

The Determination of Structured Hessian Matrices
via Automatic Differentiation

by

Samuel Embaye

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014

© Samuel Embaye 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

 In using automatic differentiation (AD) for Hessian computation, efficiency can be

achieved by exploiting the sparsity existing in the derivative matrix. However, in the case where

the Hessian is dense, this cannot be done and the space requirements to compute the Hessian can

become very large. But if the underlying function can be expressed in a structured form, a

“deeper” sparsity can be exploited to minimize the space requirement. In this thesis, we provide

a summary of automatic differentiation (AD) techniques, as applied to Jacobian and Hessian

matrix determination, as well as the graph coloring techniques involved in exploiting their

sparsity. We then discuss how structure in the underlying function can be used to greatly

improve efficiency in gradient/Jacobian computation. We then propose structured methods for

Hessian computation that substantially reduce the space required. Finally, we propose a method

for Hessian computation where the structure of the function is not provided.

iii

Acknowledgements

 I want to thank my supervisor, Thomas Coleman, for his guidance and support

throughout the master’s program, and in completing this thesis. I also thank my readers Stephen

Vavasis and George Labahn for their comments and insight. Finally, thank you to my parents for

all of the support they have given me.

iv

Table of Contents

List of Figures vii

1 Introduction ... 1

1.1 Overview .. 1

1.2 Structure of Thesis ... 2

2 Automatic Differentiation .. 3

2.1 Overview .. 3

2.2 Forward Mode AD ... 4

2.2.1 An Example of Forward Mode ... 4

2.3 Reverse Mode AD .. 7

2.3.1 An Example of Reverse Mode .. 8

2.4 Matrix Representation of AD ... 10

2.4.1 Forward Mode ... 12

2.4.2 Reverse Mode ... 13

2.4.3 Hessian Computation .. 14

2.4.4 Derivative Matrix Products ... 15

3 Sparsity and Coloring ... 17

3.1 Exploiting Sparsity ... 17

3.2 Coloring Jacobians ... 21

3.2.1 One-sided Methods ... 21

3.2.2 Bicoloring Methods .. 24

3.3 Coloring Hessians .. 29

4 Structure .. 34

4.1 General Framework .. 34

v

4.2 Structured Gradient Computation .. 39

5 Structured Hessian Computation .. 44

5.1 Implicit Method .. 45

5.2 Explicit Method .. 48

5.3 Gradient Differencing .. 51

5.4 Test Functions .. 53

5.4.1 Dynamic System ... 53

5.4.2 Generalized Partial Separability ... 54

5.4.3 General Case ... 55

5.5 Numerical Results .. 56

5.5.1 Exact Hessian .. 56

5.5.2 Approximate Hessian .. 60

6 Structure Revealing Methods .. 62

6.1 Background .. 62

6.2 Determining Separators .. 65

6.3 Hessian Computation ... 66

7 Conclusions .. 69

References .. 71

vi

List of Figures

Figure 2.1: General Evaluation Procedure for AD ... 3

Figure 2.2: Evaluation Procedure of (2.3) .. 5

Figure 2.3: An Evaluation Procedure for Forward Mode AD .. 6

Figure 2.4: General Evaluation Procedure for Reverse Mode AD ... 8

Figure 2.5: An Evaluation Procedure for Reverse Mode AD ... 9

Figure 3.1: Column Intersection Graph of (3.3) ... 23

Figure 3.2: Optimal Coloring of Column Intersection Graph... 23

Figure 3.3: Column Intersection Graph of (3.9) ... 24

Figure 3.4: Associated Bipartite Graph of (3.9) ... 26

Figure 3.5: Path p-coloring of Bipartite Graph ... 26

Figure 3.6: Associated Adjacency Graph for (3.27) ... 31

Figure 3.7: Symmetric p-coloring of Adjacency Graph ... 32

Figure 3.8: Sparsity Structure with Associated Colors ... 32

Figure 3.9: Cyclic p-coloring of Adjacency Graph .. 33

Figure 4.1: General Structured Computation .. 36

Figure 4.2: Algorithm S-2 ... 42

Figure 5.1: Algorithm IIP ... 45

Figure 5.2: Algorithm ICH ... 47

Figure 5.3: Algorithm ES-2 .. 49

Figure 5.4: Algorithm EIP .. 49

Figure 5.5: Algorithm ECH .. 50

Figure 5.6: Algorithm SFDH .. 52

Figure 6.1: Example Computational Graph .. 63

Figure 6.2: Example Computational Graph with Directed Edge Separator dE 64

Figure 6.3: Algorithm ESRCH ... 67

vii

1 Introduction
Equation Chapter (Next) Section 1

1.1 Overview
Scientific computing is an (almost) all-encompassing field in modern research, with a large

variety of disciplines utilizing it for modelling and quantitative analysis of various phenomena.

Efficiency in computation is the chief concern in these applications, and often the computation of

derivatives is what requires the most time.

Automatic differentiation provides a very practical method to compute these derivatives.

Unlike finite differencing methods, automatic differentiation does not incur truncation errors,

and calculates derivatives to working precision. Unlike in symbolic differentiation, automatic

differentiation only requires the computer code to evaluate a function, in order to determine its

derivatives. It does not have to form potentially very complicated derivative function expressions

in order to do so.

Automatic differentiation is becoming more and more widely utilized throughout scientific

research, with fluid dynamics [30], mathematical biology [22], ship propulsion optimization

[31], option pricing [27], and thermodynamics [28] being just a few of its many applications.

Often the Hessian matrix associated with a scalar-valued function is required in these

applications and automatic differentiation performs efficiently in obtaining it in many situations.

It does so by exploiting the sparsity inherent in the underlying function. However, for functions

corresponding to a complicated computation where the Hessian is dense, sparse techniques are

not very useful and the space required can become so large that using automatic differentiation

becomes infeasible.

 Thus if methods can be developed to use automatic differentiation in such a way as to

mitigate the large space requirements for the Hessian matrix without significantly infringing on

the efficiency in computing time, automatic differentiation becomes more generally applicable.

This is the topic of this thesis.

1

1.2 Structure of Thesis
In this thesis we discuss structured methods to reduce space requirements in Hessian

computation using automatic differentiation. We consider both the case where the function in

question is provided in a structured form, and when it is not. Chapter 2 provides an overview of

automatic differentiation, with a focus on a matrix representation of AD. Chapter 3 discusses

how sparsity in the derivative matrix can be used to increase computational efficiency, and how

graph theoretic concepts are invoked in doing so. Chapter 4 outlines the concept of structure,

and how it can be used to improve efficiency in Jacobian and gradient calculations. In Chapter

5, we consider methods to exploit structure in Hessian computation while limiting the memory

required, and numerical results are presented. In Chapter 6, we look at a structured method for

the Hessian when the function is not provided in a structured form. Finally, Chapter 7 contains

concluding remarks on the thesis and potential avenues for further research.

2

2 Automatic Differentiation
Equation Chapter (Next) Section 1

2.1 Overview
Automatic differentiation (AD) is a numerical method for determining derivative matrices

of a real-valued function, given a computer program to evaluate the function. AD makes use of

the fact that every computer code for evaluating a function uses a finite set of elementary

operations and functions as defined by the programming language. This is done in such a way

that the function computed by the computer program is simply a composition of these elementary

functions and operations. The reason these elementary functions ()sin,cos,exp, log, and

operations (), , , /,+ − ×  are very useful in differentiation is that their derivatives and

corresponding derivative operations, with respect to their inputs, are known and are easy to

compute.

AD breaks the computer code for the function down into a partially ordered sequence of its

elementary functions (we call this an evaluation procedure [26]). Then through repeated use of

the chain rule, it calculates the function’s derivatives accurately to working precision. Generally,

for a function : n mF →  the evaluation procedure is a three part process:

 ()
1

1

1 0

i n i

i i j j i

m i p i

v x i n

v v i p

F v i m

φ

−

∀ <

− −

= =

= =

= = −







Figure 2.1: General Evaluation Procedure for AD

The input variables are converted to intermediate variables, a new intermediate variable is

defined for every elementary operation iφ , and finally the output variables for the function are

extracted from the final intermediate variables. This evaluation procedure is used in two distinct

ways to compute the derivative of the function, forward mode and reverse mode, which are

discussed in Section 2.2 and 2.3, respectively.

3

2.2 Forward Mode AD
As mentioned before, automatic differentiation is essentially repeated application of the

chain rule. Suppose we have a composite function of the following form:

 () (((())))f x g h s t x= (2.1)

then performing the chain rule on (2.1), with respect to x yields

 df dg dh ds dt
dx dh ds dt dx

= (2.2)

Forward mode AD traverses the chain from right to left to obtain the function’s derivative, as

you would when evaluating the function. This allows for the function value and derivative to be

computed concurrently [12]. We demonstrate this with an example in the succeeding section.

2.2.1 An Example of Forward Mode

Suppose we have a function 3 2:F →  defined as:

1 2 31

2 3 1 2

sin()
exp()

x x xF
F x x x

+  
=    −   

 (2.3)

and we would like to determine the Jacobian matrix m nJ ×∈ , of F . AD determines the

evaluation procedure of F as in Figure 2.1, by breaking down the function into a partially

ordered set of elementary operations [26]. The evaluation procedure for (2.3) can be found in

Figure 2.2.

4

2 1

1 2

0 3

1 2 1

2 1

3 0

4 1 3

5 0 2

1 4

2 5

Input
variables

exp()
Intermediate

sin()
variables

Output
variables

v x
v x
v x

v v v
v v
v v
v v v
v v v

F v
F v

−

−

− −

=


= 
= 
= ⋅


= 
= 
= + 
= − 

= 
= 

Figure 2.2: Evaluation Procedure of (2.3)

Now suppose we want to compute the derivative of F with respect to 2x , in other words we

want the derivatives 1

2

F
x
∂
∂

 and 2

2

F
x
∂
∂

. In forward mode AD, since we traverse the chain of

elementary operations in the same direction as we do when evaluating the function, we can

compute these derivative as we compute the function value. We define
2

i
i

dvv
dx

= , so then 1 1v− =

and 2 0 0v v− = =  as they are independent variables. Putting this all together, we get the evaluation

procedure for forward mode AD for the partial derivatives with respect to 2x .

5

2 1 2

1 2 1

0 3 0

1 2 1 1 2 1 2 1 2

2 1 2 1 1 1 2

3 0 3 0 0

4 1 3 4 1 3 2

5 0 2 5 0 2 1 2

1 4

2 5

0
1
0

exp() exp() exp()
sin() cos() 0

exp()

v x v
v x v
v x v
v v v v v v v v v
v v v v v v v
v v v v v
v v v v v v v
v v v v v v v v

F v F
F v

− −

− −

− − − − − − −

−

−

−

= =
= =
= =
= ⋅ = ⋅ + ⋅ =
= = ⋅ = ⋅
= = ⋅ =
= + = + =
= − = − = − ⋅

=
=







  

 

 

  

  



1 4

2 5

v
F v
=

=







Figure 2.3: An Evaluation Procedure for Forward Mode AD

We can see in Figure 2.3 that with one “sweep” through the function, we have recovered all the

partial derivatives with respect to 2x ; this corresponds to one column of the Jacobian. We can

also see that the additional work required to get these partial derivatives is comparable to the

work required to evaluate the function. So, if we define ()Fω as the work required to evaluate

F , we can say that:

 1 2

2 2

, ~ ()F F F
x x

ω ω
 ∂ ∂
 ∂ ∂ 

 (2.4)

However, in order to fully compute the Jacobian J , we need these partial derivatives with

respect to each one of the input variables. Unfortunately, as should be apparent from how we

defined 2 1 0, ,v v v− −   , for each input variable we must redefine these initial iv ’s and compute a new

sweep through the function F . Since F has n input variables, we come to the result that

computing the Jacobian matrix using forward mode AD has cost:

 () ~ ()J n Fω ω⋅ (2.5)

 Additionally, since we are computing the derivative concurrently with evaluating the

function, the space required to compute the derivative is just some multiple of the space required

to evaluate the function. So if we define ()Fσ as the space required in evaluating the function

F , we can say that:

6

 () ~ ()J Fσ σ (2.6)

2.3 Reverse Mode AD
Examining (2.1) again, we have a composite function () (((())))f x g h s t x= , performing the

chain rule with respect to x again yields:

 df dg dh ds dt
dx dh ds dt dx

= (2.7)

Reverse mode AD traverses the chain from left to right. Since it begins with the output of the

function, the function must be evaluated first to get the evaluation procedure. The procedure

consisting of the intermediate values and operations done is saved to a “computational tape”.

Then the derivative is calculated by travelling backwards through the tape, until reaching the

beginning of the tape where the derivative is recorded.

 In order to record the derivatives as we travel back through the tape, we define a set of

adjoint variables iv , corresponding to the existing intermediate variables iv such that [12, 26]:

 k k
i k

k i k ii k i i

dF dFv v
dv dv v v

φ φ
∀ > ∀ >

∂ ∂
= = =

∂ ∂∑ ∑ (2.8)

where ()k k j j k
v vφ

<
= . We initialize these adjoint variables to 0, then add to them incrementally

as we traverse the tape backwards, until we reach the beginning of the tape and have fully

accumulated the derivatives.

 Generally, for a function : n mF →  , the evaluation procedure for performing reverse

mode AD is as follows [26]:

7

()

0 1
1 Function
1 evaluation

1 0

0 1
Derivative

 for 1
evaluation

1

i

i n i

i i j j i

m i p i

p i m i

i
j j i

j

i i n

v i n p
v x i n

v v i p

F v i m

v y i m

v v v j i i p
v

x v i n

φ

φ

−

∀ <

− −

− −

−

= = − 
= = 
= = 
= = − 
= = −


∂ = + < = ∂ 
= = 















Figure 2.4: General Evaluation Procedure for Reverse Mode AD

We will further illustrate reverse mode AD through an example in the next section.

2.3.1 An Example of Reverse Mode

Using the same example as in Section 2.2.1, we have a function 3 2:F → 
 such that:

1 2 31

2 3 1 2

sin()
exp()

x x xF
F x x x

+  
=    −   

 (2.9)

Suppose we want to determine the Jacobian m nJ ×∈ , of F . As was the case with forward

mode AD, the function is broken down into a partially ordered set of elementary operations.

However, in reverse mode, the function is evaluated in its entirety first, saving the ordered

operations to a computational tape. Then the last m adjoint variables are initialized to user-

specified values depending on with respect to which output the derivative is to be computed.

Afterwards, the derivative is computed by sweeping through the tape in reverse.

 For our example, we will compute the partial derivatives of 1F , which correspond to the

first row of the Jacobian matrix. Following the general evaluation procedure for reverse mode in

Figure 2.4, we first define the adjoint variables 4 1v = and 5 0v = (if we were getting the

derivatives of 2F , we would define the adjoint variables as 4 0v = and 5 1v = instead). The

evaluation procedure for the example is as follows:

8

()
()

()
()
() ()

()

2 1

1 2

0 3

1 2 1

2 1

3 0

4 1 3

5 0 2

1 4

2 5

5

4

2 2 5

0 0 5

1 1 4 4

3 3 4 4

0 0 3 0 0

1 1 2 1 1 2 2

1 1

0, 2 3

exp()
sin()

0
1

1 0

1 0

1 1

1 1

cos cos

exp 1

iv i
v x

v x
v x

v v v
v v

v v
v v v

v v v
F v

F v
v

v
v v v

v v v

v v v v

v v v v

v v v v v

v v v v v v v
v v

−

−

− −

− −

= = −
=
=
=
= ⋅
=
=
= +
= −
=
=
=

=

= + ⋅ − =

= + ⋅ =

= + ⋅ = =

= + ⋅ = =

= + ⋅ =

= + ⋅ = + ⋅ =

= +



1 2 2

2 2 1 1 1

3 0

2 1

1 2

v v v
v v v v v

x v
x v

x v

− −

− − − −

−

−

⋅ =
= + ⋅ =

=
=

=

Figure 2.5: An Evaluation Procedure for Reverse Mode AD

Although AD does all this numerically, analytically Figure 2.5 yields the results:

 ()1 1 1
2 1 3

1 2 3

, , cosF F Fx x x
x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

 (2.10)

By looking at (2.9), it can be easily verified that the results in (2.10) are correct. With one sweep

through the function we have recovered all the partial derivatives of the first output variable; and

looking at Figure 2.5 we see that computing these derivatives only costs a small multiple of the

9

cost to evaluate the function itself. Since the function F has m output variables (ie. the Jacobian

has m rows), we can conclude that the work required to compute the Jacobian of a function F is:

 () ~ ()J m Fω ω⋅ (2.11)

 Additionally, since we have to save the entire computational tape from evaluating the

function, in order to evaluate the derivative; reverse mode AD has space requirement:

 () ~ ()J Fσ ω (2.12)

where typically, () ()F Fω σ>> . Reverse mode AD tends to have much higher storage demands

than forward mode. However, its work’s dependence on the number of output variables (rather

than inputs), can be extremely useful. This is especially true for scalar-valued functions ()1m = ,

where the gradient would be computed.

2.4 Matrix Representation of AD
An alternative, but very useful way to look at AD is through the lens of matrix algebra.

Suppose we have a program that evaluates the function (), : n mz F x F= →  . Evaluating the

function using AD generates the partially ordered sequence of intermediate variables

()1 2, , , py y y , where typically ,p m n>> . Each intermediate variable iy comes from an

elementary operation on one ()sin,cos,exp, log, , or two (), , , /,+ − ×  of the previously

computed intermediate and independent variables.

If we allow EF to represent the “extended” version of the function F , we can express its

decomposition into intermediate elementary functions as follows [15]:

1 1 1

2 2 2 1

1 2 1

1 2

solve : () 0
solve : (,) 0

solve : (, , , ,) 0

solve output : (, , , ,) 0

E

E

E
p p p p

p

y y F x
y y F x y

y y F x y y y

z z f x y y y
−

− =

− =

− =

− =

 





 (2.13)

10

Differentiating the process in (2.13) with respect to all the independent and intermediate

variables yields a () ()p m n p+ × + matrix C of partial derivatives, representing an extended

Jacobian of F . If we order the independent and intermediate variables as

()1 2 1 2, , , , , , ,n px x x y y y  , then C can be written as:

E E

x y

x y

F F
C

f f
 

=   
 

 (2.14)

where:

1 1 1

1 1

1 1

1 11 1

11

1 1

0

, ,

,

E E E

n
E E

x y
E E E E

p p p p

n p

pn

x y

m m m m

n p

F F F
x x y

F F
F F F F
x x y y

f ff f
y yx x

f f
f f f f
x x y y

  ∂ ∂ ∂
  

∂ ∂ ∂  
  = =   
 ∂ ∂ ∂ ∂ 
    ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂
   ∂ ∂∂ ∂   
  = =
  

∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂   

 

     

 





     

  

 (2.15)

C is a sparse matrix, since each elementary operation has at most two inputs, there are at most

three non-zeroes in each row of C . It is also important to note that E
yF is a lower triangular

matrix, since each elementary function can only depend on the intermediate variables already

calculated, and not the ones coming after it.

 The Jacobian of F with respect to the independent variables x, can be recovered from

(2.14) by a Schur complement computation:

 () 1E E
x y y xJ f f F F

−
= − (2.16)

There are two principal ways to compute the Schur complement in (2.16) that differ in their

order of operations, and they correspond to forward mode and reverse mode AD.

11

2.4.1 Forward Mode
The first method for computing (2.16) is:

 () 1E E
x y y xJ f f F F

− = −   
 (2.17)

Computing () 1E E
y xF F

−
 requires the linear system E E

y xF W F= to be solved for W :

1 11

11 1

1 1

0
E EE

n

E E E E
pp p p p

p n

F FF
x xy W

WF F F F
y y x x

   ∂ ∂∂
   

  ∂ ∂∂       =      ∂ ∂ ∂ ∂  
    ∂ ∂ ∂ ∂  



      

 

 (2.18)

Since E
yF is lower-triangular, the 'siW can be determined from top to bottom. Since the matrix

C is also created from top to bottom, as the function F is evaluated. We never need to store the

entire matrix C . Thus the computational tape is only traversed in the forward direction, yielding

forward mode AD, and so we have the space requirement in (2.6) [23].

We can also recover the same time complexity result for forward mode as in (2.5) [23],

by examining (2.17). In forward mode AD, the Jacobian is computed column-wise, so we will

determine the cost of computing the first column of the Jacobian.

Clearly, the first column of xf is required, and looking at (2.15), this corresponds to the

partial derivatives of f with respect to 1x . So this requires a forward sweep through the

function, with cost proportional to that of evaluating the function, ()Fω . The first column of

yf W , where () 1E E
y xW F F

−
= , is also required. This corresponds to the first column of W , as

well as the partial derivatives of f with respect to the intermediate variables iy . This derivative

information is recovered in the forward sweep, so there is no additional cost. Finally, from

examining (2.15), we find that the first column of W requires the partial derivatives of EF with

respect to the intermediate variables iy , and the partial derivatives of EF with respect to 1x ; both

of which are also recovered in the forward sweep. Thus the cost of computing the first column of

12

the Jacobian, ignoring the cost of matrix multiplications and a sparse triangular system solve as

this should be negligible in comparison to evaluating the function, is proportional to ()Fω .

The Jacobian m nJ ×∈ , has n columns, thus requiring n sweeps through the

computational tape. We cannot do better than that here, because as we saw in Section 2.2.1 we

can only compute derivatives with respect to one of the input variables per forward sweep; and

we have n input variables. Thus we can conclude from a matrix approach just as we did in (2.5),

that the cost of computing the Jacobian matrix of F is:

 () ~ ()J n Fω ω⋅ (2.19)

2.4.2 Reverse Mode
The second method for computing (2.16) is:

 () 1E E
x y y xJ f f F F

− = −   
 (2.20)

Computing () 1E
y yf F

−
 requires the linear system ()TE T T

y yF W f= to be solved for W :

 ()

1 1

1 1 1 1

1

10

EE
p m

T T
p

E
p m

p pp

F fF f
y y y y

W W
F ff

y yy

   ∂ ∂∂ ∂
   
∂ ∂ ∂ ∂   

   =   
 ∂ ∂∂ 
     ∂ ∂∂   

 

      





 (2.21)

This system is somewhat similar to (2.18), however since we are now dealing with ()E T
yF rather

than E
yF , the left hand side of (2.21) is an upper-triangular matrix. This means it has to be solved

bottom to top. However the matrix C is formed from top to bottom in evaluating F , so the

entire matrix E
yF (ie. the computational tape) has to be stored in order to compute (2.20). The

computational tape is then traversed in the backwards direction, thus we have reverse mode AD.

 Due to saving the computational tape in its entirety, we have the space complexity result

() ~ ()J Fσ ω found in (2.12). We could also recover the time complexity result in the same way

13

we have done for forward mode in Section 2.4.1, yielding () ~ ()J m Fω ω⋅ as found in (2.11)

[23].

2.4.3 Hessian Computation

Suppose we have a function (), : nz f x f= →  . In order to determine the gradient,

f∇ , which is the transpose of the Jacobian for a scalar-valued function, we would use reverse

mode AD as 1m n=  . Following (2.20), we can outline the procedure for determining the

gradient :

Solve and differentiate (2.14) to obtain : (,) 0
Solve for : () 0

Solve for : () 0

E

E T T
y y

E T T
x x

C F x y
w F w f

f F w f f

=

+ =

∇ + −∇ =

 (2.22)

Then assuming all functions involved are twice differentiable, we differentiate (2.22) with

respect to (), ,x y w to obtain an extended Hessian [14]:

 () () ()
() () ()

0E E
x y

T T TE E E
E yx yx yy yy y

T T TE E E
xx xx xy xy x

F F

H F w f F w f F

F w f F w f F

 
 
 = + + 
  + + 

 (2.23)

Then we obtain the Hessian matrix 2 ()H f x≡ ∇ by partitioning EH :

 () () ()
() () ()

0E E
x y

T T TE E E
E yx yx yy yy y

T T TE E E
xx xx xy xy x

F F
A L

H F w f F w f F
B M

F w f F w f F

 
 

  = + + =       + + 

 (2.24)

and then computing a Schur complement of EH , as was done with C for Jacobian calculation

[14].

 1H B ML A−= − (2.25)

14

In order to compute the extended matrix
EH we have essentially differentiated the gradient

routine, () : n nf x∇ →  . Since the input and output variables are the same size there is no

advantage in terms of work required to compute using either forward or reverse mode. There is

no discernible space advantage either, since in the gradient routine we used reverse mode storing

all of the computational tape, we already have it and would not incur significant additional space

requirements by using it again. Thus we have the work complexity result for computing the

Hessian H by AD of [23]:

 () ~ ()H n fω ω⋅ (2.26)

2.4.4 Derivative Matrix Products
A very useful property of automatic differentiation is that it can be used to compute

Jacobian-matrix (and Hessian-matrix) products directly, without first explicitly computing the

derivative matrix.

For a function : n mF →  , with Jacobian m nJ ×∈ , suppose we have two matrices

,V W such that vn tV ×∈ and wm tW ×∈ . Then we can determine the product JV by forward

mode AD in time proportional to ()vt Fω⋅ , and the product TW J by reverse mode AD in time

proportional to ()wt Fω⋅ [23, 24].

From (2.16), we have that:

 1JV BV M L AV− = −   (2.27)

 1T T TW J W B W ML A− = −   (2.28)

Using the same argument as in Section 2.4.1, JV has Vt columns and TW J has Wt rows, thus

requiring Vt forward sweeps, and Wt backward sweeps respectively. Each sweep costs ()Fω , and

thus we have the time complexity results [23, 24]:

 () ~ ()VJV t Fω ω⋅ (2.29)

15

 () ~ ()T
WW J t Fω ω⋅ (2.30)

 Alternatively, the cost of computing the Jacobian and then afterwards the product JV ,

costs ()n Fω⋅ plus the cost of the matrix product [23]. So computing the product directly can

result in significant time savings when the number of columns in V or W , is less than the

number of columns, or rows respectively, in J .

We will see how useful this property can be in reducing the cost of AD when sparsity is

accounted for, in the next chapter.

16

3 Sparsity and Coloring
Equation Chapter (Next) Section 1

3.1 Exploiting Sparsity
Typically in problems of large dimension, the Jacobian (or Hessian), exhibits some level of

sparsity. Fortunately, AD can take advantage of this sparsity to enhance the efficiency of these

derivative matrix computations [2, 3, 4]. As we’ve seen in Chapter 2, ignoring sparsity the

(dense) Jacobian J of a function : n mF → 
 can be computed using forward mode AD with

cost proportional to ()n Fω⋅ , or reverse mode AD with cost proportional to ()m Fω⋅ [23]. From

a derivative matrix product standpoint as introduced in Section 2.4.4, these are equivalent to

choosing [24]:

 nV I= (3.1)

 mW I= (3.2)

(where kI represents the k k× identity matrix) and then computing the products JV and
TW J , for forward and reverse mode AD respectively.

However, if the Jacobian J is sparse, we can potentially choose thin matrices (ie. matrices

with column dimension ,m n) V and/or W such that all the non-zeroes of J can be

recovered from the products JV and/or TW J . Thus computing the Jacobian can be done much

more efficiently than if the identity matrices were used [8, 19]. We will consider a few often

referenced examples to illustrate the potential for increased efficiency [12, 13].

Suppose we have a function : n nF → 
, whose Jacobian is differentiable and has the

structure (for 5n =):

11

21 22

31 33

41 44

51 55

J
J J

J J J
J J
J J

 
 
 
 =
 
 
 
 

 (3.3)

17

where ijJ represent the nonzero entries. If we were to ignore the sparsity in J and treat it as a

dense matrix, computing it would require work proportional to 5 ()Fω⋅ regardless of whether

forward or reverse mode was used. However, if we select the thin matrix:

1 0
0 1
0 1
0 1
0 1

V

 
 
 
 =
 
 
 
 

 (3.4)

Then the computation of JV by forward mode AD yields:

11

21 22

31 33

41 44

51 55

0J
J J

JV J J
J J
J J

 
 
 
 =
 
 
 
 

 (3.5)

Comparing (3.5) to (3.3), all the nonzeros of J are contained within JV . Since V only has 2

columns, we have determined all the nonzeroes of J with work proportional to only 2 ()Fω⋅

[24]. This is much more efficient than the 5 ()Fω⋅ required if sparsity is ignored. The most

astonishing result however, is that if we extend the problem to arbitrarily large size n (instead of

5), V still only needs to have 2 columns. Whereas dense forward mode AD now requires work

proportional to ()n Fω⋅ . When 2n  , we obtain significant cost reduction by exploiting the

sparsity in J .

 Let’s now consider a similar example, but this time using reverse mode AD. Suppose the

sparsity structure of J is:

11 12 13 14 15

22

33

44

55

J J J J J
J

J J
J

J

 
 
 
 =
 
 
 
 

 (3.6)

18

This time we select the thin matrix:

1 0
0 1
0 1
0 1
0 1

W

 
 
 
 =
 
 
 
 

 (3.7)

and using reverse mode AD compute:

 11 12 13 14 15

22 33 44 550
T J J J J J

W J
J J J J

 
=  
 

 (3.8)

Once again, comparing (3.8) to (3.6), we have recovered all the nonzeroes of J in TW J . Since

W has 2 columns, computing the nonzeroes of J requires work proportional to 2 ()Fω⋅ [24].

This is much more efficient than if sparsity is ignored where the cost is proportional to 5 ()Fω⋅ .

If we extend the problem to size n with the same sparsity in the Jacobian, again the sparse

method still costs 2 ()Fω⋅ , whereas using AD without considering sparsity now costs ()n Fω⋅ .

So for large n, exploiting sparsity can yield huge gains in efficiency of Jacobian calculation.

 However, the potential savings in exploiting sparsity are not always as apparent as in the

previous two examples. Now suppose the Jacobian has the following structure [32]:

11 12 13 14 15

21 22

31 33

41 44

51 55

J J J J J
J J

J J J
J J
J J

 
 
 
 =
 
 
 
 

 (3.9)

 It turns out that because we have a fully dense row, forward mode AD cannot do better than

()n Fω⋅ . Also, since we have a fully dense column, reverse mode AD cannot do better than

()n Fω⋅ either. However, if we use a combination of forward and reverse modes, we can still

reduce the work required. Suppose we let:

19

1
0
0
0
0

V

 
 
 
 =
 
 
 
 

 (3.10)

1 0
0 1
0 1
0 1
0 1

W

 
 
 
 =
 
 
 
 

 (3.11)

Then forward mode AD yields:

11

21

31

41

51

J
J

JV J
J
J

 
 
 
 =
 
 
 
 

 (3.12)

and reverse mode AD yields:

 11 12 13 14 15

22 33 44 55

T J J J J J
W J

X J J J J
 

=  
 

 (3.13)

Note that the entry X in TW J is nonzero, but not useful to us, so we discard it. Comparing

(3.12), and (3.13) to (3.9), we have recovered all the nonzeroes of J , with cost proportional to

3 ()Fω⋅ , since V has one column and W has two [24]. This provides significant savings over

the cost of only using one mode of AD, ()n Fω⋅ . So generally, we may exploit sparsity by using

a combination of both forward and reverse mode AD.

 Then the question becomes, for a Jacobian J (or Hessian H) with general sparsity

structure, how do we determine the most appropriate thin matrices V and/or W such that all the

nonzeroes of J can be recovered from the products , TJV W J ? We will see in Section 3.2 and

20

Section 3.3 that this can be done in a number of ways by solving an associated graph coloring

problem.

3.2 Coloring Jacobians

3.2.1 One-sided Methods
A one-sided method for automatic differentiation is one that utilizes just one of forward

and reverse mode, but not both. Determining an appropriate matrix V (or W) to recover the

nonzeroes of the Jacobian J is equivalent to finding a partition of the columns (or rows) of J .

A partition of the columns (or rows) of J is the division of the columns (or rows) into

groups such that each column (or row) belongs to one and only one group. A column partition is

said to be consistent with the direct determination of J if for each nonzero element ijJ , all the

other columns that are in the same group as column j do not have a nonzero in row i (ie. each

group consists of a structurally orthogonal set of columns). Similarly, a row partition is

consistent with direct determination of J , if each group’s set of rows is structurally orthogonal

[11].

It is relatively easy to see how such a partition leads to a direct determination of J . We

will demonstrate this for a consistent column partition. Suppose we have determined a column

partition with groups 1 2, , , pC C C , we define a set of column vectors (), 1, ,iv i p=  such that:

 () 1 if
0 if

j ii

j
j i

c C
v

c C
∈

=  ∉
 (3.14)

where , 1, ,jc j n=  is the thn column of J . Then we concatenate the set of vectors into a

matrix such that:

 1 2 pV v v v
 
 =  
 
 

 (3.15)

21

We now have our matrix V such that all the nonzeros of J can be recovered from the product

JV , which is computed by forward mode AD. Since each group in the consistent column

partition is structurally orthogonal, every entry in JV can only correspond to at most one

nonzero entry in J . And since the partition covers all columns of J , we have directly

determined all nonzero entries in J . The same argument can be made for a row partition

consistent with direct determination.

 We have shown that determining matrix V (or W) for derivative-matrix product

computation is equivalent to finding a partition of the columns (or rows) of J consistent with

direct determination of J . Each group in such a partition corresponds to a column in V (or W),

and in order to be most efficient we need the matrix V (or W) to be as thin as possible. This

means we can reformulate the problem presented at the end of Section 3.1, to find the thinnest

matrix V (or W) such that all the nonzeros of J can be recovered, as a partitioning problem.

The partitioning problem is to find a consistent column (or row) partition of J , requiring the

least number of groups [11].

 It turns out that this partitioning problem is equivalent to a certain graph-coloring

problem. If we have a graph (),G V E= , a coloring of the graph, { }: 1, 2, ,V pφ →  , is a

labelling of the graph’s vertices such that no two vertices sharing an edge have the same color.

The chromatic number of the graph, ()Gχ , is the minimum number of colors required to color

the graph. Determining the optimal coloring of an arbitrary graph, one with ()Gχ colors, is an

NP-complete problem [29], so typically a heuristic algorithm is used to determine a near-optimal

graph coloring.

 If a consistent column partition is desired, the equivalent graph coloring problem is to

find an optimal coloring of the column intersection graph of J , ()() ,UG J V E= where the

vertex set { }1 2, , , nV c c c=  corresponds to the columns of J , and there exists an edge (),i jc c

if and only if both the thi and thj columns of J have a nonzero in the same row position

[11, 20].

We will illustrate this equivalency by looking back at the example in (3.3). The column

intersection graph associated with J in (3.3) is:

22

Figure 3.1: Column Intersection Graph of (3.3)

This is a relatively simple graph, so we can see that the optimal coloring would be:

Figure 3.2: Optimal Coloring of Column Intersection Graph

 If we allow each color to represent a group, then by (3.14) and (3.15), we have recovered the

matrix V in (3.4).

 Analogously, the consistent row partition corresponds to coloring the Jacobian’s

associated row intersection graph ()() ,UG J V E= . Where the vertex set { }1 2, , , mV r r r= 

corresponds to the rows of J , and there exists an edge (),i jr r if and only if both the thi and thj

rows of J have a nonzero in the same column position. We will not demonstrate this with an

example like we did for the column case, as the resulting graph and coloring are identical to

those found in Figure 3.1 and Figure 3.2.

23

 There are several algorithms that can be used to determine a near optimal coloring of the

graph, such that the number of colors used, ()p Jχ≈ , where ()Jχ is the chromatic number of

the column (or row) intersection graph of J [8, 11, 20]. ()Jχ gives us a lower bound on the

number of colors required and it is always true that ()J nχ ≤ (or m), since we can always assign

a different color to each vertex and have a permissible coloring. This means that by exploiting

sparsity, we can compute the nonzeroes of J using a one-sided method with work:

 ()() ~ ()J J Fω χ ω⋅ (3.16)

and this will always cost no more than it would have if we had ignored sparsity [11].

3.2.2 Bicoloring Methods

As we have seen in examining the sparsity structure of J in (3.9), a one-sided method

cannot always take advantage of the sparsity in J . We claimed that this was the case because

(3.9) contained both a dense column and row. Now we will demonstrate why this is the case by

looking at the column intersection graph of (3.9) (the row intersection graph is identical):

Figure 3.3: Column Intersection Graph of (3.9)

It is apparent from Figure 3.3 that a coloring of this graph must have n (or m) colors, and so there

is no improvement in time complexity compared to if we had ignored the sparsity.

 However, as we saw in (3.10)-(3.13) the computation of the nonzeroes of J in (3.9) can

be done much more efficiently if we use a combination of forward and reverse mode AD, by

24

what is called a bicoloring method [13]. A similar method for determining a sparse Jacobian by

both columns and rows is given by Hossain and Steihaug [33]. In order to do this, we need a

bipartition of the Jacobian J . A bipartition of J is a pair (),R CG G where RG is a row partition

of a subset of the rows of J , and CG is a column partition of a subset of the columns of J . A

bipartition (),R CG G is consistent with direct determination if for every nonzero entry in J , ija ,

either column j is in a group of CG which has no other column having a nonzero in row i; or row

i is in a group of RG which has no other rows having a nonzero in column j [13].

 The analogous bipartitioning problem is to find a consistent bipartition such that

R CG G+ is as small as possible, where CG represents the number of groups in CG and RG

represents the number of groups in RG [13]. As shown in the one-sided case, given a bipartition

consistent with direct determination, it is simple to construct matrices Cn GV ×∈ and
Rm GW ×∈ such that J can be directly determined from the products JV and TW J .

 The bipartitioning problem can be interpreted as a restricted graph coloring problem. This

time we need a bipartite graph associated with the Jacobian. Given a matrix m nJ ×∈ , we define

a bipartite graph () []()1 2, ,bG J V V E= where the vertex sets correspond to the set of columns of

J , { }1 1 2, , , nV c c c=  , and the set of rows of J , { }2 1 2, , , mV r r r=  ; edges exist only between

the two vertex sets such that there exists an edge (),j ic r if and only if the ijJ entry of J is

nonzero. The associated bipartite graph of (3.9) is:

25

Figure 3.4: Associated Bipartite Graph of (3.9)

 We then need to find a bipartite path p-coloring of ()bG J . A bipartite path p-coloring is

a coloring using p colors, [] { }1 2: , 0,1, ,V V pφ →  , with the additional properties that every path

of at least three edges must use at least three colors, and color 0 corresponds to a lack of an

actual color assignment. The minimum number of colors required for a path p-coloring of graph

()bG J , is ()()p bG Jχ , which we will call the direct bichromatic number [13]. An optimal path

3-coloring for the bipartite graph in Figure 3.4 is:

Figure 3.5: Path p-coloring of Bipartite Graph

26

where the white nodes correspond to the 0-color. Since we do not consider the 0-color a true

color, this path 3-coloring corresponds to a bipartitioning (),R CG G where { }[1], [2,3, 4,5]RG =

and { }[1]CG = . This bipartitioning in turn corresponds to matrices ,V W where:

1 1 0
0 0 1

, and 0 0 1
0 0 1
0 0 1

V W

   
   
   
   = =
   
   
   
   

 (3.17)

as in (3.10), and (3.11).

 Generally, finding an optimal path p-coloring of ()bG J cannot be done efficiently.

However, there exists heuristics [1, 13, 20] that yield a near optimal path p-coloring such that

()pp Jχ≈ , where ()p Jχ is the direct bichromatic number for the graph ()bG J . This leads to the

time complexity result for Jacobian computation using the direct bicoloring method of:

 ()() ~ ()pJ J Fω χ ω⋅ (3.18)

 It is important to note that the direct bicoloring method will always perform at least as

well as the direct one-sided methods [13]:

 () ()p J Jχ χ≤ (3.19)

This is because the path p-coloring problem for the graph ()bG J , can be made equivalent to

coloring the column intersection graph ()UG J , by simply requiring that the path coloring

[] { }1 2: , 0,1, ,V V pφ →  , maps the vertex set corresponding to the rows to the 0-color (ie.

[] { }2: 0Vφ →) and the column set to the positive colors (ie. [] { }1: 1, 2, ,V pφ → ); and vice

versa for the row intersection graph.

 We can further improve on the time complexity bound found in (3.18) if we relax our

requirement that all the nonzeroes of the Jacobian are directly determined, and instead allow for

them to be determined by a substitution method.

27

This substitution method requires a new bipartition, one that is consistent with

determination by substitution. A bipartition (),R CG G is consistent with determination by

substitution if there exists an ordering π on elements ija such that for every nonzero ija of A,

either column j is in a group where all nonzeros in row i from other columns in the group are

ordered lower than ija ; or row i is in a group where all the nonzeros in column j from other rows

in the group are ordered lower than ija . The bipartitioning problem is to find such a consistent

bipartitioning where R CG G+ is minimized [13].

Once again, the bipartitioning problem can be interpreted as a graph coloring problem.

As with the direct bicoloring method, the graph in question is the bipartite graph associated with

the Jacobian, () []()1 2, ,bG J V V E= , where the vertex sets correspond to the columns and rows,

and there exists an edge (),j ic r if and only if the ijJ entry of J is nonzero. For the substitution

method, we require a bipartite cyclic p-coloring of ()bG J . A bipartite cyclic p-coloring is a

coloring using p colors, [] { }1 2: , 0,1, ,V V pφ →  , with the additional properties that every cycle

must use at least three colors, and color 0 corresponds to a lack of an actual color assignment

[13, 20].

The minimum number of colors required for a valid bipartite cyclic p-coloring is ()c Jχ ,

which we will call the substitution bichromatic number. This leads to the time complexity bound

for the substitution bicoloring method of AD:

 ()() ~ ()cJ J Fω χ ω⋅ (3.20)

It should be relatively clear that the substitution method will always perform at least as well as

the direct method. This is because the requirements for a cyclic p-coloring are not as strict as

those for a path p-coloring. A cyclic p-coloring requires that all cycles use at least 3 colors, but

every cycle is a path of at least 3 edges (cycles with 1 or 2 edges are impermissible). This means

that every path p-coloring is a cyclic p-coloring, but the converse is clearly not true. Thus leading

to the result regarding the bichromatic numbers that:

 () ()c pJ Jχ χ≤ (3.21)

28

 Combining the inequalities in (3.19) and (3.21) we have that:

 () () ()c pJ J Jχ χ χ≤ ≤ (3.22)

This shows that the substitution bicoloring AD method performs better than the direct bicoloring

AD method, which in turn performs better than both one-sided AD methods.

 Substitution methods force another thing to be considered, the propagation of error

through substitutions. However, it has been showed that with certain conditions this can be well

mitigated [13].

3.3 Coloring Hessians

The Hessian matrix of a function : nf →  is a symmetric matrix 2 n nf ×∇ ∈ . The

chief difference when dealing with the sparsity of a Hessian, versus that of a Jacobian, is this

symmetry which typically does not exist in a Jacobian. This symmetry opens new avenues for

exploiting sparsity [6, 7, 10, 32]. Naturally, if we choose to ignore the symmetry in 2 f∇ , all of

the methods discussed in Section 3.2 are applicable. However, we will demonstrate how

exploiting the existing symmetry in 2 f∇ can lead to further gains in efficiency.

We can demonstrate this rather simply by looking back at the sparsity structure in (3.9),

but now we consider it as a symmetric Hessian’s structure [32]:

11 12 13 14 15

21 22
2

31 33

41 44

51 55

h h h h h
h h

f h h
h h
h h

 
 
 
 ∇ =
 
 
 
 

 (3.23)

If the symmetry is ignored, we saw in Section 3.2 that one sided methods yielded a partition

consistent with direct determination containing 5 groups, whereas the direct bicoloring method

yielded a bipartition consistent with direct determination containing only 3 groups. However, if

we exploit the symmetry in (3.23), we can form a valid partition consisting of only 2 groups.

29

 Suppose we choose to partition the columns of 2 f∇ such that we have the two groups:

{ }1 1C = , and { }2 2,3, 4,5C = . This partitioning leads to the seed matrix:

1 0
0 1
0 1
0 1
0 1

V

 
 
 
 =
 
 
 
 

 (3.24)

and the Hessian-matrix product computed by AD:

11

21 22

31 33

41 44

51 55

0h
h h

HV h h
h h
h h

 
 
 
 =
 
 
 
 

 (3.25)

Now, it may not appear so initially, but because the Hessian 2 f∇ is symmetric, we have directly

recovered all the nonzeroes of 2 f∇ in the product HV . Since 2 f∇ is symmetric, we have the

property that , ,ij jih h i j= ∀ ; so in determining the first column of 2 f∇ (in the first column of

HV) we have determined the first row of 2 f∇ as well. Then we get the remaining nonzeroes on

the diagonal from the second column of HV . Thus we have recovered the nonzeroes of the

Hessian with only 2 groups, better than both methods ignoring symmetry.

 Generally, exploiting the sparsity and symmetry of the Hessian to recover its nonzeroes

requires a symmetrically consistent partition of the columns of 2 f∇ . A partition is

symmetrically consistent with direct determination of 2 f∇ if whenever ijh is a nonzero element

of 2 f∇ then the group containing column j has no other column with a nonzero in row i; or the

group with column i has no other column with a nonzero in row j [10]. Note that the definition of

a symmetrically consistent partition is not as strict as that of a consistent partition. The

partitioning problem is then to find a symmetrically consistent partition of the columns of 2 f∇

containing as few groups as possible.

30

 The graph theoretic interpretation of this partitioning problem involves the adjacency

graph associated with the Hessian, ()SG H . The adjacency graph is defined such that the vertex

set { }1 2, , , nV h h h=  corresponds to the columns of the Hessian, and there exists edge (),i jh h if

and only if i j≠ and 0ijh ≠ . We then require a symmetric p-coloring of the graph ()SG H . A

symmetric p-coloring is a coloring using p colors, [] { }: 1, ,V pφ →  , with the additional

property that every path of length 3 uses 3 colors [10]. Note that this is very similar to the path p-

coloring definition for the unsymmetric direct bicoloring method [13], but we do not require the

graph to be bipartite here. The minimum number of colours required for a valid symmetric p-

coloring is ()Hσχ , which we will call the symmetric chromatic number. Thus we have the time

complexity result for symmetric direct determination of the Hessian using AD of:

 ()2 2() ~ ()f f Fσω χ ω∇ ∇ ⋅ (3.26)

 Let us consider an example where the Hessian has tridiagonal sparsity structure:

11 12

21 22 23
2

32 33 34

43 44 45

54 55

h h
h h h

f h h h
h h h

h h

 
 
 
 ∇ =
 
 
 
 

 (3.27)

This Hessian has the corresponding adjacency graph:

Figure 3.6: Associated Adjacency Graph for (3.27)

Since this is a very simple graph, we can easily determine a minimum symmetric 3-coloring:

31

Figure 3.7: Symmetric p-coloring of Adjacency Graph

We can show how this coloring leads to direct determination of the Hessian by coloring its

entries directly determined with their corresponding color:

Figure 3.8: Sparsity Structure with Associated Colors

Thus we can compute the nonzeroes of the Hessian directly from a partition consisting of only 3

groups.

 As with the unsymmetric bicoloring methods, we can further improve the efficiency of

the Hessian calculation by allowing for entries to be determined by substitution. In order to do

this, we need a partition consistent with determination by substitution. Generally, a partition of

the columns of the Hessian induces a substitution method if there exists an ordering of the

nonzeroes such that whenever ijh is a nonzero element of 2 f∇ , the group containing column j

can only have another column with a nonzero in row i if that nonzero is previously ordered; or

the group with column i only has another column with a nonzero in row j if that nonzero is

previously ordered [6].

 The graph theoretic approach to finding a smallest partition consistent with substitution

involves finding a cyclic p-coloring of the associated adjacency graph, ()SG H ; which we defined

in Section 3.2.2 for a bipartite graph. However in this context, we define the minimum number

32

of colors required for a valid cyclic p-coloring as the cyclic chromatic number, 0 ()Hχ [6].

Similar to how it was done in Section 3.2.2, it can be demonstrated that the substitution method

will always perform at least as well as the direct method since:

 () ()o H Hσχ χ≤ (3.28)

 We can demonstrate this by looking back at the sparsity structure in (3.27). A minimum

cyclic 2-coloring for the associated adjacency graph is given in Figure 3.9.

Figure 3.9: Cyclic p-coloring of Adjacency Graph

This corresponds to the seed matrix and Hessian-matrix product:

11 12

21 23 22

33 32 34

43 45 44

55 54

1 0
0 1

,1 0
0 1
1 0

h h
h h h

V HV h h h
h h h

h h

  
   +  
  = = +
  

+  
      

 (3.29)

Then if we choose to order the nonzeroes using ordering S , where:

 { }11 22 33 44 55 12 54 21 45 23 43 32 34, , , , , , , , , , , ,S h h h h h h h h h h h h h= (3.30)

Then we can determine all the nonzeroes of 2 f∇ by substitution using a partition consisting of

only two groups; compared to needing three groups when doing so directly.

 Generally, there exist many schemes for determining a near-optimal cyclic p-coloring,

and corresponding permissible orderings of the nonzeroes [6, 21].

33

4 Structure
Equation Chapter (Next) Section 1

4.1 General Framework
We have examined methods to exploit sparsity in Jacobian and Hessian computations,

allowing considerable speedup in AD implementation. But oftentimes we may deal with a

function resulting in a large computation that does not have sparsity in its Jacobian or Hessian.

Thus, when AD is applied in a straightforward manner, it becomes prohibitively expensive, from

a time and/or space standpoint [9]. However, we can take advantage of the underlying structure

in the function that often exists. This allows us to get to sparsity that can be exploited, and

greatly decrease the cost of Jacobian computation.

 For example, suppose we have a composite function ()z F x= , with the following

structure which is very common for large-scale problems [15]:

 () ()F x F y= (4.1)

where y is the solution to a large, sparse, positive definite system:

 () ()A x y F x=  (4.2)

Through use of the chain rule, we can determine the Jacobian J , of ()F x :

()dF dF y dF dy dyJ J

dx dx dy dx dx
= = = ⋅ = ⋅ (4.3)

where J is the Jacobian of F . If we differentiate (4.2) with respect to x , we can determine dy
dx

:

() ()

()1

() ()

x

x

d dA x y F x
dx dx

dyA y A J
dx

dy A J A y
dx

−

=

+ =

= −







 (4.4)

34

where J is the Jacobian of F , and xA y is the Jacobian of the mapping ()A x y . Thus from (4.3)

and (4.4) we have the expression for the Jacobian:

 ()1
xJ JA J A y−= − (4.5)

Because of the application of 1A− , the Jacobian J will almost always be dense, even when

, , and xJ J A y are sparse matrices. Thus, if we apply the sparse AD techniques discussed in

Chapter 3 to determine the Jacobian, we make no gains in efficiency. However, if we exploit the

structure in this function, we can find underlying sparsity in the function at a deeper level.

Consider the following procedure to evaluate the function ()z F x= at a given x [15]:

1 1

2 2 1

2

Solve for : () 0
Solve for : 0
Solve for : () 0

y y F x
y Ay y
z z F y

− =
− =

− =



 (4.6)

 If we consider this procedure as an extended function EF with respect to ()1 2, ,x y y where:

 ()
1

1 2 2 1

2

()
, , ()

()
E

y F x
F x y y A x y y

F y

 −
 

= − 
 − 



 (4.7)

Then differentiating (4.7) with respect to ()1 2, ,x y y yields the extended Jacobian:

 2

0

0 0
E x

J I
J A y I A

J

 −
 

= − 
 − 



 (4.8)

Clearly EJ is sparse, and thus we can use sparse AD techniques, such as the bicoloring method

of Section 3.2.2, to compute it. This would require work:

 () ~ () () () ()E b E E b EJ J F J Fω χ ω χ ω⋅ = ⋅ (4.9)

since the extended function EF is just an alternative representation of the function F [13].

Typically, the bichromatic number () ,b EJ m nχ  . To what extent depends on how sparse EJ is,

35

so computing EJ requires much less work than computing the dense J . Then the Jacobian J

can be recovered from EJ by a Schur complement computation [15] such that:

 ()1
xJ JA J A y−= − (4.10)

The algebraic work required for the Schur complement is typically small compared to that of

determining EJ , and so using structure to allow for sparsity exploitation can yield large gains in

efficiency.

 There are many well-known problems that exhibit structure that can be utilized, with

partially-separable functions, dynamic systems and composite functions being a few. Restricting

ourselves to scalar-valued functions, we represent a general structured computation of

() : nz f x= →  as follows [14]:

()
()

()
()

1 1 1 1

2 2 2 2 1

1 2 1

1 2

Solve for : 0

Solve for : , 0

Solve for : , , , , 0

Solve for output : , , , , 0

p p p p p

p

y M y F x

y M y F x y

y M y F x y y y

z z f x y y y

−

− =

− =

− =

− =







Figure 4.1: General Structured Computation

where the iF ’s (1:)i p= and f are intermediate functions, and the intermediate variables are

, 1:in
iy i p∈ = . In Figure 4.1, each iM is nonsingular and its order is equal to the length of

vector iy . The corresponding extended Jacobian can be written as:

1

1 1

1

1
1

2 2
2

p

p

x

x y

E
p p p
x y y p

T T T
x y y

J M
J J M

J
J J J M

f f f
−

 −
 

− 
 =  

− 
 
 ∇ ∇ ∇ 

   



 

 (4.11)

36

If we partition EJ as:

1

1 1

1

1
1

2 2
2 ˆ ˆ

p

p

x

x y E E
x y

E T T
p p p x y
x y y p

T T T
x y y

J M
J J M

J J
J

f fJ J J M

f f f
−

 −
 

−    = =     ∇ ∇ − 
 
 ∇ ∇ ∇ 

   



 

 (4.12)

then the gradient of f satisfies:

 () 1ˆ ˆT T T E E
x x y y xf f f J J

−
∇ = ∇ −∇ (4.13)

Computing the gradient in this way requires work on the order of () ()b EJ fχ ω⋅ [13] and

space on the order of
1

() () ()
p

i
i

f f Fω ω ω
=

= +∑ ; whereas direct application of reverse mode AD

has the same space requirement and only requires work proportional to ()fω [23]. Since

() 1b EJχ ≥ , it appears as if reverse mode AD outperforms the method outlined in Figure 4.1 and

(4.11) - (4.13). However, as we will see in Section 4.2 we can use the structure of f to match

the work complexity of reverse mode, and greatly reduce the memory required. This is

important, as the reverse mode requirement to save the entire computational tape can be

prohibitively expensive memory-wise for large-scale problems.

 We can extend the structured method to the Hessian, by differentiating the process by

which the gradient is determined; similarly to that which is outlined in Section 2.4.3. If we

represent the structured computation in Figure 4.1 as (,) 0EF x y = , we can write the gradient

process as [14]:

Solve and differentiate to obtain : (,) 0
ˆSolve for : () 0
ˆSolve for : () 0

E
E

E T T
y y

E T T T
x x

J F x y

w J w f

f J w f f

=

+∇ =

∇ +∇ −∇ =

 (4.14)

Then differentiating (4.14) with respect to (), ,x y w yields the extended Hessian:

37

 () () ()
() () ()

2 2

2 2

ˆ ˆ 0

ˆ ˆ ˆ

ˆ ˆ ˆ

E E
x y

T T TE E E
E yx yx yy yy y

T T TE E E
xx xx xy xy x

J J

H J w f J w f J

J w f J w f J

 
 
 

= +∇ +∇ 
 
 +∇ +∇ 

 (4.15)

If we define a function:

1

(,) (,) (,)
p

T
i i

i
g x y f x y w F x y

=

= +∑ (4.16)

then we can partition the extended Hessian as follows:

 2 2

2 2

ˆ ˆ 0
ˆ()
ˆ()

E E
x y

E T
E yx yy y

E T
xx xy x

J J
A L

H g g J
B M

g g J

 
   

= ∇ ∇ =   
   ∇ ∇ 

 (4.17)

We can also achieve symmetry in the extended Hessian by block permutations [14]:

 2 2

2 2

ˆ ˆ0
ˆ()
ˆ()

E E
y x

S E T
E y yy yx

E T
x xy xx

J J

H J g g

J g g

 
 

= ∇ ∇ 
  ∇ ∇ 

 (4.18)

The Hessian matrix H can then be recovered from the partitioned extended Hessian in (4.17) by

the Schur complement computation:

 1H B ML A−= − (4.19)

This structured method for computing the Hessian requires work proportional to

() ()EH fσχ ω⋅ , and space proportional to
1

() () ()
p

i
i

f f Fω ω ω
=

= +∑ . While using reverse-mode

AD straightforwardly has the same space requirement and needs work proportional to ()n fω⋅ .

The relationship between n and ()EHσχ depends on the sparsity of EH , which is problem-

specific so we cannot conclude which is more efficient. However, we will show in Section 5 that

if we approach (4.19) in a certain way, we can significantly reduce the memory required to

compute the Hessian.

38

4.2 Structured Gradient Computation
For large-scale problems, gradient computation by reverse-mode AD is much more

efficient than forward mode with respect to time complexity as 1m n=  [23]. However,

reverse mode requires the entire computational tape to be saved and this can become an

infeasibly large storage requirement. If the machine being used to do this computation runs out

of fast memory, having to save the tape to secondary memory can have negative effects on

computation time as well [9].

However, when the function to be differentiated exhibits structure as in Figure 4.1, we can

compute the gradient in such a way as to vastly reduce the storage required. The key to this

method is that we can recover the gradient ()f x∇ , without ever having to explicitly compute the

derivative matrices ˆ ˆ,E E
x yJ J [17]. To see this we examine the computation in (4.13), which is

required to recover the gradient from the extended Jacobian EJ . Computing (4.13) by reverse

mode is very similar to the process outlined in Section 2.4.2. We need to compute

() 1ˆ ˆT E E
y y xT f J J

−
= ∇ , the first step of which is to determine the product:

 () 1ˆT E
y yW f J

−
= ∇ (4.20)

which we rewrite in the following more convenient form:

 ()ˆ TE T
y yJ W f= ∇ (4.21)

This corresponds to the upper triangular system [17]:

() () () ()
() ()

() ()
()

1 1 1 1

2 2 1

2

2 2

1

1

2 3 1
1

13
2

2

3 3

1

1

1

p p

p

p
p

T T T Tp p
y y y y

T xT Tp
Ty y y

T
y

T T
p p
y y

T
ypT

p Tp y p y

p

M J J J J
fw

M J J fw
M fw

J J
fw

M J w f
M

− −

−

−

−

−

−

−

 −   ∇     − ∇       −   ∇     =         ∇     −     ∇     − 



 

  





 (4.22)

39

then

 () 1 1 2 1
1 2 1

ˆ ˆ ˆT E E E p p
y y x x x x p x p xT f J J W J w J w J w J w J

−
−

−= ∇ = ⋅ = + + + + (4.23)

Note that since we are dealing with a scalar-valued function ()ie. 1m = , , , 1:i

i

n
i yw f i p∇ ∈ =

are vectors, but otherwise would be matrices with corresponding notation ,
ii yW J , for 1m > .

 Solving (4.22) requires working through the ' siw from bottom to top. The first few ' siw

are calculated as follows:

1

:
p

p

T
p p p y

T
p p y

w M w f

w M f−

− = ∇

= − ∇
 (4.24)

 ()
()

1 1

1 1

1 1 1

1
1 1

:
p p

p p

T
T p T

p p p y p y

T p
p p y p y

w M w J w f

w M f w J

− −

− −

− − −

−
− −

− + = ∇

= −∇ +
 (4.25)

 () ()
()

2 2 2

2 2 2

1
2 2 2 1

1 1
2 2 1

:
p p p

p p p

T T
T p T p T

p p p y p y p y

T p p
p p y p y p y

w M w J w J w f

w M f w J w J

− − −

− − −

−
− − − −

− −
− − −

− + + = ∇

= −∇ + +
 (4.26)

Note that in each iw , we only require blocks from ˆ E
yJ in the form of matrix-matrix products, so

we can avoid computing ˆ E
yJ explicitly.

 Then T can be computed by explicitly differentiating the final intermediate function f

and then solving for the ' siw as in (4.24) - (4.26). The computing process is outlined as follows

[17]:

1. 1
p

T
p p yw M f−= − ∇

2. Use reverse-mode AD on ()1 1, , ,p pF x y y − with seed matrix T
pw to determine

1 1
and , ,

p

p p p
p x p y p yw J w J w J

−


3. ()1 1

1
1 1 p p

T p
p p y p yw M f w J

− −

−
− −= −∇ +

40

4. Use reverse-mode AD on ()1 1 2, , ,p pF x y y− − with seed matrix 1
T
pw − to determine

1 2

1 1 1
1 1 1and , ,

p

p p p
p x p y p yw J w J w J

−

− − −
− − −

5. ()2 2 2

1 1
2 2 1p p p

T p p
p p y p y p yw M f w J w J

− − −

− −
− − −= −∇ + +

6. Continue process back until 1p =

Note that we also only require ˆ E
xJ in the form of matrix-matrix products, and so it does not need

to be calculated explicitly either.

 We now present the algorithm for structured gradient computation [17]. It can be

represented as a 3-step algorithm. The first step is to calculate all of the intermediate variables

1 2, , , py y y from top to bottom. The second step is to differentiate the final intermediate

function f to get the derivative vectors ()1
, , ,

p

T T T
x y yf f f∇ ∇ ∇

 by reverse-mode AD. The

final step computes the gradient by (4.13), implementing steps 1 through 6 above in an efficient

way.

41

Algorithm Structure-2 (S-2)

Inputs: System as in Figure 4.1, vector nx∈

Outputs: Function value ()z f x= , and gradient n
x f∇ ∈

1. Following Figure 4.1 evaluate 1 2,...,, py y y

2. Evaluate 1(, ,...,)pz f x y y= and apply reverse-mode AD to f to obtain

1
(, ,...,)

p

T T T T
x y yf f f f∇ = ∇ ∇ ∇ .

3. I) Initialize: 0, 1: .iv i p= = x xf f∇ =∇
II) For , 1,...,1j p p= −

 Solve for :
jj j j y jw M w f v= ∇ −

 Evaluate 1 1(, ,...,)j jF x y y − and apply reverse-mode AD with vector jw to

 get
1 1

(, ,...,)
j

T j j j
j x y yw J J J

−
⋅ . Set (1,..., 1)

i

T T T j
i i j yv v w J i j= + ⋅ = −

 Update: T T T j
x x j xf f w J∇ ←∇ +

Figure 4.2: Algorithm S-2

Analyzing the complexity of S-2, we have that step 1 requires time proportional to

1
()

p

i
i

Fω
=
∑ and space proportional to ()Fσ . Step 2 requires a reverse mode AD computation, and

since we are dealing with a scalar valued underlying function, the time and space required are

proportional to ()fω . Step 3 requires p reverse mode AD computations, and since the ' siw are

vectors, this requires time proportional to
1

()
p

i
i

Fω
=
∑ and space proportional to

{ }max (), 1:iF i pω = . Putting all this together, we have that the S-2 algorithm requires time and

space:

 () () ()2
1

p

S i
i

f F fω ω ω ω−
=

= + =∑ (4.27)

 { }2 max (), (), 1:S if F i pσ ω ω− = = (4.28)

42

Compare this to applying reverse mode AD to the underlying function, where the time and space

requirements are ()rm fω ω= and ()rm fσ ω= . The S-2 algorithm has the same time complexity

as reverse mode AD, but since () ()
1

()
p

i
i

f f Fω ω ω
=

= +∑ , we have that 2S rmσ σ−  [17]. Since

we only use reverse mode AD on one intermediate function at a time, rather than the whole

underlying function; the space required is greatly reduced without sacrificing efficiency in

computing time.

43

5 Structured Hessian Computation
Equation Chapter (Next) Section 1

One of the main contributions of this thesis is an extension of the ideas involved in

developing Algorithm S-2 for gradient computation [17], and applying them to Hessian

computation. We will consider three methods for computing the Hessian matrix when the

function ()z f x= is given in the form of Figure 4.1: an implicit method very similar to

Algorithm S-2, an explicit method where sparsity is exploited, but the extended Jacobian

matrices ˆ E
xJ , ˆ E

yJ are computed, and a gradient differencing method where S-2 is used to compute

the gradients.

First, the equation for Hessian computation

 1H B ML A−= − (5.1)

must be presented in a more tractable form. Note that we can write

 2 12

ˆ 0 ˆ0 0
ˆ ˆˆ () () 0()

E E
y y

E E TE T
yy y yyy y

IJ JL
g J J Ig J −

     
 = = ⋅      ∇∇    

 (5.2)

and both matrices in the product on the right hand side are nonsingular. Therefore

11

1
2 1

0ˆ 0
ˆ ˆ() ()0

E
y

E E T
yy y y

IJL
g J JI

−−

−
−

  
= ⋅    ∇   

 (5.3)

and

11

1
2 1

0ˆ 0() ()ˆ ˆ() ()0

E
y

E E T
yy y y

IJML A M A
g J JI

−−

−
−

  
= ⋅     ∇   

 (5.4)

Then from (5.1) we have:

 ()() () () ()()1 11 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆT TE E E E E E
xx xy y x x y yx yy y xH B ML A g g J J J J g g J J

− − −−= − = ∇ − ∇ ⋅ ⋅ − ⋅ ∇ − ∇  
  

 (5.5)

44

5.1 Implicit Method
Extending the structured gradient approach from Section 4.2, we propose a new method to

solve for the Hessian H of f without explicitly computing ()ˆ ˆ,E E
x yJ J . Our approach is based on the

following observation.

Observation 1: Let V be a matrix with r columns and row dimension equal to the size of the

intermediate vector y from Figure 4.1. Assume ()z f x= is a scalar-valued function with

structure defined by (1) and let lower triangular matrix ˆ EJ be defined by (4.11). Then the matrix

ˆ()E T
yW J V−= can be computed w/o precomputing matrix ˆ E

yJ . Specifically, the block-rows of W

are computed where the computation of block jW involves the application of reverse-mode AD

to function jF with matrix jW . The computing time is proportional to ()r fω⋅ and the space

required is proportional to { }max ()i iFω [17].

Algorithm Implicit-Inverse-Product (IIP)

Inputs: System as in Figure 4.1, vector nx∈ , and matrix 1

p

i
i

n r

V =

×∑
∈

Outputs: Matrix 1

p

i
i

n r

W =

×∑
∈ satisfying ˆ()E T

yW J V−=

1. Following Figure 4.1, evaluate 1 2,...,, py y y

2. I) Initialize: 0, 1:iT i p= =
II) For , 1,...,1j p p= −

 Solve for : T
j j j j jW M W T V= −

 Evaluate 1 1(, ,...,)j jF x y y − and apply reverse-mode AD with vector jW to

 Get
1 1

(,...,)
j

T j j
j y yW J J

−
⋅ .

Set (1,..., 1)
i

T j
i i j yT T W J i j= + ⋅ = −

Figure 5.1: Algorithm IIP

45

Algorithm IIP shows how Observation 1 can be implemented, since W has r columns the total

time cost is:

1

() ()
p

i
i

r F r fω ω ω
=

⋅ ≤ ⋅∑ (5.6)

Since we only use reverse-mode AD on one intermediate function at a time, the space cost is:

 { }max ()ii
Fσ ω

 (5.7)

Due to form (5.5), we can solve for H without explicitly computing ˆ E
yJ , through repeated use of

IIP according to the following algorithm, where we have included the time and space

requirements for each step:

46

Algorithm Implicit-Compute-Hessian (ICH)

Inputs: System as in Figure 4.1, vector nx∈

Outputs: Function value ()z f x= , gradient n
x f∇ ∈ , and Hessian 2 n nf ×∇ ∈

1. Evaluate 1 2,...,, py y y

{ }(), max ()ii
f Fω ω σ ω 

  

2. ˆSolve ()E T
y yJ w f= −∇ to obtain w, using S-2

{ }(), max ()ii
f Fω ω σ ω 

  

3. Let
1

(,) (,) (,)
p

T
i i

i
g x y f x y w F x y

=

= +∑ and compute its Hessian

()
2 2

2 2 2
2 2

1

p
xx xy T

i i
iyx yy

g g
g f w F

g g =

 ∇ ∇
∇ = = ∇ + ∇ ∇ ∇  

∑ using sparse AD.

 () () () () (){ }2 2

1
, max (),

p
T

i i i iii
f f w F F F fω χ ω χ ω σ ω ω

=

 
∇ ⋅ + ∇ ⋅ 

 
∑ 

4. Using IIP, compute () ()2ˆ T TT E
y xyR J g

−
= ∇ { }(), max ()ii

n f Fω ω σ ω ⋅  

5. Using IIP, compute () ()2ˆ T TT E
y yyC J g

−
= ∇

 { }
1

(), max ()
p

i iii
n f Fω ω σ ω

=

 
⋅ 

 
∑ 

6. Using reverse-mode AD, compute 1
1

ˆ E p
x x p xT C J C J C J= ⋅ = + +

{ }(), max ()ii
f Fω ω σ ω 

  

7. Using IIP, compute () 2ˆ TE
y yxS J g T

−
 = ∇ − 

 { }
1

(), max ()
p

i iii
n f Fω ω σ ω

=

 
⋅ 

 
∑ 

8. Using reverse-mode AD, compute
1

p
i

i x
i

R J
=
∑ and

1

p
T i

i x
i

S J
=
∑

{ }
1

(), max ()
p

i iii
n f Fω ω σ ω

=

 
⋅ 

 
∑ 

9. Set 2 2

1 1

p p
i T i

xx i x i x
i i

f g R J S J
= =

∇ = ∇ − −∑ ∑

Figure 5.2: Algorithm ICH

47

So from ICH, it is clear that our method requires time and space:

() () ()

() (){ }

2 2

1 1
() () ()

max ,

p p
T

i i i i
i i

ii

n n f w F F f f

F f

ω ω χ ω χ ω

σ ω ω

= =

   + ⋅ + ∇ ⋅ + ∇ ⋅    
∑ ∑



 (5.8)

This time complexity comes from the fact that 1 1

n n

i i
i i

n n

C = =

×∑ ∑
∈ , and 12 ,

n

i
i

n n

yx g T =

×∑
∇ ∈ , and so by

Observation 1, steps 5 and 7 have their corresponding complexity. We can compare this to the

time and space required in using sparse AD without structure:

 () ()2() and f f fσω χ ω σ ω∇ ⋅  (5.9)

Due to how the general structure is defined, we know that () (){ } ()max ,ii
F f fω ω ω≤ so

ICH requires less space, and depending on the specific structure, potentially considerably less

space than sparse AD. However the structured method does incur a loss in efficiency with

respect to time, as 2

1
()

p

i
i

f n nσχ
=

∇ ≤ <∑ . So we will have to see if this trade off of time for

memory efficiency is worthwhile in some numerical experiments.

5.2 Explicit Method
In analyzing the ICH algorithm, it is apparent that large matrix-Jacobian products must be

computed by AD (eg. Step 5 of ICH requires the product of two
1 1

p p

i i
i i

n n
= =

×∑ ∑ matrices) and this

is responsible for Algorithm ICH’s relatively high time complexity. So we also consider a more

explicit approach to computing the exact Hessian that avoids using AD to calculate these large

products. Again using the form for the Hessian given in (5.5), now we first explicitly compute

the extended Jacobian matrices ˆ ˆ,E E
x yJ J , then directly calculate the matrix products as needed.

This method requires modified versions of the S-2 and IIP algorithms to account for the

direct matrix product calculations:

48

 Algorithm Explicit Structure-2 (ES-2).

Inputs: System as in Figure 4.1, vector nx∈ , matrices 1ˆ
p

i
i

n n
E
xJ =

×∑
∈ and 1 1ˆ

p p

i i
i i

n n
E
yJ = =

×∑ ∑
∈

Outputs: Function value ()z f x= , and gradient n
x f∇ ∈

1. Following Figure 4.1, evaluate 1 2,...,, py y y

2. Evaluate 1(, ,...,)pz f x y y= and apply reverse-mode AD to f to obtain

1
(, ,...,)

p

T T T T
x y yf f f f∇ = ∇ ∇ ∇ .

3. I) Initialize: 0, 1: .iv i p= = x xf f∇ =∇
II) For , 1,...,1j p p= −

Solve for jw :
jj j y jM w f v= ∇ −

 Set (1,..., 1)
i

T T T j
i i j yv v w J i j= + ⋅ = −

 Update: T T T j
x x j xf f w J∇ ←∇ +

Figure 5.3: Algorithm ES-2

Algorithm Explicit-Inverse-Product (EIP) For ˆ()E T
yW J V−=

Inputs: System as in Figure 4.1, vector nx∈ , matrices 1

p

i
i

n r

V =

×∑
∈ and 1 1ˆ

p p

i i
i i

n n
E
yJ = =

×∑ ∑
∈

Outputs: Matrix 1

p

i
i

n r

W =

×∑
∈ satisfying ˆ()E T

yW J V−=

1. Following Figure 4.1, evaluate 1 2,...,, py y y

2. I) Initialize: 0, 1:iT i p= =
II) For , 1,...,1j p p= −

 Solve for jW : T
j j j jM W T V= −

Set (1,..., 1)
i

T j
i i j yT T W J i j= + ⋅ = −

Figure 5.4: Algorithm EIP

49

This leads to our explicit Hessian computation algorithm:

Algorithm Explicit-Compute-Hessian (ECH)

Inputs: System as in Figure 4.1, vector nx∈

Outputs: Function value ()z f x= , gradient n
x f∇ ∈ , and Hessian 2 n nf ×∇ ∈

1. Evaluate 1 2,...,, py y y

2. For 1,2,...,i p=

Compute ,
j

i i
y xJ J (1,..., 1)j i= − using direct bicoloring AD.

3. ˆSolve ()E T
y yJ w f= −∇ to obtain w, using ES-2.

4. Let
1

(,) (,) (,)
p

T
i i

i
g x y f x y w F x y

=

= +∑ and compute its Hessian

()
2 2

2 2 2
2 2

1

p
xx xy T

i i
iyx yy

g g
g f w F

g g =

 ∇ ∇
∇ = = ∇ + ∇ ∇ ∇  

∑ using sparse AD.

5. Using EIP, compute () ()2ˆ T TT E
y xyR J g

−
= ∇ and () ()2ˆ T TT E

y yyC J g
−

= ∇

6. Compute 1
1

ˆ E p
x x p xT C J C J C J= ⋅ = + +

7. Using EIP, compute () 2ˆ TE
y yxS J g T

−
 = ∇ − 

8. 2 2

1 1

p p
i T i

xx i x i x
i i

f g R J S J
= =

∇ = ∇ − −∑ ∑

Figure 5.5: Algorithm ECH

The most expensive components of the ECH algorithm are the blockwise computations of the

extended Jacobian (,)
j

i i
y xJ J , as well as computing the Hessians of the intermediate functions

(,)iF f . The time and space costs of the latter are given in Algorihm ICH, while each blockwise

extended Jacobian computation requires time and space:

 () () and ()
j j

i i
b y i i y nnz

J F F Jω χ ω σ ω⋅ +  (5.10)

where
j

i
y nnz

J represents the space required to store the nonzeros of
j

i
yJ . The total time and space

requirements for ECH are:

50

() ()

(){ }

2 2

1 1
() () () () + ()

max (),

j

p i
i i T

b x b y i i i
i j

E innz i

J J w F F f f

J F f

σ σω χ χ χ ω χ ω

σ ω ω

= =

 
+ + ∇ ⋅ ∇ ⋅ 

 

+

∑ ∑



 (5.11)

Comparing the costs for ECH to that of unstructured sparse AD in (5.9), its unclear if ECH has

lower time complexity as execution time depends on the sparsity of all the functions involved.

However, as with ICH, ECH is much more efficient memory-wise.

 Comparing the costs of ECH to ICH, in terms of memory the explicit method is slightly

more costly as it requires the entire extended Jacobian to be stored, unlike the implicit method. In

terms of computing time, due to the exploitation of sparsity the explicit method is at worst

equivalent to the implicit method, and at best significantly more efficient, depending on how

sparse the intermediate functions (), 1:iF i p= are.

5.3 Gradient Differencing
If we do not require the exact Hessian matrix, we can use a structured forward finite

differencing approach to produce a good approximation. We use forward differencing rather than

central because since we are looking for an approximation to the Hessian, speed in the

computation is prioritized over accuracy. Gradient evaluations are relatively inexpensive, so we

choose to difference gradient evaluations in order to piece together the Hessian.

For a function () : nf x →  , a gradient forward difference is presented as:

 ()2 () ()f x hd f xf x d
h

∇ + −∇
∇ ⋅ = (5.12)

where d is a chosen direction vector. If sparsity in the Hessian is ignored, the Hessian can still

always be recovered with n differences. Differencing is done column-wise, so this would

require setting i id e= , where ie represents the thi column of the identity matrix, and thus each

difference would correspond to one column of the Hessian [32].

If we take sparsity into account, and have the sparsity structure of ()2 f x∇ in hand,

finding a suitable set of direction vectors can be done by finding a near-optimal coloring of the

51

column intersection graph associated with ()2 f x∇ . The type of coloring required is dependent

on whether a direct [10, 32], or substitution [6, 21] method is desired, as described in Section

3.2.1. This is because differencing can only be done column-wise, and so is analogous to forward

mode AD, but no such differencing analog exists for reverse mode AD; which means neither

symmetric nor bicoloring methods can be used here.

What makes our approach novel is that instead of performing these gradient evaluations

in a traditional way, we do so using the structured gradient approach outlined in algorithm S-2

[17]. We outline this structured gradient forward differencing method in the following algorithm:

Algorithm Structured Forward Difference Hessian (SFDH)

Inputs: System as in Figure 4.1, vector nx∈

Outputs: Function value ()z f x= , and gradient n
x f∇ ∈ , and Hessian 2 n nf ×∇ ∈

1. Determine suitable set of direction vectors 1 2, , , kd d d (where ()2 ()k f xχ≈ ∇)

2. Using S-2, compute ()f x∇

3. For 1, 2, ,j k= 

a. Using S-2, compute ()if x hd∇ +

b. Compute forward difference ()2 () ()i
i

f x hd f xf x d
h

∇ + −∇
∇ ⋅ =

c. Recover the calculated components of ()2 f x∇

Figure 5.6: Algorithm SFDH

The dominating component of SFDH with respect to time and memory is the structured gradient

computation. From the preceding structured gradient section, we have that one such computation

requires work proportional to ()fω , and space proportional to { }max (), (), 1,...if F i pω ω = .

SFDH requires 1k + structured gradient computations, so it has time and space costs of:

 () () () (){ }1 and max ,ii
k f F fω ω σ ω ω+ ⋅  (13)

52

We can see that this method, like ICH and ECH, has a significantly smaller space requirement

than sparse AD; while also having a time requirement that is comparable to that of sparse AD. In

the following experiments we compare this method to using sparse AD for the gradient

evaluations to see if there are any realized advantages in computing time.

5.4 Test Functions
In the subsequent numerical experiments, we consider three test problems for the

structured Hessian computation. There are two extreme cases: the dynamic system and the

generalized partially separable problem. In the dynamic system each intermediate variable

depends only on the intermediate variable preceding it, while in the general partially separable

problem each intermediate variable depends only on the input variable x. The third problem

represents a mix of these two extreme cases (Coleman and Xu).

5.4.1 Dynamic System

 The dynamic system ()z f x= is defined structurally as follows:

 ()
0

1

1

Solve for : 0 for 1, 2, ,

Solve for z: (, , ,) z 0
i i i

p

y x
y y S y i p

f x y y
−

=

− = =

− =





 (5.14)

For our experiments, the intermediate function S is defined as the Broyden function [5]:

1 1 1 2

1 1

1

 j 1:
(3 2) 2 1

 i 2 : n 1
(3 2) 2 1, 2,3, , 1

(3 2) 1

i i i i i

n n n n

for inner p
y v v v
for

y v v v v i n
end
y v v v

end

− +

−

=
= − − +

= −
= − − − + = −

= − − +

 (5.15)

where inner p is a variable allowing us to control the workload of the intermediate functions. The

last intermediate function f is defined as the Brown function:

53

()
()

2
1

2

12

12
1

1

 1, , 1

 1, , 1

i

i

v

i i

v

i i i

n
ii

y v i n

y y v i n

z y

+ +

+

+

=

= = −

= + = −

=∑



 (5.16)

and is only dependent on the last intermediate variable, py .

The structure of this function’s extended Jacobian is as follows:

 E

X X
X X

J

X X
X

 
 
 
 

=  
 
 
  
 

 

 

 (5.17)

5.4.2 Generalized Partial Separability

 The generalized partially separable function ()z f x= is defined as follows:

()

1

Solve for : 0 for 1, 2, ,

Solve for z: (, , ,) z 0
i i i

p

y F x y i p

f x y y

− = =

− =





 (5.18)

For our experiments, each intermediate function iF is defined as the Broyden function in

(5.15), and f is defined as the Brown function in (5.16), but now it is dependent on all the

intermediate variables 1 2, , , py y y instead of just the final one [25].

The structure of this function’s extended Jacobian is as follows:

 E

X X
X X

J

X X
X X X X X

 
 
 
 

=  
 
 
  
 

 

 

 (5.19)

54

5.4.3 General Case
 We also look at a more general case, which is a cross between the dynamic system and

generalized partial separability cases, where ()z f x= is defined as follows:

()
()()
()()
()()

()()
()()

1 2

2 3 4

5 6

7 8

8 9

2007 7 7

3008 8 8

2009 9 9

20010 10 10

20011 11 11

Solve for : 1, ,6

Solve for :

Solve for :

Solve for :

Solve for :

Solve for :

Solve for z: z (

i i i

y y

y y y

y y

y y

y y

y y T x i

y y T

y y T

y y T

y y T

y y T

f

+

+ +

+

+

+

− =

−

−

−

−

−

−



1, , ,y)px y
















 (5.20)

 Where () (1, ,6)iT x i =  are defined as in (5.15) and () (7, ,11)iT x i =  are defined as:

() ()() () ()
() ()() () () () ()
() ()() () ()

1 3 2 1 . 1 2 2 1

3 2 . 1 2 1 2,1 , 2, , 1

3 2 . 2 1 1

y x x x

y i x i x i x i x i ones n i n

y n x n x n x n

= − ∗ − +

= − ∗ − − − + + − = −

= − ∗ − − +

 (5.21)

And f is defined as in (5.16).

The structure of this function’s extended Jacobian is as follows:

55

 E

X X
X X
X X
X X
X X
X X

J
X X X

X X X X
X X X

X X X
X X X

X X X

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
 
 

 (5.22)

5.5 Numerical Results
We carried out experiments comparing the time and space requirements of the ICH,

ECH, and SFDH algorithms to that of sparse AD for computing the Hessian matrix of each of the

three testing functions. All the experiments were carried out using the ADMAT 2.0 package [35]

on a computer running Windows Server 2008 with a 2.9 GHz quad-core Intel X5570 Xeon CPU,

and 90 GB of RAM using Matlab R2012b.

 Space requirement was measured by the largest computational tape required during each

method’s computation, and the space needed to store the extended Jacobian, when applicable.

Since we are dealing with large problems, in most cases the space required to store the actual

matrices and intermediate data is negligible relative to the size of the tape.

5.5.1 Exact Hessian
 In the experiments for exact Hessian computation we used an inner p of 5 for the

intermediate functions because for larger problem sizes, the memory required was too large to be

able to increase the workload on the intermediate functions and still get results for unstructured

sparse AD. In the forthcoming tables, “Sparse AD” refers to the unstructured sparse AD method

56

(evalh in ADMAT 2.0), “Implicit Structured” refers to the structured method outlined by ICH,

and “Explicit Structured” refers to ECH.

Table 1: Running time (s) and memory usage (MB) for Hessian computation using sparse AD and both
structured methods for the dynamic system with p = 10, inner p = 5.

n Sparse AD Implicit Structured Explicit Structured
100 37.24 15.48 4.20

 10850 3 56
200 69.03 24.66 9.59

 23076 15 153
400 224.58 70.19 15.61

 69608 58 353
600 308.98 121.03 22.35

 89822 130 684
800 out of memory 216.85 21.22

 277 567
1000 out of memory 319.06 35.07

 356 1072
2000 out of memory 1115.86 60.55

 1243 1884

Table 2: Running time (s) and memory usage (MB) for Hessian computation using sparse AD and both
structured methods for the generalized partial separability problem with p = 20, inner p = 5.

n Sparse AD Implicit Structured Explicit Structured
100 20.36 16.95 10.11

 7435 15 108
200 47.93 20.81 12.56

 22295 43 119
400 78.18 54.29 33.70

 39996 114 352
600 128.23 105.50 58.77

 63357 256 733
800 out of memory 187.79 52.48

 455 607
1000 out of memory 205.35 65.85

 711 879
2000 out of memory 491.72 136.09

 2474 2018

57

Table 3: Running time (s) and memory usage (MB) for Hessian computation using sparse AD and both
structured methods for the general problem with inner p = 5.

n Sparse AD Implicit Structured Explicit Structured
100 9.55 7.51 4.99

 3659 51 51
200 22.19 15.05 9.24

 9284 216 216
400 42.09 33.35 12.85

 22083 404 405
600 92.88 63.16 16.45

 48511 606 607
800 81.43 105.35 17.39

 44161 707 708
1000 87.65 146.91 18.56

 46402 766 768
2000 out of memory 582.32 46.49

 2840 2433

Both structured methods required significantly less memory than sparse AD, and the

explicit structured method also performed much faster.

Comparing the two structured methods, Algorithm ECH performed considerably faster

than ICH, across all three test problems. We can infer that this is because ECH exploits the

sparsity of ˆ ˆ,E E
x yJ J in its derivative calculations, which cannot be done for the matrix-Jacobian

products in ICH.

When comparing memory used, we see that the difference between the two methods

appears to be negligible. However in Table 1 and Table 2, we see that the space required for

ECH scales better than ICH does, and so the difference in space required should increase as

problem size is increased.

Comparing ICH to unstructured sparse AD, we see across the 3 test functions that as the

problem size increases, the relative performance of ICH with respect to time worsens. In Table 1

and Table 2, while the structured method is faster, the gap between the two methods decreases as

n increases. The worsening relative performance of ICH is most noticeable in Table 3, for

example at 200n = the structured method performs 30% faster than sparse AD, but then at

58

1000n = it performs 70% slower. So we can see that in all 3 cases the time required for the

implicit structured method does not scale relatively well with respect to problem size.

Comparing ECH to unstructured sparse AD, we find that ECH is much more efficient

with respect to time for each test problem. And unlike for ICH, ECH does not have an issue with

scaling with respect to problem size. For example, in Table 3 at 200n = ECH performs 60%

faster than sparse AD, then at 1000n = it performs 80% faster. In fact, ECH appears to scale

better than unstructured sparse AD.

If we compare the memory required for the structured methods with that of unstructured

sparse AD, we see that the structured methods vastly outperforms sparse AD. In Table 3 we have

a 98 99%− reduction in memory used; while in Table 1 and Table 2 we have a reduction of

99%> . This stark improvement means we can solve much larger problems with either

structured approach than we could with sparse AD. As in Table 1 and Table 2, sparse AD cannot

be used at 600n ≥ because the memory requirement is too high; whereas we could continue

using the structured methods with no storage difficulties for 600n >> .

The results show that the structured methods yield lower memory usage, but that the

implicit method can yield higher computing times at large problem sizes. However, if a

restriction is placed on the amount of RAM available, having to save data to slower accessible

memory could lead to gains in computation time as well. In order to examine how this would

actually affect the relative computation time of the two methods, looking at the general problem

we simulated restricting the RAM available to 8 GB by having any computational tape larger

than 8 GB in size saved to the HDD then loaded back up again when needed.

Table 4: Running time (s) for Hessian computation using sparse AD and both structured methods for the
general problem with inner p = 5, and RAM restricted to 8 GB.

n Sparse AD Implicit Structured Explicit Structured
100 9.55 7.51 4.99
200 74.45 15.05 9.24
400 176.72 33.35 12.85
600 481.96 63.16 16.45
800 387.68 105.35 17.39
1000 419.01 146.91 18.56
1500 846.32 314.92 25.81

59

While the explicit structured method still has by far the lowest computing time, the

results in Table 4 show that with a memory restriction in place, the implicit structured method

performs significantly faster than sparse AD. The large increase in time for sparse AD at

200n = is due to the 8 GB threshold being passed at this point. Unlike in the unrestricted case,

the implicit structured method’s computing time does not appear to scale any worse than sparse

AD does. So we have that when a restriction is placed on memory available, both structured

methods can now perform much faster than sparse AD.

5.5.2 Approximate Hessian
 For approximate Hessian computation (ie. forward finite differencing) we looked only at

the general case problem, this time with an inner p of 100, as finite differencing requires much

less memory. We compared the time and space requirements for our SFDH algorithm, with that

of a similar method where unstructured gradient computations are used instead.

Table 5: Running time (s) and memory usage (MB) for Hessian computation using unstructured and
structured finite differencing method for the general problem with inner p = 100.

n Unstructured Gradient FD Structured Gradient FD
100 494.69 412.16

 82 7
200 576.71 492.41

 136 10
500 922.78 754.68

 295 20
1000 1498.60 1192.60

 561 37
2000 2720.20 2088.40

 1092 70

 The results in Table 5 show that the structured finite differencing method requires

substantially less memory than unstructured finite differencing, using less than 10% of the

memory the unstructured method did. The structured method also requires less computing time,

20% less, and scales at a better rate than the unstructured method. If memory was restricted,

the difference in computing times would be even larger. So when only an approximate Hessian is

60

required, the SFDH algorithm is more efficient with respect to time and space requirements than

the corresponding unstructured method.

61

6 Structure Revealing Methods
Equation Chapter (Next) Section 1

 In our discussions of structure thus far, we have assumed that the function to be

differentiated is provided in a form analogous to that in Figure 4.1. However, this may not

always be the case, as the function could be presented in such a way that its structure is not

apparent. Thus, if we can automatically determine a structured form of a function, regardless of

what form the function is provided in, we can utilize the structured methods described in Chapter

5 to determine Hessian matrices efficiently for a much wider range of functions.

 Coleman, Xiong, and Xu [16] developed methods for determining a structured form of a

function for Jacobian computation, involving inserting directed edge separators into the

computational graph generated by AD in evaluating the function. We will review their work, and

propose how it can be extended to use in Hessian computations.

6.1 Background
We first need to define the computational graph of a function. Consider a vector-valued

function : n mF →  . In Section 2.1, we discussed how automatic differentiation breaks down

the evaluation of a function into a partially ordered set of elementary operations, which we called

the evaluation procedure of that function. The (directed) computational graph for a function

evaluation, () (,)G F V E= , is simply a graph representation of this evaluation procedure.

V consists of three sets of vertices such that { }, ,x y zV V V V= , where xV represents the input

variables ()1, , nx x , each vertex in yV represents an elementary operation (which takes one or

two inputs) and its single outputted intermediate variable, and finally zV represents the output

variables ()1, , mF F . The edge-set E represents the relative dependency of the variables. So,

there exists a directed edge (),
i jij y ye v v E= ∈ if and only if the intermediate variable iy is

required by the elementary operation contained in node
jyv to produce the intermediate variable

jy . We also refer to
iyv as the tail node, and

jyv as the head node of ije . Since the evaluation

62

procedure makes the function evaluation into a straight line computation, as long as F is well-

defined, ()G F is an acyclic graph. [16]

We then need to define a directed edge separator. dE E⊂ is a directed edge separator for

the graph ()G F , if the graph { }dG E− consists of two disjoint subgraphs 1G and 2G where all

edges in dE have the same orientation relative to 1 2,G G [16], in other words:

() 1 2, , ,
i j i jij y y d y ye v v E v G v G∀ = ∈ ∈ ∈ .

For example, we refer back to the example function, 3 2:F →  in Section 2.2.1:

 1 2 31

2 3 1 2

sin()
exp()

x x xF
F x x x

+  
=    −   

 (6.1)

The computational graph for this function, and the graph with a possible directed edge separator

are as follows:

Figure 6.1: Example Computational Graph

63

Figure 6.2: Example Computational Graph with Directed Edge Separator dE

Then with this edge separator dE , the function can be separated into two parts as defined by the

two disjoint subgraphs 1G , 2G of the computational graph G :

()

()
1

2

Solve for : 0

Solve for output : , 0

y My F x

z z F x y

− =

− =
 (6.2)

where y represents the intermediate variables, as defined by the tail vertices of the edges

belonging to the edge separator; and ()z F x= .

 We can generalize the application of a directed edge separator to the case where multiple

(disjoint) directed separators are applied to the graph ()G F . We then have the directed edge

separators { }1 2
, , ,

kd d dE E E , such that { } { }
1 2 1 2 1, , , , , ,

kd d d kG E E E G G G +− =  ; where

{ }1 2 1, , , kG G G + are disjoint and oriented such that (), , ,
i j l i jij y y d y m y le v v E v G v G∀ = ∈ ∈ ∈

where m l< . Then we can break down the evaluation of ()F x as follows:

64

()
()

()
()

1 1 1 1

2 2 2 2 1

1 2 1

1 1 2

Solve for : 0

Solve for : , 0

Solve for : , , , , 0

Solve for output : , , , , 0
k k k k k

k k

y M y F x

y M y F x y

y M y F x y y y

z z F x y y y
−

+

− =

− =

− =

− =







 (6.3)

where iy is the intermediate variable defined by the tail vertices of the edge separator
idE , and is

composed of nodes belonging to iG . In (6.3), the function ()F x is now in the form presented in

Figure 4.1. Thus the structured techniques in Chapter 4 can be used to determine its Jacobian. If

the function in question is scalar valued (): nf →  , we can then apply the structured Hessian

techniques developed in Chapter 5.

6.2 Determining Separators
One way in which to determine the directed edge separators, is by what is called natural

order [16]. When reverse-mode AD is used in differentiating a function, it generates a

computational tape that essentially lists the elementary operations required in order of their

evaluation. So, if we cut the tape at a point, this is equivalent to introducing a directed edge

separator at this point.

Suppose we have the computational graph G , and the corresponding computational tape

T with length ()V G , since every node in G corresponds to one elementary operation and

each elementary operation corresponds to one cell in the tape. If we choose to cut the tape at the

thi cell, we can partition the graph G into 2 disjoint subgraphs ()1 2,G G by defining

()1 (1:)G G T i= and ()()()2 1:G G T i V G= + . Since the cells in the tape are set in the order

they are evaluated, all the elementary operations in 1G will be evaluated before those in 2G .

Therefore, all edges between 1G and 2G have their tail node in 1G , and their head node in 2G ;

which means that this set of edges defines a directed edge separator. [16]

65

Using these natural order edge separators, we can insert as many separators as we would

like, allowing us to choose how long the tape is in each segment. This can be very useful as it

allows the memory usage to be controlled; however selecting tape segment lengths that are too

small in order to minimize storage requirements could have an adverse effect on computation

time in structured computation of derivatives.

6.3 Hessian Computation
We can now apply the structure revealing technique of natural order directed edge

separators to our methods for structured Hessian computation. Since the explicit method

presented in Section 5.2, Algorithm ECH, was most successful we will modify it to incorporate

the structure revealing capability.

We first present the modified algorithm for Hessian computation when the function ()f x ,

with corresponding computational graph (),G V E= and computational tape T, is not provided

in structured form:

66

Algorithm Explicit-Structure-Revealing-Compute-Hessian (ESRCH)

Inputs: System as in Figure 4.1, vector nx∈

Outputs: Function value ()z f x= , gradient n
x f∇ ∈ , and Hessian 2 n nf ×∇ ∈

1. Choose desired tape segment length L.

2. Evaluate ()f x , and generate the tape T.

3. Let
()V G

p
L

 
=  
 

4. Generate edge separators
1 2
, , ,

pd d dE E E :

()() ()()()1 1: , 1: 1
idE E T i L i L T i L i L= − ⋅ + ⋅ ⋅ + + ⋅ for 1, ,i p= 

5. For 1,2,..., 1i p= +
Generate subgraph of G: ()()()1 1:iG G T i L i L= − ⋅ + ⋅

Define iF as computation corresponding to graph iG

Define (){ }| , ,
ii i d iy v V e v w E w V= ∈ ∃ = ∈ ∉

Compute ,
j

i i
x yJ J (1,..., 1)j i= − using sparse AD.

6. ˆSolve ()E T
y yJ w f= −∇ to obtain w, using ES-2.

7. Let
1

(,) (,) (,)
p

T
i i

i
g x y f x y w F x y

=

= +∑ and compute its Hessian

()
2 2

2 2 2
2 2

1

p
xx yx T

i i
ixy yy

g g
g f w F

g g =

 ∇ ∇
∇ = = ∇ + ∇ ∇ ∇  

∑ using sparse AD.

8. Using EIP, compute () ()2ˆ T TT E
y xyR J g

−
= ∇ and () ()2ˆ T TT E

y yyC J g
−

= ∇

9. Compute 1
1

ˆ E p
x x p xT C J C J C J= ⋅ = + +

10. Using EIP, compute () 2ˆ TE
y yxS J g T

−
 = ∇ − 

11. 2 2

1 1

p p
i T i

xx i x i x
i i

f g R J S J
= =

∇ = ∇ − −∑ ∑

Figure 6.3: Algorithm ESRCH

67

Assuming the cost of determining the edge separators is negligible relative to the rest of

the computation, which is reasonable due to the technique for choosing them being relatively

simple; the time and space costs for Algorithm ESRCH are the same as those of Algorithm ECH:

() ()

{ }

2 2
1 1

1 1
() () () () + ()

max ()

j

p i
i i T

b x b y i i i p p
i j

E innz i

J J w F F F F

J F

σ σω χ χ χ ω χ ω

σ ω

+ +
= =

 
+ + ∇ ⋅ ∇ ⋅ 

 
+

∑ ∑



 (6.4)

Since iF is determined by how long we choose the tape segment to be, () ~iF Lω and we can

simplify (6.4) as follows:

() ()2 2
1

1 1
() () () +

j

p i
i i T

b x b y i i p
i j

E nnz

J J w F L F L

J L

σ σω χ χ χ χ

σ

+
= =

 
+ + ∇ ⋅ ∇ ⋅ 

 
+

∑ ∑

 (6.5)

The complexity results in (6.5) make it apparent how our choice of tape segment length L, has a

large effect on the space required for the Hessian computation. The effect on computing time is

not as apparent, because as L decreases, p increases as well; implying that there is an optimal

length L* to minimize the computing time. This is a subject for future research.

68

7 Conclusions

Automatic differentiation is a growing discipline in the field of scientific computing, as it

provides methods to determine derivatives in a quick and accurate fashion. In many optimization

problems, the Hessian matrix of an objective function is required, and can be determined using

automatic differentiation. Much effort has been expended in determining how to exploit sparsity

in a derivative matrix, in order to compute it most efficiently by automatic differentiation

[2, 6, 13, 33]. However, if the Hessian is dense and does not exhibit sparsity, automatic

differentiation can potentially require so much memory that completing the computation

becomes infeasible [9].

The underlying structure in a function has been considered, and shown to be successful in

reducing the memory requirement for gradient computation without compromising computation

time efficiency [17]. Thus, in this thesis we sought to determine whether the underlying structure

of a function can also be exploited to more efficiently compute its Hessian matrix by automatic

differentiation, in the same manner.

Through our analysis, we have found that when a function is provided in a structured form

as in Figure 4.1, this structure can be exploited to significantly reduce the space requirement in

Hessian matrix computation, using either Algorithm ECH or ICH. In the case of Algorithm

ECH, savings in computing time can be achieved as well. When a (finite-difference)

approximation to the Hessian matrix is acceptable, the structured gradient differencing method

outlined in Algorithm SFDH consistently outperformed the corresponding gradient differencing

method that ignored structure with respect to computing time.

When the function to be differentiated is not provided in a structured form or the structure is

not apparent, we have shown that introducing directed edge separators into the computational

tape to induce a structured form of the function can yield very large savings in the space

required. However, our scheme for choosing the edge separators was relatively simple: they were

determined strictly based on how long each tape segment was desired to be.

This implies that future work should be done to determine methods to more optimally

determine where and how frequently edge separators should be inserted into the computational

69

tape. Ideally, if we have a function whose structured form is known, we would like our method

to choose edge separators such that this same structure is recovered. Future work should also be

done on efficiently implementing the structure revealing Hessian computation method

(Algorithm ESRCH), as well as other potentially more efficient edge separator selection

techniques for Hessian computation.

70

References

[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen, R. Ramamurthi, Coloring with no 2-colored P4's,

Electron. J. Comb. 11 (2004).

[2] B.M. Averick, J.J. Moré, C.H. Bischof, A. Carle, Computing large sparse Jacobian matrices using automatic

differentiation, SIAM J. Sci. Comput. 15 (1994) 285-294.

[3] C.H. Bischof, A. Bouaricha, P. Khademi, J.J. Moré, Computing gradients in large-scale optimization using

automatic differentiation, INFORMS J. Computing 9 (1997) 185-194.

[4] C.H. Bischof, P. Khademi, A. Bouaricha, A. Carle, Efficient computation of gradients and Jacobians by dynamic

exploitation of sparsity in automatic differentiation, Optim. Method Softw. 7 (1996) 1-39.

[5] C.G. Broyden, The convergence of an algorithm for solving sparse nonlinear systems, Math. Comput. 25 (1971)

285-294.

[6] T.F. Coleman, J. Cai, The cyclic problem and estimation of sparse Hessian matrices, SIAM J. Alg. Disc. Meth. 7

(1986) 221-235.

[7] T.F. Coleman, B.S. Garbow, J.J. Moré, Software for estimating sparse Hessian matrices 11 (1985) 363-378.

[8] T.F. Coleman, B.S. Garbow, J.J. Moré, Software for estimating sparse Jacobian matrices, ACM Trans. Math.

Software 10 (1984) 329-345.

[9] T.F. Coleman, G.F. Jonsson, The efficient computation of structured gradients using automatic differentiation,

SIAM J. Sci. Comput. 20 (1999) 1430-1437.

[10] T.F. Coleman, J.J. Moré, Estimation of sparse Hessian matrices and graph coloring problems, Math. Prog. 28

(1984) 243-270.

[11] T.F. Coleman, J.J. Moré, Estimation of sparse Jacobian matrices and graph coloring problems, SIAM J.

Numer. Anal. 20 (1983) 187-209.

[12] T.F. Coleman, A. Verma, ADMIT-1: Automatic differentiation and MATLAB interface toolbox, ACM Trans.

Math. Softw. 26 (2000) 150-175.

[13] T.F. Coleman, A. Verma, The efficient computation of sparse Jacobian matrices using automatic

differentiation, SIAM J. Sci. Comput. 19 (1998) 1210-1233.

[14] T.F. Coleman, A. Verma, Structure and efficient Hessian calculation, in: Y. Yuan (Ed.), Advances in Nonlinear

Programming, Proceedings of the 1996 International Conference on Nonlinear Programming, Kluwer

Academic Publishers, Boston, MA, 1998, pp. 57-72.

[15] T.F. Coleman, A. Verma, Structure and efficient Jacobian calculation, in: M. Berz, C. Bischof, G. Corliss,A.

Griewank (Eds.), Computational Differentiation: Techniques, Applications, and Tools, SIAM, Philadelphia,

PA, 1996, pp. 149-159.

[16] T.F. Coleman, X. Xiong, W. Xu, Using directed edge separators to increase efficiency in the determination of

Jacobian matrices via automatic differentiation, in: S. Forth, P. Hovland, E. Phipps, J. Utke,A. Walther

(Eds.), Recent Advances in Algorithmic Differentiation, Springer, New York, NY, 2012, pp. 209-219.

71

[17] T.F. Coleman, W. Xu, The efficient evaluation of structured gradients (and undetermined Jacobian matrices)

by automatic differentiation (2013).

[18] T.F. Coleman, W. Xu, Fast (structured) Newton computations, SIAM J. Sci. Comput. 31 (2008) 1175-1191.

[19] A.R. Curtis, M.J.D. Powell, J.K. Reid, On the estimation of sparse Jacobian matrices, J. Inst. Math. Appl. 13

(1974) 117-119.

[20] A.H. Gebremedhin, F. Manne, A. Pothen, What color is your Jacobian? Graph coloring for computing

derivatives, SIAM Review 47 (2005) 629-705.

[21] A.H. Gebremedhin, A. Tarafdar, F. Manne, A. Pothen, New acyclic and star coloring algorithms with

application to computing Hessians, SIAM J. Sci. Comput. 29 (2007) 1042-1072.

[22] C.D. Good, R.I. Scahill, N.C. Fox, J. Ashburner, K.J. Friston, D. Chan, W.R. Crum, M.N. Rossor, R.S.J.

Frackowiak, Automatic differentiation of anatomical patterns in the human brain: validation with studies of

degenerative dementias, NeuroImage 17 (2002) 29-46.

[23] A. Griewank, Some bounds on the complexity of gradients, Jacobians, and Hessians, in: P.M. Pardalos (Ed.),

Complexity in Numerical Optimization, World Scientific Publishing Co., Singapore, 1993, pp. 128-162.

[24] A. Griewank, Direct calculation of Newton steps without accumulating Jacobians, in: T.F. Coleman,Y. Li

(Eds.), Large-Scale Numerical Optimization, SIAM, Philadelphia, PA, 1990, pp. 115-137.

[25] A. Griewank, P.L. Toint, On the unconstrained optimization of partially separable functions, in: M.J.D. Powell

(Ed.), Nonlinear Optimization, Academic Press, London, 1981, pp. 301-312.

[26] A. Griewank, A. Walther, Evaluating Derivatives: Principles, and Techniques of Algorithmic Differentiation,

2nd ed., SIAM, Philadelphia, PA, 2005.

[27] M. Henrard, Calibration in finance: very fast greeks through algorithmic differentiation and implicit function,

Procedia Comput. Sci. 18 (2013) 1145-1154.

[28] A. John Arul, N. Kannan Iyer, K. Velusamy, Efficient reliability estimate of passive thermal hydraulic safety

system with automatic differentiation, Nucl. Eng. Des. 240 (2010) 2768-2778.

[29] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher (Eds.), Complexity of

Computer Computations, Plenum, New York, NY, 1972, pp. 85-103.

[30] M.J. Krause, V. Heuveline, Parallel fluid flow control and optimisation with lattice Boltzmann methods and

automatic differentiation, Comput. Fluids 80 (2012) 28-36.

[31] R. Leidenberger, K. Urban, Automatic differentiation for the optimization of a ship propulsion and steering

system: a proof of concept, J. Global Optim. 49 (2010) 497-504.

[32] M.J.D. Powell, P.L. Toint, On the estimation of sparse Hessian matrices, SIAM J. Numer. Anal. 16 (1979)

1060-1074.

[33] A.K.M. Shahadat Hossain, T. Steihaug, Computing a sparse Jacobian matrix by rows and columns, Optim.

Method Softw. 10 (1998) 33-48.

[34] A. Walther, Computing sparse Hessians with automatic differentiation, ACM Trans. Math. Softw. 34 (2008).

[35] Cayuga Research Inc. ADMAT-2.0 Users Guide. http://www.cayugaresearch.com/, 2009.

72

http://www.cayugaresearch.com/

	1 Introduction
	1.1 Overview
	1.2 Structure of Thesis

	2 Automatic Differentiation
	2.1 Overview
	2.2 Forward Mode AD
	2.2.1 An Example of Forward Mode

	2.3 Reverse Mode AD
	2.3.1 An Example of Reverse Mode

	2.4 Matrix Representation of AD
	2.4.1 Forward Mode
	2.4.2 Reverse Mode
	2.4.3 Hessian Computation
	2.4.4 Derivative Matrix Products

	3 Sparsity and Coloring
	3.1 Exploiting Sparsity
	3.2 Coloring Jacobians
	3.2.1 One-sided Methods
	3.2.2 Bicoloring Methods

	3.3 Coloring Hessians

	4 Structure
	4.1 General Framework
	4.2 Structured Gradient Computation

	5 Structured Hessian Computation
	5.1 Implicit Method
	5.2 Explicit Method
	5.3 Gradient Differencing
	5.4 Test Functions
	5.4.1 Dynamic System
	5.4.2 Generalized Partial Separability
	5.4.3 General Case

	5.5 Numerical Results
	5.5.1 Exact Hessian
	5.5.2 Approximate Hessian

	6 Structure Revealing Methods
	6.1 Background
	6.2 Determining Separators
	6.3 Hessian Computation

	7 Conclusions
	References

