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Abstract 

Continuous scaling of the transistor size and reduction of the operating voltage have led to a 

significant performance improvement of integrated circuits. However, the vulnerability of the scaled 

circuits to transient data upsets or soft errors, which are caused by alpha particles and cosmic 

neutrons, has emerged as a major reliability concern. In this thesis, we have investigated the effects of 

soft errors in combinational circuits and proposed soft error detection techniques for high speed 

adders. In particular, we have proposed an area-efficient 64-bit soft error robust logarithmic adder 

(SRA).  The adder employs the carry merge Sklansky adder architecture in which carries are 

generated every 4 bits. Since the particle-induced transient, which is often referred to as a single event 

transient (SET) typically lasts for 100~200 ps, the adder uses time redundancy by sampling the sum 

outputs twice. The sampling instances have been set at 110 ps apart. In contrast to the traditional time 

redundancy, which requires two clock cycles to generate a given output, the SRA generates an output 

in a single clock cycle. The sampled sum outputs are compared using a 64-bit XOR tree to detect any 

possible error. An energy efficient 4-input transmission gate based XOR logic is implemented to 

reduce the delay and the power in this case. The pseudo-static logic (PSL), which has the ability to 

recover from a particle induced transient, is used in the adder implementation. In comparison with the 

space redundant approach which requires hardware duplication for error detection, the SRA is 50% 

more area efficient. The proposed SRA is simulated for different operands with errors inserted at 

different nodes at the inputs, the carry merge tree, and the sum generation circuit. The simulation 

vectors are carefully chosen such that the SET is not masked by error masking mechanisms, which 

are inherently present in combinational circuits. Simulation results show that the proposed SRA is 

capable of detecting 77% of the errors. The undetected errors primarily result when the SET causes an 

even number of errors and when errors occur outside the sampling window. 
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Chapter 1 
Introduction 

This chapter will provide an overview of various failure mechanisms, 

discuss the source and physical causes of soft errors and examine the effects 

of soft errors in integrated circuits. At the end, the chapter is summarized 

and thesis organization is provided. 

1.1 Failure mechanisms 

The exponential growth in the number of transistors on a chip has resulted in new obstacles. 

Technology scaling has resulted in more permanent failures of devices and interconnects, and more 

temporary failures such as errors due to transients  in the signaling and storage of logic values 

[Kahng03]. Permanent failures occur when there is a physical imperfection in the chip. These 

imperfections may be the result of manufacturing or they may occur during the lifetime of the chip 

from effects such as electromigration or oxide breakdown.  Temporary failures, also called soft errors, 

are errors caused by cosmic rays or alpha particles. 

1.1.1 Permanent failures 

Electromigration refers to the migration or displacement of metal atoms due to the impact of moving 

electrons. A metal line will fail or form voids or may form extrusions that project from one of the 

surfaces if sufficient current density and high temperature is applied. In this phenomenon, the 

electrons transfer enough momentum to the metal atoms forcing the atoms out of their lattice site and 

then move them via diffusion. For the failure process to begin the metal needs an imperfection. The 

metal has unavoidable vacancies and irregular grain boundary patterns that can initiate 

electromigration. Eventually the failure is in the form of an open circuit or a defective bridge formed 

by extrusion [Segura04]. 

The reliability of gate oxide is important in scaled down technologies. The purpose of the oxide is 

to isolate the gate from the substrate. With shrinking CMOS technology, thickness of the gate oxide is 

reduced to increase the switching speed. High-k dielectric materials are used to reduce the leakage 

when the transistor is off. Two main types of oxide failures are oxide wear out and hot carrier 

injection. Thin oxides may wear out because of electron traps at the oxide interface. With scaling, 

power supply and operating voltages have not scaled accordingly. For an electron to become hot, an 

electric field of 104V/cm is necessary. This condition is easily met in devices with lengths in the sub-
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100 nm regime. An increased electric field provide enough energy to the electron to tunnel into the 

gate oxide and cause a threshold voltage (VT) shift leading to reliability issues. PMOS transistor oxide 

reliability issues are called negative bias temperature instability (NBTI). When the PMOS is 

negatively biased at elevated temperature, it results in a VT shift causing problems similar to hot 

carrier effects. 

1.1.2 Temporary failures/Soft errors 

When a high energy particle (e.g., neutron, alpha particle, heavy ion) strikes a silicon substrate, it 

results in an ionization event. Such an event that can upset a data state is dependent upon several 

factors such as the energy of the incident particle, the location of the strike, the potential of the node, 

and the amount of charge collected. Such an event is referred to as a single event transient (SET).  An 

SET leading to a false logic evaluation in a combinational circuit which is latched or an SET resulting 

in a bit flip in a memory cell, register, or flip-flop is called a soft error. The error is ‘soft’ because if 

new data is written to the bit, it will be stored correctly. The term soft error is also called a single 

event upset (SEU). The rate at which soft errors occur is called the soft error rate (SER) 

[Baumann01], [Baumann05b]. The unit for measuring the SER and other reliability mechanisms is 

the failure in time (FIT). A FIT is equivalent to one failure in 109 device hours. Ever increasing 

demand for high density and low power have resulted in decreasing transistor size and smaller node 

voltages. If uncorrected, failures due to soft errors can be higher than all the reliability mechanisms 

combined [Baumann05a].   With scaling, the node capacitance has decreased. In order to keep the 

electric field constant, operating voltage is scaled as well. Thus, the total charge required to toggle a 

node from a particle induced transient decreases [Shivakumar02]. A recent work predicted that the 

SER per chip of logic circuits will increase nine orders of magnitude from 1992 to 2011, and the 

impact of SER on combinational logic will be comparable to that of unprotected memory elements 

[Shivakumar02]. 

In the following section the main sources of soft errors will be described. 

1.2 Soft Error Sources 

The main sources of soft errors are: alpha particles, high energy cosmic neutrons, and low energy 

neutrons.  Electromagnetic interference can also cause soft errors by producing alpha-particles. 
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1.2.1 Alpha particles 

Alpha particles are emitted from packaging materials and the interaction of thermal neutrons with the 

boron present in p-type semiconductors. An alpha particle, composed of two neutrons and two 

protons, is a doubly ionized helium atom emitted from the nuclear decay of unstable isotopes. The 

most common source of alpha particles is from naturally occurring 238U, 235U, and 232Th. These 

impurities emit alpha particles over a range of energies from 4 to 9 Mev. 

 

Figure 1.1: Charge generation and collection by heavy ions. Adapted from [Baumann05b]. 

The interaction of an alpha particle with the silicon substrate is electronic in nature. A particle 

travelling through the substrate creates electron hole pairs. Figure 1.1 shows the charge generation 

and the collection phase in a reverse biased junction. Electrons drift to higher potential of n-diffusion 

and the holes drift to the lower potential of p-diffusion. This sudden burst of charge collection results 

in a current pulse which can upset the data state. The higher the energy of the alpha particle, the 

farther it travels into the substrate and more number of electron hole pairs it will generate. 

Consequently, the higher will be the peak of current pulse. For silicon, the range of a 10MeV particle 

is <100µm [Baumann05b].  In lead solders, 210Pb is chemically inseparable from 208Pb. 210Pb does not 

emit an alpha particle when it decays, however, due to short half life of 210Pb, growth of 212Po from 
210Pb  210Bi  210Po  212Po is possible which has a very high alpha particle emission rate. The 

semiconductor manufacturing process and the packaging materials are purified to a point of 

diminishing returns. 

1.2.2 High energy neutrons 

Primary cosmic rays are thought to be of galactic origin. Due to the interaction of cosmic rays with 

the earth’s atmosphere, cascades of secondary particles are produced. The secondary particles then 

create tertiary particles and so on. About 1% of this flux reaches sea level. Neutrons constitutes 
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majority of the flux and they do not cause ionization in silicon by itself. They interact with chip 

materials elastically and inelastically. Inelastic reaction causes the silicon atom to break into lighter 

ions with additional particles (protons, and neutrons, and alpha particles). The energy transfer in this 

case is much higher as compared to an alpha particle; giving a typical burst energy of 15 MeV. A few 

soft error effects such as multi-bit upsets (MBUs) and single event latch-up (SEL) can only be 

induced by higher energy neutrons. Unlike alpha particles, neutron flux cannot be reduced by process 

modifications. However, concrete has been shown to reduce the radiation rate by 1.4x per foot of 

concrete thickness [Baumann05b]. 

1.2.3 Low energy neutrons 

Another source of ionizing particle is the interaction of low energy (< 1.5MeV) neutrons with boron. 

Boron is extensively used as a p-type dopant and is also used as boron doped phosphosilicate glass 

(BPSG) dielectric layers. Figure 1.2 shows Boron fission by a neutron. Boron is composed of two 

isotopes: 11B (80.1% abundance) and 10B (19.9% abundance) [Baumann05b]. 

 

 Bହ
ଵ଴ ൅ n଴

ଵ ՜ Liଷ
଻ ൅ Heଶ

ସ  (1.1)

 

 10B is unstable when exposed to neutrons and it breaks into a lithium ion and an alpha particle (1.1). 

The alpha particle and the lithium ion are emitted in opposite directions to conserve momentum.  

 

Figure 1.2: Boron Fission by neutron. Adapted from [Web01]. 
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The emitted alpha particle and the lithium have enough energy to induce soft errors in a similar 

fashion as explained earlier. The SER due to boron activation is mitigated by replacement of BPSG in 

0.25µm and beyond processes. 

1.2.4 Electromagnetic interference 

Electromagnetic interference (EMI) can result in soft errors which are caused by production of α-

particles. [Wilkinson05] has shown cancer radiotherapy equipment as a source of soft errors in nearby 

electronics through interaction of thermal neutrons with boron. The boron component here is BPSG 

used as dielectric material in earlier CMOS fabrication processes. The α-particles that interact with 

silicon are capable of producing soft errors as explained earlier. 

Table 1-1 : Soft Errors for Different Exposure Conditions and Durations [Wilkinson05] 

Exposure Condition 
Device 

Minutes
Errors 

50cm, no shielding 30 3 

50cm, EMI shielding 10 1 

50cm, Thermal neutron shielding 20 0 

10m, outside treatment room 20 0 

 

For different exposure conditions, Table 1-1 summarizes the effect of EMI on soft errors. As can be 

seen, with proper shielding it can be eliminated. 

 

1.3 Soft error in memories 

Increased memory density scaling has made memories more vulnerable to single event transients. An 

SEU stays in the memory unless the bit is written again or is corrected by some other technique. 

1.3.1 DRAMs 

The normal effect of a transient is to deplete the charge from the cell’s storage capacitor. Initially, 

DRAMs used to store the data on a planar capacitor which had a large area and were very sensitive to 

an SEU. With the development of 3-D capacitor the critical charge of the node has increased 

significantly by decreasing the collection efficiency. The collection efficiency decreases with scaling 

with the decrease in volume of the junction. However, the cell capacitance has remained constant as it 
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is dominated by the 3-D capacitor cell [Baumann05b].  The result is, the SER of a single bit has 

decreased, but the system SER is almost constant as shown in Figure 1.3. 

 

 

Figure 1.3: DRAM single bit SER and system SER. Adapted from [Baumann05b]. 

1.3.2 SRAMs 

SRAMs store data on the active nodes of a cross coupled inverter pair. A particle strike may flip the 

state of a memory cell (0 to 1 or 1 to 0). This flip is temporary and the cell can be written back with 

the correct data in a write operation. The sensitive regions are the driver and the load transistors, 

which are off. The reverse biased junction of an OFF transistor is sensitive to a particle strike.  

 

Figure 1.4: A typical SRAM cell. 
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In Figure 1.4 the drain terminal of transistor M3 is sensitive to 1 to 0 transitions and the drain 

terminal of transistor M2 is vulnerable to 0 to 1 transitions. The minimum charge required to flip the 

cell is called critical charge (Qcrit). Early SRAMs were more robust against the SER because of higher 

operating voltages. With scaling, SRAM area is minimized to reduced capacitance, leakage, and cell 

area and the operating voltage is reduced to minimize power. Thus, increased memory density has led 

to increased SER with each generation of scaling. 

1.4 Soft error in logic circuits 

An upset in the state of a logic circuit will not affect the computation unless it is latched into a 

memory element. Thus, a soft error in a combinational circuit is defined as a transient error which 

will be stored in a memory element [Shivakumar02]. However, unlike in memory circuits there are 

several phenomena in logic circuits which can mask soft errors. 

1.4.1 Logical Masking 

An SEU at a node in a combinational circuit will not affect the output of the circuit when its result is 

determined by another input. The other input is called the controlling input. This can be better 

explained with the help of a NAND gate. 

1
0

Controlling 
Input

A B Z
0 0 1
0 1 1
1 0 1
1 1 0  

Figure 1.5: Logical masking in NAND gate. 

In Figure 1.5 an error affects the input B of the NAND gate while input A is at logic 0. Thus, the error 

does not affect the output Z. In such cases, the error is said to be logically masked. 



 

 8 

1.4.2 Electrical Masking 

 

Figure 1.6: Electrical masking in inverter. Adapted from [Karnik04]. 

The particle strike may be attenuated by the logic gates at subsequent stages due to electrical 

properties of the gate. This phenomenon is called electrical masking. Figure 1.6 shows the pulse 

attenuation by a chain of inverters. 

 

1.4.3 Latching Window Masking 

The period during which the latch is transparent to the data is called the latching window.  The pulse 

resulting from the particle strike may not reach a latch at the clock transition such that it is not stored 

in the latch. This effect is called latching window masking ( Figure 1.7). The period during which the 

latch is sensitive to the pulse is called the window of vulnerability [Seifert04]. 

 

Figure 1.7: Latching window masking 

These masking effects lower the soft error rate in combinational logic. Nevertheless, with decreasing 

feature sizes and increasing in the number of pipeline stages, these masking effects diminish 

considerably. Electrical masking could be reduced by device scaling because smaller transistors are 

faster and thus may have less attenuation effect on the pulse. Also, at higher clock rates, latches will 

cycle more frequently, which may reduce the latching window masking.  
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1.5 Scaling and Soft Errors 

Soft errors were first discovered in DRAMs, and after many generations it is currently a more robust 

device because of various enhancements. It can be seen that as the technology scales (Vdd goes down 

and memory density goes up) the SER for DRAMs goes down as shown in Figure 1.8.  

 

Figure 1.8: DRAM SER and scaling. Adapted from [Web01]. 

However, SRAMs are becoming more susceptible to soft errors as technology scales. This is because 

with scaling, the node capacitance and supply voltage are decreasing.   

 

Figure 1.9: SER of a constant area SRAM array. Adapted from [Shivakumar02]. 
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The sensitivity of SRAMs is determined by the critical charge storage and collection efficiency. The 

collection efficiency is determined by the process while the critical charge depends on both the 

process and the circuit design. In deep submicron technologies, both critical charge and collection 

efficiency decrease with scaling [Hazucha00]. Figure 1.9 shows the SER for a constant area SRAM 

array. The area dedicated to memory is expected to increase by 70% in the next decade [Semico07]. 

Thus, the overall SER for SRAMs increases with scaling. With decreasing feature size, the critical 

charge of the node decreases making logic circuits more susceptible to the SER. 

1.6 Motivation 

Addition is a basic operation in an arithmetic logic unit (ALU). An error effect in an adder will only 

be known after several clock cycles and correction at that time is practically not feasible. With 

technology scaling, the critical charge required to upset a logic level in a combinational circuit has 

been reduced.  In order to have a reliable system which is immune to soft errors some method needs 

to be employed in terms of space or time redundancy or a combination of both [Nicolaidis99], 

[Anghel00]. Space redundancy implies running the same inputs in parallel through two sets of 

hardware. Sometimes dual rail logic is used for this purpose. The outputs are then latched and 

compared through a parity generation circuit. Space redundancy generally results in 100% hardware 

overhead. However, some techniques are proposed in literature which save area by some extent as 

discussed later in the thesis. Another methodology for reliable system design is time redundancy. In 

this approach, the same output is sampled at two different time intervals. The results are latched and 

then compared with an XOR tree. A mismatch between two samples indicates an error. In order to 

have a comparison either of the two samples should have a correct value. Hence, the input needs to be 

evaluated again for the second sample. For example, in dynamic circuits, to evaluate again a 

precharge cycle is needed. Hence, the dynamic circuit implementing time redundancy requires two 

clock cycles. 

In the proposed research, time redundancy is explored to design a high speed 64-bit soft error 

robust logarithmic adder using a single precharge and evaluate cycle. The aim of this work is to 

explore circuit techniques that can be applied to design a reliable adder. In this thesis, pseudo-static 

logic style is used to implement the compound domino logic. The pseudo-static logic is capable of 

evaluating twice without an extra pre-charge. This circuit is realized in 90nm CMOS technology. 
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1.7 Summary and Thesis Organization 

In this chapter basic failure mechanisms in integrated circuits have been discussed. The main focus 

area from reliability of circuits and systems perspective is the vulnerability of the integrated circuits 

to soft errors. Soft errors were earlier believed to be issues only in memories. However, with scaling 

technology and shrinking transistor size, the critical charge required to upset a logic node has 

reduced. Soft errors in combinational circuits need to be addressed for reliable operation of integrated 

circuits. Different sources of soft errors are analyzed for memories and logic circuits. Major thesis 

contributions are: 

• Proposed pseudo-static logic as a choice for time redundant circuit design. 

• Time redundancy is implemented for the first time to design a soft error robust adder. 

 

The thesis is organized as follows: in Chapter 2, various adder architectures are discussed. Existing 

soft adder robust adders are also discussed. In Chapter 3, design of the proposed soft error robust 

adder is presented. Circuit techniques are compared for design of a robust adder and the components 

of the design are explained. In Chapter 4, simulation results of the proposed adder are critically 

analyzed in terms of energy and delay. In Chapter 5, conclusion is provided with the possibility of 

future work. 
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Chapter 2 
Adder Architectures 

In this chapter, essential background information of the adder will be 

provided; various adder architectures will be discussed and compared. 

Known soft error robust architectures will be presented and analyzed. And 

finally, the chapter is summarized. 

Addition has always been a great subject of research with the focus being architectures which are 

smaller, faster and energy efficient. There are a variety of architectures available which are good in 

optimizing one or the other parameter. Addition forms the basis of any computer architecture; 

performance and reliability of the adder can dominate the performance of the architecture. Much 

attention has been paid to minimize the chip area and to optimize the speed of operation. However, 

with shrinking transistor size the computational unit has become more susceptible to SEUs.  

2.1 Basic Full Adders 

Consider a two bit adder with carry input such that A, B, Ci are the inputs which generates a sum S 

and carry out Co. The truth table and the expression are as below: 

Table 2-1 : Truth Table for Adder. 

A   B   Ci   S   Co   Carry Status 
0   0   0   0   0   Delete 
0   0   1   1   0   Delete 
0   1   0   1   0   Propagate 
0   1   1   0   1   Propagate 
1   0   0   1   0   Propagate 
1   0   1   0   1   Propagate 
1   1   0   0   1   Generate/Propagate 
1   1   1   1   1   Generate/Propagate 

 

ࡿ  ൌ ࡭ ْ ࡮ ْ ࢏࡯  

࢕࡯ ൌ

(2.1)

 

 
࡮࡭ ൅ ࢏࡯࡮ ൅ (2.2) ࢏࡯࡭

If propagate (P) and generate (G) signals are defined such that  

࢏ࡼ  ൌ ࢏࡭ ൅ (2.3) ࢏࡮
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࢏ࡳ  ൌ ࢏࡭ (2.4) ࢏࡮

 

The generate signal indicates whether a carry is generated (0 or 1) at the ith bit location and the 

propagate signal indicates whether an incoming carry from (i-1)th bit is propagated to ith  bit. In terms 

of full adder, logic is given as: 

࢏࡯  ൌ ࢏ࡳ ൅ ૚ି࢏࡯࢏ࡼ  (2.5)

and  

࢏ࡿ  ൌ ࢏ࡼ ْ ૚ି࢏࡯  (2.6)

 

where ܥ௜ and  ௜ܵ represents the carry and the sum results for ith bit in an n-bit adder.  It is important to 

mention that Pi as defined in (2.3) is only valid for carry calculation. The propagate signal for the sum 

calculation must be implemented as  

࢏ࡼ  ൌ ࢏࡭ ْ (2.7) ࢏࡮

 

In the present day architectures, two intermediate sum signals are calculated anticipating an incoming 

carry; ܥ௜ିଵ ൌ 0   and ܥ௜ିଵ ൌ 1 and a multiplexer is used to select the appropriate sum, once the actual 

carry becomes available. This has resulted in some speed improvements. Some of the architectures 

are discussed in the following sections. 

2.1.1 Ripple Carry Adder 

A ripple carry adder for an n-bit operand can be constructed by cascading n-full adders as shown in 

Figure 2.1. At ith bit location the carry output and the sum are generated by using carry from (i-1) 

stage. In this case, the carry ripples from the least significant bit to most significant bit. Thus, the 

adder is called ripple carry adder. The delay is a function of the number of stages. The propagation 

delay of this network is also a function of the input vector. For an n-bit adder, the worst case delay 

will occur when the carry has to ripple from the least significant bit to the most significant bit and is 

given by (2.8) 

 

௣ݐ  ൌ ሺ݊ െ 1ሻݐ௖௔௥௥௬ ൅ ௦௨௠ (2.8)ݐ
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where ݐ௖௔௥௥௬ is the carry propagation delay from the input to the output and ݐ௦௨௠ is the propagation 

delay of the sum block. The delay of ripple carry adder is a linear function of the number of bits. 

Thus, as the number of bits increases the delay increases as well. 

 

 

Figure 2.1: Four bit ripple carry adder. Adapted from [Rabaey03]. 

2.1.2 Carry Select Adder 

 

Figure 2.2: 4-bit carry select adder. Adapted from [Rabaey03]. 

The carry select adder anticipates the outcome of the carry based upon possible values of the input 

carry and evaluates the results for both the possibilities in advance.  Once the real value is known an 

appropriate result is selected using a multiplexer. As shown in the Figure 2.2 the carry output from 

the previous block controls the multiplexer that selects the appropriate carry. If the number of bits are 
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N, we can divide all the bits into N/M groups with M bits in each, the worst case propagation delay is 

given by (2.9) 

࢖࢚  ൌ ࢖࢛࢚ࢋ࢙࢚ ൅ ࢟࢘࢘ࢇࢉ࢚ࡹ ൅ ൬
ࡺ
ࡹ

൰ ࢙࢙ࢇ࢖࢟࢈࢚ ൅ (2.9) ࢓࢛࢙࢚

2.1.3 Carry Skip Adder 

In a ripple carry adder, the longest path is from the carry in to the carry out. Suppose the input vector 

is such that all propagate signals is logic 1 then the ripple process can be bypassed using additional 

circuit controlled by propagate logic.  The structure of the carry skip adder (also called carry bypass 

adder) is shown in Figure 2.3. 

 

 

Figure 2.3: Carry skip adder. Adapted from [Rabaey03]. 

The worst case delay of N-bit inputs such that it is divided into N/M groups of M bits each is given by 

(2.10). 

࢖࢚  ൌ ࢖࢛࢚ࢋ࢙࢚ ൅ ࢟࢘࢘ࢇࢉ࢚ࡹ ൅ ൬
ࡺ
ࡹ

െ ૚൰ ࢙࢙ࢇ࢖࢟࢈࢚ ൅ ሺࡹ െ ૚ሻ࢚࢟࢘࢘ࢇࢉ ൅ (2.10) ࢓࢛࢙࢚

 

where ݐ௦௘௧௨௣ is the time to create propagate and generate signals through one block, ݐ௖௔௥௥௬ is the 

propagation delay through one block, ݐ௕௬௣௔௦௦ is the delay through multiplexer of single stage and 

 .௦௨௠ is the time to generate the sum of final stageݐ

2.1.4 Carry Look-ahead Adders 

Fast adders look-ahead to predict the carry out in an N-bit adder.  The look-ahead adders remove the 

ripple carry effect by generating a carry for each bit simultaneously. The delay to add two N bit 
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numbers no longer depends upon N, but on the logarithm of N, which is smaller. Here, all the 

required carry outputs are computed in parallel based on propagate and the generate signals which are 

given by (2.11). The dependency between ܥ௜  and ܥ௜ିଵ  can be eliminated by expanding the equation. 

 

࢏,࢕࡯  ൌ ࢏ࡳ ൅ ࢏ࡼ ൬ି࢏ࡳ૚ ൅ ૚ି࢏ࡼ ቀ… . ൅ࡼ૚൫ࡳ૙ ൅ ૙൯ቁ൰ (2.11),࢏࡯૙ࡼ

 

Where ܥ௜,଴ is typically 0. It is clear from (2.11) that the carry at intermediate level can be computed 

independently. As N grows, the carries require gates with larger fan-ins, which will slow down the 

adder computation. 

2.1.5 Hybrid Adder Architectures 

Tree adders are look-ahead adders with multilevel look-ahead. The main components of a tree adder 

are the number of logic stages, the number of logic gates, the maximum fanout on each gate, and the 

number of wiring tracks between each stage. An ideal tree adder would have ݈݃݋ଶܰ level of logic 

with fanout of 2 at each stage and 1 wiring track between each level.  Based on the work done by 

[Harris03] and [Patil07] the carry propagation logic has four parameters: 

1. Radix (R): In tree adders, R is defined as the average number of bits combined at each 

logic stage of carry propagation logic (CPL). In a linear carry-skip or carry select adders, R 

refers to the average number of bits combined per stage to generate a block propagate-

generate term. 

2. Logic Depth (L): L indicates the total number of stages in the CPL, and is at least ݈݃݋ଶܰ 

for an N-bit adder. It is important to note that the number of stages in the adder can be 

more than L. 

3. Fanout (F): F represent the maximum logical branching seen by any stage in the CPL. 

4. Wiring Track (T): T measures the maximum number of wires running across the bit pitch 

between any successive levels of the CPL. 

The carry select adder generates the sum based on an input carry of 1 and 0. When the tree adder is 

combined with a carry select adder, it is called a hybrid adder. Hybrid adders select the correct sum 

which is computed in parallel with the carry merge tree based on the incoming carry. The timing of 

signals is an important consideration in this case such that the sum and the incoming carry are 

available at the same time. 
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2.2 Comparison of Adder Architectures 

For the carry generation, R, L, T, and F are interdependent. The Brent-Kung tree [Brent82] minimizes 

F. The Sklansky [Sklansky60] tree reduces L to a minimum at the expense of F.  The Kogge-Stone 

tree [Kogge73] minimizes both L and F at the cost of long wiring tracks i.e. T. The tree has more 

propagate generate (PG) cells which will increase power consumption. The Kogge-Stone is still 

widely used for high performance 32-bit and 64-bit adders [Weste05]. The Han-Carlson Tree [Han87] 

is a hybrid between Kogge Stone and Brent Kung. It performs Kogge Stone for the odd number of 

bits and then uses an additional stage to evaluate carries at the even bits reducing T.  The Knowles 

tree [Knowles01] is a network between Kogge-Stone and Sklansky. It reduces T by increasing F with 

Kogge Stone as the reference. The Ladner-Fisher [Ladner80] tree is network between Sklansky and 

Brent-Kung. It computes prefixes at odd numbered bits and uses an additional stage to calculate even 

bits.  A modification of Kogge Stone is a 32-bit sparse-tree adder [Mathew03] which is divided into 

critical and non-critical sections. Instead of generating carry for each bit (C0, C1, C2 and so on), the 

sparse tree adder generates carries every fourth bit (i.e., C0, C3, C7 and so on). As a result, the critical 

path is reduced to a pruned carry merge tree that consists of a PG generator followed by five stage 

carry-merge logic for 32-bit adder.  This approach reduces both F and T significantly. 

 

2.3 Existing Soft Error Robust Adders 

Parity based error detection is suggested [Gaisler97] to detect SEUs in microprocessors. This 

observation is based on heavy ion testing of a 32-bit SPARC compatible processor for space 

application. Duplication with comparison and triple modular redundancy (TMR) is well known for 

single error detection. [Mesquita07] proposed a TMR adder for FPGA devices using a carry-select 

adder. As explained in section 2.1.2  such a scheme performs two additions on the same numbers 

assuming an incoming carry of 1 and 0.  TMR requires three inputs of the block that should be 

protected. These three inputs are then connected to a voter circuit which by majority election gives 

the correct output. It is obvious that this idea has an overhead of 200% in terms of area and will affect 

the power (Figure 2.4). 
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Figure 2.4: Carry select adder with TMR. Adapted from [Mesquita07]. 

  [Mesquita07] reduced the overhead by suggesting an alternative CSA by using the same adder with 

an inverted carry input. It is called re-computing with inverted carry (RIC). This concept works well 

assuming the incoming carry is error free so that it selects the correct input at the multiplexer.  

In the current trends, where 64 bit adders are the norm, the carry merge tree is huge as compared to 

the sum circuit, and soft errors originating in the carry merge tree will select the wrong sum in the 

CSA. The TMR will not be able to detect this. Secondly, if there is an SET event in the voter circuit 

itself, it will result in a spurious output which the current design will not be able to detect.  

In another theoretical work [Townsend03b], a1-out-of-3 coding scheme is presented as a possible 

method of detecting errors in adder computation. The valid code words are {100,010,001}, where 1ത is 

represented by the code word 100, 0 is represented by the code word 010, and 1 is represented by the 
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code word 001. For example, to add +4 and -2, the operands can be represented in decimal, 2’s 

complement, and 1-out-of-3 encoding as: 

  

Addend +4    0100   010 001 010 010 

Augend -2     1110   100 001 001 010 

 

The block diagram of this method is shown in Figure 2.5.  

 

Figure 2.5: Block diagram for addition with encoding. Adapted from [Townsend03b]. 

A 1-out-of-3 checker is required to detect errors in the code words. If an error occurs then there is 

either more than one 1 or less than one 1 in the code word. The author was unable to find a hardware 

implementation of this scheme and believes there are three major issues. One, encoding and decoding 

is done in-line with adder computation which will result in significant delay. Only simulation results 

or a silicon implementation will justify weather the delay is competitive compared to time redundant 

or space redundant approaches discussed earlier. Second, operands are stored in flip flops and any 

SEU event affecting the operand will produce false encoding, which will transport erroneous 

computation. Third, the adder is a part of an arithmetic logic unit (ALU), and the implementation of 

such codes will result in increased complexity and considerable area overhead. 

The carry checking/parity prediction adder presented by [Nicolaidis03] has laid out some goals 

which such a circuit should meet in order to be efficient. 

1. It should be totally self checking. 

2. It requires low-hardware overhead. 

3. It has a compact checker. 

4. It can be combined with parity checked datapaths and memories without using code 

translators. 
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Further, three schemes are proposed by [Nicolaidis03] which will result in low hardware cost. 

Figure 2.6 (a) shows the block diagram for this case. The sum output of this adder is given by 

Equation (1) [Nicolaidis03] and is also  for true at

࢓࢛࢙ࡼ ൌ ෍ ࢏ࡿ

૚ି࢔

ൌ ෍ሺ

[M hew07]. 

 

ୀ૙࢏

࢏࡭ ْ ࢏࡮ ْ ૚ሻି࢏࡯
૚ି࢔

 
ୀ૙࢏

ൌ ෍

 

 
࢏࡭

૙

෍ ࢏࡮
ୀ૙࢏

ْ
ୀ૙࢏

ൌ ࡭ࡼ ْ ࡮ࡼ ْ  ࢟࢘࢘ࢇ࡯ࡼ

૚ି࢔

ୀ࢏

ْ
૚ି࢔

෍ ૚ି࢏࡯

૚ି࢔

  

 (2.12)

 

 

Figure 2.6 : Block diagrams: (a) [Nicolaidis03] and (b) [Mathew07] 
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Where  ࢏࡮ , ࢏࡭  are operands and ࢏ࡿ is the sum for ith bit. ࡮ࡼ ,࡭ࡼ are the input parities. ࢓࢛࢙ࡼ ݅s the 

output sum parity  and  ࢟࢘࢘ࢇࢉࡼ  is the carry parity. When the sum is available at the end of the cycle, 

its parity can be computed by an XOR tree.  

 

Figure 2.7: Adder bit slice. Adapted from [Nicolaidis03]. 

A mismatch between the predicted sum parity and the computed sum parity implies there is an error. 

If the same circuit is used to generate ࢓࢛࢙ࡼ and ࢟࢘࢘ࢇࢉࡼ , there may be an SEU affecting both the 

parities. Hence, the carry parity circuit should compute parity in parallel with the sum circuit. If an 

SET affects the carry at an arbitrary location, further assuming that the input operands are conducive 

for carry propagation, the result will be multiple errors in the carry propagation. Thus, it can be safely 

concluded that for accurate parity prediction some kind of carry redundancy is required 

[Nicolaidis03].  A double rail technique is used by [Nicolaidis03] to generate two set of carries which 

are the complement of each other. Figure 2.7 shows how a duplicate carry, also called a check carry, 

can be generated. Here, one carry is coming from the carry generation circuit and the other one is 

being calculated by the duplication block as described in q a ion 2.13) E u t  (

௜ܥ
ᇱ ൌ ሺ

 .  

௜ܤ௜ܣ  ൅ ௜ିଵܥ௜ܤ ൅ ௜ିଵሻԢ (2.13)ܥ௜ܣ

 

The duplication block receives its input from the carry generation circuit. Thus, an error affecting the 

carry generation circuit will also affect the check carry. If we consider ࢏࡯ such that it has been 

affected by a fault,  ࢏࡯
ᇱ will remain unaffected because it is generated from ି࢏࡯૚ which is again 

unaffected.   
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Figure 2.8: Adder bit slice with partial c rry d ication. Adap ed from Nic laidis03]a upl t  [ o

Hence, the error is detected by comparison of ࢏࡯ and ࢏࡯Ԣ even though ࢏࡯ା૚ and ࢏࡯ା૚Ԣ are both faulty 

. 

[Nicolaidis03]. The partial carry duplication scheme as expressed in Equation (2.14) is shown in 

Figure 2.8. The main drawback of this scheme is that for a 64 bit adder the carry duplication will have 

hardware overhead and it will increase T and affect F of the previous stage. 

 

௜Ԣܥ  ൌ ሺܣ௜ܤ௜ ൅ ௜ܲܥ௜ିଵሻԢ (2.14)

 

In the case when a propagate signal is affected by an SET, the sum signal is also affected which can 

be detected. This test case is shown in Figure 2.9. Another scheme proposed by [Mathew07] is shown 

in Figure 2.6 (b). In this case, a dual rail sum is generated in parallel with the carry merge tree. True 

and complementary carry and carry parity is generated. A parity generation circuit generates 

computed sum parity which is compared with the calculated sum parity. The true and the 

complementary carry and the parity signals are also compared to indicate if the results are valid. Both 

[Nicolaidis03] and [Mathew07] compute parity multiple times and they do not account for the 

increased area and hence the increase in susceptibility to SETs. 
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A3 A2 A1 A0 PA A3 A2 A1 A0 PA
1 0 1 0 0 1 0 1 0 0
B3 B2 B1 B0 PB B3 B2 B1 B0 PB
0 0 1 1 0 1 0 1 1 0

Pi=Ai xor Bi P3 P2 P1 P0 P3 P2 P1 P0
1 0 0 1 0 0‐>1 0 1

Gi=Ai and Bi G3 G2 G1 G0 G3 G2 G1 G0
0 0 1 0 1 0 1 0

Original Ci=Gi+PiCi‐1 C3 C2 C1 C0 Pcarry C3 C2 C1 C0 Pcarry
0 0 1 0 1 1 0 1 0 1

Duplicate Ci=Gi+PiCi‐1 C3 C2 C1 C0 Pcarry C3 C2 C1 C0 Pcarry
0 0 1 0 1 1 0 1 0 1

Si=Pi xor Ci‐1 S3 S2 S1 S0 Sum Parity S3 S2 S1 S0 Sum Parity
1 1 0 1 1 1 1‐>0 0 1 0

SumParity= S3 xor S2 xor S1 xor S0 = 0
Predicted Sum Parity = PA xor PB xor Pcarry = 1

Error!No Error !

SumParity= S3 xor S2 xor S1 xor S0 = 1
Predicted Sum Parity = PA xor PB xor Pcarry = 1

 

Figure 2.9: Test case for [Nicolaidis03]. 

2.4 Summary 

In this chapter, common adder architectures are discussed and compared. However, due to the nature 

soft errors, they require special consideration and traditional architectures cannot be used per se 

without some modifications. Important background information on robust adder architectures is 

provided. To achieve fault tolerance, redundant information is required. It can be achieved either by 

space, time or a combination of time and space redundancy (section 1.6). Space redundancy always 

results in hardware overhead while time redundancy results in delayed outputs. Considering fault 

tolerant circuits, [Nicolaidis03] proposed a method to generate parity for the operands and the carry 

with some optimizations in redundant carry generation circuit. Calculated sum parity is compared 

with the computed sum parity and a mismatch indicates an error. In this scheme, carry parity is 

generated using each carry from the tree. Using a sparse tree architecture, carry is calculated every 4th 

bit using dual rail sum trees, and a parity generation circuit resulting in reduced wiring tracks 

[Mathew07]. Consequently, use of dual rail can translate to higher area cost and increased 

susceptibility to SETs. 
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Chapter 3 
Design of Soft Error Robust Adder 

In this chapter, the focus is on the design of a soft error robust adder 

[SRA]. Logic family is comprehensively investigated for sensitivity to SETs 

and suitability for robust design. Other components of design such as sum 

circuits, and parity circuits are presented and optimized for power and 

delay.  The proposed adder is summarized in the end. 

An error can be defined as the probability of a failure over the entire design. In order to optimize the 

reliability of a design there must be a figure of merit or a methodology which can quantify the 

reliability. To the author’s best knowledge no such approach exists. The design of an adder with soft 

error robustness has certain challenges. The important metrics which are considered is delay, area, 

and energy.   

3.1 Logic Family  

For the design of a high speed adder compound domino logic and hybrid architecture is a practical 

choice. A carry merge architecture proposed in [Mathew03] and used in [Mathew07] is used to 

demonstrate and compare energy and delay of the SRA. This architecture is similar to Sklansky in 

that it computes carries in 4-bit groups [Weste05] as shown in Figure 3.2. 

 

 

Figure 3.1: Dynamic propagate circuit. 
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Figure 3.2: 64-Bit carry merge Sklansky adder. 
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Figure 3.3: Dynamic generate circuit. 

In this design, the pseudo-static logic style is used in the compound domino logic instead of the 

dynamic logic gates. The switching speed of a static circuit depends upon two factors; the current 

conduction through the MOSFET and the parasitic capacitance.  During switching there exists a path 

between the power supply and the ground which leads to short circuit current dissipation. The 

dynamic circuits differ from the static circuits in that they use capacitance to hold a logic level. When 

clock is 0, the pFET charges the output node capacitance to logic 1. This is called a precharge event. 

During the evaluate event (when clock signal is 1) the pull down network (PDN) is evaluated. If the 

input vector is such that the nFETs conduct then the output is pulled to the ground. In other words, the 

output node capacitance which was precharged during the evaluation period now discharges to 

ground. This circuit is called dynamic because its output is valid only for small period of time before 

leakage corrupts the value. The charge sharing and leakage during evaluation period determines the 

switching frequency of the circuit. A typical problem of dynamic gates is the issue of cascading 

which leads to reduced noise margin and there is a chance of the circuit malfunctioning. This problem 

can be addressed by using Domino logic. In domino logic, the output of the dynamic gate is taken at 

the output of the inverter which can further be connected to the PDN of the next stage. The cascaded 

domino stages eliminate the possibility of a glitch in the next level. It still suffers from the charge 

sharing and the charge leakage problems. Using a feedback loop to control the charge leakage is 

valuable. Hence, an inverter is used in the output path to derive a pFET which in the case of discharge 

at the output node will charge it back to supply voltage. The pFET in this design is called a charge  
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keeper and it helps to keep the signal free from parasitic effects. By combining the outputs of multiple 

dynamic gates it is possible to eliminate the need of an inverter, and instead complex static logic can 

be inserted in between. The static logic can perform some logic operation in addition to inversion.  

Such a structure is called Compound Domino Logic. Figure 3.1 and Figure 3.3 shows the dynamic 

propagate and the generate circuits which are a part of the compound domino logic. 

 

Figure 3.4: Pseudo-static propagate circuit. 

 

 

Figure 3.5: Pseudo-static generate circuit. 
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In Figure 3.1 and Figure 3.3 transistor M0 is the keeper transistor. In the proposed soft error robust 

adder pseudo-static logic (PSL) is used. The propagate and the generate circuit in this logic is shown 

in Figure 3.4 and Figure 3.5 respectively.  

 

 

Figure 3.6: Dynamic vs. PSL power comparison. 
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In pseudo-static logic the keeper transistor is replaced with a static pull up network (PUN) which is a 

complement of the PDN. The PSL works in the same fashion as the dynamic logic i.e., during a 

precharge event output capacitance is charged to logic 1 and during the evaluation period, the pull 

down network is evaluated. The use of a complementary pull up network has two advantages. First, it 

helps in charge leakage reduction as there is a static path between the output and the power supply in 

the evaluation window. Second, in an SET event it helps to recover the logic back to the pre SET 

state. Figure 3.6 shows the clock power, the data power, the core power and the total power 

comparison for the propagate-generate circuit using dynamic logic and PSL logic. Use of PSL saves a 

transistor in each propagate stage resulting in energy saving as can be seen in the energy delay 

comparison plots shown in Figure 3.7. 
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Figure 3.7: Energy delay performance comparison. 

In all comparison plots, the difference in power consumed by dynamic logic and PSL increases with 

increased data activity. The main objective of this research is to develop a soft error robust adder. 

Hence, some SET simulations are carried out on the propagate generate (PG) block designed in each 

logic style. The method of performing such simulations will be explained in the next chapter. Again, 

the results are compared for dynamic logic and PSL. It has been observed that the 0 to 1 transition at  
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the input of the PG block results in a propagated SET when the input vectors are favorable for such a 

transition. Figure 3.8(a) shows the output of a PG block implemented using dynamic logic for all 

possible input combinations of inputs A and B.   

 

 

Figure 3.8: SEU (0 to 1) observations in dynamic logic 
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Figure 3.9: SEU (0 to 1) observations in pseudo-static logic 
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The outputs P and G are governed by equations (2.3) and (2.4). In Figure 3.8(b) an SET occurs at the 

input B such that it gives rise to a glitch. This glitch gets evaluated by the propagate circuit ensuing 

into a false propagate signal. The false propagate signal can subsequently lead to a false logic 

evaluation in further stages of the carry merge tree. When a similar SET occurs at a different time 

interval, it can result in an SET in the generate block, which is capable of producing a false generate 

signal (Figure 3.8(c)). The false generate signal can result in a false carry in the carry merge tree. The 

PSL, when simulated under similar conditions leads to similar results. An important observation is 

that the duty cycle of the propagated SET is much smaller when compared with dynamic logic. This 

property of PSL is exploited to design a time redundant adder as explained later. These are the 

confidence building measures that the adder designed with this logic can have some soft error robust 

capabilities. Extensive simulations and results at the complete architecture level will be discussed in 

the next chapter. Thus, the carry merge tree as shown in Figure 3.2 is implemented with PSL logic. 

3.2 Transistor Sizing 

Sizing allows for fast optimization of the path delay. The delay of a logic gate depends upon two 

parameters, namely; the parasitic capacitance and the load that the gate will drive, called electrical 

effort (f), and the logical effort (g) which explains that for a given load, the complex gate has to work 

harder to produce the same response as that of an inverter. The electrical effort is given by: 

 

࢒ࢇࢉ࢏࢚࢘ࢉࢋ࢒ࡱ  ࢚࢘࢕ࢌࢌࢋ ࢌ ൌ
ࢊࢇ࢕࢒࡯

࢔࢏࡯
 (3.1)

 

 

 

Figure 3.10: Logical effort of basic cells 
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The electrical effort helps in calculating the load driving capability of the gate while the logical effort 

explains the ability of the gate to drive current in comparison with an inverter. To calculate g, 

transistors are sized appropriately so as to have the same resistance as an inverter and then we take 

the ratio of the input capacitance of each input to that of an inverter. As the gates become complex 

their logical effort increases. The logical effort of the simple gates is shown in Figure 3.10. This 

concept can be utilized for optimizing transistors in a chain. The major drawback of logical effort is it 

doesn’t account for slew rate effects and the interconnect delay. Second, the optimizations are geared 

for high speed while neglecting area and power concerns. Third, the logical effort for dynamic gates 

can be misleading as output falls faster than the input rises [Sutherland99]. This is the general 

background for transistor sizing, in this research our focus is on compound domino logic with 

dynamic gates replaced with PSL.  

First, the sizing of PSL will be discussed and then the interface from PSL to static logic and then 

the interface of static logic back to PSL will be explained. In the PSL (shown in Figure 3.5) pull down 

path, the transistors are designed to give a unit resistance. If the inputs A and B are 1, during 

precharge event there will be contention between pFET and nFETs. In the first stage of a carry merge 

tree, an extra transistor which is controlled by a clock is used to avoid contention between the pull up 

and the pull down paths. This transistor is called the footer transistor. The precharge transistor is 

designed to give two unit resistances at the cost of rise time. The charge leakage issue problem is 

solved by using a PUN as already explained in section 3.1. The sizing of PUN is kept at a unit 

resistance to avoid contention with PDN.  

Static logic requires that the inputs are in a steady logic state until they are sampled. In other words, 

the outputs from different PSL gates which are inputs into static logic have the same delay. The static 

logic is designed such that the inverter at the output of the PSL is avoided. This results in true inputs 

again at the next PSL level. Also, for static to PSL interface the clock is delayed to avoid glitches. It 

can be explained as: the output of first PSL transitions from 1 to 0, then the output of first a static 

stage is 0 to 1, at second PSL stage which is footerless if the clock already enters the evaluation phase 

and its input is 1, there will be a contention. 

It is important to mention that when a gate is connected to more than one gate in a chain there is 

another parameter called branching effort that comes into play. The branching effort is the ratio of the 

total capacitance of a stage to the capacitance of the path. The logical effort calculation also helps in 

deciding which logic family should be used in a given design. Domino circuits are better because they 

avoid static power consumption and the PMOS current issues during evaluation. 
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3.3 Sum Generation/ Selection Circuit 

In an SRA, the sum is calculated in a group of 4-bits. Two additions are performed simultaneously 

anticipating an incoming carry of 1 and 0 respectively. When the actual carry is available from the 

carry merge tree a multiplexer selects one of the conditional sums. It is important to mention that the 

worst delay of the 4-bit sum block should be less than the minimum delay of the carry merge tree. 

This implies that the conditional sum should be available before the arrival of the fastest carry signal. 

A very good comparison of different sum circuits has been carried out in [Alioto02]. In the design of 

the SRA, three different adder structures are considered and their delay is compared. The comparison 

is shown in Figure 3.11.  
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Figure 3.11: Power delay comparison 

From the results, it can be concluded that the Manchester adder offers the best power delay 

performance. These results also agree with [Alioto02].  Hence, the Manchester adder architecture is 

implemented in the SRA. 

3.4 Time redundant samples  

One of the ways to achieve fault tolerance in a circuit is by using time redundancy. In time 

redundancy, the same outputs are computed twice for error detection and computed thrice for error 

correction. Since the time redundant approach uses the same circuit, the penalty in terms of hardware 
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is minimal; the cost in terms of delay can be a computation delay.  In the design of an SRA, time 

redundancy is used to detect soft errors. The same output is sampled at two different time intervals 

and both values are stored in a flip flop. Then the flip flop outputs are compared for parity. A 

mismatch between the two samples indicates that an SET has affected the circuit.  Important aspects 

of this approach are; one, the timing of first sample, and two, how much delay after the first sample, 

the second sample is taken. In the case of the SRA the first sample is taken when the worst delay 

output is available. The second sample is taken 110 ps after the first input.  Based on a large number 

of device simulations carried out with different levels of deposited charge, it is reported by 

[Walstra05] that nearly all the charge is deposited in the first 10 ps and in a waveform span of 100 ps. 

Thus, the number 110ps is chosen assuming that any SET event in the adder will not last longer than 

this duration. 

3.5 Clock network 

The clock signals in the SRA are used to derive the PSL and the flips flops which store the time 

redundant samples. The voltage controlled delay elements [Nummer03] are used to generate different 

clock phases. The delay between the different clock phases is chosen to match the delay of the PSL 

plus the static stage delay (refer to Figure 3.2). The clock network is designed to derive an equal load 

at each stage of the carry merge tree. A similar technique is used to design the clock network for the 

time redundant sampling block (TRSB). The clock network consumes 40% of the total power of the 

complete adder. 

3.6 Flip Flop  

The time redundancy implemented in SRA requires that the samples are latched for parity generation. 

Different latching techniques are considered such as C2MOS, TSPC, and DFF from the technology 

library. The power and the delay response of these are considered and the results are presented in 

Figure 3.12. The C2MOS based DFF offers the best delay; however, its power consumption is 

comparable to a TSPC latch. Thus, a C2MOS flip flop was designed for the TRSB and its schematic is 

shown in Figure 3.13. 
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Figure 3.12: Power delay comparison of different flip flops. 

 

 

Figure 3.13: C2MOS flip flop. 

3.7 Parity Circuit 

The parity circuit is an XOR tree which compares the output of TRSB. If two samples taken at 

different times for the same bit are different, the corresponding XOR gate will have complementary 

inputs. It will result in parity 1 at the output, indicating an error. 



 

 37 

 

Figure 3.14: 4-input TG XOR 

Different XOR design styles are considered and a 4-input transmission gate (TG) [Jahinuzzman08] 

based design (Figure 3.14) gives the best results for power and delay and is used in this design.  

 

 

Figure 3.15: PDP for 4-input XOR  

The beauty of this circuit is that it provides true and complementary outputs which are a necessity for 

a multilevel XOR tree. Figure 3.15 shows the power delay performance of a 4-input TG based XOR. 

A 64-input XOR tree is designed to compare the outputs of the TRS block. 
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3.8 Summary 

In this chapter the proposed SRA design components are discussed. A detailed analysis of its 

components such as logic family, sum circuit, sampling technique, and parity generation circuit is 

carried out. The PSL used in the SRA has the ability to recover from an SET event. This 

characteristic of the SRA is exploited to design a time redundant sampling technique. The same 

output is sampled twice at two different time intervals and captured in the TRSB. The time interval is 

chosen such that any SET is captured by either the first sample or the second sample. Afterwards, 

these samples are compared with an XOR tree. The parity of a 64 bit adder is computed to indicate if 

an SET has affected the circuit. There are certain cases when this circuit will not be able to detect an 

error. These cases will be discussed in the next chapter. 
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Chapter 4 
Simulation Results 

Based on the design described in Chapter 3, the 64-bit SRA is implemented 

in ST microelectronics 90nm CMOS technology. The design is simulated for 

various test cases and results are examined. Power delay analysis is carried 

out and compared. 

4.1 Testing of Soft Error Robust Adder 

Testing of the SRA is one of the critical parts of this research. During an ionization event a cylindrical 

track of electron hole pairs is formed. When the track comes closer to the depletion region, the 

carriers are collected by the electric field resulting in a current transient at that node.  In the literature, 

a few current pulse (CP) models have been presented [Baumann05b], [Walstra05]. A typical CP 

resulting from an ionization event is shown in Figure 4.1 

 

Figure 4.1: Current pulse resulting from ionization event 

A similar pulse is used for simulating the SRA using a double-exponential current source.  For the 

purpose of simulation the CP is inserted at different nodes of Figure 3.2. It is then observed at various 

output blocks, which can be PSL or a static generate or propagate and eventually the final parity is 

checked to see if the circuit indicates an error.  

From the logic perspective, an SET can affect the adder circuit in three ways: one, it can affect the 

operands; two, it can affect an intermediate carry node (when the carry is available to select 

conditional sum); three, it affects some intermediate location. It is pragmatic that an SET affecting 
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any of the operands is more likely to also affect the sum circuit because it will directly affect the 

conditional sum generation.   

 

Figure 4.2: Typical current pulse (0 to 1) from simulation environment 

 If an error occurs at a carry node, it can have two implications. One effect is that the multiplexer can 

select the wrong sum, if the incoming carry is 0 and an SET gives rise to a spurious 1. At the output 

multiplexer where this carry will select the conditional sum, a wrong selection will be made for the 

duration of the SET. When the carry returns to its original state, it will select the correct sum. The 

second effect is that it can result in a series of transitions in the form of false carry propagation. For a 

false carry propagation to happen, there are certain conditions that should be present.  

The operands affect the carry merge tree and sum circuit. Consider the 64-bit input vector; an SET (0 

to 1) can only propagate to the next significant bit if at least one of the operands is logic 1. Now 

assume the second operand is a 0 and the SET causes it be to be logic 1. The given bit can generate a 

carry signal provided the SET occurs when the generate signal is being evaluated. The false carry can 

further affect a number of stages depending upon the logic level of the next significant bits. It is 

interesting to note that if the next significant bit is logic 0 for both the operands, the error in the carry 

merge tree cannot propagate farther than this bit.  

In another situation, both the operands are logic 0 and an SET causes one of the operands to be logic 

1 (Figure 4.2). This will result in a faulty sum for this bit in the form of a glitch in the output. This is 

the case under the assumption when the incoming carry is 0. However, if the incoming carry is 1, the 

theoretical sum for this bit would have been logic 1 (0 + 0 +1), but now it will be 0 and further it will 

generate a false carry.  
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Now consider the case when both the operands are logic 1. Under normal calculations, the sum output 

will be logic 0 and it will generate a carry. This is under the assumption that the incoming carry is 0.  

  

Figure 4.3: False carry generation. 

If an SET cause one of the operands to be logic 0, the consequence will be that the sum will have a 0 

to 1 glitch and the carry out will be 0.  However, with 1 as the incoming carry, the transient will cause 

a 1 to 0 glitch in the sum, but the carry out will remain unaffected, and in this situation the transient 

cannot propagate.  For the cases when an SET occurs at some intermediate node falls in one of the 

above categories to result in a propagated SET. In the other cases, it may be covered by logical 

masking.  

 

The location of the SET is an important factor; however, when the error occurs knowing the location 

is also vital. In Figure 4.4, C<15> (carry at bit 15) is hit by an SET (1 to 0) and it strikes towards the 

end of the duty cycle. In this case it results in a duty cycle reduction in S<16> (sum for bit 16). This 

event is captured by the time redundant samples stored in latches L1<16> and L2<16> and the parity 

signal, which is not indicated by an “Error” in Figure 4.4. For the same case when SET hit C<15> at a 

different time, as shown in Figure 4.5, it shows a glitch in S<16>. 



 

 42 

 

Figure 4.4: SET (1 to 0) affecting C15. 

 

Figure 4.5: SET (1 to 0) affecting C15 at a different time 
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This event is captured and indicated by an “Error” signal. An alert reader will observe that S<17> and 

S<18> also see the error transition effect.  

 

Figure 4.6: SET (1 to 0) affecting C7 

 

Figure 4.6 shows the case when an SET in a carry signal propagates into the sum block. Sum S<8> 

to S<11> are affected and there are even number of errors hence the parity circuit cannot detect it. 

More simulation results will be discussed without showing the waveforms. These are the errors that 

occur in carry propagation path. There are the following observations: 

• If the operand is such that bits from <0> to <7> are 1, 0 in any order such that C<7> is 1 

and from C<7> to C<56> operand bits are such that it is a carry propagation path and bit 

<57>  onwards there is no specific order for operand. If there is a transient at C<7> it will 

continue to propagate and result in duty cycle reduction in C<57> and S<57> resulting in 

an error which is detected.  

 

• If there is an SET at carry C<15> such that it is 0 to 1 now it will affect all the carries till 

C63 unless there is an explicit kill or generate. This will result in false evaluation of carries 

and it cannot be detected. The same idea is tested for different depths of carry propagation 
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and it can be generalized that an error in a carry will propagate all the way to the final 

carry if the operand is conducive for carry propagation. 

 

Table 4-1: SRA Simulation Results Summary. 

Sr. No. Error Test Case Category   %age 

a  Detected  77.46 
b  Even Number of Errors  7.04 
c  Outside Sampling window 5.63 
d  No Error  3.52 
e  Glitch  2.82 
f  False Carry Generation  2.11 
g  Reduced Duty Cycle  1.41 
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Figure 4.7: Soft error analysis of SRA. 

• If it is a carry propagation mode then the carry will affect subsequent carries otherwise it 

will affect just a single bit which is easier to detect. For example, a G47G44 1 to 0 
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transition will affect the carries <47>, <51>, <55>, < 59> provided the operand is the worst 

delay vector. Otherwise, it will be absorbed with a legitimate carry. 

 

• If there is an incoming carry which is affected by an SET, the glitch will propagate. 

However, if there is a carry generation after the glitch then it will mask the SET with 

logical masking. 

 

• An error at the input of a static gate is more likely to lead to multiple errors as compared to 

that of a pseudo-static logic. Because it cannot recover its previous state as it happens in 

case of pseudo-static logic. This result in a wrong evaluation from the given gate and it 

cannot be detected in subsequent stages.  

 

• When there is chain of errors it will affect the sum at the last stage as duty cycle reduction 

(DCR) and it will be an indication that there is an error. For example, if G47G44 has a 1 to 

0 or G47G46 has 0 to 1 transition, it will eventually lead to DCR on S<63> , the DCR will 

be captured by sampling block and will result in a detected error. 

 

• If the error occurs exactly in between the sampling window, then the circuit cannot capture 

this event and there will be no error indication. 

 

The simulation results are summarized in Table 4-1 and a pie chart of results is presented in Figure 

4.7. The proposed design detects 77% of the errors. However, the errors, which are not detected, can 

be classified into different categories. About 30% of the errors which are not detected are the cases 

where two bits are affected by an SET. In this case, the parity circuit cannot indicate an error. The 

25% of invisible errors are related to the timing of the SET with respect to the signal. The propagated 

SET is outside the sampling window and hence, remains undetected. In another category, 10% of the 

unobserved errors are due to false carry generation because of an SET. The rest of the unnoticed 

errors are: one, SET didn’t result in an error (17%), two, and it resulted in a small glitch (13%), and 

three, it resulted in duty cycle reduction of the output sum signal (5%). 
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4.2 Power Delay Analysis 

The energy delay characteristics of an adder depend upon several factors: technology, circuit family, 

adder architecture, transistor sizes, and the leakage current. Thus, no single metric can thoroughly 

compare different adder topologies. The energy delay comparison provides one simple way to 

compare different designs. In Figure 4.8 an energy delay plot (EDP) for the proposed design is 

presented. It also includes the same plot from [Mathew07] for comparison purposes. The line with 

diamonds represents the 64-bit SRA simulations results in 90nm CMOS process.  

 

 

Figure 4.8: Energy delay plot 

For the delay of 150 ps the energy consumed is 19.75 pJ. The green line with triangles represents the 

SRA with soft error detection capability turned off and for the same delay of 150 ps, the energy 

consumed is 15 pJ.  However, when the results are compared with [Mathew07] implemented in 65 

nm CMOS with dual rail architecture. For the same delay the power consumed is 8 pJ which is less 

than half of the proposed design. Considering technology scaling, as we are comparing 65 nm CMOS 

implementation with 90 nm CMOS implementation we can expect a theoretical reduction of 30% in 

power. Still the proposed design consumes more energy. However, the author believes, as the two 
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processes are different, a fair comparison is possible by implementing the SRA in 65nm CMOS 

process. Another important parameter which can be used to compare the designs is area. The 

proposed adder implemented with PSL logic will have 50% less area in sum generation as compared 

to dual rail implementation of [Mathew07]. Also, the proposed adder requires less number of XOR 

trees to generate parity as compared to multiple parity generation circuits in [Mathew07]. Reduced 

area of the SRA can be looked upon as less vulnerability to soft errors. A main drawback in the 

proposed design is that it consumes more power than [Mathew07]. In the SRA, the clock tree is not 

optimized for power and is contributing 40% of the total power. Hence, there is scope for 

improvement. A positive aspect can be seen when the SRA is compared with error detection 

capability (diamonds in Figure 4.8) and without error detection capability (triangles in Figure 4.8). 

The error detection capability comes at a cost of 24% energy overhead with minimal area overhead.  

4.3 Summary 

In this chapter, simulation results of the SRA are provided and compared with the literature. The 

proposed design using pseudo-static logic to implement 64-bit carry merge architecture is presented. 

A time redundant sampling technique is implemented for the first time to design a soft error robust 

adder. The SRA operating at 2 GHz frequency can indicate an error of 630 ps from the input. The 

design works on an idea of time delayed sampling with 66% area saving as compared to the TMR 

technique proposed in [Townsend03b] and 50% area saving when compared with [Mathew07]. A 

major drawback of this circuit is its inability to detect an even number of errors. This research 

suggests that the PSL methodology is best suited for design of soft error robust circuits because of its 

inherent capability to recover from an SET.  
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Chapter 5 
Conclusion 

 

 

In this thesis, a major reliability concern in the integrated circuit design, soft errors, is addressed. 

Based on the background presented in Chapter 1, soft errors in combinational circuits are considered 

a major area of research. The emphasis is on soft errors in adders since addition is an important part 

of an arithmetic logic unit (ALU). Briefly, the main findings of this research are outlined. 

5.1 Contributions  

Various adder architectures are discussed and compared, and existing soft error robust architectures 

are investigated. Compound domino logic, which is used in contemporary adder designs, is analyzed. 

Pseudo-static logic is proposed to be an area efficient logic choice for time redundant circuit design. 

Dynamic and pseudo-static logic are compared in depth for different parameters such as energy, 

delay, and power. The time redundancy approach for error detection is implemented to design an 

SRA with 2 GHz speed using 90nm CMOS technology. 

The susceptibility of a 64-bit carry merge Sklansky adder to soft errors is evaluated for different 

operands. Errors are inserted in the inputs, the carry merge tree, and the sum generation circuit. 

Simulation vectors are carefully chosen so that SET is not masked by inherent logical masking and 

propagated SET is observed in further stages. Through extensive simulations, it is established that 

operands which results in carry propagation are more likely to cause multi bit errors (MBU).  The 

time of strike that is, when the transient occurs relative to duty cycle of the signal being affected is 

observed to be an important metric when simulating such circuits for soft error robustness.  

Overall, the proposed adder took half the area for sum generation when compared with an adder 

from the literature [Mathew07], which employs dual rail design approach for error detection, and is 

capable of detecting 77% of the errors. 
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5.2 Future Work 

Although, the proposed SRA saves area, the time redundant technique can be investigated and 

expanded upon for an energy efficient design. In this design, the clock tree was consuming 40% of 

the total power. An energy efficient clock tree design for adders can be another possibility which can 

be researched. Techniques have been presented in the literature for soft error detection in memories 

and logic circuits, the author believes that the soft errors affecting the clock tree of the adder can 

escape time and space redundant techniques. This can be a possible future work. The SRA and the 

dual rail logic methodologies only indicate an error at the end of the computation cycle. However, 

there can be a possibility for analyzing the computation at intermediate stages of the adder to indicate 

an error. Another desirable feature is to include error correction in adders without carrying out triple 

modular redundancy. 
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Glossary 

Critical Charge (QCRIT): The smallest charge that can result in a soft error in an SRAM cell. 
 

Transient Pulse: Transient induced by a single highly ionizing particle in a linear device. 
 

Single Event Transient (SET): Radiation induced perturbation in combinational circuit results in 

transients called single event transients. If propagated and latched into a memory element, these will 

lead to a soft error. 
 

Single Event Upset (SEU): Transient induces charge in the voltage of a storage node and causes the 

data state to change. 
 

Soft Error Rate (SER): The rate at which soft error occurs is called the soft error rate.  
 

Failure in time (FIT): The rate at which the soft errors occur is expressed in terms of FITs which is a 

measure of the number of failures in 109 hours of operation. 
 

Linear Energy Transfer (LET): The magnitude of disturbance an ion causes depends on the linear 

energy transfer (LET) of that ion is reported in mega electron volt square centimeter per milligram. 
 

Multi Bit Upset (MBU): Large transient causes several nodes to be switched either through charge 

sharing, parasitic bipolar action, or by depositing Q > QCRIT at several storage nodes at once. 
 

Single Event Burnout (SEB): Transients induce avalanche breakdown of the junction with thermal 

runaway causing burn out. 
 

Single Event Latch-up (SELU): Loss of functionality due to a high current state induced by a single 

highly ionizing particle. SELs produce permanent damage unless a current limitation protects the 

device. In this case, the cancellation of the high current state requires a power off-on. 
 

Single Event Gate Rupture (SEGR): Destruction of a power MOS due to a conductive path and a 

high electrical field induced in the gate oxide by a single highly ionizing particle.
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