

A Discriminative Locally-Adaptive

Nearest Centroid Classifier for Phoneme

Classification

by

Yong-Peng Sun

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

 Yong-Peng Sun 2012

 ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

 Abstract

Phoneme classification is a key area of speech recognition. Phonemes are the basic

modeling units in modern speech recognition and they are the constructive units of words.

Thus, being able to quickly and accurately classify phonemes that are input to a speech-

recognition system is a basic and important step towards improving and eventually

perfecting speech recognition as a whole.

 Many classification approaches currently exist that can be applied to the task of

classifying phonemes. These techniques range from simple ones such as the nearest

centroid classifier to complex ones such as support vector machine. Amongst the existing

classifiers, the simpler ones tend to be quicker to train but have lower accuracy, whereas

the more complex ones tend to be higher in accuracy but are slower to train. Because

phoneme classification involves very large datasets, it is desirable to have classifiers that

are both quick to train and are high in accuracy. The formulation of such classifiers is still

an active ongoing research topic in phoneme classification. One paradigm in formulating

such classifiers attempts to increase the accuracies of the simpler classifiers with minimal

sacrifice to their running times. The opposite paradigm attempts to increase the training

speeds of the more complex classifiers with minimal sacrifice to their accuracies.

 The objective of this research is to develop a new centroid-based classifier that builds

upon the simpler nearest centroid classifier by incorporating a new discriminative locally-

adaptive training procedure developed from recent advances in machine learning. This

new classifier, which is referred to as the discriminative locally-adaptive nearest centroid

(DLANC) classifier, achieves much higher accuracies as compared to the nearest centroid

classifier whilst having a relatively low computational complexity and being able to scale

up to very large datasets.

 iv

Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor Fakhreddine Karray,

for guiding me through this research. His enlightening discussions, valuable suggestions,

and strict guidance helped me to complete this research. Throughout my term as a

graduate student, he has been a source of knowledge and trusted advice. I thank my

readers, Professor Douglas Harder and Professor Hamid Tizhoosh, who provided me with

invaluable advices and expertise for revising and perfecting my thesis. I also thank Dr.

Jiping Sun and his colleagues in Vestec Inc. for their valuable discussions and suggestions

during this research.

 v

Table of Contents

Author’s Declaration………………………………………………………………...……..ii

Abstract..………………………………………………………………………………..…iii

Acknowledgements……………………………………..iv

Table of Contents………....……………………………...v

List of Figures………….……………………………………………………………….....vi

List of Tables………………………………………………………………….….….…... vii

Chapter 1 Introduction……………………………………………………………1
 1.1 Background.……………………..………………………………………..………...1

 1.2 Motivations………………………...…………………………………...…..……....2

 1.3 Objectives…..…….………………...……………………………………….…..….3

 1.4 Contributions…..…………….………...………………………...………………....4

 1.5 Organization of the Thesis…..…………....……….…………………………....…..5

Chapter 2 Literature Review..…………………………………………………….6
 2.1 K-Means…………………………………………………………………..………..6

 2.2 Adaptating K-Means for Classification...7

 2.3 Supervised K-Means…..…………………………………………………...….…...7

 2.4 Self-Learning Vector Quantization……..………………….………………...….....8

 2.5 Top-Down Splitting……..…………………………………………………..….…10

 2.6 Discriminative Learning..…………………………..…………………….……….11

 2.7 Locally Adaptive Metrics……………...………………………………………….12

Chapter 3 The Proposed Approach....………….…………………..…....………16
 3.1 An Overview of the DLANC Classifier for Phoneme Classification….……….…16

 3.2 The Formulation of the Discriminative Locally-Adaptive Training Procedure…..17

 3.3 The Training and Testing Processes of the DLANC Classifier….……………….21

Chapter 4 Implementations and Experiments…..………………………..……...22
 4.1 The TIMIT Data Used in the Experiments….…………………………………….22

 4.2 The First Implementation of the DLANC Classifier…...………………………....27

 4.3 The First Experiment with the First Implementation of DLANC….…..…….…...29

 4.4 The Second Experiment with the First Implementation of DLANC….……..…....32

 4.5 The Second Implementation of the DLANC Classifier….…………………….…35

 4.6 The Experiment with the Second Implementation of DLANC…….…....…….….36

Chapter 5 Comparisons Between DLANC and Other Classifiers..……………...45
 5.1 Comparing DLANC with GMM and HMM…..…………..……………………...45

 5.2 Comparing DLANC with ANN...………..……………………………………….45

 5.3 Comparing DLANC with the NN Classifier, SVM, PNN and K-Means …....…...46

Chapter 6 Conclusion and Future Directions….………………………………...49

Bibliography..…………………………………………………………………….……….51

 vi

 List of Figures

1.1 The transformation of an audio signal into MFCC feature vectors ………………….1

1.2 The structure of a phoneme sample in terms of frames ………...…………………....2

1.3 How DLANC and several other classifiers extend

 the nearest centroid classifier..5

2.1 SLVQ’s merging procedure…..……………………………………………….....…10

2.2 The splitting of a centroid into two new centroids………..…………..…………….11

3.1 A centroid in the framework of DLANC…..……….………………………………16

3.2 The phases and stages of the DLANC classifier...17

4.1 How MFCCs can be generated…...…………………..……………………………..24

4.2 How 5 frames can be selected from the duration of a segment…...………………...25

4.3 The means of the initial centroids in the first experiment…...……………………...30

4.4 The pre-adjustment means of the centroids in the first experiment ….…....……….31

4.5 Some of the post-adjustment values of the centroids’ weights

 in the first experiment……………………………………………………………….31

4.6 The post-adjustment means of the centroids in the first experiment ….....…………32

4.7 The means of the initial centroids in the second experiment ………………………33

4.8 The pre-adjustment means of the centroids in the second experiment….……..……33

4.9 The post-adjustment means of the centroids in the second experiment………….....34

4.10 Some of the best post-adjustment values of the centroids’ weights relating to the

 second goal of the third experiment……………………...………..…………..…...42

4.11 Some of the best post-adjustment values of the centroids’ weights relating to the

 third goal of the third experiment……………………………………….………….44

4.12 The best post-adjustment means of the centroids relating to the third goal of the

 third experiment …………………………………...……………………………….44

5.1 The effect on the accuracy as the number of centroids grows....................................47

 vii

List of Tables

4.1 The 41 phonemes and their class labels……...…………………………….……….26

4.2 The accuracies obtained in the first experiment…...………………………..………32

4.3 The accuracies obtained in the second experiment….………...…………..……..…34

4.4 The results with 20 negative samples relating to

 the first goal of the third experiment………………………………………………..37

4.5 The results with 25 negative samples relating to

 the first goal of the third experiment …………………………………………...…..38

4.6 The results with 30 negative samples relating to

 the first goal of the third experiment………………………………………………..39

4.7 The results with 35 negative samples relating to

 the first goal of the third experiment……………………………………………......40

4.8 The results with 40 negative samples relating to

 the first goal of the third experiment………………………………………………..41

4.9 The results relating to the second goal of the third experiment …………….……...42

4.10 The results relating to the third goal of the third experiment……………..……….43

5.1 Results of k-means (scheme 1)……………………………………………………..47

5.2 The best accuracies of DLANC and several other classifiers...................................48

 1

Chapter 1

Introduction

An important goal of phoneme recognition is to devise a classifier that trains quickly and

predicts accurately. In this chapter, the background to this research regarding a novel

phoneme classifier is introduced first. This is followed by outlining the motivations behind

this research, the objectives and the contributions, along with major items pertinent to the

organization of the thesis.

1.1 Background

Phonemes, such as the vowel “aa” and the nasal “m”, form the building blocks of words

and of speech as a whole. Therefore, the classification or recognition of phonemes is a

fundamental component of speech recognition by means of complex automatic speech

recognition (ASR) systems. How well phonemes can be classified or recognized is a key

factor for determining the performance of ASR systems.

Phoneme classification involves using training samples to construct a suitable model

and using this model to predict the class label of any novel sample by analyzing its feature

values. Phoneme classification involves a number of steps. The first step is signal

processing. In this step, typically each 25 ms windows consisting of 1-dimensional values

of a speech audio signal are transformed using Fast Fourier Transform (FFT) and the Mel-

Frequency Cepstral Coefficients (MFCC) algorithm into (typically in the case of 8 kHz

telephone data) 27-dimensional MFCC feature vectors. Typically the window slides

forward with a step size of 10 ms. Starting from the beginning of any given audio signal,

every 10 ms of speech audio signal is transformed into a 27-dimensional MFCC feature

vector that is referred to as a frame. Figure 1.1 below illustrates the transformation of an

audio signal into MFCC feature vectors or frames.

 Figure 1.1 The transformation of an audio signal into MFCC feature vectors

Step size = 10 ms.

 Feature vectors

 .

 .

 .

 Analysis window = 25 ms.

 Audio signal

 25 ms

 .

 .

 .

 2

On the average, a person speaks about 10 phonemes in a second. The length of a

phoneme varies. A phoneme can be as short as 1 frame and as long as 20 frames. Figure

1.2 below illustrates the structure of a phoneme analyzed into 10 frames or feature vectors.

In phoneme classification, the boundaries between the frames must be given to

demarcate one phoneme sample from the next. These boundaries could be obtained by

means of manual labeling as in the case of phoneme databases. These boundaries could

also be automatically obtained by an ASR system during the decoding process.

Phoneme classification has many uses in the broader topic of speech recognition. In an

ASR system, when the recognition model has been applied to recognize words, how well

phonemes have been recognized on the demarcated phonemes could be re-evaluated by a

phoneme classification system to provide a measure of confidence [28][29] for the words

recognized by the ASR system. In a phoneme recognition system, as the boundaries

between phonemes are dynamically searched or independently detected, phoneme

classifiers could be used to convert speech audio signals to sequences of phoneme symbols

that could in turn be used in areas such as audio search or robotic control.

1.2 Motivations

A broad range of classifiers could be used for phoneme classification. Classifiers such as

the nearest centroid classifier and k-means are simple in structure and very quick to run

but typically result in lower accuracies. Classifiers such as recurrent time-delayed neural

network and support vector machine are very complex in structure and take much longer

to run but typically result in higher accuracies.

For phoneme classification, because very large numbers of training samples are used for

model construction, it is desirable to have an ideal classifier that is quick to run and gives

good accuracies. The formulation of such classifiers is still an active ongoing research

topic in speech recognition and phoneme classification.

One approach for formulating an ideal classifier is to take a classifier that is complex in

structure and reduce its running time while minimally sacrificing its accuracy. A result of

this approach is Platt’s Sequential Minimal Optimization (SMO), which breaks down the

 phoneme

 .

 .

 .

Figure 1.2 The structure of a phoneme sample in terms of frames

 .

 .

 .

 .

 .

 .

 .

 .

 .

 vector 10 vector 3 vector 2 vector 1

 . . .

 3

complex quadratic optimization problem of standard SVM into a number of smaller 2-

dimensional sub-problems that could be solved sequentially with analytical techniques.

Another approach for formulating an ideal classifier is to take a classifier that is simple

in structure and increase its accuracy while minimally sacrificing its running time. A result

of this approach is supervised k-means introduced by Al-Harbi et al. in 2006 [2], which is

a centroid-based classifier that builds upon k-means. Supervised k-means adapts the

efficient k-means algorithm by using the weighted Euclidean metric in place of the

Euclidean metric, modifying the objective function of k-means, and using simulated

annealing to optimize the values of the weights. On real datasets, Al-Harbi et al. have

shown that supervised k-means obtains very good accuracies and it is also quick to run.

The very good performance of supervised k-means was the motivation that led me to

follow this approach in this research.

In this research, the motivation behind formulating a discriminative locally-adaptive

training procedure and incorporating this procedure in a novel centroid-based phoneme

classifier comes from the many efficient and useful soft-computing techniques described

in Karray and de Silva’s 2004 book Soft-Computing And Intelligent Systems Design [1].

This centroid-based classifier could be considered a novel soft computing technique due to

two reasons. One reason is that each centroid retains all of the features by using a weight

to represent the significance of each feature with relation to itself. The other reason is that

the mean or the weight vector of each centroid is adjusted during the training process by

means of the novel discriminative locally-adaptive training procedure.

1.3 Objectives

The main objective of this research is to follow the second approach towards

formulating an ideal classifier that is quick to run and gives good accuracies. The goal was

to formulate a novel centroid-based classifier that builds upon the simple nearest centroid

classifier.

There are three reasons for choosing a centroid-based structure for this novel classifier.

The first reason is that a centroid-based classifier typically has a low computational

complexity that results in it being quick to run and being able to scale up to very large

datasets. The second reason is that there exist a number of recent advances in machine

learning, such as discriminative learning and locally adaptive metrics, which are suitable

for improving the accuracies of centroid-based classifiers. The third reason is that a novel

centroid-based classifier would be a natural extension of the nearest centroid classifier,

because the nearest centroid classifier is a centroid-based classifier whose centroids are

comprised of all of the training samples.

An important objective in this research is to adapt some recent advances in machine

learning to formulate a novel, mathematically sound, effective, and yet intuitive training

procedure for this novel classifier. The objectives for this novel classifier include being

able to achieve relatively high accuracies on TIMIT data and having acceptable running

times on desktop PCs.

 4

1.4 Contributions

The first contribution of this research involves adapting two recent advances in machine

learning, namely discriminative learning explored by Srikanth et al. in 2010 [5] and locally

adaptive metrics explored by Domeniconi et al. in 2007 [6], to develop a novel

discriminative locally-adaptive training procedure.

The second contribution in this research involves adapting two additional recent

advances in machine learning, namely self-learning vector quantization (SLVQ)

introduced by Rasanen et al. in 2009 [3] and top-down splitting (TDS) explored by Eick et

al. in 2004 [4], to develop a novel centroid-based classifier, which is referred to as the

discriminative locally-adaptive nearest centroid (DLANC) classifier. DLANC builds upon

the simple nearest centroid classifier and it uses the novel discriminative locally-adaptive

training procedure.

The DLANC classifier is simple in terms of structure, has an intuitive training

procedure, is very quick to run from start to finish, is able to scale up to large datasets due

to its low computational complexity, requires very few input parameters, and has

experimentally shown to obtain accuracies that are both relatively high and relatively

stable. Figure 1.3 below compares the sequential stages of development that resulted in the

extension of the basic nearest centroid classifier to DLANC with those of several other

classifiers that also extend the basic nearest centroid classifier
1
.

1
 The details are dealt with in the chapter of literature review.

 5

1.5 Organization of the Thesis

In this thesis, some of the common classifiers used for classifying phonemes are reviewed

and the recent advances in machine learning that are adapted for formulating the DLANC

classifier are discussed first. The proposed approach for classifying phonemes, including

the derivation of the DLANC classifier’s training algorithm, are then discussed. Following

this, the two implementations of the DLANC classifier, the experiments carried out for

each implementation to test the performance of this novel classifier and how this novel

classifier compares with some of the common classifiers in terms of running time and

accuracy for recognizing phonemes are given. Last but not the least, the concluding

remarks of the DLANC classifier and some future directions are discussed.

DLANC

Figure 1.3 How DLANC and several other classifiers extend the nearest centroid classifier

nearest centroid classifier

random initialization of the centroids

Lloyd’s algorithm

k-means as a classifier Linde-Buzo-Gray algorithm

Lloyd’s algorithm

 T.R.A.C.E.

 weighting scheme

simulated annealing

supervised k-means

 self-learning

 vector quantization

top-down splitting

discriminative

locally-adaptive

training procedure

 6

Chapter 2

Literature Review

This thesis reviews several existing methods for classification in detail. Supervised k-

means is a major motivation behind the direction of this research. Some of the latest works

such as self-learning vector quantization and top-down splitting form the basis of the novel

DLANC classifier.

2.1 K-Means

K-means [27] is a popular clustering algorithm [2, 12]. It partitions a set of N data

samples into a set of M clusters. The value of M is specified by the user. Each cluster is

associated with a centroid and a set of data samples partitioned to it. The set of centroids is

denoted as 1{ , ... , }MZ z z= , and the centroid of the cluster to which any data sample ix is

assigned is denoted as ()iA xz Z∈ , where () {1,..., }iA x M∈ is the index of ()iA xz .

The objective is to minimize the total error in the partitioning of the data samples to the

clusters, i.e. the Euclidean distances between the data samples and the associated

centroids. In mathematical notation, the objective is

2

()

 1

argmin || || .
i

N

i A x
Z i

x z
=

−∑ (2.1)

K-means is carried out with Lloyd’s algorithm, which iterates two steps until

convergence, i.e. a local optimum is obtained at which the partioning of the data samples

to the clusters no longer changes. In the first step, when given the centroids, each data

sample is partitioned to the cluster whose centroid is the nearest to it. In the second step,

when given the partitioning of the data samples to the clusters, the centroid of each cluster

is updated and assigned the mean of the data samples partioned to that cluster. Prior to

carrying out Lloyd’s algorithm, the centroids of the clusters are typically randomly

initialized in such a way that they cover the data samples as best as possible.

A number of developments to k-means have been made. One such development is the

fuzzy c-means algorithm introduced by Dunn in 1973 [13], which assigns each data

sample to each cluster with a fuzzy weighting that takes a value between 0 and 1. Another

such developoment is the Linde-Buzo-Gray algorithm introduced by Linde et al. in 1980

[14], which begins with a single centroid and, in each iteration, additional centroids are

generated by splitting some of the centroids and applying k-means to refine the centroids.

 7

2.2 Adaptating K-Means for Classification

K-means is typically used as a clustering algorithm. However, when the data samples are

labeled, k-means can be adapted into a classifier [12]. This classifier could be considered

an extension of the simple nearest centroid classifier.

Scheme 1 of using k-means as a classifier consists of three steps. In the first step, for

each class, k-means is applied to cluster the data samples of that class and generate R

centroids, where R is specified by the user. In the second step, each centroid is assigned

the class label of the data samples from which it was generated. In the third step, each

novel data sample is assigned the class label of the centroid nearest to it. Scheme 2 of

using k-means as a classifier also consists of three steps. In the first step, k-means is

applied to cluster all of the data samples and generate M centroids, where M is specified

by the user. In the second step, each centroid is assigned the most common class label

amongst the data samples whose nearest centroid is itself. In the third step, each novel data

sample is assigned the class label of the centroid nearest to it.

K-means as a classifer has been successfully applied to a number of areas related to

machine learning. One such area is face recognition, where Cifarelli et al. in their 2009

paper Statistical Face Recognition and Intruder Detection Via a k-means Iterative

Algorithm: a Resampling Approach [15] applied k-means in their T.R.A.C.E. (Total

Recognition by Adaptive Classification Experiments) algorithm which yielded very good

results and which provides an alternative to face recognition using PCA (Principal

Component Analysis).

2.3 Supervised K-Means

Building upon the adaptation of k-means into a classifier, supervised k-means is a novel

centroid-based classifier introduced by Al-Harbi et al. in their 2006 paper Adapting K-

Means For Supervised Clustering [2]. It results from the approach of formulating an ideal

classifier by means of extending a simple classfier with techniques or algorithms in

machine learning so as to increase the accuracy while increasing the running time by as

little as possible. It could be considered an extension of the simple nearest centroid

classifier.

K-means is efficient due to two reasons. One reason is that it has a computational

complexity of ()O nkt , where n is the number of data samples, k is the number of

clusters with k n≪ and t is the number of iterations. Another reason is that it is

guaranteed to converge to a local minimum.

To adapt k-means into a classifier, Al-Harbi et al. used the weighted Euclidean metric in

place of the Euclidean metric to differentiate the significances of the features in relation to

each cluster. A weight is assigned to each feature and the distance between any two data

samples x and y is calculated as ()2
1

d

i i i

i

w x y
=

−∑ , where d is the number of features or

dimensions. In their paper, Al-Harbi et al. have shown that the use of the weighted

Euclidean metric in place of the Euclidean metric does not affect the efficiency of k-

 8

means. They used simulated annealing to optimize the weights with the objective of

maximizing the confidence of k-means’ partitioning of the data samples to the clusters. It

was found that setting the initial temperature at 1 and using a geometric cooling scheme

with a value of 0.99 for the multiplier α and decreasing the temperature once every 300
iterations until the temperature is below 0.005 enables simulated annealing to give good

results on training data.

A vector is constructed that contains a weight corresponding to each feature. Each

weight is initialized with a random value. Each cluster is associated with a class label. The

class label of each cluster is determined to be the most common class label amongst the

data samples partitioned to that cluster.

Three steps are carried out in each iteration of the training process. In the first step, at

the current values of the weights, the k-means clustering algorithm is run using the

weighted Euclidean metric to cluster the data samples into k clusters, where k is typically

the number of class labels. In the second step, the fitness of the partitioning is calculated

as the percentage of the data samples that were partitioned to clusters having the same

class labels as themselves. In the third step, the values of the weights are improved using

simulated annealing.

A number of iterations are carried out until a local minimum has been obtained.

Typically, 20 iterations are sufficient [2]. After the training process is complete, each

unlabeled novel sample is assigned the class label associated with the cluster to which that

sample is partitioned.

In their experiments, Al-Harbi et al. used the Wisconsin breast cancer, the Pima Indians

diabetes, the contraceptive method choice and the auto imports datasets from the UCI

repository
2
 to compare the performance of supervised k-means with that of the C4.5

classification technique. 5-fold cross-validation was used to prevent the models from

becoming overfit and to reduce running times. On each dataset, supervised k-means

resulted in a better accuracy than C4.5 did.

The good performance of supervised k-means was the major motivation for me to

formulate a novel phoneme classifier by using the approach of extending a simple

classifier with techniques or algorithms in machine learning.

2.4 Self-Learning Vector Quantization

Self-learning vector quantization (SLVQ) is a novel type of a family of clustering

algorithms known as vector quantization algorithms [16]. It was introduced by Rasanen et

al. in their 2009 paper Self-Learning Vector Quantization for Pattern Discovery from

Speech [3]. It forms the basis of the DLANC classifier’s first stage.

SLVQ works in an online manner. It goes over the data samples one at a time to

generate a set of centroids. The resulting set of centroids have two benefits. One benefit is

that it represents the set of data samples using fewer information, which speeds up

computation. Another benefit is that it eliminate as much as possible the undesirable noise

2
 http://archive.ics.uci.edu/ml/

 9

and outliers that are present in the set of data samples.

As with the k-means clustering algorithm, the means of the centroids may not be

existing data samples. Unlike k-means, SLVQ does not have a parameter that specifies the

number of centroids to be formed from the data samples. The number of resulting

centroids is determined by the values of three parameters, which are the default radius of

any centroid, the amount by which the radius of any centroid could be adjusted at any

given point in time
3
 and the minimum radius that any centroid could have.

SLVQ is carried out on a set of data samples with two steps. In the first step, the first

data sample automatically generates the first centroid having the default radius. In the

second step, one of two actions is applied to each subsequent data sample. If that sample is

not situated within the radius of any existing centroid, then it generates a new centroid

having the default radius. If that sample is situated within the radius of some existing

centroid, then it is merged with the mean of the centroid nearest to it. In doing so, that

mean is moved to a new location.

In the adaptive version of SLVQ, as the algorithm passes over the data samples one at a

time, each centroid keeps track of how many data samples are situated within its radius.

Taking into account of the mean number of data samples situated within the centroids,

each newly-generated centroid or a centroid whose mean is moved to a new location may

have its radius adjusted by an amount. This amount is specified as the value of a

parameter.

For this research, the adaptive version of SLVQ is modified to generate labeled

centroids from labeled data samples. Each newly-generated centroid has the same class

label as the data sample that generated it. A data sample could only be merged with a

same-labeled centroid; should such a centroid not exist, a new centroid is generated from

it. In this modified version of SLVQ, the following steps are carried out:

1. The set of labeled centroids is initialized as the empty set.

2. For each class of data samples, the following steps are carried out:

a. Using the adaptive version of SLVQ, a set of unlabeled centroids is generated from

 these data samples.

b. Each unlabeled centroid is assigned the class label of that class.

c. These centroids are added to the set of labeled centroids initialized in step 1.

3
 this is a parameter of the adaptive version of SLVQ

 10

Figure 2.1 below shows the merging between a data sample and the mean of a centroid.

2.5 Top-Down Splitting

Top-down splitting (TDS) is an algorithm described in § 4.4 of Eick et al.’s 2004 paper

Supervised Clustering – Algorithms and Benefits [4]. It forms the basis of the DLANC

classifier’s second stage. Given a set of centroids that represents a set of data samples, top-

down splitting splits the set of centroids into a larger and more representative set of

centroids that covers the set of data samples in a more uniform manner.

For this research, top-down splitting was modified to take into account of two points.

One point is that the data samples and the centroids have class labels. The other point is

that, with its counts, each centroid keeps track of how many data samples of each class are

the nearest to it.

A centroid is split into two new centroids whenever two conditions are satisfied for it.

One condition is that the value resulting from dividing the second-largest value in its

counts by the largest value in its counts exceeds a user-defined threshold. The other

condition is that the sum of the two largest values in its counts exceeds a user-defined

threshold.

Following the splitting of a centroid, the two new centroids replace the original centroid

and they have two properties. One property is that their means are the average of the data

samples associated with the largest value in the original centroid’s counts and the average

of the data samples associated with the second largest value in the original centroid’s

counts. The other property is that their class labels are those associated with the two

largest values in the original centroid’s counts.

Following the splitting of a centroid, for each of the two new centroids, its radius is

obtained with four steps. In the first step, a sum is initialized with a value of 0. In the

second step, the data samples whose nearest centroid is itself are obtained. In the third

step, the distances between the data samples obtained in the second step and itself are

added to the sum initialized in the first step. In the fourth step, one of two possible actions

is made. If the sum initialized in the first step has a value of 0, then its radius is assigned a

value of 0. If the sum initialized in the first step has a value greater than 0, then its radius

is assigned the average distance between the data samples obtained in the second step and

itself.

Figure 2.1 SLVQ’s merging procedure

 11

Figure 2.2 below shows the splitting of a centroid into two new centroids. The centroid

being split has the red class label and there are 5 data samples having its own class label

and 4 data samples having the blue class label situated within its radius.

2.6 Discriminative Learning

Srikanth et al. in their 2010 paper Discriminative Training of Gaussian Mixture Speaker

Models: A New Approach [5] explored the application of discriminative learning to

Gaussian mixture speaker models. It is one of two techniques that form the basis of the

discriminative locally-adaptive training procedure explored in this research and used in the

DLANC classifier’s fourth stage.

Traditionally, Gaussian Mixture Model (GMM) is most often used for modeling a

speaker’s voice using his or her acoustic characteristics. However, GMM does not take

into account of a speaker’s negative examples, i.e. the data samples that were not spoken

by that person. Instead, for any speaker, GMM only takes into account of his or her

positive samples, i.e. the data samples that were spoken by that person.

GMM typically gives very good results in terms of speaker identification and it is also

very easy to train. To take into account of both the positive samples and the negative

samples of any speaker, Srikanth et al. [5] explored the application of a discriminative

training procedure to the existing GMM framework.With this new framework, for each

speaker, the probabilities of the positive samples and the negative samples are

simulataneously maximized and minimized, respectively.

With GMM, for any speaker modeled by a Gaussian (| ,)N x µ ∑ having the

parameters { , , }θ µ π= ∑ and having the positive samples denoted by the set D and the

negative samples denoted by the set D' , the two goals are to maximize the log likelihood

of the positive samples with the objective

Figure 2.2 The splitting of a centroid into two new centroids

 12

 arg max ln (|)P D
θ

θ .

 (2.2)

and to minimize the log likelihood of the negative samples with the objective

arg min ln (|)P D'
θ

θ .

(2.3)

(2.3) is equivalent to

arg max ln (|)P D'
θ

θ− .

(2.4)

Combining (2.2) and (2.4), the objective becomes

()arg max ln (|) ln (|)P D P D'
θ

θ θ− .

(2.5)

A regularization parameter α , where 0 1α< ≤ , is introduced to remove any imbalance
between the number of positive samples | |D and the number of negative samples | |D' .

As a result, the objective becomes

()argmax ln (|) (1) ln (|)P D P D'
θ

α θ α θ− − .

(2.6)

Denoting ln (|) (1) ln (|)P D P D'α θ α θ− − as)(θl , the optimal solution of the

parameters { , , }θ µ π= ∑ is found by finding the partial derivative of)(θl with respect

to each parameter, setting it to 0 and solving for that parameter.

To test the performance of their new framework for speaker identification, Srikanth et

al. [5] used a subset of the NTIMIT database consisting of 200 speakers and a subset of

the NIST SRE 2003 corpora consisting of 199 male speakers. On both datasets, a GMM

having 32 Gaussian mixtures served as the baseline to which this new framework was

applied. In addition, on the NIST SRE 2003 dataset, the baseline GMM with this new

framework was compared to a much more complex 1024-mixture UBM-GMM (Universal

Background Model – Gaussian Mixture Model). On the NTIMIT dataset, the baseline

GMM obtained an accuracy of 41.375 % and the baseline GMM with this new framework

obtained a best accuracy of 42.875 %. On the NIST SRE 2003 dataset, the baseline GMM

obtained an accuracy of 45.04 % and the baseline GMM with this new framework had a

better performance as compared to the baseline GMM and a similar performance as

compared to the UBM-GMM. From their experimental results, Srikanth et al. [5] inferred

that the baseline GMM with this new framework would have very likely outperformed the

UBM-GMM at higher false-alarm probabilities.

2.7 Locally Adaptive Metrics

Domeniconi et al. in their 2006 paper Locally Adaptive Metrics for Clustering High

Dimensional Data [6] introduced their locally adaptive clustering (LAC) algorithm, which

 13

makes use of locally adaptive metrics. It is one of two techniques that form the basis of the

discriminative locally-adaptive training procedure explored in this research and used in the

DLANC classifier’s fourth stage.

With locally adaptive metrics, the data samples are partitioned to the clusters by taking

into account of the relevance of each feature in relation to each cluster. For any centroid,

the relevance of a feature to it is inversely related to the variance of the data situated

within its radius along that feature.

There are three benefits of locally adaptive metrics. One benefit is the avoidance of

losses of information and difficulty in interpreting the features, which are consequences of

traditional dimensionality-reduction techniques such as PCA. Another benefit is the

avoidance of specifying a model for the distribution of data. Yet another benefit is the

avoidance of the curse of dimensionality in high-dimensional data spaces.

Each cluster has a mean and a weight vector that contains a weight corresponding to

each feature. Each weight has a value between 0 and 1 and it captures the relevance of the

feature associated with it in relation to the cluster associated with it.

Domeniconi et al. [6] used a number of easy-to-understand notations. The number of

features is denoted as D . Each data sample is denoted as x . The K clusters to which the

data samples are partitioned are denoted as jS , 1,...,j K= , with jS ’s mean and weight

vector being denoted as jc and jw , respectively.

For any cluster jS , calculated at its weight vector, the sum of the weighted Euclidean

distances between the data samples partitioned to it and its mean must be strictly less than

the sum of the weighted Euclidean distances between the data samples partitioned to it and

the mean of any other centroid. In mathematical notation, this condition is expressed as

()2 2

1 1

 : () ,
D D

j ji i ji ki i ki

i i

S w x c w x c j k
= =

  
= − < − ∀ ≠ 
  

∑ ∑x .

(2.7)

There are four steps for obtaining the optimal solutions of the means and the weights of

the clusters. In the first step, the objective is to minimize the sum of the average weighted

Euclidean distances between the data samples and the means added up over the K clusters

and the D features. In mathematical notation, the objective function that needs to be

minimized is

()21

1 1

1
(,)

| |
j

K D

ji ji i

j i Sj

E C W w c x
S= = ∈

= −∑∑ ∑
x

.

(2.8)

 14

which is subject to the K constraints 1, ji

i

w j= ∀∑ . In the second step, denoting the

variance of the data samples partitioned to jS along feature i as jiX and introducing the

regularization term
1

 log
D

ji ji

i

w w
=
∑ 4

, (2.8) is re-written as

()2

1 1

(,) log
K D

ji ji ji ji

j i

E C W w X h w w
= =

= +∑∑ .

(2.9)

which is subject to the same K constraints. h is a parameter that takes any non-negative

value. Its value determines, for any cluster, how the unit weight is distributed amongst

theD features. In the third step, introducing a Langrage multiplier jλ for each of the K
constraints, the unconstrained objective function to be minimized is

()
1 1 1 1

(,) log 1
K D K D

ji ji ji ji j ji

j i j i

E C W w X h w w wλ
= = = =

 
= + + − 

 
∑∑ ∑ ∑ .

(2.10)

In the fourth step, the optimal values of the weights jiw and the means jic , 1,...,j K= and

1,...,i D= , are obtained by finding the partial derivatives of (,)E C W in (2.10) with respect

to jiw , jλ and jic , setting them to 0 and solving for each variable. Doing so results in

 *

1

exp

exp

ji

ji D
ji

i

X

h
w

X

h=

 
− 

 =
 
− 

 
∑

.

(2.11)

and

 *

1

| |
j

ji i

Sj

c x
S ∈

= ∑
x

.

(2.12)

In LAC, six steps are carried out to cluster a set of data samples into K clusters. In the

first step, the K clusters are initialized with the means spread out evenly across the data

space and each weight is initialized with a value of
1

D
. In the second step, the data

samples are partitioned to the K clusters according to (1). In the third step, the weights are

adjusted according to (2). In the fourth step, the data samples are re-partitioned to the K

clusters according to (1). In the fifth step, the means are adjusted according to (3). In the

sixth step, steps 2 to 5 are repeated until convergence is reached.

The clustering process is relatively quick. Steps 2 to 5 have a computational complexity

of ()O KDN , whereK is the number of clusters, D is the number of features, and N is

4
 According to Friedman and Meulman in 2002, this regularization term represents the negative entropy of

the weight distribution for each cluster.

 15

the number of data samples. Due to the exponential weighting scheme in (2), relatively

few iterations of steps 2 to 5 are needed to reach convergence.

Domeniconi et al. [6] performed a series of experiments to compare the performance of

LAC to those of several other clustering algorithms. First, the comparison was made on

five simulated datasets. Each dataset had training and testing samples generated from the

multivariate Gaussian distribution, 2 to 3 intrinsic clusters and up to 50 features. When the

dimensionality was high, LAC outperformed k-means and the EM algorithm that uses full

covariance matrices and it performed much better than PROCLUS and DOC. Next, the

comparison was made on several real datasets. The OQ-letter, Wisconsin breast cancer,

Pima Indians diabetes and Sonar datasets are from the UCI repository
5
. The Image dataset

is from the MIT Media Lab
6
. The three high-dimensional text datasets Classic3,

Spam2000 and Spam5996 are subsets of the Email-1431 dataset. The two gene expression

datasets are a B-cell lymphoma dataset and a microarray dataset. The microarray dataset is

the only real dataset that consists of unlabeled data. On six of the real datasets containing

labeled data, LAC obtained the best clustering result. On the Spam2000 and Spam5996

datasets, LAC resulted in relatively very low false positive and false negative rates. On the

microarray dataset, the biclusters obtained by LAC consistently had relatively very low

mean squared residual scores, which was desirable.

5
 http://archive.ics.uci.edu/ml/
6
 www.media.mit.edu/

 16

Chapter 3

The Proposed Approach

In this chapter, an overview of DLANC is provided. The structural components and the

various stages for tackling DLANC are discussed. Following this, the discriminative

locally-adaptive training procedure, which is used in the learning stage of DLANC, is

derived. Lastly, the training and testing procedures of DLANC are given.

3.1 An Overview of the DLANC Classifier for Phoneme Classification

In this research, the formulation of a novel classifier for phoneme classification was

explored. This classifier, which extends upon the simple nearest centroid classifier, is

referred to as the discriminative locally-adaptive nearest centroid (DLANC) classifier. It

makes use of four recent advances in machine learning, which are self-learning vector

quantization (SLVQ) introduced by Rasanen et al, top-down splitting (TDS) explored by

Eick et al., the application of discriminative learning to classification explored by Srikanth

et al. [5] and the application of locally adaptive metrics to clustering explored by

Domeniconi et al. [6].

A centroid has four pieces of information, which are its class label, its mean vector that

specifies its location, its radius and its counts that specifies how many data samples of

each class are the nearest to it.

Figure 3.1 below gives a graphical representation of a centroid. This centroid’s class

label is coded green. Situated within its radius are 85 data samples having its class label,

10 data samples having the class label coded blue, and 6 data samples having the class

label coded orange.

 Figure 3.1 A centroid in the framework of DLANC

 17

 Figure 3.2 below illustrates the phases and stages of the DLANC classifier.

3.2 The Formulation of the Discriminative Locally-Adaptive Training

Procedure

The discriminative locally-adaptive training procedure used in the DLANC classifier’s
fourth stage combines the application of discriminative learning to classification as

explored by Srikanth et al. [5] and the application of locally adaptive metrics to clustering

Stage 1:

use SLVQ to generate an initial set of labeled centroids

from the training samples

 Stage 2:

 use top-down splitting to generate a larger set of centroids

 from the initial set of labeled centroids

Stage 4:

use the discriminative locally-adaptive training procedure

to adjust the means and the weight vectors of the centroids

 For each novel data sample, its class label is assigned that

 of the centroid nearest to it.

 Phase 1:

 generating

 centroids

Phase 2:

training

 Phase 3:

 testing

 Figure 3.2 The phases and stages of the DLANC classifier

Stage 3:

initialize the weights of the centroids

 18

as explored by Domeniconi et al. [6]. It adjusts the means and the weights of the centroids

in DLANC’s training phase.

A number of easy-to-understand notations were used. The number of features is denoted

as D . Each data sample is denoted as x . The K centroids are denoted as jS , 1,...,j K= .

The mean and the weight vector of each centroid jS are denoted as jc and jw ,

respectively. jS
=∈x and jS

≠∈x represent any training sample situated within the radius

of jS which has the same class label as jS and any training sample situated within the

radius of jS which does not have the same class label as jS , respectively.

Given below are the steps with which the optimal values of the means and the weights

of the centroids are derived:

1. The objective is to have each centroid being as near as possible to the training samples

that have its class label and as far as possible from those that do not. The objective

function to be minimized is

() ()2 2

1 1

j j

K D

ji ji i ji i

j i S S

E w c x c xη
= ≠= = ∈ ∈

 
= − − − 

 
 

∑∑ ∑ ∑
x x

.

(3.1)

subject to the K constraints

1, ji

i

w j= ∀∑ .

 η , which has a value between 0 and 1, is a regularization coefficient that automatically
eliminates the imbalance between the number of positive samples | |jS

=
 and the

number of negative samples | |jS
≠
 for each centroid [6].

2. Denoting () ()2 2

j j

ji i ji i

S S

c x c xη
= ≠∈ ∈

− − −∑ ∑
x x

as jiX , (3.1) is re-written as

1 1

K D

ji ji

j i

E w X
= =

=∑∑ .

(3.2)

3. To prevent the most relevant feature from being associated with a weight value of 1

and every other feature from being associated with a weight value of 0, the

regularization term
1

log
D

ji ji

i

w w
=
∑ [6], which represents the negative entropy of each

centroid’s weight distribution, is used to re-write (3.2) as

()
1 1

 log
K D

ji ji ji ji

j i

E w X h w w
= =

= +∑∑ .

(3.3)

 h , which takes non-negative real values, is a parameter that controls how much the

distribution of each centroid’s D weights deviate from the uniform distribution [6].

 19

3. Constrained optimization is used to minimize (3.3) by introducing a Lagrange

multiplier jλ for each of the K constraints. The unconstrained objective function that
needs to be minimized is

()
1 1 1 1

 log 1
K D K D

ji ji ji ji j ji

j i j i

E w X h w w wλ
= = = =

 
+ + − 

 
=∑∑ ∑ ∑ .

(3.4)

4. The optimal values of the weights
*

jiw , 1,...,j K= and 1,...,i D= are obtained by

finding the partial derivatives of E in (3.4) with respect to jiw and jλ , setting them to

0 and solving for jiw . This is done with the following steps,

 a.

 log

ji ji j

ji

E
X h w h

w
λ

∂
= + + −

∂
 and

1

1

D

ji

ij

E
w

λ =

∂
= −

∂ ∑ .

(3.5)

 b. Setting

 ji

E

w

∂
∂

 to 0 and solving for jiw results in

exp

exp 1

ji

ji

j

X

h
w

h

λ

− 
 
 =
 

− 
 

.

(3.6)

 c. Substituting (3.6) into (3.5), setting it to 0 and solving for jλ results in

1

log exp
1

D
ji

j

i

X
h

h
λ

=

− 
= −  − 

∑ .

(3.7)

d. Substituting (3.7) back into (3.6) results in

*

1

exp

exp

ji

ji D
jd

d

X

h
w

X

h=

− 
 
 =

− 
 
 

∑
.

(3.8)

The optimal values of the means
*

jic , 1,...,j K= and 1,...,i D= , are obtained by finding

the partial derivatives of E in (3.4) with respect to jic , setting them to 0 and solving for jic .

This is done as follows:

 20

() ()

() ()

() ()

2 2

2 2

2

2 | |

j j

j j

j j

j

ji ji

ji ji

ji ji i ji i

S S

ji

ji ji i ji i

S S

ji ji i ji i

S S

ji j ji i

S

w XE

c c

w c x c x

c

w c x c x

w c x c x

w S c x

η

η

η

= ≠

= ≠

= ≠

=

∈ ∈

∈ ∈

∈ ∈

=

∈

∂∂
=

∂ ∂

 
∂ − − − 

 
 =

∂

 
= − − − 

 
 

 
= − − − 

 
 

 
= − 

 
 

∑ ∑

∑ ∑

∑ ∑

∑

x x

x x

x x

x

()

()

| |

2 | | | |

2 | | | |

2 | | | | 2

j

j j

j j

j j

j ji i

S

ji j ji j ji i i

S S

ji j j ji i i

S S

ji j j ji ji i i

S S

S c x

w S c S c x x

w S S c x x

w S S c w x x

η

η η

η η

η η

≠

≠ =

≠ =

≠ =

≠

∈

= ≠

∈ ∈

= ≠

∈ ∈

= ≠

∈ ∈

  
 − − 

    

 
= − + − 

 
 

 
= − + − 

 
 

 
= − + −




∑

∑ ∑

∑ ∑

∑ ∑

x

x x

x x

x x

.



By setting

 ji

E

c

∂
∂

 to 0, we get

0

 ji

E

c

∂
=

∂

() *

 2 | | | | 2

j j

ji j j ji ji i i

S S

w S S c w x xη η
= ≠

= ≠

∈ ∈

 
⇒ − = − 

 
 
∑ ∑
x x

() *

 | | | |

j j

j j ji i i

S S

S S c x xη η
= ≠

= ≠

∈ ∈

⇒ − = −∑ ∑
x x

 ⇒

 *

 | | | |

j j

i i

S S

ji

j j

x x

c
S S

η

η

= ≠∈ ∈

= ≠

−

=
−

∑ ∑
x x

.

 (3.9)

 21

3.3 The Training and Testing Processes of the DLANC Classifier

DLANC’s training process is composed of four stages. In the first stage, self-learning

vector quantization (SLVQ) is used to generate an initial set of centroids from the training

samples. In the second stage, top-down splitting (TDS) is used to split the initial set of

centroids, often more than once, to obtain a larger set of centroids. In the third stage, for

each centroid’s D -dimensional weight vector, each of the D weights is initialized with a

value of
1

D
, where D is the number of features. In the fourth stage, the discriminative

locally-adaptive metrics training procedure is used to adjust the means and the weights of

the centroids.

After the training process is complete, DLANC predicts the class label of any novel

unlabeled sample in a similar manner as the nearest centroid classifier does by assigning it

the class label of the centroid nearest to it in terms of weighted Euclidean distance.

 22

Chapter 4

Implementations and Experiments

In this chapter, the data used in the experiments of DLANC, including how the MFCC

vectors are obtained, are discussed. Following this, the two implementation of DLANC,

the various experiments and the results are given.

4.1 The TIMIT Data Used in the Experiments

The data used in the experiments consisted of speaker-independent continuous English

speech corpus from the TIMIT
7
 database. TIMIT was created to provide high quality and

low noise speech data. It is the standard database used internationally by researchers for

acoustic and phonetic studies and for evaluating automatic speech recognition (ASR)

systems. TIMIT contains broadband recordings of 630 speakers who spoke 8 major

dialects of American English. Each speaker read 10 sentences that were phonetically rich.

The Massachusetts Institute of Technology (MIT) and Texas Instruments, Inc. (TI) were

two of the primary parties involved in the making of this popular database in the year

1993. This is how TIMIT’s name came about. To ensure correctness and reliability, all

transcriptions in the TIMIT corpus have been manually checked.

A total of 138,475 training samples and 2,500 test samples were used. These data

covered 8 dialect regions, and they were representative of speech in the real world. These

data were down-sampled to 8 kHz and they were filtered by u-law. 5-frame MFCC vectors

of 27 dimensions each were concatenated to form 135-dimensional vectors.

MFCC (Mel-Frequency Cepstral Coefficients) are the coefficients that constitute an

MFC (Mel-Frequency Cepstrum). They are important in refining raw acoustic signals for

areas such as speech recognition. According to Muda et al. in their 2010 paper Voice

Recognition Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic

Time Warping (DTW) Techniques [7], MFCC is useful because “the extraction of the best

parametric representation of acoustic signals is an important task to produce a better

recognition performance”. MFCC is sequentially carried out with the following steps:

1. The pre-emphasis step. In this step, a speech signal is passed through a filter that

increases the energies of signals that have high frequencies. Denoting X as the input

and Y as the output, an example of such a filter is [] [] 0.95 [1]Y n X n X n= − − , where

0.95 means that 95 % of any sample is assumed to come from the previous sample.

2. The framing step. In this step, the speech signals obtained from analog to digital

conversion (ADC) are each segmented into small frames having lengths in the range of

20 msec to 40 msec. Typically, a voice signal is divided into frames that are each of

N samples, where frames that are next to one another are separated by M samples,

with M N< . Typical values of N and M are 256 and 100, respectively.

7
 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

 23

3. The Hamming windowing step. In the process of extracting signal features, Hamming

windowing is used for putting together the closest blocks in terms of frequency.

Denoting a Hamming window as ()W n , where 0 1n N≤ ≤ − , applying Hamming
windowing results in

() () (),Y n X n W n=

(4.1)

where N represents the number of samples contained in each frame, ()X n represents

the input signal and ()Y n represents the output signal. An example of ()W n is

2
() 0.54 0.46 cos

1

n
W n

N

π = −  − 
.

4. The Fast Fourier Transform step. This step is necessary for converting each frame

containing N samples from the time domain into the frequency domain. In the time

domain, Fast Fourier Transform is applied to convert the convolution of the glottal

pulse []U n and the vocal tract impulse response []H n . Applying Fast Fourier

Transform results in

[]() FFT () () () (),Y w H t U t H w U w= ∗ =

(4.2)

where ()U w , ()H w and ()Y w are the Fast Fourier Transforms of ()U t , ()H t and

()Y t , respectively.

5. The Mel Filter Bank Processing step. In the output of the Fast Fourier Transform, the

voice frequencies have a very wide range and they typically do not follow the linear

scale. To correct the voice frequencies resulting from using FFT by approximating

them with a Mel scale, a set of triangular filters is used for computing a weighted sum

of these voice frequencies’ filter spectral components. Denoting f as a given

frequency in Hz, 102595 log (1) 700Mel f= + is a particular equation that could be

used for finding the Mel corresponding to f . Essentially, one applies the logarithmic

function to any given frequency for obtaining that frequency’s Mel .

6. The Discrete Cosine Transform step. In this step, Discrete Cosine Transform (DCT)

is used for converting the log Mel from the frequency domain into the time domain.

The outputs resulting from the DCT conversion process are referred to as Mel

Frequency Cepstrum Coefficients (MFCC) and they consist of acoustic vectors.

7. The Delta Energy and Delta Spectrum step. The frames of the input voice signal can

change over time, which prompts the need to use additional features in this step to

correct changes in the cepstral features over time. Typically used in practice are 39

features consisting of 12 cepstral features plus energy followed by 13 delta features

plus 13 double delta or acceleration features. In the window from time 1t to time 2t ,

the energy in a frame of a signal X is represented as
2[]X t∑ . Each of the 13 delta

 24

features represents the change between frames in the corresponding cepstral or energy

feature and, subsequently, each of the 13 double delta features represents the change

between frames in the corresponding delta features. The delta at time t is calculated

with the cepstral coefficients at times 1t − and 1t + using

1 1 ()
2

t tc c
d t + −−

= .

(4.3)

Figure 4.1 below shows an example of the MFCC process:

Figure 4.1 How MFCCs can be generated

input wave form tx

pre-emphasis 10.97t t ty x x −= −

Hamming window n n nz w y= 







−

−=
1

2
cos46.054.0

N

n
wn

π

 (n is sample index in window. N is

 window size: 25 ms = 200 samples)
FFT FFT(), 0,..., 255r i

n n nf f z n+ = =

(For a 200 sample window

 and 255 order FFT, padding by 0's)
power spectrum 2 2() () , 0,..., 255r i

n n nP f f n= + =

Mel filter bank
127

0

(,), 0,..., 21m n mel

n

B P w m n m
=

= × =∑

log compression)log(m

l

m BB =








 +=
700

1log2595)(10

f
fMel

inverse transform to obtain MFCC

DCT(), 0,..., 21 and 0,..., 7l

i mc B m i= = =

cepstral mean normalization

ii

N

i ccc −=

1

0

2
cos (0.5) (22)

N
l

i m

m

i
c B m N

N N

π−

=

 = − = 
 

∑

acceleration coefficients

()
2

1()
10

t x t x

i

x c c

d c
+ −

=

−
=
∑
x

ic is the mean of cepstral dimension i in the utterance.

 25

To obtain segment level feature vectors, the classifier’s inputs are the phonemes’ feature

representations. These feature representations are also referred to as segments. Segments

are variable in length when spoken by people at different speeds and by the nature of

different kinds of phonemes. For example, a vowel is usually longer than a consonant. To

have fixed length vectors for classifier training and testing, the variable durations of

segments, i.e. the variable number of frame vectors, are mapped to fixed length vectors.

There are different methods of doing this mapping [19]. Common methods include re-

sampling and averaging. In averaging, state-aligned frames are averaged for each state

and, depending on the HMM structure, either 3 or 5 states are concatenated into a segment

level feature vector. In the present work, re-sampling is used. For each segment, 5 frames

are chosen and concatenated. Figure 4.2 below gives the 6 rules for selecting 5 frames

from a phoneme’s MFCC vector sequence. Each rule describes how to map frame vectors

of a phoneme to a fixed length vector by means of concatenation. To the left of the →
symbol is the input pattern and to the right of it is the output pattern. For example, rule 1

says that if the phoneme consists of only 1 frame, then that frame is repeated 5 times.

1. F1 → F1 F1 F1 F1 F1

2. F1 F2 → F1 F1 F2 F2 F2

3. F1 F2 F3 → F1 F2 F2 F3 F3 F1 F2 F2 F2 F3

4. F1 F2 F3 F4 → F1 F2 F3 F3 F4

5. F1 F2 F3 F4 F5 → F1 F2 F3 F4 F5

6. >5 frames → (middle 5)

To obtain the best possible experimental results, the 135 feature values of each sample

were normalized to lie between –1 and 1. In the data text files, each phoneme sample is

represented as a single line consisting of a class label between 1 and 41 followed by 135

normalized feature values. Table 4.1 below shows the correspondence between the class

labels and the phonemes.

Figure 4.2 How 5 frames can be selected from the duration of a segment

 26

 class label phoneme

 unvoiced

 Table 4.1 The 41 phonemes and their class labels

 voiced

 unvoiced

 voiced

stop

fricative

affricate

nasal

liquid

front

center

back

consonant

vowel

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

p

t

k

b

d

g

f

s

sh

th

v

z

zh

dh

ch

jh

hh

m

n

ng

w

y

r

l

ih

iy

eh

ae

ey

aa

ah

aw

ax

er

ao

aw

ow

oy

uh

uw

h#

 27

4.2 The First Implementation of the DLANC Classifier

There are five variables that are the most important. The first one is range, which

specifies, for each training sample, how many of its nearby centroids get their counts

updated by it. The second one is homes, which, for each training sample, specifies its

nearest same-labeled centroid in the case that its nearest centroid does not have its class

label. The third one is scope, which specifies, for each centroid, how many of its nearest

centroids are used in addition to itself for determining its positive and negative samples.

The fourth one is hVals, which specifies the values of the parameter h . Last but not the

least, the fifth one is ehtaVals, which specifies the values of the parameter η .

An important function called fallFlies uses the training samples to obtain the counts, the

class labels of the centroids and the homes of the training samples. This procedure is

carried out before each adjustment to the centroids is made. In fallFlies, the following

steps are done:

1. For each centroid, each of the 41 values in its counts is initialized to 0.

2. For each training sample, the following steps are done:

 a. Its weighted Euclidean distance to the mean of each centroid is obtained.

 b. These distances are sorted from the smallest to the largest using quicksort.

 c. For each of its nearest range centroids, the value in the counts corresponding to its

class label increases by 1.

3. For each centroid, its class label is the one associated with the largest value in its

counts.

4. For each training sample, its home is initialized with a value of –1. If its nearest

centroid does not have its class label, then the following steps are done to determine its

home:

a. Its weighted Euclidean distance to the mean of each same-labeled centroid is

obtained.

b. These distances are sorted from the smallest to the largest using quicksort.

 c. Its home is its nearest same-labeled centroid.

Another important function uses the discriminative locally-adaptive training procedure

to adjust the weight vector jw or the mean jc of the generic centroid jS , {1 , ... , }j K∈ .

In this function, the following steps are done:

1. A temporary weight vector and a temporary mean are initialized with jw and jc ,

respectively.

2. Calculated at the value of the temporary weight vector, the weighted Euclidean

distance between the temporary mean and the mean of each of the other centroids is

obtained.

3. These distances are sorted from the smallest to the largest using quicksort.

 28

4. To obtain the positive samples and the negative samples, the following are carried out

with each of the pairwise combinations{ , }S x of the scope centroids and the training

samples:

 If S is the nearest centroid of x , then x becomes a positive sample if S and x have

the same class label or x becomes a negative sample if otherwise. If S is the not the

nearest centroid of x and S is the home of x , then x becomes a positive sample.

5. A variable bestGain is initialized with a value of 0. The average weighted Euclidean

distances between the temporary mean and the positive samples and between the

temporary mean and the negative samples are calculated at the value of the temporary

weight vector and they are stored in the variables br and bw, respectively.

6. With each of the 48 pairwise combinations of the values of the parameters h and η ,
where {1,5,10,..., 25}h∈ and {0.05,0.1,0.15,..., 0.4}η∈ , the following steps are done:

a. A 135-dimensional vector jX is calculated according to

() ()2 2

, 1,...,135

j j

ji ji i ji i

S S

X c x c x iη
= ≠∈ ∈

= − − − =∑ ∑
x x

.

(4.4)

b. If the weight vector of jS is adjusted, then the temporary weight vector is adjusted

according to

*

1

exp

, 1,...,135

exp

ji

ji D
jd

d

X

h
w i

X

h=

− 
 
 = =

− 
 
 

∑
.

(4.5)

If the mean of jS is adjusted, then the temporary mean is adjusted according to

 *

, 1,...,135
 | | | |

j j

i i

S S

ji

j j

x x

c i
S S

η

η

= ≠∈ ∈

= ≠

−

= =
−

∑ ∑
x x

.

(4.6)

 c. The average weighted Euclidean distances between the temporary mean and the

positive samples and between the temporary mean and the negative samples are

calculated at the value of the temporary weight vector and they are stored in the

variables ar and aw, respectively.

d. The overall gain from adjusting either the temporary weight vector or the

temporary mean is calculated as br – ar + aw – bw and it is stored in the variable

gain.

 e. If gain > bestGain, then bestGain takes the value of gain and the following is done:

 29

If the temporary weight vector was adjusted, then jw takes the value of the post-

adjustment temporary weight vector. If the temporary mean was adjusted, then jc

takes the value of the post-adjustment temporary mean.

After reading in the training and test samples and the centroids’ means and class labels,

obtaining the pre-adjustment set of centroids by using SLVQ and TDS and initializing the

weight vector of each centroid as 135 values of
135

1
, a while loop is carried out. Each

iteration of this loop carries out three steps. In the first step, the user enters values for the

variables adj, range and scope. In the second step, if adj has a value of –1, 0 or 1, then the

loop exits, the weight vector of each centroid is adjusted or the mean of each centroid is

adjusted, respectively. In the third step, the accuracy on the test samples is calculated and

reported.

4.3 The First Experiment with the First Implementation of DLANC

First, SLVQ was used to generate a set of centroids from the 138,475 training samples.

The parameters of SLVQ were selected through two steps. In the first step, the average

pairwise Euclidean distance between the first 200 training samples was calculated and

stored in the variable meanPairwiseDistance and it serves as an estimate of the average

pairwise Euclidean distance between the training samples. In the second step, the default

radius of the centroids was assigned the value s /1.50meanPairwiseDi tance and stored in

the variable r, the minimum radius that any centroid could have was assigned the value

/ 24.0r and stored in the variable rmin and by how much the radius of any centroid could

be adjusted at any given time was assigned the value /14.0r and stored in the variable dr.

A set of 4,794 centroids was generated, which took only a few minutes. Figure 4.3 below

shows, after using PCA to reduce the dimensionality from 135 to 2, the means of these

4,794 centroids as red dots and the training samples as blue dots.

 30

Next, TDS was used to split the initial set of 4,794 centroids.The parameters ratio and

sumfLsL, which correspond to the two considtions
8
 for any centroid, were set with the

values 0.12 and 8, respectively. The initial set of 4,794 centroids was split into a set of

7,026 centroids. Then, the set of 7,026 centroids was split into a set of 9,368 centroids.

Figure 4.4 below shows, after using PCA to reduce the dimensionality from 135 to 2, the

means of these 9,368 centroids as red dots and the training samples as blue dots.

8

1. the value resulting from dividing the second-largest value in its counts by the largest value in its

 counts exceeds a user-defined threshold

2. the sum of the two largest values in its counts exceeds a user-defined threshold

 Figure 4.3 The means of the initial centroids in the first experiment

 31

Lastly, adjustments to these 9,368 centroids were made. First, the weight vector of each

centroid was adjusted at the values of 2 and 1 for the parameters range and scope,

respectively. Then, the mean of each centroid was adjusted at the values of 8 and 3 for the

parameters range and scope, respectively. Figure 4.5 below shows some of the post-

adjustment values of the centroids’ weights. It could be seen that some of these weights

differ significantly from their initial value of
1

0.007407
135

= .

Figure 4.6 below shows, after using PCA to reduce the dimensionality from 135 to 2, the

post-adjustment means of these 9,368 centroids as red dots and the training samples as

blue dots.

 Figure 4.4 The pre-adjustment means of the centroids in the first experiment

Figure 4.5 Some of the post-adjustment values of the centroids’ weights

 in the first experiment

 32

Table 4.2 below gives the accuracies obtained with the initial set of 4,794 centroids, the

set of 7,026 centroids, the pre-adjustment set of 9,368 centroids, the 9,368 centroids after

having their weight vectors adjusted and the 9,368 centroids after first having their weight

vectors adjusted and then having their means adjusted.

4.4 The Second Experiment with the First Implementation of DLANC

The second experiment explored the possibility of obtaining very good classification

results on TIMIT data simply by adjusting the mean of each centroid. The preliminary

steps for obtained the pre-adjustment set of centroids were identical to those done in the

first experiment with the exception that the default radius of the centroids was set at the

value s /1.51meanPairwiseDi tance instead of s /1.50meanPairwiseDi tance so that a

 Figure 4.6 The post-adjustment means of the centroids in the first experiment

 Table 4.2 The accuracies obtained in the first experiment

 the initial set of 4,794 centroids

 the pre-adjustment set of 9,368 centroids

 the 9,368 centroids after having their weight vectors adjusted

 the 9,368 centroids after first having their weight vectors adjusted

 and then having their means adjusted

 the set of 7,026 centroids 65.88 %

 65.48 %

 67.08 %

 70.08 %

 61.88 %

 33

larger set of initial centroids was generated. An initial set of 5,194 centroids were

generated from the 138,475 training samples using SLVQ, which again took only a few

minutes. Figure 4.7 below shows, after using PCA to reduce the dimensionality from 135

to 2, the means of the initial 5,194 centroids as red dots and the training samples as blue

dots.

Using TDS, the initial set of 5,194 centroids was split into a set of 7,487 centroids,

which was in turn split into a set of 9,891 centroids. Figure 4.8 below shows, after using

PCA to reduce the dimensionality from 135 to 2, the means of these 9,891 centroids as red

dots and the training samples as blue dots.

 Figure 4.7 The means of the initial centroids in the second experiment

 Figure 4.8 The pre-adjustment means of the centroids in the second experiment

 34

The mean of each centroid was adjusted at the values of 8 and 10 for the parameters

range and scope, respectively. Figure 4.9 below shows, after using PCA to reduce the

dimensionality from 135 to 2, the post-adjustment means of these 9,891 centroids as red

dots and the training samples as blue dots.

Table 4.3 below gives the accuracies obtained by the initial set of 5,194 centroids, the

set of 7,487 centroids, the pre-adjustment set of 9,891 centroids and the post-adjustment

set of 9,891 centroids.

 Figure 4.9 The post-adjustment means of the centroids in the second experiment

 the pre-adjustment set of 9,891 centroids

 the post-adjustment set of 9,891 centroids

 the initial set of 5,194 centroids

 the set of 7,487 centroids 65.96 %

60.56 %

66.68 %

70.44 %

Table 4.3 The accuracies obtained in the second experiment

 35

4.5 The Second Implementation of the DLANC Classifier

In the second implementation, the structure was significantly simplified and it consists of

the following steps:

1. The training and test samples and the centroids’ means and class labels are read in.

2. The value of the parameter sigma is obtained by first obtaining the maximum pairwise

weighted Euclidean distance between the centroids and then dividing this value by the

square root of the number of centroids.

3. The pre-adjustment set of centroids is obtained by using SLVQ and TDS.

4. The weight vector of each centroid is initialized as 135 values of
135

1
.

5. A while loop is carried out. In each iteration of this loop, the following are done:

The user enters a value for the variable cont. If cont has a value of –1, then the loop

exists. Otherwise, the user enters values for how many positive samples and how many

negative samples are used for adjusting the mean of each centroid and how many

positive samples and how many negative samples are used for adjusting the weight

vector of each centroid. Then, each centroid is adjusted using the discriminative

locally-adaptive training procedure. Lastly, the accuracy is calculated and reported

along with how many centroids were not adjusted, how many centroids had their

means adjusted and how many centroids had their weight vectors adjusted.

An important function uses the discriminative locally-adaptive training procedure to

adjust the weight vector jw or the mean jc of the generic centroid jS , {1,..., }j K∈ . Six

steps are carried out in this function. In the first step, a temporary weight vector and a

temporary mean are initialized with jw and jc , respectively. In the second step,

calculated at the value of the temporary weight vector, the weighted Euclidean distances

between the temporary mean and the training samples are obtained. In the third step, these

distances are sorted from the smallest to the largest using quicksort. In the fourth step,

using the sorted distances and the values provided by the user in step 5 of this

implementation, the positive and negative samples for adjusting jc and the positive and

negative samples for adjusting jw are both obtained as the nearest training samples that

have the same class label as jS and the nearest training samples that do not have the same

class label as jS , respectively. In the fifth step, for both jc and jw , the value of a variable

bestGain is obtained in a manner analogous to the procedure for obtaining the value of the

variable bestGain in the second function of the first implementation
9
. In the sixth step, if

the value of bestGain resulting from adjusting jc is the same as, greater than, or less than

the value of bestGain resulting from adjusting jw , then jS is not adjusted, jc is adjusted,

or jw is adjusted, respectively.

9
 please refer to § 4.2 The First Implementation of the DLANC Classifier

 36

4.6 The Experiment with the Second Implementation of DLANC

The pre-adjustment set of 9,891 centroids from the second experiment was used.

The first goal was to observe the result from adjusting only the means of the centroids.

The number of positive samples was varied over the values 40, 45 and 50. The number of

negative samples was varied over the values 20, 25, 30, 35 and 40. Three steps were

carried out at each combination of the number of positive samples and the number of

negative samples. In the first step, the mean of each centroid is adjusted with the

discriminative locally-adaptive training procedure. In the second step, PCA is used to

reduce the dimensionality from 135 to 2 and the post-adjustment means of the centroids

are plotted as red dots and the training samples are plotted as blue dots. In the third step,

the accuracy on the test samples is calculated and reported.

 37

Table 4.4 below pertains to the 3 combinations with 20 negative samples.

 Table 4.4 The results with 20 negative samples

 relating to the first goal of the third experiment

Number

of

positive

samples

40

45

50
70.20 %

70.40 %

70.12 %

 38

Table 4.5 below pertains to the 3 combinations with 25 negative samples.

Table 4.5 The results with 25 negative samples

 relating to the first goal of the third experiment

40

45

50

Number

of

positive

samples

 69.92 %

 69.76 %

 69.88 %

 39

Table 4.6 below pertains to the 3 combinations with 30 negative samples.

40

Number

of

positive

samples

45

50
 70.52 %

70.00 %

69.76 %

Table 4.6 The results with 30 negative samples

 relating to the first goal of the third experiment

 40

Table 4.7 below pertains to the 3 combinations with 35 negative samples.

.

Table 4.7 The results with 35 negative samples

 relating to the first goal of the third experiment

Number

of

positive

samples

40

45

50 70.52 %

 70.12 %

 69.92 %

 41

Table 4.8 below pertains to the 3 combinations with 40 negative samples.

Number

of

positive

samples

40

45

50 70.56 %

 69.84 %

69.36 %

Table 4.8 The results with 40 negative samples relating to the first goal of

 the third experiment

 42

The second goal was to observe the result from adjusting only the weight vectors of the

centroids. The number of positive samples was varied over the values 2, 3, 4 and 6. The

number of negative samples was varied over the values 1, 2 and 3. Table 4.9 below gives

DLANC’s accuracy after the adjustment at each combination of the number of positive

samples and the number of negative samples.

Figure 4.10 below shows some of the post-adjustment values of the centroids’ weights

that resulted in the best accuracy of 67.44 % after adjusting the weight vector of each

centroid with 2 positive samples and 1 negative sample. It could be seen that some of these

weights differ significantly from their initial value of
1

0.007407
135

= . For each centroid,

the values of its 135 weights are organized as a single line in the output file.

Table 4.9 The results relating to the second goal of the third experiment

Figure 4.10 Some of the best post-adjustment values of the centroids’ weights

 relating to the second goal of the third experiment

 Number of positive samples
N
u
m
b
er
 o
f
n
eg
a
ti
v
e
 s
am
p
le
s

 1

 2

 3 66.84 %

 6

 66.88 %

 4

 67.04 %

 65.68 %

 3

 67.20 %

 2

 67.44 %

 67.20 %

 67.36 %

 66.72 %

 67.04 % 67.08 %

 66.84 %

 43

The third goal was to observe the result from adjusting either the mean or the weight

vector of each centroid, depending on which adjustment results in a better improvement as

measured by br ar aw bw− + − , where br, ar, bw and aw are the average distance from

that centroid to the positive samples prior to the adjustment, the average distance from that

centroid to the positive samples after the adjustment, the average distance from that

centroid to the negative samples prior to the adjustment and the average distance from that

centroid to the negative samples after the adjustment, respectively. For any centroid, it is

not adjusted if adjusting either its mean or its weight vector results in the same amount of

improvement. Table 4.10 below gives the accuracy at varying numbers of positive and

negative samples. How many positive and negative samples were used for adjusting the

mean of any centroid are on the horizontal axis. How many positive and negative samples

were used for adjusting the weight vector of any centroid are on the vertical axis.

The adjustment to the centroids with 52 positive samples and 40 negative samples for

adjusting the mean of each centroid and 1 positive sample and 1 negative sample for

adjusting the weight vector of each centroid resulted in the best accuracy of 70.56 %. This

adjustment resulted in every centroid having either its mean or its weight vector adjusted.

7,670 centroids had their means adjusted and 2,221 centroids had their weight vectors

 Table 4.10 The results relating to the third goal of the third experiment

 40 & 20 50 & 40 30 & 15 10 & 4 20 & 10 40 & 20

 5 & 1

 5 & 1

 5 & 1

 7 & 1

 66.64 %

 67.24 %

 68.44 %

 68.96 %

 10 & 2 69.04 %

 2 & 1 69.64 %

 52 & 40

 1 & 1 70.56

 44

adjusted. Figure 4.11 below shows, after applying this adjustment, some of the post-

adjustment values of the centroids’ weights. It could be seen that some of these weights

differ significantly from their initial value of
1

0.007407
135

= . For each centroid, the

values of its 135 weights are organized as a single line in the output file. Figure 4.12

below shows, after applying this adjustment and using PCA to reduce the dimensionality

from 135 to 2, the post-adjustment means of the 9,891 centroids as red dots and the

training samples as blue dots.

Figure 4.11 Some of the best post-adjustment values of the centroids’ weights

 relating to the third goal of the third experiment

 Figure 4.12 The best post-adjustment means of the centroids

 relating to the third goal of the third experiment

 45

Chapter 5

Comparisons Between DLANC and Other Classifiers

In this chapter, DLANC is compared to a number of existing classifiers used for phoneme

classification. First, DLANC is compared to GMM [26], HMM [34] and ANN [35] using

results obtained by other researchers. Following this, DLANC is compared to the NC

classifier, SVM, PNN and k-means using results obtained as part of this research.

5.1 Comparing DLANC with GMM and HMM

Antal et al. in their 2004 paper Speaker Independent Phoneme Classification In

Continuous Speech [8] used Gaussian Mixture Model (GMM) to classify phonemes. A

GMM is a special type of Hidden Markov Model (HMM) with a single state. The

performance of GMM was compared to that of the common classical left-to-right 3-state

HMM. 6,300 utterances from the TIMIT corpus were used, and these were split into 4,620

for training and 1,680 for testing.

The number of Gaussian mixtures was varied, the maximum-likelihood approach was

used for parameter estimation, and only diagonal covariance matrices were used to speed

up training. The best accuracy of 60.43 % was obtained with 256 Gaussians and 1,000

occurrences per phone. The best result on TIMIT data obtained by other authors using the

common classical left-to-right 3-state HMM was 63.00 %. To achieve this result, full

covariance matrices were used, 20 ms /10 ms was set as the value of frame size per shift,

and the features used were MFCC-18 + Delta.

DLANC vastly outperformed both GMM and HMM, achieving a best accuracy of

70.56% on TIMIT data.

5.2 Comparing DLANC with ANN

Anies et al. in their 2004 paper Robust Speech Recognition with an Auditory Model [9]

used an advanced version of Artificial Neural Network (ANN), namely Recurrent Time-

Delayed Neural Network (RTDNN), to classify phonemes at the frame level. This network

was built using the NICO toolkit. The cepstral recognition system was used as the

reference system.

The number of hidden neurons was set at 400 to match the cepstral recognition system.

The standard tangent hyperbolicus function was used as the activation function. The

weights were initialized with random values between –0.1 and 0.1. The training data was

split into a training set and a smaller validation set. Using the NICO toolkit’s Backprop

function, the value of the gain parameter was decreased by a factor of 0.8 whenever the

objective function failed to decrease on the validation data during the training process. The

value of the momentum parameter was empirically set at a value of 0.7. To avoid over-

 46

training this network, the error on the validation set was monitored during the training

process. This network was used for training acoustic-based 4 kHz and 8 kHz models. Each

model was trained over 30 iterations or epochs and took 10 days to run on a 2.66 GHz

standard PC.

The best accuracy of approximately 67 % was obtained on the TIMIT 39 dataset using

the auditory-based 8 kHz model. Not only did DLANC obtain a higher accuracy of 70.56

% on TIMIT data, it took only a few hours to run from start to finish on a standard PC.

5.3 Comparing DLANC with the NC Classifier, SVM, PNN and K-Means

The nearest centroid classifier, which is the simplest classifier and which serves as the

structural foundation of the DLANC classifier, obtains an accuracy of 61.92 % on the

2,500 test samples when the 138,475 training samples were used as the centroids.

SVM [22][23][24] was introduced by Vapnik in 1963. It classifies data samples that are

typically not linearly-separable by mapping them to higher-dimensional spaces using a

class of one-to-one mappings known as kernel functions. Possible kernel functions include

the linear kernel, the radial basis function (RBF) kernel and the polynomial kernel. In

higher-dimensional spaces, where the mapped data samples are much more linearly-

separable, a maximum-margin hyperplane is constructed to linearly separate any two

groups of mapped data samples as best as possible by being situated at the maximal

equalized distance from the nearest data sample(s) of either group. These nearest data

samples are referred to as support vectors. The maximum-margin hyperplanes become

nonlinear boundaries when they are mapped back to the original data spaces, in which they

effectively separate the different groups of data samples.

Using the LIBSVM package to implement SVM, an accuracy of 78.5 % was obtained.

Though DLANC resulted in a best accuracy of 70.56 %, the complexity of its training

process is ()O nck whereas the training process of the standard version of SVM has a

complexity of 3()O n [10], where n is the number of training samples, c is the number of

centroids and k is the number of adjustments to the centroids. With DLANC, typically the

centroids are adjusted only once to prevent over-fitting.

Probabilistic neural network (PNN) [30][31][32] was introduced by Specht in 1990. It

improves upon the back-propagation artificial neural network by making use of a

statistically- derived activation function and a statistical technique known as the Parzen-

Rosenblatt window method [17][18]. Unlike back-propagation ANN, PNN has a single

pattern layer whose pattern nodes apply a Gaussian function to each training sample, has

very quick running times and its decision boundary asymptotically approaches the Bayes

optimality as the number of training samples increases. Using the 138,475 training

samples to construct the pattern layer, PNN resulted in an accuracy of 61.7 % on the 2,500

test samples.

Scheme 1 of the application of k-means to classification [12] was used for classifying

TIMIT data. The same 138,475 training samples from TIMIT were used to generate the

centroids and the same 2,500 test samples from TIMIT were used for the testing phase.

Table 5.1 below lists the accuracies obtained at several choices of the number of centroids.

 47

Figure 5.1 below shows the accuracy as the number of centroids increases.

Scheme 2 of the application of k-means to classification [12] assigns the class label of

each centroid to be the most common class label amongst the data samples nearest to it. It

is very similar to the first implementation of the DLANC classifier prior to making any

adjustment to the centroids
10
, which assigns the class label of each centroid as the largest

value in that centroid’s counts. This is because the counts of each centroid keeps track of

10
 please refer to § 4.2 The First Implementation of the DLANC Classifier

Figure 5.1 the effect on the accuracy as the number of centroids grows

Table 5.1 The results of k-means (scheme 1)

 41

 4,790

 9,600

49.6 %

 61.8 %

 64.7 %

 138,475 60.7 %

 Number of centroids Accuracy

 48

how many data samples of each class are the nearest to it. With 9,368 centroids, the first

implementation of the DLANC classifier resulted in an accuracy of 65.48 % prior to

making any adjustment to the centroids. Table 5.2 below lists the best accuracies obtained

by DLANC, the nearest centroid classifier, PNN, k-means (scheme 1) and SVM.

From Table 5.2 we can see that even though SVM results in the highest accuracy, it

takes much longer to train as compared to DLANC. On the 138,475 TIMIT training data,

SVM took 12 hours and 3 minutes to train even though Platt’s Sequential Minimal

Optimization (SMO) was used [25]. On the same training data, DLANC took only 1 hour

and 27 minutes to train. In practical applications of speech recognition, where the size of

the training data is usually in the millions or more, SVM could not scale up, whereas

DLANC could do so due to its linear complexity.

Algorithm % Correct

nearest centroid classifier

probabilistic neural network

k-means (scheme 1)

support vector machine

DLANC

61.9 %

61.7 %

64.7 %

78.5 %

70.56 %

 Table 5.2 The best accuracies of DLANC and several other classifiers

 49

Chapter 6

Conclusion and Future Directions

In this research, I successfully formulated the novel discriminative locally-adaptive nearest

centroid (DLANC) classifier and applied it to the task of phoneme classification. DLANC

has many good properties. It is accurate, quick to run, has very few parameters, gives

stable results when the values of its parameters are moderately varied and it is able to scale

up to very large datasets. DLANC is fast to construct, train and run. Consequently, it is

easy in practice to find values for DLANC’s parameters that result in good accuracies.

In the near future, I would like to modify the DLANC classifier by having it being

extended to the k nearest centroids classifier. For example, DLANC’s testing phase could

be modified by using the k nearest centroids classifier in place of the nearest centroid

classifier for obtaining accuracies on test samples. I would also like to apply the DLANC

classifier to other real datasets to further test its performance. Furthermore, for future

work, I would like to combine the DLANC classifier and PNN by using DLANC to

generate the centroids and the values of the weights.

Another future application of DLANC is towards Discriminative Learning for

Quantized Time Series [11]. In a quantized time series model, rather than being a

concatenation of selected frames from a segment, a phoneme is a set of centroids whose

dimensionality is the same as that of a frame vector. The quantized time series model is

different from the segmentation centroids model in that each centroid has a time

dimension that reflects the temporal locations of its data with which the centroids in a

quantized time series could be sorted into a sequence. In the testing phase, each frame

vector of the test sequence is matched only to the centroids of similar temporal locations to

increase the efficiency of search.

Vector matching is more structured, which results in reduced decoding time and better

memory organization. Discriminative learning is carried out by testing each training

sample with a test mode, i.e. as if the labels of the training samples are unknown and

recording the error ratios of the training samples by comparing the labels of the training

samples with the winner template. A correct classification is made if the labels are equal

and an incorrect classification is made if otherwise. For each training sample, the winner

template has the number of positive samples it has or the number of negative samples it

has increased by 1 depending on whether a correct classification or an incorrect

classification is made. Each centroid uses its positive and negative samples to adjust its

means and weights in the same way DLANC does.
After the test samples are matched to the templates, the frame vectors in the samples and

the centroids in the templates are interlocked. This is equivalent to the training phase of

DLANC, where each centroid receives a set of positive and negative samples. As a result,

the discriminative locally-adaptive training procedure used in the DLANC classifier can

be readily applied to discriminatively train a quantized time series model.

 50

 In terms of practical applications, phoneme classification system can be used in audio

search based on audio to phoneme conversion. Phoneme recognition can be carried out

first either by a phoneme recognizer alone [20] or in combination with a word recognizer

[21]. After converting audio into phonemes, vocabulary independent audio search can be

executed: from a dictionary, a word can be matched into a phoneme string, which can then

be searched from converted audio. Phoneme classifier can be used in achieving confidence

measure, which is an important component of a speech recognition system. In [28] [29]

[33], phoneme recognizer provides the acoustic information in confidence measurement.

The extended time series model can perform phoneme classification when given phoneme

boundaries by the ASR system. By applying a Viterbi algorithm, a phoneme recognition

system can be constructed, in which case a phoneme sequence can be generated by the

system with posterior probabilities for confidence measurement.

 51

Bibliography

[1] Karray F.O., de Silva C., “Soft Computing and Intelligent Systems Design”,

 Pearson Education Limited, 2004.

[2] Al-Harbi S.H., Rayward-Smith V.J., “Adapting K-means for Supervised

 Clustering”, Applied Intelligence, 24 (3). pp. 219-226, ISSN 0924-669X, 2006.

[3] Rasanen O.J., Laine U.K., Altosaar T., “Self-Learning Vector Quantization for

 Pattern Discovery from Speech”, Brighton, England, 2009.

[4] Eick C.F., Zeidat N., Zhao Z., “Supervised Clustering – Algorithms and Benefits”,

 Department of Computer Science, University of Houston, In proceedings of the 16th

 IEEE International Conference on Tools with Artificial Intelligence (ICTAI04),

 Boca, 2004.

[5] Srikanth M.R., Murphy H.A., “Discriminative Training of Gaussian Mixture

 Speaker Models: A New Approach”, Department of Computer Science And

 Engineering, Indian Institute of Technology, 2010 National Conference on

 Communications (NCC), 29-31 January, 2010.

[6] Domeniconi C., Gunopulos D., Ma S., Yan B., Al-Razgan M., Papadopoulos D.,

 “Locally Adaptive Metrics for Clustering High Dimensional Data”, Data Min Knowl

 Disc (2007) 14:63-97

[7] Lindasalwa M., Mumtaj B., Elamvazuthi I., “Voice Recognition Algorithms using

 Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW)

 Techniques”, Journal of Computing, Volume 2, Issue 3, March 2010.

[8] Antal M., “Speaker Independent Phoneme Classification In Continuous Speech”,

 Studia Univ. Babes-Bolyai Informatica, 2004.

[9] Anies M.T., “Robust Speech Recognition with an Auditory Model”, Escola Tècnica

 Superior d'Enginyeria de Telecomunicació de Barcelona, 2004.

[10] Tsang I.W., Kwok J.T., Cheung P., “Core Vector Machines: Fast SVM Training

 on Very Large Data Sets”, Department of Computer Science, The Hong Kong

 University of Science and Technology, Journal of Machine Learning Research 6

 (2005) 363–392, April, 2005.

[11] Sun J., Sun Y., Abida K., Karray F., “A Novel Template Matching Approach To

 Speaker-Independent Arabic Spoken Digit Recognition”, International Conference

 on Autonomous and Intelligent Systems (AIS), Portugal, 2012.

 52

[12] STAT 557 – Data Mining, The Pennsylvania State University.

[13] Dunn J. C., "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

 Compact Well-Separated Clusters", Journal of Cybernetics 3: 32-57, 1973.

[14] LindeY., Buzo A., Gray R. M., ”An Algorithm for Vector Quantizer Design,”

 IEEE Trans. on Communication, Vol. COM-28, pp. 84-95, Jan. 1980.

[15] Cifarelli C., Manfredi G., Nieddu L., “Statistical Face Recognition and Intruder

 Detection via a K-means Iterative Algorithm: a Resampling Approach”, Proceedings

 of the 13th Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI

 2009), Vol. II, pagg. 47-52, Orlando (Florida), July 10-13, 2009.

[16] Tran D.T., Ma W., Sharma D., Bui L., Le T., “A Generic Framework

 for Soft Subspace Pattern Recognition.”, Theory and Novel Applications of

 Machine Learning, In-Teh (Croatia), 197-208, 2009.

[17] Parzen E.,"On estimation of a probability density function and mode".

 Annals of Mathematical Statistics 33: 1065–1076, 1962.

[18] Rosenblatt M., "Remarks on some nonparametric estimates of a density function",

 Annals of Mathematical Statistics 27: 832–837, 1956.

[19] Ganapathiraju A., Hamaker J., Picone J., "Hybrid SVM/HMM Architectures for

 Speech Recognition", ICSLP-2000, vol.4, 504-507, 2000.

[20] Seide F., Yu P. et al., “Vocabulary-Independent Search in Spontaneous Speech.”,

 Proc. ICASSP, Montreal, 2004.

[21] Seide F., Yu P., “A Hybrid Word / Phoneme-Based Approach For Improved

 Vocabulary-Independent Search In Spontaneous Speech”, Proceedings of

 Interspeech., 2004.

[22] Burges C.J.C., “A Tutorial on Support Vector Machines for Pattern Recognition”,

 Data Mining and Knowledge Discovery, 2:121-167, 1998.

[23] Vapnik V.N., “Statistical Learning Theory”, John Viley and Sons, 1998.

[24] Lin H.T., Lin C.J., Weng R.C., “A Note on Platt’s Probabilistic Outputs for

 Support Vector Machines”, Machine Learning, Vol. 68 Issue 3, October 2007.

[25] Chang C., Lin C., “LIBSVM : A Library for Support Vector Machines.”, ACM

 Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.

[26] Reynolds, D.A., "Robust Text-Independent Speaker Identification Using Gaussian

 Mixture Speaker Models", IEEE Transactions on Speech and Audio Processing, Vol.

 3, No. 1, 1995.

 53

[27] Lloyd S. P., "Least Squares Quantization in PCM", IEEE Transactions on

 Information Theory 28 (2): 129–137, 1982.

[28] Cox S., “High-Level Approaches to Confidence Estimation in Speech Recognition”,

 IEEE Transactions on Speech and Audio Processing, Vol. 10, No. 7, October 2002.

[29] Benitez M.C. et al., “Word Verification Using Confidence Measures in Speech

 Recognition,” Proc. 5th Int. Conf. Speech Communication and Technology,

 pp. 1082–1085, Nov. 1998.

[30] Specht D.F., “Probabilistic Neural Networks”, Neural Networks, Vol. 3, No.1,

 pp. 109–118, 1990.

[31] Montana D., “A Weighted Probabilistic Neural Network”, Advances in Neural

 Information Processing Systems, Vol. 4, pp. 1110-1117, published by Morgan

 Kaufmann, 1992.

[32] Low R., Togneri R., "Speech Recognition Using the Probabilistic Neural Network",

 Proceedings of ICSLP98 (SST Student Day), Paper No. 645, Sydney, Australia,

 December 1998.

[33] Abida K., “Fuzzy GMM-Based Confidence Measure Towards Keywords Spotting

 Application”, Master's Thesis, University of Waterloo, 2007.

[34] Gales M.,Young S., "The Application of Hidden Markov Models in Speech

 Recognition.", Foundations and Trends in Signal Processing 1(3): 195-304, 2007.

[35] Masters T., Signal and Image Processing with Neural Networks,

 John Wiley & Sons, Inc., ISBN 0-471-04963-8, 1994.

