
Detecting Test Clones with Static
Analysis

by

Divam Jain

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Divam Jain 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Large-scale software systems often have correspondingly complicated test suites, which
are difficult for developers to construct and maintain. As systems evolve, engineers must
update their test suite along with changes in the source code. Tests created by duplicating
and modifying previously existing tests (clones) can complicate this task.

Several testing technologies have been proposed to mitigate cloning in tests, including
parametrized unit tests and test theories. However, detecting opportunities to improve
existing test suites is labour intensive.

This thesis presents a novel technique for detecting similar tests based on type hierar-
chies and method calls in test code. Using this technique, we can track variable history
and detect test clones based on test assertion similarity.

The thesis further includes results from our empirical study of 10 benchmark systems
using this technique which suggest that test clone detection by our technique will aid test
de-duplication efforts in industrial systems.

iii

Acknowledgements

I would like to thank Patrick Lam and Reid Holmes for their guidance and advice,
without which this work would not be possible. I would also like to thank Xavier Noumbissi
for his invaluable help navigating the intricacies of the Soot framework and Wei Wang for
his discussions on clone detection.

iv

Dedication

My grandparents introduced me to the world of computers and fostered my fascination
with how they work. For this, I dedicate this thesis to them.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Background and Definitions 6

2.1 Unit Testing in Java . 6

2.2 Soot and Static Analysis . 8

2.3 Summary . 9

3 Clone Detection Approach 11

3.1 Assertion Protocol Generation . 14

3.2 Similarity Analysis . 16

3.3 Result Consolidation . 17

3.4 Final Display . 19

3.5 Conclusion of running example . 20

3.6 Summary . 20

4 Results of Empirical Study 23

4.1 Experimental Results . 24

4.2 General Trends . 25

vi

4.3 Developer impressions . 26

4.3.1 JodaTime . 26

4.3.2 Apache Commons-Collections . 27

4.3.3 JFreeChart . 28

4.3.4 HSQLDB . 29

4.3.5 JGraphT . 29

4.3.6 jDom . 29

4.3.7 Weka . 30

4.4 Summary . 30

5 Discussion 31

5.1 Scope of Our Analysis . 31

5.2 Retrofitting vs. Early Optimization . 32

5.3 Comparison with Clone Detectors . 32

5.4 Result Quality . 33

5.5 Threats to Validity . 33

5.6 Limitations . 34

5.7 Future work . 35

5.8 Summary . 36

6 Related Work 37

6.1 Alternative Testing Techniques . 38

6.2 Code Clone Detection . 38

6.3 Refactoring . 41

6.4 Program Slicing . 41

7 Conclusions 43

APPENDICES 44

vii

A Data Flow Analysis Definition 45

B Detailed Test Suite Information 47

C Output Sample 48

References 50

viii

List of Tables

4.1 Benchmark systems. 23

4.2 Test clones reported by our analysis. 24

B.1 Code size, test case count (as reported by JUnit) and analyzed test method
count. 47

ix

List of Figures

1.1 2 of 9 test clones as found in Jodatime. Each comes from a different unit’s
tests and is identical in every way except the unit name. 4

1.2 JodaTime tests from Figure 1.1 written as a unified theory. 5

2.1 Sample unit test for illustrating JUnit testing pattern. 7

2.2 Jimple 3-address code version of the setUp method. 9

2.3 Jimple 3-address code version of the test method. 10

2.4 Jimple 3-address code version of the tearDown method. 10

3.1 Simple system under test: Class hierarchy with abstract collection and two
implementations. 12

3.2 Concrete Unit Tests (CUTs) for Collection class subtypes. 12

3.3 Rules used in Assertion Protocol Generation (at assignment statements). . 14

3.4 An example of branch handling during AP Generation. 15

3.5 Assertion Protocols Generated for list test in running example (Figure 3.2. 21

3.6 Graphical view of assertions (nodes) and their similarity (edges, which de-
note assertions whose similarity exceeds the threshold). 21

3.7 Final results displayed for the running example by the implementation. . . 22

3.8 Expected theory based tests for the Collection class’ children. 22

4.1 Shared behaviour testing in Commons Collections. 27

4.2 Two similar testAddSeries() implementations in jFreeChart. 28

x

4.3 An implicit unit test in HSQLDB. 29

A.1 This is the formal definition of the data flow analysis as implemented in Soot. 46

C.1 Output sample from our tool running on JodaTime. 49

xi

Chapter 1

Introduction

Unit tests are a popular technique for automated testing used to improve and maintain
code quality [32]. Ideally, tests in a suite work together to cover all the functionality of
the single compilation unit. Unit tests are traditionally designed to be self contained and
run independently, taking no input parameters. An example of a typical unit test is given
in Chapter 2.

In well-known unit testing frameworks such as JUnit, achieving acceptable coverage
requires writing repetitive boilerplate code to make the tests self-contained which is only
mitigated at a per unit level [6]. This boilerplate code leads to code duplication, increasing
maintenance overheads and possibly propagating errors due to inconsistent modification
in individual tests [18].

Since the setup and teardown methods which allow for code reuse in tests (discussed
in Section 2.1) only operate at the unit level, a developer may resort to cloning test code
from a sibling class and extending it. Figure 1.1 shows 2 of 9 test cases in the JodaTime
library which are identical in every way other than the module under test. In general, such
manually copied code increases maintenance overheads and is considered undesirable.

We observed such clones in our empirical study, described with greater detail in Chap-
ter 4 A variety of techniques have been proposed to alleviate this problem. Tillman and
Schulte have proposed parametrized unit tests (PUTs) to increase the expressive power of
unit testing and to enable test reuse [38]. Along similar lines, Saff proposed Theories to
simplify and increase the robustness of unit tests [34]. Other techniques to reduce code
duplication leverage language features such as inheritance, generics and decomposition, to
reuse test code. A developer can use these techniques to remove the clones like those from
Figure 1.1.

1

Developers using Theories can refactor tests and eliminate the clones as seen in Fig-
ure 1.2. Here, the units to be tested are a parameter to the test and the @DataPoints
annotation provides the list of suitable arguments. As a result of using a Theory the code
size is reduced from 126 lines of 9 Type-2 clones to 27 lines of non-cloned code.

Retrofitting existing test suites to reduce undesirable clones is clearly valuable. Accord-
ing to Saff, the use of theories reduces the long term maintenance cost for test suites [33].
Moreover, Thummalapenta et al. conclude from an empirical study of existing test suites
that parametrization is beneficial–their results indicate that test suites retrofitted with
parametrization can detect new defects and provide increased branch coverage [37]. Any
of the techniques mentioned above would also make the tests less brittle and easier to
understand.

While writing new tests using these techniques has been shown to be beneficial, it is
not always clear when and where to apply them. During initial development, a simple unit
test can be adequate. However, this design may become incrementally more difficult to
maintain as the code base evolves leading to the situation described above.

The problem with retrofitting existing test code using these techniques is that first,
identifying situations where refactoring would be appropriate is hard. Most clone detection
tools operate on symbols in source code. Hence, even while detected clones may be suitable
for retrofitting, the results do not provide a signal to help decide if or how the clone should
be refactored.

Second, the feasibility of implementing the refactoring manually is limited by the
scarcity of developer time [9, 30]. In particular, identifying the solution to avoid clones
is a time consuming process and is ill-suited for developers who are likely to have higher
priority tasks than addressing technical debt in test code.

Our goal is to reduce the developer effort needed for these refactorings. We present a
technique to automatically detect test clones and provide contextual information that may
assist in the refactoring process. The technique we used to detect clones is described in
Chapter 3.

We implemented our technique using the Soot program analysis framework [24]. The
tool we created analyzes code and displays the set of test methods that verify one or more
similar properties of the code along with specific program properties used to draw this
inference. Details about the output are described in Chapter 3.4.

Refactoring the appropriate test methods will result in a test suite that contains fewer
clones and is easier to modify when developers change code in the system under test.

2

We have implemented our technique using the Soot program analysis framework [24].
Our evaluation of the implementation is based on a suite of 10 benchmark programs ranging
from 8,000 to 246,000 lines of code. Our technique identified from 20.21% to 54.61%
clones in members of our benchmark suite. We manually inspected 10 randomly sampled
clones from these tests and found that our recommendations were suitable clones and often
amenable to refactoring. Detailed findings are in Chapter 4.

Our primary contributions are:

• a characterization of a class of test-level clones that are suitable for refactoring;

• a technique for identifying such test-level clones in existing test suites;

• an implementation of that technique; and

• an empirical study of a significant suite of benchmark programs using our technique.

3

1 public void testDurationFields() {

2 assertEquals("eras", GJChronology.getInstance().eras().getName());

3 assertEquals("centuries", GJChronology.getInstance().centuries().getName());

4 assertEquals("years", GJChronology.getInstance().years().getName());

5 assertEquals("weekyears", GJChronology.getInstance().weekyears().getName());

6 assertEquals("months", GJChronology.getInstance().months().getName());

7 assertEquals("weeks", GJChronology.getInstance().weeks().getName());

8 assertEquals("halfdays", GJChronology.getInstance().halfdays().getName());

9 assertEquals("days", GJChronology.getInstance().days().getName());

10 assertEquals("hours", GJChronology.getInstance().hours().getName());

11 assertEquals("minutes", GJChronology.getInstance().minutes().getName());

12 assertEquals("seconds", GJChronology.getInstance().seconds().getName());

13 assertEquals("millis", GJChronology.getInstance().millis().getName());

14 }

(a) testDurationFields() for GJChronology

1 public void testDurationFields() {

2 assertEquals("eras", ISOChronology.getInstance().eras().getName());

3 assertEquals("centuries", ISOChronology.getInstance().centuries().getName());

4 assertEquals("years", ISOChronology.getInstance().years().getName());

5 assertEquals("weekyears", ISOChronology.getInstance().weekyears().getName());

6 assertEquals("months", ISOChronology.getInstance().months().getName());

7 assertEquals("weeks", ISOChronology.getInstance().weeks().getName());

8 assertEquals("days", ISOChronology.getInstance().days().getName());

9 assertEquals("halfdays", ISOChronology.getInstance().halfdays().getName());

10 assertEquals("hours", ISOChronology.getInstance().hours().getName());

11 assertEquals("minutes", ISOChronology.getInstance().minutes().getName());

12 assertEquals("seconds", ISOChronology.getInstance().seconds().getName());

13 assertEquals("millis", ISOChronology.getInstance().millis().getName());

14 }

(b) testDurationFields() for ISOChronology

Figure 1.1: 2 of 9 test clones as found in Jodatime. Each comes from a different unit’s
tests and is identical in every way except the unit name.

4

1 @Theory

2 public void testDurationFields(BaseChronology chronology) {

3 assertEquals("eras", chronology.eras().getName());

4 assertEquals("centuries", chronology.centuries().getName());

5 assertEquals("years", chronology.years().getName());

6 assertEquals("weekyears", chronology.weekyears().getName());

7 assertEquals("months", chronology.months().getName());

8 assertEquals("weeks", chronology.weeks().getName());

9 assertEquals("days", chronology.days().getName());

10 assertEquals("halfdays", chronology.halfdays().getName());

11 assertEquals("hours", chronology.hours().getName());

12 assertEquals("minutes", chronology.minutes().getName());

13 assertEquals("seconds", chronology.seconds().getName());

14 assertEquals("millis", chronology.millis().getName());

15 }

16

17 public static @DataPoints BaseChronology[] classInstances = {

18 IslamicChronology.getInstance(),

19 EthiopicChronology.getInstance(),

20 BuddhistChronology.getInstance(),

21 GregorianChronology.getInstance(),

22 CopticChronology.getInstance(),

23 GJChronology.getInstance(),

24 JulianChronology.getInstance(),

25 ISOChronology.getInstance(),

26 LenientChronology.getInstance(GregorianChronology.getInstance())};

Figure 1.2: JodaTime tests from Figure 1.1 written as a unified theory.

5

Chapter 2

Background and Definitions

The work in this thesis was done using the Java programming language and the JUnit unit
testing framework, and the Soot static analysis framework [24]. This Chapter describes the
existing patterns in Java unit testing and touches on relevant Soot specific terminology.

2.1 Unit Testing in Java

In Java, unit tests are typically written with the help of a testing framework. A typical
unit test, as in Figure 2.1 contains the following components:

1. Setup code: Create test environment for the unit of code under test

2. Test code: Preparing an object for testing desired functionality

3. Assertion Statements: Verification of the prepared object’s state

4. Teardown code: De-construct the test environment

The setUp() method is responsible for initializing the unit’s state before individual
tests are performed. It is the primary de-duplication mechanism used in unit testing.

The test itself is comprised of two parts. First is the construction of object state that
involves invoking code under test. The second part of the test are the assertion statements
that verify the object state(s) generated by the code under test.

6

1 public class TestLogger extends TestCase {

2

3 Logger logger;

4 protected void setUp()

5 {

6 logger = new Logger("test.log");

7 }

8

9 public void testDebugLevel()

10 {

11 logger.setLevel(DEBUG);

12 logger.debug("This data is in the log");

13 assertEquals(logger.getlogFile().getlineCount(),1);

14 }

15

16 protected void tearDown()

17 {

18 logger.logFile.truncate();

19 }

20 }

Figure 2.1: Sample unit test for illustrating JUnit testing pattern.

7

The final component, the tearDown() method, returns the test environment to its
pre-test state.

JUnit is an open source unit testing framework for Java. It provides mechanisms to
easily construct and run unit tests. In version 3.x of JUnit these methods are contained in
a class that extends JUnit’s TestCase class.

The wide adoption of JUnit allows us to design our implementation specifically for
this framework. We consider calls to methods declared in the junit.Assert class to be
assertion statements, (referred to as assertions from now on.) We use assertions to identify
data useful in comparing the similarity of tests since assertions are usually passed objects
which have relevant properties to be verified. Effectively, we exclusively investigate JUnit
assertions and related code for test clone detection.

2.2 Soot and Static Analysis

Soot is a compiler framework developed by the Sable Research Group at McGill University.
It is used to build static analysis tools for Java source files or Java bytecode.

Since our approach gathers data using the new notion of Assertion Protocols (defined
in the next Chapter), any intra-procedural static analysis framework for Java would be
suitable for our work. However, some features of Soot made it a better fit for our purpose.

Soot analyses operate with the framework’s own intermediate representation (IR), jim-
ple of Java code which simplifies the code for the analysis. Jimple is a form of 3 ad-
dress code, where each statement is broken down into multiple jimple instructions with 2
operands and an operator. Using simple 3 address code IR normalizes code fragments, for
example,

z = x.foo().bar();

and
y = X.foo();

z = y.bar();

would be syntactically identical, with possibly different variable names since method chain-
ing is not allowed in Jimple. A detailed guide to jimple has been published in [39], A jimple
conversion of the test code in Figure 2.1 is provided in Figures 2.2, 2.3, 2.4.

In addition to Jimple, Soot provides a set of inbuilt ‘helper’ functions (like a use-def
analysis and a class hierarchy extractor amongst others) which expedited our development

8

1 public class org.test.TestLogger extends junit.framework.TestCase

2 {

3 protected void setUp()

4 {

5 org.test.TestLogger this;

6 org.test.Logger temp$0;

7

8 this := @this: org.test.TestLogger;

9 temp$0 = new org.test.Logger;

10 specialinvoke temp$0.<org.test.Logger: void <init> (java.lang.String)>("test.log");

11 this.<org.test.TestLogger: org.test.Logger logger> = temp$0;

12 return;

13 }

Figure 2.2: Jimple 3-address code version of the setUp method.

process. The flexibility of Soot also allowed us to integrate thin slicing based data gathering
techniques within the analysis with ease.

The rich feature set and research oriented nature of Soot makes it an ideal platform for
future work. Soot supports dynamic analysis, inter-procedural analyses, symbolic execu-
tion and automatic refactoring amongst other possibly relevant functionality. Development
using such an evolving platform makes taking new directions with our research easy.

2.3 Summary

While neither JUnit nor Soot are core requirements for implementing our clone detec-
tion technique, the ubiquity of JUnit and the extensibility of Soot make them ideal for
demonstrating our work.

JUnit is widely used an is a primary testing framework for many open source projects.
Thus making an implementation specific to JUnit is likely to benefit a large number of
projects while being extensible to other imperative unit testing frameworks. Similarly, an
extensible dataflow analysis framework with an active and stable developer community
make Soot an ideal platform for current and future work in the field of program analysis
based techniques.

In the next Chapter we discuss how we use Soot to implement a clone detector for tests
written using JUnit.

9

1 public void testDebugLevel()

2 {

3 org.test.TestLogger this;

4 org.test.Logger temp$0, temp$2, temp$3;

5 java.lang.String temp$1;

6 org.test.lFile temp$4;

7 int temp$5;

8

9 this := @this: org.test.TestLogger;

10 temp$0 = this.<org.test.TestLogger: org.test.Logger logger>;

11 temp$1 = this.<org.test.TestLogger: java.lang.String DEBUG>;

12 virtualinvoke temp$0.<org.test.Logger: void setLevel(java.lang.String)>(temp$1);

13 temp$2 = this.<org.test.TestLogger: org.test.Logger logger>;

14 virtualinvoke temp$2.<org.test.Logger: void debug(java.lang.String)>("This data is

in the log");

15 temp$3 = this.<org.test.TestLogger: org.test.Logger logger>;

16 temp$4 = virtualinvoke temp$3.<org.test.Logger: org.test.lFile getlogFile()>();

17 temp$5 = virtualinvoke temp$4.<org.test.lFile: int getlineCount()>();

18 staticinvoke <org.test.TestLogger: void assertEquals(int,int)>(temp$5, 1);

19 return;

20 }

Figure 2.3: Jimple 3-address code version of the test method.

1 protected void tearDown()

2 {

3 org.test.TestLogger this;

4 org.test.Logger temp$0;

5 org.test.lFile temp$1;

6

7 this := @this: org.test.TestLogger;

8 temp$0 = this.<org.test.TestLogger: org.test.Logger logger>;

9 temp$1 = temp$0.<org.test.Logger: org.test.lFile logFile>;

10 virtualinvoke temp$1.<org.test.lFile: void truncate()>();

11 return;

12 }

13 }

Figure 2.4: Jimple 3-address code version of the tearDown method.

10

Chapter 3

Clone Detection Approach

Based on our empirical study, test code is usually simple and contains assertions comparing
local variables to each other or to constant values. We can therefore, track histories of local
variables in test methods and search for similarities between them to identify similar tests.

Figure 3.1 introduces our running example. It defines two classes, List and Queue, both
of which inherit from a common abstract parent class Collection. The two subclasses
each implement their parent’s insert() and length() methods.

Since Collection is an abstract class, developers cannot test it directly. They must
test it using its derived classes List and Queue. Using regular concrete unit tests (CUTs)
forces developers to duplicate tests of the length() and insert() methods for both the
List and Queue concrete classes. It would be feasible to construct a parallel test hierarchy
to test common features at the Collection level if the level of behaviour of each child is
known before hand. This is not always the cases since classes can implement or override
methods declared in the parent.

Figure 3.2 shows two tests, both called testInsert(), which exercise the List and
Queue insert() methods.

Such clones in tests increase test suite brittleness: code modifications can invalidate
many test cases simultaneously. For example, if a developer changed the signature of
insert() to accept strings instead of floats, both test methods would no longer compile.
Furthermore, using regular CUTs forces developers to write new tests for each new subclass
of Collection, resulting in more work as well as larger test suites.

We defined Assertion Protocols (APs) for the purpose of collecting data about variables
at each line of code in order to detect cloned CUTs. The first step in our approach is to

11

1 abstract class Collection {

2 abstract void insert(float f);

3 abstract int length();

4 }

5

6 class List extends Collection {

7 // ... method implementations

8 }

9 class Queue extends Collection {

10 // ... method implementations

11 }

Figure 3.1: Simple system under test: Class hierarchy with abstract collection and two
implementations.

1 void testInsert() {

2 List list = new List();

3 list.insert(3);

4 int len = list.length();

5 assertSame(1, len);

6 }

(a) Concrete Unit test for the List class.

1 void testInsert() {

2 Queue queue = new Queue();

3 queue.insert(3);

4 int len = queue.length();

5 assertSame(1, len);

6 }

(b) Concrete Unit test for the Queue class.

Figure 3.2: Concrete Unit Tests (CUTs) for Collection class subtypes.

12

compute Assertion Protocols (APs) for local variables used in assertions. Assertion Proto-
cols are devised such that similarity between APs indicates a higher likelihood of related
code being a refactorable test clone.

Definition 1. The Assertion Protocol (or AP) for a variable at a given line of code is
a list of method signatures or constant types containing the declaration signature of each
method invoked in order to compute the variable’s value or the constant type is has been
assigned.

We chose Assertion Protocols as the basis for our technique because they capture facts
exclusively about the properties developers test in a particular assertion. As a result,
they can identify tests where only a subset of tested properties are similar rather than the
entire test method. Assertion Protocols as we define them have not been used for static
analysis previously and our implementation of the analysis to generate APs in Soot is a
novel contribution.

The use of Assertion Protocols differentiates our work from traditional clone detection:
because APs use def-use information, they are more resistant than clone detectors to textual
code restructuring, differences in method call orders, and statement reordering. APs also
help provide context for each of the clones reported to the developer. The above factors
along with the clear connection to the code maintained by Assertion Protocols make them
the ideal data source for our similarity analysis.

In the running example’s case of the list testInsert() test method, we generate an
Assertion Protocol for the list variable consisting of a single tuple: [<List:List()>], in-
dicating that this variable arose from the constructor call List(). We would also generate a
Assertion Protocol for len which would be: [<List:List()>, <Collection:length()>]

indicating the method calls in len’s history.

The queue testInsert method also generates Assertion Protocols for its local variables
in the same way. Its len would instead have the Assertion Protocol [<Queue:Queue()>;
<Collection:length()>]. We describe the process that leads to these APs in Section 3.1.

After generating the Assertion Protocols, we perform similarity analysis to compare
each pair of JUnit assertions. After computing APs, we group together sets of assertions
based on the similarities of the Assertion Protocols associated with each variable. A de-
tailed description of this process is in Section 3.2.

The result of the first two phases is raw data on similarities between pairs of assertions
in the various tests in the test suite. Because we aim to present method level candidates
for refactoring to the developers, we consolidate our data to test level granularity in order
to obtain candidate sets. We do this by consolidating similar assertions in code into test

13

method level groups. In this final phase, we extract relevant method names from the sets
and present them to the developer. We now describe each of the steps up to the final
display phase in detail.

3.1 Assertion Protocol Generation

Figure 3.3 illustrates the rules for generating Assertion Protocols. At each assignment
statement in the three-address intermediate representation used by Soot, we append a
tuple or a set of tuples to the assertion protocol of the left-hand side.

Specifically, given an assignment statement s: x = rhs, we generate:

Assignment to x AP(x)
Instantiation (x = new X();) [<X: X()>]

Copy of local variable (x = y;) AP(y)

Method invocation (x = y.foo();) AP(y).append(

declaringSignature(foo))

Static Method invocation (x = staticFoo();) [declaringSignature(foo)]

Constant value (x = v;) [<Constant, typeOf(v)>]

Figure 3.3: Rules used in Assertion Protocol Generation (at assignment statements).

In the static analysis multiple APs can arise due to branches in the code. Since static
analysis is conservative, it computes an AP on each path and merges them when the flows
join. Figure 3.4 contains a snippet of code where the variable status may have one of two
distinct APs based on a branch in the code. When the branch merges, we assign both to
status. The dataflow analysis steps are summarized in Table 3.4b.

For merging, the analysis associates both APs with the variable. Figure 3.4 demon-
strates this with an example. Since we do not know what the method login() will return
statically, the analysis handles each branch of the program independently. Assigning the
appropriate AP to status in each branch block. When the control flow merges just before
the assertion, both APs are assigned to status. The formal data flow analysis definition
is in Appendix A.

In the case of our running example, we generate the APs for the variables as given in
Figure 3.5. The APs for Queue would be generated similarly.

During the similarity analysis, when comparing two variables, we consider the maximum
similarity score computed by comparing every pair of APs.

14

1 String status = new String();

2 if(login()==SUCCESS)

3 status=LOG.successMessage();

4 else

5 status=LOG.failureMessage();

6 assertNotNull(status);

(a) Sample listing containing branching code.

Statement APs
String status = new String(); AP(status)=[<String:String()>]

if(login()==SUCCESS) Branch1
status=LOG.successMessage(); AP(status)=[<LOG:successMessage()>]

else Branch1
status=LOG.failureMessage(); AP(status)=[<LOG:failureMessage()>]

Branch Merge AP(status)={[<LOG:failureMessage()>],
[<LOG:failureMessage()>]}

assertNotNull(status) AP(status)={[<LOG:failureMessage()>],
[<LOG:failureMessage()>]}

(b) APs at each line of code as generated by the dataflow analysis.

Figure 3.4: An example of branch handling during AP Generation.

15

3.2 Similarity Analysis

The similarity analysis identifies similar test assertions by generating similarity scores for
each pair of assertions. Algorithm 1 summarizes our heuristic for assertion similarity
computation.

We score a pair of Assertion Protocols by counting the number of common elements
that exist between them. If two APs are of the same length we check if they contain the
same entries in the same positions in the list. For each matching declaration, we increase
the score incrementally within the range [0, 1].

For a pair of assertions we compute the similarity score by adding all the similarity
scores for assertion parameters’ APs along with additional factors and normalizing to
[0, 1].

The heuristic is based on the following criteria:

Assertion Type Unit tests execute some code from the system, and compare the ac-
tual result of the execution to an expected value. In JUnit tests, the comparison uses
JUnit-provided assertions. Examples of these assertion types include assertNotEqual,
assertTrue, and assertSame. Our heuristics assumes that it is unlikely for tests us-
ing different assertions to be clones and assigns a similarity score of 0 to assertions with
different assertion types.

Assertion Protocol Similarity The similarity score between 2 assertions is the core of
our algorithm. For assertions ax and ay, corresponding assertion parameters (aix, a

i
y), we

compute the number of pairs in the Assertion Protocol that match and divide this count
by the total length of the Assertion Protocol giving a result in [0, 1] for each assertion
parameter. We match a pair of entries based on the class hierarchy of the declaring types
of the two calls. Two calls match if they are declared or defined by a common ancestor in
the System’s type Hierarchy.

Assertion Constants Many test assertions compare the actual result to a constant
expected result. Note that our heuristic handles this case by encoding an Assertion Protocol
for constants containing the type of the constant.

16

Containing Method Name Our preliminary inspections found that assertions belong-
ing to identically-named methods (in different tests) indicate duplication. We therefore
assign 1 similarity point when evaluating assertions belonging to methods with the same
name while computing the average similarity score.

In the case of List and Queue we compare the APs of len and 1 for each of the tests
and compute the similarity score.

The APs for each variable named len are:

• While testing List: [<List: List()>,<Collection: length()>

• While testing Queue: [<Queue: Queue()>,<Collection: length()>

The similarity score for these 2 APs is (0 + 1)/2 = 0.5 given that one out of 2 corre-
sponding AP entries match. The variable name does not factor into the similarity score
and can be different without affecting similarity scores.

In the case of the second assertion parameter, 1 in each of the tests, the constant is of
the same type, Integer and so the similarity score is 1.

Since the test method name is testInsert in both cases, we have to add an additional
point of comparison for matching containing method names. Giving another 1 point to
the similarity score.

The final score is an average of the assertion protocols and the extra point for method
name similarity resulting in a final similarity score of (0.5 + 1 + 1)/3 = 0.833.

The details of the similarity analysis are given in Algorithm 1.

3.3 Result Consolidation

After computing the similarity between pairs of assertions in different tests, we group
assertions based on which test method they belong to in an effort to identify test methods
with similar behaviour and associated assertions.

We use an undirected graph with assertions as nodes and edges between pairs of asser-
tions whose similarity is within a tunable range range; for this thesis, we report results with
a threshold of [0.6, 1]. Different thresholds give different results; decreasing the threshold
produces a superset of the results with potentially lower precision. We store the similarity
scores between assertions as the corresponding edge weights.

17

1 function similar (assert1, assert2)

2 similarity ← 0

3 if(assert1.type() 6= assert2.type())

4 return 0

5 for(variable1, variable2 ← assert1.parameters, assert2.parameters)

6 similarity += likenessScore(variable2, variable2)

7 if(assert1.testMethodName != assert2.testMethodName)

8 if (similarity / parameterCount in [range])
9 return true

10 else

11 if (similarity+1 / parameterCount+1 in [range])
12 return true

13 return false

14

15 function likenessScore (variable1, variable2)

16 score ← 0

17 for(APForV1, APForV2 ← variable1.assertionProtocols,

18 variable2.assertionProtocols)

19 if(APForV1.length 6= APForV2.length)

20 continue;

21 APScore ← 0

22 for(method1, method2 ← APForV1, APForV2)

23 if(Soot.existsSharedHierarchy(method1, method2))

24 APScore ← APScore + 1

25 APScore ← APScore / AP.length

26 if(APScore > score)

27 score ← APScore

28 return score

Algorithm 1: Variable AP similarity score calculation formula

18

We search the graph for isolated, connected sub-graphs. Such components are likely to
contain good candidates for refactoring.

To consolidate our results, we take these mutually disjoint connected sub-graphs and
attempt to reduce each one to the test level relations between the assertions.

We explore the graph considering only edges with the same similarity score at one time.
since edges with the same weight are empirically indicative of related Assertion Protocols.
We compact these edges, grouping assertions based on which test method they belong to.
The new compacted graph has test methods as nodes and similar test methods connected
via edges. This connected graph of related methods is representative of a test level clone
and is displayed as a set with supporting assertion similarities in the final display for the
developer. In our running example, there are only two test methods and so drawing the
graph is not very interesting. There will be 2 nodes with an edge between them with a
weight of 0.833. Consolidating the graph will not result in any change. However, if there
were multiple assertions which matched each other, we would see them reduced to a single
pair of nodes which would represent the test methods.

Figure 3.6 presents a typical set of relations between assertions. Each vertex, a1 through
a8, represents an assertion from some test. Assertions a1 through a4 come from four
different (but related) types of FIFO queues in the Apache Commons Collections library.

3.4 Final Display

Our tool presents developers with a set of test methods as recommendations. The final
stage of our approach links the connected components of test methods back to their original
source code.

To find candidate methods for refactoring, we display the unique method names as-
sociated with assertions in each graph component as one set. Our output also includes
hyperlinks to the assertions which were used as a basis for making the recommendation, it
can be used to jump to individual assertions in the test code using Eclipse.

Since the clones detected by our approach may not be textually similar, developers can
rely on the assertions we present to decide whether or not the 2 related test assertions are
testing the same conceptual property and if that part of the test should be refactored to
remove the duplication.

The final display for our running example is given in Figure 3.7, a real world example
of final display from the Jodatime test suite is given in Appendix C

19

When presenting the sets of methods, we prioritize them based on the similarity scores of
the edges that exist in the component. Each component appears exactly once in the output
but individual methods may exist in multiple components with different edge weights.

3.5 Conclusion of running example

To end our running example, a developer can exhaustively test both insert() and length()

for every applicable child of Collection using JUnit theories. Figure 3.8 presents the JU-
nit theory based test. Theories use the annotation @Datapoints to define data for testing
against a theory annotated with the @RunWith(Theory) annotation. The test verifies
consistent behaviour of insert() and length() in subtypes of Collection, without du-
plicating the test cases as in Figure 3.2. It is easy to see that a new subclasses of Collection
can be tested with relative ease. While the savings in lines of code is not appreciable in
this case, it would clearly be beneficial for non-trivial tests as seen in the Introduction
(Chapter 1).

3.6 Summary

This chapter explains the technique we developed to generate a similarity metric based
on the notion of Assertion Protocols. It describes the static analysis we implemented to
generate the APs, the method to calculate the similarity metric and the final display format
we used. In the next Chapter, we discuss the results of our empirical study where we used
our tool to detect test clones in 10 real world test suites. real world

20

Statement APs
List list = new List(); AP(list)=[<List:List()>]

list.insert(3); AP(list)=[<List:List()>]

int len = list.length(); AP(list)=[<List:List()>],

AP(len)=[<List:List()>,<Collection:length()>]

assertSame(1, len); AP(list)=[<List:List()>],

AP(len)=[<List:List()>,<Collection:length()>,

AP(1) = [<Integer>]

(a) Assertion Protocols Generated for List class’ testInsert() method

Statement APs
Queue queue = new

Queue();

AP(list)=[<Queue:Queue()>]

queue.insert(3); AP(queue)=[<Queue:Queue()>]

int len = queue.length(); AP(queue)=[<Queue:Queue()>],

AP(len)=[<Queue:Queue()>,<Collection:length()>]

assertSame(1, len); AP(queue)=[<Queue:Queue()>],

AP(len)=[<Queue:Queue()>,<Collection:length()>,

AP(1) = [<Integer>]

(b) Assertion Protocols Generated for Queue class’ testInsert() method

Figure 3.5: Assertion Protocols Generated for list test in running example (Figure 3.2.

a1

a2

a3

a4

a5 a6 a7

a8

Figure 3.6: Graphical view of assertions (nodes) and their similarity (edges, which denote
assertions whose similarity exceeds the threshold).

21

1 Pattern followed:

2 Clone Set:

3 <Method_Name>

4 <Set of Similar_Assertions>

5

6 Clone Set:

7 TestQueue.void testInsert():

8 (TestQueue.java:5)

9 TestList.void testInsert():

10 (TestList.java:5)

Figure 3.7: Final results displayed for the running example by the implementation.

1 @RunWith(Theory.class)

2 void testCollectionInsertLength(Collection c)

3 {

4 c.insert(1);

5 int len = c.length()

6 assertSame(len,1);

7 }

8 @Datapoints

9 Collection collections[] = [new List(),

10 new Queue()];

Figure 3.8: Expected theory based tests for the Collection class’ children.

22

Chapter 4

Results of Empirical Study

This chapter describes the findings of our empirical study conducted To validate our clone
detection approach, we performed an empirical study, applying our tool to a collection
of 10 Java-based open-source real-world. We chose systems which have significant JUnit
based test suites. Table 4.1 lists our subject systems, their sizes, the sizes of their test
suites1, the version of the system we analyzed, and running times for our analysis.

System LOC Test LOC Version Analysis Runtime
Apache POI 85,379 57,536 1389914 6m50s
Commons Collections 26,495 29,559 645800 4m31s
Google-Visualization 8,027 9,382 70 6m51s
HSQLDB 160,665 19,136 5076 4m03s
jDom 18,916 15,428 a9a2f863c5 29s
jFreeChart 93,998 51,710 3561093 9m07s
jGrapht 11,342 6,225 a8056d6aaf 50s
jMeter 90,504 14,511 1431816 1m24s
JodaTime 26,881 51,497 1613 9m33s
Weka 246,828 13,030 9415 1m39s

TOTAL 769,035 268,014

Table 4.1: Benchmark systems.

1LOC data generated using David A. Wheeler’s SLOCCount

23

4.1 Experimental Results

We manually assessed ten random refactoring recommendations for each test suite and
report the expected reduction in test case count based on the primary author’s judgement
of the recommendations Of the random sample we chose the recommendations. In this
section, we discuss the nature of the recommendations and the patterns identified by our
approach.

System Test Clone Matched Methods Matched
Methods Sets Methods /Set Methods/Suite

Apache POI 4743 2455 1832 23 39%
Commons Collections 2653 979 660 20 25%
Google-Visualization 485 312 233 7 48%
HSQLDB 1826 482 433 22 24%
jDom 371 155 134 6 36%
jFreeChart 3556 1488 1290 200 36%
jGrapht 297 105 97 4 33%
jMeter 982 523 453 8 46%
JodaTime 4746 4549 2592 71 55%
Weka 1519 702 307 41 20%

MEAN 2117.8 1175 803.1 40.2 36%

Table 4.2: Test clones reported by our analysis.

Figure 4.2 summarizes our results quantitatively. The Test Methods column lists the
number of test methods in the system—specifically, the number of methods contained
within classes that extended the TestCase class from JUnit. The Clone Sets column
reports the number of clones we discovered, while Matched Methods reports the total
number of unique methods that appear across all clones. The next column reports the
average size of each clone set. The column Matched Method % reports the percentage of
test methods that were present in at least one clone set.

Based on our tool, a significant fraction of the test suite contains test clones. However,
the results are highly dependent on architecture and code style and do not necessarily
report code suitable for retrofitting in every case. Intuitively, object-oriented systems with
deep class hierarchies have many clones than systems with flat class hierarchies yield fewer
results owing to the lack of shared architectural properties.

24

The testing style of each test suite also greatly influenced our results. Implicit testing
results in clones that on investigation are not functionally similar. Behavioural tests, which
verify if appropriate methods were called, are not analysed effectively by our technique.
This is caused by the assertions not being used as expected and verifying if methods return
successfully rather than object state.

In case a suite was already using techniques to avoid clones, our analysis had fewer
points of comparison and poor results. Since there were fewer assertions and they were often
located in different methods from test code, the intra-procedural nature of our analysis did
not associate the test code with the assertions, even were clones could be observed when
reviewing code manually.

We now discuss common themes and notable features of the specific test suites that
affected our analysis results.

4.2 General Trends

While reviewing the use of assertions in our test suites, we found that systems used a
variety of techniques to consolidate common tests. While these techniques may use different
syntaxes, their intents appear to be similar to each other. We found the first two approaches
used in the wild by our test systems:

Abstract test classes Using abstract test classes that implement tests required for an
set of classes effectively reduces the total LOC and improves coverage while simplifying
code. This technique uses no extra tooling relying solely on Java’s inheritance; This makes
it simple to use, understand and maintain. The Weka project leverages this technique
and has the smallest ratio of test code to production code amongst all the systems in our
benchmark.

Helper functions Another technique which does not require additional infrastructure
is the use of helper functions to validate constraints on a variety of objects. This approach
is used in the Apache Commons-Collections library and Weka. It is used to a lesser extent
in other test suites but does not see any use in JodaTime.

Parametrized tests and theories Parametrized tests or theories apply a test to multi-
ple objects or types. These are explicitly designed to improve test coverage while avoiding
code bloat. Therefore they are ideal for clone removal when their application is feasible.

25

4.3 Developer impressions

To evaluate the quality of our recommendations, we examined 10 random results from
systems picked to be representative of high, medium and low priority candidates. It was
easy to decide whether a recommendation was useful or not: in the cases where our tool
provided an unusable recommendation, it was easy for the authors (who were unfamiliar
with the subject codebases) to detect that the recommendation was not applicable and
discard it. If the clone set was a valid candidate for refactoring, it was usually straightfor-
ward to formulate refactorings. The greatest difficulty in applying the recommendations
was in deciding what mechanism to use for refactoring; a higher-level understanding of the
code structure would and code style allow a developer to choose the best technique for
refactoring the tests.

Explanations of theories often start by showing how they are applicable to hashCode()

and equals() methods2. We indeed found that, in 7 of our 10 benchmark test suites, we
detected that testHashCode() methods could be refactorized. This result suggested the
potential for our technique to make valid recommendations in other less-clear cases as well.
We also identified refactorable testEquals() methods in a number of our suites, including
Apache Commons Collections and JodaTime.

4.3.1 JodaTime

JodaTime has a comprehensive test suite which is particularly amenable to refactoring; It
tests multiple different classes which are siblings and are composed of the same types. As
a result, our system reports 54.6% of its test methods as clones.

The JodaTime suite is an outlier in terms of test suite size compared to system size:
the test suite is nearly twice as large (in LOC) as the actual system. JodaTime’s tests are
particularly suitable for our approach as they use fine-grained, explicit, assertion-driven
verification. Even though the tests usually operate on different types, they are actually
verifying the same property, which is specified in the common abstract superclass.

We also found that, while JodaTime contains many test clones, it also contains many
“locally-parametrizable” tests, which we explicitly do not attempt to identify. Such tests
verify the behaviour of a single object on multiple inputs. Our goal is, instead, to identify
tests of multiple objects, on the widest range of inputs available. We found that many of

2As an example: http://www.smartics.de/archives/2060.

26

http://www.smartics.de/archives/2060

the invalid recommendations for JodaTime were actually (somewhat complicated) locally-
parametrizable tests. Our tool identifies the tests as belonging to a single component and
hence amenable to refactoring. Refactoring also eliminates inconsistent code styles and
prevents omission of assertions in the cloned tests.

1 // In TestPredicatedSet.java

2 public void testIllegalAdd() {

3 Set set = makeTestSet<String>();

4 Integer i = new Integer(3);

5 try {

6 set.add(i);

7 fail("Int must fail string predicate.");

8 } catch (IllegalArgumentException e) {

9 // expected

10 }

11 assertTrue("Not added", !set.contains(i));

12 }

1 // In TestPredicatedBag.java

2 public void testIllegalAdd() {

3 Bag bag = makeTestBag();

4 Integer i = new Integer(3);

5 try {

6 bag.add(i);

7 fail("Int must fail string predicate.");

8 } catch (IllegalArgumentException e) {

9 // expected

10 }

11 assertTrue("Not added", !bag.contains(i));

12 }

Figure 4.1: Shared behaviour testing in Commons Collections.

4.3.2 Apache Commons-Collections

As seen in our motivating example in Section 1, test suites for collections are a likely source
of clones. Our tool identified 38.6% clones.

Shared interface behaviour accounts for many of the findings in the suite. For exam-
ple, in Figure 4.1, Integers must not be added to a Set<String> or a Bag returned from
makeTestBag() (which happens to create a Bag constrained to only contain Strings). The

27

tests are nearly identical and verify an implicit behavioural rule, hidden in the implemen-
tation.

An additional benefit of refactoring in collections (and other systems) would be that
every collections’ behaviour upon illegal operations must be consistent since there is a single
test that validates the behaviour. The API consistency is therefore implicitly enforced in
the tests where it may have been missing.

4.3.3 JFreeChart

Our tool identified 36.2% cloning out in JFreeChart. It is more challenging to refactor the
tests identified here compared to results from Apache Commons-Collections: understanding
whether tests are semantically close enough to refactor requires more domain understanding
than in previous tests, and refactoring these tests may hamper readability. For example,
in Figure 4.2, tests had very similar assertions; however, the first test used a 3-dimensional
DefaultXYZDataset while the second test used a 2-dimensional DefaultXYDataset. The
tests therefore verified similar but in some ways, distinctly different properties. We felt
that the slight variations are difficult to express concisely without hurting readability. Our
technique still correctly identified clones, however it is not clear if refactoring in every case
would improve the test suite.

1 public void testAddSeries() {

2 DefaultXYZDataset d = new DefaultXYZDataset();

3 d.addSeries("S1", new double[][] {{1.0}, {2.0}, {3.0}});

4 d.addSeries("S1", new double[][] {{11.0}, {12.0}, {13.0}});

5 assertEquals(1, d.getSeriesCount());

6 assertEquals(12.0, d.getYValue(0, 0), EPSILON);

7 }

8

9 public void testAddSeries() {

10 DefaultXYDataset d = new DefaultXYDataset();

11 d.addSeries("S1", new double[][] {{1.0}, {2.0}});

12 d.addSeries("S1", new double[][] {{11.0}, {12.0}});

13 assertEquals(1, d.getSeriesCount());

14 assertEquals(12.0, d.getYValue(0, 0), EPSILON);

15 }

Figure 4.2: Two similar testAddSeries() implementations in jFreeChart.

28

4.3.4 HSQLDB

Our tool identifies very few refactorable tests for the HSQLDB suite at 23.7%; these tests
often verify that operations on a reader object must be unsuccessful prior to an open call
on that object. Or similar constraints.

During our initial investigation we found that many tests in the suite simply verified
return codes from SQL functions, rather than explicitly testing behaviour or underlying
state. Also, the HSQLDB codebase contains shallow inheritance hierarchies which do not
provide rich assertion protocols.

A typical HSQLDB test case (Figure 4.3) calls a number of side-effecting method calls
on a PreparedStatement object. Unfortunately, the tests then verifies the success of the
executeUpdate() call by checking that the return value is 1; The test never verifies that
the update actually produced the expected change in state. Due to this unique testing
strategy, our technique finds many clones which test unrelated properties.

1 public void testSetNull() throws Exception {

2 PreparedStatement stmt = updateColumnWhere("c_integer", "id");

3 stmt.setNull(1, Types.INTEGER);

4 stmt.setInt(2, 1);

5 assertEquals(1, stmt.executeUpdate());

6 }

Figure 4.3: An implicit unit test in HSQLDB.

4.3.5 JGraphT

Our tool identified 32.6% cloning in the JGraphT test suite. However, given the relatively
small size of the test suite, we were not able to find many useful clone sets with our tool.
We noticed some similarities compared to the case of HSQLDB in that many times, the
assertions verify easy to verify attributes, (in this case, vertex count) and not the actual
structure of graphs being generated.

4.3.6 jDom

Most of the test code in jDom constructs XML Document Object Models and then validates
them at the end of the test method against contents in the file system. However, in smaller

29

tests we identified many snippets of code that could be placed in helper functions. These
snippets typically involved setting up basic XML structures and sanity testing.

4.3.7 Weka

Our tool returned he lowest match rate of 20.2% for Weka. We explored the test suite and
found that it was also an outlier: the Weka developers already use inheritance aggressively
in the test suite. Additionally, they use very few explicit assertions (only 119 in over 3000
tests). Essentially, they have already optimized the tests using object oriented design and
test class inheritance. This results in an especially compact test suite: in our benchmark
set, it has the fewest lines of test code to benchmark code of any of our benchmarks. We
believe that this result indicates that some form of parametrization of test suites is valuable
and that tool support for it would be helpful to test writers.

4.4 Summary

This Chapter discussed the results of our empirical study on 10 JUnit based benchmark
test suites. We found that while there are many clones in test code, the decision to refactor
them must be made based on code style on a suite-by-suite basis.

In certain suites, the standard practice involved test code reuse and detected clones were
not amenable to refactoring. In other suites, implicit testing without assertion based veri-
fication of object state lack fine grain APs in assertions, which are not useful for reasoning
about the retrofitting process.

However, in suites which test deep hierarchies and limited code reuse, our approach
does detect a large number of refactorable clones and is a beneficial tool for developers to
use.

30

Chapter 5

Discussion

Overall, we found that our tool produced refactoring recommendations for almost all of
our benchmark suites, and that it worked particularly well on JodaTime. We continue by
discussing some of our broader, cross-benchmark, qualitative findings.

When our tool produced any recommendations, it tended to produce high-quality ones:
our recommendations contained very few false positives, and it was trivial for non-experts
to identify false positives without too much effort in most cases.

Retrofitting based on our recommendations was sometimes, but not always, straight-
forward. We believe that refactoring of tests is not always feasible. For instance, the
parameters to be passed while parametrizing certain cases needed to be class types—test
objects were fetched using static methods. This particular behaviour is not directly sup-
ported by Java and cannot be trivially refactored.

5.1 Scope of Our Analysis

Our tool yields better results with certain test suites than others. In preliminary work, we
experimented with running our tool on automatically-generated test suites (in particular,
the test suite for the Google Guava libraries). We did not detect refactoring opportunities
in such suites, as the suites are designed to maximize test coverage while minimizing suite
size. Suite size minimization implies that refactoring is unlikely to help.

Our analysis also does not find significant valid refactoring opportunities in already-
factored test suites like that of Weka.

31

Some tests did not use explicit assertions; we saw some such tests in every suite except
for JodaTime. Instead, these tests look for explicit failures, e.g. exceptions, or implicit
self-reported success checks (as in HSQLDB). Such tests are difficult to reason about, either
manually or automatically.

5.2 Retrofitting vs. Early Optimization

We found that the choice of test style affects whether the test suite will be easy or hard
to theorize or parametrize. For example, JodaTime uses fine-grained tests which can be
easily rewritten as parametrized tests, while JFreeChart’s similarly-complex tests were
much more difficult to evaluate for retrofitting.

In the initial stages of project development, when projects are still small, there may
not be much of an incentive to use complex testing techniques; example-based concrete
unit tests (if any) would be more practical. Over time, the system may evolve into one
that is suitable for theory-based testing; however, the incremental growth of the system
may make it difficult to recognize this fact. Thummalapenta et al. propose a cost benefit
analysis to decide whether theorizing a test suite would be feasible and would have favorable
results [37]. Our tool provides a low-cost way to help developers decide whether they should
retrofit their tests yet, and to guide them if they proceed to do so.

5.3 Comparison with Clone Detectors

It is evident that we need clone detection in test code based on the results presented above.
We believe that clone detection in tests can be used to reduce test duplication and is a
beneficial exercise.

Based on a comparison of clones detected by our algorithm and those of the best in class
clone detector Bauhaus [15], specialized tools to detect clones in test code can be beneficial.
We compared 10 random samples from each test suite with results from Bauhaus matching
with token length threshold set of 50. Bauhaus produced more clone sets, however, our
approach lead to results which had semantic data used to define the similarity. We believe
that our empirically-generated algorithm produced more useful results within the limited
scope of test code. We reviewed the results and found this limited subset of results with
semantic information easier to reason about and refactor compared to Bauhaus’ clone
detection results.

32

Clone detectors do not typically provide the basis for clone detection along with the
results. Our display expresses the features responsible for identifying code clones at the
Java instruction level. This information is useful to developers and in the future, automated
tools that may use this knowledge to evaluate: (a) the validity of our results and (b) the
best refactoring approach to take.

Our analysis can detect similarity in tests which go beyond simple clone detection; for
instance, we are insensitive to the order in which assertion parameters are computed, since
we construct Assertion Protocols independently for each parameter. However, in practice,
many of the recommendations from our tool were simple text clones, where the cloned code
is nearly identical in both cases. Such clones are quite easy to refactor.

We believe that these easy clones will help motivate developers to use our tool. Fur-
thermore, since we include more just simple clone analysis, we believe that our technique
has the potential to identify more opportunities. In our experience with the tool, we had to
decide whether refactoring the tests was worth the effort and risks involved. This was not
always a straight forward decision (especially for more complex clones) since the clarity of
what a test is intended to verify may be obscured. We think that this judgement call would
be easier for developers who are more familiar with a project, even if they are unfamiliar
with the specific tests to be refactored.

5.4 Result Quality

The quality of results generated by our algorithm is a subjective property and will always
be biased based on the developer reviewing the results. We attempted to use a conser-
vative criteria for reviewing the results by mimicking real developer behaviour: if a clear
refactoring plan was not apparent within 2 minutes of looking at the code, we deemed the
result poor in quality. The use of automated refactoring tools that leverage such semantic
data would allow us to measure the quality of results more quantitatively but we did not
find any existing tools suitable for this task.

5.5 Threats to Validity

The external validity of our system whether or not it would generalize to more systems,
is limited by the number of systems we applied our approach to. While 10 systems were
investigated, all were Java programs, none of them were industrial, and none exceeded 250

33

KLOC. It is also possible that our benchmark suite, though varied, did not capture other
test code styles or approaches. Other test suites may utilize parametrization, theories and
various other techniques to reduce clones. Since the recall of our approach is dependent on
various properties of test code, we cannot conjecture about the results in those cases but
the basis for detecting clones should still be valid. The construct validity of our results—
whether or not we are measuring what we hope to measure, suffers from the fact that
one author manually evaluated the quality of our returned results using a single scale.
However, we believe that we have gained an appropriate understanding of the systems we
investigated and have given an accurate assessment of our technique’s performance.

5.6 Limitations

While using Assertion Protocols is effective, the similarity analysis relies on the size of the
assertion protocols and the class hierarchies of the systems being analyzed. Therefore, in
systems where class hierarchies are shallow our approach gives poor results. Further, it
assumes that class hierarchies share common behaviour. The analysis provides unrefac-
torable results where inheritance does not imply shared behaviour, as was the case in the
JFreeChart system we investigated.

Implicit rather than explicit property verification can also lead to similarly un-refactorable
results. When tests validate if certain methods executed successfully rather than verifying
underlying state, that fact is not captured in the related APs. HSQLDB was a system
where the tool produced many results related to database update method where the tests
were using radically different SQL query strings.

More specific treatment of constants would address the issue encountered in HSQLDB
but would weaken our ability to detect tests which can benefit from more powerful refac-
torization techniques like theories. A more nuanced approach to constant matching may
alleviate this shortcoming in the future.

During consolidation of the graph, we have to deal with the variable sizes of the com-
ponents generated by the similarity analysis. If the component size is too large, the Final
Display will list too many facts and methods to be refactored, only some of which may be
of interest. Tuning the threshold parameters and considering only like weighted edges at
once mitigates this issue but it is not clear how much that also impacts the recall rate and
validity of the results.

Addressing these limitations are also matters of future work, which is discussed in the
next section.

34

5.7 Future work

Based on insights gained during the implementation and evaluation of our technique, we
found some “low hanging fruit” which would improve our tool without significant redesign.
First, we wish to understand the equivalence of assertions like assertFalse(fact) and
assertTrue(!fact) or assertions with optional parameters. This will give us opportunities
to compare tests which we cannot match with our current implementation.

We can also look at non-assertion statements as points of interest when comparing 2
chunks of code. Looking at logging API calls for example, we can generalize our approach
and attempt to discover clones in non-test code as well. The variability of logging frequency
will be an added challenge we will have to address.

A more exhaustive method for computing assertion protocols could utilize inter-procedural
analysis instead of the intra-procedural version we currently employ. This could capture
side effecting calls which we do not address in this work. Another significant benefit would
be the ability to address mock based testing, an alternate testing technique, which is not
covered explicitly as part of this work.

Augmenting our static analysis using a dynamic trace as additional information or input
from existing clone detectors will also yield similar benefits. Clone detector output can be
leveraged to select interesting method calls for similarity matching as well.

Apart from the Assertion Protocol generation, we may also improve the similarity
matching system by further considering the Assertion Protocols of variables passed as pa-
rameters in non-assertion method calls. In the current algorithm, this would be extremely
compute and memory intensive and would likely not improve our results significantly com-
pared to other approaches mentioned above. However, we believe that it may be useful for
partitioning large clone sets, making them easier to refactor.

Finally, we would like to run a study to understand the usefulness of our approach for
real developers and systems. We would like to design an Eclipse plug-in that streamlines
our tool and makes it easy to use with any system. This will allow us to evaluate the utility
in a variety of use cases. Closer integration with Eclipse could also come in the form of
a refactoring extension that automatically applies improvements based on the findings of
our analysis.

35

5.8 Summary

In this Chapter we presented the inferences we have drawn based on the data presented
in Chapter 4. We also highlighted the limitations of our technique and threats to validity.
Finally we discussed possible future work based on this research. In the next Chapter we
present existing work related to our field and scope.

36

Chapter 6

Related Work

In this chapter we discuss areas of related work. Our initial motivation was found in
papers that discussed new unit testing approaches which reduce test code redundancy
while improving test quality. We describe these techniques in Section 6.1.

These new approaches are very interesting, but developers are unlikely to manually
changing working test code to use them. Understanding different approaches to testing
is critical in developing techniques to automatically detect where they are applicable and
automate the retrofitting process.

The first phase of the retrofitting process is detection of retrofitting opportunities. The
clone detection community focuses on identifying snippets of code which are likely copy-
paste clones with some modifications. We attempted to use clone detection approaches
on test code to see if more specialized techniques were required for clone detection in test
code. An overview of clone detection in general code is given in Section 6.2.

Clone detection should lead to clone elimination in case the clones are undesirable.
Automatic refactoring was thus the next logical step in our search for existing technologies,
having reviewed the existing work, we found that the focus of test refactoring is to extend
existing functionality based on automated techniques. We did not find any work which
focused directly on our problem of refactoring manually written tests to use more modern
testing techniques. We discuss automatic refactoring tools in Section 6.3.

As our work became more concrete, we discovered similarities between our technique
and that of program slicing. Our work on Assertion protocol generation is in effect a
spiritual reincarnation of the program slicing paradigm but chooses to preserve facts about
the code slices rather than attempt to reason about the code slices themselves. We compare
our work to program slicing in Section 6.4.

37

6.1 Alternative Testing Techniques

Saff, who originally proposed theory-based testing [33], conducted a case study which found
that theory based testing could be applied easily to existing test suites [34]. Our work aims
to provide tool support for adding theories.

Tillman and Schulte first proposed the idea of automatically parametrizing tests in [38],
where they addressed parametrization within the context of one concern, using symbolic
execution. Fraser and Zeller showed that exploratory data point generation tools can fur-
ther improve test coverage without additional developer effort [12]. Zhang et al. proposed
an automated approach to test generation in [44] which used a combination of static and
dynamic analyzes to generate tests that extended coverage.

6.2 Code Clone Detection

Clone detection is the process of finding pieces of code that are similar based on a definition
of similar which is suitable for the task. The similarity can be based on and criteria that
is considered pertinent. The standard classification for clones however is limited to the
source code, syntax and functionality as follows:

• Type I: Code that is identical except white spaces and comments;

• Type II: Type I clones with differences in identifier names but identical structure;

• Type III: Type II clones with minor changes in the structure;

• Type IV: Code that is syntactically and structurally different but has the same
functionality;

Type I clones can involve method calls which have the same names but different, unre-
lated declarations which can be completely unrelated. Our approach does not detect such
clones. However, such clones are unlikely to be suitable for retrofitting given that they test
unrelated code.

Our tool detects Type II clones with the same scope and limitations as Type I clones
because our approach does not depend on the variable names in computing similarity.

Type III clones are identified when there are changes within Type I/II clones that
within some threshold. Since we use APs as a metric for similarity and not source code

38

our approach is immune to unrelated source code preventing clone detection. Apart from
non-reliance on source code, APs can be dissimilar within the tunable range and still be
identified as clones, resulting in successful Type III clone detection.

Type IV clones may have no syntactic similarity and are not detected by our technique
directly since our approach is dependent on a non-trivial fraction on the code being a clone
of type I, II or III.

Clone detectors analyse source code and process to find similarities between code blocks.
They accomplish this by first converting source code into an intermediate representation
that can be processed for similarity based on a variety of techniques. The similarity can
be based on a variety of criteria which influence the intermediate representation. They can
be broadly classified as follows:

Text Based: Use the raw source code without significant normalization. A text based
as in [17] can attempt to simply match pairs of contiguous strings using an efficient string
comparison technique. Alternatively, more complex hybrid techniques can normalize and
filter code to detect Type II and III clones as in [31] and [25].

Token Based: Use a normalized intermediate presentation, produced by a lexer which
tokenizes source code. Token based analysis can be used to detect Type I and II clones.
Type III clones can also be detected using a Token based similarity metric by identifying
Type I or II clones which have differences that are below a (usually tunable) threshold.
CCFinder is an example of a Token based approach [19]. Array based matching techniques
also exist as seen in [4].

Tree Based: Tree based approaches attempt to find similarities based on a tree based
representation of the code. A tree structure is used by CCFinder mentioned above in a
hybrid approach to detect Type III clones. Tree based detection mechanisms often use
the Abstract Syntax Tree generated for the code and identify similar suffix trees, which
represent cloned code [23][5].

Metric Based: Metric based approaches do not compare code or some IR directly. In-
stead they define abstract properties based on the code which are compared for similarity.
In [10] Davey et al. use neural networks to detect similarities between code based on facts

39

such as frequencies of keywords and line indentation amongst others. Merlo et al. use prop-
erties of classes in object oriented code to generate metrics which can be used to model
cloning in [27]

Graph Based: Graph based techniques analyse program dependency graphs or control
flow graphs generated for the source code in order to detect similarities. Such approaches
rely on static analysis tools to detect clones. This approach converts the problem into
that of identifying isomorphic subgraphs, which is NP-complete. There are however sim-
plifications and approximation methods which make the problem tractable. For example,
Liu et al. use statistical filters to reduce the search space for isomorphism significantly in
CPLAG [26]. The process of detection has also been reduced to a tree matching problem
by Gabel et al. in [13].

Our approach is a hybrid that has many similarities with the program slicing technique
used by Komondoor and Horwitz [22]. We use a graph-based technique to generate variable
APs. These APs are then used to calculate a similarity metric for comparison of code at
the test method level. The program slicing used by Komondoor and Horwitz was applied
at the code level. However, our approach is not dependent on slicing explicitly, instead,
the rules used to generate APs implicitly ignore non-assignment statements in code. We
further partition the program by comparing similarity metrics of only variables used in a
specific pair of assertions at one time.

Juergens et al. discuss how the evolution of clones often leads to bugs in code [18]. There
is contention on this issue, Rahman et al. have found that clones are not inherently bad as
characterised and may often result in less buggy or easier to fix code [29]. The usefulness of
refactoring a clone is not always clear. Wang and Godfrey find that syntactic similarities
between clones in the Linux kernel often indicate deeper architectural commonality and
shared design patterns [41]. We identify such clones as good candidates for test refactoring.

However, Wang and Godfrey are also discuss the need for better contextual clone man-
agement techniques [40] providing [11] as an example of providing developers with con-
textual information within the development environment for developers to make more
informed decisions. In our tool, we attempt to provide more contextual information for de-
velopers to judge if a clone is suitable for retrofitting and removal. This is not always clear
from existing clone detection reports as suggested in c̃iteCordy:2003:CRP:851042.857051

40

6.3 Refactoring

The problem of discovering invariants for refactoring has been previously investigated for
non-test code by Kataoka et al. [20]. The authors used an invariant discovery tool and
reviewed suggested refactorings. Our tool provides similar assistance but focuses on tests,
which are simpler to understand than arbitrary code.

The use of static analysis to discover interfaces and constraints (similar in spirit to
potential refactorings) in object oriented code has been previously investigated; see repre-
sentative works by Ammons et al [2] and Whaley et al [43]). Alternatively, automatically-
discovered program facts have been leveraged for automatic verification in place of manually
written tests. Pradel and Gross use runtime traces to mine for specifications and reporting
bugs [28], while Jaygarl et al capture object instances at runtime for mutation testing [16].
Brun and Ernst also explored the possibility of finding errors in code via machine learn-
ing in [8] where they found interesting code properties and their violations, which were
indicative of developer error.

Kim and Rinard proposed an approach for property verification whereby the developer
explicitly defines the property to be tested and verified [21]. This is effective for new
development, but does not aid refactoring efforts without significant developer investment,
since their approach requires programs to be manually annotated with properties before
the properties can be tested.

The closest automated refactoring process for code clones was proposed by Balazinska
et al. in [3] Where they automatically refactored code with the java standard libraries
based on clone analysis.

6.4 Program Slicing

Program slicing was proposed by Weiser as a method for identifying minimal subsets of
a program that could replicate a chosen subset of the program’s behaviour [42]. Weiser
defined a program slice as “any subset of a program which preserves a specified projection
of its behavior.”—A slice is a subset of the code in a program, which can reproduce the
value contained in a chosen variable at a given location in code. The variable and point in
code are called the slicing criteria.

A slice can be of two types to answer two different questions about the code. A
backward slice answers the question—“What parts of code are required to correctly execute

41

the current statement?” and a forward slice answers the question—“What parts of code
are impacted by the presence of this statement?”

By Weiser’s definition, a slice generated by a program slicer should be code which can
be run to generate the exact value required for the variable in the slicing criteria. This is
useful for generating minimal working programs to replicate a given behaviour however,
the resultant code along with side effecting calls is much larger in scope.

Sridharan et al. claim that a smaller slice, containing only lines of code deemed inter-
esting in the given context is adequate for program analysis [35]. This approach to slicing
incomplete subsets of the program is referred to as thin slicing.

Slicing is used in testing but not usually in the context of test code analysis. Instead
slicing based approaches are popular for limiting data to present to developers. Aggarwal
et al. use slicing to aid debugging in [1]. Binkley surveys the use of program slicing in the
context of regression testing in [7]. Gallagher and Layman attempted to quantify if cloned
slices represent actual clones [14]. They did not find conclusive evidence for or against
their hypothesis. We believe that within the context of test code the positive aspects of
this approach outweigh the negative aspects. Surendran et al. detect clones in code using
a forward slicing approach in code. Their goal was to simplify test design for code which
is presently poorly tested [36].

Our approach does not involve slicing when generating assertion protocols; APs are
generated for all variables at every program point in code. However, the flow rules of our
dataflow analysis limit data collected in a manner that is similar to program slicing. Since
APs depend on assignment statements, they are only influenced by code along the use-
definition chains of each variable. Hence, the similarity computation is effectively relies on
slices along the use-definition chains of the passed parameters.

By selectively comparing APs, the similarity metric is only dependent on a slice of the
program used to generate that AP. When we use JUnit assertions and parameter variables
to generate our similarity metric, we create a thin, backward slice of the available APs and
only consider the APs of the parameters to the assertion rather than the APs of all local
variables within the program scope at that point.

As a result, while we do not explicitly use program slicing, the use of APs for clone
detection can effectively be transformed into a slicing based clone detection technique.

42

Chapter 7

Conclusions

In this thesis, we proposed a technique for automatically detecting clones in test code. The
approach uses Assertion Protocols containing variable state history. Assertion Protocols are
abstractions generated using dataflow analysis which record method calls which influenced
a variable’s state.

The next step is the computation of a similarity metric between APs to identify likely
clones using a graph-based technique to highlighting refactoring opportunities for develop-
ers or automated tools.

We use test assertions and the passed parameters as slicing criteria to select appro-
priate APs to compute a similarity score. Similar test assertions are then grouped and
consolidated to report clones at a test method.

Our system provides, as output, a list of test methods (organized into clone sets), along
with supporting facts. Developers can use our output to improve code quality in test suites.

We evaluated our approach across 10 open source systems and found that many tests
in the systems’ test suites are amenable to refactoring. We believe that our work enables
the broader use of advanced techniques for writing unit tests, leading to more robust and
more concise test suites.

43

APPENDICES

44

Appendix A

Data Flow Analysis Definition

Figure A.1 is the formal definition of the data flow analysis as implemented in Soot. It
operates on the Jimple intermediate representation where all non-static variables are con-
sidered local variables.

The analysis is defined using the following facts:

• DataFlow Direction: The order in which we analysis statements

• Lattice Definition: What facts do we store at each program point

• Initial Estimation: What do we know about the program when we encounter a new
artifact

• Entry Point Estimation: What do we know about the program when the analysis
begins

• Join Operation: What facts should we preserve when multiple control flows join

• Flow Equations: What facts are added when we process a statement in code

45

1 Conventions followed:

2 V × X denotes Cartesian product of V and X

3 P(X) denotes the powerset of X
4 V denotes the set of local variables in the method

5 AP denotes an assertion protocol

6

7 Flow Direction: Forward Flow

8 Lattice: P(P(AP)× V)
9 Lattice elements: P(AP)× V

10 Initial Estimation: ∅ × V
11 Entry Point Estimation: ∅ × V
12 Join: AP (v) = AP1(v) ∪AP2(v)
13 Flow Equations:

14 if x = y :

15 AP (x) = AP (y)
16 if x = y.foo(var1) :

17 AP (x) = AP (y).append(resolve(foo))
18 if x = Constant :

19 AP (x) = ∅.append(Type(constant))
20 if y.foo() :

21 AP (y) = AP (y).append(resolve(foo))
22 if x = staticMethFoo(var1) :

23 AP (x) = ∅.append(resolve(staticMethFoo))

Figure A.1: This is the formal definition of the data flow analysis as implemented in Soot.

46

Appendix B

Detailed Test Suite Information

System LOC Test Tests at Tests Methods
LOC Runtime Analyzed

Apache POI 85379 57536 1576 4743
Commons Collections 26495 29559 13006 2653
Google-Visualization 8027 9382 784 485
HSQLDB 160665 19136 629 1826
jDom 18916 15428 252 371
jFreeChart 93998 51710 2205 3556
jGrapht 11342 6225 146 297
jMeter 90504 14511 722 982
JodaTime 26881 51497 3688 4746
Weka 246828 13030 3535 1519
MEAN 76904 26801 2654 2118

Table B.1: Code size, test case count (as reported by JUnit) and analyzed test method
count.

47

Appendix C

Output Sample

48

1 Pattern followed:

2 Method_Name : Set< Similar_Assertions >

3 Clone Set:

4 org.joda.time.chrono.TestBuddhistChronology.void testEquality(): (org.joda.time.chrono.

TestBuddhistChronology.java:117) (org.joda.time.chrono.TestBuddhistChronology.java

:118) (org.joda.time.chrono.TestBuddhistChronology.java:116) (org.joda.time.chrono.

TestBuddhistChronology.java:119) (org.joda.time.chrono.TestBuddhistChronology.java

:115)

5 org.joda.time.chrono.TestCopticChronology.void testWithUTC(): (org.joda.time.chrono.

TestCopticChronology.java:126) (org.joda.time.chrono.TestCopticChronology.java:128)

(org.joda.time.chrono.TestCopticChronology.java:127) (org.joda.time.chrono.

TestCopticChronology.java:125)

6 org.joda.time.chrono.TestEthiopicChronology.void testWithZone(): (org.joda.time.chrono.

TestEthiopicChronology.java:137) (org.joda.time.chrono.TestEthiopicChronology.java

:132) (org.joda.time.chrono.TestEthiopicChronology.java:136) (org.joda.time.chrono.

TestEthiopicChronology.java:134) (org.joda.time.chrono.TestEthiopicChronology.java

:133) (org.joda.time.chrono.TestEthiopicChronology.java:135)

7 org.joda.time.chrono.TestGJChronology.void testEquality(): (org.joda.time.chrono.

TestGJChronology.java:166) (org.joda.time.chrono.TestGJChronology.java:164) (org.

joda.time.chrono.TestGJChronology.java:163) (org.joda.time.chrono.TestGJChronology.

java:167) (org.joda.time.chrono.TestGJChronology.java:165)

8

9

10

11

Figure C.1: Output sample from our tool running on JodaTime.

49

References

[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. An execution-
backtracking approach to debugging. IEEE Softw., 8(3):21–26, May 1991.

[2] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining specifications. In
Proceedings of the ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL), pages 4–16, 2002.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and Kostas Kontogiannis. Partial
redesign of java software systems based on clone analysis. In Reverse Engineering,
1999. Proceedings. Sixth Working Conference on, pages 326–336, 1999.

[4] Hamid Abdul Basit, Simon J. Puglisi, William F. Smyth, Andrew Turpin, and Stan
Jarzabek. Efficient token based clone detection with flexible tokenization. In The 6th
Joint Meeting on European software engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering: companion papers, ESEC-FSE
companion ’07, pages 513–516, New York, NY, USA, 2007. ACM.

[5] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In Proceedings of the International
Conference on Software Maintenance, ICSM ’98, pages 368–, Washington, DC, USA,
1998. IEEE Computer Society.

[6] Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java
Report, 3(7):37–50, 1998.

[7] David Binkley. The application of program slicing to regression testing. Information
and Software Technology, 40(1112):583 – 594, 1998.

[8] Y. Brun and M.D. Ernst. Finding latent code errors via machine learning over program
executions. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 480–490, 2004.

50

[9] Dustin Campbell and Mark Miller. Designing refactoring tools for developers. In
Proceedings of the Workshop on Refactoring Tools, pages 9:1–9:2, 2008.

[10] Neil Davey, Paul Barson, Simon Field, R Frank, and D Tansley. The development of a
software clone detector. International Journal of Applied Software Technology, 1995.

[11] Ekwa Duala-Ekoko and Martin P Robillard. Tracking code clones in evolving software.
In Software Engineering, 2007. ICSE 2007. 29th International Conference on, pages
158–167. IEEE, 2007.

[12] Gordon Fraser and Andreas Zeller. Generating parameterized unit tests. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA), pages
364–374, 2011.

[13] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones.
In Proceedings of the 30th international conference on Software engineering, ICSE ’08,
pages 321–330, New York, NY, USA, 2008. ACM.

[14] K. Gallagher and L. Layman. Are decomposition slices clones? In Program Compre-
hension, 2003. 11th IEEE International Workshop on, pages 251–256, 2003.

[15] Nils Göde. Evolution of type-1 clones. In Proc. of the 2009 Ninth IEEE Intl. Working
Conference on Source Code Analysis and Manipulation, SCAM ’09, Edmonton, AB,
Sept. 2009.

[16] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. OCAT: Object capture-
based automated testing. In Proceedings of the international symposium on Software
testing and analysis (ISSTA), pages 159–170, 2010.

[17] J. Howard Johnson. Identifying redundancy in source code using fingerprints. In
Proceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative
research: software engineering - Volume 1, CASCON ’93, pages 171–183. IBM Press,
1993.

[18] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do
code clones matter? In Proceedings of the International Conference on Software
Engineering (ICSE), pages 485–495, 2009.

[19] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code. IEEE Trans.
Softw. Eng., 28(7):654–670, July 2002.

51

[20] Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin. Automated support for
program refactoring using invariants. In Proceedings of the International Conference
on Software Maintenance (ICSM), pages 736 –743, 2001.

[21] D. Kim and M.C. Rinard. Verification of semantic commutativity conditions and in-
verse operations on linked data structures. In Proceedings of the SIGPLAN conference
on Programming language design and implementation (PLDI), pages 528–541, 2011.

[22] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In Proceedings of the 8th International Symposium on Static Analysis,
SAS ’01, pages 40–56, London, UK, UK, 2001. Springer-Verlag.

[23] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract
syntax suffix trees. In Proceedings of the 13th Working Conference on Reverse En-
gineering, WCRE ’06, pages 253–262, Washington, DC, USA, 2006. IEEE Computer
Society.

[24] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. The Soot framework
for Java program analysis: a retrospective. In Cetus Users and Compiler Infrastructure
Workshop, October 2011.

[25] Seunghak Lee and Iryoung Jeong. Sdd: high performance code clone detection system
for large scale source code. In Companion to the 20th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications, OOPSLA
’05, pages 140–141, New York, NY, USA, 2005. ACM.

[26] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: detection of software
plagiarism by program dependence graph analysis. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’06, pages 872–881, New York, NY, USA, 2006. ACM.

[27] E. Merlo, G. Antoniol, M. Di Penta, and V. F. Rollo. Linear complexity object-
oriented similarity for clone detection and software evolution analyses. In Proceedings
of the 20th IEEE International Conference on Software Maintenance, ICSM ’04, pages
412–416, Washington, DC, USA, 2004. IEEE Computer Society.

[28] Michael Pradel and Thomas R Gross. Leveraging test generation and specification
mining for automated bug detection without false positives. In In Proceedings of the
International Conference on Software Engineering (ICSE), pages 288–298, 2012.

52

[29] Foyzur Rahman, Christian Bird, and Premkumar Devanbu. Clones: what is that
smell? Empirical Softw. Engg., 17(4-5):503–530, August 2012.

[30] Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. How effective developers
investigate source code: An exploratory study. Transactions on Software Engineering
(TSE), 30(12):889–903, December 2004.

[31] Chanchal K. Roy and James R. Cordy. Nicad: Accurate detection of near-miss inten-
tional clones using flexible pretty-printing and code normalization. In Proceedings of
the 2008 The 16th IEEE International Conference on Program Comprehension, ICPC
’08, pages 172–181, Washington, DC, USA, 2008. IEEE Computer Society.

[32] Per Runeson. A survey of unit testing practices. Software, IEEE, 23(4):22–29, 2006.

[33] David Saff. Theory-infected: or how I learned to stop worrying and love universal
quantification. In Companion to the SIGPLAN conference on Object-oriented pro-
gramming systems and applications companion (OOPSLA), pages 846–847, 2007.

[34] David Saff, Marat Boshernitsan, and Michael D. Ernst. Theories in practice: Easy-to-
write specifications that catch bugs. Technical Report MIT-CSAIL-TR-2008-002, MIT
Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, January 14,
2008.

[35] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slicing. In Proceed-
ings of the 2007 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’07, pages 112–122, New York, NY, USA, 2007. ACM.

[36] Anupama Surendran, Philip Samuel, and K Poulose Jacob. Code clones in pro-
gram test sequence identification. In Information and Communication Technologies
(WICT), 2011 World Congress on, pages 1050–1055. IEEE, 2011.

[37] Suresh Thummalapenta, Madhuri Marri, Tao Xie, Nikolai Tillmann, and Jonathan
de Halleux. Retrofitting unit tests for parameterized unit testing. In Proceedings In-
ternational Conference on Fundamental Approaches to Software Engineering (FASE),
pages 294–309, March-April 2011.

[38] Nikolai Tillmann and Wolfram Schulte. Parameterized unit tests. In Proceedings
of the European software engineering conference held jointly with SIGSOFT interna-
tional symposium on Foundations of software engineering (ESEC/FSE), pages 253–
262, 2005.

53

[39] Raja Vallee-Rai and Laurie J Hendren. Jimple: Simplifying java bytecode for analyses
and transformations. 1998.

[40] Wei Wang and Michael W Godfrey. We have all of the clones, now what? toward in-
tegrating clone analysis into software quality assessment. In Software Clones (IWSC),
2012 6th International Workshop on, pages 88–89. IEEE, 2012.

[41] Wei Wang and M.W. Godfrey. A study of cloning in the linux scsi drivers. In Source
Code Analysis and Manipulation (SCAM), 2011 11th IEEE International Working
Conference on, pages 95–104, 2011.

[42] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, pages 439–449. IEEE Press, 1981.

[43] John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction of object-
oriented component interfaces. In Proceedings of the SIGSOFT international sympo-
sium on Software testing and analysis (ISSTA), pages 218–228, 2002.

[44] S. Zhang, D. Saff, Y. Bu, and M.D. Ernst. Combined static and dynamic automated
test generation. 2011.

54

	List of Tables
	List of Figures
	Introduction
	Background and Definitions
	Unit Testing in Java
	Soot and Static Analysis
	Summary

	Clone Detection Approach
	Assertion Protocol Generation
	Similarity Analysis
	Result Consolidation
	Final Display
	Conclusion of running example
	Summary

	Results of Empirical Study
	Experimental Results
	General Trends
	Developer impressions
	JodaTime
	Apache Commons-Collections
	JFreeChart
	HSQLDB
	JGraphT
	jDom
	Weka

	Summary

	Discussion
	Scope of Our Analysis
	Retrofitting vs. Early Optimization
	Comparison with Clone Detectors
	Result Quality
	Threats to Validity
	Limitations
	Future work
	Summary

	Related Work
	Alternative Testing Techniques
	Code Clone Detection
	Refactoring
	Program Slicing

	Conclusions
	APPENDICES
	Data Flow Analysis Definition
	Detailed Test Suite Information
	Output Sample
	References

