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Abstract
Computing the structure of a finite-dimensional algebra is a classical mathemat-

ical problem in symbolic computation with many applications such as polynomial
factorization, computational group theory and differential factorization. We will
investigate the computational complexity and exhibit new algorithms for this prob-
lem over the field Fq(y), where Fq is the finite field with q elements.

A finite-dimensional vector space A over a field F is called a finite-dimensional
associative algebra over F , if A is equipped with a binary associative F -bilinear
operation (which is always called multiplication and not necessarily commutative)
and the distributive law holds with respect to the addition of linear space and the
multiplication. The matrix algebra is the subalgebra of the matrix ring Fm×m with
the identity matrix.

For an algebra A, there exists a largest nilpotent ideal Rad(A), called the radical
of A in every finite dimensional algebra A. Rad(A) is the set of all strongly nilpotent
elements (where an element α is said to be strongly nilpotent if for any β ∈ A, αβ
is nilpotent). If Rad(A) = (0) we call the algebra A semisimple. So the factor
algebra A/Rad(A) is semisimple. A is called simple if A has no proper nonzero
ideal. Semisimple algebras admit a very nice structure theorem which is also due
to Wedderburn [34].

Theorem 1. [Wedderburn] Suppose that A is a finite-dimensional semisimple al-
gebra over the field F . Then A can be expressed as a direct sum of simple algebras.

A = A1 ⊕ A2 ⊕ ...⊕ At,

where A1, A2, . . . , At are the minimal nontrivial ideals of A. Each Ai is isomorphic
to some full matrix algebra Mni(Fi), where Fi is an extension division ring of F for
1 ≤ i ≤ t. Such decomposition is called Wedderburn decomposition.

In this thesis we will first present a new probabilistic algorithm for Wedderburn
decomposition. The Wedderburn decomposition of separable algebra is solved with
almost nearly optimal algorithms by Eberly and Giesbrecht [8, 7]. However, when
it comes to the algebra over the field Fq(y), it becomes non-separable. Ivanyos
et al. present a polynomial-time algorithm for Wedderburn decomposition over
Fq(y), but it is not acceptable because of large exponent [24]. We will exhibit
a new probabilistic algorithm of Monte Carlo type for decomposition of general
semisimple matrix algebras. The idea is inspired by Eberly and Giesbrecht [8, 7]:
Demonstrate the large probability to pick up a “good” element randomly, use it to
compute the “good” idempotents and then decompose the algebra. Our algorithm
is more efficient and easier to implement than the algorithm of Ivanyos et al. [24].

The second part of this thesis is a new probabilistic algorithm for computing
the radical of a finite-dimensional algebra. Fröhlich and Shepherdson [10] proved
that in general this is algorithmically undecidable over a general computable field.
But there are some efficient results over specific fields such as the finite field Fq.
The latest paper about computing the radical of the finite-dimensional algebras
over Fq(y) is also developed by Ivanyos et al. [24], which is polynomial-time but
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with large exponent too. We give a faster Monte Carlo algorithm in this paper by
generalizing the idea of Ivanyos et al. [23, 24] to non-separable cases. We overcome
the difficulty of degree explosion by introducing a new decomposition, which we
call raw decomposition and has not been discussed in the previous papers. It
takes advantage of the idempotents to transform the general algebra into primary
algebras.

In the third part of this thesis, we discuss how to modify our algorithms for the
field Fq(y) when q is small. Note that in our algorithms, we have some conditions on
the size of q to guarantee the probability of correctness of the algorithms. However,
we would like our algorithm to work for general Fq(y). We present methods to
remove the restrictions on q from our algorithms, adapting the algorithms to the
general field Fq(y).

The last chapter of this thesis is about two important questions which remain
unsolved as future work. We will discuss the difficulties we encounter when working
on these questions. The first open question is how to make our algorithms be of
Las Vegas type. Note that our algorithms for decomposition of algebras are of
Monte Carlo type. However, we always hope to see that the output is certified
correct. The other problem is brought by the inseparability of our algebra. Recall
by Wedderburn’s Structure Theorem 1 we know each Ai is isomorphic to some full
matrix algebra over an extended division ring of F for 1 ≤ i ≤ t. Our algorithm
does not compute this isomorphic mapping. When F = Fq, i.e. the semisimple
algebra is separable, this problem is solved by Friedl et al. [9] and Eberly et al. [7],
by a deterministic algorithm and a probabilistic one respectively. However, when it
comes to the infinite field Fq(y) this problem, to our best knowledge, is still open.
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Chapter 1

Introduction

In this thesis we will address two problems in the structure theory of associative
matrix algebras over Fq(y): computing the radical and computing the Wedderburn
decomposition, where Fq(y) is the field of fractions of the polynomial ring Fq[y].
Ivanyos et al. have given polynomial algorithms for these two problems [22, 24], but
their costs have large exponents (which have not been completely determined). Our
goal is to present new efficient algorithms or improvement of existing algorithms. In
order to simplify the discussion, we assume that our algebra contains the identity
matrix, and we only calculate the soft order of the complexity, i.e. O∼(nt) =
O(nt)(logn)O(1).

The structures of associative algebras is clarified. Given an algebra, the largest
nilpotent ideal is called the radical and denoted by Rad(A). If Rad(A) = (0) we call
the algebra A semisimple. Every finite-dimensional algebra A has a largest nilpotent
ideal Rad(A) which satisfies that A/Rad(A) is a semisimple algebra. Rad(A) is the
set of all the strongly nilpotent elements, where an element α in A is called strongly
nilpotent if αβ is nilpotent for any β ∈ A. An algebra A is called simple if A has no
proper nonzero ideal. A main theorem is called Wedderburn’s Structure Theorem
[34] which clarifies the structure of the semisimple algebras.
Theorem 2. [Wedderburn] Suppose that A is a finite-dimensional semisimple al-
gebra over a field F . Then A can be expressed as a direct sum of simple algebras:

A = A1 ⊕ A2 ⊕ ...⊕ At,

where A1, A2, . . . , At are the minimal nontrivial ideals of A. Each Ai is isomorphic
to some full matrix algebra Mni(Fi), where Fi is an extension ring of F which is a
division ring for 1 ≤ i ≤ t. Note that Fi is not necessarily commutative or separable
here.

We now make specific the computational description of our problems. The
input of our algorithms is the integral basis, {a1, a2, . . . , an} ⊂ Fq[y]m×m, of the
(semisimple) matrix algebra A ⊂ Fq(y)m×m. The output of our algorithm for the
problem of computing the radical and the Wedderburn decomposition is a basis of
Rad(A) and those of all the simple components {A1, . . . , At}.

We examine algorithms which perform exact computations; they accept sym-
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bolic representations of an input and return symbolic exact representations of out-
puts. That means there should be a degree bound on y for the input in Fq[y],
denoted by ∆. In the rest of this chapter we will discuss the model of generating
random elements for the probabilistic algorithm.

The exact complexities of some useful symbolic computations are presented
in Chapter 2. Particularly, we discuss all the preliminaries in Chapter 2 such as
polynomial factorization, solving linear system, and so on. We also develop an
efficient algorithm for computing the minimal polynomial of the matrix over Fq[y]
in this chapter. The idea is similar to that of Giesbrecht and Storjohann [18].

Chapter 3 is the main part of this thesis which is devoted to the computation of
matrix algebras. Specifically we show how to compute bases of simple components
of a semisimple matrix algebra and a basis of the radical of a matrix algebra. We
build on the work of Ivanyos et al. [23, 22, 24] and Eberly and Giesbrecht [8].
After reviewing their algorithms and analyzing their complexities, we present an
alternative Monte Carlo algorithm over the field Fq(y) where q is sufficiently large.
In particular we prove that it is with large probability to select a “good” element
randomly. For the computation of the Wedderburn decomposition the remaining
work is much easier: factorizing bivariate polynomial and solving much smaller
linear systems. For the computation of the radical, the key idea is reducing the
degree bound for the method of Ivanyos [24]. We introduce a new decomposition
to do this. We call it a raw decomposition and it has not been discussed before so
far as we know. The result is still dependent on the size of q. In the last part of
this chapter, we give a generalization of our algorithm. In particular, we present a
way to make our algorithms fit the general Fq(y), i.e. no restriction on the size of
q any more.

In the last chapter of this thesis, some possible future work is discussed. We
mainly suggest two open questions which we think are important and solvable. We
also state the difficulties we have encountered when working on these two questions.

To prove the correctness of our probabilistic algorithms, some technical condi-
tions are required when selecting a random element from a vector space. Let U be
a finite dimensional vector space over F . One common way of selecting a random
element u from the vector space U over the field F is to first select a sufficiently
large finite subset S of F and then select elements uniformly from the finite set
S as the coordinates of u. The results to be presented in this thesis rely on the
following bound on the number of zeros of a polynomial within a particular set,
which is presented by Schwartz. [39]

Lemma 3. [Schwartz-Zippel Lemma] Suppose q ∈ F [x1, x2, . . . , xn] is a polynomial
with total degree at most d and that q is not identically zero. Let c > 0, and suppose
S ⊂ F is a finite set with size at least cd. Then the number of elements of Sn which
are zeros of q is at most c−1|S|n.

In the procedure of selecting random elements from the algebra A independently,
assume that {u1, u2, . . . , us} is a basis of A over Fq(y). Given δ > 0, let Ω be a finite
subset of Fq(y) with |Ω| ≥ D/δ. We take u = α1u1 + α2u2 + . . .+ αsus, where the
coefficients α1, α2, . . . , αs are drawn uniformly and independently from Ω. Then for
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every polynomial function f ∈ Fq(y)[x] of degree at most D with respect to x, the
probability of f(u) = 0 is at most D/|Ω| ≤ δ.

We say a probabilistic algorithm is of Las Vegas type if it returns a correct
answer on any input with some constant probability (usually greater than 0.5)
and otherwise it returns “failure”. A less demanding type of algorithm, called a
Monte Carlo algorithm, returns the correct answer with some constant probability
(usually greater than 0.5), while it may return either “failure” or incorrect answer
otherwise. The principal way to measure the cost of a probabilistic algorithm is
to give its deterministic complexity as well as its probability of returning “failure”
or incorrect answer. Sometimes this is not convenient, especially when we repeat
the algorithm several times to get a correct answer. An alternative measure is the
expected complexity, i.e. the expected number of operations required before we
get the correct answer. For example, if a Monte Carlo algorithm requires O(nc)
operations with probability ε of returning “failure” or incorrect answer, then the
expected complexity will be O( nc

1−ε). Obviously, the expected complexity is slightly
less informative.
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Chapter 2

Fundamental Symbolic
Computations

In this chapter we will discuss details about the model of computation and rep-
resentation of various fields. Computational models for several fields are discussed
in Section 2.1. In Section 2.2 we describe an algorithm and its complexity for
polynomial factorization over Fq[y]. An algorithm to select the maximal linearly
independent subset of vectors is shown in Section 2.3. An algorithm to solve linear
systems efficiently is in Section 2.4. At the end of this chapter we will present a
new algorithm to compute the minimal polynomial of a matrix over Fq[y]. The
algorithms in the last three sections are related to the cost of matrix multiplication
over Fq[y].

Most of the material in this chapter is included for the sake of completeness
and is standard or cited from other papers. One exception is the algorithm for
computing the minimal polynomial given in the last section. The idea is inspired
by the paper of Giesbrecht and Storjohann [18]: it is with large probability to
select an element α ∈ Fq such that the modular matrix a mod y−α keeps the same
structure of its Frobenius form. Following this result and these ideas, we can also
compute the Frobenius form of an integral matrix over Fq(y) and the corresponding
transformation matrix.

We examine a number of probabilistic algorithms in this thesis. When calcu-
lating the cost of a Monte Carlo algorithm, we only focus on the complexity of a
single try with error tolerance ε < 1. Actually, dividing this complexity by 1 − ε
gives the expected complexity, i.e. the expected cost to get a correct answer.

In some cases an efficient algorithm for a problem P is difficult. Instead we
show that it could be reduced to another problem Q efficiently, by providing an
efficient algorithm for P which includes several instances of Q.

Let M(n) denote the number of arithmetical operations over the ring R to mul-
tiply two polynomials of degree at most n. Using the practical standard algorithm,
M(n) = O(n2). The algorithm of Schönhage and Strassen [38] for any field R, or
the one of Cantor and Kaltofen [3] for any ring R, yields M(n) = O(nlognloglogn).

If F is a field, and f, g ∈ F [x] have degree at most n, then the division with
remainder of f by g, i.e. finding q, r ∈ F [x] such that f = qg+ r with degr < degg,

4



will cost O(M(n)) operations in F . We can compute the greatest common divisor
of f and g with O(M(n)logn) operations in F [14].

Let MM(n) denote the number of arithmetical operations over the ground field
to calculate the product of two n×n matrices. Using the standard method we have
MM(n) = O(n3) while using the fastest known algorithm MM(n) = O(n2.376).
We use ω to denote the best known exponent here, so 2 ≤ ω < 3. This is also
the complexity of many fundamental matrix operations, including computing the
determinant, the matrix inverse, the rank, the characteristic polynomial as well as
the Frobenius normal form [13].

2.1 Computations over Fields
In this section we specify our model of computation and measures of cost which

are to be used later. All of our computation is based on the basic computation
over Fp. We treat basic operations (+,−,×,÷), element selection and zero test
over Fp as unit operations which have the same cost. When we analyze the cost of
an algorithm, we count the number of these operations used in this algorithm. We
analyze the cost in the worst case.

The polynomial f ∈ Fp[x] of degree n − 1 can be represented by an ordered
sequence of elements (a0, a2, . . . , an−1) ⊂ Fnp . So the addition costs O(n) and the
complexity of multiplication is O(M(n)) over Fp.

In general, the finite field Fq, where p is a prime and q = pl, can be represented
by the isomorphism Fq

∼
= Fp[x]/(f), where f ∈ Fp[x] is irreducible with degree l.

Note that the size of an element of Fq is O(log q). From the conclusion above, the
complexities of addition and multiplication are O(log q) and O(M(log q)), respec-
tively. In this thesis we also treat the basic operations over Fq as unit operations.

We consider the exact representation of elements and the cost of arithmetic
for Fq(y). The rational function f

g
(f, g ∈ Fq[y], g 6= 0) is represented by the

ordered pair (f, g), where f = a0 + a1y + . . . + asy
s and g = b0 + b1y + . . . +

bty
t (s ≤ t) are relatively prime. The polynomial f (or g) is represented by an

ordered sequence of elements, (a0, a1, . . . , as) ∈ Fsq (or respectively (b0, b1 . . . , bt) ∈
Ftq). The product of the elements of Fq(y) having representations of length n is
twice as those of polynomials Fq[y], which uses O(M(n)) operations over Fq, i.e.
O(M(n)logq) over Fp. Reducing the result to a standard representation will cost
O(M(n)) operations over Fq, i.e. O(M(n)logq) over Fp. Doing addition, we first
compute the least common multiple by the Fast Extended Euclidean Algorithm
and then doing constant number of multiplications and additions in Fq[y]. Its
complexity is O(M(n)log n) over Fq or O(M(n)log nlog q) over Fp.

2.2 Factoring Bivariate Polynomials over Fq
Algorithms for factoring polynomials have made dramatic progress over the

past few decades. However there is no known universal algorithm for factorization
over all fields. The first polynomial-time multivariate factorization algorithms over
integer, rational number and finite fields are due to Kaltofen [25, 26, 27]. In this
thesis we only consider the polynomial-time algorithms for bivariate polynomials
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over finite field. Let R denote a commutative ring, K a field, R[x, y] the ring of
polynomials in two variables over R. Also for any f ∈ R[x, y], we denote by d its
total degree and dy (dx) its degree with respect to the variable y (x respectively).

Many bivariate polynomials factorization algorithms follow the lifting approach.
First, they specify one of the two variables at random. Then the resulting univari-
ate polynomial is factored and its factors are lifted to a sufficiently high degree to
get the exact result. The first two steps are classical, following Zassenhaus (1969,
1978), and the final step asks for a recombination procedure to get the factors of
the original polynomial. In 2003, Gao [11] presented an algorithm for factoring bi-
variate polynomials via partial differential equations with a near quadratic running
time: O(N2.5), where N = dxdy is the input size. Bostan et al. [2] follow the lifting
approach while getting the first linear bound for the Hensel lifting, and consequen-
tially reduce the cost of the algorithms to O∼(dω) when the characteristic of K is
0 or sufficiently large, where ω ≤ 3 is the feasible matrix multiplication exponent
and O∼(dω) = O(dω)(logd)O(1). The most recent result is due to Lecerf [29], which
works for a large class of fields with any characteristic and has a lower complexity
as follows.
Theorem 4. [Lecerf ]Assume that K has cardinality at least 2dxdy+max(dx, dy)+1.
Then, given a polynomial f = f e11 f

e2
2 . . . f err , the computation of the irreducible

decomposition (f1, e1), . . . , (fr, er) of f reduces to the computation of irreducible
decompositions of polynomials in K[y] whose degree sum is at most dx + dy, plus

1. O∼((dxdy)
(ω+1)/2) arithmetic operations in K in characteristic 0;

2. O∼(l(dxdy)
(ω+1)/2) arithmetic operations in Fp if K = Fpl.

We will use this result to factor the minimal polynomial of a matrix in this thesis.
A more efficient but probabilistic algorithm is also presented in Lecerf’s paper [29].
Actually the minimal polynomial we wish to factor is of a special form, called ∆-inc
form as defined in Definition 12. So there may be more efficient algorithms for such
polynomials. Note that the factorization of polynomials is one of the dominating
parts of our Wedderburn decomposition algorithm, Algorithm3.5.

Theorem 5. [Lecerf ] Assume that K has cardinality at least 10dxdy. Then given
a polynomial f = f e11 f

e2
2 . . . f err the computation of the irreducible decomposition

(f1, e1), . . . , (fr, er) of f reduces to the computation of irreducible decompositions of
polynomials in K[y] whose degree sum is at most dx + dy, plus

1. O((dxdy)
1.5) arithmetic operations in K and R(O(dxdy)) in characteristic 0;

2. O∼(k(dxdy)
1.5) operations in Fp and R(O(dxdy)) if K = Fpk .

The algorithm outputs either nothing or a correct result with a probability at least
1/2.
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2.3 Selecting a Maximal Linearly Independent Sub-
set of Vectors over Fq[y]

We now discuss the cost of computing a maximal linearly independent subset
from a set of vectors. It is not difficult but frequently used in this thesis. Given
{a1, a2, . . . , an} ⊂ Fq[y]1×m, where deg(ai) ≤ ∆ for 1 ≤ i ≤ n, we want to com-
pute its maximal linearly independent subset. The idea is that we have a large
probability of keeping the linear dependency of these vectors when specifying the
indeterminate y in Fq, as in the following theorem. Let a = [a1, . . . , an] ∈ Fq[y]m×n.
So a is a m× n matrix with degree bound ∆.
Theorem 6. Given a matrix a ∈ Fq[y]m×n with degree bound ∆ and rank k, then
a mod (y − α) is a m× n matrix in Fq with rank at most k for any α ∈ Fq. There
are at most k∆ elements in Fq such that the rank of a mod (y − α) is strictly less
than k. Moreover, if rows t1, t2, . . . , tk of a are linearly independent, then there
are at most k∆ elements in Fq such that these rows of a mod (y−α) are not linearly
independent.

Proof. Since the rank of a is k, there is a k × k minor matrix of a, denoted by
b such that det(b) 6= 0. Without loss of generality, we assume that ti = i for
1 ≤ i ≤ k, i.e. the first k rows of a are linearly independent. We already know
that the entries in b have degree bound ∆. It is clear that det(b) is a polynomial in
Fq[y] of degree at most k∆. If α makes the rank of a mod (y−α) strictly less than
k, then det(a mod (y − α)) = 0, i.e. α is a root of det(b). So there are at most k∆
elements in Fq satisfying such condition. If a mod (y − α) has its rank strictly less
than k, then α is a root of det(b). So there are at most k∆ elements in Fq such
that the rank of a mod (y − α) is strictly less than k.

Thus if q is sufficiently large, we have a Monte Carlo algorithm to select a
maximal linearly independent subset of a set of vectors.

Algorithm 2.1 Select Maximal Linearly Independent Subset
Input: The set of vectors {a1, a2, . . . , an} ⊂ Fq[y]1×m, where deg(ai) ≤ ∆ for

1 ≤ i ≤ n and q ≥ min(m,n)
ε

∆;
Output: A set of indices {t1, t2, . . . , tk} such that {at1 , at2 , . . . , atk} satisfies:

these vectors are linearly independent;
for any subset S ⊂ {a1, a2, . . . , an} such that {at1 , at2 , . . . , atk} ( S,
S is not linearly independent.

1: Choose a random α ∈ Fq, let a be the matrix constructed by taking ai as its
ith column for 1 ≤ i ≤ n;

2: Compute b = a mod (y − α);
3: Return the indices of a maximal linearly independent rows of b, {t1, t2, . . . , tk}.
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Theorem 7. Given a set of vectors {a1, a2, . . . , an} ⊂ Fq[y]1×m, where deg(ai) ≤ ∆

for 1 ≤ i ≤ n and q ≥ min(m,n)
ε

∆, Algorithm 2.1 returns the indices of a maximal
linearly independent subset with probability at least 1 − ε taking O(mn∆ + mn ·
min(m,n)) operations in Fq.

Proof. From Theorem 6 we know there are at most k∆ elements in Fq to cause
the algorithm to return an incorrect output. So the probability of correctness is
at least 1 − k∆

q
≥ 1 − k∆

∆min(m,n)/ε ≥ 1 − ε since k ≤ min(m,n). Step 2 costs

at most m × n × ∆ operations in Fq. We can use Gaussian elimination in step
3, which will cost O(nm · min(m,n)) operations in Fq. So the total cost will be
O(mn∆ +mn ·min(m,n)).

2.4 Solving Systems of Linear Equations
Solving systems of linear equations is a fundamental problem in symbolic com-

putation linked to the basic matrix operations. For nonsingular system, a unique
solution exists, while for a singular one, there is either no solution, or an infinite set
of solutions generated by a single solution together with a basis of the null space
of the coefficient matrix. Given a field F and a system of linear equations ax = b,
a ∈ F n×n and b ∈ F n×1, we can solve for x by standard Gaussian elimination
taking O(n3) operations in F . However, this result is not optimal. It is shown
that this problem is no harder than the matrix multiplication, i.e. it takes only
nω operations, where ω ≤ 2.376. O(n2.376) is the currently best but not practical
result. [13]

In this thesis, we need to understand the complexity of solving systems of linear
equations over a polynomial ring Fq[y]. Given a ring F [y] over a field F and a
system of linear equations ax = b, a ∈ F [y]n×n and b ∈ F [y]n×1, where the degree
of the entries here is bounded by ∆. The difficulty comes from the size of the data,
intermediate data and the final result. It is known that the matrix multiplication
can be done in O∼(nω∆) operations in F . So do the problems of computing the
determinant, the Smith normal form and the linear system solution. Generally, we
allow a to be anm×nmatrix with rank r. The following algorithm is by Storjohann
and Villard [42] for solving the linear system.
Theorem 8. [Storjohann & Villard] Let a ∈ K[x]m×n be a matrix with the degree of
all the entries at most d. The rank r of a and m−r linearly independent polynomial
vectors in the nullspace of a can be computed with

O(
nmMM(r, d)

r2
+ (

m

r
+ logr)(MM(r, d)log(rd) + r2B(d)logr + rM(rd))),

or O∼(nmrω−2d) operations in K by a randomized Las Vegas (certified) algorithm,
where B(d) is the cost of solving the extended gcd problem for two polynomials in
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K[x] of degree bounded by d. The degree sum of the computed nullspace vectors is
less than rd dlogre+ (m− 2r)d.

We will take advantage of the efficiency of solving linear system in Fq[y] here.
However, we are not satisfied by the stated degree bound. A more precise statement
for the degree can be found in the proof of this theorem in Storjohann and Villard’s
paper [42]. If m ≥ 2r, there are at most m−2r vectors in the nullspace of degree at
most d and the remainder r vectors have a degree sum bound rd dlog2re; otherwise,
the m− r vectors have a degree sum bound rd dlog2re. This result will be applied
in three ways later as follows.

• to solve the system as part of our whole algorithm.

• to bound the degree of the null space, thereby to prove the existence of some
special element as well as the complexity of the algorithm. Always, we use
the conclusion that it will take O∼(nm · min(n,m)ω−2d) to solve the linear
system and the degree bound for the output is md.

• to make other relative algorithms of Las Vegas type, as shown below in this
section.

Taking advantage of the Las Vegas algorithm for computing the linear nullspace,
we can check whether the result of Algorithm 2.1 is correct, i.e. maximal. Recall
that Algorithm 2.1 will return the indices of the vectors. We put these vectors
as the rows of our matrix a′ ∈ Fq[y]k×m with degree upper bound of its entries
∆. One way of checking this result is first computing the nullspace of the matrix
a′, denoted by N ∈ Fq[y]m×(m−k), and then checking if the product aN equals to
zero matrix or not. Here a is the matrix with all the input vectors as its rows.
For the complexity, computing N will take O∼(kω−1m∆) and computing aN will
take O∼(n(m− k)mk∆) = O∼(nm2 ·min(m,n)∆). So the Las Vegas algorithm for
selecting a maximal linearly independent subset costs O∼(nm2 ·min(m,n)∆).

Theorem 9. Given a set of m dimensional vectors {a1, a2, . . . , an} ⊂ Fq[y]1×m,

where deg(ai) ≤ ∆ for 1 ≤ i ≤ n and q ≥ min(m,n)
ε

∆, there exists a probabilistic
algorithm of Las Vegas type for computing its maximal linearly independent subset
taking O∼(nm2 ·min(m,n)∆) operations in Fq.

2.5 Computation of the minimal polynomial
The minimal polynomial plays an important role in our procedure of computing

the idempotents, which is the key step to decompose the algebra. We will discuss
computing the minimal polynomial of a matrix over Fq[y]m×m with degree bound
∆. Computing the minimal polynomial has a close relationship with computing
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the Frobenius form. The algorithm we propose in this section can be also used to
compute the Frobenius form of the matrix as well. Recall that the polynomial with
respect to the first block of its Frobenius form is the minimal polynomial of the
matrix.

Actually the problem of computing the Frobenius form has been well studied.
There are many algorithms proposed for this problem over different kinds of fields
and rings. The deterministic algorithms are first presented by Lüneburg [31] and
Ozello [32] in 1987 taking O(n4) operations in field F . Storjohann and Villard
[40, 41] improved it to O(n3) in 1998 and 2000. Giesbrecht [17] presented a prob-
abilistic algorithm taking the same number of operations as required for matrix
multiplication, that is O(nωlogn), over the field with at least n2 elements. More re-
cently, an algorithm requiring O(nωlogn) operations over any field for this problem
is proposed by Eberly [6].

However, we have another problem when the field K is Fq(y) and the matrix is
integral. In this case we need to pay attention to the size of the intermediate data
as well as the final result. The following lemma will be of assistance.
Lemma 10. Suppose R is an integral domain and K is its rational field. Given a
matrix a ∈ Rn×n, then its Frobenius form over K is in Rn×n as well.

Proof. It is obvious that det(xI − a) is in R[x]. We already know that the minimal
polynomial is the divisor of its determinant det(xI − a). By Gauss’s Lemma for
polynomials, we know the minimal polynomial has coefficients in R. So the entries
in the first block of its Frobenius form are all in R. Following the same path, we
can get that the entries of all the blocks are in R.

Giesbrecht and Storjohann [18] present an algorithm to compute the Frobenius
form of an integer matrix a ∈ Zn×n taking expected O∼(n4(log|a|)2) operations.
We will deal with the Fq(y) case in this section. Actually when it comes to the
minimal polynomial, we can get an even better result. Suppose we are given a
matrix a ∈ Fq[y]m×m with degree bound ∆ of its entries.

Lemma 11. Let f = xt + a1x
t−1 + . . . + at, h = xv + b1x

v−1 + . . . + bv and
g = xu + c1x

u−1 + . . . + cu in Fq[x, y]. If f = gh and deg(ai) ≤ i∆ for 1 ≤ i ≤ t,
then deg(cj) ≤ j∆ and deg(bk) ≤ k∆ for 1 ≤ j ≤ u and 1 ≤ k ≤ v.

Proof. Suppose not all the elements in {b1, . . . , bv} satisfy deg(bi) ≤ i∆. For a
vector (d1, d2, . . . , dt) ∈ Zt let argmax

i
{di} denote the indices {i1, . . . , it̄} such that

dij is maximal for 1 ≤ j ≤ t̄. Let

kh = min(argmax
i
{deg(bi)− i∆}).

If {c1, . . . , cu} satisfies deg(ci) ≤ i∆ for 1 ≤ i ≤ u, then consider the degree of akh ,
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the coefficient of the term akhx
t−kh . Then

av−kh =

min(kh,u)∑
j=1

bkh−jcj + bkh = (δ + bkh),

where δ =
∑min(kh,u)

j=1 bkh−jcj. Since deg(bkh−j)− (kh − j)∆ < deg(bkh)− kh∆ and
deg(cj) ≤ j∆ for 1 ≤ j ≤ min(kh, u), then

deg(δ) = max{deg(bkh−j) + deg(cj)}
< deg(bkh)− kh∆ + (kh − j)∆ + j∆
= deg(bkh).

So deg(akh) = deg(bkh) > kh∆, a contradiction.
If not all the elements in {c1, . . . , cu} satisfy deg(ci) ≤ i∆ for 1 ≤ i ≤ u, we

denote
kg = min(argmax

i
{deg(ci)− i∆}).

Then consider the degree of akh+kg , the coefficient of the term xt−kg−kh :

akh+kg =

min(kg ,v−kh)∑
d=1

ckg−dbkh+d+ckgbkh+

min(kh,u−kg)∑
d=1

ckg+dbkh−d = (δ1+bkhckg+δ2),

where δ1 =
∑min(kg ,v−kh)

d=1 ckg−dbkh+d and δ2 =
∑min(kh,u−kg)

d=1 ckg+dbkh−d. Since
deg(ckg−d)− (kg − d)∆ < deg(ckg)− kg∆ for 1 ≤ d ≤ min(kg, v− kh) and deg(bj)−
j∆ ≤ deg(bkh)− kh∆ for kh + 1 ≤ j ≤ min(v, kg + kh), then

deg(δ1) = maxd{deg(ckg−d) + deg(bkh+d)}
< deg(ckg)− kg∆ + (kg − d)∆ + deg(bkh)− kh∆ + (kh + d)∆
= deg(ckg) + deg(bkh).

Similarly, since deg(bkh−d)−(kh−d)∆ < deg(bkh)−kh∆ for 1 ≤ d ≤ min(kh, u−kg)
and deg(ci) − i∆ ≤ deg(ckg) − kg∆ for kg + 1 ≤ i ≤ min(u, kg + kh), deg(δ2) <
deg(ckg) + deg(bkh). So deg(akh+kg) = deg(ckg) + deg(bkh) > (kg + kh)∆, a contra-
diction.

To simplify our statement later in this section, we give a definition for such
polynomial with a good upper degree bound for its coefficients.

Definition 12. A polynomial f ∈ F [x, y] is in ∆-inc form with respect to x, if
f = xe + a1x

e−1 + . . .+ ae and degy(ai) ≤ i∆ for 1 ≤ i ≤ e.

The following two propositions are simple but useful.
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Proposition 13. Let a be a matrix in Fm×m. Then the minimal polynomial of a,

minpoly(a) =
det(xIm−a)

gcd(g1,g2,...,gm2)
, where {g1, g2, . . . gm2} is the set of determinants of

all the (m− 1)× (m− 1) minors of xIm − a and det(xIm − a) is the determinant
of xIm − a.

For a given element α ∈ Fq and a matrix a ∈ Fq[y]m×m, we denote by a(α) =
a mod y − α ∈ Fm×mq . Similarly, we denote f (α) = f mod y − α ∈ Fq[x] for
f ∈ Fq[x, y].

Proposition 14. gcd(f, g)(α) divides gcd(f (α), g(α)) for f, g ∈ Fq[x, y] and α ∈ Fq.

The key idea of our algorithm is inspired by the paper of Giesbrecht and Stor-
johann [18] that for a matrix a and a special element α ∈ Fq, the structure of the
Frobenius form of a, thereby its minimal polynomial, will be kept and passed to
that of the matrix a(α). Lemma 15 describes such relationship.

Lemma 15. Given a matrix a ∈ Fq[y]m×m and α ∈ Fq, deg(minpoly(a(α))) ≤
degx(minpoly(a)). Besides, minpoly(a(α)) | minpoly(a)(α).

Proof. From Proposition 13 we know minpoly(a) =
det(xIm−a)

gcd(g1,g2,...,gm2)
and

minpoly(a(α)) =
det(xIm−a(α))

gcd(g(α)
1 ,g

(α)
2 ,...,g

(α)

m2)
. It is straightforward that deg(det(xIm − a)) =

deg(det(xIm − a(α))). From Proposition 14 we have gcd(g1, g2, . . . , gm2)(α) dividing
gcd(g(α)

1 , g
(α)
2 , . . . , g

(α)

m2 ). So , deg(gcd(g1, g2, . . . , gm2)) ≤ deg(gcd(g(α)
1 , g

(α)
2 , . . . , g

(α)

m2 ))

and minpoly(a(α)) =
det(xIm−a(α))

gcd(g(α)
1 ,g

(α)
2 ,...,g

(α)

m2)
dividing minpoly(a)(α) = (

det(xIm−a)
gcd(g1,g2,...,gm2)

)(α).

We would like to choose such good element α, which is defined below, to simplify
the computation.

Definition 16. Given a ∈ Fq[y]m×m and α ∈ Fq, we say α is a good element for a
if deg(minpoly(a(α))) = deg(minpoly(a)).

We will show later in this section that the good elements are dense in Fq when
q is sufficiently large. Now suppose we can pick as many good elements as we
need from Fq and we will use these ones to computer the minimal polynomial of
a ∈ Fq(y)m×m. The algorithm is presented as follows.

Theorem 17. Given a matrix a ∈ Fq[y]m×m and a set of good elements {α1, . . . , αm∆},
Algorithm 2.2 computes the minimal polynomial of a correctly taking O∼(mω+1∆)
operations in Fq.

Proof. It is easy to check that det(xIm− a) is in the ∆-inc form. So by Lemma 11,
the minimal polynomial of a is in ∆-inc form as well. Since αi is a good element
for a, we can compute the degree in x of the minimal polynomial of a, denoted
by t. So minpoly(a) = xt + a1x

t−1 + . . . + at, where ai ∈ F [y] and deg(ai) ≤
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Algorithm 2.2 Compute the Minimal Polynomial
Input: A matrix a ∈ Fq[y]m×m and a set of good elements {α1, α2, . . . , αm∆}.

Output: The minimal polynomial of a.

1: Compute the minimal polynomial of a(αi), denoted by f (αi) = xt + ci1x
t−1 +

. . .+ cit for i = 1, 2, . . . ,m∆;
2: Interpolate the polynomial gj ∈ Fq[y] of degree at most j∆ with the values
{c1j, c2j, . . . , c(j∆)j} for j = 1, 2, . . . , t;

3: Return the polynomial f = xt + g1x
t−1 + . . .+ gt ∈ Fq[x, y].

i∆ for 1 ≤ i ≤ t. For any good element αi, the coefficient of xt−j of a(αi)’s
minimal polynomial cij = a

(αi)
j . Thus we can do the interpolation over every ai to

compute minpoly(a). Doing this, we need to first compute a(αi), which costs O(m2×
M(m∆)logm∆) = O∼(m3∆) using the fast polynomial evaluation. Computing
the minimal polynomials of a(αi) requires O(m∆ × mω) = O(mω+1∆). Step 2
of interpolation will take O(M(∆)log∆ + M(2∆)log2∆ + . . . + M(t∆)logt∆) =
O∼(t2∆) = O∼(m2∆) operations by fast interpolation. So the algorithm is of
complexity O∼(mω+1∆).

The following theorem shows the density of the good elements in Fq.

Theorem 18. Given a ∈ Fq[y]m×m of degree ∆ in y, if q ≥ 1
ε
m(m− 1)2∆ then the

probability of randomly choosing a good element in Fq for a is at least 1− ε.

Proof. Given a ∈ Fq(y)m×m, suppose α ∈ Fq is not a good element, i.e.
deg(minpoly(a(α))) 6= degx(minpoly(a)). So deg(gcd(g1, g2, . . . , gm2)(α)) is less than
deg(gcd(g(α)

1 , g
(α)
2 , . . . , g

(α)

m2 )). If gcd(g1, g2, . . . , gm2) 6= 1, then we can divide every
gi by gcd(g1, g2, . . . , gm2).

So in this proof we assume that gcd(g1, g2, . . . , gm2) = 1. We also denote g1 by
f1, gcd(fi, gi+1) by fi+1 for 1 ≤ i ≤ m2−1, so gcd(g1, g2, . . . , gm2) = gcd(fm2−1, gm2).
Since the greatest common divisor is not affected by the order of the polynomials,

we may also assume that g1 is D(
1 . . . m− 1
1 . . . m− 1

), the determinant of the first

m− 1 rows and first m− 1 columns, and the degrees of fi strictly decrease from f2

to ft. It is straightforward that fi|g1 and t ≤ m by checking the degree of fi with
respect to x. So {f1, f2, . . . , ft} are in the ∆-inc form, ft = 1 and degx(fi) ≤ m− i
for 1 ≤ i ≤ t− 1.

For every step from fi to fi+1, we want to give a upper bound for the num-
ber of elements in Fq that make the degrees of gcd(f (α)

i , g
(α)
i+1) strictly less than

gcd(fi, gi+1)
(α). Let c = gcd(fi, gi+1), f = fi

c
and g = gi+1

c
, then gcd(f, g) = 1 and

gcd(f (α), g(α)) 6= 1. So res(f, g) 6= 0 and res(f (α), g(α)) = 0, i.e. y − α|res(f, g).
Since degy(fi) ≤ (m − i)∆ and degy(gi+1) ≤ (m − 1)∆, then deg(res(f, g)) ≤
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2(m−1)(m− i)∆ (there is a tighter bound that deg(res(f, g)) ≤ (m−1)(m− i)∆).
So at most there are 2(m−1)(m− i)∆ elements which are not good from fi to fi+1.

In total, the number of the elements which are not good for a is at most∑t
i=1 2(m−1)(m−i)∆ = t(m−1)(2m−1−t)∆ ≤ m(m−1)2∆. If q ≥ 1

ε
m(m−1)2∆,

the probability that a random element in Fq is good is at least 1− ε.

Thus, we can develop a Monte Carlo algorithm to compute the minimal poly-
nomial of the matrix over Fq[y].

Algorithm 2.3 Compute the minimal polynomial
Input: An integral matrix a ∈ Fq[y]m×m, where the degrees of its entries are at
most ∆ and q ≥ 1

ε
m2(m− 1)2∆2;

Output: The minimal polynomial of a, f ∈ Fq[x, y];

1: Randomly choose {α1, α2, . . . , αm∆} ⊂ Fq;
2: Compute the minimal polynomial of every a(αi), denoted by f (αi) = xt+ci1x

t−1+
. . . + cit for j = 1, 2, . . . ,m∆, where t is the maximal degree of the minimal
polynomials of αi for 1 ≤ i ≤ m∆;

3: if Not all the f (αi)s have a same degree t then
4: return “failure”;
5: else
6: Use the values of {c1j, c2j, . . . , c(j∆)j} to interpolate the polynomial gj of de-

gree at most j∆ in Fq[y] for 1 ≤ j ≤ t;
7: Return the polynomial f = xt + g1x

t−1 + . . .+ gt;
8: end if

Theorem 19. Given an integral matrix a ∈ Fq[y]m×m, where the degrees of its
entries are at most ∆ and q ≥ 1

ε
m2(m−1)2∆2, Algorithm 2.3 computes the minimal

polynomial of a correctly with probability at least 1−ε, taking O∼(mω+1∆) operations
in Fq.

Proof. The probability that algorithm 2.3 returns the correct minimal polynomial is
the same as the probability that {α1, . . . , αm∆} are good elements. From Theorem
18, it is at least with probability 1− ε

m∆
that αi is a good element. So the probability

that {α1, . . . , αm∆} are all good elements is at least (1− ε
m∆

)m∆ ≥ 1− ε
m∆

m∆ = 1−ε.
Thus the probability of correctness of this algorithm is at least 1 − ε. Since
{α1, . . . , αm∆} randomly chosen from Fq, so we will not account for its cost. The re-
maining cost is the same as in Algorithm 2.2, thereby its complexity is O∼(mω+1∆)
by Theorem 17.

Although an efficient probabilistic algorithm of Monte Carlo type for computing
the minimal polynomial of a matrix A ∈ Fq[y]m×m has been presented above, we
hope we can eliminate the possible error. The remaining part of this section is
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devoted to a probabilistic algorithm of Las Vegas type. Note that the minimal
polynomial of a has such property: f = xd + a1x

d−1 + a2x
d−2 + . . . + ad where

deg(ai) ≤ i∆ for 1 ≤ i ≤ d. Once we can determine the degree of the minimal
polynomial, we can choose a set of m∆ good elements for the latter procedure.
Actually if we find an element whose minimal polynomial has a greater degree,
we can report “failure”. Now suppose we already have a set of good elements
{α1, . . . , αm∆+1} and the degree of the minimal polynomial of a(αi) is t for 1 ≤ i ≤
m∆+1. We need the following proposition to certify our correctness of the minimal
polynomial.

Proposition 20. Given a matrix a ∈ Fq[y]m×m with degree upper bound of its
entries ∆ and g = xd+a1x

d−1+. . .+ad ∈ Fq[y, x] where ai ∈ Fq[y] with deg(ai) ≤ i∆
and d ≤ m for 1 ≤ i ≤ d. If g mod (y − e) is the minimal polynomial of a(e) for
every element e ∈ E and the size of E is m∆ + 1, then g(a) = 0.

Proof. Assume E = {e1, e2, . . . , em∆+1}. Note that g(a) is a m × m matrix with
degree of its entries at most d∆ < m∆ + 1 and |E| = m∆ + 1. Since g mod (y− e)
is the minimal polynomial of a(e) for every element e ∈ E, g(a) ≡ 0 mod (y− e) for
e ∈ E. So g(a) ≡ 0 mod ((y − e1) . . . (y − em∆+1)), i.e. g(a) = 0.

The proposition above suggests a way to make sure the algorithm will not return
a wrong result. We only need to modify a few things in Algorithm 2.3 to make it
of Las Vegas type.

Algorithm 2.4 Compute the minimal polynomial
Input: An integral matrix a ∈ Fq[y]m×m, where the degrees of its entries are
bounded by ∆ and q ≥ 1

ε
m(m− 1)2∆(m∆ + 1);

Output: The minimal polynomial of a, f ∈ Fq[x, y];

1: Randomly choose {α1, α2, . . . , αm∆, αm∆+1} ⊂ Fq;
2: Compute the minimal polynomial of every a(αi), denoted by f (αi) = xt+ci1x

t−1+
. . . + cit for j = 1, 2, . . . ,m∆, where t is the maximal degree of the minimal
polynomials of {a(α1), . . . , a(αm∆+1)};

3: if Not all the elements in {f (α1), . . . , f (αm∆+1)} have a same degree t then
4: Return “failure”;
5: else
6: Use the values of {c1j, c2j, . . . , c(m∆+1)j} to interpolate the polynomial gj of

degree at most m∆ + 1 in Fq[y] for 1 ≤ j ≤ t;
7: if there is some i such that deg(gi) > i∆ then
8: Return “failure”;
9: else

10: Return the polynomial f = xt + g1x
t−1 + . . .+ gt;

11: end if
12: end if
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Theorem 21. Given an integral matrix a ∈ Fq[y]m×m, where the degrees of its
entries are bounded by ∆ and q ≥ 1

ε
m(m− 1)2∆(m∆ + 1), Algorithm 2.4 computes

the minimal polynomial of a correctly with probability at least 1 − ε and return
“failure” with probability at most ε, taking O∼(mω+1∆) operations in Fq.

Proof. If the algorithm does not return “failure” at neither step 3 nor step 5,
then by Proposition 20 the returned f is the annihilating polynomial of a. So
minpoly(a) | f . By Lemma 15, deg(f) ≤ deg(minpoly(a)). So f = minpoly(a).
Note that if {α1, . . . , αm∆+1} are good elements then the algorithm will not return
“failure”. So the probability of returning the correct minimal polynomial is at least
the same as, if not greater than, the probability that all the αis are good elements.
From the proof of Theorem 19 we know the probability of correctness of this algo-
rithm is at least 1−ε. Since we actually do nothing in step 3 and step 5. The cost of
this algorithm is the same as Algorithm 2.3, thereby its complexity is O∼(mω+1∆)
by Theorem 19.
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Chapter 3

Computations of Matrix Algebras
over Fq(y)

Our main object of study in this thesis is finite-dimensional associative algebras
over Fq(y). These are completely classified by the following representation theorem
[37].
Theorem 22. [Representation Theorem] Let A be a finite-dimensional algebra over
a field F and dimFA = n. Then A is isomorphic to a subalgebra of Mn+1(F ).
Moreover, if A has an identity element then A is isomorphic to a subalgebra of
Mn(F ).

In the case that A has no identity, we can add one using Dorroh extension [28].
This is why we need (n + 1) × (n + 1) matrix in the theorem above. The Repre-
sentation Theorem is easy to prove using the regular representation of A. Thus,
we will focus on the decomposition of the matrix algebras over Fq(y) with identity.
Also, we will assume in this thesis that m ≤ n ≤ m2 for the dimension of algebra
n and the dimension of the matrix m. The structure of finite-dimensional matrix
algebras is theoretically clear and fully understood, via Wedderburn’s Structure
Theorem [34]. Given an algebra A, A/Rad(A) is semisimple. For a semisimple
algebra, Wedderburn’s Structure Theorem states that it is isomorphic to the direct
sum of its simple components as follows.

Theorem 23. [Wedderburn] Suppose that A is a finite-dimensional semisimple
algebra over the field F . Then

A ∼= A1 ⊕ A2 ⊕ ...⊕ Ak

for simple algebras A1, A2, ..., Ak ⊂ A, and each component satisfies

Ai ∼= Dti×ti
i ,

where Di is a division ring over F for some positive integer ti, for 1 ≤ i ≤ k.

Typical proofs in textbook of these results are not constructive thanks to state-
ment like “pick any minimal right ideal”. To simplify the discussion, we will first
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assume q is large enough and discuss the algorithms to compute the radical and the
simple components of the algebra for such case. Then in the last section we will
discuss how to modify our algorithms for the case that q is small.

3.1 Wedderburn Decomposition
In this section we hope to compute the simple components, i.e. the minimal

ideals, of the semisimple algebra. According to Wedderburn’s Structure Theorem,
every minimal ideal is isomorphic to Dt×t, a full matrix ring over some division
ring D which is extended from the ground field F . The first (deterministic) general
polynomial-time algorithm for computing the simple components of a semisimple
algebras over Fq is presented by Friedl and Rónyai [9] and Rónyai [37]. There
is lots of subsequent work related to this problem instigated by Ivanyos, Rónyai,
Gianni and so on [16, 21, 33]. It is shown by Rónyai [35, 36] that deciding the
existence of the nontrivial idempotents in an algebra over a number field has the
same complexity as integer factorization, which is intractable at this time. When
the algebra is commutative over Q, Gianni et al. [16] give an efficient algorithm
to compute its local components. Other related work such as decomposition of
modules are presented by Parker [33] and extended by Holt and Rees [21].

In this thesis we will focus on the Wedderburn decomposition over Fq(y). We
will first introduce some results about the Wedderburn decomposition over Fq in
Subsection 3.1.1. After a quick review on the inefficiency of Friedl and Rónyai’s
algorithm [37, 9], we will discuss the efficient algorithm by Eberly and Giesbrecht [7]
which provides us the key idea when developing our algorithm for the Wedderburn
decomposition over Fq(y). We also discuss a way to modify the algorithm by Friedl
and Rónyai [9, 37] to be more efficient but probabilistic. Starting from Subsection
3.1.3, we will bring out our final algorithm step by step. First we will analyze the
complexity of the algorithm by Ivanyos [24] In Subsection 3.1.2 which, to our best
knowledge, is the only algorithm for the Wedderburn decomposition over Fq(y). In
Subsection 3.1.3 we will discuss generally the key position of the idempotents in
the Wedderburn decomposition. Finally we present our probabilistic algorithm for
computing the set of idempotents and give a complete algorithm and its analysis
in Subsections 3.1.4 and 3.1.5.

Actually our algorithm does not quite compute a complete Wedderburn decom-
position. It computes the simple components of the semisimple algebra. However,
it does not compute the isomorphic mapping from each of its simple components
to some Dt×t. This problem is also very important, with applications such as the
factorization of the Ore polynomials [19]. Note that for the algebra over the finite
field, this problem is solved both in Friedl and Rónyai’s paper [9, 37] and Eberly
and Giesbrecht’s paper [7]. But it is still open in Ivanyos, Rónyai and Szántó’s
paper [24] when it comes to Fq(y).
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3.1.1 Decomposition of Semisimple Algebras Over Fq
Even though the algorithm of Friedl and Rónyai [9, 37] runs in polynomial time,

it is expensive, with a high exponent. The dominating part comes from computing
the center of the algebra and solving the invariant space of the mapping x 7−→ xp in
a standard way. For the computation of its center we need to solve a linear system
of size nm2 × n and for the invariant space we need to do nlog p times of m ×m
matrix multiplication.

The first improvement in the speed of algorithms for the decomposition of
semisimple algebras over a finite field is due to Eberly and Giesbrecht [7]. They
give an probabilistic algorithm to compute the set of orthogonal primitive idempo-
tents in O∼(mω +R(A)), where O(R(A)) is the cost of selecting a random element
a uniformly from the algebra A. They then show that using the idempotents the
Wedderburn decomposition becomes easy and efficient as presented in the next sub-
section. The key idea of Eberly and Giesbrecht’s work [7] is based on the density
of the “good” elements in the simple algebra over Fq, as presented in the following
theorem.
Theorem 24. [Eberly & Giesbrecht] Let A ⊂ Fm×mq be a simple algebra of di-
mension n. The number of a ∈ A with f = minpoly(a) such that there exists a
factorization f = f1f2 for relatively prime polynomials f1, f2 ∈ Fq[x] with corre-
sponding idempotents ω and 1 − ω, and such that n/2 ≤ dimFq(Aω) ≤ 3n/4, is at
least qn/22.

Recall that any simple algebra over Fq is isomorphic to a full matrix ring Et×t

over an extension field E of Fq for some positive integer t. This theorem is proved
by counting the number of such matrices in Et×t. The primitive idempotents can be
computed in expected O∼(mω + R(A)) operations over Fq. Eberly and Giesbrecht
[7] showed as well the large probability to split the idempotents in different simple
components using a random element from the algebra. Another important thing
to be aware of is that not only the simple components of the semisimple part, but
the isomorphic mapping from each of its simple component to some Et×t can be
computed from the primitive idempotents.

We also note that there is a simple way to modify the algorithm of Friedl and
Rónyai [9, 37]. Recall that the dominating part is from the computation of the
center of the algebra. Other than the deterministic standard method, Eberly and
Giesbrecht [8] present an efficient algorithm taking O∼(mω) operations over Fq
which greatly reduces the complexity. Actually the method here is essentially the
same as that in the probabilistic Wedderburn decomposition algorithm [7]. It is also
shown that we can avoid computing the invariant space of the mapping x 7−→ xp,
and consequently get the same cost, O∼(mω + R(A)) again. For details of this
algorithm please refer to the paper [8].

3.1.2 Algorithm of Ivanyos, Rónyai and Szántó

A polynomial-time algorithm for computing the Wedderburn decomposition of
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a finite dimensional associative algebra is given in Ivanyos’s paper[24]. The basic
idea is to first change the algebra into a commutative separable one and then to
solve this problem over this much nicer algebra. We denote this commutative
separable algebra by A. Let B denote the direct sum of the prime fields in the
simple components of our commutative separable algebra A. The algorithm has
two cases depending on the character of the ground field p. If p is small, we can
solve the linear system for the basis of B. Since B is a Fq-algebra generated by
the idempotents of A, we can compute its primitive idempotents (and therefore the
primitive idempotents of A) easily. However, in this way we get p as a factor in
the complexity. So when p is large, the algorithm uses a lift-and-project method so
that we can avoid getting p in the complexity. The lift-and-project method is more
efficient but requires a large q as showed later in this subsection.

The first step of the algorithm is to transform the given algebra A′ into a
commutative separable algebra A.

Algorithm 3.1 Transformation of the algebra
Input: An integral basis, {a′1, a′2, . . . , a′n}, of an algebra A′ ⊂ Fq(y)m×m, where
deg(a′i) ≤ ∆ for 1 ≤ i ≤ n;
Output: The integral basis, {a1, a2, . . . , at}, of a commutative separable subal-
gebra A of A′ which includes all the idempotents of the center of A′;

1: j =
⌊
logpn

⌋
;

2: Compute the basis {c1, c2, . . . , ck} of the center of A′,C(A′);
3: Compute the basis of the subalgebra generated by {cp

j

1 , c
pj

2 , . . . , c
pj

k }.

Theorem 25. Given an integral basis {a′1, a′2, . . . , a′n} of an algebra A′ ⊂ Fq(y)m×m,
where deg(a′i) ≤ ∆ for 1 ≤ i ≤ n, Algorithm 3.1 returns the correct result with
probability 1− ε, taking O(n4m2∆) operations in Fq.

Proof. Step 2 here could be done by solving a linear system. First, we compute
a′ia
′
j − a′ja′i for 1 ≤ i, j ≤ n, which will takes O(n2 ×mω ×M(∆)) = O∼(n2mω∆)

operations. Then we solve the following linear system with nm2 equations and n
unknowns in Fq[y] :

n∑
j=1

ci(aiaj − ajai) = 0 for i = 1, 2 . . . , n,

which requires O∼(nm2nrω−2∆) = O∼(nωm2∆) operations in Fq (r is the rank
of our coefficients matrix, i.e. the dimension of C). The degree bound of ci is
(n− r)∆ dlog2(n− r)e, denoted by d, by Theorem 8.

Step 3 is equivalent to selecting a maximal linearly independent subset from
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{cp
j

1 , c
pj

2 , . . . , c
pj

r }. The cost of computing all the cp
j

i s for 1 ≤ i ≤ r is

O(r × (mωM(d) +mωM(2d) + . . .+mωM(2log2p
j
d)))

= O∼(r ×mωd(1 + 2 + 4 + . . .+ pj))
= O∼(mωrpjd).

We need to select a maximal linearly independent subset from a set of r m2-
dimension vectors with degree bounded by d × pj, which will take O(r × m2 ×
min(r,m2) × dpj) = O(r2m2dpj) operations in Fq by Theorem 7. When q ≥
n2dlog2ne∆+n∆

ε
≥ ((n−r)dlog2(n−r)e+1)r∆

ε
≥ (d+∆)min(r,m2)

ε
, the algorithm works cor-

rectly with probability 1− ε. So the total cost of this algorithm will be O(nωm2∆+
mωrpjd+ r2m2dpj) = O∼(nωm2∆ + n3mω∆ + n4m2∆) = O∼(n4m2∆) operations.

From the proof of Theorem 25, the degree bound for the basis of the commu-
tative separable algebra A is n2 dlog2ne∆. Therefore the degree bound for the
structure constants could be n3 dlog2ne∆, denoted by dc. (This upper bound could
be attained from Theorem 8 easily.) We assume that the structure constants are
integral in the rest of this subsection. The general case has even higher complexity.
The key theorem about the idempotents is as follows.

Theorem 26. Let A be an n-dimensional commutative separable algebra over the
field Fq(y). Assume that the structure constants with respect to the basis {a1, . . . , an}
are from Fq[y] and their heights are limited by dc. Then any idempotent e ∈ A lies
in the Fq-space {

n∑
i=1

αi
D
ai | αi ∈ Fq[y], degyαi ≤ (3n− 2)dc

}
,

where D is the discriminant disc{a1,a2,...,an}A in this subsection as a polynomial of
degree 2ndc with respect to y. It is well-known (see Bastida, [1],pp. 166-168) that
D is nonzero for a commutative separable algebra A.

Thus every element in B is generated by {αi
D
ai | αi ∈ Fq[y], degyαi ≤ (3n −

2)dc, 1 ≤ i ≤ n} over Fp. Hence so is its basis. Let b = α1
a1

D
+ α2

a2

D
+ . . . + αn

an
D
.

We want to solve {α1, . . . , αn} from bp = b as follows. Denote

αi = αi0 + αi1y + . . .+ αi((3n−2)dc)y
(3n−2)dc( ∈ Fq[y])

=
∑l

j=0 αi0jz
j +
∑l

j=0 αi1jz
jy + . . .+

∑l
j=0 αi((3n−2)dc)jz

jy

=
∑(3n−2)dc

k=0

∑l
j=0 αikjz

jyk,

where αikj ∈ Fp, z is the generating element of Fq over Fp and q = pl+1 for 1 ≤ i ≤ n,
0 ≤ k ≤ (3n− 2)dc and 0 ≤ j ≤ l. Then

αpi =

(3n−2)dc∑
k=0

l∑
j=0

αikjz
pjypk =

(3n−2)dc∑
k=0

l∑
j=0

l∑
u=0

αikjcjuz
uypk,
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if we rewrite zpj =
∑l

u=0 cjuz
u for 1 ≤ i ≤ n and 0 ≤ j ≤ l. Note that A is

commutative, so bp = b will be

n∑
i=1

(3n−2)dc∑
k=0

l∑
j=0

l∑
u=0

αikjcjuz
uypk(

ai
D

)p =
n∑
i=1

(3n−2)dc∑
k=0

l∑
j=0

αikjz
jyk

ai
D
,

which is a linear system of m2×max{p∆ +p(3n−2)dc, 2ndc(p−1) + (3n−2)dc}×
l = O(m2npdcl) equations with n × (3n − 2)dc × l = O(n2dcl) unknowns over Fp,
where ∆ is the degree bound for the entries in ai. Solving this system will take
O(m2npdcl × (n2dcl)

ω−1) = O(m2n2ω−1dωc l
ωp) = O∼(m2n5ω−1∆ωp(logpq)ω).

So when p ≤ 2ndc, the algorithm solves the linear system directly with the cost
O∼(m2n5ω+3∆ω+1(logpq)ω) in Fp.

When q > 2ndc, since p is not polynomial in the size of our input (log p here),
we need to modify the algorithm. Let I to be the ideal of Fq[y] generated by y− c,
where c is the element in Fq such that its discriminant D(c) 6= 0 and M denote
the Fq[y]-submodule of A generated by { 1

D
a1,

1
D
a2, . . . ,

1
D
an}. The existence of c is

guaranteed by q > 2ndc. First we compute the primitive idempotents of the Fq-
algebra M/IM with the basis {a1, . . . , an} fixed. Then we lift the idempotents to
those inM/IkM where k = n(3n−1)dc+1, denoted by {ē1, ē2, . . . , ēr}. Ivanyos [24]
proved that if we can find an element u 6= 0 of degree not greater than (3n− 2)dc
in the Fq-algebra generated by {ē2, ē2, . . . , ēr}, then u is a zero divisor in A. So A
can be split into the proper ideal Au and its complement. Otherwise, A is simple.
The above method gives the minimal ideals of A in at most n iterations.

The lifting procedure is granted by the following lemma.

Lemma 27. Let S be a commutative ring with identity and let J be an ideal of S.
Let us define the following lifting mapping l : S → S:

l : x 7→ x2(3− 2x).

Then for all elements x, y ∈ S, such that x2 ≡ x and y2 ≡ y (mod J) and for
all positive integers j, we have the following assertions:

• lj(x)2 ≡ lj(x) (mod J2j);

• if x ≡ y (mod J), then lj(x) ≡ lj(y) (mod J2j);

• if xy ≡ 0 (mod J), then lj(x)lj(y) ≡ 0 (mod J2j);

• if xy ≡ 0 (mod J), then lj(x+ y) ≡ lj(x) + lj(y) (mod J2j).

To be more detailed, now assume we have primitive idempotents in M/IM ,
e

(1)
i = ci1

1
D
a1 + ci2

1
D
a2 + . . .+ cin

1
D
an for 1 ≤ i ≤ r, where cij ∈ Fq[y]/(y − c) = Fq.

Then we need to compute the following:
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1. The structure constants of the algebra A: solve n2 linear systems generated
by aiaj =

∑n
u=1 φijuau, each of which has m2 equations and n unknowns.

Similarly, deg(φiju) ≤ dc for 1 ≤ i, j, u ≤ n;

2. For 1 ≤ i ≤ dlog2ke, 1
D

mod I2i . Use the EEA to compute the greatest
common divisor of D and (y − c)2i , sD + t(y − c)2i = 1. So 1

D
= si mod I2i .

Now we can compute a step in the lifting procedure. Suppose we already have
the lifted idempotents {e(j)

1 , e
(j)
2 , . . . , e

(j)
r } in M/I2jM for a given j, where e(j)

i =

c
(j)
i1

1
D
a1 + c

(j)
i2

1
D
a2 + . . . + c

(j)
in

1
D
an with deg(c

(j)
iu ) ≤ 2j for 1 ≤ i ≤ r and 1 ≤

u ≤ n. e
(j+1)
i = (e

(j)
i )2(3I − 2e

(j)
i ) = 3(e

(j)
i )2 − 2(e

(j)
i )3. Compute (e

(j)
i )2 =

1
D

∑n
u,v=1 c

(j)
iu c

(j)
iv

∑n
s=1 φijs

1
D
as mod I2j+1and (e

(j)
i )3 in the same way. After dlog2ke

rounds we get the idempotents inM/I2

⌈
log2k

⌉
M , {ē1, ē2, . . . , ēr}, where ēi = c̄i1

1
D
a1+

c̄i2
1
D
a2+. . .+c̄in

1
D
an with deg(c̄ij) ≤ 2dlog2keand c̄ij = cij0+cij1y+. . .+c

ij2

⌈
log2k

⌉y2

⌈
log2k

⌉
.

We will solve a linear system over Fq as follows:

c2itx2 + . . .+ cnitxn = 0 for1 ≤ i ≤ n and (3n− 2)dc ≤ t ≤ 2dlog2ke.

For its complexity, we will not account for the cost of computing the initial
idempotents over Fq since it is small, based on the paper of Eberly et al. [7]. The
computation of structure constants will take O∼(m2n3∆+n2nωn2∆+n2mωn2∆) =

O∼(nω+4∆). The computation of 1
D

mod I2i will takeO∼(M(max{2ndc, 2
dlog2ke})),

therebyO∼(n2dc) = O∼(n5∆). Computing (e
(j)
i )2 and (e

(j)
i )3 will takeO(n3M(2j+1)),

i.e. O∼(n32j). So computing the lifted idempotents {ē1, ē2, . . . , ēr} will take

O∼(

dlog2ke∑
j=1

n32j) = O∼(kn3) = O∼(n8∆).

At last, solving the linear system above costs O∼(n3dcn
ω−1) = O∼(nω+5∆) in Fq.

So the complexity of finding a zero divisor is O∼(n8∆) in Fq when p ≥ 2pdc.
We need to keep splitting the algebra until all the subalgebras are simple. Note

that we do not need to compute the idempotents again, and also the subalgebra split
from u is generated by the idempotents with nonzero coefficients in the expression
of u. Besides, the degree bound of the subalgebra is the same as in A. So we need
to solve the linear system at most n times. Thus the total cost of this algorithm is
O∼(n9∆).

Theorem 28. The algorithm given by Ivanyos et al. [24] for computing the Wed-
derburn decomposition of n-dimensional matrix algebra A ⊂ Fq(y)m×m with the
degree bound ∆ for the basis of A costs

1. O∼(m2n5ω+3∆ω+1(logpq)ω) if p ≤ 2n4 dlog2ne∆;
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2. O∼(n9∆) if q ≥ 2n4 dlog2ne∆ + 1.

3.1.3 Wedderburn Decomposition using Primitive Idempo-
tents

We discuss the close relationship between the computation of idempotents and
the decomposition of the semisimple algebra in this part. (Actually the semisimple
condition here is not necessary. It is also the case for a general associative algebra,
as shown at the end of this subsection.)

Given a semisimple algebra A ⊂ Fm×m, recall that under some isomorphic
mapping A ∼= A1 ⊕ A2 ⊕ ... ⊕ Ak for simple algebras A1, A2, ..., Ak ⊂ A, and each
component satisfies Ai ∼= Dti×ti

i . Suppose we are given a complete set of primitive
idempotents {ω1, ω2, . . . , ωt} such that ωiωj = 0 for i 6= j and that ω1 +ω2 + . . . ωt =
Im. There exists a nonsingular matrix U such that

ω̂i = U−1ωiU =


∆i1

. . .
∆ii

. . .
∆it

 ∈ Fm×m,

such that ∆ij ∈ F dj×dj is the identity matrix when j = i and zero matrix when
j 6= i. The same thing happens to the images of ωi. Thus, there is a new isomorphic
mapping φ from A to A1 ⊕ A2 ⊕ ...⊕ Ak, such that

φ(ωj) =
k∑
i=1


∆kij1

. . .
∆kijkij

. . .
∆kijti

 ∈
k⊕
i=1

Dti×ti
i ,

where ∆ij is 1 when j = i and i 6= 0, and 0 otherwise. Note that {ω1, ω2, . . . , ωt} is
the set of primitive idempotents, so there is a unique i such that kij 6= 0 and
the dimension of ∆ij is 1. Now we can split and rewrite the idempotents as
{ωi1, ωi2, . . . , ωiti} for i = 1, 2, . . . , k, where {ωi1, ωi2, . . . , ωiti} are all the primi-
tive idempotents in the ith simple component. We call such a group an equivalent
class of idempotents associated with the same simple component. Two idempotents
in one equivalent class of idempotents associated with the same simple component
are called equivalent in this thesis. Denote ω̄i =

∑ti
j=1 ωij. It is obvious that

Ai = ω̄iAω̄i for 1 ≤ i ≤ k, which is the simple component of the algebra.
The remaining problem is deciding the equivalence classes of the primitive idem-

potents over Fq(y). We will first present a probabilistic algorithm and then modify
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it to be a deterministic one.

Algorithm 3.2 Determining the Equivalent Idempotents
Input: Given an integral basis {a1, a2, . . . , an} of matrix

algebra A ⊂ Fq(y)m×m, and a set of integral elements {ω′1, ω′2, . . . , ω′t}
of A such that each ω′i is in a unique simple component of A, where
q ≥ t

ε
, deg(ai) ≤ ∆ and deg(ω′j) ≤ d∆ for1 ≤ i ≤ n and 1 ≤ j ≤ t;

Output: The indices of all the equivalent elements of {ω′1, ω′2, . . . , ω′t} in each
class;

1: Randomly choose element (c1, c2, . . . , cn) ∈ Fnq . Let α =
∑n

i=1 ciai;
2: Compute tij = ω′iαω

′
j for i, j = 1, 2, . . . t and i < j;

3: I = {1, 2, . . . t}; Ii = ∅ for 1 ≤ i ≤ t;
4: while I 6= ∅ do
5: Pick the smallest i ∈ I
6: Ii = {j | tij 6= 0, j = i, i+ 1, . . . , t};
7: I = I\Ii;
8: end while

It is easy to see that if ωi and ωj are in different equivalent classes then for any
element α ∈ A, ωiαωj = 0 for 1 ≤ i, j ≤ t. Our algorithm takes advantage of this
property. We will analyze the case when F = Fq(y). It is even simpler when F
is finite. Besides, we give an general algorithm for elements each of which is in a
unique simple component of A.

Theorem 29. Given an integral basis {a1, . . . , an} of matrix algebra A ⊂ Fq(y)m×m,
and a set of integral elements {ω′1, ω′2, . . . , ω′t} of A such that each ω′i is in a unique
simple component of A, where q ≥ t

ε
, deg(ai) ≤ ∆ and deg(ω′j) ≤ d∆ for 1 ≤ i ≤ n

and 1 ≤ j ≤ t, Algorithm 3.2 computes the equivalence classes of {ω′1, ω′2, . . . , ω′t}
correctly with probability at least 1− ε taking O∼(t2mωd∆) operations in Fq.

Proof. First we prove the algorithm gives a correct result with large probability.
Given i and j, if ωi and ωj are in different equivalent class then ωiαωj = 0. So the
algorithm works correctly in this case. When ωi and ωj are in a same equivalence
class, we will return the wrong output when ωiαωj = 0, i.e., the entry at position
(i, j) of matrix α is 0. We claim that there is at least one element in the basis of
A such that ωiαωj 6= 0. If not, then there is not matrix in A whose image is eij,
the matrix with position (i, j) being 1 and others being 0, in the simple component
of ωi and ωj. Suppose {a1, a2, . . . , as} are all the elements in the basis of A such
that ωiatωj 6= 0 for t = 1, 2, . . . , s. Selecting a random element α of A such that
ωiαωj = 0 is equivalent to selecting {c1, c2, . . . , cs} from Fq such that

s∑
t=1

ctāt = 0,
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where āt = ωiatωj 6= 0 for t = 1, 2, . . . , s. So there at most qs−1 solutions for
this equation and our background set is of qs element. So by Lemma 3 (Schwartz-
Zippel Lemma) the probability that this equation holds, i.e. the probability that
this algorithm returns correct output, is at least 1 − 1

q
. For the whole algorithm,

the probability of correctness is (1− 1
q
)t ≥ 1− t

q
≥ 1− ε.

To analyze the cost, first we need to compute α with cost O(m2∆). The domi-
nating part is computing tij, which has cost O(t2×mω ×M(d∆)) = O∼(t2×mω ×
d∆) = O∼(t2mωd∆) operations in Fq.

From the claim in the proof above, we could modify Algorithm 3.2 to be a
deterministic one.

Algorithm 3.3 Determine the Equivalent idempotents
Input: A set of integral elements {ω′1, ω′2, . . . , ω′t} of A such that each

ω′i is in a unique simple component of A.
The basis, {a1, a2, . . . an}, of the matrix algebra A ⊂ Fq(y)m×m,
where deg(ai) ≤ ∆ and deg(ω′j) ≤ d∆ for 1 ≤ i ≤ n and 1 ≤ j ≤ t.

Output: The sums of all the equivalent elements of {ω′1, ω′2, . . . , ω′t}.

1: I = {1, 2, . . . t};
2: while I 6= ∅ do
3: for i ∈ I do
4: ω̄i = ω′i;
5: I = I\{i};
6: for j = i+ 1 to t do
7: for t = 1 to n do
8: if ω′iatω

′
j 6= 0 then

9: ω̄i = ω̄i + ω′j;
10: I = I\{j};
11: Break out the inner “for” loop of t;
12: end if
13: end for
14: end for
15: end for
16: end while
17: Return all the ω̄is.

It is easy to verify the correctness of Algorithm 3.3 from the claim that there
is at least one element a in the basis of A such that ωiaωj 6= 0 for 1 ≤ i, j ≤ t.
For the cost, we do the matrix multiplication for at most t2n times which cost
O(t2n×mω ×M(d∆)) = O∼(t2nmωd∆).

Note that we do not really need the idempotents here to be primitive. The
algorithms and the conclusions also hold for the set of elements where each element
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is exactly in one equivalent simple component. We will use this case in our algorithm
for the Wedderburn decomposition. Also we do not need the ωis to be idempotents.
But we do need that the sum of all the equivalent ωis is a unit in some unique simple
component. In Subsection 3.1.4 and 3.1.5 we will take advantage of these trivial
properties and remove the denominator of the idempotents.

3.1.4 Computing the Idempotents

From Subsection 3.1.3 we know that it is sufficient to compute the primitive
idempotents for the Wedderburn decomposition. Moreover, we do not really need
the elements to be primitive or idempotent but just to satisfy a special condition:
each element is exactly in one simple component and the sum of all the equivalent
elements is a unit in some unique simple component. We will discuss a way of
computing such a set of elements over Fq(y) in this subsection.

Recall the Wedderburn’s Structure Theorem that

A = A1 ⊕ A2 ⊕ ...⊕ At.

Our idea is inspired by Eberly [8] that it is with large probability to select a “good”
splitting element from the algebra. By the “good” here, we mean the expected set
of idempotents can be computed in the following way from this element. Suppose
the element a ∈ A satisfies that its minimal polynomial f ∈ F [x] has a factorization
f = f1f2 . . . ft into two or more monic, pairwise relatively prime fi ∈ F [x]\F . For
1 ≤ i ≤ t, use the Extended Euclidean Algorithm to construct hi ∈ F [x] such
that hi ≡ 1 mod fi, hi ≡ 0 mod fj for j 6= i, and assign ωi = hi(α) ∈ A. It
is easy to prove that {ω1, . . . , ωt} is a set of pairwise orthogonal idempotents and
ω1 + ω2 + . . .+ ωt = 1 ∈ A. Since hi ≡ 1 mod fi, hi ≡ 0 mod fj for i 6= j, then for
1 ≤ i, j ≤ t

eiei = hi(a)2 = ((tifi + 1)kif1 . . . fi−1fi+1 . . . fk)(a) = (tif)(a) + hi(a) = hi(a) = ei,

and when i 6= j

eiej = hi(a)hj(a) = (kikj
f

fifj
f)(a) = 0.

But it is not guaranteed that they are primitive, or that each of them is exactly in
one simple component. So we need to add more requirement to this “good” element.

Suppose A is a semisimple algebra over Fq(y) with the basis {a1, a2, . . . , an},
where deg(ai) ≤ ∆, i = 1, 2, . . . n. If α ∈ A, then α = α1 ⊕ α2 ⊕ ... ⊕ αk, where
αi ∈ Ai. The minimal polynomial of α over F , denoted by minpolyF (α), is the
least common multiple of the minimal polynomials of all the components:

minpolyF (α) = lcm(minpolyF (α1),minpolyF (α2), ...,minpolyF (αk)).

We define the “good” element in a formal and clear way as follows.
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Definition 30. Let A be a semisimple algebra. An element α ∈ A is called de-
composing element in A, if the minimal polynomials of its simple components are
pairwise co-prime.

Such decomposing element will provides us a good set of idempotents, i.e. pair-
wise orthogonal, ω1 + ω2 + . . . + ωt = 1 and each one is exactly in one simple
component of A according to the following Theorem 31.

Theorem 31. If A is a semisimple algebra, and α ∈ A is the element such that the
degree of its minimal polynomial is maximal. Then α is a decomposing element.

To prove Theorem 31 we will need the following trivial but useful lemma.

Lemma 32. Let D be a division ring and F ⊂ D a subfield. The minimal polyno-
mial of d ∈ Dt×t over F is f(x) ∈ F [x]. Then the minimal polynomial of d + bI
over F is f(x− b) ∈ F [x] for b ∈ F .

Proof. [Proof of Theorem 31] Suppose α is an element such that the degree of its
minimal polynomial is maximal. Recall that α = α1 ⊕ α2 ⊕ . . .⊕ αk. Now suppose
contrarily that {minpolyF (α1),minpolyF (α2),. . . ,minpolyF (αk)} are not pairwise
co-prime.

minpolyF (α) = lcm(minpolyF (α1),minpolyF (α2), ...,minpolyF (αk)).

We will derive a contradiction. Let fi(x) = minpolyF (αi). By Lemma 32 the
minimal polynomial of αi + bI is fi(x − b) ∈ F [x] for 1 ≤ i ≤ k, where b ∈ F
and I is the identity matrix. Since F is infinite, we can choose b2 ∈ F such that
f2(x− b2) and f1 are co-prime. Then we can choose b3 ∈ F such that the minimal
polynomial of α3 + b3I and either f2(x− b2) or f1 are co-prime. Similarly, we can
choose b4, ..., bk such that the minimal polynomials of α1, α2 + b2I, ..., αk + bkI are
pairwise co-prime in F [x]. Let

α′ = α1 ⊕ α2 + b2I ⊕ ...⊕ αk + bkI.

Then

deg(minpolyF (α
′))

= deg(lcm(minpolyF (α1),minpolyF (α2 + b2I), ...,minpolyF (αk + bkI)))
= deg(minpolyF (α1)×minpolyF (α2 + b2I)× ...×minpolyF (αk + bkI))
= deg(minpolyF (α1)) + ...+ deg(minpolyF (αk + bkI))
= deg(minpolyF (α1)) + deg(minpolyF (α2)) + ...+ deg(minpolyF (αk))
> deg(minpolyF (α))

This gives a contradiction.

Now we can show that it is with large probability to select a decomposing
element randomly from the matrix algebra over Fq(y), based on Theorem 34.
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Lemma 33. If M is a n×m matrix on F [y, y1, ..., yn]n×m, then its rank is d over
F [y, y1, ..., yn] if and only if d is the maximal rank over F of the set

{M |(y,y1,...,yn)=(c,s1,...,sn) ∈ F n×m | c, s1, ..., sn ∈ F}.

Theorem 34. Let A ⊂ Fq(y)m×m be a semisimple algebra of dimension n, with
integral basis a1, a2, ..., an ∈ Fq[y]m×m. If the elements s1, s2, ..., sn are randomly
chosen uniformly and independently from Fq, where q ≥ nm2

ε
, then the element

s1a1 + s2a2 + ...+ snan

is a decomposing element with probability at least 1− ε.

Proof. Denote F = Fq(y). By Theorem 31 we only need to compute the probability
of choosing an element with maximal degree for its minimal polynomial. Note that
from Theorem 31, the decomposing element exists. Suppose elements ŝ1, ŝ2, ..., ŝn
is the linear coordinates in F such that the element ŝ = ŝ1a1 + ŝ2a2 + ...+ ŝnan is
an element with maximal degree for its minimal polynomial in A. The degree of
its minimal polynomial is dm.

Let y1, y2, ..., yn be arguments of σ in F such that

σ = y1a1 + y2a2 + ...+ ynan ∈ F [y1, y2, ..., yn]m×m,

where degyi(σ) = 1 and the total degree deg(σ) = 1 with respect to yi for 1 ≤
i ≤ n. So ŝ = σ(ŝ1, ŝ2, ..., ŝn). Now consider the matrix equation f(σ) = σdm +
zdm−1σ

dm−1 + ... + z1σ + z01 = 0 . Let vi = Vec(σi) ∈ F [y1, y2, ..., yn]m
2×1 for

1 ≤ i ≤ dm + 1, M = (I, v1, ..., vdm−1). The corresponding linear system with
{z0, . . . , zdm−1} as unknowns is

M


z0

z1

:
zdm−1

 = vdm .

From the existence of the decomposing element, there is (y1, y2, . . . , yn) = (ŷ1, ..., ŷn)
such that this system has its unique solution. By Lemma 33 this indicates that dm
is the maximal rank of M over F . Similarly, let vi = Vec(σi) ∈ F [y1, y2, ..., yn]m

2

for i ≥ 1, Mt = (I, v1, ..., vdm+t) for t ≥ 0. Since dm is the largest degree,
rank(Mt) = dm for t ≥ 0 as well. So if the elements s1, s2, ..., sn are randomly
chosen uniformly and independently from Fq, and rank(M |((y1,...,yn)=(s1,...,sn))) <
dm, then f(s1, ..., sn) = det(M)|(y1,y2,...yn)=(s1,s2,...,sn) = 0, where f = det(M) ∈
F [y1, y2, . . . , yn] .

Now it remains to find the upper bound for the degree of f . It is obvious that
the degree of the minimal polynomial of any α ∈ A is less thanm. That is, dm ≤ m.
degyi(σ

k) ≤ k since degyi(σ) ≤ 1 for 1 ≤ i ≤ dm. So degyi(M) ≤ dm ≤ m and
degyi(f) ≤ m2 for 1 ≤ i ≤ dm. So the total degree deg(f) ≤ nm2.

By the Schwartz-Zippel lemma, if q ≥ nm2/ε and si is selected randomly from
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a subset of F of size q for 1 ≤ i ≤ n, then the probability to get s1, s2, ..., sn such
that f(s1, ..., sn) = det(M)|(y1,y2,...yn)=(s1,s2,...,sn) = 0 is less than ε. So the element
s1a1 + s2a2 + ...+ snan is a decomposing element with probability at least 1− ε.

Theorem 34 gives us a hint of how to compute a good set of idempotents: choose
a random element from the algebra and compute its respond set of idempotents.
This idea yields the following algorithm.

Algorithm 3.4 Compute a good set of idempotents
Input: An integral basis, {a1, a2, . . . an} , of the algebra A ⊂ Fq(y)m×m, where
deg(ai) ≤ ∆ for 1 ≤ i ≤ n and q ≥ max{2nm2

ε
, 2m2(m−1)2∆2

ε
, 3m2∆, 7m2∆};

Output: A set of orthogonal idempotents, {ω1, ω2, . . . , ωt}, such that each idem-
potent is in a unique simple component;

1: Select a random vector (c1, c2, . . . , cn) ∈ Fnq ;
2: α = c1a1 + c2a2 + . . .+ cnan;
3: Compute the minimal polynomial of α, f ∈ Fq[y][x];
4: Factor the bivariate polynomial f = f1f2 . . . ft ∈ Fq[y][x];
5: Compute si,ti ∈ Fq(y)[x] such that sifi + ti

f
fi

= 1 for i = 1, 2, . . . , t;
6: Return ωi = hi(α) = I − si(α)fi(α) for i = 1, 2, . . . , t.

Theorem 35. Given an integral basis {a1, a2, . . . an} of the algebra A ⊂ Fq(y)m×m,
where deg(ai) ≤ ∆ and q ≥ max{2nm2

ε
, 2m2(m−1)2∆2

ε
, 3m2∆, 7m2∆}, Algorithm 3.4

computes the good set of idempotents, {ω1, ω2, . . . , ωt}, where ωi ∈ Fq(y)m×m has
a same denominator for all of its entries and the degrees of the numerators and
denominators of all the entries are at most m2∆ for 1 ≤ i ≤ t, with probability at
least 1− ε, taking O∼(m6∆ +mω+1∆

ω+1
2 ) operations in Fq.

Proof. The degree bound of the entries of α is ∆. Since q ≥ 2m2(m−1)2∆2

ε
, step 3 is

correct with probability 1− ε
2
by Theorem 19. Besides α is a decomposing element

with probability at least 1− ε
2
according to Theorem 34. So Algorithm 3.4 is correct

with probability at least (1− ε
2
)2 ≥ 1− ε.

For the complexity, the cost of step 3 is O∼(mω+1∆) by Theorem 19. By The-
orem 4, from Lecerf [29] about the factorization of a bivariate polynomial, step
4 will take O(mω+1∆

ω+1
2 )) plus the complexity of factorization of a polynomial

in Fq[x] with degree at most (m + 1)∆ when q ≥ 2m2∆ + m∆ + 1. For step
5 and 6, we first use the fast Extended Euclidean Algorithm to compute si and
ti and then evaluate 1 − sifi at α for 1 ≤ i ≤ t. Computing { f

f1
, . . . , f

ft
} needs

O(mM(m∆)) and when q ≥ 7m2∆ the fast Extended Euclidean Algorithm costs
O∼(m3∆), gives a cost of O∼(m4∆) in total for {s1, . . . , st}. Note that the degree
bound of si is m − deg(fi) in x for 1 ≤ i ≤ t. For that of the numerators and
denominators of all the coefficients, it is m2∆ and note that all the coefficients in
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one hi have unique denominator. So the degree bound for hi is m in x and m2∆ in
y for the numerators and denominators of all the coefficients for 1 ≤ i ≤ t. First,
we compute {α, α2, . . . , α

m} which costs O∼(mω+1∆). Then evaluate {h1, . . . , ht}
over α with cost O∼(t ×m ×m2 ×M(m2∆)) = O∼(m6∆). The total cost is then
O∼(m6∆ +mω+1∆

ω+1
2 ). It is easy to verify the degree bound of ωi from the degree

bound of fi and si for 1 ≤ i ≤ t.

3.1.5 A Complete Algorithm

We present the complete algorithm for the Wedderburn decomposition in this
subsection.

Algorithm 3.5 Wedderburn Decomposition
Input: An integral basis, {a1, a2, . . . , an}, of a semisimple m × m ma-
trix algebra over Fq(y), where degai ≤ ∆ for 1 ≤ i ≤ n and q ≥
max{4nm2

ε
, 4m2(m−1)2∆2

ε
, 3m2∆, 7m2∆, 4m

ε
, 4nm(2m2+4m+1)∆

ε
}.

Output: Bases {bi1, bi2, . . . , biti} of all the simple components for 1 ≤ i ≤ k,
where k is the number of simple components;

1: Choose a vector (c1, c2, . . . , cn) from Fnq randomly. Let α = c1a1 + c2a2 + . . .+
cnan;

2: Compute the minimal polynomial of α, denoted by f ∈ Fq[y][x], via Algorithm
2.3;

3: Factor f = f1f2 . . . ft using Algorithm from Lecerf [29], where each fi is the
power of some irreducible polynomial and all the fis are pairwise co-prime;

4: Compute si,ti ∈ Fq(y)[x] such that sifi + ti
f
fi

= 1 for i = 1, 2, . . . , t;
5: Return ωi = hi(α) = I − si(α)fi(α) for i = 1, 2, . . . , t.
6: Modify all the ωis to be integral by removing their common denominators,

denote by ω′i;
7: Determine of the equivalent classes of the idempotents ωis via Algorithm 3.2

and compute all the possible ω̄i =
∑

j∈Ii ω
′
j;

8: Compute the generating set of each simple component Gi =
{ωia1ωi, ωia2ωi, . . . , ωianωi} for 1 ≤ i ≤ k;

9: Select the bases Bi = {bi1, bi2, . . . , biti} from each Gi for 1 ≤ i ≤ k.

Theorem 36. Given an integral basis {a1, a2, . . . , an}, of a semisimple m×m ma-
trix algebra over Fq(y), where deg(ai) ≤ ∆ for 1 ≤ i ≤ n and q ≥ max{4nm2

ε
,

4m2(m−1)2∆2

ε
, 3m2∆, 7m2∆, 4m

ε
, 4nm(2m2+4m+1)∆

ε
}, Algorithm 3.5 computes the decom-

position of a semisimple algebra correctly with probability 1− ε taking O(mω+4∆ +

mω+1∆
ω+1

2 ) operations in Fq.
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Proof. From Theorem 34, it is with probability at least 1− ε
4
that α is a decompos-

ing element. When α is a decomposing element, the minimal polynomials of the
images of α over each simple components are pairwise co-prime. The probability of
computing the minimal polynomial of α correctly in step 2 is 1− ε

4
, by Theorem 19.

Then we can compute the identity of each component as the sum of some equiva-
lent idempotents in step 7 which works correctly with probability 1− ε

4
according

Theorem 29. Note that this is a little different from the Wedderburn decomposi-
tion using good idempotents. Each ω̄i is not the identity but a unit in each simple
component. It is easy to verify that the algorithm works correctly. Finally multiply
the identities to the basis of A and then pick out a maximal linearly independent
set, we get the basis of each component. The final step of computing the bases will
be correct with probability 1− ε

4m
for each Gi, i.e. at least 1− ε

4
for all the bases,

by Theorem 29. So the probability that Algorithm 3.5 returns the correct output
is 1− ε.

The cost of step 2 is O∼(mω+1∆) by Theorem 19. Using Lecerf’s efficient
factorization algorithm, step 3 costs O∼((m2∆)

ω+1
2 ) by Theorem 4. For step 4

and 5, we first use the fast Extended Euclidean Algorithm to compute si and
ti and then evaluate 1 − sifi at α, which take O∼(m6∆) in total [14]. Noth-
ing happens in step 6. Determining the equivalent classes of idempotents will cost
O∼(t2mωd∆) = O∼(mω+4∆) by Theorem 29. Computing ω̄i takes O∼(m4∆). There
will be 2tm matrix multiplication in step 8 with complexity O∼(tm×mω×m2∆) =
O∼(mω+4∆). The final step of selecting the bases will take O∼(

∑k
i=1 t

2
im

2 +
tim

2m2∆) = O∼(nm4∆) operations by Theorem 7. So the total cost of this al-
gorithm is O∼(mω+4∆ +mω+1∆

ω+1
2 ) operations in Fq.

3.2 Computation of the Radical
Recall that there is a semisimple subalgebra S of A such that A = S + Rad(A)

and S∩Rad(A) = (0). We will develop the algorithm for computing Rad(A) in this
section. Since the radical of A is also a subalgebra of A, it could be represented by
its basis. The first polynomial-time algorithm of computing the radical of finite-
dimensional associate algebra is attributed to Friedl and Rónyai [9, 37] in 1985 and
1990, where an algorithmic characterisation of the radical is fully developed and
used. It is indicated that the problem is much easier when the characteristic of the
ground field is zero via the theorem of Dickson [5].
Theorem 37. [Dickson] Let A be a finite-dimensional algebras of matrices over a
field F such that charF = 0. Then

Rad(A) = {x ∈ A : Tr(xy) = 0 for every y ∈ A}.

This result shows that we can compute the radical by solving a system of linear
equations over F .

32



We will discuss the much more complicated case when the field is of character-
istic p in the remaining part of this section. Friedl and Rónyai [9, 37] present the
first deterministic polynomial-time algorithm to compute the radical of an finite-
dimension associative algebra over Fp. The idea is extended later by Ivanyos, Rónyai
and Szántó [24] to Fq(Y1, Y2, . . . , Ym). In 1997, Cohen, Ivanyos and Wales [4] gen-
eralized the idea of Rónyai [9, 37], reducing this problem to solving systems of
semilinear equations over an arbitrary field taking polynomial operations over the
ground field. The most current results are due to Ivanyos [23, 22]. A new algorithm
in 1999 is for an arbitrary field, reducing the problem of computing the radical of
a matrix algebra to computing the radical of a matrix commutative algebra. Note
that the latter problem is much easier since the strongly nilpotent elements are
equivalent to the nilpotent elements and (x + y)p = xp + yp holds in the algebra.
The other new algorithm computes the radical in a probabilistic way using the
primitive idempotents over Fq. It reduces the cost to O∼(mnω +R(A)).

We will focus on the case when F = Fq(y). It is a specific case of the problem
addressed in Ivanyos, Rónyai and Szántó’s paper [24]. In Subsection 3.2.1 we will
analyze the complexity of the algorithm of Ivanyos et al. [24]. Then we will adapt
the algorithm for reducing the problem to the commutative case by Ivanyos [22]
to F = Fq(y) and analyze its complexity in Subsection 3.2.2. In the remaining
part of this section we will then develop a new algorithm for computing the radical
of the finite-dimensional matrix algebras over Fq(y) which is inspired by Ivanyos
[23] and based on some intermediate result of Ivanyos, Rónyai and Szántó’s paper
[24]. First, we introduce the raw decomposition in Subsection 3.2.3, similar to the
Wedderburn decomposition, which compute a set of primary subalgebras of A. This
idea indeed reduces the degree bound of the method of Ivanyos [24], hence makes
the following work efficient. Then in the Subsection 3.2.4 we compute the radical
of each primary component to get Rad(A). There may be more efficient algorithms
and improvements based on the computation of the primitive idempotents of A,
which is still unsolved in this thesis.

3.2.1 Algorithm of Ivanyos, Rónyai and Szántó

Ivanyos et al. give an algorithm to compute the radical of an algebra over Fq(X1,
. . . , Xm) in 1994 [24]. We will discuss its special case that F = Fq(y) in this thesis.
The basic idea is to compute a sequence of ideals of the algebra which converge to
its radical. Given A is a m×m matrix algebra over Fq(y) with basis {a1, . . . , an}.
Let g(x) ∈ Fp[x] be the minimal polynomial of a generating element of Fq over Fp.
Define the local ring R = Z[x][y](p)/(g(x)) then R/pR = Fq(y). For nonnegative
integers j, define the following trace functions φj : Mm×m(R)→ R/pj+1R as

φj : X 7−→ Tr(Xpj) + pj+1R.

Let I0 = A, Ii = {x ∈ Ii−1| φi(xy) = 0, ∀y ∈ A} for i ≥ 1. The main theorem
about {I0, I1, . . .} is as follows.
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Theorem 38. {I0, I1, . . .} are ideals of A and they converge to the Jacobson radical
of A in the sense that: Ij = Rad(A) if j ≥

⌊
logpm

⌋
.

This theorem provides a way to compute the radical within logpm iterations.
However we need to be careful about the degree explosion which is discussed in the
paper of Ivanyos et al. [24] as well. First let’s see the procedure and its cost for the
computation of Ie from the basis of Ie−1.

A simple but important and powerful result proved in [24] is that Tr((aX +
bY )p

e) ≡ ap
eTr(Xpe) + bp

eTr(Y pe) mod pe+1 and (X + pY )p
e ≡ Xpe mod pe+1. So

when computing Ie we do not need to check all the elements in A but just its basis
for the y in Tr((xy)p

e) ≡ 0 mod pe+1.
Given the integral basis {b1, b2, . . . bk} of Ie−1 with degree bound d, let x =

c1b1 +c2b2 + . . .+ckbk is in the Ie, where {c1, . . . , ck} are the coordinates from Fq[y].
First we compute Tr((biaj)p

e), where pe ≤ m for 1 ≤ i ≤ k and 1 ≤ j ≤ n. Then we
compute cij = 1

pe
Tr((biaj)p

e) = 1
pe
Tr(((biaj)p)p

e−1) = 1
pi
Tr((bi(aj(biaj)p−1))p

e−1) =
1
pi
Tr((bic)p

e−1) where c = aj(biaj)
p−1 for 1 ≤ i ≤ k and 1 ≤ j ≤ n. Since {b1, . . . bk}

are in Ie−1 and c ∈ A, so the cijs are integral in R/pe+1R with its degree less than
2ped. Rewrite cij into the following form.

cij = (cij0 + cijpiy
pe + . . .) + (cij1 + cij(pi+1)y

pe + . . .)y
+ . . .+ (cij(p−1) + cij(2pi−1)y

pe + . . .)yp
e−1

= dij0 + dij1y + . . .+ dij(pe−1)y
pe−1

where dijs ∈ Fq[yp
e
]. We denote ype by z, so dijs ∈ Fq[z] for 1 ≤ i ≤ k, 1 ≤ j ≤ n

and 0 ≤ s ≤ pe − 1. Similarly we denote cp
e

i by c̄i ∈ Fq[z]. So the linear system we
need to solve is∑k

s=1 c̄scsi =
∑k

s=1 c̄s(dsi0 + dsi1y + . . .+ dsi(pe−1)y
pe−1) = 0 for 1 ≤ i ≤ n

Solving this linear system is equivalent to the following linear system in Fq[z].

k∑
s=1

c̄sdsij = 0 for every 1 ≤ i ≤ n and 0 ≤ j ≤ pe − 1.

Solving this linear system we get c̄s. For every coefficient in c̄s, we compute its
preimage under the Frobenius endomorphism Φe : x 7→ xp

e of Fq.
To analyze the cost, we note that computing each biaj will require O∼(dmω) op-

erations and computing Xpe(the degree of X is less than 2d) will need O∼(mωdp2e),
giving O∼(nkp2emωd) operations in Fq in total. Solving the pen×k linear system in
Fq[z] of degree 2d will cost O∼(penkω−1d). Thus, the total cost is O∼(nkp2emωd+
pekω−1nd) = O∼(nkp2emωd) operations in Fq. Thus, for every e we have the follows.

Theorem 39. Given the integral basis {b1, b2, . . . bk} of Ie−1 with degree bound d,
as above we can compute the basis of Ie taking O∼(nkp2emωd) operations in Fq.
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Lemma 40. Let A be an n-dimensional algebra over the field Fq(y). Assume that
the structure constants have numerators of height at most ∆ and a common denom-
inator in Fq[y]. Assume further more that for a 0 ≤ i ≤

⌊
logpn

⌋
and the ideal Ii−1

has an integral basis of height at most Γ. Then the ideal Ii has an integral basis of
height at most n(Γ + 2∆).

Lemma 40 [24] is easy to prove by analyzing the degree swelling of the procedure
above for computing Ii. But the result is unacceptable since for our case the degree
at the last step could be O(nlogpm), which is not polynomial size. To avoid this
problem, Ivanyos et al. [24] find a degree upper bound for the bases of {I1, I2, . . .}.
Every time we get a basis of Ii whose degree is greater than the upper bound, we
can modify its basis into a good form and then keep going. However, the degree
bound here is not good enough, which make the complexity too high. The following
proposition by Ivanyos ([24], Proposition 3.5) concerns the degree bound.

Proposition 41. Let A be an n-dimension algebra over the field Fq(y). Assume
that the structure constants are integral and their heights are limited by ∆. Then
any ideal of A containing Rad(A) has an integral basis of height O(n3∆).

Since we are dealing with the matrix algebra, the structure constants are com-
pletely fixed by its basis. Thus we do not want to make the structure constants
as part of input in our problem. Actually, given a general integral basis of degree
∆, the degree of the structure constants could be as large as O(n∆), so the degree
bound can reach O(n4∆). Now we can give a polynomial-time algorithm.

Algorithm 3.6 Computation of the radical
Input: An basis {a1, a2, . . . , an} of the m×m matrix algebra A over Fq(y), where
deg(ai) ≤ ∆;
Output: The basis {r1, r2, . . . , rt} of the radical of A;

1: I0 = A; t =
⌊
logpm

⌋
;

2: for i = 1 to t do
3: Compute the basis of Ii = {x ∈ Ii−1 | φi(xy) = 0, ∀y ∈ A};
4: Find another basis for Ii such that its degree is at most O(n4∆);
5: end for
6: return the basis of It;

The analysis of its complexity is as follows. For the step 3, by Theorem 39, with
d being O(n4∆) and k being n the cost will be O(n2p2emωn4∆) = O(p2emωn6∆).

So the total cost is O∼(
∑dlogpne

i=0 p2imωn6∆) = O∼(mω+2n6∆). Note that the basis
generated by step 3 is of degree at most O(n × n4∆) = O(n5∆). Step 4 could
be done at the same time when we do step 3 using Storjohann’s algorithm for
computing the null space. So the total cost for this algorithm is O∼(n6mω+2∆)
operations in Fq.

Note that for a general basis the structure constants are not neccessarily integral
as well. Ivanyos et al. present a way to modify the basis such that the construct
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constants are integral, but it will make the degree of the new basis O(n∆) and that
of the structure constants O(n∆).

3.2.2 New Algorithm of Ivanyos

There is another algorithm by Ivanyos [22] for finding the radical of matrix
algebras using Fitting decompositions. The idea is to reduce the problem to the
commutative case based on the torus defined as follows. Assume K is a field.
Definition 42. AK-algebra is called torus if it is a finite dimensional commutative
K-algebra which is separable over K.

The torus and the maximal torus have many good properties which we summary
in the following proposition [22].

Proposition 43. Given a matrix K-algebra A and T a subalgebra of A.

1. Let K ′ be the algebraic closure of K. Then T is a torus if and only if the
matrices in T can be simultaneously diagonalized over K ′;

2. If A is commutative then A contains a unique maximal torus. Furthermore,
a maximal torus of A contains the maximal torus of the center of A, Z(A);

3. If T is a torus, then T is the maximal torus of A if and only if T is the
maximal torus of its centralizer CA(T );

4. Let φ : A→ A/Rad(A) be the natural projection and T is a torus, then T is
the maximal torus of A if and only if φ(T ) is the maximal torus of A/Rad(A);

5. If A is a direct sum of ideals A1, A2, . . . , Ar and T is a torus, then T is the
maximal torus of A if and only if T ∩ Ai is the maximal torus of Ai for
i = 1, 2, . . . , r;

6. If Z is a subfield of Z(A) and T is a torus, then T is the maximal torus of A
if and only if TZ, considered as a Z-algebra, is a maximal Z-torus of A and
Z is a purely inseparable extension of Z ∩ T ;

7. If T is the maximal torus of A, then CA(T )/Rad(CA(T )) is commutative;

8. If T is a maximal torus of A and K ′ is an arbitrary field extension of K, then
K ′ ⊗K T is a maximal K ′-torus of K ′ ⊗K A.

The new algorithm of Ivanyos is theoretically based on the structure theory of
the algebra with respect to the torus. Given a matrix K-algebra A and φ : A →
A/Rad(A) the natural projection. Let C̃ be the set of central separable elements of
A/Rad(A), T a fixed maximal torus of A and C = {x ∈ T | φ(x) ∈ Z(A/Rad(A))}.
Then C is the subalgebra of T and φ(C) = C̃. Besides, A = CA(C) + [C,A], where
[C,A] = {xy− yx | x ∈ C, y ∈ A}. Denote CA(C), [C,A] and CA(T ) by S, N and
H respectively, then we have the following structure theorem [22].
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Theorem 44.

1. SN ⊂ N , NS ⊂ N and N ⊂ Rad(A);

2. Rad(A) = Rad(S) +N ;

3. Rad(S) = SRad(H)S and every nilpotent element of H is in Rad(H).

The paper of Graaf and Ivanyos [20] discusses about computing the maximal
torus T in polynomial time over K. When K = Fq(y) it may suffer degree explosion
again. To simplify our discussion, we will not accumulate the cost of computing
the maximal torus T and assume the degree bound for the basis of T is the same
as that of the basis of A, i.e. ∆. From Theorem 44 if we can compute C then
we can compute S, N and H, and hence Rad(A). However, the definition of C
depends on Rad(A) . Another method to describe C given by Ivanyos is that
C = {x ∈ T | xL ⊂ L}, where L = [A,A] ∩ T . So we have a computable way to
find Rad(A), presented in the following algorithm.

Algorithm 3.7 Computation of the radical
Input: An integral basis, {a1, a2, . . . , an}, of a matrix algebra A ⊂ Fq(y)m×m,
where {a1, a2, . . . , ak} is the basis of its maximal torus T , deg(ai) ≤ ∆ for 1 ≤
i ≤ n;
Output: The basis of Rad(A), {r1, r2, . . . , rr};

1: Compute the basis of the centralizer of T , H = CA(T );
2: Select the basis of [A,A] from {[ai, aj]} for i, j = 1, 2, . . . , n;
3: Compute the basis of L = T ∩ [A,A];
4: Compute the basis, {c1, c2, . . . cs}, of C = {x ∈ T | xL ⊂ L};
5: Select a basis of N = [C,A] from {[ai, cj]} for i = 1, 2, . . . , n and j = 1, 2, . . . , s;

6: Select a basis of I = H[H,H]H;
7: Compute a basis, {h1, h2, . . . , hr}, of H1 = H/I;
8: Compute the radical of H1;
9: Compute the basis of Rad(H) generated by the bases of Rad(H1) and I;

10: Compute the basis of the centralizer of C, S = CA(C);
11: Select the basis of SRad(H)S;
12: Return the union of the basis of N and SRad(H)S.

By Proposition 43, H/Rad(H) is commutative. So I ∈ Rad(H) and H1 is
commutative. Finding the radical of a commutative algebra is much easier and is
equivalent to finding the nilpotent elements. We will discuss the details of Algo-
rithm 3.7 in the rest of this subsection. Note we will treat k = O(n).
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Let Vec(a) denote the vector generated by the entries of a in this way: Vec(a) =
(a11, a12, . . . , a1m, a21, a22, . . . , a2m, a31, . . . , am1, am2, . . . , amm)T . We will first com-
pute γij = aiaj − ajai for i, j = 1, 2, . . . , n, which will take O∼(n2mω∆). For step
1, we do not need to solve the basis over the whole algebra A. Since we already
know that T is commutative, we can compute the centralizer of T over the basis
{ak+1, ak+2, . . . , an}. So it will just solve the linear system of

∑n
j=k+1 γijxj = 0 for

i = 1, 2, . . . , k which cost O∼(km2(n− k)ω−1∆) = O∼(nωm2∆) with degree bound
O(n∆) for the basis of H. Step 2 will take O∼(m2n2∆ + n2m4) by Theorem 7.
Suppose the basis of [A,A] is {ā1, . . . , āv}. For step 3, we first compute the basis,
{n1, n2, . . . , nm2−v} ⊂ Fq[y]m

2 , of the linear null space of {Vec(ā1), . . . ,Vec(āv)},
then we solve the linear system

k∑
i=1

xiVec(ai)
Tnj = 0, j = 1, 2, . . . ,m2 − v

which requires

O∼(m2vω−1∆ + k(m2 − v)m2v∆ + (m2 − v)kω−1v∆)
= O∼(m2nω−1∆ + km4n∆ + nm2kω−1∆)
= O∼(n2m4∆)

operations over Fq in total. Assume the basis of L is {l1, l2, . . . , lu}, then deg(li) =
O(n2∆) and u ≤ v. For step 4, we first compute the basis of the nullspace of the
linear space spanned by {Vec(l1), . . . ,Vec(lu)}, {n′1, n′2, . . . , n′m2−u} with deg(n′i) =
O(n3∆). Then we need to solve the linear system

k∑
i=1

xiVec(ailj)
TVec(n′k) = 0, j = 1, 2, . . . , u; k = 1, 2, . . . ,m2 − u,

for the basis {c1, . . . , cs} of C, whose complexity is

O∼(uω−1m2n2∆ + ukmωn2∆ + (m2 − u)ukm2n3∆ + (m2 − u)ukω−1n3∆)
= O∼(uω−1m2n2∆ + ukmωn2∆ + ukm4n3∆ +m2ukω−1n3∆)
= O∼(n5m4∆)

with deg(ci) = O(n4∆). Similarly, step 5 requires O∼(snmωn4∆ + snm2n4∆ +
snm4) = O∼(n6mω∆) operations over Fq. In step 6, when computing the generat-
ing set of H[H,H]H we will compute the basis of [H,H], H[H,H] and H[H,H]H
successively with complexity O∼(n2mωn∆ + m2n2n∆ + n2m4) = O∼(n3mω∆ +
n2m4). We have to compute the projected image in step 7. Suppose the bases
of H and I are {h̄1, h̄2, . . . , h̄u} and {̄i1, ī2, . . . , īv}. We will first compute the
basis, {n̂1, n̂2, . . . , n̂m2−v} of the linear null space of the linear space spanned by
{Vec(̄i1), . . . ,Vec(̄iv)} and then check the linear combination of h̄i which is orthog-
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onal to it by solving

u∑
i=1

xiVec(h̄i)
TVec(n̂j) = 0, j = 1, 2, . . . ,m2 − v,

with deg(n̂j) = O(n2∆). Its complexity is

O∼(m2vω−1n∆) +O∼((m2 − v)um2n2∆ + uω−1(m2 − v)n2∆)
= O∼(m2vω−1n∆ + um4n2∆ + uω−1m2n2∆)
= O∼(m4n3∆)

with deg(hi) = O(n3∆). We will analyze the cost of step 8 separately. So the total
cost of steps 1-7 is O∼(n5m4∆ + n6mω∆), where we treat k = O(n).

Let j =
⌈
logpm

⌉
, so x is nilpotent if and only if xpj = 0 inH1. Let x =

∑r
i=1 xihi,

then first compute ti = hp
j

i , with deg(ti) = O(pjn3∆). Then we compute dik =
Vec(ti)

TVec(n̂k) for 1 ≤ i ≤ r and 1 ≤ k ≤ m2−v. Note that deg(dik) = O(n3∆pj).
For each dik, we rewrite it into the following form.

dik = (dik0 + dikpiy
pj + . . .) + (dik1 + dik(pj+1)y

pj + . . .)y

+ . . .+ (dik(pj−1) + dik(2pj−1)y
pj + . . .)yp

j−1

= eik0 + eik1y + . . .+ eik(pj−1)y
pj−1,

where eiku ∈ Fq[yp
j
]m×m for 1 ≤ u ≤ pj − 1. Again we denote ypj by z. So

eiku ∈ Fq[z] and degz(eiku) = O(n3∆). Also we denote xp
j

i by x̄i ∈ Fq[z]. So the
linear system we need to solve in Fq[z] is

r∑
i=1

x̄idik =
r∑
i=1

x̄i(eik0 + eik1y + . . .+ eik(pj−1)y
pj−1) = 0, 1 ≤ k ≤ m2 − v, (3.2.1)

where the x̄is are unknowns in Fq[z]. Thus, the linear system 3.2.1 equals to the
following linear system in Fq[z].

r∑
i=1

x̄ieiks = 0, 0 ≤ s ≤ pj − 1 and 1 ≤ k ≤ m2 − v.

Solving this linear system we get x̄v. Then for every coefficient in x̄v, we compute
its preimage under Fq’s Frobenius endomorphism Φj : x 7→ xp

j . For its cost,
the system has r unknowns and (m2 − v)pj equations. Thus its complexity is
O∼((m2 − v)pjrω−1n3∆) = O∼(m3nω+2∆) and deg(xi) = O(n4∆).

Step 9 will do nothing but just take the union of {̄i1, ī2, . . . , īv} and the basis
of Rad(H1) to be the basis of Rad(H), denoted by {h(r)

1 , h
(r)
2 , . . . , h

(r)
u }. Step 10

again requires solving a linear system
∑n

i=1 xi(aicj − cjai) = 0 for 1 ≤ j ≤ s, which
will take O∼(nsmωn4∆ + sm2nω−1n4∆) = O∼(nω+4m2∆) with deg(xi) = O(n5∆).
Suppose the basis of S is {s1, s2, . . . , sw}. The basis of Rad(S) is selected in the
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step 11. We will first compute sih
(r)
t sj for 1 ≤ i, j ≤ w and 1 ≤ t ≤ u where si

is the basis of S, which requires O∼(w2umωn5∆) = O∼(n8mω∆) operations in Fq.
Then by Theorem 7, it will cost O∼(w2um2n5∆ + n2um4). So the complexity of
Algorithm 3.7 is O∼(n8mω∆) operations in Fq.

Note we already assume that the first part of the basis of A is that of its fixed
maximal torus, which is rarely to be satisfied in practice. So in general we need
to compute a basis of the torus. Graaf and Ivanyos give an algorithm to compute
the maximal torus in another paper [20], which is in polynomial time but again we
need to be careful about the degree explosion. So in general, the new algorithm by
Ivanyos of computation of the radical requires more than O∼(n8mω∆) operations
in Fq.

3.2.3 Raw Decomposition

We would like to introduce a new decomposition, which we call raw decomposi-
tion and has not been discussed in the previous papers. It will act as the first stage
of our algorithm for computing the radical. Given a matrix algebra A over Fq(y),
we want to compute its decomposition such that

A = P1 + P2 + . . .+ Pk +N ,

where N is a linear subspace of its radical and each Pi is a primary subalgebra, i.e.
Pi/Rad(Pi) is simple.

Let φ : A→ A/Rad(A) the natural projection. By the Wedderburn’s Structure
Theorem [34] we have

A/Rad(A) ∼= (A1 ⊕ A2 ⊕ ...⊕ Ak).

Let ēi be the preimage of δi(1) ⊕ . . . ⊕ δi(k) ∈ A1 ⊕ A2 ⊕ ... ⊕ Ak for 1 ≤ i ≤ k,
where δi(i) = 1 and δi(t) = 0 for t 6= i. Thus,

∑k
i=1 ēi = 1 ∈ A/Rad(A). Choose

proper {e1, . . . , ek} from φ−1(ēi)s such that
∑k

i=1 ei = 1. So

A = (
k∑
i=1

ei)A(
k∑
i=1

ei) = e1Ae1 + . . .+ ekAek + (
∑

i 6= j; 1 ≤ i, j ≤ k

eiAej).

Let φij be the induced projection of φ over eiAej, φij(eiAej) = ēi(A/Rad(A))ēj,
which is equal to Ai if i = j or 0 if i 6= j. Denote eiAei by Pi and

∑
i 6=j;1≤i,j≤k eiAej

by N , then the raw decomposition exists.
For any α ∈ A, let s = φ(α) . We denote the minimal polynomial of α by
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f = xt + a1x
t−1 + . . .+ at and that of s by g = xs + b1x

s−1 + . . .+ bs. Then

f(α) = f(s+ r)
= (s+ r)t + a1(s+ r)t−1 + . . .+ at
= st + a1s

t−1 + . . .+ at + r(tst−1 + . . .)
= f(s) + rδ = 0.

So f(s) ∈ Rad(A), thereby g|f and

g(α) = g(s+ r)
= g(s) + rδ′

= 0 + rδ′.

Since rδ′ ∈ Rad(A), then there exists a k such that (rδ′)k = 0. So gk(α) = 0, i.e.
f |gk. Note that the irreducible components of f and g are totally the same since
g | f | gk, so we can use the algorithm for decomposition of semisimple algebra to
compute the idempotent elements for a general algebra.

We compute the idempotent elements using Algorithm 3.4 without any modi-
fication and its projected image is also an idempotent in A/Rad(A) as well. Now
assume f = f1f2 . . . ft such that each fi is the power of some irreducible polynomial
and they are pairwise co-prime. Similarly, denote hi = 1−sifi where sifi+ti ffi = 1.
Then {h1(α), . . . , ht(α)} are pairwise orthogonal idempotents with sum Im. It is
easy to check that {φ(h1(α)), . . . , φ(ht(α))} are pairwise orthogonal idempotents
with sum Im in A/Rad(A). Denote A/Rad(A) by S, hi(α) by ωi and φ(hi(α)) by
ω̄i.

In the approach here, however, it is more complicated to provide the condition
that the idempotents split S in a good way: each ω̄i is in unique simple component
of S. The difficulty comes from the computation of the equivalence classes of these
idempotents.
Definition 45. Two idempotents ω1 and ω2 are called equivalent, if φ(ω1) and
φ(ω2) are in a same simple component of S.

Note that even if ωi and ωj are in nonequivalent classes, for any α ∈ A, ωiαωj
is not necessarily equal to zero. It could just be strongly nilpotent as stated in
Lemma 48. Similar to Definition 30, we have the following definition to describe
decomposing element in a general algebra.

Definition 46. Given an algebra A, an element a ∈ A is called decomposing
element for A if the minimal polynomials of φ(α)’s simple components in A/Rad(A)
are pairwise co-prime.

It is also with large probability to get such decomposing element by selecting an
element from A randomly. As what we did in Theorem 31, an element α, such that
the degree of the minimal polynomial of φ(α) is maximal in those of the elements
in S, is a decomposing element, thereby each ω̄i is in unique simple component of
S.
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Theorem 47. Let A ⊂ Fq(y)m×m be an matrix algebra of dimension n, with integral
basis a1, a2, ..., an ∈ Fq(y)m×m. If the elements s1, s2, ..., sn are randomly chosen
uniformly and independently from Fq, where q ≥ n3

ε
, then the element

s1a1 + s2a2 + ...+ snan

is a decomposing element with probability at least 1− ε.

Proof. Let F = Fq(y). We can choose a new basis of A, {β1, β2, . . . , βn}, such
that {φ(β1), φ(β2), . . . , φ(βk)} is the basis of S and {βk+1, βk+2, . . . , βn} is the basis
of Rad(A). By the Representation Theorem 22, S is isomorphic to a subalgebra
of Mk(F ). Let ŝ′ = ŝ1φ(β1) + ŝ2φ(β2) + . . . + ŝkφ(βk). Then by Theorem 34, if
{ŝ1, ŝ2, . . . , ŝk} is chosen from a subset of F with size k3

ε
, then ŝ′ is a decomposing

element in S with probability at least 1− ε.
Suppose elements ŝ1, ŝ2, ..., ŝn ∈ Fq(y) are the linear coordinates and the element

ŝ = ŝ1β1 + ŝ2β2 + ...+ ŝnβn. Thus, if ŝ1, ŝ2, ..., ŝn are selected randomly from a set
of size at least k3

ε
, then the element ŝ′ is a decomposing element with probability

at least 1− ε, so is the ŝ.
Now it remains to show that our way of selecting random element for the ba-

sis {a1, a2, ..., an} is equivalent to selecting ŝi from a subset of Fq(y) of size at
least q for 1 ≤ i ≤ n. Assume the transformation matrix from {a1, a2, . . . , an} to
{β1, β2, . . . , βn} is U . So

( c1 c2 · · · cn )


a1

a2
...
an

 = ( c1 c2 · · · cn )U


β1

β2
...
βn

 ,

which indicates that selecting ( c1 c2 · · · cn ) to be the coordinates of {a1, a2,
. . . , an} is equivalent to selecting ( c1 c2 · · · cn )U for {β1, β2, . . . , βn}. Since
U is invertible, the size of the set {( c1 c2 · · · cn )} is the same as the size of
the set {( ŝ1 ŝ2 · · · ŝn ) = ( c1 c2 · · · cn )U}. So the size of the set that we
select the coordinates for {β1, β2, . . . , βn} is at least (n

3

ε
)n. Therefore we have at

least probability 1− ε to get a decomposing element since that k ≤ n.

To determine the equivalence classes of the idempotents we encounter new prob-
lem, compared to semisimple case. Even when ωi and ωj are not in the same equiv-
alence class, ωiαωj is not guaranteed to be zero. We therefore need to modify our
criterion, based on the following Lemma.

Lemma 48. Given a set of idempotents {ω1, . . . , ωt} such that each φ(ωi) in only
one simple component of φ(A) for 1 ≤ i ≤ t, then for any α ∈ A

• if ωi and ωj are in different simple components then ωiαωj is strongly nilpo-
tent.
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• if ωi and ωj are in a same simple component, then ωiαωj is strongly nilpotent
if and only if φ(ωi)φ(α)φ(ωj) = 0.

Proof. For any α ∈ A, if φ(ωi) and φ(ωj) are in different simple components, then
φ(ωi)φ(α)φ(ωj) = 0, thereby ωiαωj ∈ Rad(A). So ωiαωj is strongly nilpotent. If
ωi and ωj are in the same simple component, without loss of generality we assume
it is the first component, then φ(ωiαωj) = s̄. It is obvious that when s̄ = 0, ωiαωj
is strongly nilpotent. Note that when s̄ 6= 0, ωiαωj /∈ Rad(A), therefore ωiαωj is
not strongly nilpotent.

Lemma 48 suggests a way of determining the equivalent classes: randomly select
an element from the algebra and check if it is strongly nilpotent. In order to check
this we need the result of Ivanyos [24]. Let g(x) ∈ Fp[x] be the minimal polynomial
of a generating element of Fq over Fp. Define the local ring R = Z[x][y](p)/(g(x))
then R/pR = Fq(y). Then we have the following proposition describing the nilpo-
tent elements in Mn×n(R).

Proposition 49. l =
⌊
logpn

⌋
.

1. If X ∈ Mn×n(R) satisfies Tr(Y pl) ≡ 0 mod pl+1 for Y ∈ {X,X2, . . . , Xn}.
Then the image of the matrix X is nilpotent in the residue class ring
Mn×n(R/pR)

∼
= Mn×n(R)/pMn×n(R);

2. If the image of the matrix X is nilpotent in the residue class ringMn×n(R/pR)
∼
= Mn×n(R)/pMn×n(R), then Tr(Xpj) ≡ 0 mod pj+1 for all the nonnegative
integers j;

Given a basis {a1, a2. . . . , an} for A, if X ∈ A satisfies that Tr((Xai)p
l) ≡

0 mod pl+1, then for any Y ∈ A, Tr((C)p
l) ≡ 0 mod pl+1 for every C ∈ {XY, (XY )2,

. . . , (XY )n}. Since we can express C over the basis of {a1, a2. . . . , an}, we have the
following proposition.

Proposition 50. Given the basis {a1, a2. . . . , an} of a finite-dimensional matrix
algebra A ⊂ Fq(y)m×m, an element X ∈ A is strongly nilpotent in A if and only if
Tr((Xai)p

l) ≡ 0 mod pl+1 for 1 ≤ i ≤ n and l =
⌊
logpm

⌋
.

For any element β ∈ A, β is nilpotent if and only if Tr(βpl) ≡ 0 mod pl+1, where
l =

⌊
logpm

⌋
. We want to check if, for any β in the basis of A, Tr((ωiαωjβ)p

l
) ≡

0 mod pl+1.

Theorem 51. Given an integral basis {a1, a2, . . . , an} of the matrix algebra A ⊂
Fq(y)m×m, and integral elements {ω1, ω2, . . . , ωt} with t ≤ qε such that each ωi is in
a unique simple component of A, where deg(ai) ≤ ∆ and deg(ωi) ≤ d∆, Algorithm
3.8 computes the equivalence classes of {ω1, ω2, . . . , ωt} correctly with probability at
least 1− ε, taking O∼(t2nmω+1d∆) operations in Fq.
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Algorithm 3.8 Determine the equivalence classes

Input: An integral basis of the matrix algebra A ⊂ Fq(y)m×m, {a1, a2, . . . , an};
Integral elements {ω1, ω2, . . . , ωt} with t ≤ qε such that each ωi is
in a unique simple component of A;
deg(ai) ≤ ∆ and deg(ωi) ≤ d∆;

Output: The sums of all the equivalence classes of {ω1, ω2, . . . , ωt};

1: Choose random elements ci ∈ Fq for i = 1, 2, . . . , n. Let α =
∑n

i=1 ciai.

2: Compute tij = ωiαωj, for i, j = 1, 2, . . . , t and i � j.
3: l =

⌊
logpm

⌋
4: for i = 1 to t do
5: for j = 1 to t do
6: tempij = 0;
7: for k = 1 to n do
8: if Tr((tijak)p

l
) 6≡ 0 mod pl+1 then

9: tempij = 1;
10: Break out of the inner “for” loop of k;
11: end if
12: end for
13: end for
14: end for
15: I = {1, 2, . . . , t};
16: while I 6= ∅ do
17: for i ∈ I do
18: compute ω̄i =

∑
j = i, i+ 1, . . . , t

tempij = 1

ωj;

19: I = I\{j|tempij = 1, j = i, i+ 1, . . . , t};
20: end for
21: end while
22: return all the ω̄i;
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Proof. When ωi and ωj are in different simple components then ωiαωj is strongly
nilpotent. The algorithm works correctly under this case. When ωi and ωj are
in a same simple component, then once ωiαωj is not strongly nilpotent then the
return result is correct. Otherwise, ωiαωj is strongly nilpotent, i.e. φ(ωisωj) =
0 by Lemma 48. We can choose a new basis of A, {β1, β2, . . . , βn}, such that
{φ(β1), φ(β2), . . . , φ(βk)} is the basis of S and {βk+1, βk+2, . . . , βn} is the basis of
Rad(A). Similarly, there is at least one element in the basis of A such that φ(ωiαωj)
is not zero. Without loss of generality, assume {β1, β2, . . . , βs} are all the elements
in the basis satisfying such condition. s ≤ k. Let α =

∑s
i=1 c

′
iβi and φ(ωiαωj) = 0.

By the Representation Theorem 22, S is isomorphic to a subalgebra of Mk(F )
under some mapping ψ. Thus

s∑
t=1

c′tβ̄t = 0,

where β̄t = ψ(φ(ωiβtωj)) for t = 1, 2, . . . , s. Selecting a random element of A in the
1st step of Algorithm 3.8 is equivalent to selecting {c′1, c′2, . . . , c′s} for {β1, β2, . . . , βs}
from a subset of Fq(y) with size q. So there are at most qs−1 solutions for this
equation and the size of the ground set is qs. By Lemma 3 (Schwartz-Zippel Lemma)
the probability that this equation holds, i.e. the algorithm works incorrectly, is at
most 1

q
. So for the whole algorithm, the probability of correctness is (1 − 1

q
)t ≥

1− t
q
≥ 1− ε.

To analyze the complexity, step 2 will take t2 times matrix multiplications,
taking O(t2×mω×M(d∆)) = O∼(t2mωd∆) operations in Fq and deg(tij) ≤ O(d∆).
Checking if ωiαωj is strongly nilpotent requires computation of the plth power of
t2n matrices. It will cost O(t2n ×mw ×M(d∆) × pl) ≤ O∼(t2nmω+1d∆). So the
total complexity of Algorithm 3.8 is O∼(t2nmω+1d∆) operations in Fq.

Similarly to Algorithm 3.3, we can modify it to be a deterministic algorithm.
Now we can give our algorithm of raw decomposition. From Theorem 47 it is
very possible to get a decomposing element α. Suppose {ω1, ω2, . . . , ωk} is the
idempotents computed from α, then

A =
k∑
i=1

eiAei +
k∑

i 6=j; i,j=1

eiAej;

Let N =
∑k

i 6=j; i,j=1 eiAej, and Pi = eiAei, then we get the raw decomposition.
The algorithm is given as follows.

Theorem 52. Given an integral basis {a1, a2, . . . , an} of A ⊂ Fq(y)m×m, where
q ≥ max{5n3

ε
, 5m
ε
, 5m2(m−1)2∆2

ε
, 3m2∆, 7m2∆, 5nm(2m2+4m+1)∆

ε
, 5m2(2m2+4m+1)∆

ε
} and

deg(ai) ≤ ∆, for 1 ≤ i ≤ n, Algorithm 3.9 computes the raw decomposition correctly
with probability at least 1− ε, taking O∼(mω+1∆

ω+1
2 + n2mω+4∆) operations in Fq.

Proof. From the analysis above, the algorithm returns the correct result when a
decomposing element is selected and the equivalent classes are correctly determined.
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Algorithm 3.9 Raw Decomposition
Input: An basis {a1, a2, . . . , an} of A ⊂ Fq(y)m×m,
where deg(ai) ≤ ∆, for 1 ≤ i ≤ n and q ≥
max{5n3

ε
, 5m
ε
, 5m2(m−1)2∆2

ε
, 3m2∆, 7m2∆, 5nm(2m2+4m+1)∆

ε
, 5m2(2m2+4m+1)∆

ε
};

Output: Bases of all the primary subalgebras Pis of A and the basis of N which
is the subalgebra of Rad(A) such that A = P1 + P2 + . . .+ Pk +N .

1: Choose a random (c1, c2, . . . , cn) from Fnq and Compute α =
∑n

i=1 ciai;
2: Compute the set of idempotents {ω′1, ω′2, . . . , ω′t} using Algorithm 3.4;
3: Modify {ω′1, ω′2, . . . , ω′t} to be integral by deleting the common denominator of

each ω′i for 1 ≤ i ≤ t, denoted by {ω1, ω2, . . . , ωt};
4: Determine the equivalent classes of {ω1, ω2, . . . , ωt} using Algorithm 3.8;

5: Compute Gi = {ωia1ωi, ωia2ωi, . . . , ωianωi} for 1 ≤ i ≤ k and N =
{ωiasωj} for i 6= j, 1 ≤ i, j ≤ k and 1 ≤ s ≤ n;

6: Return a maximal linearly independent subset of all the Gis and N using Al-
gorithm 2.1.

By Theorem 47, step 1 selects a decomposing element with the large probability
at least 1− ε

5
. Then by Theorem 35 and 51, step 3 and 4 compute and determine

the equivalent classes correctly with probability greater than 1 − 2ε
5
. Since k ≤

m, deg(ωi) ≤ (m2 + 2m)∆ and q ≥ 5m(2m2+4m+1)∆min(m2,n)
ε

, for each Gi, the
probability of selecting the basis correctly is at least 1 − ε

5m
from Theorem 7.

Thereby the probability of correctness of step 4 is (1 − ε
5m

)m ≥ 1 − ε
5
. Similarly,

q ≥ 5(2m2+4m+1)∆min(m2,m2n)
ε

, the basis of N is computed correctly with probability
1− ε

5
. So the algorithm is correct with probability (1− ε

5
)3(1− 2ε

5
) ≥ 1− ε.

For the complexity, step 2 will cost O∼(m6∆ + mω+1∆
ω+1

2 ) by Theorem 35.
Nothing happens in step 3. Note the degree of ωi is O(m2∆). Using Algo-
rithm 3.8 the cost of step 4 is O∼(t2nmω+3∆) = O∼(nmω+5∆) by Theorem 51.
And since the degree of ωi is O(m2∆), so is the ω̄i. So the degree of ω̄iasω̄j is
O(m2∆). Step 5 will requires O∼(k2nmωm2∆) = O∼(nmω+4∆) operations over
Fq. According to Theorem 7, step 6 will take O∼(k × (nm2m2∆ + nm2n) +
(nk2m2m2∆ +nk2m2min(nk2,m2))) = O∼(nm6∆). So the complexity of this algo-
rithm is O∼(mω+1∆

ω+1
2 + nmω+5∆) operations in Fq.

3.2.4 Computing the Radical

We end this section with a complete algorithm and its analysis for computing
the radical of A. Given a primary matrix algebra A ⊂ Fq(y)m×m , we follow the
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algorithm in the paper of Ivanyos et al.[24]. Theorem 38 suggests an algorithm
(Algorithm 3.6) to compute the radical of a general matrix algebra. However, it
suffers the explosion of the degree. Without any modification, the degree could grow
in every iteration and reach nlogpn. One way of modifying this method is finding a
good degree bound and transforming the resulting basis into a lower degree one in
each iteration. Rónyai gives a degree bound of O(n3∆) based on the degree that
the structure constants are integral with degree at most ∆. We already know that
the degree bound here for our problem could reach as large as O(n4∆). The degree
bound here is unacceptable. So we would like to find another way to avoid such
degree explosion. Notice the following useful lemma in Rónyai’s paper.
Theorem 53. Given a primary algebra A ⊂ Fq[y]m×m over the field Fq(y). I1, . . . , Ij,
where j >

⌊
logpn

⌋
, are the same as that in Theorem 38. Then the case that Ii ( Ii−1

happens at most once in the subset chain.

We will first modify the algorithm of Rónyai to compute the radical of a primary
algebra while avoiding the degree explosion problem. Then a complete algorithm
is given as a combination of doing raw decomposition first and then computes the
radical of each primary component Ai. The basis of Rad(A) will be the union of
the bases of the radicals of all the primary algebras and the basis of N . The idea
of transforming the decomposition of a general algebra into the decomposition of
primary algebra is inspired by Eberly’s paper [7], where he transforms the compu-
tation of the radical of a general algebra over Fq into that of local algebras. Recall
that for a general algebra A, A = S+Rad(A), where Rad(A) is the radical of A and
S is a semisimple algebra. Since S is a semisimple algebra, S = A1⊕A2⊕ . . .⊕Ak
where Ais are simple algebras. From the raw decomposition, Theorem 52, we can
compute the bases of Ais and N with degree bound O(m2∆) for their bases in
O∼(mω+1∆

ω+1
2 +nmω+5∆) such that A = (A1⊕A2⊕ . . .⊕Ak) +N where N is the

linear subspace of its radical and every Ai is primary (i.e. Ai/Rad(Ai) is simple).

Theorem 54. Given a basis {a1, a2, . . . , as} of a primary algebra A ⊂ Fq(y)m×m,
where deg(ai) = O(m2∆), Algorithm 3.10 computes the radical of a primary algebra
correctly taking O∼(min{s,m}2s2mω+2∆) operations in Fq.

Proof. The correctness of this algorithm is proved in the paper of Ivanyos et al.
[24] since the only difference is just that we are addressing a special input and the
algorithm works for the general case. Note that from Theorem 53, once we detect
the difference between Ii−1 and Ii, then we can break out of the loop and Ii is the
radical. This part is expressed in steps 4-9.

For the analysis of its complexity, it is similar to that in Subsection 3.2.1 except
the degree explosion. If dim(Ii) = n, then Ii = A, we can keep the basis for the
next iterations. If dim(Ii) < n, according to Theorem 53, Ii is the radical, we do
not need to do the next iteration. So by Theorem 39, step 3 takes O∼(skp2imωd)
for d = m2∆, k = s and 1 ≤ i ≤ t. So the total cost will be O∼(

∑t
i=1 skp

2imωd) =
O∼(min{s,m}2s2mω+2∆) operations in Fq.
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Algorithm 3.10 Computation of Rad(A) of primary algebra
Input: A basis {a1, a2, . . . , as} of a primary algebra A ⊂ Fq(y)m×m, where
deg(ai) = O(m2∆);
Output: A basis {r1, r2, . . . , rt} of the radical of A;

1: I0 = A; t = min{
⌊
logps

⌋
,
⌊
logpm

⌋
};

2: for i = 1 to t do
3: Compute the basis of Ii = {x ∈ Ii−1 | Tr((xy)pi) ≡ 0 mod pi+1, ∀y ∈ A};

4: if dim(Ii) � n then
5: It = Ii
6: continue;
7: else
8: Ii = A;
9: end if

10: end for
11: Return the basis of It.

Now we can present our complete algorithm to compute the radical of a gen-
eral algebra. We will use the raw decomposition to separate the general algebra
into primary ones and use Algorithm 3.10 to compute the radical of each primary
subalgebra, then make a union to get a basis of its radical.

Algorithm 3.11 Computation of the radical
Input: An integral basis {a1, a2, . . . , an} of the
m × m matrix algebra A over Fq(y), where q ≥
max{5n3

ε
, 5m
ε
, 5m2(m−1)2∆2

ε
, 3m2∆, 7m2∆, 5nm(2m2+4m+1)∆

ε
, 5m2(2m2+4m+1)∆

ε
} and

deg(ai) ≤ ∆ for 1 ≤ i ≤ n;
Output: A basis {r1, r2, . . . , rt} of its radical;

1: Compute the Raw Decomposition using Algorithm 3.9;
2: for each primary subalgebra Pi for 1 ≤ i ≤ k, compute its radical using Algo-

rithm 3.10;
3: Return the basis of N and all the Rad(Pi) for 1 ≤ i ≤ k.

Theorem 55. Given an integral basis {a1, a2, . . . , an} of the m×m matrix algebra
A over Fq(y), where q ≥ max{5n3

ε
, 5m
ε
, 5m2(m−1)2∆2

ε
, 3m2∆, 7m2∆, 5nm(2m2+4m+1)∆

ε
,

5m2(2m2+4m+1)∆
ε

} and deg(ai) ≤ ∆ for 1 ≤ i ≤ n, Algorithm 3.11 computes the
radical of a general matrix algebra correctly with probability at least 1 − ε, taking
O(mω+1∆

ω+1
2 + n2mω+4∆) operations in Fq.

Proof. By Theorem 52, step 1 works correctly with probability 1 − ε. Step 2 is
a deterministic procedure. So the whole algorithm returns the correct result with
probability at least 1− ε.
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For the complexity, step 1 requires O∼(mω+1∆
ω+1

2 + n2mω+4∆) operations over
Fq by Theorem 52 and gives the basis of each Ai with degree upper bound O(m2∆).
Then step 2 needs O∼(

∑k
i=1 min{s,m}2s2mω+2∆) operations in Fq, where si is the

dimension of Ai and
∑k

i=1 si ≤ n. O∼(
∑k

i=1 min{s,m}2s2mω+2∆) = O(n2mω+4∆).
Thus the complexity will be O∼(mω+1∆

ω+1
2 + n2mω+4∆) operations in Fq.

3.3 Modified algorithms for the case of small q
There are many restrictions on the size of q in our algorithms above, from

choosing the decomposing element to selecting maximal linearly independent vector
subset. We discuss how to modify the algorithms in this section to adapt them to
the small finite field case.

The size of q is always related to the probability of failure in our algorithm.
Now assume q is not large enough in the algorithm for selecting a maximal linearly
independent subset of vectors (Algorithm 2.1). By the proof of Theorem 6, there
are at most k∆ elements in the ground field Fq that change the linear dependency.
If we extend Fq to Fql , the number of such elements will still stay the same k∆.
Thus, we can follow the same path of Algorithm 7 but modify the first step to be
“Choose a random α ∈ Fql”, then the probability of correctness of this algorithm

is 1 − k∆
ql
. We can pick a sufficiently large l such that ql ≥ ∆min(m,n)

ε
for a given

ε > 0.
The second algorithm concerning the size of q is that of computing the minimal

polynomial (Algorithm 2.4). Similarly by the proof of Theorem 18, the number of
bad elements we choose from the ground field will be at most m(m − 1)2∆. Now
assume we are computing the minimal polynomial of a over Fql for some positive
l ∈ Z such that ql ≥ 1

ε
m(m−1)2∆(m∆+1) for a given ε > 0. We follow Algorithm

2.4 but choose {α1, α2, . . . , am∆, αm∆+1} ⊂ Fql in the first step. It is easy to show
that the probability of success is at least 1 − ε. But we need to prove the result
we get in this way is indeed in Fq[y, x], i.e. the result of the modified algorithm is
correct, as the following lemma.
Lemma 56. Given a matrix a ∈ Fq[y]m×m, its minimal polynomial over Fq[y] is
the same as that over Fql [y] when we treat a as a matrix in Fql [y].

Proof. Assume the minimal polynomial of a over Fq(y) is f and that over Fql(y) is

g = xt + bt−1x
t−1 + . . .+ b0,

where bi ∈ Fql(y) for 0 ≤ i ≤ t. From Lemma 10 we know g ∈ Fql [y][x]. Note that
g|f , therefore deg(f) ≥ t. Assume h(z) is the minimal polynomial with degree l−1
of a generating element of Fql over Fq. So bi = bi0 + bi1z+ . . .+ bi(l−1)z

l−1 ∈ Fq[y][z]
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where bij ∈ Fq[y] for 0 ≤ i ≤ t and 0 ≤ j ≤ l − 1. Since a ∈ Fq[y],

g(a) = (at + b(t−1)0a
t−1 + . . .+ b00) + . . .+ (b(t−1)(l−1)a

t−1 + . . .+ b0(l−1))z
l−1 = 0.

So b(t−1)ja
t−1 + . . .+ b0j = 0, i.e. b(t−1)jx

t−1 + . . .+ b0j is an annihilating polynomial
of a or a zero polynomial for 1 ≤ j ≤ l − 1. If there is u ∈ {0, . . . , t − 1} and
v ∈ {1, . . . , l − 1} such that buv 6= 0, then b(t−1)vx

t−1 + . . . + b0v is an annihilating
polynomial of a, so is f̄ = xt−1 +

b(t−2)v

b(t−1)v
xt−2 + . . . + b0v

b(t−1)v
∈ Fq(y)[x]. This is

contradiction to f is the minimal polynomial of a over Fq(y) and deg(f) ≥ t. So
g = xt + b(t−1)0x

t−1 + . . .+ b00 ∈ Fq[y, x] with bi0 ∈ Fq[y]. Thus f = g.

To modify Algorithm 3.4 for selecting decomposing element in Section 3.1, note
that from the proof of Theorem 34, the number of bad elements (non-decomposing
elements) we may select is fixed, independent to what the ground field is. Thus,
we can just extend our ground set Fq where we choose the random element to
{f ∈ Fq[y]| Deg(f) < l}, i.e. select (c1, c2, . . . , cn) ∈ {f ∈ Fq[y]| Deg(f) < l}n in
the first step of Algorithm 3.4, for some sufficiently large l such that ql ≥ nm2

ε
.

Note that there are also requirements for q in the Lecerf’s algorithm of bivariate
polynomial factorization and the algorithm of extended Euclidean algorithm. For
the algorithm of bivariate polynomial factorization, when q is small, we can replace
the algorithm of Lecerf with other algorithms which have no requirement about q,
such as the algorithm of Lenstra [30] and the one of von Zur Gathen and Kaltofen
[15]. Now assume p ≤ q ≤ 3m2∆, we will use Lenstra’s result here (Theorem 2.18,
[30]), as follows:

Theorem 57. Let f be a polynomial in Fq[x, y]. Then the factorization of f into
irreducible factors in Fq[x, y] can be determined in O(d6

xd
2
y +d3

xpl+d3
ypl) arithmetic

operations in Fq, where dx (dy) is the degree of f with respect to x (y) and q = pl.

Investigating into the proof of this theorem, we know that for our minimal
polynomial, primitive with respect to x, the cost is O(d6

xd
2
y + d3

xpl) = O∼(m8∆2 +
m5∆) = O∼(m8∆2). We prefer Lenstra’s result [30] to that of Gathen and Kaltofen
[15] here. Because the result of Gathen and Kaltofen [15] focuses on the total degree
of f , which makes the complexity has a large exponent for ∆.

For the extended Euclidean algorithm, given f, g ∈ Fq[y, x], we would like to
compute s,t ∈ Fq(y)[x] such that sf + tg = 1. Treating f, g as polynomials in
Fql [y, x] for a sufficiently large l we can compute s̄,t̄ ∈ Fql(y)[x] such that s̄f+t̄g = 1.
By the proof of the theorem about the degree bound of s̄ and t̄ ([14], Theorem 6.54,
pp. 175), σks̄f + σk t̄g = σkrk and σs̄ and σt̄ are in Fql [y] with degree bound m2∆
where rk = 1. So after we compute the value of s̄ and t̄ we can first compute the
lcm of their denominators, denoted by σ. Thus, σs̄f +σt̄g = σ. Again assume h(z)
is the minimal polynomial with degree l− 1 of a generating element of Fql over Fq.
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Let the jth coefficients of σs̄, σt̄ and σ is as follows,

[σs̄]j = aj(m2∆)y
m2∆ + . . .+ aj0;

[σt̄]j = bj(m2∆)y
m2∆ + . . .+ bj0;

[σ]j = cj(m2∆)y
m2∆ + . . .+ cj0,

where aji, bji and cji are in Fq[z] for 0 ≤ i ≤ m2∆ with degree bound l−1. Rewrite
σs̄, σt̄ and σ as the polynomial with indeterminate z,

σs̄ = āl−1z
l−1 + . . .+ ā0;

σt̄ = b̄l−1z
l−1 + . . .+ b̄0;

σ = c̄l−1z
l−1 + . . .+ c̄0,

where āi and b̄i in Fq[y, x] and c̄i ∈ Fq[y] for 0 ≤ i ≤ l − 1 with degree bound with
respect to y as m2∆. Since σ 6= 0, there at least one c̄i 6= 0. Suppose it is c̄j . So
ājf + b̄jg = c̄j are an equation in Fq[y, x]. Therefore āj

c̄j
f +

b̄j
c̄j
g = 1 in Fq(y)[x] with

degree bound of y for the coefficients of āj
c̄j

and b̄j
c̄j

as m2∆. Hence we can compute
the extended Euclidean algorithm over Fql(y) first and then get the final result in
Fq(y) with the same degree bound.

Thus, based on what we state above, we can modify our algorithm for the
Wedderburn decomposition for the algebra over Fq(y) when q is small.

For Algorithm 47 in Section 3.2, it is similar to Algorithm 34 of Section 3.1. So
we can apply the same trick here to modify the algorithm to adapt our algorithm
for computing the radical to the case of small q.

To analyze its complexity, note that the lower bound for the size of q is all
polynomial in m, n, ∆ and 1

ε
. Thus, l is polynomial in log m, log n, log ∆ and

log 1
ε
. Since we only care about the soft complexity, we ignore the part of log m,

log n, log ∆ except log 1
ε
. For the algorithm for the Wedderburn decomposition,

we select (c1, c2, . . . , cn) ∈ {f ∈ Fq[y]| Deg(f) < l}n, therefore the degree of α
will be ∆ + l. Then the complexity is O∼(mω+4(∆ + log 1

ε
) + m8(∆ + log 1

ε
)2) =

O∼(m8(∆ + log 1
ε
)2). Similarly for the algorithm for computing the radical, it

requires O∼(m8(∆+log 1
ε
)2 +n2mω+4(∆+log 1

ε
)) operations over Fq and the degree

bound of the returned bases is O(m2(∆+log 1
ε
)). So the complexity of computation

of the radical over Fq is O∼(m8(∆+log 1
ε
)2+n2mω+4(∆+log 1

ε
)) = O∼(n2mω+4(∆+

log 1
ε
)2).
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Chapter 4

Future Work

Recall that there are at least two questions remaining unsolved. One is to
make our algorithms of Las Vegas type. One possible way is to make all the steps,
which are probabilistic in our algorithm, to be of Las Vegas type. We already
propose the algorithms of Las Vegas type for selecting a maximal linearly indepen-
dent vector subset, computing the minimal polynomial as well as determining the
equivalent classes of idempotents. The remaining question is how to check that the
random element we choose from the algebra is really a decomposing element. In
the Wedderburn decomposition, recall that the decomposing element is the element
with highest degree for its minimal polynomial. Suppose the basis of the semisim-
ple algebra A ∈ Fq(y)m×m is {a1, a2, . . . , an}. Then, by Lemma 33, the maximal
rank of an element in A is the same as that of the multinomial polynomial matrix
a1z1 + a2z2 + . . . + anzn ∈ Fq(y)[z]m×m, where zi are the indeterminants of the
polynomial. However we have no efficient algorithm to compute the rank of this
matrix. Also, this way does not work for computing the radical directly thanks to
the more general definition of decomposing element in Subsection 3.2.3. Another
possible method to make it of Las Vegas type is developing an algorithm to check
the result. When the ground field F = Fq, Eberly and Giesbrecht [7] present an
analysis to check the result. When F = Fq(y), it is still unsolved.

The other open question is to compute the isomorphic mapping from the simple
component to a full matrix algebra Mt(D), where D is an extended division ring of
Fq(y). Actually this question is equivalent to computing the primitive idempotents,
or computing the zero divisors. In the paper of Giesbrecht and Zhang [19], this iso-
morphic mapping is taken advantage of to factor the Ore polynomials. A similar
idea of computing the primitive elements is selecting a random element from the
simple algebra and then proving it is with large probability to decompose the alge-
bra, so that we can compute a zero divisor (or decompose the idempotents in the
algebra until they are primitive). Let T (n, d, q) be the set of all d-inc polynomials
in Fq[x, y] of degree in x being n, t(n, d, q) = |T (n, d, q)| and r(n, d, q) the number
of reducible polynomials in T (n, d, q). The following proposition, similar to Propo-
sition 2.1 in Gao and Lauder’s paper [12], shows that the reducible polynomials in
T (n, d, q) is sparse when n is large.
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Proposition 58. for n ≥ 6 and q ≥ 2,

r(n, d, q)

t(n, d, q)
≤ 4

3
�

1

qd(n−1)
.

Proof. Let f = xn + an−1x
n−1 + . . . + a0 ∈ T (n, d, q). It is straightforward that

t(n, d, q) = q
∑n
i=1 id = qd

n(n+1)
2 . If a polynomial in T (n, d, q) is reducible, then one of

its factor must have degree in x between 1 and n
2
and all of its factors are in d-inc

form by Lemma 11. So

r(n, d, q) ≤
∑n/2

i=1 t(i, d, q)t(n− i, d, q)
=
∑n/2

i=1 q
d(
i(i+1)

2
+

(n−i)(n−i+1)
2

).

It follows that
r(n, d, q)

t(n, d, q)
≤
∑

1≤i≤n
2

1

qd(n−i)i

By the proof of Proposition 2.1 in Gao and Lauder’s paper [12], r(n,d,q)
t(n,d,q)

≤ 4
3
� 1
qd(n−1)

for q ≥ 2 and n ≥ 6.

Besides, we need to analyze the number of matrices which have a “good” Frobe-
nius form over D, where D is an extended infinite division ring of Fq(y). When
the ground field is Fq, we only need to do the analysis over a nice field, finite field.
However, when F = Fq(y), D is infinite, which makes it much more difficult. A way
to deal with the infinite ground field when analyzing the decomposing elements is
presented in Theorem 34 and Theorem 47. But a similar way to analyze the “good”
element, which decomposes the idempotent in an unique simple algebra, is not
known yet.

Another possible application of primitive idempotents is computing the radical
of a general matrix algebra, following the idea of Ivanyos’s paper [23]. In this way,
we also need to be careful about the degree explosion. Let A = S + Rad(A) and
C = CA(S), the centralizer of S in A. Another problem of this idea is from the
inseparability. For a local algebra A over Fq, A/Rad(A) is a field, which is the
case in the paper of Ivanyos [23] and makes the following key property holds: every
element c ∈ C can be uniquely written in the form c = cs + cn, where cs ∈ S and
cn ∈ Rad(A). Since A/Rad(A) is a field, S ⊂ C. However, when the ground field
is Fq(y), A/Rad(A) is an inseparable division ring over Fq(y). We need to develop
an alternative way to compute the radical of the local algebra A.
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