of Rayleigh’s inequality for the
second-largest eigenvalue of a symmetric matrix: if A is a symmetric matrix
with second-largest eigenvalue λ2, and x ⊥ 1, then

xT Ax ≤ λ2xT x. (2.3.2)

11



2. KNOWN BOUNDS

For details and a proof see Section 9.5 of Godsil and Royle [22]. Rayleigh’s
inequality is used to prove the following eigenvalue bound on the size of a cut
in a regular graph, due to Mohar and Poljak (see [44]).

2.3.1 Theorem. Let G be a connected d-regular graph on v vertices with
second-largest eigenvalue λ2. Then for any S ⊆ V we have

|∂S|
|S|

≥ (d− λ2)
(

1− |S|
v

)
.

Proof. Let A be the adjacency matrix of G. By Rayleigh’s inequality (2.3.2),

wT
S AwS ≤ λ2 wT

S wS . (2.3.3)

Now, wT
S wS = |S|(1− µ(S)) so

wT
S AwS ≤ λ2|S|(1− µ(S)). (2.3.4)

As for the left side of the inequality,

wT
S AwS = zT

S A zS − k|S|µ(S).

Now, it is easy to see that zT
S A zS = 2|e(S, S)|. Since G is d-regular we know

that d|S| = 2|e(S, S)|+ |∂S| so that

wT
S AwS = 2|e(S, S)| − k|S|µ(S)

= k|S| − |∂S| − k|S|µ(S)
= k|S| (1− µ(S))− |∂S|.

Substituting this into inequality (2.3.4) gives

k|S| (1− µ(S))− |∂S| ≤ λ2|S| (1− µ(S))

and the claim follows after some rearranging.

We are almost ready to prove the bound 2.3.1. First we must prove the
existence of a particular kind of minimum size dominating set. Recall that
given S ⊆ V and some x ∈ S, pn(x) is the set of private neighbors of x in V \S.
The following lemma appears in Lu et al. [38] as well as the monograph [30] by
Haynes et al.

2.3.2 Lemma. Let G be a connected graph. Then there exists a minimum size
dominating set S such that |pn(x)| ≥ 1 for every x ∈ S.

Proof. Let S be a dominating set of minimum size that maximizes |e(S, S)|; we
will show that S satisfies the claim. Assume the contrary, so that |pn(x)| = 0
for some x ∈ S. Then, since S must be a minimal dominating set, we know by
Theorem 1.1.1 that x has no neighbors in S.

Let y be an arbitrary neighbor of x; it is adjacent to some vertex in S besides
x. The set S′ = (S \ {x}) ∪ {y} is a dominating set of minimum size, and

|e(S′, S′)| = |e(S, S)|+ 1 > |e(S, S)|.

But this contradicts our choice of S, so we conclude that there can be no x ∈ S
with |pn(x)| = 0.

12



2.3. AN EIGENVALUE BOUND

2.3.3 Theorem. Let G be a connected graph on v ≥ 2 vertices. Then there
exists a minimum size dominating set S in G such that

|∂S|
|S|

≤ v − 2γ(G) + 1.

Proof. By Lemma 2.3.2 there exists a minimum size dominating set S in G such
that |pn(x)| ≥ 1 for every x ∈ S. It follows that

|∂S| = |{xy ∈ E |x ∈ S, y ∈ V \ S}|

≤
∑
x∈S

|pn(x)|+ |S|

(
v − |S| −

∑
x∈S

|pn(x)|

)
= |S|(v − |S|)− (|S| − 1)

∑
x∈S

|pn(x)|

≤ |S|(v − |S|)− (|S| − 1)|S|
= (v − 2|S|+ 1)|S|

which gives the desired inequality.

We are now ready to prove the promised eigenvalue bound on γ(G).

2.3.4 Theorem. Let G be a connected d-regular graph with second-largest
eigenvalue λ2. Then

γ(G)
v

≤ 1 + δ

v + δ

where δ = v − (d− λ2).

Proof. By Lemma 2.3.3, there exists a dominating set S in G with |S| = γ(G)
and

|∂S|
|S|

≤ v − 2γ(G) + 1.

Combining the above with the inequality in Theorem 2.3.1 gives

(k − λ2)
(

1− |S|
v

)
≤ v − 2γ(G) + 1.

which, after some rearranging, yields the desired bound on γ(G).

It should also be noted that Lu et al. prove a version of Theorem 2.3.4 that
applies to arbitrary, not necessarily regular, connected graphs by working with
the Laplacian matrix of a graph rather than its adjacency matrix.

2.3.1 A lower bound, too

Before moving on, we note that Lu et al. also prove in [38] an eigenvalue lower
bound on γ(G):

γ(G)
v

≥ 1
d− λv

(2.3.5)

13
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where λv is the smallest eigenvalue of G. This lower bound, however, is useless.
Before discussing why, we briefly sketch the proof for completeness.

The proof of this lower bound is almost identical to the proof of the upper
bound. The first component of the proof is the inequality

|∂S|
|S|

≤ (d− λv)
(

1− |S|
v

)
, (2.3.6)

an analogue of the inequality in Theorem 2.3.1. Not surprisingly, the proof of
former is very similar to the proof of the latter, save that it uses Rayleigh’s
inequality for the least, rather than second-largest, eigenvalue of a symmetric
matrix A: for any vector x,

xT Ax ≥ λvxT x

(again, see Section 9.5 of Godsil and Royle [22] for details). To get inequal-
ity 2.3.6 we substitute x = wS and simplify.

Now, let S be a dominating set. Then |∂S| ≥ n − |S| because every vertex
in V \ S has a neighbor in S, hence is an endvertex of at least one edge whose
other endvertex is in S. Writing this as

|∂S|
|S|

≥ n

|S|
− 1

and combining with inequality (2.3.6) yields the bound (2.3.5).

This lower bound, however, is no better than the sphere-covering bound, and
is usually worse. To see why, observe that this bound beats the sphere-covering
bound if

1
d + 1

≤ 1
d− λv

which happens if and only if λv ≥ −1. It is possible to show, however, that
λv ≥ −1 if and only if G is a union of complete graphs (in which case equality
holds). One way to prove this claim is using the “interlacing” of eigenvalues,
which is discussed in Chapter 9 of Godsil and Royle [22] (see also Theorem 5.3
of Godsil [20]).

2.4 Domination and the minimum rank problem

Again, let G be a graph on v vertices. A real symmetric v × v matrix M is
consistent with G if for every distinct i and j, Mij 6= 0 if and only ij is an edge
in G.

The set of real symmetric matrices consistent with G will be written M(G).
We define the minimum rank of a graph G to be

mr(G) = min {rank(M) : M ∈M(G)}.

14



2.4. DOMINATION AND THE MINIMUM RANK PROBLEM

The minimum rank problem for a graph G asks to determine mr(G). There
is an extensive literature on this problem treating various families of graphs; at
present, the best reference is the survey [16] by Fallat and Hobgen.

In this section we prove that a graph’s minimum rank is an upper bound on
its domination number. This unpublished result, due to Godsil, is based on an
argument by Rowlinson.

The maximum multiplicity of a graph G, written mm(G), is the maximum
multiplicity taken over all eigenvalues of matrices in M(G). Note that the
maximum multiplicity of G is equal to the maximum nullity of a matrix in
M(G). This is because we can translate the eigenvalues of any matrix in M(G)
by adding a multiple of the identity matrix, yielding another matrix consistent
with G. This observation implies the following useful lemma.

2.4.1 Lemma. For any graph G on v vertices, mr(G) + mm(G) = v.

We are now ready to prove the main result.

2.4.2 Theorem. γ(G) ≤ mr(G).

Proof. Let M be a matrix consistent with G that has an eigenvalue whose
multiplicity equals mm(G). By the discussion above, we may assume that this
eigenvalue is 0 so that null(M) = mm(G).

Let U be a matrix whose columns form an orthonormal basis for ker(M),
and let Ui denote the ith row of U . Let B ⊆ V be such that {Ui}i∈B is a basis
for the row space of U . Note that |B| = null(M) = mm(G).

We claim that V \ B is a dominating set in G. To see why this is true,
assume that there exists a vertex ` ∈ B whose neighborhood Γ(`) is contained
in B. Let M` denote the `th row of M . Then

M`U =
v∑

j=1

M`jUj = M``U` +
∑
j∼`

M`jUj

where the second equality follows from the fact that if j 6= ` then M`j = 0 if
and only if j ∼ `. But M`U = 0 by definition of U , so that the set of vectors

{U`} ∪ {Uj}j∈Γ(`)

is a linearly dependent subset of B, a contradiction.
Thus V \B is a dominating set and, by Lemma 2.4.1,

mr(G) = v −mm(G) = |V \B| ≥ γ(G)

as desired.

Observe that mr(Kn) = 1 since the all-ones matrix is consistent with Kn (in
fact, if G is connected then mr(G) = 1 if and only if G is a complete graph; see
Fallat and Hobgen [16]). It follows that the bound in Theorem 2.4.2 is tight for
the complete graphs.
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Chapter 3

Some design theory

In this chapter we introduce some topics from the theory of combinatorial
designs that will be essential to later discussions. We will use the notation
[n] = {1, 2, . . . , n}.

3.1 Steiner systems

A λ-(v, k, t) design is set of k-subsets of [v], called blocks, such that every t-subset
of [v] is contained in exactly λ blocks. A 1-(v, k, t) design is called a (v, k, t)
Steiner system. Designs and Steiner systems have been studied extensively;
good introductions can be found in the books by MacWilliams and Sloane [39],
Cameron and van Lint [6], and van Lint and Wilson [47].

We shall require the following well-known property of designs.

3.1.1 Lemma. If S is a λ-(v, k, t) design and s ≤ t, then S is also a λs-(v, k, t)
design, where

λs = λ

(
v−s
t−s

)(
k−s
t−s

) .
Proof. Given a fixed s-subset of [v], count in two ways the number of pairs
(T,B) where T is a t-set that contains it and B is a block that contains T .

If S is a (v, k, t) Steiner system then it follows from the definitions that

|S| =
(

v

t

)/(
k

t

)
. (3.1.1)

Given a (v, k, t) Steiner system S, let S[i] be the set of blocks containing a
fixed i ∈ [v]. We can define a (v− 1, k− 1, t− 1) Steiner system S ′ by taking all
of the blocks in S[i] for some i and removing i from them; it is easy to verify
that this is indeed a Steiner system with the desired parameters. We say that
S ′ is derived from S. Conversely, if a (v, k, t) Steiner system S ′ can be derived
from a (v + 1, k + 1, t + 1) Steiner system S we say that S is an extension of S ′.

17



3. SOME DESIGN THEORY

3.2 Covering designs

Our investigation of dominating sets in Kneser graphs will intersect the much-
studied topic of covering designs, which we now introduce. As usual, we keep
our treatment brief; for details, additional information, and an extensive bibli-
ography the reader is referred to the survey by Mills and Mullin [43].

An (n, r, k) covering design is a family of r-subsets of [n], called blocks,
such that every k-subset of [n] is contained in at least one block. We define
C(n, r, k) to be the size of the smallest (n, r, k) covering design (use of the
notation C(n, r, k) will always imply n ≥ r ≥ k).

3.2.1 Lower bounds

Each block of an (n, r, k) covering design covers exactly
(

r
k

)
k-sets and each k-set

is covered by at least one block, so we have the trivial lower bound

C(n, r, k) ≥
(

n

k

)/(
r

k

)
. (3.2.1)

It follows from the definitions that C(n, r, k) meets this lower bound if and only
if there exists an (n, r, k) Steiner system.

A less trivial lower bound follows from the observation that all blocks of an
(n, r, k) covering design that contain some fixed i ∈ [n] cover those k-sets that
contain i. Consequently, if S is an (n, r, k) covering design and we let, as before,
S[i] be the set of blocks containing a fixed i ∈ [n], then

|S[i]| ≥ C(n− 1, r − 1, k − 1). (3.2.2)

We can use this observation to prove a useful inequality.

3.2.1 Lemma.
C(n, r, k) ≥

⌈n

r
C(n− 1, r − 1, k − 1)

⌉
.

Proof. Let S be a minimum size (n, r, k) covering design. From inequality (3.2.2)
we know that ∑

i

|S[i]| ≥ n C(n− 1, r − 1, k − 1),

but we also have ∑
i

|S[i]| = r|S| = r C(n, r, k)

which yields the desired inequality.

Iterating the inequality in Lemma 3.2.1 and using the observation that
C(n, r, 1) = dn/re yields what is known as the Schönheim bound, proved by
Schönheim in [46]:
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3.2. COVERING DESIGNS

3.2.2 Theorem.

C(n, r, k) ≥
⌈

n

r

⌈
n− 1
r − 1

⌈
· · ·
⌈

n− k + 1
r − k + 1

⌉
· · ·
⌉⌉⌉

.

In light of our earlier observations, we conclude that if there exists an (n, r, k)
Steiner system then C(n, r, k) meets the Schönheim bound. The same hypoth-
esis can be shown to imply that C(n + 1, r, k) meets the Schönheim bound (see
Mills and Mullin [43]). In fact, C(n, r, k) often meets the Schönheim bound,
independently of the existence of particular Steiner systems. Proving that
C(n, r, k) is strictly greater than the Schönheim bound for a particular set of
parameters tends to be difficult.

The value of C(n, r, k) has been established for certain small values of r and
k. For instance, it is known that C(n, 3, 2) meets the Schönheim bound. It is
also known that C(n, 4, 2) meets the Schönheim bound unless n ∈ {7, 9, 10} or
n = 19, in which case it exceeds it by 1 and 2, respectively. C(n, 5, 2) has been
determined for many values of n, but many more remain open. C(n, r, k) has
also been determined in many individual cases in which n is small. See Mills
and Mullin [43] for details on these results.

Turán proved that C(n, n − 2, k) meets the Schönheim bound, essentially
a graph-theoretic result. He also made an interesting conjecture about the
(n, n− 3, n− 4) covering designs of minimum size; we defer to Mills and Mullin
[43] for the details. The conjecture has been verified for n ≤ 13, but the methods
used do not appear to generalize, and the case n = 13 required a computer proof.

3.2.2 Upper bounds

Upper bounds on C(n, r, k) (that is, constructions of small covering designs) are
an active avenue of research and will be quite useful to us in later chapters.

In a celebrated use of the probabilistic method, Rödl proved the existence
of covering designs whose size is asymptotically, as n →∞, equal to the trivial
lower bound (3.2.1), thereby showing that this bound is asymptotically optimal:

C(n, r, k) = (1 + o(1))
(

n

k

)/(
r

k

)
.

See the book [1] by Alon and Spencer for more.
We will be interested in upper bounds on C(n, r, k) for particular param-

eter sets, rather than asymptotic bounds. For these we will often cite the La
Jolla Covering Repository [23], an online database of known values of C(n, r, k)
maintained by D. M. Gordon. It should be noted that most of the best upper
bounds on C(n, r, k) for particular parameter sets are implied by constructions
due to Gordon et al. in [24].
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Part II

Dominating Kneser graphs
and related topics
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Chapter 4

Dominating Kneser graphs

Given positive integers k and n define the Kneser graph Kn:k to be the graph
whose vertices are the k-subsets of [n] and where two vertices are adjacent if
the corresponding k-subsets are disjoint.1

If n < 2k then Kn:k has no edges, so we will always assume that n ≥ 2k. In
this case it is easy to see that Kn:k is an

(
n−k

k

)
-regular graph on

(
n
k

)
vertices.

The reader is invited to verify the fact that K5:2 is the Petersen graph. Kneser
graphs were introduced by Lovász in [37] in order to prove Kneser’s long stand-
ing conjecture, which is equivalent to the claim that the chromatic number of
Kn:k is n−2k+2. More information on this and other aspects of Kneser graphs
can be found in Chapter 7 of Godsil and Royle [22].

In this chapter we consider the domination number of Kneser graphs, mo-
tivated by the fact that dominating sets in Kneser graphs, especially those of
minimum size, often correspond to interesting combinatorial structures such
as covering designs, projective planes, and Steiner systems. We will use the
shorthand γ(n : k) for γ(Kn:k), the minimum size of a dominating set in Kn:k.
Similarly, γt(n : k) will be shorthand for γt(Kn:k).

We begin with a brief discussion of the sphere-covering bound and then
present a few basic results on γ(n : k). In particular, we present a complete
proof of the fact that γ(n : k) is nonincreasing in n (the only proof in the
literature encountered by the author is incomplete). Next we discuss the results
of Hartman and West, who determined γ(n : k) and γt(n : k) for certain values
of n and explored the connection between total dominating sets in Kneser graphs
and covering designs. Finally, we compute γ(n : k) for a few small values of n
and k, determining in particular the value of γ(n : 3) for all n. To facilitate
these computations we prove two useful results. The first, generalizing the work
of Hartman and West, shows that when n is not too small, a small dominating
set is total. The second is a recursive lower bound on γ(n : k) when n is a
multiple of k.

1The vertices of Kn:k will sometimes be referred to as elements of the set V (Kn:k) and
sometimes as k-subsets of [n], depending on context.
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4. DOMINATING KNESER GRAPHS

4.1 The sphere-covering bound

The sphere-covering bound on γ(G) from Proposition 1.1.2 implies

γ(n : k) ≥
(
n
k

)(
n−k

k

)
+ 1

.

This bound is hard to apply in its present form; however, we can deduce
from it a weaker but more elucidative statement using estimates for binomial
coefficients. This was first done by Füredi in [18].

It is well known that (n

k

)k

≤
(

n

k

)
≤
(en

k

)k

.

The lower bound is trivial, and the upper bound follows from the binomial
theorem. It is also possible to prove a stronger estimate for

(
n
k

)
(exercise I.15

of the book [34] by Jukna): if k ≤ k + x < n then(
n− k − x

n− x

)x

≤
(

n− x

k

)(
n

k

)−1

≤
(

n− k

n

)x

≤ e−kx/n. (4.1.1)

The following lemma is from Füredi [18]. Our proof follows Jukna [34] (see
Theorem 8.4), whose proof is not very different from the original one but slightly
clearer. See Chapter 8 for more on Füredi’s work.

4.1.1 Lemma. If 2k + 1 ≤ n ≤ k2

c log k+1 then γ(n : k) > kc.

Proof. Let S be a minimum size dominating set in Kn:k. We begin with the
sphere-covering bound

|S| ≥
(
n
k

)(
n−k

k

)
+ 1

and observe that (
n
k

)(
n−k

k

)
+ 1

≥ 1
2

(
n
k

)(
n−k

k

) .
Combining this inequality with the estimate 4.1.1 gives

|S| ≥ 1
2

(
n

k

)(
n− k

k

)−1

≥ 1
2
ek2/n > ek2/n−1

so that our assumption on n implies |S| > ec log k = kc, as desired.
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4.2 Basic Results

In this section we prove a few basic results about dominating sets in Kn:k. We
begin by observing that γ(2k : k) is quite easy to compute. This is because
K2k:k has

(
2k
k

)
vertices and is regular of degree

(
k
k

)
= 1, hence is a matching

of 1
2

(
2k
k

)
edges. It follows that γ(2k : k) = 1

2

(
2k
k

)
. It is also easy to compute

γ(n : k) when n is sufficiently large.

4.2.1 Theorem. If n ≥ k(k + 1) then γ(n : k) = k + 1.

Proof. First we show that γ(n : k) ≤ k + 1. Since n ≥ k(k + 1) it is possible to
choose a set S of k + 1 pairwise disjoint k-subsets of [n]. Any k-subset must be
disjoint from at least one member of S, since any subset of [n] that intersects
them all must contain at least k + 1 elements. Thus S is a dominating set and
γ(n : k) ≤ |S| = k + 1.

Next we prove γ(n : k) ≥ k + 1. Let S be a vertex subset of Kn:k of size k;
we will show that S cannot be a dominating set. If all k-sets in S are pairwise
disjoint then we can create a transversal of S of size k by choosing an arbitrary
element from each member of S. This transversal cannot be in S because it
cannot equal any of the elements of S, which are pairwise disjoint. Thus there
exists a k-subset not in S and not disjoint from any member of S, meaning S
is not a dominating set.

If on the other hand some pair of members of S has nontrivial intersection
then there exists a set U of size at most k − 1 that intersects every member of
S. Since there are at least n − k|S| ≥ k elements of [n] that are not contained
in any member of S, we can use these elements to complete U to a k-subset
that is not disjoint from any member of S but cannot itself be in S. Again, this
implies that S is not a dominating set.

Theorem 4.2.1 allows us to determine γ(n, 2) for all allowed values of n. This
was originally done by Ivančo and Zelinka in [32].

4.2.2 Corollary. If n ≥ 4 then γ(n, 2) = 3.

Proof. If n ≥ 6, the claim follows from Theorem 4.2.1, so it remains to verify it
for n = 4, 5. This is easy to do, as K4:2 is a matching on six vertices and K5:2

is the Petersen graph.

It is quite easy, then, to determine γ(n : k) for nearly all values of n. Indeed,
if n ≥ k(k + 1) we know exactly what the minimum size dominating sets of
Kn:k are, since it follows from the proof of Theorem 4.2.1 that all k-subsets in a
minimum size dominating sets must be pairwise disjoint. But what can we say
about γ(n : k) when 2k < n < k(k + 1)? This question will occupy us for the
remainder of this chapter.

One fundamental fact is that γ(n : k) is nonincreasing with n. Before proving
this, we define the upward shadow of a (k − 1)-subset of [n] to be the set of k-
subsets of [n] that contain it. Observe that the upward shadow contains n−k+1
k-subsets.
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4. DOMINATING KNESER GRAPHS

4.2.3 Lemma. If n ≥ 2k + 1, then there exists a minimum size dominating set
in Kn:k that does not contain the upward shadow of any (k − 1)-subset of [n].

Proof. Let S be a minimum size dominating set in Kn:k in which every vertex
has at least one private neighbor in V (Kn:k) \ S (such dominating sets exist by
Lemma 2.3.2), and let U be an arbitrary (k − 1)-subset. If S does not contain
any k-sets in the upward shadow of U then we are done. Otherwise let S be
such a k-set in S, so that S = U ∪ {i} for some i ∈ [n]. Let N be the private
neighbor of S in V (Kn:k) \ S.

By definition N is disjoint from S, but since |S| = |N | = k and n ≥ 2k + 1
there must exist some j ∈ [n] that is not in S ∪N . Then the set S′ = U ∪ {j}
is disjoint from N and is in the upward shadow of U . We must have S′ /∈ S for
otherwise N would not be a private neighbor of S, from which it follows that S
does contain the upward shadow of U or any other (k − 1)-subset.

4.2.4 Proposition. If n ≥ 2k + 1 then γ(n : k) ≥ γ(n + 1 : k).

Proof. Let S be a minimum size dominating set in Kn:k that does not contain
the upward shadow of any (k − 1)-subset of [n], as in Lemma 4.2.3. It suffices
to show that S is a dominating set in Kn+1:k.

Fix S ∈ V (Kn+1:k) \ S; if n + 1 /∈ S then S is adjacent to a vertex in S
by assumption. If n + 1 ∈ S then define S− = S \ {n + 1}. Since S does not
contain the upward shadow of S− there exists i ∈ [n] such that S− ∪ {i} /∈ S.
Since S− ∪ {i} is a vertex in Kn:k it is adjacent to some vertex in S; but then
S must be adjacent to the same vertex in Kn+1:k. Thus S dominates Kn+1:k,
as desired.

Our proof of Proposition 4.2.4 is based on the one given by Hartman and
West in [27]. Hartman and West, however, are not explicit about their use
of Lemma 2.3.2; they assume without proof the existence of a minimum size
dominating set in which every vertex has a private neighbor, which they use to
prove the claim in Lemma 4.2.3.

Theorem 4.2.1 and Proposition 4.2.4 both appear in Hartman and West [27],
and are also independently attributed to Jurkiewicz and Wager by Chris Godsil
in [21]. Both results are likely much older than either of these references suggest,
though an original reference is unknown.

4.2.1 Monotonicity via graph homomorphisms

It is possible to prove additional monotonicity results for γ(n : k) using the
notion of a graph homomorphism. Given graphs X and Y , a homomorphism
from X to Y is a function f : V (X) → V (Y ) such that if x ∼ x′ in X then
f(x) ∼ f(x′) in Y . By convention, homomorphisms never map adjacent vertices
to the same vertex. It is easy to see that the image of a dominating set under a
surjective homomorphism is again a dominating set. This implies the following.

4.2.5 Lemma. If there exists a surjective homomorphism from a graph X to a
graph Y then γ(X) ≥ γ(Y ).
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It follows from the lemma that if there exists a surjective homomorphism
from Kn:k to Kn′:k′ then γ(n : k) ≥ γ(n′ : k′).

It is clear that removing an arbitrary element from every vertex of Kn:k is
a surjective homomorphism from that graph to Kn:k−1. This implies that

γ(n : k) ≥ γ(n : k − 1).

We can improve this result by noting that removing the largest element of every
vertex of Kn:k is a surjective homomorphism to Kn−1:k−1, so that

γ(n : k) ≥ γ(n− 1 : k − 1).

This homomorphism can be extended to a surjective homomorphism from Kn:k

to Kn−2:k−1, a result due to Stahl; see Theorem 7.9.2 of Godsil and Royle [22]
for a proof. This implies

γ(n : k) ≥ γ(n− 2 : k − 1).

It is unlikely that any of these inequalities is ever tight. However, homomor-
phisms might be helpful in exploring the structure of minimum size dominating
sets in Kneser graphs. See Section 7.9 of Godsil and Royle [22] for more on
homomorphisms between Kneser graphs.

4.2.2 Projective planes

We make note of the following result, first proved by Meyer in [42] (though
Godsil in [21] also independently attributes it to Jurkiewicz and Wager).

4.2.6 Theorem. If n ≥ k2 − k + 1 then the projective plane of order k− 1 is a
dominating set in Kn:k.

The projective plane of order k − 1 has size k2 − k + 1 so Theorem 4.2.6
implies that γ(n : k) ≤ k2−k +1 when n ≥ k2−k +1 and a projective plane of
order k − 1 exists. However, computational evidence suggests that this bound
is not close to tight; we will see in Section 4.6 that even though the bound is
tight for k = 3 and n = k2 − k + 1 = 7, we have

γ(13, 4) ≤ 10 < 13 = k2 − k + 1

for k = 4 and
γ(21, 5) ≤ 12 < 21 = k2 − k + 1

for k = 5, which does not bode well. Moreover, the theorem can only be applied
to a particular k when a projective plane of order k − 1 exists, which is only
known to be happen when k − 1 is a power of a prime.

Thus the projective plane is most likely useless in the search for minimum
size dominating sets. Observe, however, that by definition it is an independent
dominating set. This will have great significance in Chapter 8, where we discuss
independent dominating sets in Kneser graphs and their relevance to a problem
in extremal combinatorics.
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4. DOMINATING KNESER GRAPHS

4.3 Total domination and covering designs

Recall that a total dominating set is a vertex subset S ⊆ V such that every
x ∈ V has a neighbor in S. Compare this to the definition of a dominating set,
where only vertices not in S are required to have neighbors in S. It follows that
every total dominating set is a dominating set, but the gap between the size of
the smallest dominating and smallest total dominating sets can be, in general,
large.

In this section we make some basic observations about total dominating sets
in Kneser graphs as a preface to our discussion, in the next section, of the work
of Hartman and West. Recall that γt(n : k) is the total domination number of
Kn:k, the size of the smallest total dominating set. If T is a total dominating
set in Kn:k, then every k-subset of [n] is disjoint from some k-subset in T .

As Hartman and West observed, this means that T is a total dominating set
if and only if the complements of the k-subsets in T form a (n, n−k, k) covering
design, which implies that

γt(n : k) = C(n, n− k, k).

Now the lower bound

γt(n : k) ≥
(

n

k

)/(
n− k

k

)
is suggested both by equation (3.2.1) and by the total domination analogue of
the sphere-covering bound that we saw in Section 1.2.

Recall that a totally perfect 1-code in a regular graph is a total dominating
set whose neighborhoods partition the vertex set. Thus T is a totally perfect 1-
code in Kn:k if and only if every k-subset is disjoint from exactly one member of
T , i.e. if and only if the complements of the k-subsets in T form an (n, n−k, k)
Steiner system. This suggests that totally perfect 1-codes in Kneser graphs are
rare, but to prove it would be immensely difficult. We will see more connections
between Kneser graphs and Steiner systems when we discuss the odd graphs in
Chapter 5.

Hartman and West observe in [27] that if n ≥ r(k + 1) then

C(n, n− r, k) = k + 1.

The proof is identical to the proof of Theorem 4.2.1. To wit, one first observes
that the set of complements of k+1 disjoint r-subsets is an (n, n−r, k) covering
design. One then shows that given any collection T of k r-subsets it is possible
to find a subset of size at most k that intersects every member of T .

Taking r = k above, we conclude that when n ≥ k(k + 1) we have

C(n, n− k, k) = γt(n : k) = γ(n : k) = k + 1.

Thus when n is sufficiently large, γt(n : k) and γ(n : k) are equal (in fact, it is
easy to conclude this directly from the proof of Theorem 4.2.1). At the other
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extreme, when n is the minimum value of 2k, we have γ(n : k) = 1
2

(
2k
k

)
and

γt(n : k) =
(
2k
k

)
, so that the total domination number is significantly larger than

the domination number.
The obvious question is, How do the domination number and the total dom-

ination number compare when 2k < n < k(k + 1)? Hartman and West tackled
this question in [27], showing that the two values are equal when n ≥ 3

4k2 + k.
The next section deals with their work.

4.4 Determining γ(n : k) for large n

In [27], Hartman and West determine γ(n : k) when n ≥ 3
4k2 +k, and also show

that γ(n : k) = γt(n : k) for these values of n. In this section we highlight their
results and discuss some of the proofs.

Before we do so, we make the following observation. When dealing with
Kneser graphs, domination and total domination can be phrased as follows. If
S is a collection of subsets of [n], a transversal of S is a subset of [n] that
intersects every subset in S. If we let S be a collection of k-subsets, we see
that S dominates Kn:k if and only if every transversal of S of size at most k is
contained in some member of S. Similarly, S is a total dominating set if and
only if all transversals of S are of size at least k + 1.

The main theorem in [27] is the following:

4.4.1 Theorem. If k(k + 1) − `bk/2c ≤ n < k(k + 1) − (` − 1)bk/2c, where
0 ≤ ` ≤ bk/2c, then γt(n : k) = γ(n, k) = k + 1 + `.

To prove the theorem, Hartman and West first prove an upper bound on
γt(n : k) with an explicit construction of a total dominating set.

4.4.2 Theorem. If n ≥ k(k+1)−`bk/2c and ` ≤ dk/2e then γt(n : k) ≤ k+1+`.

Proof. By monotonicity we may assume that n = k(k + 1)− `bk/2c.
Define a triangle configuration to be the following set of three k-subsets of

{1, 2, . . . , d3k/2e}. If k is even, the three sets have pairwise intersections of size
k/2 and no common elements. If k is odd, two sets intersects at k+1

2 elements
and the third set is formed by taking the remaining k−1

2 elements from each of
the previous two sets and adding one final element. Note that in either case,
the smallest transversal of a triangle configuration has size 2.

Now define S, a set of k-subsets of [n], to consist of k +1− 2` disjoint k-sets
and ` triangle configurations formed from the remaining elements of [n]. Note
that this is possible because

k(k + 1− 2`) + `

⌈
3k

2

⌉
= k(k + 1)− `bk/2c = n.

Since each triangle configuration consists of three subsets, we have

|S| = (k + 1− 2`) + 3t = k + 1 + `.
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4. DOMINATING KNESER GRAPHS

Finally, it is easy to see that by construction, the smallest transversal of S has
size k + 1, so that S is a total dominating set.

Next, Hartman and West prove the following technical lemma, which will
imply a lower bound on γ(n : k) that matches the upper bound above.

4.4.3 Lemma. Fix positive integers n, k, r, ` such that n < r(k+1)−(`−1)br/2c.
If S is a collection of r-subsets of [n] of size at least k+` then there exists S ⊆ [n]
that intersects at least |S|+ ` members of S.

Given any collection of k-subsets S of size k + `, the lemma can be used
to construct a transversal of S of size k that is not in S, proving the following
lower bound on γ(n : k):

4.4.4 Theorem. If k ≥ 3 and n < k(k+1)−(`−1)bk/2c, where 0 ≤ ` ≤ bk/2c,
then γ(n, k) ≥ k + 1 + `.

See [27] for details. The condition on k only excludes the case K5:2, the
Petersen graph, which has domination number 3.

Since γt(n : k) ≥ γ(n : k), Theorems 4.4.2 and 4.4.4 combine to give Theorem
4.4.1. It is convenient to rewrite this theorem in a more user-friendly manner
by setting n equal to its lower bound and using the bound on ` to eliminate
that variable; we do so in a corollary.

4.4.5 Corollary. If k(k + 1) ≥ n ≥ 3
4k2 + k then

γ(n : k) = γt(n : k) = k + 1 +
⌈

k(k + 1)− n

bk/2c

⌉
.

It is straightforward to generalize the above arguments, as Hartman and
West do, to show that

C(n, n− r, k) = k + 1 +
⌈

r(k + 1)− n

br/2c

⌉
. (4.4.1)

when 3
4rk + r ≤ n ≤ r(k + 1).

4.5 Two useful results

In this section we prove two results that will be useful when we attempt to
determine γ(n : k) for some small values of n and k. The first result is derived
to a large extent from the work of Hartman and West, and states that when n
is not too small, a small dominating set must be total. The second result is a
recursive lower bound on γ(n : k) when n is a multiple of k.
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4.5.1 Small dominating sets are total

A slightly weaker version of the following theorem is implicit in the work of
Hartman and West (in particular, the proof of their Theorem 7 from [27]).

4.5.1 Theorem. Let S be a dominating set in Kn:k, k ≥ 4. If n ≥ k + |S| and
|S| ≤ 2k then S is a total dominating set.

Proof. It suffices to show that S has no transversal of fewer than k+1 elements.
It is easy to see that S cannot have transversal of k− 1 or fewer elements, since
such a transversals would have at least n− k + 1 > |S| extensions to a k-set, so
it is impossible for S to contain all of them. It remains to show that S has no
transversal of size k.

For the sake of contradiction assume that S has a transversal S of size k,
which it must then contain. We have already observed that no (k− 1)-subset of
S can be a transversal of S, so for every i ∈ S there exists at least one member
of S that intersects S precisely at i. Since |S \{S}| < 2k there exists i ∈ S such
that only one such subset exists. In other words, there exists i ∈ S and Si ∈ S
such that S \ {i} is a transversal of S \ {Si}.

Define S− = S \{i}. Since S− is a transversal of S \{Si}, adding any j ∈ Si

to S− yields a transversal of S, hence every such k-set is in S; denote this subset
of S by T .

Define T ′ = S \ (T ∪ {Si}). Since |T | = k it follows that

|T ′| = |S| − k − 1 ≤ k − 1.

But by our observations above, for every i ∈ S− there exists at least one k-set in
S that intersects S− precisely at i, from which it follows that T ′ is exactly the
set of these k-sets, and each of these k-sets intersects S− at a unique, distinct
element.

Pick a transversal T of T ′ of size at most k−1 by choosing one element not in
S− from every set in T ′. It is possible to extend T to a transversal of S in k−1
ways by the addition of an element in S−. Since any such extension intersects
S− in exactly one element, the set of these intersections is exactly T ′, meaning
that every set in T ′ is an extension of T (we note that since |T ′| = |S| − k − 1,
this forces |S| = 2k).

It follows that every member of S, except Si, contains either S− or T . This
implies that there exists a transversal of S of size at most 3 ≤ k−1, a possibility
that we had ruled out at the very beginning of this proof. We have, then, our
desired contradiction, and we conclude that S cannot have a transversal of size
k and thus is a total dominating set.

It follows from the theorem that If k ≥ 4, n ≥ k +γ(n : k) and γ(n : k) ≤ 2k
then γ(n : k) = γt(n : k).

4.5.2 A recursive lower bound

We begin with a definition. The incidence graph of Kn:k, written In:k, is a
bipartite graph with one part of size n corresponding to [n] and another part of
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4. DOMINATING KNESER GRAPHS

size
(
n
k

)
corresponding to the vertices of Kn:k. There is an edge between i ∈ [n]

and S ∈ V (Kn:k) if and only if i ∈ S.
Given a vertex subset S ⊆ V (Kn:k), let In:k denote the subgraph of ISn:k

induced by S and [n], called the incidence subgraph.

Now, let S be a vertex subset of the Kneser graph Kn:k, n ≥ 2k + 1. Given
i ∈ [n], recall that S[i] is defined to consist of the members of S that contain i.
An elementary averaging argument proves the following useful lemma.

4.5.2 Lemma. Given any S ⊆ V (Kn:k), there exists i ∈ [n] such that∣∣S[i]
∣∣ ≥ k|S|/n.

Proof. Consider the incidence graph ISn:k; recall that the two parts correspond
to [n] and S. Every vertex in the S part has degree k, so the total number of
edges is k|S|. Thus the average degree of a vertex in the [n] part is k|S|/n, and
there exists i ∈ n whose degree is at least this value.

We now prove the promised recursive lower bound.

4.5.3 Lemma. Assume that n = αk, where α, k ≥ 2. Then

γ(n : k) ≥ α

α− 1
(
γ(n + k : k)− 1

)
.

Proof. Let S be a minimum size dominating set in Kn:k. Choose i ∈ [n] such
that

∣∣S[i]
∣∣ ≥ kγ(n : k)/n; such an i exists by Lemma 4.5.2. Since n = αk, we

have ∣∣S[i]
∣∣ ≥ kγ(n : k)

n
=

γ(n : k)
α

.

Now regard the members of S as vertices in Kn+k:k, and define

S+ =
(
S \ S[i]

)⋃
{U}

where U = {n + 1, . . . , n + k} ∈ V (Kn+k:k).
We claim that S+ is a dominating set in Kn+k:k. To see this, let W be a

vertex in Kn+k:k \ S+. If W ∩ U = ∅ then W ∼ U in Kn+k:k, so assume that
|W ∩ U | > 0. Then W contains at most k − 1 elements in [n]. Define W ′ ⊂ [n]
by adding i to W ∩ [n], and then adding arbitrary elements of [n] until |W ′| = k.
Since W ′ ∈ V (Kn:k) and S is a dominating set in that graph, there exists S ∈ S
such that W ′ ∩ S = ∅. Since i ∈ W ′ we know that S ∈ S \ S[i], so S ∈ S+.
But W ∩ [n] ⊆ W ′ so W ′ ∩ S = ∅ implies W ∩ S = ∅, as desired. Thus S+ is a
dominating set in Kn+k:k.

It follows that |S+| ≥ γ(n + k : k). But by our choice of i,

|S+| =
∣∣(S \ S[i]) ∪ {U}

∣∣ = |S| −
∣∣S[i]

∣∣+ 1 ≤ γ(n : k)− γ(n : k)
α

+ 1
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so that

γ(n : k)− γ(n : k)
α

+ 1 ≥ γ(n + k : k)

γ(n : k) ≥ α

α− 1
(
γ(n + k : k)− 1

)
as desired.

It is possible to use Lemma 4.5.3 to prove a lower bound on γ(n : k) by
induction, starting with the fact that γ(n : k) = k + 1 when n = k(k + 1).

4.5.4 Proposition. Assume that n = αk, where 2 ≤ α ≤ k + 1. Then

γ(n : k) ≥ 1
2

(
k(k + 1)
α− 1

+ α

)
.

This bound, however, is not very good since it is only tight for α = k+1; the
bound gets worse and worse with every inductive application of the inequality in
Lemma 4.5.3. It is even worse than the sphere-packing bound when α is small.

It is often much more helpful to use Lemma 4.5.3 directly to generate a
lower bound on γ(αk : k) after γ(αk+k : k) has been determined. For instance,
applying Proposition 4.5.4 to K12:4 gives γ(12 : 4) ≥ 7. However, Corollary
4.4.5 tells us that γ(16 : 4) = 7, and combining this with Lemma 4.5.3 gives the
better bound γ(12 : 4) ≥ 9.

4.6 Known values of γ(n : k)

In this section we compute γ(n : k) for some small values of n, k. These values
are recorded in Table 4.1. The companion Table 4.2 records known values of
γt(n : k) (all data in this table are taken from the La Jolla Covering Repository
[23]). Recall that we have already shown in Corollary 4.2.2 that γ(n : 2) = 3
for all n ≥ 4. Below we discuss the case k = 3, which is completely resolved,
and the cases k = 4, 5, which are not.

Both Tables 4.1 and 4.2 obey the following conventions. Rows in the table
correspond to values of n while columns correspond to values of k. An entry is
in boldface when n = k(k + 1), and it follows that all entries below a boldface
entry are equal to k + 1. When an entry is unknown the table lists the best
known upper and lower bounds.

There is an additional convention in Table 4.1: an entry is italicized when
n < k(k + 1) and γ(n : k) = γt(n : k).

4.6.1 k = 3

If n ≥ 12 then γ(n : 3) = 4 by Theorem 4.2.1. Also, γ(6 : 3) = 1
2

(
6
3

)
= 10.
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n/k 2 3 4 5
4 3 - - -
5 3 - - -
6 3 10 - -
7 3 7 - -
8 3 7 35 -
9 3 7 22 ≤ · · · ≤ 27 -
10 3 6 14 ≤ · · · ≤ 20 126
11 3 5 10 ≤ · · · ≤ 17 66
12 3 4 10 ≤ · · · ≤ 12 36 ≤ · · · ≤ 59
13 3 4 10 23 ≤ · · · ≤ 42
14 3 4 9 16 ≤ · · · ≤ 32
15 3 4 8 14 ≤ · · · ≤ 27
16 3 4 7 11 ≤ · · · ≤ 22
17 3 4 7 11 ≤ · · · ≤ 17
18 3 4 6 11 ≤ · · · ≤ 15
19 3 4 6 11 ≤ · · · ≤ 14
20 3 4 5 11 ≤ · · · ≤ 12
21 3 4 5 11 ≤ · · · ≤ 12

Table 4.1: Some values of γ(n : k).

n/k 2 3 4 5
4 6 - - -
5 4 - - -
6 3 20 - -
7 3 12 - -
8 3 8 70 -
9 3 7 30 -
10 3 6 20 252
11 3 5 17 96 ≤ · · · ≤ 100
12 3 4 12 55 ≤ · · · ≤ 59
13 3 4 10 33 ≤ · · · ≤ 42
14 3 4 9 28 ≤ · · · ≤ 32
15 3 4 8 24 ≤ · · · ≤ 27
16 3 4 7 18 ≤ · · · ≤ 22
17 3 4 7 17
18 3 4 6 15
19 3 4 6 14
20 3 4 5 12
21 3 4 5 12

Table 4.2: Some values of γt(n : k) (see La Jolla Covering Repository [23]).
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When n = 10, 11 we can use Corollary 4.4.5 to determine γ(n : 3):

γ(10 : 3) = 4 +
⌈

12− 10
b3/2c

⌉
= 6

γ(11 : 3) = 4 +
⌈

12− 11
b3/2c

⌉
= 5

When n = 7, Theorem 4.2.6 tells us that the projective plane of order 2 is
a dominating set in K7:3. However, we know from the sphere-covering bound
that

γ(7 : 3) ≥
(
7
3

)(
4
3

)
+ 1

= 7 (4.6.1)

so that γ(7 : 3) = 7. In particular, the projective plane of order 2 is a perfect
1-code in K7:3.

We are left with n = 8, 9. By monotonicity (Proposition 4.2.4) we know that
γ(8 : 3) and γ(9 : 3) are at most 7, so it suffices to show that neither K8:3 nor
K9:3 has a dominating set of size 6.

4.6.1 Proposition. γ(8 : 3) ≥ 7.

Proof. Assume for the sake of contradiction that S is a dominating set of size
6 in K8:3. Recall that S[i] is the set of members of S that contain some fixed i.
Choose i ∈ [n] that maximizes |S[i]|; by Lemma 4.5.2, there exists j ∈ [8] such
that |S[j]| ≥ 3, so we know that |S[i]| ≥ 3 for our chosen i.

We cannot have |S[i]| = 6 since then S would have to contain all 3-subsets of
[8] that contain i, of which there are

(
7
2

)
= 21. Thus we can assume |S[i]| ≤ 5.

If there exists j ∈ [n] such that every subset in S \ S[i] contains j, then S
must contain every 3-subset that contains both i and j, of which there are 6,
implying the contradiction |S[i]| ≥ 6. This implies in particular that there must
be more than one set in S \ S[i], so that |S[i]| ≤ 4.

If |S[i]| = 4 then |S \S[i]| = 2 and by the above the two 3-subsets in S \S[i],
call them S and T , must be disjoint. Then there are nine 3-subsets that contain
i and intersect both S and T that must thus be in S, a contradiction.

If |S[i]| = 3 then there are three 3-subsets not containing i, call them S, T, R.
Clearly not all three can be disjoint, so assume that S and T contain some j in
their intersection. By the above, j cannot be in R, so S must contain the three
3-subsets that contain i, j, and an element of R; indeed, S[i] must be the set of
these three 3-subsets. But then |S[j]| ≥ 2 + |S[i]| = 5, which we already proved
cannot be.

Since |S[i]| ≥ 3, all cases have been considered and the claim is true.

The case n = 9 is similar to n = 8, but is significantly more tedious.

4.6.2 Proposition. γ(9 : 3) ≥ 7.

Proof. Assume for the sake of contradiction that S is a dominating set of size 6
in K9:3. As before, we choose i ∈ [9] that maximizes |S[i]|.
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Figure 4.1: A bad partition of a dominating set of size 6 in K9:3.

Assume first that |S[i]| ≥ 3. Then the proof of Proposition 4.6.1, the case
n = 8, extends to the case n = 9 in its entirety. We conclude that we must have
|S[i]| ≤ 2. However, unlike in the n = 8 case, Lemma 4.5.2 cannot now be used
to end the proof because it no longer guarantees the existence of i ∈ [9] such
that |S[i]| ≥ 3. All it implies is that |S[j]| ≥ 2 for some j ∈ [9].

It follows that |S[i]| = 2, but we can say even more: |S[j]| = 2 for every
j ∈ [9]. To see why, consider the incidence subgraph IS9:3 and note that the
degree of every j ∈ [9] equals |S[j]|. Now, IS9:3 has 18 edges since |S| = 6,
meaning the degree of every vertex corresponding to an element of [9] cannot
be less than 2, yet must be at most 2 because |S[i]| ≤ 2 for the i that maximizes
|S[i]|.

Before we go on, we make an important observation. Define a bad partition of
S to be a partition of its six elements into three pairs {S1, S

′
1}, {S2, S

′
2}, {S3, S

′
3},

such that S` ∩ S′` 6= ∅ for each `. This is illustrated in Figure 4.1. If a bad par-
tition of S exists then, under the assumption that |S[j]| = 2 for every j ∈ [9], S
cannot be a dominating set. This is because if it were, and we defined i` to be
an element in S` ∩ S′`, then S would have to contain {i1, i2, i3}, which implies
that |S[i`]| ≥ 3 for one of the `, a contradiction. We will often make use of this
observation in order to produce contradictions.

To proceed, we first claim that S contains three pairwise disjoint subsets.
To see this, observe first that it must contain two subsets that are disjoint, for
otherwise any two of its members have a nonempty intersection so an arbitrary
partition of S into pairs would be a bad partition. We can assume that the two
disjoint subsets are S = {1, 2, 3} and R = {4, 5, 6}. Let the other four subsets
in S be T,U, V,W . We will show that one of these must equal {7, 8, 9}.

Assume otherwise. Since S[7] = S[8] = S[9] = 2 and we assume that
{7, 8, 9} /∈ S, there must exist at least 2 subsets in {T,U, V,W} such that each
intersects {7, 8, 9} at 2 elements (this is clear from the incidence subgraph in-
duced by the blocks {T,U, V,W}, illustrated in Figure 4.2). Say T,U are these
two subsets. They then must intersect at some element in {7, 8, 9}, say 7. What
about V and W? Well, since we must satisfy S[7] = S[8] = S[9] = 2, neither
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contains 7 and there two possibilities; either one of V,W contains both 8 and 9,
or one contains 8 and the other 9. If the former is true, say {8, 9} ⊂ V , then V
intersects either S or R; assume S. Then {T,U}, {V, S}, {W,R} is a bad parti-
tion. If the latter is true then it is similarly possible to create a bad partition by
pairing up T and U , S and the subset in {V,W} that intersects it, and R and
the other subset in {V,W}. Thus assuming {7, 8, 9} /∈ S always yields a bad
partition, so we must have {7, 8, 9} ∈ S, hence a set of three pairwise disjoint
subsets in S.

Figure 4.2: The incidence subgraph induced by the blocks {T,U, V,W} in the
proof of Proposition 4.6.2.

Now that we have established the claim, it is easy to produce the final
contradiction. Let T be the set of the three pairwise disjoint subsets of S, and
let T ′ = S \ T . Recall that we are also still assuming that |S[i]| = 2 for every
i ∈ [9].

We create a bad partition of S as follows. If there exist T ∈ T and T ′ ∈ T ′
such that |T ∩T ′| = 2 then pair up T and T ′. After doing so, take the remaining
subsets in T and T ′ and pair them up arbitrarily. Since the three sets in T
partition [9] and |S[i]| = 2 for every i ∈ [9], this procedure is guaranteed to yield
a bad partition. We can finally conclude that there cannot exist a dominating
set S of size 6 in K9:3.

4.6.2 k = 4

When 16 ≤ n ≤ 19, Corollary 4.4.5 tells us that

γ(16 : 4) = 5 +
⌈

20− 16
b4/2c

⌉
= 7 (4.6.2)
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and similarly, that γ(17 : 4) = 7 and γ(18 : 4) = γ(19 : 4) = 6.

When n = 9 the graph in question cannot have a perfect 1-code (we will see
why in Chapter 5); thus

γ(9 : 4) >

(
9
4

)(
5
4

)
+ 1

= 21.

An upper bound of 27 on γ(9 : 4) follows from a simple construction. Define
U1 = {1, 2, 3}, U2 = {4, 5, 6}, U3 = {7, 8, 9}. Now let S be the set containing
every 4-subset S such that |S∩Ui| = |S∩Uj | = 2 for some i 6= j. It follows that
|S| =

(
3
2

)3
= 27. Now, if R is a 4-subset of [9] not in S then either R intersects

all three Ui or R contains some Ui. In either case it is easy to see that R is
disjoint from a member of S.

Recall that γ(n : k) ≤ γt(n : k) = C(n, n − k, k), so the number of blocks
in an (n, n − k, k) covering design provides an upper bound on γ(n : k). We
can thus deduce upper bounds for 10 ≤ n ≤ 15 by consulting the list of known
covering designs at the La Jolla Covering Repository [23].

All of these covering designs are in fact optimal, so that γ(n : 4) will be
determined for some n in this range if we can show that

γ(n : 4) = γt(n : 4).

When n = 15 this follows from Theorem 4.5.1, so that γ(15 : 4) = 8. Mono-
tonicity then implies that

8 ≤ γ(14 : 4) ≤ γt(14 : 4) = 9.

If we assume that γ(14 : 4) = 8 then we can again apply Theorem 4.5.1 and con-
clude that γt(14 : 4) = 8, a contradiction. Thus it is also implied by this theorem
that γ(14 : 4) = 9. Monotoncity now implies that γ(12 : 4) ≥ γ(13 : 4) ≥ 9.
Recall from our discussion in Section 4.5.2 that this lower bound on γ(12 : 4)
can be deduced using Lemma 4.5.3.

Let us now consider γ(13 : 4). Monotonicity implies that γ(13 : 4) ≥ 9,
and the La Jolla Covering Repository, which lists an optimal (13, 9, 4) covering
design with 10 blocks, tells us that γ(13 : 4) ≤ 10. To show that γ(13 : 4) = 10
it suffices to prove, in the style of Theorem 4.5.1, that if there is a dominating
set of size 9 in K13:4 then it must be a total dominating set. We cannot apply
Theorem 4.5.1 directly since 9 > 2k when k = 4, but we can deduce enough
information from its proof to establish the claim.

4.6.3 Lemma. Let S be a dominating set of size 2k + 1 in Kn:k, k ≥ 4. If
3k + 1 ≤ n < k2 − 1 and S is a transversal of S then

(i) for every i ∈ S there are two blocks whose intersection with S is {i};
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(ii) every block that is not equal to S must intersect S at precisely one
element;

(iii) if Si and Ti are the two blocks that intersect S at i for some fixed i
then Si ∩ Ti = {i}.

Proof. We proceed as we did in the proof of Theorem 4.5.1. Observe that once
again S cannot have a transversal of size k − 1 because n ≥ k + |S|. As before
this implies that for every i ∈ S there exists at least one block that intersects S
precisely at i.

If we assume that there exists i ∈ S such that precisely one block intersects
S at i, then it is possible to reach a contradiction by making some simple
modifications to the proof of Theorem 4.5.1. We omit the details, mentioning
only that because the assumption |S| ≤ 2k has been relaxed to |S| = 2k + 1,
the set T ′ can have k elements and not, as before, at most k− 1. However, the
additional hypothesis n < k2 − 1 guarantees that T ′ still has a transversal of
size at most k − 1, which is all that is required for the proof.

It follows that for every i ∈ S there are at least two blocks in S whose
intersection with S is {i}. But |S \ {S}| = 2k, so for every i ∈ S there must be
exactly two blocks in S with this property. This proves the first two claims.

It remains to prove the last claim. Now, if for some i ∈ S there is an element
in Si∩Ti not equal to i, say j, then replacing i with j in S yields a k-subset that
is a transversal of S hence is a block, and that intersects S at k − 1 elements,
which is impossible by the second claim. Thus Si \ {i} and Ti \ {i} are disjoint
for every i ∈ S.

Let us apply this result in the case k = 4, n = 13. We want to show that a
dominating set of size 9 in K13:4 is total, so let S be such a dominating set and
assume for the sake of contradiction that it has a transversal S.

Given i ∈ S, let Si and Ti be the two blocks of S that intersect S at i. The
lemma tells us that (Si∩Ti)\{i} is a subset of [13]\S of size 6 for every i. Since
|[13] \ S| = 9, it is easy to show that for any fixed i ∈ S there must exist j ∈ S
such that Si \ {i} intersects one of Sj \ {j} or Tj \ {j}, say at a, and Ti \ {i}
intersects the other, say at b (the details are straightforward and tedious). This
means that replacing i and j in S with a and b yields a transversal of S, which
must be a block, that intersects S at exactly two elements; this is impossible by
the lemma.

Thus the assumption that S has a transversal of size k produces a contra-
diction, meaning that S is a total dominating set of size 9. But γt(13 : 4) = 10,
so this cannot be, meaning that we cannot have a dominating set of size 9 in
K13:4 to begin with, i.e. γ(13 : 4) = 10.

We note that monotonicity now implies that γ(12 : 4) ≥ 10; when n = 11
this already follows from the sphere-covering bound.

4.6.3 k = 5

We can say very little about k = 5. The most important observation is that
K11:5 has a perfect 1-code, which is not known to happen often, so γ(11 : 5)
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meets the sphere-covering bound of 66. This fact is implied by the existence of
a (unique) (11, 5, 4)-Steiner system, originally discovered by Witt (see Cameron
and van Lint [6]). There is in fact a general equivalence between perfect 1-codes
in Kneser graphs of the form K2k+1:k and certain Steiner systems; we have
already seen an example with K7:3. We defer an in-depth discussion of this
interesting topic to the next chapter.

All of the upper bounds for n ≥ 12 are again those implied by the existence
of certain covering designs, as listed in the La Jolla Covering Repository [23].

As for lower bounds, Corollary 4.4.5 only applies for n ≥ 24, so we cannot
apply it directly. However, we can use it once again in conjunction with Lemma
4.5.3. To wit, the corollary tells us that γ(25 : 5) = 8, and two applications of
the lemma tell us that γ(20 : 5) ≥ 10 and γ(15 : 5) ≥ 14. Monotonicity then
implies that γ(n : 5) ≥ 10 for n ≤ 19.

We observe that since γt(n : 5) ≥ 12 for the values of n in the table, Theorem
4.5.1 can be used to increase a lower bound of 10 to 11 for n ≥ 15. If n ≤ 15,
the sphere-covering bound is already greater than 11.

4.7 Open problems

The data in Table 4.1 suggest that even though γ(n : k) = γt(n : k) when n is
large, as formalized by Hartman and West, the two quantities gradually diverge
until γ(n : k) is much smaller than γt(n : k) when n is near 2k. One way to
formalize this phenomenon would be to prove the following conjecture.

4.7.1 Conjecture. γt(n + 1 : k)− γ(n + 1 : k) ≤ γt(n : k)− γ(n : k).

Observe that this conjecture implies that if γt(n : k)− γ(n : k) = 0 for some
n then γt(n′ : k)−γ(n′ : k) = 0 for all n′ > n. Perhaps it is possible to estimate
the value of n at which the difference γt(n : k)− γ(n : k) first becomes nonzero,
at least asymptotically; that seems like a neat though very difficult problem.

Another interesting (and difficult) open problem is the classification of min-
imum size dominating sets in Kn:k when 2k + 1 ≤ n < 3

4k2 + k. This might
be possible when n is quadratic in k, as suggested by the work of Hartman and
West, but is likely to be very difficult when n is linear in k. There are, however,
less ambitious but interesting questions. We could ask, for instance, whether
γ(n+1 : k) = γ(n : k) implies that the minimum size dominating sets in Kn+1:k

are the minimum size dominating sets in Kn:k.
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Chapter 5

Perfect 1-codes in odd
graphs

We have mentioned before that the odd graphs are the Kneser graphs of the
form K2k+1:k. Let us fix the notation O(k) for the odd graph K2k+1:k. Since
odd graphs are Kneser graphs, it follows that O(k) is a regular graph on

(
2k+1

k

)
vertices of degree k + 1.

In this chapter we consider the existence of perfect 1-codes in odd graphs.
We prove that if a perfect 1-code exists in O(k) then k + 2 is prime, a corollary
of the well-known result that perfect 1-codes in O(k) are equivalent to certain
Steiner systems. We end with a new result showing that an odd graph with a
perfect 1-code admits a nontrivial equitable partition. This result is interesting
but is unlikely to be useful.

5.1 Introduction

When does O(k) have a perfect 1-code? This question is motivated by the
fact that perfect 1-codes in O(k) tend to have a very special structure. We
will formalize this fact in the next section; for now, let us whet our palate by
recalling some examples.

We saw, for instance, in Chapter 4 that the projective plane of order 2
is a perfect 1-code in O(3). We saw in the same chapter that there exists a
(unique) Steiner system with parameters (11, 5, 4) that is a dominating set in
O(5). But a Steiner system with these parameters must contain 66 blocks, and
66 is precisely the sphere-covering bound for O(5), meaning this Steiner system
must be a perfect 1-code in O(5).

There are no known perfect 1-codes in O(k) for any other values of k, and
it is believed that no more exist.

In certain cases we know that O(k) cannot have a perfect 1-code. Clearly
this is the case if the sphere-covering bound on γ(2k + 1 : k) is not an integer.
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Recall that this lower bound is

1
k + 2

(
2k + 1

k

)
and it is straightforward to show that this quantity is not an integer if and only
if k + 2 is a power of 2.

More generally, we can show that O(k) cannot have a perfect 1-code for any
even k. This is because, as we saw in Chapter 1, a graph with a perfect 1-code
must have −1 as an eigenvalue. Now, the eigenvalues of O(k) are

(−1)i(k + 1− i) (5.1.1)

for i = 0, . . . , k (see Theorem 9.4.3 of Godsil and Royle [22]), so −1 is an
eigenvalue if and only if k is odd.

We can strengthen this condition even further once we arm ourselves with
the promised result on Steiner systems.

5.2 Odd graphs and Steiner systems

The following theorem is due to Hammond and Smith (see [25]), and a proof
also appears in Godsil [20] (Lemma 11.8.3).

5.2.1 Theorem. A set of k-subsets of [2k+1] is a perfect 1-code in O(k) if and
only if it is a (2k + 1, k, k − 1) Steiner system.

We omit the proof, which is straightforward but involved, and instead focus
on the following corollary.

5.2.2 Corollary. If a perfect 1-code exists in O(k) then k + 2 is prime.

Proof. Our proof follows Godsil [20]. It is easy to verify the claim for k < 3
so assume k ≥ 3. Let S be a perfect 1-code in O(k). By Theorem 5.2.1 S is
a (2k + 1, k, k − 1) Steiner system, so that by Lemma 3.1.1 we know that the
numbers

λs =

(
2k+1−s
k−1−s

)(
k−s

k−1−s

) =
1

k + 2

(
2k + 1− s

k + 1

)
must be integers for 0 ≤ s ≤ k − 1.

Let p be a prime less than k. Then

λk−p =
1

k + 2

(
k + 1 + p

p

)
=

(k + p + 1)(k + p) . . . (k + 3)
p!

so that there exists some j, 3 ≤ j ≤ p + 1, such that p divides k + j. It follows
that p cannot divide k + 2, so that no prime less than k divides k + 2. Since
k ≥ 3 neither k nor k − 1 can divide k + 2, so k + 2 must be prime.
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It follows that O(7) cannot have a perfect 1-code since 9 is not a prime.
What about O(9)? Since it is conjectured that perfect 1-codes do not exist in
O(k) for k > 5 we would not expect O(9) to have one, but we can no longer use
Corollary 5.2.2 to prove it. This claim is true, however, because of the following.

It was shown by Mendelsohn in [40] that any (2k+1, k, k−1) Steiner system
can be uniquely extended to a (2k+2, k+1, k) Steiner system. Thus the existence
of a perfect 1-code in O(9) would imply the existence of a (19, 9, 8) and hence a
(20, 10, 9) Steiner system. The latter, however, cannot exist, as was shown by
Mendelsohn and Rung in [41] using extensive computer calculations.

5.3 Partitioning odd graphs

Let G be a graph with vertex set V . A partition of V is, as usual, a collection
of nonempty pairwise disjoint subsets of V whose union equals V . A partition
π = {C1, . . . , Ct} is equitable if there exist nonnegative integers bij , 1 ≤ i, j ≤ t,
such that any vertex in Ci has precisely bij neighbors in Cj . In such a case we
associate with π a t× t matrix B(π) whose i, j entry is bij .

We make note of the following lemma (for a proof see Lemma 5.2.2 in Godsil
[20] or Theorem 9.3.3 in Godsil and Royle [22]).

5.3.1 Lemma. If π is an equitable partition of a graph G with adjacency matrix
A then the characteristic polynomial of B(π) divides the characteristic polyno-
mial of A.

If a d-regular graph G has a perfect 1-code S then π = {S, V \S} constitutes
a trivial equitable partition: every vertex in S has d neighbors in V \S and every
vertex in V \ S has one neighbor in S. It follows that B(π) is

B(π) =
(

0 d
1 d− 1

)
.

The characteristic polynomial of B(π) is (x − d)(x + 1), so Lemma 5.3.1 now
provides an alternate proof that −1 is an eigenvalue of G when G has a perfect
1-code.

If G is one of the odd graphs then the existence of a perfect 1-code implies
the existence of a more interesting equitable partition.

5.3.2 Theorem. If k ≥ 2 and the odd graph O(k) contains a perfect 1-code
then there exists an equitable partition π of O(k) with

B(π) =


0 0 k 1 0
0 0 0 0 k + 1
1 0 0 1 k − 1
1 0 k 0 0
0 1 k − 1 0 1

 .
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Proof. Recall that O(k) is a regular graph of degree k + 1. Let T be the set
of vertices of O(k) that contain a fixed element of [2k + 1], say 1, and define
R = V \ T , the rest of the vertices. It follows that the vertices of R induce a
matching, since every S ∈ R has precisely one neighbor not containing 1.

Let S be a perfect 1-code in O(k) and consider S∩T . Because S is a Steiner
system by Theorem 5.2.1, it follows that S ∩T is neither empty nor equal to T ,
so that neither is S \ T empty.

Now, S \ T is contained in R, which induces a matching. Since S is an
independent set, every pair of neighbors in R can contain at most one vertex in
S \ T . Define R1 to be the set of vertices in R whose neighbor in R is in S \ T ,
and finally define

R2 = R \
(
R1

⋃
(S \ T )

)
.

Clearly,
π = {S \ T ,S ∩ T , T \ S,R1,R2}

is a partition of the vertex set V . Observe that R2 induces a matching while
the other four cells are independent sets.

We claim that this partition is in fact equitable, and the number of neighbors
that a vertex from a given cell has in some other cell is given by the appropriate
entry in Table 5.1. We now prove this claim by considering each cell of the
partition in turn.

S \ T S ∩ T T \ S R1 R2

S \ T 0 0 k 1 0
S ∩ T 0 0 0 0 k + 1
T \ S 1 0 0 1 k − 1
R1 1 0 k 0 0
R2 0 1 k − 1 0 1

Table 5.1: The partition in Theorem 5.3.2.

We begin with S \ T . Every S ∈ S \ T has one neighbor in R1 and none in
R2, by definition of the latter two sets. Since S is an independent set, S has no
neighbors in S \ T or S ∩ T , so its k remaining neighbors must be in T \ S.

Moving on to S ∩ T , we observe that S ∈ S ∩ T has no neighbors in S ∩ T
or S \ T since S is independent, nor in T \ S since T is also independent. If S
had a neighbor U ∈ R1 it would share it with the neighbor of U in R, which by
definition is in S \ T ; this cannot be since S is a perfect 1-code, so that every
vertex in V \ S has a unique neighbor in S. Thus Γ(S) ⊆ R2.

Now consider S ∈ T \ S. It has no neighbors in T , but since S is a perfect
1-code it has a single neighbor in S \ T . Now, if U ∈ R1 and we let NU denote
the unique neighbor of U in S \ T , then S ∼ U if and only if S \ {1} ⊂ NU .
But |S \ {1}| = k − 1 and S is a (2k + 1, k, k − 1) Steiner system by Theorem
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Figure 5.1: The partition of O(k) in Theorem 5.3.2. The label on an edge
between two cells is the number of neighbors that a vertex in one of the cells
(the one that contains the solid circle attached to the line) has in the other.

5.2.1, so there is exactly one vertex in S that contains S \ {1}. This implies
that S has exactly one neighbor in R1, and it follows that its remaining k − 1
neighbors are in R2.

Next is S ∈ R1; it has a unique neighbor in S \ T and so has none in S ∩T .
By construction it has no neighbors in R1 or R2, so its remaining k neighbors
are in T \ S.

Finally, if S ∈ R2 then, since R2 induces a submatching of the matching
induced by R, S has one neighbor in R2 and none in R1 ∪ (S \ T ). Also, S
must have one neighbor in S, so this neighbor must be in S ∩ T , meaning the
remaining k − 1 neighbors of S are in T \ S.

This completes the proof of the claim and the theorem.

The partition in Theorem 5.3.2 is illustrated in Figure 5.1. It follows from
the theorem that (S ∩ T ) ∪R1 is also a perfect 1-code in O(k).

One would hope that Theorem 5.3.2 could be used with Lemma 5.3.1 to
provide additional information about k when O(k) has a perfect 1-code. This,
unfortunately, is not the case since the characteristic polynomial of the matrix
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B(π) in Theorem 5.3.2 is

(x− 2)(x + 1)2(x + k)(x− k − 1)

so every eigenvalue of B(π) is already guaranteed to be an eigenvalue of A by
the mere fact that k is odd (see equation 5.1.1).

Finally, for completeness we record the sizes of the cells in the partition of
Theorem 5.3.2. Recall that µ(S) is the measure of a vertex subset S. Since T
is the set of k-subsets that contain 1,

µ(T ) =

(
2k

k−1

)(
2k+1

k

) =
k

2k + 1

Substituting s = 1 in Lemma 3.1.1 tells us that

µ(S ∩ T ) =
k

(2k + 1)(k + 2)

which then implies

µ(S \ T ) =
k + 1

(2k + 1)(k + 2)

µ(T \ S) =
k(k + 1)

(2k + 1)(k + 2)
.

Finally, the data in Table 5.1 imply that that |R1| = |S \ T | and |R2| = |T \S|.

46



Chapter 6

Semi-covering designs

Motivated by the search for lower bounds on γ(n : k) as well as the relationship
between total dominating sets in Kneser graphs and covering designs, we make
the following definition.

An (n, r, k) semi-covering design is a family of r-subsets of [n], again called
blocks, such that for every k-subset S there exists at least one block that either
contains S or whose complement contains S.

The minimum number of blocks in an (n, r, k) semi-covering design will be
written SC(n, r, k). Clearly, SC(n, r, k) = SC(n, n− r, k). We also have

SC(n, r, k) ≤ min{C(n, r, k), C(n, n− r, k)}

since every covering design is a semi-covering design.

Observe that an (n, k, k) semi-covering design S consists of a family of k-
subsets of [n] such that every k-subset is either a block of S or is in the com-
plement of a block. In other words S is a dominating set in Kn:k, which implies
that

γ(n : k) = SC(n, k, k) = SC(n, n− k, k).

Thus semi-covering designs can be regarded as combinatorial generalizations of
dominating sets in Kneser graphs.

Our aim in this chapter is to prove a recursive lower bound on SC(n, r, k)
analogous to the Schönheim bound (Theorem 3.2.2) for covering designs. We
begin with some basic results on semi-covering designs, including a proof that
SC(n, r, k) = k + 1 when n is large. Then we prove the promised lower bound,
and finally close with some open questions.

In this chapter we will always assume that k ≤ min{r, n− r}, for otherwise
an (n, r, k) semi-covering design is forced to be either an (n, r, k) or (n, n− r, k)
covering design. We will also assume r ≤ n, an obvious necessity.
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6.1 Some basic results

Let S be a collection of r-subsets of [n] and let Sc denote the set of comple-
ments of members of S. If S is an (n, r, k) semi-covering design then every
k-subset that is not contained in a member of S is contained in a member of Sc.
Rephrasing slightly, S is an (n, r, k) semi-covering design if and only if every
transversal of S of size k is contained in a member of S and every transversal
of Sc of size k is contained in a member of Sc. We will use this observation below.

We begin with a trivial lower bound. Every block in an (n, r, k) semi-covering
design covers

(
r
k

)
k-subsets and its complement covers another

(
n−r

k

)
, which

implies a trivial lower bound analogous to inequality (3.2.1):

SC(n, r, k) ≥
(
n
k

)(
r
k

)
+
(
n−r

k

) . (6.1.1)

Observe that when r = k this lower bound reduces to

SC(n, k, k) ≥
(
n
k

)(
n−k

k

)
+ 1

,

the sphere-covering bound on γ(n : k), no surprise since SC(n, k, k) = γ(n : k).
In the next section we will prove a less trivial lower bound.

Pursuing the analogy with covering designs, one might ask whether the lower
bound (6.1.1) is asymptotically optimal, as was the case with covering designs.
The answer, however, is no, as the next result shows.

6.1.1 Theorem. If n ≥ r(k + 1) then SC(n, r, k) = k + 1.

Proof. We saw in Section 4.3 that C(n, n − r, k) = k + 1 when n ≥ r(k + 1),
which implies that

SC(n, r, k) = SC(n, n− r, k) ≤ C(n, n− r, k) = k + 1

for such n. It remains to show that SC(n, r, k) ≥ k + 1; our proof will be quite
similar to the proof of Theorem 4.2.1, where we proved that γ(n : k) = k + 1
when n ≥ k(k + 1), which is in fact the special case r = k of the present claim.

Let S be a collection of k r-subsets of [n]; we will show that S cannot be a
semi-covering design. If all r-sets in S are pairwise disjoint then we can create
a transversal of S of size k by choosing an arbitrary element from each member
of S. This transversal cannot be contained in any member of S because they
are pairwise disjoint, meaning S is not a semi-covering design.

If on the other hand some pair of members of S has nontrivial intersection
then there exists a set U of size at most k−1 that intersects every member of S.
Since there are at least n− r|S| ≥ r ≥ k elements of [n] that are not contained
in any member of S, we can use these elements to complete U to a k-subset
that cannot be contained in any member of S. But this set is a transversal of
S so again it follows that S is not a dominating set.
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Theorem 6.1.1 reveals a fundamental difference between covering designs
and semi-covering designs; the latter, unlike the former, become trivial once n
is large enough with respect to r and k.

6.2 A nontrivial lower bound

In this section we prove a recursive lower bound on SC(n, r, k) in the style of
the Schönheim bound (Theorem 3.2.2). We begin with a definition: if S is an
(n, r, k) semi-covering design and i, j are two distinct elements of [n] then we
define

S[ij] = S[i] ∩ S[j]

the set of blocks containing both i and j, and

S
[
ij
]

= S[i] ∩ S[j]

the set of blocks that contains neither i nor j.

6.2.1 Lemma. If S is an (n, r, k) semi-covering design and i, j are two distinct
elements of [n] then

|S[ij]|+
∣∣S[ij]∣∣ ≥ SC(n− 2, r − 2, k − 2).

Proof. It suffices to show that we can modify the blocks in S[ij]∪S
[
ij
]

to yield
an (n − 2, r − 2, k − 2) semi-covering design. The modification is as follows: if
S ∈ S[ij] then remove i and j from S, while if S ∈ S

[
ij
]

then remove from S
two arbitrary elements. Let T be the set of these modified blocks; observe that

|T | ≤ |S[ij]|+
∣∣S[ij]∣∣ .

Now, we claim that T is an (n− 2, r− 2, k− 2) semi-covering design, where
we identify [n−2] with [n]\{i, j}. To prove this claim, let T be a (k−2)-subset
of [n] \ {i, j}, and define T+ = T ∪ {i, j}. By assumption, there exists S ∈ S
such that T+ is either contained in S or in its complement. If the former is
the case then {i, j} ⊂ S so S ∈ S[ij], and it follows that S \ {i, j} is in T and
contains T . If the latter is true then S contains neither i nor j, so S ∈ S

[
ij
]
,

and it follows that a (k− 2)-subset of S is in T and its complement contains T .
We conclude that T is an (n− 2, r − 2, k − 2) semi-covering design, so that

|T | ≥ SC(n− 2, r − 2, k − 2)

and the proof is complete.

We can now prove a semi-covering analogue of Lemma 3.2.1.

6.2.2 Lemma. If n ≥ 3 then

SC(n, r, k) ≥

⌈(
1− 2

r(n− r)
n(n− 1)

)−1

SC(n− 2, r − 2, k − 2)

⌉
.
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Proof. Let S be a minimum size (n, r, k) semi-covering design. We know from
Lemma 6.2.1 that

∑
i<j

|S[ij]|+
∣∣S[ij]∣∣ ≥ (n

2

)
SC(n− 2, r − 2, k − 2).

Now, each block of S contains
(
r
2

)
pairs of elements and its complement contains

another
(
n−r

2

)
pairs, so that

∑
i<j

|S[ij]|+
∣∣S[ij]∣∣ = ((r

2

)
+
(

n− r

2

))
|S| =

((
r

2

)
+
(

n− r

2

))
SC(n, r, k).

Combining this with the above inequality yields

SC(n, r, k) ≥
(
n
2

)(
r
2

)
+
(
n−r

2

)SC(n− 2, r − 2, k − 2)

=
n(n− 1)

r(r − 1) + (n− r)(n− r − 1)
SC(n− 2, r − 2, k − 2)

=
n(n− 1)

n(n− 1)− 2r(n− r)
SC(n− 2, r − 2, k − 2)

=
(

1− 2
r(n− r)
n(n− 1)

)−1

SC(n− 2, r − 2, k − 2)

as desired.

Lemma 6.2.2 is an improvement due to Jim Geelen of an earlier result of the
author’s.

We can repeatedly apply the inequality in Lemma 6.2.2 to derive a Schönheim-
esque lower bound on SC(n, r, k). The situation here is slightly more compli-
cated than it was for covering designs, however, because every application of
the recursive inequality in Lemma 6.2.2 reduces the value of k by 2, so that if
k is odd we can apply the inequality until we have reduced k to 1, while if k is
even we must stop when we have reached 2.

In the former case we then use the trivial observation SC(n, r, 1) = 1 for all
n and r. In the latter case we take our cue from the trivial lower bound (6.1.1),
which tells us that

SC(n, r, 2) ≥
(
n
2

)(
r
2

)
+
(
n−r

2

) =
(

1− 2
r(n− r)
n(n− 1)

)−1

.

We summarize this in a hideous theorem.
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6.2.3 Theorem. If k is odd, then

SC(n, r, k) ≥⌈(
1− 2

r(n− r)
n(n− 1)

)−1
⌈(

1− 2
(r − 2)(n− r)
(n− 2)(n− 3)

)−1
⌈(

1− 2
(r − 4)(n− r)
(n− 4)(n− 5)

)−1

. . .⌈(
1− 2

(r − k + 3)(n− r)
(n− k + 3)(n− k + 2)

)−1
⌉

. . .

⌉⌉⌉
.

If k is even, then

SC(n, r, k) ≥⌈(
1− 2

r(n− r)
n(n− 1)

)−1
⌈(

1− 2
(r − 2)(n− r)
(n− 2)(n− 3)

)−1
⌈(

1− 2
(r − 4)(n− r)
(n− 4)(n− 5)

)−1

. . .⌈(
1− 2

(r − k + 4)(n− r)
(n− k + 4)(n− k + 3)

)−1
⌈(

1− 2
(r − k + 2)(n− r)

(n− k + 2)(n− k + 1)

)−1
⌉⌉

. . .

⌉⌉⌉
.

6.3 Open questions

An obvious question presents itself: for what parameter sets does SC(n, r, k)
equal C(n, r, k), or C(n, n − r, k)? As always we assume k ≤ min{r, n − r},
otherwise the question is vacuous. It follows from Theorem 6.1.1, and our
discussion in Section 4.3, that

SC(n, r, k) = SC(n, n− r, k) = C(n, n− r, k) = k + 1

when n ≥ r(k + 1). Furthermore, since SC(n, k, k) = γ(n : k), the work of
Hartman and West implies that SC(n, k, k) = C(n, n− k, k) when n ≥ 3

4k2 + k.
One promising approach would be to generalize this statement by proving that
SC(n, r, k) = C(n, n− r, k) when n ≥ 3

4rk + r. Recall that Hartman and West
determined C(n, n− r, k) in this range (see equation (4.4.1)).

Parameter sets for which SC(n, r, k) = C(n, r, k) appear harder to come by.
Perhaps it is possible to prove a lower bound on C(n, r, k)− SC(n, r, k) that is
often positive.

Finally, since the definition of semi-covering designs was motivated by the
dominating set problem in Kneser graphs, one obvious question is whether or
not Theorem 6.2.3 actually implies good lower bounds on γ(n : k).
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Chapter 7

Dominating q-Kneser
graphs

In this chapter we consider dominating sets in q-Kneser graphs, which are vector-
space generalizations of Kneser graphs. In analogy to the Kneser graphs, the
q-Kneser graphs are the setting for a number of extremal vector space problems.
Moreover, studying q-Kneser graphs sometimes provides new insight into the
Kneser graphs.

We begin by introducing q-Kneser graphs and proving q-analogues of some
of the basic results on the domination number of Kneser graphs that we saw
in Chapter 4. We then discuss previous work on the domination number of
q-Kneser graphs by Clark and Shekhtman.

7.1 Introduction

Consider positive integers n, k, q such that q is a prime power and n ≥ 2k, let
Fq be the finite field of order q, and let Fn

q be the n-dimensional vector space
over Fq.

The q-Kneser graph qKn:k is the graph whose vertices are the k-dimensional
subspaces of Fn

q , where two vertices are adjacent if the intersection of the cor-
responding subspaces is trivial. For the sake of brevity we will refer to k-
dimensional subspaces of Fn

q as k-subspaces, suppressing the field.
In order to compute the number of vertices in qKn:k as well as its degree

(since it is vertex-transitive and hence regular) we must introduce the q-binomial
coefficients, which are polynomial generalizations of binomial coefficients that
are used to enumerate subspaces, just as binomial coefficients are used to enu-
merate subsets.
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7. DOMINATING q-KNESER GRAPHS

7.1.1 q-binomial coefficients

Assume for the moment that q is a variable rather than a fixed prime power.
Given an integer n ≥ 0, define (q)n to be the product

(q)n = (qn − 1)(qn−1 − 1) · · · (q − 1)

where (q)0 = 1.
Given n ≥ k ≥ 0, we define the q-binomial coefficient

[
n
k

]
to be[

n

k

]
=

(q)n

(q)n−k(q)k
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)
(qk − 1)(qk−1 − 1) · · · (q − 1)

.

The q-binomial coefficient is sometimes written
[
n
k

]
q

to emphasize the depen-
dence on q, but we shall omit this subscript.

It can be shown that

lim
q→1+

[
n

k

]
=
(

n

k

)
so that the q-binomial coefficients can be regarded as generalizations of binomial
coefficients. In fact, it is possible to define q-binomial coefficients in a way that
makes this relationship more explicit, but these types of details will not concern
us.

There are q-analogues for many familiar binomial identities, including the
identity

[
n
k

]
=
[

n
n−k

]
and the Pascal identities:[

n

k

]
=
[
n− 1

k

]
+ qn−k

[
n− 1
k − 1

]
= qk

[
n− 1

k

]
+
[
n− 1
k − 1

]
where 1 ≤ k ≤ n − 1. As expected, these all reduce to the familiar binomial
identities in the limit q → 1+.

The q-Pascal identities and the fact that
[
n
0

]
= 1 can be used to inductively

prove that
[
n
k

]
is a polynomial in q with integer coefficients, which is not obvious

from the definition. This justifies the fact that q-binomial coefficients, which
were first studied by Gauss, are often called Gaussian polynomials. Moreover,
the coefficients of

[
n
k

]
have a very special combinatorial interpretation; however,

this phenomenon plays no role in our work so we shall say no more and direct
the interested reader to van Lint and Wilson [47] for more.

7.1.2 The parameters of qKn:k

Now assume that q is a prime power and let Fq be the field of order q. Let
v(n : k) be the number of vertices in qKn:k and let d(n : k) be this graph’s
degree. We first compute v(n : k).

There are (qn−1)(qn−q) · · · (qn−qk−1) ways to choose a set of k independent
nonzero vectors in Fn

q . Not all of these, however, generate distinct k-subspaces.
There are (qk − 1)(qk − q) · · · (qk − qk−1) ways to choose a set of k independent
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nonzero vectors in any given k-subspace, so the number of distinct k-subspaces
of Fn

q is

v(n : k) =
(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
=
[
n

k

]
and so qKn:k has

[
n
k

]
vertices.

It remains to determine d(n : k). If n < 2k then no two vertices of qKn:k

are adjacent and d(n : k) = 0, so assume n ≥ 2k, and let U be a k-subspace.
There are (qn − qk)(qn − qk+1) · · · (qn − q2k−1) ways to choose a set of k

independent nonzero vectors in Fn
q \ U , each of which yields a k-subspace that

intersects U trivially. Again, however, not all of these vector sets generate
distinct k-subspaces, so to find the number of distinct k-subspaces that have
trivial intersection with U we must again divide by the number of ways of
choosing a set of k independent nonzero vectors in a given k-subspace:

d(n : k) =
(qn − qk)(qn − qk+1) · · · (qn − q2k−1)

(qk − 1)(qk − q) · · · (qk − qk−1)

=
(qn − qk)(qn−1 − qk) · · · (qn−k+1 − qk)

(qk − 1)(qk−1 − 1) · · · (q − 1)
= qk2

[
n− k

k

]
.

Thus the degree of U , hence of the graph qKn:k, is qk2[n−k
k

]
. We summarize

the above in a proposition.

7.1.1 Proposition. If n ≥ 2k then qKn:k has
[
n
k

]
vertices and is regular of

degree qk2[n−k
k

]
.

Observe that in the limit q → 1+ the parameters of qKn:k reduce to the
parameters of Kn:k.

In light of the analogous role played by the binomial and q-binomial coeffi-
cients, one might have been tempted to guess that the degree of qKn:k is

[
n−k

k

]
.

This guess underestimates the degree by the necessary factor of qk2
because

it relies on the false assumption that any k-subspace that trivially intersects a
k-subspace S must be in S⊥. On the contrary, if {x1, . . . ,xk} is a basis for a
k-subspace of S⊥ then adding vectors in S to the xi yields a basis for another,
distinct k-subspace that intersects S trivially but is not in S⊥.

We are now ready to engage this chapter’s main topic, the domination num-
ber of q-Kneser graphs. We begin with a few q-analogues of basic results from
Chapter 4.
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7. DOMINATING q-KNESER GRAPHS

7.2 Basic results

We will write γ(qKn:k) as qγ(n : k) and γt(qKn:k) as qγt(n : k). In analogy to
set systems, a transversal of a set S of subspaces is a subspace that intersects
each subspace in S nontrivially.

We begin by showing that qγ(n : k) is monotone in n. As before, define the
upward shadow of a (k − 1)-subspace to be the set of k-subspaces that contain
it as a subspace.

7.2.1 Lemma. There exists a minimum size dominating set in qKn:k that does
not contain the upward shadow of any (k − 1)-subspace.

Proof. Let S be a minimum size dominating set in qKn:k in which every vertex
has at least one private neighbor in V (qKn:k) \ S (such dominating sets exist
by Lemma 2.3.2), and let U be an arbitrary (k − 1)-subspace.

If S contains no k-subspaces in the upward shadow of U we are done. Oth-
erwise, let S be such a k-subspace in S, so that S = 〈U,x〉 for some x /∈ U . Let
N be the private neighbor of S in V (qKn:k) \ S.

Now, S∩N = 0 so if y is a nonzero vector in N then S′ = 〈U,x + y〉 is in the
upward shadow of U and S 6= S′. But 〈S′, N〉 = 〈S, N〉 so that dim 〈S′, N〉 = 2k,
hence S′∩N = 0. It follows that S′ /∈ S for otherwise N would not be a private
neighbor of S. Thus S does not contain the upward shadow of U or any other
(k − 1)-subspace.

7.2.2 Proposition. If n ≥ 2k then qγ(n : k) ≥ qγ(n + 1 : k).

Proof. We omit the proof, which is nearly identical to the proof of Proposition
4.2.4 and consists of taking a minimum size dominating set in qKn:k that does
not contain the upward shadow of any (k−1)-subspace, as in Lemma 7.2.1, and
showing that it dominates qKn+1:k.

Finally, recall that γ(n : k) = γt(n : k) = k + 1 when n ≥ k(k + 1); this
result has a q-analogue, proved by Clark and Shekhtman in [9].

7.2.3 Theorem. If n ≥ k(k + 1) then qγ(n : k) = qγt(n : k) = k + 1.

The proof is a direct linear-algebraic analogue of the corresponding result
for Kneser graphs; in this case, apply the argument not to [n] and its k-subsets,
but rather to the set of labels of the standard basis for Fn

q and the k-subspaces
that correspond to k-subsets of basis vectors.

7.3 Previous work

7.3.1 Clark and Shekhtman

In this section we present previous work on the domination number of qKn:k.
All of the results in this section are taken from [9] and [8] by Clark and Shekht-
man, which are, to the author’s knowledge, the only papers in the literature on
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this topic.

As mentioned above, Clark and Shekhtman proved in [9] that if n ≥ k(k+1)
then

qγ(n : k) = qγt(n : k) = k + 1.

They extended the argument to prove the following.

7.3.1 Proposition. If k ≥ 2 and n = k(k + 1)− 1 then

qγ(n : k) = qγt(n : k) = k + 2.

Clark and Shekhtman proved, also in [9], the following upper bound.

7.3.2 Theorem. If k ≥ 2, n ≥ 2k, and q is sufficiently large with respect to n
and k then

qγt(n : k) ≤ k + 1 +
⌊

k(k − 1)
n− 2k + 1

⌋
.

The proof of this upper bound is not linear-algebraic, but rather relies on
the special combinatorial interpretation of the q-binomial coefficients that we
mentioned before.

We should note that this upper bound does not follow from a construction
of a dominating set, but rather from a general upper bound on the domination
number of an arbitrary regular graph. One would not expect such a general
approach to yield a very useful bound on qγ(n : k), and yet, as Clark and
Shekhtman show, it does when q is large.

7.3.3 Corollary. If k ≥ 2 and 1
2k2 + 3

2k ≤ n ≤ k(k+1)−1, and q is sufficiently
large with respect to n and k then

qγ(n : k) = qγt(n : k) = k + 2.

Proof. The lower bound follows from Proposition 7.3.1 and monotonicity (Propo-
sition 7.2.2), while the upper bound follows from Theorem 7.3.2 and the fact
that k(k−1)

n−2k+1 < 2 if and only if n ≥ 1
2k2 + 3

2k.

We will elaborate on the significance of Corollary 7.3.3 after first revisiting
the results of Hartman and West on dominating Kneser graphs to see how well
they extend to q-Kneser graphs.

7.3.2 Hartman and West

Recall that the major result in Hartman and West [27] is Corollary 4.4.5: If
k(k + 1) ≥ n ≥ k

(
3
4k + 1

)
then

γ(n : k) = γt(n : k) = k + 1 +
⌈

k(k + 1)− n

bk/2c

⌉
.

To this end, Hartman and West first prove an upper bound using an easy con-
struction, and then prove a matching lower bound. The upper bound easily
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generalizes to q-Kneser graphs, but the lower bound does not. This is because
the lower bound follows from the technical Lemma 4.4.3, which has no obvious
q-analogue.

In fact, it follows from the results in the previous section that Hartman and
West’s lower bound cannot be extended to q-Kneser graphs. In other words,
the q-analogue of Hartman and West’s upper bound is not tight (at least not
for all q). Before elaborating, let us first prove this q-analogue.

7.3.4 Theorem. If n ≥ k(k + 1)− `bk/2c and ` ≤ dk/2e then

qγt(n : k) ≤ k + 1 + `.

Proof. By monotonicity we may assume that n = k(k + 1)− `bk/2c.
Recall the definition of a triangle configuration from the proof of Theorem

4.4.2. We define a q-triangle configuration to be the following set of three k-
subspaces of a d3k/2e-subspace. Fix a basis of the d3k/2e-subspace, create a
triangle configuration T from the set of basis vectors, and let the q-triangle
configuration be the set of three k-subspaces generated by the three k-sets of
vectors in T . It is easy to see that the smallest transversal of a q-triangle
configuration has size 2.

Returning to qKn:k, fix a basis of Fn
q . Let S be the set of k-subspaces that

consists of k +1− 2` disjoint k-subspaces created using the first k +1− 2` basis
vectors, as well as ` q-triangle configurations formed from the remaining basis
vectors. Note that this is possible because

k(k + 1− 2`) + `

⌈
3k

2

⌉
= k(k + 1)− `bk/2c = n.

Since each q-triangle configuration consists of three subspaces, we have

|S| = (k + 1− 2`) + 3t = k + 1 + `.

Finally, it is easy to see that by construction, the smallest transversal of S has
size k + 1, so that S is a total dominating set.

Theorem 7.3.4 implies that

qγ(n : k) ≤ qγt(n : k) ≤ k + 1 +
⌈

k(k + 1)− n

bk/2c

⌉
when n ≥ 3

4k2 + k, as was the case for γ(n : k). Though this bound was tight
for Kneser graphs, Corollary 7.3.3 implies that it is not at all tight for q-Kneser
graphs when q is large. This seems to suggest a fundamental difference between
the domination numbers of Kneser and q-Kneser graphs, as well as a dependence
of the latter on the size of the underlying field.

We conclude that results on γ(n : k) will not simply translate to results on
qγ(n : k) by applying the same proof to k-subsets of a set of basis vectors of Fn

q

instead of k-subsets of [n]; rather, new linear-algebraic techniques will have to
devised.

58



7.4. qγ(2k : k)

7.4 qγ(2k : k)

The structure of qK2k:k is of particular interest because while the degree of
K2k:k is

(
k
k

)
= 1, making K2k:k a trivial graph, the degree of qK2k:k is qk2

so
that it is not trivial for any field.

In this section we prove that qγ(4 : 2) = 4, which was shown by Clark and
Shekhtman in [8] and [9]. Our proof is shorter and differs from theirs in an
important way, but we will present the proof first and elaborate on these issues
afterwards. Recall that we denote the standard basis of Fn

q by {e1, . . . , en}.

7.4.1 Proposition. qγ(4 : 2) = 4.

Proof. The lower bound follows from Proposition 7.3.1 and monotonicity (Propo-
sition 7.2.2):

qγ(4 : 2) ≥ qγ(5 : 2) = 4.

The upper bound follows from exhibiting a dominating set of size 4, which we
now do. Let S2 be the set of the following four 2-subspaces:

U2
1 = 〈e1, e2〉 (7.4.1)

U2
2 = 〈e3, e4〉 (7.4.2)

U2
3 = 〈e1 + e3, e2 + e4〉 (7.4.3)

U2
4 = 〈e1 + e2, e3 + e4〉 (7.4.4)

To show that S2 dominates qK4:2 it suffices to prove that the only transversal
of S3 is U2

4 .
So let U be a transversal of S. Since U has nontrivial intersection with

U2
1 and U2

2 , and these two 2-subspaces intersect trivially, we can assume that
U = 〈x,y〉 where x ∈ U2

1 , y ∈ U2
2 . Now form a 2× 4 matrix whose rows are x

and y and put it in reduced-row echelon form. We will associate U with this
matrix, whose row space equals U . By the above we know that

U =
(
∗ ∗ 0 0
0 0 ∗ ∗

)
.

Now, since U ∩ U2
4 6= 0 then in at least one of the rows both of the unknown

entries are equal and nonzero, and so must equal 1 (since U is in reduced-row
echelon form). We can assume without loss of generality that this is true for the
second row, since otherwise we can apply the permutation (13)(24) to the labels
of the basis vectors and attain this outcome (note that this does not change the
members of S2). Thus

U =
(

a b 0 0
0 0 1 1

)
for some a, b ∈ Fq. But the fact that U ∩ U2

3 6= 0 implies that a = b, so that in
particular a = b = 1 and U = 〈e1 + e2, e3 + e4〉 = U2

3 as desired.
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Now a note on the proof. As mentioned above, Clark and Shekhtman proved
Proposition 7.4.1 in [8] and [9]. Our proof differs from theirs in that while we
prove the claim directly, Clark and Shekhtman first proved qγt(4 : 2) = 4 in [8]
and then qγ(4 : 2) ≥ 4 in [9].

The result from [8] is in fact even stronger; Clark and Shekhtman show that
any total dominating set of size 4 must be isomorphic to a total dominating set
S ′ consisting of the four 2-subspaces

U ′1 = 〈e1, e2〉
U ′2 = 〈e3, e4〉
U ′3 = 〈e1 + e3, e2 + e4〉
U ′4 = 〈e1 + ae3 + be4, e2 + e3〉

where a, b ∈ Fq are such that the polynomial x2 + ax + b is irreducible over Fq

(such a pair always exists for all prime powers q).
Though this is a strong result, it is of limited use in computing qγ(2k : k)

because it does not appear to generalize easily. Our proof uses a dominating
set that, though not total, has a purely combinatorial definition, eliminating
the need for introducing irreducible polynomials and allowing for the use of a
symmetry argument. We believe that our proof, and our dominating set, will
be much easier to generalize to larger values of k.

Finally, we note that our proof method differs slightly from the one used by
Clark and Shekhtman in that the latter involves directly checking that every
2-subspace has trivial intersection with some element of S ′ by computing a large
number of determinants, while in our proof we restrict our attention to transver-
sals, thereby shortening the proof and eliminating the need for computing any
determinants.
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Related topics
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Chapter 8

Maximal intersecting
families

Recall that an independent dominating set is a dominating set in which no two
vertices are adjacent, and the independent domination number of a graph is the
size of its smallest independent dominating set. In this chapter we relate the
independent domination number of Kneser graphs to a well-studied problem in
extremal combinatorics. We will denote the independent domination number of
Kn:k by γi(n : k).

8.1 Background

A maximal intersecting family of k-sets is a family S of k-sets with nonempty
pairwise intersection such that every k-subset not in S is disjoint from at least
one in S. In other words, it is an independent dominating set in Kn:k for some
n. Define m(k) to be the size of the smallest maximal intersecting family of
k-sets; in the language of dominating sets,

m(k) = min
n

γi(n : k).

Many attempts to bound the quantity m(k) were made by extremal combina-
torists in the 1980s; see the papers by Füredi [18], Dow et al. [13], Blokhuis [4],
and Boros et al. [5].

Recall that if n ≥ k(k + 1), the values of γ(n : k) and γt(n : k) are easy
to determine and the minimum size dominating and total dominating sets are
easy to characterize. The minimum size independent dominating sets, however,
present a much greater challenge; there is no clear relationship between them
and minimum size dominating sets, and they have not been characterized for
any range of n. Indeed, the lower bounds on m(k) discussed in the next section
imply that minimum size independent dominating sets in Kneser graphs tend to
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be much larger than minimum size dominating sets, even for very large n. This
is why unlike γ(n : k) and γt(n : k), the behavior of γi(n : k) (and by extension
m(k)) is naturally an extremal question (and a much more difficult one).

Let us now, however, abandon this pessimism and review the bounds on
m(k) in the literature.

8.2 Lower bounds

A review of existing lower bounds on m(k), of which there are very few, reveals
that even though none of the papers that tackle this problem use the language
of dominating sets in Kneser graphs, the notion of domination is often implicit
in the proofs therein.

The very first lower bound on m(k) is due to Erdős and Lovász, who showed
that m(k) ≥ 8k/3−3. Next came a lower bound proven by Füredi in [18], which
states (in the language of independent domination) that if m(k) = γi(n : k) with
n ≤ k2

2 log k then m(k) > k2. This is the case c = 2 of Lemma 4.1.1 from Chapter
4, which is why we credited Füredi with that result. Indeed, Füredi’s original
proof is almost identical to the one we gave in Chapter 4 (due to Jukna); it begins
with a derivation of the sphere-covering bound (though it is not identified as
such) and uses estimates for binomial coefficients to establish the claim.

In [13], Dow et al. improved the Erdős and Lovász bound to m(k) ≥ 3k. The
proof is quite similar to our proof of Theorem 4.5.1, which in turn is based on the
work of Hartman and West. This remains the best known bound, though it is
very unlikely to be tight. Indeed, Boros et al. conjecture in [5] that m(k)/k →∞
as k →∞.

8.3 Upper bounds

Several authors have proven upper bounds for m(k) by constructing small max-
imal intersecting families of k-sets. Nearly all of these constructions, however,
are based on projective planes of order k − 1 (or k), hence are only possible
when k − 1 (or k) is a prime power.

The most fundamental of these is Meyer’s result that the projective plane
of order k − 1 is a maximal intersecting family; we saw this in Theorem 4.2.6.
Füredi also showed in [18] that if a projective plane of order k exists then

m(2k) ≤ 3k2.

Drake and Sane proved in [14] that under the same hypothesis,

m(kr + kr−1) ≤ k2r + k2r−1 + k2r−2

for r ≥ 2, the r = 2 case having been previously proven by Füredi in [18].
Blokhuis proved in [4] that if there exists a projective plane of order k − 1

and k ≥ 8 then

m(k) ≤ 3
4
k2 +

3
2
− 1.

64



8.4. OPEN QUESTIONS

In that same paper, Blokhuis used a deep result on the difference between
consecutive primes to prove that

m(k) < k5 (8.3.1)

for all k, the only construction that has achieved this generality. Most recently,
Boros et al. proved in [5] that if there exists a projective plane of order k − 1
then

m(k) ≤ 1
2
k2 + 5k + o(k).

8.4 Open questions

The most obvious open question asks for better bounds on m(k), both above
and below. In particular, it would be nice to prove an upper bound on m(k)
that is valid for all k (or at least all large enough k), and that improves on
inequality (8.3.1), Blokhuis’ bound. Ideally this bound would involve a more
direct construction that does not depend on deep number-theoretic results.

Improved lower bounds are also desirable. It might be possible to prove a
separation between γ(n : k) and γi(n : k) that, combined with the fact that
γ(n : k) is known for large n, would establish a lower bound on m(k) that is
superlinear in k.

Less ambitiously, there are many open questions about minimum size inde-
pendent dominating sets in Kneser graphs. For instance, is γi(n : k) monotone
in n? The proof of Proposition 4.2.4, in which we proved that γ(n : k) is
monotone in n, can only be used to show that γi(n : k) is monotone when it is
known that there exists a minimum size independent dominating set that does
not contain the upward shadow of any (k − 1)-subset.

On a related note, it is seems likely that while minimum size dominating sets
are total for n ≥ k(k +1), they become more independent (that is, decreasingly
connected) as n decreases. It would be nice to prove an analogue of Theorem
4.5.1 stating that if n is sufficiently small then γ(n : k) = γi(n : k). So far,
however, the author has been unable to even prove the conjecture that minimum
size dominating sets in the odd graphs K2k+1:k are independent.
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Chapter 9

Graph domination and
coding theory

Graph domination is closely related to some of the central questions of coding
theory, which deals with efficient means of transmitting information over noisy
channels. In a more concrete sense, coding theory studies sets of constant length
binary strings that possess certain desirable properties.

In this chapter we briefly highlight some topics in coding theory that are
immediately relevant to graph domination. We discuss well-known results on
perfect 1-codes and totally perfect 1-codes in the hypercube, as well as a non-
trivial lower bound on the domination number of the hypercube due to van Wee.
We close by considering an interesting open problem on independent domination
of the hypercube.

We make no attempt to do this field justice in such a brief treatment.
For a real introduction to the subject the reader is referred to the books by
MacWilliams and Sloane [39] and Cameron and van Lint [6]. In addition, the
monograph by Cohen et al. [11] is very much in the spirit of this chapter, and
contains copious introductory material.

9.1 Codes and the hypercube

Recall that F2 is the field of order 2. The setting for much of coding theory
is the n-dimensional hypercube Qn, the graph whose vertex set is Fn

2 with two
vertices adjacent if they differ in exactly one coordinate. It follows from the
definitions that Qn is an n-regular graph on 2n vertices.

The definition of the hypercube (and indeed many other constructions in
coding theory) can be extended to arbitrary finite fields. To simplify matters,
however, this chapter will focus on the binary case.

A code of length n is simply a vertex subset of Qn; elements of a code are
called codewords. Given a code C its parameters of greatest interest are the
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9. GRAPH DOMINATION AND CODING THEORY

minimum distance d between codewords and the smallest r, called the covering
radius of the code, such that every vertex not in C is at distance at most r from
a codeword.

The purpose of a code is to serve as an alphabet for transmissions over a
noisy channel, where the presence of noise is formally interpreted as a probability
that an arbitrary coordinate of a transmitted word will change its value in the
course of transmission. If a code has large minimum distance and large covering
radius, then even if a transmission results in the corruption of a message it will
likely be possible to reconstruct the original message from the corrupted one.

Graph domination emerges naturally in coding theory as dominating sets in
the hypercube are precisely codes of covering radius 1. Of particular interest are
perfect 1-codes in the hypercube (and this is the promised explanation for the
origin of this term), as these would be able to correct single-bit errors with no
ambiguity since every non-codeword is at distance 1 from a unique codeword.
Perfect 1-codes in the hypercube are well-understood; we consider them in the
next section.

9.2 Perfect 1-codes in Qn

In this section we determine the values of n for which Qn has a perfect 1-code.
Again, we will treat this topic very briefly; details and additional information
can be found in the references given at the beginnning of this chapter.

Recall that a perfect 1-code in a graph is a dominating set that meets the
sphere-covering bound. The sphere-covering bound for the hypercube is

γ(Qn) ≥ 2n

n + 1
. (9.2.1)

A trivial necessary condition for the existence of a perfect 1-code is that the
sphere-covering bound for Qn take an integer value. It is clear that this can
only happen when n+1 is a power of 2. It follows that the existence of a perfect
1-code in Qn implies that n = 2t − 1 for some t.

This trivial necessary condition is in fact sufficient. One of the earliest re-
sults of coding theory was the discovery of a family of perfect 1-codes in Qn

when n = 2t − 1 for some t ≥ 2. These are the Hamming codes, which we now
define.

Given some t ≥ 2 define the matrix Ht to be the t× (2t − 1) matrix whose
columns consist of all nonzero vectors in Ft

2. Set n = 2t−1. The Hamming code
Ht is defined to be the kernel of Ht:

Ht = {x ∈ Qn : Ht x = 0}.

Thus Ht is a subspace of Fn
2 . Naturally we ask, What is the dimension of Ht?

It is easy to see that the rows of Ht are linearly independent because the set of
columns of Ht contains the standard basis for Ft

2. Thus Ht has rank t and so
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9.2. PERFECT 1-CODES IN Qn

Ht, its kernel, has dimension n − t = 2t − 1 − t. The fact that Ht is a perfect
1-code follows almost immediately from this observation.

9.2.1 Lemma. If t ≥ 2 and n = 2t − 1 then Ht is a perfect 1-code in Qn.

Proof. Observe first that the minimum distance between any two codewords in
Ht is 3. This is because the minimum distance of Ht is equal to the smallest
d such that there exists a set of d linearly dependent columns of Ht. Since no
two distinct columns can be linearly dependent, d ≥ 3 for Ht (it is in fact easy
to show that d = 3, but this fact makes no difference in this proof).

It follows that the closed neighborhoods of the codewords in Ht are disjoint.
But then these closed neighborhoods must partition the vertex set of Qn, be-
cause there are 2n−t codewords and each corresponds to a closed neighborhood
of size n + 1 = 2t, so that the union of these closed neighborhoods contains 2n

vertices and hence all of V (Qn). This means that Ht is a perfect 1-code in Qn

as desired.

Lemma 9.2.1 is enough to imply the following.

9.2.2 Theorem. Qn has a perfect 1-code if and only if n = 2t − 1, t ≥ 2.

Not all perfect 1-codes in hypercubes are Hamming codes. There exist fami-
lies of perfect 1-codes in Qn, n = 2t−1, that are nonlinear, meaning that unlike
the Hamming codes they do not form a subspace of Fn

2 . The classification of all
perfect 1-codes in Qn is still open.

Before moving on, we note that coding theory is also concerned with perfect
e-codes in the hypercube, which are generalizations of perfect 1-codes in which
every two codewords are at distance 2e+1 and every non-codeword is at distance
e from exactly one codeword. One of the remarkable results of coding theory,
proven by Tietäväinen and van Lint, is that n = 23, e = 3 is the only pair
of values n, e with 1 < e < n such that Qn has a perfect e-code. There is in
fact only one such code, known as the binary Golay code; see the references for
more.

9.2.1 Totally perfect 1-codes in Qn

We have seen the Hamming codes used to determine the values of n for which
Qn has a perfect 1-code. They can also be used to determine the n for which
Qn has a totally perfect 1-code.

Recall that for a d-regular graph G on v vertices, the trivial lower bound on
γt(G) is v/d, and a totally perfect 1-code is a total dominating set that meets
this bound. When G is the hypercube, we have

γt(Qn) ≥ 2n

n
.
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9. GRAPH DOMINATION AND CODING THEORY

As before, Qn can only have a totally perfect 1-code when this bound is an
integer, which only happens when n divides 2n. Thus a necessary condition for
the existence of a totally perfect 1-code in Qn is n = 2t for some t. It is easy
to see that this trivial condition is once again sufficient, for if n = 2t then the
direct sum of {0, 1} and the Hamming code Ht is a total dominating set in Qn

of size 2n−t (in fact it induces a matching).
We summarize this in an analogy of Theorem 9.2.2.

9.2.3 Theorem. Qn has a totally perfect 1-code if and only if n = 2t, t ≥ 2.

The direct sum construction above was first used by van Wee in [48]. The
next section is dedicated to the main result of that paper, which is an improve-
ment of the sphere-covering bound on γ(Qn) when n is even.

9.3 Improving the sphere-covering bound

We saw in the previous section that Qn cannot have a perfect 1-code when n is
even. In this situation we can use a simple parity argument to slightly improve
the sphere-covering bound (9.2.1). This result is due to van Wee [48], and our
proof will follow Cohen et al. [11].

Recall that Γ[x] is the closed neighborhood of the vertex x. Given a domi-
nating set C of Qn and a vertex x, define the excess of x with respect to C to
be EC(x) = |Γ[x] ∩ C| − 1. Given i ≥ 0 define Ci ⊆ V (Qn) to be the set of
vertices with excess equal to i; clearly every vertex is in some Ci. We note that
C is a perfect 1-code if and only if C = C0.

If S is a vertex subset of Qn define

EC(S) =
∑
x∈S

EC(x).

It follows from these definitions that

EC(V (Qn)) =
∑
i≥0

i|Ci| = |C|(n + 1)− 2n. (9.3.1)

Now, consider some x ∈ V (Qn) \ C and some codeword c ∈ C. If the
distance between x and c is greater than 2 then Γ[x]∩Γ[c] = ∅. If, however, the
distance between them is 1 or 2 then it follows from the definition of adjacency
in the hypercube that |Γ[x]∩Γ[c]| = 2. Therefore, every codeword c that covers
any of the vertices in Γ[x] covers exactly two of them.

If n is even then |Γ[x]| = n + 1 is odd, and since C is a dominating set
at least one vertex in Γ[x] must be covered by more than one codeword. This
implies that EC(Γ[x]) ≥ 1 and consequently

EC

(
V (Qn) \C

)
≥ 2n − |C|. (9.3.2)

Van Wee used these facts in [48] to prove the following so-called excess bound.
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9.3.1 Theorem. If n is even then γ(Qn) ≥ 2n/n.

Proof. Let C be a dominating set in Qn and define C = V (Qn) \C. It follows
from equations (9.3.2) and (9.3.1) that

2n − |C| ≤ EC

(
C
)

=
∑
x∈C

∑
i>0

i|Ci ∩ Γ[x]|

=
∑
i>0

i
∑
x∈C

|Ci ∩ Γ[x]|

=
∑
i>0

i
∑
y∈Ci

|C ∩ Γ[y]|

≤ (n− 1)
∑
i>0

i|Ci| = (n− 1)
(
|C|(n + 1)− 2n

)
where the last inequality used the fact that if x is a vertex with excess greater
than 0 then |C ∩ Γ[x]| ≤ n − 1. The desired inequality follows after some
rearranging.

Observe that the lower bound in Theorem 9.3.1 is precisely the trivial lower
bound on γt(Qn) (see the previous section), so that we can interpret this theorem
as saying that when n is even, the trivial lower bound on γt(Qn) is a lower bound
on γ(Qn).

Moreover, it follows from Theorem 9.2.3 that when n = 2t there exists a
total dominating set that meets this bound. We conclude that if n = 2t for
some t ≥ 2 then

γ(Qn) = γt(Qn) =
2n

n
= 2n−t.

The observation γ(Qn) = 2n/n when n = 2t was made by van Wee in [48].
Before moving on we note that a general excess bound has been proved by

Honkala (see Cohen et al. [11] for details).

9.3.2 Theorem. If s + 1 is an odd prime that divides n + 1 then

γ(Qn) ≥ (V (n, s) + s)2n

V (n, s)(n + 1)

where

V (n, s) =
s∑

i=0

(
n

s

)
,

the number of vertices at distance at most s from a given vertex in Qn.
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9.4 Independent domination of the hypercube

We conclude this chapter with a discussion of an open problem on hypercube
domination posed by Harary and Livingston in [26].

Recall that the independent domination number of a graph G, written γi(G),
is the minimum size of an independent dominating set in G. It follows from
Theorem 9.2.2 that γi(Qn) = γ(Qn) when n = 2t − 1 for t ≥ 2, because these
two quantities are equal for any graph that has a perfect 1-code.

Harary and Livingston observed in [26] that γi(Qn) = γ(Qn) also holds
when n ∈ {1, 2, 3, 4, 6}, but for n = 5 we have γ(Q5) = 7 and γi(Q5) = 8. They
ask whether γ(Qn) 6= γi(Qn) for any n 6= 5. Oddly, in their discussion of this
question they interpret the results of van Wee to imply that γ(Qn) = γi(Qn)
when n = 2t, even though what van Wee’s results imply, as we have already
observed, is that γ(Qn) = γt(Qn) for such n. In fact, van Wee’s results tempted
the author to conjecture that γ(Qn) 6= γi(Qn) when n = 2t because it seemed
unlikely that γt(Qn) = γi(Qn).

And yet this is the case when t = 2, as noted by Harary and Livingston,
because

γ(Q4) = γi(Q4) = γt(Q4) = 4.

So even though the author believes that Harary and Livingston misunderstood
van Wee’s results, their interpretation is valid for t = 2. Is it really the case
that

γ(Qn) = γi(Qn) = γt(Qn)

when n = 2t, as Harary and Livingston imply? This still appears unlikely to
the author, who is willing to make the following conjecture.

9.4.1 Conjecture. If n = 2t and t ≥ 3 then every minimum size dominating
set in Qn is a totally perfect 1-code.

If proven true, this conjecture would imply that γ(Qn) 6= γi(Qn) when n = 2t

and t ≥ 3.
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Chapter 10

Open problems

We collect some miscellaneous open problems on dominating sets, most of an
algebraic nature.

10.1 Perfect 1-codes

The most frequently asked question about dominating sets in graphs is whether
or not graphs in some particular family contain perfect 1-codes. We give some
examples below. Recall that � is the Cartesian product.

Let Zn be the infinite graph whose vertices are strings of length n with
entries in Z, where two vertices are adjacent if they differ in exactly one entry.
In [12], Dorbec and Mollard consider perfect 1-codes in graphs of the form
Zn

� Qk, where Qk is, as usual, the hypercube of order k. One could consider
this Cartesian product as a graph whose vertices are strings of length n + k
with the first n entries in Z and the last k in {0, 1}, and where two vertices are
adjacent if they differ in one entry.

Dorbec and Mollard construct a perfect 1-code in Zn
� Qk whenever there

exist positive integers a, b such that k = 2a − 1 and n = b2a−1. They also prove
that if k ≥ 2n then a perfect 1-code exists if and only if there exists an integer
c such that 2n + k = 2c − 1. There are many cases in which the existence of a
perfect 1-code in Zn

� Qk is open.

Let Sn be the symmetric group on n elements. Edelman and White define
in [15] the Cayley graph Gn whose vertex set is Sn and where two permutations
σ1, σ2 are adjacent if σ1σ

−1
2 is a transposition of the form (i, i + 1) for some

1 ≤ i ≤ n− 1. The authors show that a perfect 1-code exists in G3 and conjec-
ture that there do not exist any in Gn when n > 3, proving this for n < 12 and
all prime n. Their proofs use the representation theory of Sn.

Let p be a prime, define n = p−1
2 , and let Cp be the cycle of length p. In
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[28], Hatami and Hatami exhibit a family of perfect 1-codes in Cn
p , the n-fold

Cartesian product of Cp (this can also be interpreted as a Cayley graph on Zn
p ).

They conjecture that all perfect 1-codes in Cn
p belong to this family.

10.2 Vizing’s conjecture

In 1968, V.G. Vizing conjectured that

γ(G � H) ≥ γ(G)γ(H)

for any two graphs G and H.
Significant progress has been made on this conjecture, though it has not yet

been proven in full; see the monograph by Haynes et al. [29] for more information
and an extensive bibliography.
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Appendix A

Appendix: Basic definitions
and notation

This appendix defines notation used throughout the thesis, most of which is
standard. For additional information consult a textbook such as Godsil and
Royle [22] or van Lint and Wilson [47].

A.1 Graphs

A graph G consists of a set V of vertices and a set E of edges, where the elements
of E are unordered pairs of vertices. We will refer to an edge {x, y} using the
shorthand xy. We will write v for |V |, which will always be finite, and e for |E|.

If xy is an edge then x is adjacent to y and vice verse. We will sometimes
denote this relation by x ∼ y. Adjacent vertices may also be called neighbors.
An edge is incident to a vertex x if it contains x; in such a case we say that x
is an endvertex of the edge. The neighborhood of x ∈ V is

Γ(x) = { y ∈ V : xy ∈ E }

and its closed neighborhood is Γ[x] = Γ(x) ∪ {x}. The degree of x, written
deg(x), is |Γ(x)|. A graph is regular of degree d, or d-regular, if every vertex has
degree d.

A vertex subset is independent if no two vertices in it are adjacent. The dis-
tance between two vertices x and y is the length of the shortest path between
them.

The adjacency matrix of a graph G on v vertices is a 0-1 matrix A with v
rows and columns, both indexed by the vertices, such that Axy = 1 if and only
if x ∼ y. The adjacency matrix of G will be written A(G), or simply A when
G is clear from context. We say that a real number is an eigenvalue of G if it
is an eigenvalue of A(G); similarly, a vector v ∈ Rv is an eigenvector of G if it
is an eigenvector of A(G).
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If G is d-regular then d is an eigenvalue of G, and indeed is the largest eigen-
value. Its multiplicity is equal to the number of connected components in G
(see Godsil and Royle [22] for more on the spectrum of regular graphs).

The Cartesian product of two graphs G and H with vertex sets V (G) and
V (H), respectively, is the graph whose vertex set is

{(x, y) : x ∈ V (G), y ∈ V (H)}

and in which two vertices (x, y) and (x′, y′) are adjacent when either x = x′ and
y ∼ y′ or x ∼ x′ and y = y′. The Cartesian product of G and H will be written
G � H.

The Cartesian product of G with itself t times will be written Gt. It follows
from the above definition that the vertices of Gt are of the form (x1, . . . , xt)
with xi ∈ V (G), and that two vertices (x1, . . . , xt) and (y1, . . . , yt) are adjacent
when there exists i ∈ {1, . . . , t} such that xi ∼ yi and xj = yj for j 6= i.

A.2 Vector spaces

Let q be a prime power and let Fq be the finite field of order q. The n-dimensional
vector space over Fq will be written Fn

q . The standard basis for Fn
q will be

written {e1, e2, . . . , en} where the vector ei has 1 in the ith coordinate and 0 in
all others.

All vector spaces discussed in this thesis will be finite-dimensional. If U is a
subspace of a vector space then U⊥ is its orthogonal complement. The subspace
generated by a set of vectors {x1, . . . ,x`} will be written 〈x1, . . . ,x`〉. If U is
a subspace then 〈U,x1, . . . ,x`〉 is the subspace generated by the vectors in U
and the vectors {x1, . . . ,x`}. The dimension of U will be denoted by dim U .
If two subspaces U,U ′ intersect trivially, meaning U ∩ U ′ = {0}, we will abuse
notation somewhat and write U ∩ U ′ = 0.

A.3 Projective planes

A projective plane of order q is a set P of q2 + q + 1 points and a set L of
q2 + q + 1 lines, where a line is a set of q + 1 points, such that any one point
is in exactly q + 1 lines, any pair of points is contained in exactly one line, and
any pair of lines intersects at exactly one point.

A projective plane of order q is known to exist when q is a power of a prime;
in this case a projective plane can be formed by defining P to be the set of one-
dimensional subspaces of F3

q and L to be the set of two-dimensional subspaces.
It is conjectured that no projective planes exist for any other values of q.
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[5] E. Boros, Z. Füredi, and J. Kahn, Maximal intersecting families and affine
regular polygons in PG(2, q), J. Combin. Theory Ser. A 52 (1989), no. 1,
1–9.

[6] P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and their Links,
Cambridge University Press, Cambridge, 1991.

[7] Y. Caro and Y. Roditty, A note on the k-domination number of a graph,
Internat. J. Math. Math. Sci. 13 (1990), no. 1, 205–206.

[8] W. E. Clark and B. Shekhtman, Covering by complements of subspaces,
Linear Multilinear Algebra 40 (1995), no. 1, 1–13.

[9] , Domination numbers of q-analogues of Kneser graphs, Bull. Inst.
Combin. Appl. 19 (1997), 83–92.

[10] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in
graphs, Networks 10 (1980), no. 3, 211–219.

[11] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North-
Holland Publishing Co., Amsterdam, 1997.

[12] P. Dorbec and M. Mollard, Perfect codes in Cartesian products of 2-paths
and infinite paths, Electron. J. Combin. 12 (2005), Research Paper 65, 9
pp. (electronic).

77



BIBLIOGRAPHY
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[32] J. Ivančo and B. Zelinka, Domination in kneser graphs, Math. Bohem. 118
(1993), 147–152.

[33] D. S. Johnson, Approximation algorithms for combinatorial problems, J.
Comput. System Sci. 9 (1974), 256–278.

[34] S. Jukna, Extremal Combinatorics: with Applications in Computer Science,
Springer-Verlag, Berlin, 2001.

[35] L. L. Kelleher and M. B. Cozzens, Dominating sets in social network graphs,
Math. Social Sci. 16 (1988), no. 3, 267–279.

[36] H. Liu and L. Sun, On domination number of 4-regular graphs, Czechoslo-
vak Math. J. 54 (2004), 889–898.

[37] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Com-
bin. Theory Ser. A 25 (1978), no. 3, 319–324.

[38] M. Lu, H. Liu, and F. Tian, Bounds of Laplacian spectrum of graphs based
on the domination number, Linear Algebra Appl. 402 (2005), 390–396.

[39] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland Publishing Co., Amsterdam, 1998.

[40] N. S. Mendelsohn, A theorem on Steiner systems, Canad. J. Math. 22
(1970), 1010–1015.

[41] N. S. Mendelsohn and S. H. K. Rung, On the Steiner systems S(3, 4, 14)
and S(4, 5, 15), Utilitas math. 1 (1972), 5–95.
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