
Deciding Properties of
Automatic Sequences

by

Luke Schaeffer

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Luke Schaeffer 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we show that several natural questions about automatic sequences can
be expressed as logical predicates and then decided mechanically. We extend known re-
sults in this area to broader classes of sequences (e.g., paperfolding words), introduce new
operations that extend the space of possible queries, and show how to process the results.

We begin with the fundamental concepts and problems related to automatic sequences,
and the corresponding numeration systems. Building on that foundation, we discuss the
general logical framework that formalizes the questions we can mechanically answer. We
start with a first-order logical theory, and then extend it with additional predicates and
operations. Then we explain a slightly different technique that works on a monadic second-
order theory, but show that it is ultimately subsumed by an extension of the first-order
theory.

Next, we give two applications: critical exponent and paperfolding words. In the
critical exponent example, we mechanically construct an automaton that describes a set
of rational numbers related to a given automatic sequence. Then we give a polynomial-
time algorithm to compute the supremum of this rational set, allowing us to compute the
critical exponent and many similar quantities. In the paperfolding example, we extend
our mechanical procedure to the paperfolding words, an uncountably infinite collection of
infinite words.

In the following chapter, we address abelian and additive problems on automatic se-
quences. We give an example of a natural predicate which is provably inexpressible in our
first-order theory, and discuss alternate methods for solving abelian and additive problems
on automatic sequences.

We close with a chapter of open problems, drawn from the earlier chapters.

iii

Acknowledgements

I would like to thank Jeffrey Shallit for supervising my research, and for his assistance
preparing this thesis. I would also like to thank the readers, Shai Ben-David and Jason
Bell, for agreeing to read this thesis. Finally, I would like to thank my friends and family
for their encouragement.

iv

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Introduction . 1
1.2 Words and Languages . 2
1.3 Monoids . 3
1.4 Finite Automata . 5

1.4.1 ω-Languages and ω-Automata . 9
1.4.2 Automata with Multiple Inputs . 11

1.5 Morphic Words . 13
1.6 Properties of Infinite Words . 15

1.6.1 Subword Complexity . 16
1.6.2 Recurrence, Appearance and Condensation 16

2 Automatic Sequences 18

2.1 Numeration Systems . 18
2.2 Properties of Numeration Systems . 20

2.2.1 ω-Numeration Systems . 23
2.2.2 Morphic Numeration Systems . 24

2.3 N -Automatic Sequences . 28

v

2.4 k-Regular and k-Synchronized Functions 31
2.4.1 k-Regular Functions . 31
2.4.2 k-Synchronized Sequences . 32

3 Decidability in Automatic Sequences 34

3.1 Introduction . 34
3.2 Deciding First-Order Sentences . 35

3.2.1 Additional Operations . 39
3.2.2 Decidability using DFAs and DFAOs 45
3.2.3 Complexity . 47

3.3 Deciding Monadic Second-Order Sentences 48
3.4 DFAO Application and σT . 51

3.4.1 Implementation of σT . 54
3.4.2 Applications of σT . 62

4 Applications 67

4.1 Critical Exponent and k-Automatic Sets of Rational Numbers 67
4.1.1 Basic Operations on k-Automatic Rational Sets 71
4.1.2 Limit Points and Special Points . 72
4.1.3 Computing the Supremum and Largest Special Point 73

4.2 Decidability for Paperfolding Words . 81
4.2.1 First-Order Theory for Paperfolding Words 83
4.2.2 Paperfolding with DFAs and DFAOs 88

5 Abelian and Additive Powers 91

5.1 Definition and Notation . 91
5.2 Inexpressibility . 91
5.3 Counting Symbols with Automata . 95

vi

5.3.1 Linear Algebra and Abelian Properties 98
5.3.2 First Example . 99
5.3.3 Second Example . 103
5.3.4 Decidability for Abelian Powers . 109

6 Open Problems 111

6.1 Complexity Problems . 111
6.2 Abelian Power Decidability . 112
6.3 Automatic Rational Sets . 112
6.4 Shift Orbit Closure . 114

References 116

vii

List of Figures

1.1 Büchi automaton accepting words with infinitely many 1s. 10
1.2 Büchi automaton accepting words with finitely many 1s. 10
1.3 Automaton deciding if one input is a prefix of the other. 12

2.1 Addition in base k with LSD first. 23
2.2 Automaton for the Thue-Morse word . 28

3.1 The Fibonacci word as a cutting sequence. 53

4.1 DFAO for all paperfolding sequences. 83

5.1 Automaton for computing ∆t(n), given n in binary. 95
5.2 DFA for L. 104

viii

Chapter 1

Introduction

1.1 Introduction

The goal of this thesis is to explain and develop a procedure for mechanically deciding
questions about automatic sequences, which we state as predicates in first-order logic.
After explaining the necessary background for automatic sequences, we present the basic
decidability result in Theorem 3.1. This is not a new result, but we will apply it and extend
it many different ways.

First, we extend our logical theory with a new operation in Section 3.4. This allows
us to apply a finite automaton to compare two subwords of a sequence, solving an open
problem. It is also general enough to apply to other extensions in later chapters.

Second, we give an algorithm (Theorem 4.20) that efficiently processes the output of
our mechanical procedure, improving on an earlier result [49]. This algorithm allows us to
answer questions about ratios and limits that cannot be expressed directly as predicates.

The third major result (Theorem 4.24) extends our decision procedure (and the first-
order logical theory) to an uncountably infinite family of sequences, called paperfolding
words. This answers an open problem about paperfolding words, and gives proves a number
of other interesting new properties.

Finally, we address abelian and additive problems in automatic sequences, which are
difficult to state as predicates. In fact, we show that a specific, natural query about abelian
powers is inexpressible in Theorem 5.5. On the other hand, we show the existence of an
additive cube-free word in Theorem 5.12, based on the author’s work in [15].

1

Let us first introduce a number of basic concepts and definitions. We begin with finite
words, languages, monoids, morphisms, automata and ω-automata. The remainder of this
chapter covers notation and definitions which make up the foundations of the theory of
automatic sequences.

1.2 Words and Languages

Let Σ∗ denote the set of (finite) words over a finite alphabet Σ. Unless stated otherwise,
we will use the symbols Σ, ∆ and Γ to represent finite alphabets. We write ε ∈ Σ∗ for
the empty word. Let |x| denote the length of a word x ∈ Σ∗, and |x|a denote the number
of occurrences of a symbol a ∈ Σ in the word x. Let Σω denote the set of one-sided
right-infinite words over Σ.

Let w ∈ Σ∗ be a word and suppose i ≥ 0 is an integer. We write w[i] to denote the
symbol in w at position i. We take the first symbol in w to be at position 0, so

w = w[0]w[1]w[2] · · ·w[n− 1]

where n = |w|. A subword of w is a contiguous block of symbols in w. We write w[i..j]
for the subword w[i]w[i + 1] · · ·w[j − 1]w[j]. In the case of infinite words, we allow ∞ as
a position so that we may write w[i..∞] for a suffix of w.

A language over Σ is a subset of Σ∗. The traditional set operations of union (A ∪ B),
intersection (A∩B), set difference (A\B), symmetric difference (A⊕B) and complement
(Σ∗\A) are common operations on languages A,B ⊆ Σ∗. In addition, we have the following
language operations for languages A,B,C ⊆ Σ∗.
• The concatenation of two languages, denoted AB, is defined to be

AB := {ab : a ∈ A, b ∈ B}.

Note that A(BC) = (AB)C, so concatenation is associative, and A{ε} = A = {ε}A.
We define powers of a language, An, where

An :=

{ε}, if n = 0;
An−1A, if n > 0.

2

• Let A∗ be the Kleene star of A, defined by

A∗ :=
⋃
n≥0

An.

The Kleene plus is similarly defined as A+ := ⋃
n≥1A

n.

• The quotient of A by B is the language

A/B := {x ∈ Σ∗ : there exists y ∈ B such that xy ∈ A}.

Note that (AB)/B ⊇ A, but in general (AB)/B 6= A.

Definition 1.1. We give a recursive definition for the collection of regular languages over
an alphabet Σ. A language L ⊆ Σ∗ is regular if

1. L is finite, or
2. there exist regular languages A,B ⊆ Σ∗ such that L = AB, or
3. there exist regular languages A,B ⊆ Σ∗ such that L = A ∪B, or
4. there exists a regular language A ⊆ Σ∗ such that L = A∗.

In other words, close the set of finite languages under concatenation, union and Kleene
star to obtain the set of regular languages.

We note without proof that regular languages are closed under all the language opera-
tions we have described.

Theorem 1.2. Let A,B ⊆ Σ∗ be regular languages. Then A ∪ B, A ∩ B, A\B, A ⊕ B,
Σ∗\A, AB, A∗, A+, and A/B are regular languages.

1.3 Monoids

Definition 1.3. A monoid is a triple, (M, ·, 1) satisfying the following conditions:
1. M is a set, · : M ×M →M is a binary operation on M , and 1 ∈M is an element.
2. for all x, y, z ∈M , x · (y · z) = (x · y) · z. That is, the operation is associative.
3. for all x ∈ M , 1 · x = x = x · 1. In other words, 1 is a two-sided identity for the

operation.
We say a monoid is commutative if it satisfies the additional condition

4. for all x, y ∈M , x · y = y · x.

3

The monoid of words over Σ is (Σ∗, ·, ε), the set of words Σ∗ under concatenation, where
ε is the identity element. Another common example is (N,+, 0), the set of nonnegative
integers under addition. The set of all languages under concatenation is a monoid, since
we have seen that A(BC) = (AB)C for languages A,B,C ∈ Σ∗ and A{ε} = A = {ε}A.
We can also construct monoids from sets or other monoids.

1. Suppose X and Y are sets. Let XY denote the set of functions from X to Y . Then
(XX , ·, id) is a monoid, where id : X → X is the identity function and the monoid
operation is (fg)(x) := g(f(x)) (i.e., the opposite of function composition).

2. Let (M,+, 0) be a monoid, and let X be a set. It is clear that (MX ,⊕,0) is a monoid,
where (f ⊕ g)(x) := f(x) + g(x) for all x ∈ X, f, g ∈MX , and 0 is the zero function.

When the binary operation and identity of a monoid (M, ·, 1) are understood, we will refer
to the monoid by M , its ground set.

Like many other mathematical objects, there exist maps between monoids that preserve
the monoid structure.

Definition 1.4. A monoid homomorphism is a function ϕ : X → Y from a monoid
(X, ·X , 1X) to a monoid (Y, ·Y , 1Y) such that f(1X) = 1Y and

f(a ·X b) = f(a) ·Y f(b)

for all a, b ∈ X.
A morphism is a monoid homomorphism where the domain and/or codomain are

monoids of words under concatenation.

For example, the map ` : Σ∗ → N such that `(x) := |x| is an example of a monoid
homomorphism because `(ε) = |ε| = 0 and

`(xy) = |xy| = |x|+ |y| = `(x) + `(y).

Suppose ϕ : Σ∗ →M is a monoid homomorphism. Given the values ϕ(a) for all a ∈ Σ,
we deduce that

ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an).
Therefore we can specify a morphism ϕ by giving its value on each a ∈ Σ. The following
theorem gives a converse: any assignment Σ→M can be extended to a homomorphism.

Theorem 1.5. Let M be a monoid, and let Σ be a finite alphabet. Suppose f : Σ→M is
an arbitrary function. There exists a unique morphism f̂ : Σ∗ →M such that f̂(a) = f(a)
for all a ∈ Σ.

4

For example, consider the map Σ → NΣ that sends a ∈ Σ to the function δa : Σ → N
where

δa(b) :=

0, if a 6= b;
1, if a = b.

This extends to the monoid homomorphism ψ : Σ∗ → NΣ such that ψ(x)(a) = |x|a. This
homomorphism is called the Parikh map after its use by Parikh in [39].

We can also use Theorem 1.5 to succinctly define morphisms. For example, consider
the morphism h : {1, 2, 3, 4}∗ → {i, m, p, s}∗ uniquely defined by the following data.

h(1) = m
h(2) = iss
h(3) = pp
h(4) = i
h(5) = ε

Then we have
h(1224534) = mississippi.

1.4 Finite Automata

In general terms, an automaton is a machine that reads an input word from left to right,
and produces some output. The machine has a state between each symbol in the word,
and updates the state as it reads symbols from the input. The prototypical example is the
deterministic finite automaton (DFA), defined below.

Definition 1.6. A deterministic finite automaton (DFA) T is a 5-tuple (Σ, Q, δ, q0, F),
where
• Σ is a finite alphabet,
• Q is the (finite) set of states,
• δ : Q× Σ→ Q is the transition function,
• q0 ∈ Q is the initial state, and
• F ⊆ Q is a set of final states.

We extend δ to δ∗ : Q× Σ∗ → Q such that

δ∗(q, w) = δ(δ(· · · δ(δ(q, w[0]), w[1]) · · · , w[n− 2]), w[n− 1])

5

for w = w[0..n− 1] ∈ Σ∗.
Given a word w ∈ Σ∗, we say T accepts w if δ∗(q0, w) ∈ F , otherwise we say T rejects

w. The language recognized by T , denoted L(T), is the set of words in Σ∗ accepted by T .

DFAs are interesting as a model of computation because they accept precisely the class
regular languages.

Theorem 1.7. A language L ⊆ Σ∗ is accepted by a DFA if and only if L is regular.

All of the closure properties in Theorem 1.2 can be constructively proved on DFAs.
We state the pumping lemma for DFAs without proof for future use.

Lemma 1.8. Let M = (Σ, Q, δ, q0, F) be a DFA recognizing the language L = L(M) ⊆ Σ∗.
There exists a constant ` (depending on M , especially |Q|) such that for any word w ∈ L
of length |w| ≥ `, we can factor w into xyz for x, y, z ∈ Σ∗ such that xyiz ∈ L for all i ≥ 0
and 1 ≤ |y| ≤ `.

Furthermore, we can pick a length ` window (i.e., subword) in w, such that when we
factor w = xyz, the subword y is contained in the window.

Given an input word, the output of a DFA is a boolean flag indicating whether to
accept or reject the input. Deterministic finite automata with output (DFAOs) naturally
generalize DFAs by allowing outputs in a finite set.

Definition 1.9. A deterministic finite automaton with output (DFAO) T is a 6-tuple
(Σ, Q, δ, q0,Γ, γ), where
• Σ is a finite alphabet,
• Q is the (finite) set of states,
• δ : Q× Σ→ Q is the transition function,
• q0 ∈ Q is the initial state,
• Γ is an output alphabet (not necessarily finite),
• γ : Q→ Γ is the output map.

As with DFAs, we extend δ to δ∗ : Q× Σ∗ → Q.
The output of T on a string w ∈ Σ∗, denoted T (w) ∈ Γ, is defined as

T (w) := γ(δ∗(q0, w)).

When we want to define a DFAO without naming the internals (state set, initial state and
output map), we write T : Σ∗ → Γ.

6

Definition 1.10. We say a function f : Σ∗ → Γ is automatic if there exists a DFAO
T : Σ∗ → Γ such that T (w) = f(w) for all w ∈ Σ∗.

We are primarily interested in automatic functions where the input is a string of digits
representing a number. For instance, for any fixed m ≥ 2, there is a finite automaton that
computes n mod m given the binary expansion of n. We will also use automatic functions
to define automatic sequences in Chapter 2.

DFAOs are closed under products, post-composition with functions and pre-composition
with morphisms. Consequently, we have the following closure properties for automatic
functions, which we state without proof.

Theorem 1.11. Let f1 : Σ∗ → Γ1 and f2 : Σ∗ → Γ2 be automatic functions. Then the
product function (f1 × f2) : Σ∗ → Γ1 × Γ2, where (f1 × f2)(x) = (f1(x), f2(x)) for all
x ∈ Σ∗, is automatic.

Theorem 1.12. Let f : ∆∗ → Σ∗ be a morphism, let g : Σ∗ → Γ be an automatic function,
and let h : Γ→ Θ be any function. Then the composition h◦g◦f : ∆∗ → Θ is an automatic
function.

We can also assemble DFAOs from a collection of regular languages, or vice versa. As
a corollary, we can represent an automatic function as a collection of automatic functions
into {0, 1}. This will be useful when we use automata to represent logical formulas in
Chapter 3, since logical predicates are inherently boolean.

Theorem 1.13. Let Σ,Γ be finite alphabets and suppose f : Σ∗ → Γ is a function. Then
f is automatic if and only if the language

La := {w ∈ Σ∗ : f(w) = a}

is regular for each a ∈ Γ.

Proof. Suppose f is an automatic function. For each a ∈ Γ, define a function Ia : Γ→ {0, 1}
where

Ia(b) =

0, if a 6= b;
1, if a = b.

Then Ia : f is an automatic function, and the corresponding DFAO outputs 1 for exactly
the words in La. Hence, La is regular.

7

Conversely, suppose each La is regular. There exist automatic functions ga : Σ∗ → {0, 1}
such that

ga(w) =

0, if w /∈ La;
1, if w ∈ La.

Then the product of these functions, g : Σ∗ → {0, 1}Γ, is automatic. It is not hard to see
that for all w ∈ Σ∗, g(w) ∈ {0, 1}Γ is a tuple of zeros with a 1 in coordinate f(w). Hence,
f is the composition of g with an appropriate function h : {0, 1}Γ → Γ, which is automatic
by Theorem 1.12.

We also have an algebraic characterization of automatic functions in terms of monoids.

Theorem 1.14. Let f : Σ∗ → Γ be a function. Then f is automatic if and only if there
exist a finite monoid M , morphism µ : Σ∗ →M and function t : M → Γ such that f = t◦µ.

Proof. If f is automatic then we have a corresponding DFAO T = (Σ, Q, δ, q0,Γ, γ) that
computes the function. We take
• M = QQ,
• µ : Σ∗ → QQ where µ(x) := q 7→ δ∗(q, x), and
• t : QQ → Γ where t(g) := γ(g(q0)).

Then
f(x) = γ(δ∗(q0, x)) = γ

(
(q 7→ δ∗(q, x)) (q0)

)
= t(µ(x))

for all x ∈ Σ∗, so f = t ◦ µ.
In the other direction, suppose we are given a finite monoid M , morphism µ : Σ∗ →M

and function t : M → Γ such that f = t ◦ µ. Then we define T = (Σ,M, δ, q0,Γ, t) where
• the set of states is M ,
• the set of output associated with a state q ∈M is t(q),
• the initial state is q0 = 1 ∈M where 1 is the identity element in M ,
• and δ(q, a) := qµ(a) for all q ∈M and a ∈ Σ.

Then observe that

δ∗(q, w) = δ(δ(· · · δ(δ(q, w[0]), w[1]) · · · , w[n− 2]), w[n− 1])
= ((· · · ((qµ(w[0]))µ(w[1])) · · ·µ(w[n− 2]))µ(w[n− 1]))
= qµ(w[0])µ(w[1]) · · ·µ(w[n− 2])µ(w[n− 1])
= qµ(w)

8

for all q ∈M and w = w[0..n− 1] ∈ Σ∗. In particular,

t(δ∗(q0, w)) = t(1 · µ(w)) = (t ◦ µ)(w) = f(w)

for all w, so T (w) = f(w) as desired.

1.4.1 ω-Languages and ω-Automata

In this section, we discuss the generalizations of languages and automata from finite words
to infinite words. An ω-language is a subset of Σω, the set of (right) infinite words over Σ,
and there is a corresponding generalization of regular languages.

Definition 1.15. A ω-language L ⊆ Σω is ω-regular if it is of the form
• Aω := {a1a2a3 · · · : a1, a2, a3, . . . ∈ A} for A a regular language,
• AB := {ab : a ∈ A, b ∈ B} for A a regular language and B an ω-regular language, or
• A ∪B for ω-regular languages A,B.

In addition to being closed under Aω, AB and A ∪ B, ω-regular languages are also
closed under intersection (A∩B), complement (A), morphism (ϕ(A)) and inverse morphism
(ϕ−1(A)). See [40, Chapter 1] for proofs of these closure properties and further discussion
of ω-regular languages (in their terminology, ω-rational sets).

We can also characterize ω-regular languages with ω-automata. There are many kinds
of ω-automata, but we will only describe Büchi automata and Muller automata. Büchi
automata were introduced by Büchi in [12] for the purpose of deciding logical statements.

Definition 1.16. A Büchi automaton T is a 5-tuple (Σ, Q, δ, q0, F) where
• Σ is a finite alphabet,
• Q is a (finite) set of states,
• δ : Q× Σ→ 2Q is a non-deterministic transition function,
• q0 ∈ Q is an initial state,
• F ⊆ Q is a set of final states.

Then T accepts a word w ∈ Σω if it labels an infinite walk through the transition digraph
that visits some state in F infinitely many times.

In other words, a Büchi automaton has the same elements as an NFA, but with a
different acceptance condition. As an example, consider the Büchi automaton in Figure 1.1,
which accepts the language

L = {w ∈ {0, 1}ω : w contains infinitely many 1s}.

9

The complement language,

L = {w ∈ {0, 1}ω : w contains finitely many 1s}

is also accepted by a Büchi automaton, shown in Figure 1.2.

start

0 1
1

0

Figure 1.1: Büchi automaton accepting words with infinitely many 1s.

start

0, 1 0

0

Figure 1.2: Büchi automaton accepting words with finitely many 1s.

One downside of Büchi automata is that they are necessarily nondeterministic. For
instance, there is no deterministic Büchi automaton for the ω-language of words with
finitely many 1s. Muller automata, on the other hand, are deterministic and use a slightly
different acceptance condition.

Definition 1.17. A Muller automaton is a 5-tuple T = (Σ, Q, δ, q0,F) where
• Σ is a finite alphabet,
• Q is the (finite) set of states,
• δ : Q× Σ→ Q is the transition function,
• q0 ∈ Q is the initial state, and
• F ⊆ 2Q is a collection of subsets of Q.

10

Define δ∗ : Q× Σ∗ → Q by extending δ, as we did for DFAs. We say T accepts an infinite
word w ∈ Σω if the set

{q ∈ Q : δ∗(q0, w[0..n− 1]) = q for infinitely many n ∈ N}

belongs to F.

The following result relates ω-automata to ω-regular languages.

Theorem 1.18. Let L ⊆ Σω be an ω-language. The following are equivalent
• L is ω-regular.
• L is recognized by a Büchi automaton.
• L is recognized by a Muller automaton.

Proof. See [40, Chapter 1].

Furthermore, the closure properties of ω-regular languages correspond to constructions
on ω-automata.

1.4.2 Automata with Multiple Inputs

Sometimes we will need automata that take a fixed number of inputs, say d ∈ N, over
an alphabet Σ (or occasionally over heterogeneous alphabets). For ω-automata, this is
trivial; we simply use an ω-automaton over the alphabet Σd. As a notational convenience,
if a1, a2, . . . , am ∈ Σω then we write (a1, . . . , am) for the infinite word

(a1[0], . . . , am[0])(a1[1], . . . , am[1])(a1[2], . . . , am[2]) · · · ∈ (Σ× Σ)ω.

In other words,(Σω)d is isomorphic to (Σd)ω, and to make notation simpler, we may pretend
we are in one when we are in the other. For example, given ω-languages A ⊆ Σω and
B ⊆ Σω, we have

A×B = {(a, b) : a ∈ A, b ∈ B}
= {(a, b) ∈ (Σ× Σ)ω : a ∈ A} ∩ {(a, b) ∈ (Σ× Σ)ω : b ∈ A}
= h−1

1 (A) ∩ h−1
2 (B)

where h1, h2 : (Σ×Σ)∗ → Σ∗ are morphisms such that h1(a, b) = a and h2(a, b) = b. Hence,
A×B is ω-regular.

11

For automata on finite words, the situation is more complicated because the inputs may
have different lengths, and hence Σ∗×Σ∗ is not isomorphic to (Σ×Σ)∗. Our solution is to
pad all input words to the same length with a new symbol, �, and work over the alphabet
(Σ ∪ {�})d. That is, given x1, x2, . . . , xd ∈ Σ∗, we find strings y1, y2, . . . , yd ∈ (Σ ∪ {�})∗
such that yi = xi�ei for all i, and |y1| = |y2| = · · · = |yd| = n. Then we feed

(y1[1], . . . , yd[1])(y1[1], . . . , yd[2]) · · · (y1[n], . . . , yd[n])

into the automaton. We will sometimes write (x1, . . . , xd) for the string

(y1[1], . . . , yd[1]) · · · (y1[n], . . . , yd[n]) ∈ (Σ ∪ {�})∗

since it is cumbersome to write the latter.
Now for some terminology. We say � is the padding symbol, and call the appended �s

padding. We also extend a number of language and automata-related terms to multiple
inputs.
• We say a subset of (Σ∗)d is a language. Similarly, a subset of (Σω)d is an ω-language.
• A language L ⊆ (Σ∗)d is regular if some DFA over (Σ ∪ {�})d recognizes tuples

(x1, . . . , xd) in L.
• A function f : (Σ∗)d → Γ is automatic if some DFAO T : (Σ ∪ {�})d → Γ outputs
f(x1, . . . , xd) given x1, . . . , xd as input.

For instance, the set

{(x, y) ∈ Σ∗ × Σ∗ : x is a prefix of y}

is an example of a regular language over multiple inputs, since it is recognized by the
automaton in Figure 1.3.

start

{(a, a) : a ∈ Σ}
{(�, a) : a ∈ Σ ∪ {�}}

{(�, a) : a ∈ Σ ∪ {�}}

Figure 1.3: Automaton deciding if one input is a prefix of the other.

12

For our applications, most inputs will be strings of digits intended to represent num-
bers. This raises an important issue about padding. In most cases, an extra padding
symbol (e.g., �) is unnecessary because we can already pad numbers with leading zeros.
That is, 153, 0153, 00153, . . . all represent the number one hundred and fifty-three, just as
ab, ab�, ab��, . . . are all representations for ab with different amounts of padding. We
will assume that
• numbers are padded with 0s instead of �s, and
• the padding zeros are added to the most significant end of the number, so that the

least significant digits line up,
unless stated otherwise. We discuss the problem again when we discuss numeration systems
in Section 2.2.

Another minor issue is the definition of an automaton with zero inputs. This comes
up in Chapter 3 (see Theorem 3.1), when we convert logical formulas into automata. The
number of inputs to the automaton is the number of free variables in the formula. Hence,
if there are no free variables then the automaton has zero inputs. To make sense of this
case, we define an automaton with zero variables as an automaton over Σ0, and we define
Σ0 to be a singleton set, say {�}. For our purposes, an automaton with zero inputs will
either accept all words or reject all words, according to whether the logical formula is true
or false.

1.5 Morphic Words

Define t : {0, 1}∗ → {0, 1}∗, the Thue-Morse morphism, where t(0) = 01 and t(1) = 10.
Consider the sequence (ti(0))∞i=0,

t0(0) = 0
t1(0) = 01
t2(0) = 0110
t3(0) = 01101001
t4(0) = 0110100110010110

...

Note that each term is a prefix of the next. We can define an infinite word, t ∈ {0, 1}ω,
called the Thue-Morse word [6, p. 15], which is the limit of these prefixes.

t = 01101001100101101001011001101001 · · ·

13

That is, t is the unique word such that tn(0) is a prefix of t for all n. Observe that as
a consequence, t is a fixed point of t (i.e., t = t(t)). In general, we use the fixed point
property to define pure morphic words.

Definition 1.19. We say an infinite word w ∈ Σω is pure morphic if there exists a non-
erasing morphism ϕ : Σ∗ → Σ∗ such that ϕ(w) = w and ϕ(w[0]) = w[0..n] for some n ≥ 1.

Suppose x ∈ Γω is an infinite word. We say x is morphic if it is the image of some pure
morphic word y ∈ Σω under a coding h : Σ→ Γ.

Let us give a few examples of pure morphic and morphic sequences.
• The Thue-Morse word, defined above, is pure morphic.

• The Fibonacci word [6, p. 212],

f = 010010100100101001010 · · ·

is defined as the fixed point of the morphism 0 7→ 01, 1 7→ 0.

• The period-doubling sequence [6, Example 6.3.4, p. 176],

d = 10111010101110 · · ·

is the fixed point of 1 7→ 10, 0 7→ 11.

• Consider the fixed point of

a 7→ abcc

b 7→ b

c 7→ cc

under the coding µ : {a, b, c}∗ → {0, 1}∗ where µ(a) = 1, µ(b) = 1, µ(c) = 0. This
gives the word

s = µ(abccbccccbccccccbccccccccbccccccccccbccc · · ·)
= 1100100001000000100000000100000000001000 · · · .

It turns out that this word can also be defined as the characteristic sequence of
squares. That is,

s[n] =

1, if n is a square;
0, otherwise.

14

• The Rudin-Shapiro sequence [6, Example 3.3.1, p. 78] is defined to be the fixed point
of the morphism

a→ ab

b→ ac

c→ db

d→ dc

under the coding a, b 7→ 0, c, d 7→ 1. That is,

r = 000100100001110100010010111000 · · · .

Alternatively, r[n] is the number of (possibly overlapping) occurrences of 11 in the
binary representation of n.

• The Baum-Sweet sequence [6, Example 6.3.3, p. 176],

b = 001001101011011001101111101101 · · · ,

is the fixed point of

a→ ab

b→ cb

c→ bd

d→ dd

under the coding a, b 7→ 0 and c, d 7→ 1.

• The Mephisto waltz word [6, Exercise 16, p. 25],

m = 001001110001001110110110001 · · · ,

is the fixed point of 0 7→ 001, 1 7→ 110.

1.6 Properties of Infinite Words

To study infinite words, we have to study their finite subwords. This leads to a number of
natural questions about subwords of infinite words, and corresponding terminology.

15

1.6.1 Subword Complexity

The simplest description of subwords is the subword complexity, which counts the number
of subwords of each length.
Definition 1.20. Let w ∈ Σω be an infinite word. The subword complexity of w is a
function ρ : N→ N such that ρ(n) is the number of distinct subwords of length n in w.

The subword complexity is trivially a non-decreasing function, bounded above by |Σ|n.
Theorem 1.21. Let w ∈ Σω be an infinite word with subword complexity ρ : N→ N. Then
w is aperiodic if and only if ρ(n) ≥ n+ 1 for all n.

Proof. See, e.g., [38] or [20].

On the other hand, we have the following bound for morphic words.
Theorem 1.22. Let w ∈ Σω be a morphic word with subword complexity ρ : N→ N. Then
ρ(n) is in O(n2).

Proof. See [6, Corollary 10.4.9, p. 310].

1.6.2 Recurrence, Appearance and Condensation

Sometimes in the analysis of infinite words, it is useful to assume that every subword
eventually occurs again. This leads to the definition of a recurrent word.
Definition 1.23. An infinite word w is recurrent if every subword of w occurs infinitely
many times.

Equivalently, w is recurrent if every prefix of w occurs again as a subword. For instance,
the Thue-Morse word is recurrent because every prefix occurs in some tn(0), and since 0
occurs infinitely many times in t, tn(0) occurs infinitely many times in tn(t) = t. On the
other hand, the characteristic sequence of powers of 2 contains the subword 10001 exactly
once, so it is clearly not recurrent. Finally, the Cantor sequence,

k := ababbbababbbbbbbbbababbbaba · · · ,

defined as a fixed point of a 7→ aba, b 7→ bbb, is recurrent. However, some subwords of k
(e.g., a or aba) do not occur in arbitrarily large subwords of k. That is, the gap between
consecutive occurrences of a is unbounded. This leads to another definition where the size
of the gap is relevant.

16

Definition 1.24. An infinite recurrent word w is uniformly recurrent if for all n ≥ 0 there
exists a constant rn such that every subword of length n occurs in any window (subword)
of length rn.

We define rw : N → N, the recurrence function of a uniformly recurrent word w as
follows. Let rw(n) be the minimal window size such that every window of length rw(n)
contains all subwords of length n, for all n.

If rw(n) ∈ O(n) then we say w is linearly recurrent. Given a linearly recurrent word w,
we are naturally interested in the sup, lim sup, inf, lim inf, etc. of the ratio rw(n)/n.

One application of the recurrence function is to enumerate subwords. Given a uniformly
recurrent word z, we can enumerate the subwords of length n by constructing any window
w (for simplicity, usually a prefix) of length rz(n) and then return all length n subwords in
w. The recurrence function may be unnecessarily large for this application, so we introduce
the appearance and condensation functions.

Definition 1.25. Let w be an infinite word. The appearance function, Aw : N → N, is
defined so that Aw(n) is the length of the shortest prefix of w containing all subwords of
length n in w. We define the condensation function, Cw : N → N, so that Cw(n) is the
length of the shortest subword in w that contains all subwords of w of length n.

In Chapter 3, we will see how to compute these functions for k-automatic sequences, and
identify the position of the shortest window for the condensation function. In Chapter 4, we
show how to compute the minimal linear recurrence constant, and determine the behaviour
of Aw(n)

n
and Cw(n)

n
in the limit as n→∞.

17

Chapter 2

Automatic Sequences

In this section, we cover the basic results on k-automatic sequences and N -automatic
sequences, so that we may refer to them in later chapters. We say a sequence w ∈ Γω over
a finite alphabet Γ is k-automatic (for k ≥ 2) if there is a DFAO that computes the nth term
of the sequence, given the base-k representation for n as input. Other numeration systems
(i.e., other ways of representating N with finite strings) lead to a generalization called
N -automatic sequences, studied by Lecomte and Rigo [35] as S-automatic sequences. In
particular, any morphic sequence isN -automatic under an appropriate numeration system.
There are also the k-regular and k-synchronized sequences, which generalize k-automatic
sequences to unbounded sequences over N. In this chapter we discuss numeration systems,
then general N -automatic sequences. Then we cover theorems for the special case of
k-automatic sequence, and finally k-synchronized and k-regular sequences.

2.1 Numeration Systems

A numeration system is method for representing elements of N as finite words.

Definition 2.1. A numeration system is a triple (Σ, L, 〈·〉N) consisting of
• a finite alphabet, Σ,
• a language L ⊆ Σ∗, and
• a surjective function 〈·〉N : Σ∗ → N.

Words in L are called representations, and we say w ∈ L is a representation for an integer
n ≥ 0 if 〈w〉N = n.

18

Everyone is familiar with the base-10 numeration system, but there are many others.
• Base-r representation for r ≥ 2. The numeration system is Nr = (Σr,Σ∗r, 〈·〉r), where

Σr := {0, 1, . . . , r − 1} and

〈a0a1 · · · an−1〉r :=
n−1∑
i=0

air
i.

For example, the word 329 ∈ Σ∗10 is a base-10 representation for the number 923 ∈ N.
Note that the digits are reversed because this is the least significant digit first base-r
representation. There is also the (more familiar) most significant digit first base-
r representation. We discuss the most significant digit/least significant digit issue
further in the next section.
• Fibonacci (Zeckendorf) representation. Let F = ({0, 1}, LF , vF) where LF ⊆ {0, 1}∗

is the set of words that do not contain 11, and

vF (d0d1 · · · dn) =
n∑
i=0

diFi+2

where (Fi)∞i=0 is the Fibonacci sequence,

Fn =


0, if n = 0;
1, if n = 1;
Fn−1 + Fn−2, if n ≥ 2.

• Bijective base-r representation for r ≥ 1. Define the numeration system Br =
({1, . . . , r}, {1, . . . , r}∗, vr) where

vr(an−1an−2 · · · a1a0) =
n−1∑
i=0

air
i,

as before. It turns out that vr : {1, . . . , r}∗ → N is a bijection. Note that when r = 1,
bijective base-r representation is a unary representation.

• Morphic numeration system. Given a morphism and its infinite fixed point, we
construct a numeration system based on prefixes of the fixed point. Since this system
is somewhat complicated to construct, we present it separately in Section 2.2.2.

19

• Roman numerals. Let Σ = {I, V, X, L, C, D, M} and define the numeration system
R = (Σ, L, v).
Define the maps hIVX, hXLC, hCDM : Σ10 → Σ∗ where

hIVX(0) = ε hIVX(5) = V
hIVX(1) = I hIVX(6) = VI
hIVX(2) = II hIVX(7) = VII
hIVX(3) = III hIVX(8) = VIII
hIVX(4) = IV hIVX(9) = IX,

with hXL and hCD defined similarly. Then we define

L = {MihCDM(a2)hXLC(a1)hIVX(a0) : a0, a1, a2 ∈ Σ10, i ≥ 0}

and
v(MihCDM(a2)hXLC(a1)hIVX(a0)) = 1000i+ 100a2 + 10a1 + a0.

• Base-(−r) representation for r ≥ 2. We define N−r = (Σr,Σ∗r, 〈·〉−r) where

〈a0 · · · an−1〉−r :=
n−1∑
i=0

(−r)iai.

Note that 〈·〉−r maps some representations to negative integers, so base-(−r) is tech-
nically not a numeration system. One can revise our definition of numeration systems
to include representations for elements Z, or Z[i], and so on, but we will not do this
formally. It is known that every element of Z has a representation in base-(−r) for
r ≥ 2.

2.2 Properties of Numeration Systems

We have defined numeration systems so that almost any mapping between words and N
qualifies as a numeration system. Hence, the concept of a numeration system is not very
useful unless we require a few additional properties.
• First, we are only interested in numeration systems that represent all numbers in
N, for obvious reasons. That is, we require 〈·〉N to be surjective. In the literature,
a numeration system that has a representation for all numbers is sometimes called
complete.

20

• We say a numeration system is ambiguous if there is more than one representative
for some integer. That is, if there exist x, y ∈ L such that 〈x〉N = 〈y〉N but x 6= y.
A numeration system is unambiguous if it is not ambiguous. When a numeration
system is both unambiguous and complete, we say it is perfect.
In a perfect numeration system, 〈·〉N is bijective, and it is useful to define the inverse,
(·)N . We will assume the existence of this function when N is a perfect numeration
system.

• Let N = (Σ, L, 〈·〉N) be a numeration system. If there exists a symbol 0 ∈ Σ such
that L is of the form L′0∗, and (Σ, L′, 〈·〉N |L′) is a perfect numeration system, then
we say N is a typical least significant digit first numeration system or typical LSD
numeration system. Similarly, if L is instead of the form 0∗L′ then we say N is
a typical most significant digit first numeration system or typical MSD numeration
system.

• Let N = (Σ, L, 〈·〉N) be a numeration system. We say N is automatic if L is a
regular language. This will be important later.

We say a numeration systemN is ideal if it is automatic and typical (either typical MSD
or typical LSD). We will almost exclusively use ideal numeration systems. The advantage
of an ideal numeration system is that there is essentially just one canonical representation
for each n ∈ N, with optional padding. In an ideal numeration system, we let (n)N denote
the shortest representation for a number n ∈ N.

Recall that a numeration system is automatic if the language of representations is
regular; in other words, if we can recognize representations with an automaton. We say
an operation (e.g., comparison or addition) is automatic if there is an automaton that
computes that operation in some sense. The precise definition varies depending on the
operation.
• Suppose N is an ideal numeration system. It follows immediately that equality

comparison is automatic. That is, the language

L= := {(x, y) ∈ L× L : 〈x〉N = 〈y〉N}

is regular. Recall that an automaton with multiple inputs (in this case, x and y) uses
padding to ensure the inputs are the same length, and since N is an ideal numeration
system, we use 0 as the padding symbol. In an ideal numeration system, a number
has at most one representation of a given length, so the two inputs to our automaton
represent the same number if and only if they are identical.

21

• We say comparison is automatic in N if the following language is regular.

L< := {(x, y) ∈ L× L : 〈x〉N < 〈y〉N}.

Note that comparison is automatic for many numeration systems. In fact, in many
systems, comparison of representations is the same as lexicographic comparison,
starting from the most significant digit. For instance, 737 is less than 1002 (in
base 10) and 0737 is lexicographically less than 1002, using the usual ordering
on digits. We say an ideal numeration system N has lexicographic comparison if
x ≤ y ⇔ 〈x〉N ≤ 〈y〉N for all representations x, y ∈ L such that |x| = |y|. We claim
without proof that base-k representation, Fibonacci representation and morphic nu-
meration systems all have lexicographic comparison.

• We say addition is automatic in N if

L+ := {(x, y, z) ∈ L× L× L : 〈x〉N + 〈y〉N = 〈z〉N}

is a regular language. There is a remarkably simple automaton for addition in base-k
representation (see Figure 2.1), and addition is automatic in the Fibonacci represen-
tation (see [27]). On the other hand, addition is not automatic in unary numeration
systems and some morphic numeration systems.
Suppose that L+ is regular with a unary numeration system. The unary representa-
tion of 2n (i.e., (n)1) grows arbitrarily long relative to the unary representation of n.
For sufficiently large n, we can apply the pumping lemma ((n)1 , (n)1 , (2n)1) in such a
way that we only change the last value, (2n)1. Since there is only one representation
(ignoring padding) of n + n = 2n, the automaton accepts triples (x, y, z) such that
〈x〉1 + 〈y〉1 6= 〈z〉1.
In later chapters, we will need addition to state many interesting questions about
sequences, and we will need automatic addition in the corresponding numeration
system to mechanically resolve those questions. Note that sometimes we only need
addition by a constant (e.g., successor of a number), but this is much weaker than
full addition. We argue in Chapter 3 that addition by a constant is automatic if
comparison is automatic.

22

0start

−1

(x, y, z) : x+ y = z + k

(x, y, z) : x+ y = z − 1

(x, y, z) : x+ y = z

(x, y, z) : x+ y = z + k − 1

Figure 2.1: Addition in base k with LSD first.

2.2.1 ω-Numeration Systems

It is possible to use infinite words, instead of finite words, to represent numbers. An ω-
numeration system is a triple (Σ, Lω, 〈·〉Nω) where Σ is a finite alphabet, Lω ⊆ Σω is an
ω-language of infinite words, 〈·〉Nω : Lω → N is a map from representations to numbers.
We will not get into a discussion of general ω-numeration systems; we are only interested
ω-numeration systems corresponding to ideal numeration systems.

Definition 2.2. Let N = (Σ, L, 〈·〉N) be a LSD ideal numeration system with padding
symbol 0 ∈ Σ. We define an associated ω-numeration system Nω, where the set of repre-
sentations is

Lω := {x0ω : x ∈ L} ⊆ Σω

and the number n ∈ N is associated with the representation (n)N 0ω ∈ Lω. We define
bijections 〈·〉Nω : Lω → N and (·)Nω : N→ Lω between Lω and N.

Theorem 2.3. Let N be a LSD ideal numeration system. If an operation is automatic in
N then the same operation is automatic in Nω. That is, Lω is ω-regular and so is

L= := {(x, y) ∈ L2
ω : 〈x〉Nω = 〈y〉Nω}.

23

Additionally,
• If comparison is automatic in N then

L< := {(x, y) ∈ L2
ω : 〈x〉Nω ≤ 〈y〉Nω}

is ω-regular.
• If addition is automatic in N then

L+ := {(x, y, z) ∈ L3
ω : 〈x〉Nω + 〈y〉Nω = 〈z〉Nω}

is ω-regular.

Proof. Recall that if A ⊆ Σ∗ is a regular language and B ⊆ Σω is an ω-regular language,
then AB = {ab : a ∈ A, b ∈ B} ⊆ Σω is an ω-regular language by definition. The claims
follow from the fact that Lω, L=, L< and L+ can be constructed by appending the ω-regular
language {0ω} ⊆ Σω to the corresponding (regular) languages over finite words.

2.2.2 Morphic Numeration Systems

Given a morphic word, one can define a corresponding morphic numeration system. This
numeration system will be useful in Chapter 3, to show that all morphic words are N -
automatic (previously shown by Rigo [45]), and later in Chapter 5, where the numeration
system gives us a way to describe subwords. This numeration system can be traced to
Rigo.
Definition 2.4. Suppose ϕ : Γ∗ → Σ∗ is a morphism, and we have words u ∈ Σ∗, v ∈ Γ∗
such that u = ϕ(v).

For x a finite prefix of u, define x div ϕ ∈ Γ∗ to be the longest prefix of v such that
ϕ(x div ϕ) is a prefix of x. Then define x mod ϕ ∈ Σ∗ so that

x = ϕ(x div ϕ)(x mod ϕ).

Naturally, we call x the dividend, ϕ the divisor, x div ϕ the quotient and x mod ϕ the
remainder.

Note that the definition of x div ϕ depends on u and v, which are not part of the
notation. For instance, if ϕ : {a, b, c}∗ → {0, 1}∗ is such that

ϕ(a) = 01
ϕ(b) = 0
ϕ(c) = 1.

24

Then x = 01 is a prefix of u1 = ϕ(a · · ·) and u2 = ϕ(bc · · ·). Depending on whether we
interpret x as a prefix of u1 or as a prefix of u2, the quotient is either a or bc. Typically, we
consider quotients and remainders in the special case that u = ϕ(v) = v is a morphic fixed
point. There is still some ambiguity, since ϕ may have multiple fixed points (especially if
ϕ is erasing), but u and v are usually clear from context.

The remainder in the division x div ϕ has a special form which depends on ϕ.

Proposition 2.5. Suppose ϕ : Σ∗ → Σ∗ is a non-erasing morphism and w ∈ Σω is a fixed
point of ϕ. For any prefix x ∈ Σ∗ of w := ϕω(c), the remainder, x mod ϕ, is a proper
prefix of ϕ(a) where a ∈ Σ is a symbol such that (x div ϕ)a is a prefix of w, contradicting
the maximality of x div ϕ

Proof. Let q = x div ϕ and r = x mod ϕ. Since q is a prefix of w, we can write w = qaz
for some a ∈ Σ and z ∈ Σω. Then ϕ(qa) is a prefix of w = ϕ(w), but is not a prefix of x,
since we took q as long as possible such that ϕ(q) is a prefix of x. Therefore x = ϕ(q)r is
a prefix of ϕ(qa), and hence r is a prefix of ϕ(a). Furthermore, r 6= ϕ(a) since then ϕ(qa)
would be a prefix of x.

Definition 2.6. Let ϕ : Σ∗ → Σ∗ be a non-erasing morphism with fixed point w ∈ Σω.
We define a language ∆ϕ ⊆ Σ∗ where

∆ϕ := {x ∈ Σ∗ : x is a prefix of ϕ(c) for c ∈ Σ}.

Observe that ∆ϕ is a finite set. Given a prefix x of w, we define a sequence D(x) ∈ ∆ω
ϕ

where
D(x) = (x mod ϕ)D(x div ϕ)

Note that D(x) is a word of words, since elements of ∆ϕ are finite words. This is
particularly confusing because the empty word, ε, is always a member of ∆ϕ. For example,
in the following proposition, we argue that most of the symbols in D are ε.

Proposition 2.7. Let ϕ : Σ∗ → Σ∗ be a non-erasing morphism with fixed point w = ϕω(c) ∈
Σω. Let ∆ϕ and D be as defined earlier. Then all but the first n symbols in D(w[0..n− 1])
are ε, for all n ≥ 0.

Proof. Observe that |ϕ(c)| > 1 since ϕω(c) is an infinite fixed point. Furthermore, |ϕ(a)| ≥
1 for all a ∈ Σ since ϕ is non-erasing. Therefore |ϕ(w[0..n− 1])| ≥ n for all n, with equality
if and only if n = 0.

25

Now we prove that D(w[0..n− 1]) [m] = ε ∈ ∆ϕ for all m ≥ n by induction on n. It is
trivial to see that D(ε) = εω, so the induction hypothesis holds when n = 0. When n > 0,
we see that D(w[0..n− 1]) [m] = D(w[0..n− 1] div ϕ) [m − 1], and since w[0..n − 1] div ϕ
has length at most n−1, the induction hypothesis says that D(w[0..n− 1] div ϕ) [m−1] = ε
for all m− 1 ≥ n− 1, completing the induction.

We define a numeration system Nϕ based on D(w[0..n− 1]).

Definition 2.8. Let ϕ : Σ∗ → Σ∗ be a non-erasing morphism with fixed point w ∈ Σω. Let
D and ∆ϕ be as defined earlier. Let ` : ∆∗ϕ → Σ∗k be a coding such that `(a) = |a| for all
a ∈ ∆ϕ. That is, ` maps each word in ∆∗ϕ (recall that the symbols are words) to a digit by
taking the length. Then we define the morphic numeration system of w, Nϕ = (Σk, L, 〈·〉ϕ),
where
• Σk = {0, 1, · · · , k − 1} where k = maxa∈Σ |ϕ(a)| = 1 + maxa∈∆ϕ `(a),
• L = {x ∈ Σ∗k : x0ω = `(D(w[0..n− 1])) for some n ≥ 0}, and
• 〈x〉ϕ = n for x ∈ L if x0ω = `(D(w[0..n− 1])).

Hypothetically, 〈·〉ϕ could be ill-defined, since x ∈ L may be a prefix of more than one
word of the form `(D(w[0..n− 1])). We address this by defining a total order ≺ on the set
L, where

x ≺ y ⇐⇒ x[i..∞] = y[i..∞] and x[i] < y[i] for some i,
for all x, y ∈ L. Then the following theorem shows that 〈·〉ϕ is well-defined.

Theorem 2.9. Let ϕ : Σ∗ → Σ∗ be a non-erasing morphism with fixed point w ∈ Σω. Let
Nϕ = (Σk, L, 〈·〉ϕ) be the morphic numeration system of w. Suppose m,n ≥ 0 are natural
numbers. Then m < n if and only if `(D(w[0..m− 1])) ≺ `(D(w[0..n− 1])). It follows that
`(D(w[0..m− 1])) = `(D(w[0..n− 1])) if and only if m = n.

Proof. It suffices to prove that `(D(w[0..n− 1])) ≺ `(D(w[0..n])), for all n. We prove this
by induction on n. When n = 0, it is trivial since `(D(w[0])) = 10ω and D(ε) = 0ω. When
n > 0, let w[0..m−1] := w[0..n−1] div ϕ and observe that w[0..n] div ϕ is either w[0..m−1]
or w[0..m], since ϕ is non-erasing. If w[0..m− 1] = w[0..n] div ϕ then w[0..n] mod ϕ must
be longer than w[0..n− 1] mod ϕ so the first digit of `(D(w[0..n])) is larger than the least
digit of `(D(w[0..n− 1])), and all other digits are the same. If w[0..m] = w[0..n] div ϕ then
by the induction hypothesis, `(D(w[0..m− 1])) ≺ `(D(w[0..m])), and the result follows.

As a corollary, we see that Nϕ is an LSD typical numeration system with lexicographic
comparison, since x0ω ≺ y0ω is the same as lexicographic comparison of x and y, as long
as x and y are the same length.

26

Corollary 2.10. Let ϕ : Σ∗ → Σ∗ be a non-erasing morphism with fixed point w ∈ Σω. Let
Nϕ = (Σk, L, 〈·〉ϕ) be the morphic numeration system of w. Then Nϕ is an LSD typical
numeration system and comparison is lexicographic in Nϕ.

Proof. Let n ≥ 0 be an arbitrary natural number. By Proposition 2.7, `(D(w[0..n− 1])) =
x0ω for some x ∈ L. Let us assume x is as short as possible. Then x0i is aNϕ-representation
of n for all i ≥ 0. Conversely, these are clearly the only representations of n, since any
representation is a prefix of `(D(w[0..n− 1])) = x0ω, and x is the shortest prefix in L.

In fact, Nϕ is an ideal numeration system. A consequence of the following theorem is
that the language of morphic decompositions is regular, and therefore the set of represen-
tations in Nϕ is regular.

Theorem 2.11. Let ϕ : Σ∗ → Σ∗ be a non-erasing morphism with fixed point w ∈ Σω.
Then there exists a DFAO M : ∆∗ϕ → Σ ∪ {∅} such that

M(x) =

w[n], if xεω = D(w[0..n− 1]),
∅, otherwise,

for x ∈ ∆∗ϕ.

Proof. We construct an automaton T : ∆∗ϕ → Σ ∪ {∅} such that T (x) = M(xR), and
rely on the closure properties of DFAOs to prove that M exists. We let T = (∆ϕ,Σ ∪
{∅}, δ, q0,Σ ∪ {∅}, γ) so that
• the set of states is Σ ∪ {∅},
• the initial state is q0 = w[0],
• the output associated with a state q is γ(q) := q,
• there is a transition from a ∈ Σ to b ∈ Σ on input v ∈ ∆ϕ if vb is a prefix of ϕ(a).

All other transitions go to state ∅.
Suppose that D(w[0..n− 1]) = d0d1 · · · dj−1ε

ω for d0d1 · · · dj−1 ∈ ∆∗ϕ. We will show by
induction on j that T (dj−1 · · · d1d0) = w[n]. Clearly it is true when j = 0, since then
D(w[0..n− 1]) = εω so n = 0, and we know that T (ε) = q0 = w[0]. If j > 0 then observe
that

w[0..n− 1] = ϕ(w[0..n− 1] div ϕ)(w[0..n− 1] mod ϕ)
= ϕ(w[0..m− 1])d0

27

where w[0..m − 1] = w[0..n − 1] div ϕ. Then d1 · · · dj−1ε
ω = D(w[0..m− 1]), so by the

induction hypothesis, T (dj−1 · · · d1) = w[m]. By Proposition 2.5, d0w[n] is a prefix of
ϕ(w[m]), so there is a transition from w[m] to w[n] on d0. It follows that T (dj−1 · · · d1d0) =
w[n], completing the induction.

A similar induction shows that if T (dj−1 · · · d0) 6= ∅ then d0d1 · · · dj−1ε
ω is of the form

D(w[0..n− 1]) for some n ∈ N. We leave this as an exercise to the reader.
Corollary 2.12. Let ϕ : Σ∗ → Σ∗ be a non-erasing morphism with fixed point w ∈ Σω. Let
Nϕ = (Σk, L, 〈·〉ϕ) be the morphic numeration system of w. Then the language L is regular
(so Nϕ is automatic) and there is a DFAO M : Σ∗k → Σ such that M(x) = w[〈x〉ϕ] for all
x ∈ L.

Proof. Use the automaton M from the previous theorem, except replace the transition
labels (words in ∆ϕ) with their lengths. The automaton is still deterministic because for
each state q ∈ Σ in the automaton, the outgoing edges correspond to prefixes of ϕ(q), and
there is at most one prefix of any given length.

The fact that x 7→ w[〈x〉ϕ] is an automatic function leads us into the next section,
where we study sequences with the same property in other numeration systems.

2.3 N -Automatic Sequences

We begin with k-automatic sequences, which are a special case of N -automatic sequences.
Definition 2.13. Let k ≥ 2 be an integer. We say a sequence w ∈ Γω is k-automatic if
the function f : Σ∗k → Γ such that

f(x) = w[〈x〉k]
is automatic.

0start 1

1

1

0 0

Figure 2.2: Automaton for the Thue-Morse word

28

The Thue-Morse word is the canonical example of a a 2-automatic sequence, and is
computed by the DFAO in Figure 2.2. The period-doubling word, Rudin-Shapiro word, and
Baum-Sweet word from the previous chapter are also examples of 2-automatic sequences,
and the Mephisto waltz word is 3-automatic. All of these examples follow from Cobham’s
theorem, below, and the morphic definitions in the previous chapter.

Theorem 2.14 (Cobham). Let k ≥ 2 be an integer. A sequence w ∈ Γω is k-automatic if
and only if it is of the form h(ϕω(c)) for some
• finite alphabet ∆,
• coding h : ∆∗ → Γ∗,
• uniform morphism ϕ : Γ∗ → Γ∗, and
• symbol c ∈ ∆.

Proof. See [18] or [6, Theorem 6.3.2, p. 175]. Alternatively, one direction follows from
the fact that the morphic numeration system associated with a k-uniform morphism is
equivalent to the base-k numeration system, Nk. Then Corollary 2.12 provides the desired
automaton.

We mention another remarkable theorem about k-automatic sequences, also due to
Cobham, before generalizing to N -automatic sequences.

Theorem 2.15. Let k, ` ≥ 2 be integers. We say k and ` are multiplicatively dependent
if there exist positive integers a, b such that ka = `b.

Suppose that k, ` are multiplicatively independent (i.e., not multiplicatively dependent).
Then a sequence w ∈ Γω both is k-automatic and `-automatic if and only if w is ultimately
periodic.

Proof. See [17] or [6, Theorem 11.2.2, p. 350].

Definition 2.16. Let N = (Σ, L, 〈·〉N) be a numeration system. A word w ∈ Γ∗ is
N -automatic if the function f : Σ∗ → Γ given by f(x) = w[〈x〉N] is automatic.

Here are some examples of N -automatic sequences.
• Any morphic word w = h(ϕω(c)) isN -automatic, whereN is the morphic numeration

system corresponding to ϕ and ϕω(c). The Fibonacci word is a nice example, where

29

we use Zeckendorf representation as our numeration system. In Chapter 5 we use
the N -automatic structure of the fixed point of

0 7→ 03
1 7→ 43
3 7→ 1
4 7→ 01,

to show that it avoids a certain pattern.

• Define the Champernowne word (or Barbier word [6, Exercise 26, p. 114]),
c = 012345678910111213141516 · · · ,

obtained by concatenating 0, 1, 2, . . . written in base 10. We define a perfect numer-
ation system N = ({0, 1, . . . , 9, 0̇, 1̇, . . . , 9̇}, L, 〈·〉N) where L is the language of all
canonical base-10 representations (i.e., 0, 1, · · · , 10, 11, · · ·) where one digit has been
marked with a dot. For instance, 0̇, 15̇, or 10̇3, but not 12, 1̇2̇, or 0̇13. Then we order
the words in L as follows.

0̇ < 1̇ < · · · < 9̇ < 1̇0 < 10̇ < 1̇1 < 11̇ < 1̇2 < 12̇ < · · ·
That is, we compare to words by padding them to the same length with 0̇ on the
left, and then comparing lexicographically according to the ordering

0̇ < 0 < 1̇ < 1 < · · · < 9̇ < 9
on the alphabet. We let the nth word in this lexicographic order represent n − 1.
It follows that c is N -automatic, since we can construct a DFAO that returns the
marked digit. Note that c is not a morphic word because it has subword complexity
10n.

• The characteristic sequence of {n2n}∞n=0 is N -automatic, where N is more or less any
numeration system with exactly n2n representations of length at most n. Hence, it
has n2n − (n − 1)2n−1 = 2n + (n − 1)2n−1 representations of length exactly n. For
instance, a language that includes all nonempty binary words, {0, 1}+, and binary
words where one non-leading symbol has been replaced with a placeholder symbol,
say, X. That is,

L = {0, 1, 00, 01, 0X, 10, 11, 1X, 000, 001, 00X, 010, 011, 01X, 0X0, 0X1, . . . }
Then 0n+1 is the representation for n2n, so the characteristic sequence of {n2n}∞n=0
is N -automatic.

We will also encounter multidimensional k-automatic and N -automatic sequences.

30

2.4 k-Regular and k-Synchronized Functions

A limitation of k-automatic sequences is that the domain must be a finite set, bounded in
size by the number of states in the corresponding DFAO. We will discuss two generalizations
of k-automatic sequences to unbounded subsets of N, or in some cases Zd.

2.4.1 k-Regular Functions

First we have k-regular sequences, or more generally, k-regular functions. The concept of
k-regular sequences is due to Allouche and Shallit [5, 6].

Definition 2.17. Let f : Nn → Zm be a function, and let k ≥ 2 be an integer. The
k-kernel of f is the set

S := {(i1, . . . , in) 7→ f(kdi1 + a1, . . . , k
din + an) : d ∈ N, 0 ≤ ai < kd for all i}.

We say f is k-regular if the Z-module generated by the k-kernel is finitely generated.

For example, the function n 7→ n is a k-regular sequence because the k-kernel,

{n 7→ kn+ a : d ∈ N, 0 ≤ a < kd},

generates the Z-module {n 7→ (an + b) : a, b ∈ Z}, which is finitely generated by the
elements n 7→ n and n 7→ 1. Every k-automatic sequence over a subset of Z is k-regular,
by the following theorem.

Theorem 2.18. Let f : Nn → Zm be a k-regular function. Then f is k-automatic if and
only if f is bounded.

Proof. See [6, Theorem 16.1.5, p. 441].

The Thue-Morse sequence, for example, gives us another example of a 2-regular func-
tion, n 7→ t[n].

Theorem 2.19. The set of k-regular functions of the form Nn → Zm is closed under
element-wise addition, scalar multiplication and element-wise multiplication. The constant
0 sequence and constant 1 sequence serve as the additive identity and multiplicative identity
respectively. Therefore the k-regular functions form a ring.

31

Proof. See [6, Theorem 16.2.1, p. 441].

Corollary 2.20. Let f : N→ Zm be a function, and let g : N→ Zm be the first difference
function, g(n) = f(n+ 1)− f(n). Then f is k-regular if and only if g is k-regular.

Proof. If the k-kernel for f(n) is finitely generated, then so is the k-kernel of f(n+ 1), and
together they generate the k-kernel of g(n). Conversely, if the k-kernel of g(n) is finitely
generated then

It follows that any integer polynomial is an example of a k-regular function for all
k ≥ 2.

Another interesting example arises in the analysis of Karatsuba’s algorithm for polyno-
mial multiplication. The unique solution to Karatsuba’s recurrence, shown below, counts
the exact number of ring operations to compute the product of two degree n − 1 polyno-
mials using Karatsuba’s algorithm, assuming we revert to the naive algorithm when it is
more efficient.

T (n) =


0, if n = 0;
2n2 + 2n− 1, if n = 1, 2, 3, 4, 5, 7;
T (bn/2c) + 2T (dn/2e) + 2bn/2c+ 3n− 4, otherwise.

It turns out that the solution to this recurrence is 2-regular.

2.4.2 k-Synchronized Sequences

The second generalization of k-automatic is the class of k-synchronized functions. Note
that k-synchronized sequences are due to Carpi and Maggi in [13].

Definition 2.21. We say a function f : N → N is k-synchronized if the graph of the
function,

{(n, f(n)) : n ∈ N} ⊆ N× N,

is k-automatic.
Similarly, a function f : Nn → Nm is k-synchronized if the graph

{(i1, . . . , in, j1, . . . , jm) ∈ Nn+m : f(i1, . . . , in) = (j1, . . . , jm)}

is k-synchronized.

32

For example, the functions n 7→ n+ 1, n 7→ 2n, n 7→ 3 are all k-synchronized for every
k ≥ 2, because we can construct automata that accept their graphs. The function (i, j) 7→
i + j (i.e., the addition table) is an example of a 2-ary function that is k-synchronized.
Finally, the function (i, j) 7→ i⊕ j is 2-synchronized, where ⊕ denotes the exclusive OR of
the binary representations of i and j (also known as nimber addition, see [19]).

The first main theorem about k-synchronized functions relates them to k-regular func-
tions.

Theorem 2.22. Every k-synchronized function is also k-regular, for k ≥ 2.

As a corollary, any bounded k-synchronized function is k-automatic, by Theorem 2.18.
On the other hand, every k-synchronized function is in O(n).

Theorem 2.23. Let k ≥ 2 be an integer and let f : N→ N be a k-synchronized function.
Then f(n) is in O(n).

Proof. Consider an automaton for the graph,

{(n, f(n)) : n ∈ N} ⊆ N2.

Let s be the number of states in the automaton.
Suppose that f(n) is not in O(n), so f(n)

n
grows arbitrarily large. For some n, f(n) ≥

ks+1n and hence n has at least s more leading zeros than f(n). By the pumping lemma
for finite automata, we can pump the leading zeros and obtain some (n,m) 6= (n, f(n)).
But (n, f(n)) is the only pair with first component n in the graph of f , so we have a
contradiction.

The sequence (n + blog2 nc)∞n=0 is an example of a 2-regular sequence that is in O(n)
but not 2-synchronized, so the converse of Theorem 2.23 does not hold.

Note that a simple way to generalize k-synchronized functions is to allow each compo-
nent of the domain and codomain to be in a different numeration system. We call such
functions semi-synchronized, and hope that the numeration systems are understood, since
it is usually too cumbersome to list all the different numeration systems. We see some
examples of semi-synchronized functions in Chapter 5.

33

Chapter 3

Decidability in Automatic Sequences

It is possible to answer certain questions about an automatic sequence by mechanically
performing transformations on the corresponding automaton. The general process is as
follows:

1. Phrase the query as a logical formula in a first-order logical theory.
2. Mechanically translate the query into operations on the automaton for the sequence,

as well as automata for the numeration system.
3. Execute the operations to construct an automaton representing the answer to the

query.
4. In some cases, it is necessary to interpret the resulting automaton.

We present a formal description of the logical theory, and explain the procedure for con-
verting a logical formula into an automaton.

3.1 Introduction

The logical theory we use is based on the first-order theory of N, which we denote FO(N).
It includes variables over N, logical connectives (∧, ∨, ⇔, ¬, etc.), universal (∀) and
existential (∃) quantifiers, and equality comparison (=). We represent a word w ∈ Γω as a
finite set of unary predicates, {Pa}a∈Γ, such that Pa(i) is true if w[i] = a. These predicates
allow us to index specific symbols in w. Hence, our base logical theory is FO(N, {Pa}a∈Γ).

If w ∈ Γω is N -automatic, for some numeration system N = (Σ, L, 〈·〉N), we can
use automata to decide the theory FO(N, {Pa}a∈Γ). That is, there is an algorithm to

34

decide the truth or falsehood of any sentence in the theory. Depending on the properties
of the numeration system, N , we may be able to extend the theory with predicates for
comparison, addition, congruence classes modulo any fixed constant and divisibility by
powers of k, while maintaining decidability.

Alternatively, we can extend FO(N, <, {Pa}a∈Γ) with variables representing sets of in-
tegers, predicates for set membership, and quantification over set variables. This gives a
monadic second-order theory which we denote MSO(N, <, {Pa}a∈Γ). The monadic second-
order theory is still decidable for many sequences, but it is difficult or impossible to extend
with additional predicates. For instance, we can express divisibility in MSO(N, <,+), so it
is at least as strong as FO(N, <,+, |), which is known to be undecidable (see Tarski [50]).

3.2 Deciding First-Order Sentences

Our decision procedures are all based on the idea of representing logical formulas as au-
tomata, such that we represent a formula φ(a1, a2, . . . , an) in n free variables with an
automaton M on n inputs. Then we can evaluate φ at integer values i1, . . . , in ∈ N by
feeding corresponding representations (i1) , . . . , (in) into M . As we have seen, there are
many ways to represent nonnegative integers as words, but two representations stand out:
• N , the numeration system associated with the automatic sequence, and
• U = ({0, 1}, 0∗10∗, 〈·〉U), a unary numeration system where 〈0i10j〉U = i.

This section will focus on the first option. The second option allows us to easily represent
subsets of N, so we use it for monadic second-order formulas, discussed in Section 3.3.

Now that we have fixed N as our numeration system, we need to decide what kind of
automaton to use. DFAs are a natural choice, but there are subtle problems that arise
with quantifiers. Therefore we will start with ω-automata and then discuss DFAs (and
DFAOs) as an optimization.

Theorem 3.1. Let N = (Σ, L, 〈·〉) be an LSD ideal numeration system with automatic
comparison, and let Nω = (Σ, Lω, 〈·〉ω) be the corresponding ω-numeration system. Suppose
w ∈ Γω is an N -automatic sequence.

Given any logical formula φ(a1, . . . , an) expressible in FO(N , <, {Pa}a∈Γ), define a lan-
guage of infinite words Λ(φ) ⊆ Lnω where

Λ(φ) = {(x1, . . . , xn) ∈ Lnω : φ(〈x1〉ω , . . . , 〈x1〉ω)}.

Then Λ(φ) is ω-regular, and we can effectively construct the corresponding ω-automaton.

35

Proof. Recall that a formula is defined recursively as
1. one of the atomic predicates (< or Pa),
2. a negated formula (¬φ),
3. a pair of formulas joined by a binary connective (φ ∨ ψ, φ ∧ ψ), or
4. a quantified formula (∀xφ(x), ∃xφ(x)).

We induct on the size of the formula, so we may assume that Λ(ψ) is ω-regular for any
subformula ψ.

1. Comparison is automatic (by assumption) so Λ(x < y) is ω-regular (see Theorem 2.3).
Similarly, since w is N -automatic, we can construct a DFA for the language

La := {x ∈ L : w[〈x〉] = a}

for all a ∈ Γ, and then extend these languages to ω-regular languages for Λ(Pa) ⊆ Σω.

2. Let φ be a logical formula with n free variables. Then (x1, . . . , xn) ∈ Lnω is a member
of Λ(φ) if and only if it belongs to Λ(¬φ). Therefore

Λ(¬φ) = Λ(φ) ∩ Lnω,

so Λ(¬φ) is ω-regular.

3. Let φ1 and φ2 be logical formulas in the theory having m1 and m2 free variables
respectively. If φ1 and φ2 have the same set of m1 = m2 free variables, then

Λ(φ1 ∨ φ2) = Λ(φ1) ∪ Λ(φ2)
Λ(φ1 ∧ φ2) = Λ(φ1) ∩ Λ(φ2)

and we are done. If they have different sets of free variables, then we need to think
of f1 and f2 as formulas over a common set of n variables, and promote Λ(f1) and
Λ(f2) to languages on n inputs. To this end, we introduce codings

h1 : Σn×ω → Σm1×ω

h2 : Σn×ω → Σm2×ω

where hi drops all inputs that do not correspond to free variables in φi, and reorders
the remaining variables appropriately. For example, given φ1(x, y) and φ2(z, x), we
would define h1(x, y, z) = (x, y) and h2(x, y, z) = (z, x).

36

Then it is not hard to see that

Λ(φ1 ∨ φ2) = Lnω ∩
(
h−1

1 (Λ(φ1)) ∪ h−1
2 (Λ(φ2))

)
Λ(φ1 ∧ φ2) = Lnω ∩ h−1

1 (Λ(φ1)) ∩ h−1
2 (Λ(φ2)).

Other binary connectives can be constructed from ∨, ∧ and ¬.

4. We consider only ∃xφ(x), since ∀xφ(x) is equivalent to ¬∀x¬φ(x). Suppose φ is
a formula over n variables, including x, the quantified variable. Let hx : Σn×ω →
Σ(n−1)×ω be a coding that drops the input corresponding to x, the quantified variable.
Then

hx(Λ(φ)) = {(y1, . . . , yn−1) ∈ Ln−1
ω : ∃x ∈ Lω such that (x, y1, . . . , yn−1) ∈ Λ(φ)}

= {(y1, . . . , yn−1) ∈ Ln−1
ω : ∃x ∈ Lω such that φ(〈x〉ω , 〈y1〉ω , . . . , 〈yn−1〉ω)}

= {(y1, . . . , yn−1) ∈ Ln−1
ω : ∃xφ(x, 〈y1〉ω , . . . , 〈yn−1〉ω)}

= Λ(∃xφ(x)).

It follows that Λ(∃xφ(x)) is ω-regular.

Let us see examples of what is possible in the theory FO(N, <, {Pa}a∈Γ).
• We can compare two positions of w. The predicate is∨

a∈Γ
(Pa(i) ∧ Pa(j))

which we will abbreviate to w[i] = w[j].

• The successor predicate, y = x+ 1, can be expressed as

(x < y) ∧ (∀z (z ≤ x) ∨ (y ≤ z)).

That is, x < y and there is no z strictly between them. Also note that zero is the
unique z ∈ N satisfying (∀x (x ≥ z)). With successor and zero, we can express any
constant c ∈ N, and we can perform addition by any fixed constant. For convenience,
we will assume these operations are primitive operations in the theory.

37

• We can take advantage of addition by constants to construct any tail w[c..∞] of w.
Apply Theorem 3.1 to the formulas Pa(i + c) for each a ∈ Γ. This collection of
predicates corresponds to the word w[c..∞]; recall that Theorem 1.13 allows us to
assemble regular language into a DFAO. Moreover, it proves that if w is N -automatic
then so is w[c..∞]. It is possible to prove this more directly and constructively for
morphic sequences; see [6, Theorem 7.6.1, p. 228].

• Single symbol insertion and deletion are also expressible with formulas. Given pred-
icates {Pa}a∈Γ, we create a new set of predicates {P ′a}a∈Γ where

P ′a(n) := (n < idelete ∧ Pa(n)) ∨ (n ≥ idelete ∧ Pa(n+ 1))

to delete w[idelete]. To insert a at position iinsert, we let

P ′a(n) := (n < iinsert ∧ Pa(n)) ∨ (n = iinsert) ∨ (n > iinsert ∧ Pa(n− 1))

and
P ′b(n) := (n < iinsert ∧ Pb(n)) ∨ (n > iinsert ∧ Pb(n− 1))

for all b 6= a. This easily generalizes to any finite sequence of edits.

• Given a word x ∈ Γ∗, define the predicate Qx(i), which is true if there is an occurrence
of x in w, starting at position i. Formally, the predicate is

Qx(i) = Px[0](i) ∧ Px[1](i+ 1) ∧ · · · ∧ Px[n−1](i+ n− 1)

where n is the length of x. Therefore we can detect occurrences of a given finite
word.

• For any predicate Q in FO(N, <, {Pa}a∈Γ), we can decide whether the set {i ∈ N :
Q(i)} is empty or infinite, using the predicates ∃i Q(i) and ∀i(∃j(j ≥ i ∧ Q(j))
respectively. We can also compute min{i : Q(i)} and max{i : Q(i)}, if they exist.

• We can express counting quantifiers in FO(N, <). A counting quantifier is an existen-
tial quantifier with an additional restriction on the number of solutions. One special
case is the uniqueness quantifier, written ∃!, which is satisfied if there is a unique
solution. We also have “there exist exactly n solutions” (∃n), “there exist at least n
solutions” (∃≥n) and “there exist infinitely many” (∃∞). We express these as follows:

∃≥nxφ(x) := ∃x1, . . . , xn (x1 < x2 < · · · < xn) ∧ φ(x1) ∧ φ(x2) ∧ · · · ∧ φ(xn)
∃nxφ(x) := (∃≥nxφ(x)) ∧ (¬∃≥n+1xφ(x))
∃∞xφ(x) := ∀x0∃x (x ≥ x0) ∧ φ(x)

where n ≥ 1 is a constant.

38

3.2.1 Additional Operations

It is very easy to add new operations to the theory. Recall that the proof of Theorem 3.1 is
a structural induction on formulas. That is, for each atomic formula or primitive operation
in FO(N, <, {Pa}a∈Γ), there is a corresponding case in the proof. If we extend the theory
with a new atomic formula, φ, it suffices to give an ω-automaton for Λ(φ). To add a
new operator (for instance, something that binds a variable), we must show that we can
effectively construct the necessary automaton, given automata for each subformula.

Addition

We saw earlier that it is possible to use comparison and existential quantifiers to add a
constant. That is, for any constant c ∈ N, the binary predicate x + c = y is in FO(N, <).
Here we consider full addition, embodied by the ternary predicate x+y = z. By definition,
the language Λ(x + y = z) is regular if and only if addition is automatic in the ambient
numeration system.

The first-order theory of the natural numbers with addition, FO(N, <,+), is known
as Presburger arithmetic. Presburger showed that this theory is decidable (see [41] for a
translation). Later, Büchi [12] gave an automaton-based proof that Presburger arithmetic
is decidable. The same result follows from our Theorem 3.1 with a numeration system N
where addition is automatic.

Addition is a powerful operation that is essential for many interesting queries about
automatic sequences. Note that when we write φ(i + j), we actually mean ∃k (i + j =
k) ∧ φ(k), but we will write the former for readability. 1 Let w be an N -automatic
sequence.
• We can use repeated addition to express multiplication by a constant,

dn =
d times︷ ︸︸ ︷

n+ · · ·+ n,

and we can divide by a constant by finding q, r ∈ N such that 0 ≤ r < d and
n = qd+ r.

1In some numeration systems (e.g., base k), we can use a transducer to compute i+j on the fly, without
a new variable k and the subsequent existential quantification.

39

• Given a starting position i and length n of a subword in our sequence, we can compute
the endpoint, j := i + n − 1. Similarly, given a startpoint i and endpoint j of a
subword, we can compute the length, n := j − i+ 1.

• We can test for equality of two subwords, w[i..i + n − 1] and w[j..j + n − 1], using
the following predicate.

(∀k < n (w[i+ k] = w[j + k]))
This is an extremely common test in more complicated predicates, so we abbreviate
it as w[i..i+ n− 1] = w[j..j + n− 1].

• We can test if w[i..i+ n− 1] is lexicographically less than w[j..j + n− 1] as follows.
(∃k < n (w[i+ k] < w[j + k]) ∧ (w[i..i+ k − 1] = w[j..j + k − 1]))

• A subword w[i..i+n−1] is a palindrome if and only if w[i..i+n−1] = w[i..i+n−1]R.
We can reverse subwords with arithmetic, so

(∀k < n (w[i] = w[i+ n− k − 1]))
accepts is true iff w[i..i+ n− 1] is a palindrome.

• We say an occurrence of a subword is novel if there is no earlier occurrence of the
same subword. We can express this as a predicate:

(∀j < i (w[i..i+ n− 1] 6= w[j..j + n− 1])).
The number of novel factors of length n is the subword complexity. For a k-automatic
sequence w, it follows that the subword complexity is k-regular. In [30], we show that
the subword complexity is actually k-synchronized.

• Recall the appearance function Aw : N→ N where Aw(n) is the length of the shortest
prefix of w that contains all subwords of length n. The following formula in terms of
m and n is true if w[0..m− 1] contains all subwords of length n.

R(m,n) := (∀i(∃j ≤ (m− n) (w[i..i+ n− 1] = w[j..j + n− 1])))
Then the predicate

R(m,n) ∧ (∀m0 (R(m0, n) =⇒ m0 > m))
is true ifm = Aw(n). The recurrence function and condensation function are similarly
expressible as predicates.

40

• Recall that a word x has period p if x[j] = x[j + p] for all possible j. In other words,
w[i..i+n−1] has period p if w[i..i+n−p−1] = w[i+p..i+n−1], which is a predicate.
We leave it as an exercise to express “p is the maximum period of w[i..i + n − 1]”
and “p is a dth power” (for fixed d) as predicates.

• Suppose x ∈ Γ∗ is a word. Then y ∈ Γ∗ is a conjugate of x if there exists u, v ∈ Γ∗
such that x = uv and y = vu. We say x is a Lyndon word if it is not of the form
yd, and it is lexicographically less than all its conjugates. We can test if subwords of
w are Lyndon words using predicates. With some additional work, Goč and Shallit
[31] show how to compute the Lyndon factorization of w. That is, they divide w into
nonempty Lyndon words w = w0w1w2 · · · such that w0 < w1 < w2 < · · · .

• We can test whether w is periodic (∃p(w[0..∞] = w[p..∞])) or ultimately periodic
(∃i, p(w[i..∞] = w[i+ p..∞])) using predicates.

• The shift orbit closure of an infinite word w ∈ Γω is the set S ⊆ Γω where

S := {x ∈ Γω : every subword of x is a subword of w}.

We can compute the lexicographically least element z ∈ S of the orbit closure, using
the following observation. The prefix z[0..n] is a subword of w of length n+ 1, since
z ∈ S. If there is some factor w[i..i + n] that is lexicographically less than z[0..n],
then w[i..∞] is lexicographically less than z. Therefore, z[n] is the last character of
the lexicographically least subword of length n+ 1 in w. We can express a family of
predicate {Qa}a∈Γ such that Qa(n) is true if and only if z[n] = a.

Qa(n) := (∃i (w[i+ n] = a) ∧ (∀j(w[i..i+ n] ≤ w[j..j + n])))

If w is N -automatic, it follows that z is N -automatic. See Problem 6.7 for an open
problem about the shift orbit closure.

Arithmetic Sequence Predicates

A natural predicate, which unfortunately appears to be inexpressible in FO(N, <), is the
statement x ≡ y (mod d), for d a constant. We can express it in FO(N, <,+) as

∃s, t such that x+ ds = y + dt

but we have seen that addition places non-trivial conditions on N . It turns out that we
can extend the first-order theory (and Theorem 3.1) with binary predicates {Md}∞d=2 where
Md(x, y) := (x ≡ y (mod d)), without any additional assumptions.

41

Theorem 3.2. Let N = (Σ, L, 〈·〉N) be an ideal numeration system such that comparison
is automatic. Then any ultimately periodic sequence w ∈ Γω is N -automatic.

Proof. We present a proof below. See Lecomte and Rigo [35] for an alternate proof.
Let w ∈ Γω be an ultimately periodic sequence. We will assume without loss of gen-

erality that w is periodic, since we can make a finite set of changes to an N -automatic
sequence (using predicates, or other constructions). Suppose that w has period d. Then
each of the predicates {Pa}a∈Γ is a finite union of congruence classes modulo d. It suffices
to show that we can construct an automaton for the predicate i ≡ 0 (mod d), since the
other congruence classes follow using shifts (addition by constants).

Note that for a representation x ∈ L,

〈x〉N = #{i ∈ N : i < 〈x〉N}
= #{y ∈ L : (y, x) ∈ L<}
= # of accepting paths in L< with second coordinate x.

We can count accepting paths in L< with matrices. Specifically, there exist vectors u, v ∈
Nm and a homomorphism h : Σ∗ → Nm×m (to the monoid of matrices under multiplication)
such that the number of accepting paths is uTh(x)v.

We want to compute uTh(x)v mod d. Since the map n 7→ n mod d is a ring homomor-
phism, and matrix multiplication uses only ring operations, we have

uTh(x)v mod d = uTh(x)v

where u, v ∈ (Z/dZ)m and h : Σ∗ → (Z/dZ)m×m are the images of u, v and h respectively,
modulo d. Now we observe that (Z/dZ)m×m is a finite monoid, having only dm2 elements.
It follows that the function

f(i) =

i mod d, if x ∈ L,
∅, if x /∈ L,

is N -automatic, which concludes the proof.

k-adic Valuation

With base-k numbers, certain properties of an integer i are apparent directly from its string
representation. For instance, divisibility of i by powers of k, or the largest power of k less
than i.

42

Definition 3.3. Let k ≥ 2 be an integer. The k-adic power of n ∈ N, denoted Vk(n) ∈ N,
is the largest power of k that divides n.

In other words, if (n)k has t trailing zeros then Vk(n) = kt. This makes it easy to
compute Vk(n) using an automaton.

Proposition 3.4. Fix an integer k ≥ 2. The language

{(n, Vk(n))k : n ≥ 0} ⊆ Σ∗k

is regular.

It follows that the first-order theory FO(N, <,+, Vk) is decidable.
Using Theorem 3.1, with the appropriate extensions for FO(N, <,+, Vk), any formula

φ in FO(N, <,+, Vk) is true on a k-automatic set. Remarkably, the converse is true by a
theorem of Bruyère [10].

Theorem 3.5. Let T ⊆ Nm be a k-automatic set. Then there exists a formula φ in
FO(N, <,+, Vk) such that φ(a1, . . . , am) is true if and only if (a1, . . . , am) ∈ T .

Proof. See [10, 11]

We give an example taken from [11]; we express the Thue-Morse sequence, t, as a
predicate in FO(N, <,+, V2). Recall that we can compute t[i] with the automaton in
Figure 2.2, which computes the sum of the bits in the input, modulo 2. We introduce
an operation D2 : N→ N where D2(n) is the natural number obtained by replacing every
other 1 in (n)2 with a 0, starting with the leading one. For instance, D2(13865) = 4616)
because

(4616)2 = 01001000001000
(13865)2 = 11011000101001.

We claim that we can express the predicate D2(n) = m in FO(N, <,+, V2), and may
therefore use D2 to construct a predicate for Thue-Morse. In particular, we observe that
V2(n) gives the position of the least significant 1 in n, and the least significant 1 of D2(n)
is the same if and only if n has an even number of zeros. Hence, t[n] = 0 if and only if
V2(D2(n)) = V2(n), and therefore it suffices to show that we can express D2(n) = m in
FO(N, <,+, V2).

43

To express D2(n) = m, we introduce yet another predicate, ∈2 (m,n). Define ∈2 (m,n)
to be true if m is a power of 2, and m is a term in the binary expansion of n. For instance,
∈2 (32, 13865) because

(32)2 = 00000000100000
(13865)2 = 11011000101001.

Assuming m is a power of 2 (which we can express), observe that m is a term in the binary
expansion of n if and only if

(∃i, j((V2(i) > m) ∧ (j < m) ∧ (i+m+ j = n))).

This is based on decomposing n into m, more significant bits (i), and less significant bits
(j). Given ∈2 (m,n), the predicate D2(n) = m is expressible because it holds if and only
if the following three conditions hold.
• Every power of 2 that appears in m also occurs in n. That is,

(i = V2(i))∧ ∈2 (i,m) =⇒∈2 (i, n).

• For any two consecutive powers of 2 in n, exactly one of the powers appears in m.
This is expressible with ∈2 and V2.

• The leading power of 2 in n does not appear in m. We express this as

∀i
((

(i = V2(i))∧ ∈2 (i, n) ∧ (∀j > i (j = V2(j) =⇒ ¬ ∈2 (j, n)))
)

=⇒ ¬ ∈2 (i,m)
)
.

We conclude that t[n] = 1 can be expressed in FO(N, <,+, V2), although the conversion is
by no means trivial.

For our purposes, the main consequence of Theorem 3.5 is that we cannot meaningfully
extend Theorem 3.1 with predicates beyond FO(N, <,+, Vk), since any predicate corre-
sponds to a k-automatic set, and therefore can already be expressed in FO(N, <,+, Vk).
Even the predicates {Pa}a∈Γ associated with a k-automatic sequence can be expressed in
FO(N, <,+, Vk).

If N is some numeration system other than base-k representation, then we can still
sometimes define a function VN analogous to Vk. For instance, if N is the Fibonacci
numeration system, then VN (n) is awkwardly defined as the highest Fibonacci number Fk
such that n can be written as a sum of {Fj}j≥k. Surprisingly, this definition is useful.

44

• We will not formally define local period, but it is a measure of the periodicity of a
word at a given position. Shallit proved that the local period at position n in the
Fibonacci word is closely related to VN (n), where N is the Fibonacci numeration
system. This relationship was subsequently generalized to characteristic Sturmian
words and Ostrowski representation by Schaeffer [48].

• Kalle Saari showed in his Ph.D. thesis [47] that all length-n factors of the Fibonacci
word are bordered unless n is a Fibonacci number. We can express “n is a Fibonacci
number” as the formula VN (n) = n. Since addition is possible in Fibonacci represen-
tation, we can express the entire theorem as a predicate,

(∀n (∀i B(i, n)) ∨ (VN (n) = n)

where B(i, n) represents the predicate “w[i..i + n − 1] is bordered”, and then me-
chanically prove the theorem.

• The Zeckendorf array Z : N×N→ N (see [34]) is defined such that the jth column is
the increasing sequence of all natural numbers n satisfying VN (n) = Fj+1. This has
a number of interesting properties.

– Every natural number occurs exactly once in the array.
– Every row of the Zeckendorf array is a generalized Fibonacci sequence. That is,

it a sequence (xn)∞n=0 satisfying xn = xn−1 + xn−2 for all n ≥ 2.
– For any positive generalized Fibonacci sequence (xn)∞n=0, some suffix (xn)∞n=n0 is

a row in Z.

3.2.2 Decidability using DFAs and DFAOs

Observe that in Theorem 3.1, we use a handful of closure properties for ω-regular languages.
Specifically,
• closure under intersection, union and complement,
• closure under morphic image, and
• closure under inverse morphism.

Regular languages easily satisfy all these closure properties, and the languages correspond-
ing to the atomic formulas x < y and Pa(x) are regular. Indeed, most of the constructions
in the proof of Theorem 3.1 carry over directly to regular languages without modification,
but existential quantification is not so easy.

45

Recall that in the proof of Theorem 3.1, we have Λ(∃xφ(x)) = h(Λ(φ)), where h is a
morphism that drops the input corresponding to the variable x. Suppose for illustration
that φ has two free variables, x and y. By definition,

h(Λ(φ)) = {y ∈ Σω
k : ∃x ∈ Σω

k such that (x, y) ∈ Λ(φ)}.

Note that the quantification ∃x is over infinite words, not integers. But every natural
number is represented by some infinite word, so we are effectively quantifying over natural
numbers.

Suppose that instead we use DFAs to accept a regular language Λ(φ) ⊆ (Σk×Σk)∗. As
in the infinite case, Λ(φ) is a set of pairs of representations (x, y) such that φ is true on the
corresponding pair of integers. Recall that we accept multiple inputs with finite automata
by merging the inputs into a single word over a larger alphabet, padding the words to the
same length as necessary. As a result, if we use a morphism h to drop the x variable, we
obtain

{y ∈ Σ∗k : ∃x ∈ Σ|y|k such that (x, y) ∈ Λ(φ)}.
That is, we only quantify over representations with the same number of digits as y.

For example, consider the predicate ∃x (x = ky + 1) with base-k representations. The
predicate is clearly always true, but the representation for the witness x is always one
digit longer than the representation of y, so the näıve delete-and-determinize procedure
produces an automaton which rejects all representations without leading zeros. On the
other hand, it accepts any representation with at least one leading zero, so the automaton
is not consistent over all representations of a given number. Even worse, the automaton is
incorrect on all canonical representations (i.e., the representation without leading zeros).

We will show how to solve the leading zero problem, allowing us to resolve existential
quantifiers, and hence decide first-order logical predicates using DFAs. Observe that the
automaton produced by the näıve delete-and-determinize procedure is eventually correct
in the sense that, if there does exist x such that φ(x, y) then the automaton accepts all
sufficiently long representations for y, and if there does not exists x such that φ(x, y) then
the automaton accepts no representation of y. In other words, if the automaton accepts
some representation y0∗ (assuming LSD first), then there exists x such that φ(x, y) and it
should accept y. If L is the language accepted by the automaton, then we want to compute
an automaton for

L′ = {w ∈ Σ∗ : w0∗ ∩ L nonempty}
= {w ∈ Σ∗ : ∃y ∈ 0∗ such that wy ∈ L}
= L/0∗,

46

a right quotient of L. Therefore L′ is regular and computable, although in this case it is
especially efficient to compute.
Theorem 3.6. Let T = (Σ, Q, δ, q0, F) be a DFA for a language L = L(T), and suppose
0 ∈ Σ is a symbol. There is an algorithm to compute the DFA for L/0∗ in linear time (in
the size of T).

Proof. Consider a directed graph on Q where the edges are the reversed 0 transitions. We
mark all nodes that are reachable from the set F . The set of marked nodes, F ′ ⊆ Q, is the
set of accepting nodes for the new automaton T ′ = (Σ, Q, δ, q0, F

′).
It is clear that L(T ′) = L(T)/0∗, because the accepting set F ′ is precisely the set of

nodes that have a path of 0s to some state in F . It is equally clear that the algorithm
is linear time. Either we use a simultaneous breadth-first search (BFS) from all nodes in
F , or perform a series of breadth-first or depth-first searches (at each node in F) which
terminate at nodes that we have already marked as reachable.

Therefore, we compute Λ(∃xφ(x)) by determinizing hx(Λ(φ)) and applying the quotient
algorithm described above. In full generality, Λ(∃xφ(x)) may be over (Σ×· · ·×Σ)∗, so we
may take a quotient by (0, 0, . . . , 0)∗ instead of 0∗, but the idea is the same.

We can use DFAs to decide first-order sentences and to show that the subset of Nd

satisfying a predicate P is N -automatic. Goč’s implementation [29] is based on DFAs
instead of ω-automata because the operations are simpler to implement, and the resulting
automata are often easier to understand.

3.2.3 Complexity

Suppose we are given a formula φ in the first order theory. Assuming we use DFAs for our
implementation, we can compute an upper bound for each subformula of φ, starting with
the state complexities of the automata for {Pa}a∈Γ and the other automatic predicates, and
working our way up using known state complexity bounds for DFA operations. The most
expensive operations are existential and universal quantification, requiring a determiniza-
tion and a potentially exponential blowup in state complexity. We can perform multiple
quantifiers of the same type at once, so our upper bound is (roughly) a tower of exponentials
where the height of the tower is related to the number of quantifier alternations.

However, in practice we have never encountered performance close to the predicted

22.
. .

2n

upper bound for complicated predicates. In fact, the limiting factor in our exper-
iments is often k, the size of the alphabet, and the number of free variables m, because

47

a predicate with m free variables corresponds to a DFA on Σm
k , with km transitions out

of every state. It is not unusual for a predicate to require 5 or even 6 simultaneous free
variables. In the case of the (13-automatic) Leech word [36], defined as the fixed point of

0 7→ 0121021201210
1 7→ 1202102012021
2 7→ 2010210120102,

this leads to 135 = 371293 or 136 = 4826809 transitions out of every state. With a bit of
patience, we can resolve all but the most complicated predicates on the Leech word. On
the other hand, the implementation quickly exhausts the available memory on Keränen’s
85-automatic sequence [33], even for predicates of moderate complexity.

3.3 Deciding Monadic Second-Order Sentences

Second-order logic extends first-order logic with k-ary relations on the domain. In our case
the domain is N, and a k-ary relation is simply a subset of Nk. Monadic second-order logic
is a restriction of second-order logic that allows quantification only over 1-ary relations (i.e.,
subsets of N). Hence, MSO(N, <, {Pa}a∈Γ) extends FO(N, <, {Pa}a∈Γ) with set variables,
quantification over set variables, and set membership testing. We also include set equality
comparison, subset comparison, set intersection, union and set difference, since they can
be expressed in MSO(N, <) and it is convenient to have notation for them.

We can decide sentences in MSO(N, <, {Pa}a∈Γ) using automata, but not with the same
variable representation as first-order sentences. First, let us see a decision procedure for
MSO(N, <). This is an old result, with an automata-theoretic proof due to Büchi [12] in
1962.

Theorem 3.7. Define a function χ : 2N → {0, 1}ω such that χ(X) is an infinite binary
word where

χ(X)[i] =

0, if i /∈ X;
1, if i ∈ X.

We abuse notation and overload χ so that χ(i) = χ({i}) for i ∈ N.
Suppose φ(a1, . . . , an, A1, . . . , Am) is a formula in MSO(N, <) with free integer variables

48

a1, . . . , an and free set variables A1, . . . , Am. Define Λ∞(φ) ⊆ ({0, 1}m+n)ω where

Λ∞(φ) = {(χ(x1), . . . , χ(xn), χ(X1), . . . , χ(Xm)) :x1, . . . , xn ∈ N
X1, . . . , Xm ⊆ N
φ(x1, . . . , xn, X1, . . . , Xm)}.

Then Λ∞(φ) is ω-regular and we can explicitly construct the corresponding ω-automaton.

Proof. Recall that a formula is one of the following:
• an atomic predicate (x = y, x < y or x ∈ X),
• a negated formula (¬φ),
• two formulas joined by a binary connective (φ ∨ ψ or φ ∧ ψ), or
• a quantified formula (∃xφ(x) or ∀xφ(x)).
Let us consider the automatic formulas first. Suppose X, Y are subsets of N. Clearly

X ⊆ Y if and only if (χ(X), χ(Y)) is in {(0, 0), (0, 1), (1, 1)}ω, which is an ω-regular
language. Similarly, X = Y if and only if (χ(X), χ(Y)) is in the ω-regular language
{(0, 0), (1, 1)}ω. Since we represent integer variables as singleton sets, this shows that
Λ∞(x = y) and Λ∞(x ∈ X) are ω-regular. It is also clear that i < j if and only if
(χ(i), χ(j)) is in (0, 0)∗(1, 0)(0, 0)∗(0, 1)(0, 0)ω, an ω-regular language. Therefore, for any
atomic formula φ, the ω-language Λ∞(φ) is ω-regular.

The proofs for negation, binary connectives and quantification are very similar to the
analogous operations in first-order logic, as proved in Theorem 3.1.
• We negate a formula φ by taking the complement of Λ∞(φ) and intersecting with

the universe of all inputs, U , which restricts integer inputs to be of the form χ(i) for
i ∈ N. That is,

Λ∞(¬φ) = Λ∞(φ) ∩ U .

• Conjunction and disjunction correspond to intersection and union (in each case,
followed by intersection U), but the difficulty is that the set of free variables in
the two formulas, φ, ψ, may differ. With appropriate morphisms, h1 and h2, and a
universe U for the combined set of free variables, we have

Λ∞(φ ∧ ψ) = Λ∞(h−1
1 (φ)) ∩ Λ∞(h−1

2 (ψ)) ∩ U

49

• We observe that ∀xφ(x) is equivalent to ¬∃x¬φ(x), so we can avoid universal quan-
tification. For existential quantification, define a morphism hX that drops the input
corresponding to variable X. Then

Λ∞(∃Xφ(X)) = hX(Λ∞(φ))

is an ω-regular language. Here, X suggests a set variable, but it is true if X is an
integer variable.

Elgot and Rabin extended Büchi’s automata-theoretic proof to MSO(N, <, P), for cer-
tain predicates P , including morphic words. It turns out that for X ⊆ N a set of integers,
the ω-language χ(X) is ω-regular if and only if X is ultimately periodic. Hence, for an
aperiodic sequence corresponding to predicates {Pa}a∈Γ, the set Λ∞(Pa) is not ω-regular.
Since we cannot express the predicates {Pa}a∈Γ directly as automata (as we did in the
first-order theory), Elgot and Rabin take an indirect approach.

Given a sentence φ in MSO(N, <, {Pa}a∈Γ), we replace each occurrence of Pa with a
variable Xa, creating a logical formula φ′ with |Γ| free variables. By Theorem 3.7, we can
construct an ω-automaton M for Λ∞(φ′). Elgot and Rabin show how to compute M(w),
for certain infinite words w ∈ Γω. We assume a similar result for N -automatic words,
Theorem 3.8, without proof, because it follows from Corollary 3.15. See Section 3.4.2 for
further details.

Theorem 3.8. Let w ∈ Γω be an N -automatic sequence, where N is an ideal numeration
system with lexicographic comparison. Let M be an ω-automaton over the input alphabet
Γ. Then there is an algorithm that decides whether M accepts w.

Corollary 3.9. Let w ∈ Γω be an N -automatic sequence, where N is an ideal numeration
system with lexicographic comparison. Then the theory MSO(N, <, {Pa}a∈Γ) is decidable.

Note that the decision procedure is for sentences only, so we can only answer yes/no
questions. For example, we can decide if a fixed symbol b ∈ Γ occurs at an odd position (any
odd position) in the word. The following sentence checks this condition by constructing
sets Xodd and Xeven that contain the odd and even numbers respectively, and then looking
for a position i ∈ Xodd such that w[i] = b.

(∃Xodd, Xeven ⊆ N
(0 ∈ Xeven)∧

50

(∀a ∈ N (a ∈ Xodd ⇔ a /∈ Xeven))∧
(∀b ∈ N (b ∈ Xodd ⇔ b+ 1 ∈ Xeven))∧
(∃i ∈ N

(i ∈ Xodd) ∧ Pb(i)))

Similarly, we can write a formula φ in MSO(N, <, {Pa}a∈Γ) with a free variable i such that
φ(i) is true if i is odd and w[i] = b.

Unfortunately, unlike the decision procedure for first-order logic, this algorithm does not
construct automata for arbitrary formulas. In first-order logic, we can apply the procedure
to a formula φ, and then use the resulting automaton to evaluate φ(x1, . . . , xn) for any
x1, . . . , xn ∈ N we choose. For a monadic second-order formula φ, we can only apply
Corollary 3.9 if we first evaluate φ(x1, . . . , xn) by substituting the xi’s into φ to obtain a
sentence. Also note that we cannot always substitute a set variable into an MSO formula,
since there are only countably many logical formulas and uncountably many subsets of N.

Assuming some conditions on the numeration system of our automatic sequence w,
there is a procedure that takes a formula φ in MSO(N, <, {Pa}a∈Γ) and generates an ω-
automaton for Λ(φ), as long as φ has no free set variables. We state and prove this result
in Theorem 3.17, but first we need to define the operation that makes it possible.

3.4 DFAO Application and σT

In this section, we introduce an operation (or, depending on your perspective, a collection
of operations) to our first-order theory, and extend Theorem 3.1 accordingly. The new
operation allows us to apply a given DFAO T : Γω → {0, 1} to arbitrary prefixes of an
automatic sequence, although it is more general than that. To be precise, we introduce an
operator σT for each DFAO T : Γω → {0, 1}. The input to σT is a collection of formulas
{φa}a∈Γ over a common set of d free variables, {x1, . . . , xd}, with one distinguished free
variable, xi. Let w ∈ Γωd be the d-dimensional N -automatic sequence corresponding to the
formulas {φa}a∈Γ. Then σT ({φa}a∈Γ, xi) is a formula with free variables x1, . . . , xd, such
that

σT ({φa}a∈Γ, xi)(a1, . . . , ad)
is true if and only if T (wi[0.. 〈ai〉N − 1]) = 1, where wi ∈ Γω is the N -automatic sequence
n 7→ w[a1, . . . , ai−1, n, ai+1, . . . , ad].

Since the definition of σT is somewhat confusing, let us give a couple of examples.
Recall the Thue-Morse word, t ∈ {0, 1}ω and d ∈ {0, 1}ω from the previous chapter. The

51

period-doubling word is known to be the first-difference sequence of Thue-Morse word,
modulo 2. That is,

d[i] ≡ t[i+ 1]− t[i] (mod 2)

for all i. Hence, express r as a first-order predicate in terms of t. Conversely, Thue-Morse
is the running sum, modulo 2, of the period-doubling word.

t[i] ≡
i−1∑
j=0

d[j] (mod 2)

Let T : {0, 1}∗ → {0, 1} be an automaton that computes the sum of its inputs modulo
2 (coincidentally, T is the Thue-Morse automaton). Then σT ({t[x] = a}a∈{0,1}, x) is a
formula for d. That is, σT ({t[x] = a}a∈{0,1}, x) is true if and only if d[x] = 1.

The formula is in the first-order theory FO(N, <,+, P0, P1, σT), so once we extend The-
orem 3.1 to that theory, we can construct an automaton for t, given the automaton for
d.

Another example comes from an alternate definition of the Fibonacci word [6, Section
9.2]. Consider a line of slope φ = 1+

√
5

2 , plotted on a square grid as pictured below in
Figure 3.1. As we move along the line in the positive direction, it intersects the grid at
vertical grid lines and horizontal grid lines. Now record the sequence of intersections, with
0 for intersections with horizontal grid lines and 1 for intersections with vertical grid lines.
The resulting sequence is f , the Fibonacci word.

Suppose that the line of slope φ reflects off of the first grid line it meets instead of
passing through it. Since each grid line is an axis of symmetry for the entire grid, this does
not change the sequence of intersections. If we reflect at each intersection, then the line
bounces within a unit square. Let g ∈ {N, E, S, W} be the sequence of bounces, where the
four sides are labelled N, E, S, and W, in clockwise order, starting from the top face.

g = NESNWSENSWNSENWSNESWN · · ·
f = 010010100100101001010 · · ·

Observe that f is g under a coding where N, S 7→ 0, E, W 7→ 1, because it does not distinguish
between an N bounce and a S bounce, or likewise between E and W.

Clearly the N/S bounces alternate between N and S (starting with N), and similarly E/W
bounces alternate between E and W. It is also clear that the functions ψ0 : {0, 1}∗ → {N,S}

52

Figure 3.1: The Fibonacci word as a cutting sequence.

and ψ1 : {0, 1}∗ → {E,W} given by

ψ0(x) =

N, if |x|0 ≡ 0 (mod 2);
S, if |x|0 ≡ 1 (mod 2);

ψ1(x) =

E, if |x|1 ≡ 0 (mod 2);
W, if |x|1 ≡ 1 (mod 2);

are automatic. If T0 and T1 are DFAOs for the automatic functions ψ0 and ψ1, then the
sequences (ψ0(f [0..n − 1]))∞n=0 and (ψ1(f [0..n − 1]))∞n=0 are F -automatic where F is the
Fibonacci representation. Then we can recover g[n] as

g[n] =

ψ0(f [0..n− 1]), if f [n] = 0;
ψ1(f [0..n− 1]), if f [n] = 1;

for all n, so g is F -automatic.

53

3.4.1 Implementation of σT

All our previous extensions of the first-order theory were based on predicates, but this
operation is different. Our operation is what is known as a variable-binding operator. A
familiar example of a variable-binding operator is existential quantification, ∃xφ(x), which
binds a free variable x in some formula φ. Our operator is more like differentation, which
performs a transformation on some variable x, but x remains free after the transformation.
To add {σT}T : Γ→{0,1} to our first-order theory and extend Theorem 3.1 accordingly, we
need to prove that we can construct an ω-automaton for Λ(σT ({Pa}a∈Γ, x)) given the DFAO
T and ω-automata for {Λ(Pa)}a∈Γ. Our goal is to prove Theorem 3.14, which shows that
this construction is possible, extending our decidability results to

FO(N, <,+, Vk, {σT}T a DFAO, {Pa}a∈Γ) .

Then Corollary 3.15 extends our decidability results to N -automatic sequences, for fairly
general N .

Consider the simplest case, where the predicates {Pa}a∈Γ describe a k-automatic se-
quence w ∈ Γω. If Λ(σT ({Pa}a∈Γ, x)) is ω-regular (we will show that it is) then that means
the sequence (T (w[0..n− 1]))∞n=0 is k-automatic. This special case was shown by Dekking
in [25]. Barany uses a similar idea in [8]; he says (roughly translated to our terminology)
an N -automatic word w ∈ Γω is canonical if for any monoid homomorphism ψ : Γ∗ → M
into a finite monoid M and m ∈M , the set

{(x, y) ∈ N× N : x < y ∧ ψ(w[x..y]) = m}

is automatic.
Recall that σT acts on formulas, which are permitted to be multidimensional. For

instance, consider the predicate P (i, j) := (t[i + j] = 1), where t is the (2-automatic)
Thue-Morse sequence. This formula describes the two-dimensional automatic sequence
i, j 7→ t[i + j]. Fixing i gives us t[i..∞], the Thue-Morse sequence shifted by i. Using
Dekking [25], the sequence (T (t[i..i+ j]))∞j=0 is 2-automatic for any fixed i. We will extend
this to show that the 2-dimensional sequence i, j 7→ T (t[i..i+ j]) is 2-automatic.

Definition 3.10. Let N = (Σ, L, 〈·〉N) be an LSD ideal numeration system. Suppose
f : (Θ×Σ)∗ → Γ is an automatic function. We define the N -linearization of f , a function
ηNf : Θ∗ → Γ∗ such that ηNf (θ) = (f(θ, x))x∈L∩Σ|θ| , where x ranges over L ∩ Σ|θ| such that
〈x〉N is monotonically increasing.

We write ηf for the linearization of f when N is understood. If the domain alphabet
of f is of the form Ψ×Σd then there are d ways to partition it into Θ×Σ, one for each of

54

the Σ in the product. To distinguish these functions, we call the ith one the linearization
of f along the ith coordinate.

For example, suppose N is the base-k numeration system and w ∈ Γω is a k-automatic
sequence. By definition, there is an automatic function f : Σ∗k → Γ corresponding to w.
If we let Θ = {�} be a singleton set (recall our discussion of automata with zero inputs
in Section 1.4.2), then we can define an automatic function f ′ : (Θ × Σk)∗ → Γ where
f ′(θ, x) = f(x). Then ηf , the linearization of f , returns the prefix w[0..kn − 1] on input
�n ∈ Θ∗. Given a 2-dimensional automatic sequence, w ∈ Γω×ω, the linearization of f
along the x-coordinate returns prefixes of the ith column on input (i)k ∈ Σ∗k, and similarly
the linearization of f along the y-coordinate returns prefixes of the jth row on input
(j)k ∈ Σ∗k.

Another example is the automatic function f : Σk × Σk → {a, b} where

f(i, j) =

a, if i 6= j;
b, if i = j.

Since f is symmetric (i.e., f(i, j) = f(j, i)), linearizing f along either coordinate gives the
same result, ηf : Σ∗k → {0, 1}. Then ηf (x) is a word of a’s of length k|x|, except for a single
b at position 〈x〉k, where x ∈ Σ∗k.

We plan to address σT for the base-k numeration system first. Recall that for k-
automatic sequences, Theorem 2.14 (Cobham’s theorem) allows us to express a k-automatic
sequence with k-uniform morphisms. We strive for the same kind of morphic characteri-
zation for linearizations of k-automatic functions.

Definition 3.11. Let Unif(Σ) denote the set of uniform morphisms from Σ∗ to Σ∗. We
note that the composition of two uniform morphisms is uniform, and composition with the
identity morphism (x 7→ x for all x ∈ Σ∗) does nothing. Hence, Unif(Σ) is a monoid under
composition of morphisms.

Lemma 3.12. Let k ≥ 2 be an integer and let f : (Θ×Σk)∗ → Γ be a k-automatic function.
Then there exists
• a finite alphabet X,
• a symbol c ∈ X,
• a morphism Φ: Θ∗ → Unif(X) such that Φ(c) is k-uniform for all c ∈ Θ, and
• a coding α : X∗ → Γ∗

55

such that
ηf (θ) = α(Φ(θ)(c))

for all θ ∈ Θ∗.
Note that we will write Φθ for Φ(θ) henceforth, because Φθ(c) is easier to read than

Φ(θ)(c).

Proof. Apply Theorem 1.14 to f . Then there exists a finite monoid M , a morphism
µ : (Θ× Σk)∗ →M and a function τ : M → Γ such that f = τ ◦ µ.

Let X = M be our finite alphabet, let c be the identity element in M and extend τ to
a coding α : X∗ → Γ∗. Define Φ: Θ∗ → Unif(X) so that

Φθ(x) = (µ(θ, 0) · x)(µ(θ, 1) · x) · · · (µ(θ, k − 1) · x).

We claim that ηµ(θ) = Φθ(c). Once we prove that, observe that ηf (θ) = α ◦ ηµ(θ) since

ηf (θ)[〈d〉k] = f(θ, d) = α(µ(θ, d)) = α(ηµ(θ)[〈d〉k]) = α(ηµ(θ))[〈d〉k]

for all θ ∈ Θ∗ and d ∈ Σ|θ|k . This completes the proof, because

ηf (θ) = α ◦ ηµ(θ) = α(Φθ(c)).

We now prove the claim by induction on |θ|. If |θ| = 0 then θ = ε and we have

ηµ(ε) = µ(ε, ε) = 1M = c = Φε(c).

Otherwise, we let θ = θ1 · · · θn. Now consider a word d = d1 · · · dn ∈ Σ∗k and the corre-
sponding position 〈d1 · · · dn〉k in ηµ(θ). By definition,

ηµ(θ1 · · · θn)[〈d1 · · · dn〉k] = µ(θ1 · · · θn, d1 · · · dn)
= µ(θ1, d1) · µ(θ2 · · · θn, d2 · · · dn)
= µ(θ1, d1) · ηµ(θ2 · · · θn)[〈d2 · · · dn〉k]

Recall that µ(θ1, d1) ·m is the d1’th symbol of Φθ1(m).

ηµ(θ1 · · · θn)[〈d1 · · · dn〉k] = Φθ1

(
ηµ(θ2 · · · θn)[〈d2 · · · dn〉k]

)
[d1]

= Φθ1 (ηµ(θ2 · · · θn)) [d1 + k 〈d2 · · · dn〉k]
= Φθ1 (ηµ(θ2 · · · θn)) [〈d1d2 · · · dn〉k]

56

We apply the induction hypothesis to ηµ(θ2 · · · θn) and obtain

ηµ(θ1)[〈d〉k] = Φθ(c)[〈d〉k].

Since d was an arbitrary word in Σn
k , and Φθ(c) has length kn, it follows that ηµ(θ) = Φθ(c),

as desired.

For example, the function f(i, j) = t[i + j], where t is the Thue-Morse word, is 2-
automatic. Both linearizations of f are the same since f(i, j) = f(j, i). We let ηf denote
the linearization of f . Then ηf (θ) for θ ∈ Σ∗2 is a prefix of t[〈θ〉2 ..∞] (assuming LSD first).
By the theorem, there exists
• an alphabet X = {00, 01, 10, 11},
• a symbol c = 01 ∈ X,
• a morphism Φ: Σ∗2 → Unif(X) where

Φ0(00) = 0110 Φ1(00) = 1001

Φ0(01) = 0111 Φ1(01) = 1110

Φ0(10) = 1000 Φ1(10) = 0001

Φ0(11) = 1001 Φ1(11) = 0110,

• and a coding α : X∗ → Σ∗2 where

α(00) = 0 α(01) = 0
α(10) = 1 α(11) = 1,

such that ηf (θ) = α(Φθ(c)). Suppose we let θ = (n)2 0i be the LSD representation of a
fixed n ≥ 0 with i trailing zeros. Then 〈θ〉2 = n, so ηf (θ) is a prefix of t[n..∞]. On the
other hand,

ηf (θ) = (α ◦ Φ(n)2
)
(
Φ0i(01)

)
= (α ◦ Φ(n)2

)
(
Φi

0(01)
)
.

It follows that t[n..∞] = (α ◦ Φ(n)2
)
(
Φω

0 (01)
)
. That is, t[n..∞] is the image of

Φω
0 (01) = 01111001100001111000011001111001 · · ·

under the uniform morphism α ◦ Φ(n)2
. Hence, any suffix of t (i.e., a shift) is the uniform

morphic image of the word Φω
0 (01).

57

As an interesting side note, consider a shift of t by −1. We have not defined (−1)2, but
under one natural definition (two’s complement), the representation of −1 is the infinite
word 1ω = 1111 · · · . Hence, a shift by −1 should be Φω

0 (01) under the uniform image of
α◦Φ1ω . This is also subject to interpretation, but consider the images under α of the fixed
points of Φ11.

α(Φω
11(00)) = 001101001100101101001011001101 · · ·

α(Φω
11(01)) = 010010110011010010110100110010 · · ·

α(Φω
11(10)) = 101101001100101101001011001101 · · ·

α(Φω
11(11)) = 110010110011010010110100110010 · · ·

These words are, respectively, 0t, 0t, 1t, and 1t, where t is the Thue-Morse word and t is
the complement of the Thue-Morse word. In each case, we have prepended a single symbol
to a fixed point of the Thue-Morse morphism; in other words, a shift by −1.

In the case of a k-automatic sequence w, Lemma 3.12 says that the prefix of length
kn is of the form α(ϕn(c)). This is one direction of Theorem 2.14 (Cobham’s theorem);
the other half says that the fixed point of a uniform morphism ϕ under a coding α is a
k-automatic sequence. Generalizing the second half of the theorem gives us the following
lemma.

Lemma 3.13. Fix an integer k ≥ 2. Given
• a finite alphabet X,
• a symbol c ∈ X,
• a morphism Φ: Θ∗ → Unif(X) such that Φa is k-uniform for all a ∈ Θ, and
• a coding α : X∗ → Γ∗,

there exists an automatic function f : (Θ×Σk)∗ → Γ such that ηf (θ) = α(Φθ(c)), where ηf
is the base-k linearization of f .

Proof. We want to show that the function f : (Θ× Σk)∗ → Γ such that

f(θ, d) := α(Φθ(c))[〈d〉k],

is automatic. To do this, we find a monoid M , morphism µ : (Θ × Σk)∗ → M and map
h : M → Γ such that f = h ◦ µ.

Then we define
• M := XX , the set of functions from X to X under composition (i.e., (f · g)(x) =
g(f(x))),

58

• µ(θ, d) := a 7→ Φθ(a)[〈d〉k], and
• h(g) := α(g(c)).

It is clear that
(h ◦ µ)(θ, d) = α(Φθ(c)[〈d〉k]) = f(θ, d).

The proof is complete once we verify that µ is a morphism. Suppose θ1, θ2 ∈ Θ∗ and
d1, d2 ∈ Σ∗k such that |θ1| = |d1| and |θ2| = |d2|. Then

µ(θ1, d1)µ(θ2, d2) = (a 7→ Φθ1(a)[〈d1〉k])(a 7→ Φθ2(a)[〈d2〉k])
= a 7→ Φθ1

(
Φθ2(a)[〈d2〉k]

)
[〈d1〉k]

We observe that Φθ1(Φθ2(a)[〈d2〉k]) is

Φθ1θ2(a)[k|θ1| 〈d2〉k ..k
|θ1|(〈d2〉k + 1)− 1]

since Φθ1 is k|θ1|-uniform. Then(
Φθ1θ2(a)[k|θ1| 〈d2〉k ..k

|θ1|(〈d2〉k + 1)− 1]
)

[〈d1〉k] = Φθ1θ2(a)[〈d1d2〉k],

so we conclude that µ(θ1, d1)µ(θ2d2) = µ(θ1θ2, d1d2), and since µ(ε, ε) is the identity func-
tion, µ is a morphism.

The following result says that we can apply an arbitrary automatic function g to prefixes
of the linearization of an arbitrary automatic function f , and the result is another automatic
function h. This is the main result of the chapter, since it shows that we can implement σT
for the base-k numeration system, and a corollary generalizes to other numeration systems.

Theorem 3.14. Fix an integer k ≥ 2. Let f : (Θ×Σk)∗ → Γ and g : Γ∗ → ∆ be automatic
functions. Define a function h : (Θ× Σk)∗ → ∆ as follows. Let

h(θ, d) := g(ηf (θ)[0.. 〈d〉k − 1])

where ηf is the base-k linearization of f . Then h is an automatic function.

Proof. We use Lemma 3.12 to construct a finite alphabet X, a symbol c ∈ X, a morphism
Φ: Θ∗ → Unif(X) and a coding α : X∗ → Γ∗ such that ηf (θ) = α(Φθ(c)).

Now apply Theorem 1.14 to g. We obtain a finite monoid M , a morphism µ : Γ∗ →M ,
and a function τ : M → ∆ such that g = τ ◦ µ.

59

Using these decompositions, we can write h as the slightly messy expression

h(θ, d) = τ(µ(α(Φθ(c))[0.. 〈d〉k − 1]))
= τ((µ ◦ α)(Φθ(c)[0.. 〈d〉k − 1])).

To clean up this expression, we compose µ : Γ∗ → M and α : X∗ → Γ∗ into a single
morphism β : X∗ → M . It suffices to show that h′ : (Θ × Σk)∗ → M such that h′(θ, d) =
β(Φθ(c)[0.. 〈d〉k − 1]) is a k-automatic function. Then h = α ◦ h′ is easily seen to be
k-automatic.

To prove that h′ is k-automatic, we find a finite monoid N , morphism ρ : (Θ×Σk)∗ → N
and map γ : N →M such that h′ = γ ◦ ρ. Then h′ is k-automatic by Theorem 1.14.

Let MX denote the set of morphisms from X∗ to M . Note that MX is finite because
every morphism in MX is determined by its restriction to X (see Theorem 1.5), and there
are finitely many functions from X to M since M and X are finite. Let an arbitrary
element of N consist of the following three components.
• A function r : X → X. There are finitely many functions of this type since X is

finite.
• A function s : MX →MX which maps morphisms in MX to morphisms in MX .
• A function t : X ×MX → X.

That is, N is based on the set (X → X)× (MX → MX)× (X ×MX → X), and has the
following monoid operation. The product of elements (r1, s1, t1) ∈ N and (r2, s2, t2) ∈ N
is (r, s, t) where

r(ĉ) = r1(r2(ĉ))
s(β̂) = s2(s1(β̂))

t(ĉ, β̂) = t2(ĉ, s1(β̂)) · t1(r2(ĉ), β̂)

for all ĉ ∈ X and β̂ ∈MX .
We define ρ(θ, d) = (r, s, t) such that

r(ĉ) = Φθ(ĉ)[〈d〉k]
s(β̂) = β̂ ◦ Φθ

t(ĉ, β̂) = β̂(Φθ(ĉ)[0.. 〈d〉k − 1])

for all θ ∈ Θ∗, d ∈ Σ∗k, ĉ ∈ X and β̂ ∈ MX . We omit the proof that ρ is a morphism
because it is tedious, and there is a similar proof in the previous theorem.

60

Then we conclude by defining γ : N →M so that γ(r, s, t) = t(c, β), and therefore

γ(ρ(θ, d)) = β(Φθ(c)[0.. 〈d〉k − 1]) = h′(θ, d)

as desired.

Note that Theorem 3.14 assumes base-k representation. We generalize the numeration
system with the following corollary. This is one of the main contributions of this thesis.

Corollary 3.15. Let N = (Σ, L, 〈·〉N) be an ideal numeration system with lexicographic
comparison. Let f : (Θ × Σ)∗ → Γ and g : Γ∗ → ∆ be automatic functions. Define a
function h : (Θ× Σ)∗ → (∆ ∪ {∅}) as follows. Let

h(θ, d) :=

g(ηf (θ)[0.. 〈d〉N − 1]), if d ∈ L;
∅, if d /∈ L;

where ηf is the N -linearization of f . Then h is an automatic function.

Proof. The labels of elements Σ do not matter, except for the element 0 ∈ Σ implied by
the fact that N is an ideal numeration system. Since 0 must be the minimum element in
the order on Σ, we may assume without loss of generality that Σ = Σk for some k ≥ 1.

If k = 1 then there is at most one representation of any length, so ηf (θ) is either
empty or a single character; we leave this trivial case to the reader, and proceed under the
assumption that k ≥ 2.

We define new functions, f ′ : (Θ × Σ)∗ → (Γ ∪ {∅}) and g′ : (Γ ∪ {∅})∗ → (∆ ∪ {∅})
based on f and g respectively. Let

f ′(θ, d) :=

f(θ, d), if d ∈ L;
∅, if d /∈ L;

and g′ = g ◦ v where v : (Γ ∪ {∅})∗ → Γ is a morphism such that v(a) = a for all a ∈ Γ,
but v(∅) = ε.

Let ηf ′ be the base-k linearization of f ′. We observe that since base-k and N both
have lexicographic comparison, all the symbols in ηf (θ) occur in ηf ′(θ) in the same order,
interspersed with runs of ∅. In other words, v(ηf ′(θ)) = ηf (θ).

We can feed f ′ and g′ to Theorem 3.14 and obtain a function h′ : (Θ×Σ)∗ → ∆ where

h′(θ, d) = g′(ηf ′(θ)[0.. 〈d〉k − 1])
= g(v(ηf ′(θ)[0.. 〈d〉k − 1])).

61

If d ∈ L then we observe that v(ηf ′(θ)[0.. 〈d〉k − 1]) has length 〈d〉N , since precisely the
representations for 0, 1, . . . , 〈d〉N − 1 are lexicographically less than d, and these represen-
tations correspond to the non-∅ symbols in ηf ′(θ)[0.. 〈d〉k − 1]. Then

v(ηf ′(θ)[0.. 〈d〉k − 1]) = v(ηf ′(θ))[0.. 〈d〉N − 1]
= ηf (θ)[0.. 〈d〉N − 1].

Clearly h′(θ, d) = g(ηf (θ)[0.. 〈d〉N − 1]) for all d ∈ L, and h′ is automatic. It follows that
h is automatic.

This is enough to extend Theorem 3.1 with the operation σT .

3.4.2 Applications of σT

Let us consider the applications and implications of Corollary 3.15. For the following
examples, we assume N an ideal numeration system with lexicographic comparison.
• We recover Dekking’s result [25] about k-automatic sequences. Let w ∈ Γω be an
N -automatic sequence and let T : Γ∗ → ∆ be a DFAO. Then (T (w[0..n − 1]))∞n=0 is
an N -automatic sequence. Dekking proves the special case where N is the base-k
numeration system.

• We can apply a DFAO, T : Γ∗ → ∆, to arbitrary subwords of an N -automatic se-
quence w ∈ Γω. That is, the two-dimensional sequence i, j 7→ T (w[i..j − 1]) is
N -automatic. The trick is to construct a two-dimensional sequence z ∈ Γω×ω, where

z(i, j) :=

w[j], if i ≤ j;
∅, if j < i.

Then create a DFAO T ′ : (Γ∪{∅})∗ → ∆ that is identical to T except that the input
alphabet includes ∅ and T ′ ignores any occurrence of ∅ in the input2. Applying the
modified DFAO to z shows that the two-dimensional sequence

i, j 7→ T ′(z(i, 0)z(i, 1) · · · z(i, j − 1))

is N -automatic, and we observe that T ′(z(i, 0)z(i, 1) · · · z(i, j− 1)) = T (w[i..j− 1]).

2We used this technique in the proof of Corollary 3.15

62

• If we assume addition is automatic in the numeration system N then there is another
way to apply a DFAO T : Γ∗ → ∆ to subwords of an N -automatic sequence w ∈ Γω.
We construct the two-dimensional sequence i, n 7→ w[i + n]. Then apply the DFAO
T along variable j to show that i, n 7→ T (w[i..i + n − 1]) is N -automatic. This is
sometimes preferable to the sequence i, j 7→ T (w[i..j − 1]).

• Let w ∈ Γω be an N -automatic sequence where N is a numeration system with
automatic addition. Given a DFAO T : (Γ×Γ)∗ → ∆, the three-dimensional sequence
such that

i, j, n 7→ T (w[i..i+ n− 1], w[j..j + n− 1])
is N -automatic. That is, we can apply T to any pair of subwords of the same length.
This is a new result that allows us to compare two subwords using DFAOs. For
instance, there is a DFAO T= : (Γ × Γ)∗ → {=, 6=} that decides whether its two
inputs are equal. We can show that i, j, n 7→ T=(w[i..i + n − 1], w[j..j + n − 1]) is
N -automatic, so we can compare two subwords for equality in our predicates. Of
course, we already know how to compare subwords for equality (using the predicate
(∀k < n (w[i+ k] = w[j + k]))), but the same principle applies to more complicated
kinds of comparison. As an example, the Hamming distance d(x, y) of two words
x, y ∈ Σn is the number of positions 1 ≤ i ≤ n such that x[i] 6= y[i]. We cannot
compute the Hamming distance, but for any constant m ≥ 2 there is a DFAO that
computes the Hamming distance modulo m. We give another example of subword
comparison below.
This easily generalizes from two subwords any fixed number of subwords. We note
that Jason Bell gave an earlier, independent, unpublished proof of the same result in
December 2012.
• Let w ∈ Σω be an infinite word. The abelian complexity of w is the function f : N→ N

such that
f(n) := |{ψ(x) : x a length-n subword of w}| ,

where ψ : N → NΣ is the Parikh map. Naturally, a word has bounded abelian com-
plexity if the abelian complexity function is bounded.
In a recent paper, Richomme, Saari and Zamboni give the following characterization
of words with bounded abelian complexity.

Lemma 3.16. Let w ∈ Σ∗ be a word, and let C ≥ 0 be an integer. We say w
is C-balanced if for any two factors x and y (of the same length) in w, we have
‖ψ(x)− ψ(y)‖∞ ≤ C, where ‖(v1, . . . , vn)‖∞ := maxi |vi| is the infinity norm. In
other words, the number of occurrences of any symbol a ∈ Σ in x differs from the
number of occurrences in y by at most C.

63

Then w has bounded abelian complexity if and only if w is C-balanced for some C.

For instance, the Thue-Morse word and Fibonacci word are known to be 2-balanced
and 1-balanced respectively, so they have bounded abelian complexity.
Given a constant C, we will show how to use DFAO-based subword comparison to
test whether an automatic word w ∈ Σ∗ is C-balanced. A simple pumping argument
shows there does not exist an automaton that decides whether ‖ψ(x)− ψ(y)‖∞ ≤ C.
On the other hand, there is an automaton M that accepts x and y if and only if

‖ψ(x[0..i− 1])− ψ(y[0..i− 1])‖∞ ≤ C

for all i. The automaton M keeps track of the current vector ψ(x[0..i−1])−ψ(y[0..i−
1]) in {v ∈ NΣ : ‖v‖∞ ≤ C} and updates it as necessary when it reads the next pair
of symbols (x[i], y[i]). If ‖ψ(x[0..i− 1])− ψ(y[0..i− 1])‖ exceeds C at any point,
the automaton transitions to a “dead” non-accepting state, and stays there for the
remainder of the input.
Clearly if M accepts on all pairs of subwords in w (of the same length), then w is
C-balanced. Conversely, if w is C-balanced, then M accepts on all pairs of subwords
in w (of the same length). We can use this technique to show that a word w is
C-balanced (or not C-balanced) for a particular C.

Corollary 3.15 also has important applications related to monadic second-order formu-
las.

Theorem 3.17. Let φ(x1, . . . , xn, X1, . . . , Xm) be a formula where x1, . . . , xn are free vari-
ables over N and X1, . . . , Xm are free variables over subsets of N. Let N be an ideal nu-
meration system with lexicographic comparison. Given N -automatic sets A1, . . . , Am ⊆ N,
the language Λ(φ(x1, . . . , xn, A1, . . . , Am)) is ω-regular.

Proof. The language Λ∞(φ) is ω-regular by Theorem 3.7, so it is recognized by some Muller
automaton M = ({0, 1}m+n, Q, δ, q0,F). Let M ′ = ({0, 1}m+n, Q, δ, q0, Q, γ) be a DFAO
with the same set of states, initial state, and transitions as M , and such that the output
of state q is γ(q) := q.

The words χ(A1), . . . , χ(Am) are N -automatic, since the corresponding sets A1, . . . , Am
are N -automatic. Similarly, χ(i) is N -automatic for any fixed i ∈ N, and the two-
dimensional sequence i, j 7→ χ(i)[j] is N -automatic. Hence,

f(x1, . . . , xn, i) := (χ(x1)[i], . . . , χ(xn)[i], χ(A1)[i], . . . , χ(Am)[i])

is an n+ 1-dimensional N -automatic sequence.

64

We use σM ′ along variable i of the automatic sequence f . This gives us an automaton
for the N -automatic sequence

f ′(x1, . . . , xn, i) := M ′
(
(χ(x1), . . . , χ(xn), χ(A1), . . . , χ(Am))[0..i− 1]

)
.

Recall the acceptance condition for a Muller automaton: M accepts a word w if it the
subset of states S ⊆ Q encountered infinitely often (while reading w) is in F. We can set
this up as a first-order predicate,

(∃∞i f ′(x1, . . . , xn, i) = q).

It follows that the set

{(a1, . . . , an) ∈ Nn : φ(a1, . . . , an, A1, . . . , An)}

is N -automatic, and therefore Λ(φ(x1, . . . , xn, A1, . . . , Am)) is ω-regular.

The proof tells us something about the relative strength of the monadic second-order
theory MSO(N, <, P1, . . . , Pm), and FO(N, <, {Pa}a∈Γ, {σT}T a DFAO). Note that in the
proof of Theorem 3.17, we turn a given formula in MSO(N, <, P1, . . . , Pm) (assuming
P1, . . . , Pm are the predicates associated with A1, . . . , Am) into a DFAO M ′, and then
turn that into a formula in FO(N, <, P1, . . . , Pm, σM ′). Hence, any query we can state in
MSO(N, <, {Pa}a∈Γ) can be translated into a query in FO(N, <, {Pa}a∈Γ, {σT}T a DFAO).

Conversely, we can express σT in MSO(N, <). Suppose we want to compute an au-
tomaton for the predicate σT ({φa}a∈Γ, y), where T = (Γ, Q, δ, q0, F) is an arbitrary DFA
(which we interpret as a DFAO to {0, 1}), and {φa}a∈Γ are predicates in MSO(N, <). For
simplicity, we assume the φa’s describe a sequence w ∈ Γ∗. Let us consider the subsets
{Xq}q∈Q of N where

Xq = {n ∈ N : δ∗(q0, w[0..n− 1]) = q}.
That is, Xq contains integers n such that reading n symbols of w with T leaves us in state
q. Observe that we can also define Xq by the following properties:
• 0 ∈ Xq0 ,
• n ∈ Xq =⇒ n+ 1 ∈ Xδ(q,w[n]) for all n, and
• for all n, there is a unique q ∈ Q such that n ∈ Xq.

These properties are expressible in MSO(N, <), since they use only set membership, succes-
sor, existential and universal quantifiers and binary connectives. Then T (w[0..n− 1]) = 1
if and only if n is in Xq for some q ∈ F . We conclude that σT we can express σT in
MSO(N, <).

65

It appears that FO(N, <, {σT}T a DFAO) and MSO(N, <) can express the same first-order
(i.e., having no free set variables) predicates on N. It is intruiging that when we augment
these theories with addition, MSO(N, <,+) is undecidable, but FO(N, <, {σT}T a DFAO,+)
is decidable.

66

Chapter 4

Applications

We present applications and extensions of the results in Chapter 3. In Section 4.1, we
discuss a series of problems in which we think of a k-automatic set S ⊆ N×N as defining
a set of rational numbers, {a

b
: (a, b) ∈ S} ⊆ Q, and show how to decide certain properties

of these sets. In Section 4.2, we extend the decidability results from the previous chapter
to paperfolding words, an uncountably infinite collection of binary words.

4.1 Critical Exponent and k-Automatic Sets of Ratio-
nal Numbers

This section is based on work in [49], but improves on it with a more efficient algorithm
for one of the main decidability results. Computing the critical exponent is an excellent
application of this algorithm. Let us start by defining powers and fractional powers in
infinite words.
Definition 4.1. Let x = x[1..n] ∈ Σ∗ be a finite word. We say x has period p or p is a
period of x if x[i] = x[i + p] for all 1 ≤ i ≤ n − p. We say p is the period of x if p is the
least period of x.

If x is a word with period p and length q such that p < q then we say x is a fractional
power with exponent q

p
, or a q

p
-power.

Much work has been done on avoiding fractional powers in infinite words. In par-
ticular, Dejean’s conjecture was recently confirmed by Currie and Rampersad [21], and
independently by Rao [43].

67

Theorem 4.2 (Dejean’s Conjecture). Define the repetition threshold over an n symbol
alphabet, RT(n), to be

RT(n) := inf{d ∈ Q : an infinite word over n symbols avoids d-powers}.

Then RT(n) takes the following values for n ≥ 2.

RT(n) :=


2, if n = 2;
7
4 , if n = 3;
7
5 , if n = 4;
n
n−1 , if n ≥ 5.

For instance, RT(6) = 6
5 , so we can avoid k-powers for d > 6

5 on an alphabet of size 6,
but we cannot avoid d-powers for d < 6

5 .
A related question is, which d-powers does a specific infinite word avoid, and what is

the threshold? This is known as the critical exponent of the word, defined below.
Definition 4.3. Let w ∈ Σω be an infinite word. Then the critical exponent of w, denoted
by ce(w), is defined to be

ce(w) := sup{d ∈ Q : w contains a d-power subword}.

Allouche, Rampersad, and Shallit [4] noticed that we can express “w ∈ Σ∗ contains a
word of length q with period p” as a predicate in FO(N, <,+, {Pa}a∈Σ) as follows

(∃i (∀j (j + p ≥ q) ∨ (w[i+ j] = w[i+ j + p]))).

Hence, if w is a k-automatic sequence then the set

S = {(p, n) ∈ N2 : w contains a word of length n with period p}

is k-automatic. We would like to interpret these pairs as fractions, because then the critical
exponent is

ce(w) = sup
{
n

p
: (p, n) ∈ S

}
.

We have reduced computing the critical exponent of a k-automatic sequence to finding the
supremum of the rational numbers accepted by an automaton.

This situation is not unique to critical exponent – there are many examples of k-
automatic sets S ⊆ N2 which we think of as defining a set of rational numbers, {a

b
: (a, b) ∈

S} ⊆ Q. This idea is explored by Rowland and Shallit [46], and subsequently by Schaeffer
and Shallit [49] in the context of critical exponent.

68

Definition 4.4. Let S ⊆ Q be a set of rational numbers. We say S is k-automatic if there
exists a k-automatic set T ⊆ N2 such that

S =
{
a

b
: (a, b) ∈ T

}
.

We list a number of examples, mostly taken from [49], which illustrate practical uses
for k-automatic rational sets.
• Critical exponent with predicates. We can consider the critical exponent for a subset

of the subwords in w. That is,

ceP (w) := sup{exp(x) : x is a subword of w and P (x) is true}

where P is a predicate on words. As long as we can express P in our first order
theory, the set

{(n, p) ∈ N2 : w contains a subword with period p and length n satisfying P}

is k-automatic, and hence ceP (w) is the supremum of a k-automatic set of rational
numbers. Some interesting examples of predicates are

– x is a prefix of w,
– x occurs infinitely often, and
– |x| is larger than some constant c.

• Critical exponent with finitely many exceptions. Recall the Rudin-Shapiro sequence,

r = 000100100001110100010010111000 · · ·

from Chapter 1. The critical exponent of r is 4 because it contains the subword 0000.
Since 0000 and 1111 are the only 4-powers in r, one could argue that the critical
exponent misrepresents the threshold between avoidable and unavoidable exponents
in r. We can use predicates to ignore 0000 and 1111, then the next highest exponent
in Rudin-Shapiro is 3, associated with the subwords 000 or 111. If we omit those,
then the next highest exponent in Rudin-Shapiro is 8

3 , corresponding to subwords
00100100 and 11011011, and so on. It turns out that if we omit all factors of length
11 or less (00010000100 is a factor of length 11 with exponent 11

5) then all remaining
subwords have exponent at most 2. Since there are arbitrarily large subwords with
exponent 2, we cannot lower the exponent any further without omitting an infinite
set of subwords.

69

In some cases, we can achieve a descending sequence of critical exponents by omitting
larger and larger finite sets. For instance, consider the word x obtained from the
Thue-Morse word, t, by flipping bits at positions 4k − 1 for all k ≥ 0. That is,

x = 11111001100101111001011001101001 · · ·

Then the flipped bit 4k − 1 induces an overlap x[4k − 1..3 · 4k − 1] of length 2 · 4k + 1
and period 4k for all k ≥ 0. The exponents of these subwords decrease to 2, and
all other subwords (except the prefix 11111 and its subwords) in x have exponent at
most 2. In this situation, it makes sense to define

inf{α ∈ R : α ≤ exp(x) for finitely many words x in w}.

This is essentially lim sup of the k-automatic rational set

{(n, p) ∈ N2 : w contains a subword with period p and length n}.

Technically, it is the largest special point (defined later in Section 4.1.2) of the set,
but special points coincide with limit points in this example.
For many of the examples in this list, we can replace sup with “largest special point”
and obtain a new, interesting example.

• Linear recurrence. A word w ∈ Σω is linearly recurrent if there exists a constant C
such that for all n ≥ 1, every window of length bCnc contains all subwords of length
n in w. We can use k-automatic rational sets to find the optimal constant C∗ for a
linearly recurrent k-automatic sequence.
Given n and `, the predicate

P (n, `) = (∀i (∀j w[i..i+ `− 1] contains w[j..j + n− 1]))

tests if every window of length ` contains every subword of length n. Assuming that
w is recurrent (i.e., for all n there exists `n such that P (n, `)), then the predicate

Q(n, `) = P (n, `) ∧ (∀`0 < ` ¬P (n, `))

is true only when ` is the minimal window length. Since Q is expressible as a
predicate, the set

S = {(n, `) ∈ N2 : Q(n, `)}
is k-automatic. Then C is greater than `

n
for all (n, `) ∈ S, and the optimal constant

C∗ is the least such upper bound, so

C∗ = sup
{
`

n
: (n, `) ∈ S

}
,

70

the supremum of a k-automatic set of rational numbers.
Similarly, we can obtain optimal constants bounding the ratio of appearance window
length to subword length, and condensation window length to subword length.

With these examples in mind, let us develop the theory of k-automatic rational sets.

4.1.1 Basic Operations on k-Automatic Rational Sets

We discuss some basic operations on subsets of N2 that apply to k-automatic rational sets.

Proposition 4.5. Let X ⊆ N2 be a k-automatic set. Then for constants a, b, c, d, e, f ∈ N,
the set

Y = {(ax+ by + c, dx+ ey + f) : (x, y) ∈ X} ⊆ N2

is also k-automatic.

This can be interpreted as a Möbius transformation of the rational set. The result still
holds, to a limited extent, when the constants a, b, c, d, e, f are integers.

Another problem is detecting “invalid” rational numbers, such as 0
0 or 1

0 . Fortunately,
we can efficiently find and remove these numbers from the set.

Proposition 4.6. Let X ⊆ N2 be a k-automatic set. Given a DFA T for X (either MSD
first or LSD first), we can decide whether X contains elements of the form (a, 0) in linear
time. We can also construct an automaton for the set

{(a, b) ∈ X : b 6= 0}

in linear time, with at most twice as many states.

Proof. We can detect if T accepts any strings of the form {(a, 0) : a ∈ Σk}∗ by deleting all
other transitions and checking if any final state is reachable. This takes linear time.

To construct an automaton for {(a, b) ∈ X : b 6= 0}, we take the product of T with the
following DFA.

0start 1

(Σk, 0)

(Σk,Σk\{0})

(Σk,Σk)

71

In the same vein, we can efficiently detect whether the rational set is unbounded.

Proposition 4.7. Let X ⊆ N2 be a k-automatic set. Given a DFA T for X (either MSD
first or LSD first), we can decide, in linear time, whether {a

b
: (a, b) ∈ X} is unbounded.

Proof. Let us consider the MSD-first and LSD-first automata separately.
Suppose T reads numbers starting from the most significant digit. If {a

b
: (a, b) ∈ X} is

unbounded then T accepts words where b has an arbitrarily large number of leading zeros
(and a has no leading zeros). By a pumping argument,
• there is a cycle C in T with zeros in the second coordinate,
• there is a path from the initial state to the cycle, with zeros in the second coordinate

and at least one nonzero symbol in the first coordinate, and
• there is a path from the cycle to a final state.

We can test T for these properties in linear time. Conversely, if T contains such a cycle
then {a

b
: (a, b) ∈ X} is clearly unbounded.

Suppose T reads numbers starting from the least significant digit. Then similarly,
{a
b

: (a, b) ∈ X} is unbounded if and only if T accepts words where b has arbitrarily many
trailing zeros. This is equivalent to
• a cycle C in T with zeros in the second coordinate,
• a path from the initial state to the cycle, and
• a path from the cycle to some final state, with zeros in the second coordinate and at

least one nonzero symbol in the first coordinate.

This is a useful first step when we compute the supremum, to rule out the possibility
that it is infinite.

4.1.2 Limit Points and Special Points

Consider a k-automatic rational set

S =
{
a

b
: (a, b) ∈ X

}
⊆ Q

and recall the definition of a limit point.

72

Definition 4.8. Let S ⊆ R be a set of real numbers. A limit point of S is a real number
α ∈ R such that for any neighbourhood U ⊆ R of α, the set U ∩ S is infinite.

A somewhat surprising example is the k-automatic set X = {(a, b) ∈ N2 : a = 4b}.
Counterintuitively, the corresponding set of rationals is just {4} and hence has no limit
points, despite the fact that X contains infinitely many representations of 4. It turns out to
be easier, and arguably more natural, to treat numbers with infinitely many representations
like limit points.

Definition 4.9. Let X ⊆ N2 be a k-automatic set. Then a special point of X is a real
number α ∈ R such that for any neighbourhood U ⊆ R of α, the set{

(a, b) ∈ X : a
b
∈ U

}
is infinite.

Proposition 4.10. Let X ⊆ N2 be a k-automatic set and let S := {a
b

: (a, b) ∈ X}. If
α ∈ R is a limit point of S then α is a special point of X.

The converse does not hold, since 4 is a special point of {(a, b) ∈ N2 : a = 4b}, but the
corresponding rational set S = {4} has no limit points.

4.1.3 Computing the Supremum and Largest Special Point

In this section we will show how to compute the supremum/infimum and largest/smallest
special point of a k-automatic rational set using linear programming. We give a series of
lemmas, relating the points and limit points to infinite walks in a graph, relating those
infinite walks to solutions of an optimization problem, and then characterizing the optimal
solution to the problem. These lemmas culminate in Theorem 4.20, which shows that there
is a polynomial-time algorithm to compute the supremum of a k-automatic rational set.
This improves on the algorithm in [49].

For convenience, we let X ⊆ N2 be a k-automatic set, let S = {a
b

: (a, b) ∈ X}
be the corresponding set of rationals. We need to work closely with the actual base-k
representations, so let L ⊆ (Σk × Σk)∗ be the (regular) language

L := {((a, b))k : (a, b) ∈ X}

with most significant digit first.

73

Let π1, π2 : (Σk×Σk)∗ → Σ∗k denote codings that projects to a word to its first or second
component respectively. Define a function quok : (Σk×Σk)∗ → R that maps x = x[1..n] to
the fraction

〈π1(x)〉k
〈π2(x)〉k

.

This is equivalent to ∑
i π1(x[i])k−i∑
i π2(x[i])k−i

which naturally extends to an infinite word x = x[1..∞] ∈ (Σk × Σk)ω. Note that the
infinite summations in the numerator and denominator converge because all terms are
nonnegative and πj(a)k−i is bounded by k−i+1.

Lemma 4.11. Suppose α ∈ R is a real number. Then α is a special point of X if and only
if there exists an infinite word x ∈ (Σk × Σk)ω such that quok(x) = α and every prefix of
x is a prefix of some word in L.

Proof. Suppose α is a special point of X. Then there exists an infinite sequence of distinct
representations {xi}∞i=0 such that xi ∈ L for all i and limi→∞ quok(xi) = α. We may take a
strictly increasing or strictly decreasing subsequence, so assume without loss of generality
that the xis are monotonic.

Infinitely many of the words in {xi : i ≥ 0} begin with some symbol c0 ∈ Σk × Σk. Of
those beginning with c0, infinitely many begin with c0c1, and so on. In this fashion, we
construct an infinite word c = c0c1c2 · · · , such that every prefix of c is a prefix of infinitely
many words in {xi : i ≥ 0} ⊆ L. If xj and c agree on a prefix of length n, then(∑

i

π`(xj[i])k−i
)
−
(∞∑
i=0

π`(c[i])k−i
)

= O(k−n)

for ` = 1, 2. Hence, there is a subsequence xi1 , xi2 , · · · of {xi}∞i=0 such that

lim
n→∞

∑
j

π`(xin [j])k−j =
∞∑
i=0

π`(c[j])k−j

74

and hence

α = lim
n→∞

quok(xin)

=
limn→∞

∑
j π1(xin [j])k−in

limn→∞
∑
j π2(xin [j])k−in

=
∑∞
i=0 π1(c[j])k−j∑∞
i=0 π2(c[j])k−j

= quok(c).

Note that division by zero is not a problem, since π2(c) = 0ω if and only if there are xis
with an arbitrarily large number of zeros in the denominator, and hence quok(xi) grows
arbitrarily large. Therefore we can say quok(c) =∞ if and only if limi→∞ quok(xi) =∞.

In the other direction, suppose α = quok(c) where c ∈ (Σk × Σk)∗ is an infinite word
such that every prefix of c is a prefix of some word in L. Let xi ∈ L be the shortest
word that begins with the prefix c[0..i − 1] for all i ≥ 0. It is not hard to show that
α = quok(c) = limi→∞ xi. Hence, for any neighbourhood of α, there is some xi such that
quok(xi) is in the neighbourhood. Therefore α is a special point.

Lemma 4.12. There exists a directed graph G = (V,E) with a distinguished initial vertex
v0 ∈ V and edges labelled by symbols {`e}e∈E ⊆ Σk × Σk such that α ∈ R is a point of S
or special point of X if and only if α = quok(x) where x ∈ (Σk × Σk)ω is the sequence of
labels along some infinite walk in G.

Proof. Let T = (Σk × Σk, Q, δ, q0, F) be a minimal DFA for the language L. We define
the directed graph G = (Q ∪ {qF}, E) so that it is the underlying directed graph of T
(including labels, and potentially parallel edges) with the following modifications:
• an additional state/vertex, qF ,
• a loop from qF to itself labelled (0, 0) ∈ Σk × Σk, and
• a directed edge, labelled (0, 0), from each final state q ∈ F to qF .

We will assume that there is a path from any state to qF . If not, then there is some state
in T , sometimes known as the dead state, which cannot reach any final state. There is at
most one such state by minimality (otherwise we could merge them), and we simply delete
it along with all transitions into it.

Let α be a point in S, so α = quok(w) for some word w ∈ L. There is a finite walk in T
from the initial state, q0, to some final state, labelled by w. From the final state, we follow

75

the transition (0, 0) to qF and then loop forever on (0, 0). This infinite walk, w(0, 0)ω has
quotient

quok(w(0, 0)ω) = quok(w) = α,

as required. Similarly, if α is a special point then there is an infinite word x ∈ (Σk × Σk)∗
such that α = quok(x) and every prefix of x can be extended to a word in L. But then
δ∗(q0, x[0..n]) ∈ Q for all n ≥ 0, so x is an infinite path in G through the states in Q, so α
is of the form quok(x).

In the other direction, suppose x ∈ (Σk×Σk)∗ is an infinite walk in G. Either the walk
eventually reaches state qF and loops forever, in which case we construct a finite word in L
based on the prefix up to qF and quok(x) is a point in S, or the walk meanders through Q
forever, in which case every prefix can be extended to a word in L, so quok(x) is a special
point of S.

The supremum of S is either a point in S, or a limit point of S and therefore a special
point of X. Hence, supS is of the form quok(x), where x ∈ (Σk × Σk)ω labels an infinite
walk in G. Our next step is to define an optimization problem such that an infinite walk
in G labelled x ∈ (Σk × Σk)ω induces a feasible solution with objective value quok(x).

Definition 4.13. A linear-fractional program is an optimization problem of the form

max
x

cTx + α

dTx + β

subject to
Ax ≤ b

where A ∈ Rm×n, b ∈ Rm, c,d ∈ Rn, α, β ∈ R are given constants and x ∈ Rn is a vector
of variables.

We assume that the denominator dTx + β is positive for all feasible solutions, because
of the problems associated with division by zero.

Linear-fractional programming generalizes linear programming by letting the objective
function be a quotient of two linear functions. This is clearly useful if we want the objective
value to be quok(x). However, the following result of Charnes and Cooper [16] shows that
we can convert a linear-fractional program to a linear program without changing the range
of feasible objective values.

76

Theorem 4.14 (Charnes-Cooper transformation). Let (P) be the feasible, bounded linear-
fractional program shown below.

max
x

cTx + α

dTx + β

subject to
Ax ≤ b

Then by introducing variables y = 1
dTx+βx ∈ Rn and t = 1

dTx+β ∈ R, we may transform
(P) into the following equivalent linear program, (P ′):

max
y,t

cTy + α

subject to
Ay ≤ bt

dTy + βt = 1
t ≥ 0.

Proof. See [16].

Next, we define a linear-fractional program based on walks in G, so that a walk labelled
w ∈ (Σk × Σk)∗ corresponds to a feasible solution x(w) with objective value quok(x(w)).

Definition 4.15. Let (P) be a linear-fractional program with non-negative variables
{xe}e∈E, linear constraints

1
k

∑
e∈in(v)

xe =
∑

e∈out(v)
xe, for all v ∈ V \{v0},

1 + 1
k

∑
e∈in(v0)

xe =
∑

e∈out(v0)
xe,

and objective function ∑
e∈E xeπ1(`e)∑
e∈E xeπ2(`e)

.

We seek to maximize the objective function.

77

Theorem 4.16. Suppose there is an infinite walk u = u[0..∞] ∈ Eω in G starting from
v0. Then we have a feasible solution x(u) = {xe}e∈E where

xe =
∑

i:u[i]=e
k−i.

for all e ∈ E. Furthermore, the objective value of this solution is quok(w), where w ∈
(Σk × Σk)ω is the sequence of labels corresponding to the walk u.

Proof. First, x(u) is a feasible solution because u[i] is an edge into v if and only if u[i+ 1]
is an edge out of v. Hence,

1
k

∑
e∈in(v)

xe = 1
k

∑
e∈in(v)

∑
i:u[i]=e

k−i

=
∑

i:u[i]∈in(v)
k−i−1

=
∑

i:u[i+1]∈out(v)
k−i−1

=
∑

i>1:u[i]∈out(v)
k−i

=
∑

e∈in(v)

∑
i:u[i]=e

k−i

=
∑

e∈out(v)
xe

for v 6= v0. The case v = v0 is similar, but we miss the k0 = 1 term for u[0] and must add
it to both sides.

The objective value of x(u) is∑
e∈E xeπ1(`e)∑
e∈E xeπ2(`e)

=
∑
e∈E

∑
i:u[i]=e π1(`e)k−i∑

e∈E
∑
i:u[i]=e π2(`e)k−i

=
∑
i π1(`u[i])k−i∑
i π2(`u[i])k−i

=
∑
i π1(w[i])k−i∑
i π2(w[i])k−i

= quok(w),

as desired.

78

The feasible region of (P) is a convex polytope (as a consequence of basic linear pro-
gramming theory), so any convex combination of feasible solutions is again a feasible
solution.

Theorem 4.17. Suppose x = {xe}e∈E is a basic feasible solution to (P). Then x is of the
form x(u) for u ∈ Eω an ultimately periodic infinite walk in G starting at v0. The optimal
objective value of x is also rational.

Proof. Note that x is a basic solution, so it is defined as the solution to a system of |E|
non-degenerate linear equations, S. Each equation in S is either xe = 0 or one of the linear
constraints in (P).

Call xe the weight of an edge e. Let U be the set of vertices such that some outgoing
edge has nonzero weight. Hence, there are at least |U | edges of nonzero weight.

On the other hand, if v is a vertex not in U then all its outgoing edges have weight zero.
Since x is a feasible solution, all incoming edges also have weight zero. We may assume
without loss of generality that the constraint in (P) corresponding to vertex v is not in S,
since otherwise we can replace it with {xe = 0 : for all edges e incident to v}. Hence, at
most |U | equations in S are taken from (P). It follows that at most |U | edges have nonzero
weight, since S contains at least |E| − |U | equations of the form xe = 0.

We see that there must be exactly |U | edges of nonzero weight, one leaving each vertex
in U . To construct our infinite walk u ∈ Eω, we start at v0 (note that v0 ∈ U) and follow
the unique outgoing edge of nonzero weight for each step. Clearly u is ultimately periodic,
and begins to repeat after visiting each vertex in U .

The corresponding feasible solution x(u) satisfies all the linear constraints in (P), and
x(u)e = 0 for all edges e with weight zero in x. Therefore x(u) satisfies all the equations
in S, so x = x(u) because x is defined to be the solution to S. Then the objective
value of x(u) is quok(u). Since u is ultimately periodic, it is of the form u = xyω where
x, y ∈ (Σk × Σk)∗. Then

quok(xyω) = 〈π1(x)〉k +∑∞
i=1 〈π1(y)〉k k−|y|i

〈π2(x)〉k +∑∞
i=1 〈π2(y)〉k k−|y|i

=
〈π1(x)〉k + 〈π1(y)〉k k−|y|

1−k−|y|

〈π2(x)〉k + 〈π2(y)〉k k−|y|

1−k−|y|

= (k|y| − 1) 〈π1(x)〉k + 〈π1(y)〉k
(k|y| − 1) 〈π2(x)〉k + 〈π2(y)〉k

∈ Q,

so the objective value is rational.

79

We state a classical result known as the mediant inequality, which we use to prove a
corollary of Theorem 4.17.

Proposition 4.18. Let a, b, c, d > 0 be real numbers such that a
b
≤ c

d
. Then

a

b
≤ a+ b

c+ d
≤ c

d
.

Corollary 4.19. There is an optimal basic solution for (P).

Proof. Every feasible solution x is a convex combination of a finite set x1, . . . ,xn of basic
feasible solutions. Say

x = α1x1 + · · ·+ αnxn
for α1, . . . , αn > 0 such that ∑i αi = 1. Suppose that x1, . . . ,xn are in non-decreasing
order by objective value. By the mediant inequality,

cT (α1x1 + · · ·+ αn−1xn−1)
dT (α1x1 + · · ·+ αn−1xn−1) ≤

cTx
dTx

≤ cTαnxn
dTαnxn

.

Therefore xn is an optimal basic solution to (P).

Theorem 4.20. The sup, inf, largest special point, and smallest special point of a k-
automatic rational set S are rational, and computable in polynomial time, given a DFA for
the language L ⊆ (Σk × Σk)∗.

Proof. Given the DFA, we can check that the denominator is never zero (see Proposi-
tion 4.6) and detect if S is unbounded (see Proposition 4.7) in linear time, and act accord-
ingly.

Let us consider the supremum first. The supremum is either a point of S, or a limit
point of S and hence a special point in X. By Lemma 4.12, the supremum of S is of the
form quok(x) where x ∈ (Σk × Σk)ω labels an infinite walk in G starting at v0.

We define a linear-fractional program (P). Theorem 4.16 shows that for any walk in
G (starting from v0) labelled w, the objective value quok(x) is feasible. The optimal value
for (P) is therefore at least supS, since it is at least as large as any point or special point.

On the other hand, every basic solution corresponds to an infinite walk in G (and hence
a point or special point). If (P) were a linear program, this would be enough to conclude
that there is an optimal basic solution. Since (P) is a linear-fractional program, we are

80

more cautious and prove this fact in Corollary 4.19. The optimal value of (P) is a point
of S or special point of X, so it is bounded above by supS.

It follows that the optimal value of (P) is supS. We can convert (P) to a linear
program using the Charnes-Cooper transformation (see Theorem 4.14), and then solve the
program in polynomial time by an interior point method. Hence, we can compute supS
in polynomial time.

We can compute inf S with the same program (P), except we minimize the objective
value instead of maximizing it. For the largest special point, observe that in Lemma 4.12,
the walks corresponding to special points are precisely the walks that avoid the additional
vertex qF ∈ V . If we delete this vertex, or add a constraint that set the incoming or
outgoing edge weights to zero, then infinite walks in G just correspond to special points in
X. Then the optimal value of the program is the largest special point. Similarly for the
smallest special point, by minimizing instead of optimizing.

As a corollary, the critical exponent of a k-automatic sequence is rational and com-
putable. Similarly, all of the examples we saw earlier are rational and computable, includ-
ing the variants of critical exponent and linear recurrence constant. Our polynomial-time
algorithm improves on the result in [49], but unfortunately it does not yield an efficient algo-
rithm for critical exponent because the algorithm implied by Theorem 3.1 is not guaranteed
to run in polynomial time or produce a DFA with polynomially many states. However, the
DFA is usually not large or expensive to construct, so Theorem 4.20 is useful in practice.

4.2 Decidability for Paperfolding Words

The regular paperfolding word is an infinite binary word p = p[1..∞] ∈ Σω
2 . One definition

of the paperfolding word is based on an iterated folding process. We fold a long, thin strip
of paper in half repeatedly and then completely unfold it. This leaves a binary sequence
of creases on the paper, since each crease turns either up or down. Suppose that in the
middle of unfolding, the sequence of creases along the strip is w ∈ Σ∗2. When we unfold
one more time, we have creases w on the initial half of the strip, followed by a crease in the
middle, and then the sequence w in reverse and upside down. Hence, unfolding maps the
sequence w to w1wR, where x denotes the complement of x and xR denotes the reversal of
x. Iterating this map yields an infinite sequence of words with a limit, p, the paperfolding
word.

p = 110110011100100 · · ·

81

The paperfolding words are a family of infinite binary words, which include the regular
paperfolding word and generalize it. Observe that every time we fold the strip of paper,
we can choose to fold ‘up’ or ‘down’. When we unfold, one choice leads to the map
f1(w) := w1wR, and the other choice leads to f0(w) 7→ w0wR. Suppose we have an infinite
binary instruction sequence a ∈ {0, 1}ω where a[n] ∈ {0, 1} indicates whether the nth time
we unfold is ‘up’ or ‘down’. Hence, the sequence of creases after n unfolds is wn where

w0 = ε

wn = fa[n](wn−1) for all n ≥ 1.

Define a word, pa := limn→∞wn, as the limit of these words. We call pa the paperfolding
word associated with the unfolding instruction sequence a. The regular paperfolding word
is the paperfolding word associated with the constant instruction sequence 1111 · · · .

Proposition 4.21. Let a ∈ {0, 1}ω be an instruction sequence, and let pa be the corre-
sponding paperfolding word. Let n ≥ 1 be an integer of the form n = q · 2e for q odd.
Then

pa[n] :=

a[e], if q ≡ 1 (mod 4);
1− a[e], if q ≡ 3 (mod 4).

Proof. See Theorem 6.5.2 in [6, p. 182].

As a corollary, we get a DFAO that defines all paperfolding sequences.

Corollary 4.22. There exists a DFAO, F, (shown in Figure 4.1) which, given a[1..n] and
a binary word x ∈ Σ∗ of length |w| = n, outputs pa[〈x〉2].

82

start 0

1

0

1

(∗, 0)

(0, 1)

(1, 1)

(∗, 0)

(∗, 1)

(∗, 1)

(∗, 0)

(∗, ∗)

(∗, ∗)

Figure 4.1: DFAO for all paperfolding sequences.

It follows that the regular paperfolding word, corresponding to a = 111 · · · , is 2-
automatic. We simply delete transitions where the instruction is 0, and drop the instruction
component from all remaining transitions. Similarly, whenever a is ultimately periodic,
we can manipulate the DFAO in Figure 4.1 to show that pa is 2-automatic. On the other
hand, there are only countably many automata and uncountably many paperfolding words,
so most paperfolding words are not 2-automatic.

Theorem 4.23. Let a be a sequence of unfolding instructions, and let pa be the corre-
sponding paperfolding word. Then pa is 2-automatic if and only if a is ultimately periodic.

Proof. See Theorem 6.5.4 in [6, p. 183].

In other words, our decidability results from the previous chapter do not apply to most
paperfolding words because most paperfolding words are not 2-automatic. We will use F
to extend the first-order theory so that we can decide questions about all paperfolding
words.

4.2.1 First-Order Theory for Paperfolding Words

For a 2-automatic paperfolding word q, we decide predicates in FO(N, <,+, P0, P1) with
Theorem 3.1. Recall that in the proof of Theorem 3.1, we use the fact that q is 2-automatic

83

to construct ω-automata for Λ(P0) and Λ(P1). Now we want to generalize the first-order
theory and decidability results to the family of paperfolding words, and we know that the
automaton F should play some role.

We propose to use a two-sorted first-order theory FO(N,Σω
2 , <,+, V2), in which every

variable has a sort: it is either a natural number (in N) or an instruction sequence (in Σω
2).

In other words, we augment FO(N, <,+, V2) with instruction sequence variables (over the
domain Σω

2), and we include quantification (∃, ∀) and comparison (=, <) over instruction
sequences. Then F suggests a predicate F on instruction sequences and natural numbers,
where F (a, n) is true if and only if pa[n] = 1. We include F in our first-order theory of
paperfolding words, which we denote FO(N,Σω

2 , <,+, V2, F).

Theorem 4.24. Let Lω ⊆ Σω
2 denote the set of all binary representations of natural

numbers.
Given any logical formula φ(a1, . . . , am, i1, . . . , in) expressible in FO(N,Σω

2 , <,+, V2, F),
define a language of infinite words Λ(φ) ⊆ (Σm+n

2)ω where

Λ(φ) = {(a1, . . . , am, i1, . . . , in) ∈ (Σω
2)m × Lnω : φ(a1, . . . , am, 〈i1〉2 , . . . , 〈in〉2)}.

Then Λ(φ) is ω-regular, and we can effectively construct the corresponding ω-automaton.

Proof. Essentially all the work has already been done, most of it in Theorem 3.1.
• The constructions in Theorem 3.1 for ∨, ∧ and ¬ work without modification.
• Quantification over natural numbers is unchanged, and quantification over instruc-

tion sequences. In a nutshell, use a coding to remove the quantified variable and
determinize.
• Natural number equality and inequality comparison are handled by the same au-

tomata as in Theorem 3.1.
• V2 and addition of binary numbers are covered in Section 3.2.1. These operations are

unchanged.
• There exist simple automata to compare instructions sequences lexicographically, or

for equality.
The only genuinely new element is the predicate F , and it is clear that Λ(F) is ω-regular,
because we can construct an ω-automaton for Λ(F) from F. This completes the proof.

Let us give some examples of queries we can state with FO(N,Σω
2 , <,+, V2, F) and

decide using Theorem 4.24. Many of these examples are due to Shallit, and taken from an
unpublished draft.

84

• Narad Rampersad made the following unpublished conjecture in 2006, which we can
now verify mechanically.

Theorem 4.25. Suppose a,b ∈ Σ∗2 are distinct instruction sequences. Then there
exists an integer n such that the set of length n subwords in pa is disjoint from the
set of length n subwords in pb.
In fact, if i is the first position where a and b differ, then the sets of length k subwords
in pa and pb are disjoint if and only if k ≥ 14 · 2i.

Proof. We can express the claims as predicates. The first claim can be expressed as

(∃n (∀i, j (pa[i..i+ n− 1] 6= pb[j..j + n− 1])))

where pa[i..i+ n− 1] 6= pb[j..j + n− 1] is short for

(∃k ((k < n) ∧ (F (a, i+ k) 6= F (b, i+ k)))).

For the second claim, observe that we can express “n is a power of 2” as V2(n) = n.
Since pa[2i] = a[i], the predicate

(pa[n] = pb[n]) ∧ (V2(n) = n)

is true if n = 2i where a and b differ at position i. We leave the rest of the predicate
as an exercise to the reader.

• We can determine the set of squares, cubes, and higher powers in paperfolding words.
See the work of Allouche and Bousquet-Mélou [1].

Theorem 4.26. Let pf be any paperfolding word. Then we make the following claims
about powers in pf

– Any square in pf has length 2, 6 or 10.
– The only cubes in pf are 000 and 111.
– There are no fractional dth-powers in pf for d ≥ 3.

Proof. A subword pf [i..i + 2n − 1] is a square if and only if pf [i..i + n − 1] =
pf [i+ n..i+ 2n− 1]. Therefore we can state the first claim as

(∀f ∈ {0, 1}ω
(∀n ≥ 1

(∃i ≥ 1 pf [i..i+ n− 1] = pf [i+ n..i+ 2n− 1])⇐⇒ n ∈ {1, 3, 5})).

85

The second claim is similar. For higher powers, note that a subword pf [i..i+ n− 1]
has period r if

pf [i..i+ n− r − 1] = pf [i+ r..i+ n− 1].
Then we can verify with predicates that for all f , for all subwords pf [i..i + n − 1],
the minimum period r satisfies 3r ≥ n (so the exponent, n

r
, is at most 3).

• Every paperfolding word pf has a corresponding appearance function, Af : N → N.
Recall that Af (n) is the minimum length such that pf [1..Af (n)] contains all subwords
of length n in pf . We define a function A : N → N that is the maximum of these
appearance functions. That is,

A(n) := max
f∈{0,1}ω

Af (n)

for all n. It is not necessarily clear that the maximum exists, since f ∈ {0, 1}∗ is
unbounded, but we can prove it mechanically with the predicate

(∀n(∃c(∀f ∈ {0, 1}ω (Af (n) ≤ c))))

Furthermore, we can show that

A(1) = 3,
A(2) = 7,
A(n) = 6 · 2i + n− 1, where 2i−1 < n ≤ 2i.

In fact, A(n) = Af (n) where f = 0001ω. Since p0001ω is 2-automatic by Theorem 4.23,
we can compute the appearance function as we did in Chapter 3. Then we can
mechanically decide the predicate

(∀f ∈ {0, 1}ω
(∀n ≥ 1

(∀i ≥ 1
(∃j ≤ A(n)− n

pf [i..i+ n− 1] = pf [j..j + n− 1]))))

to verify that A(n) ≥ Af (n) for all f and n.
Similarly, we can compute the minimum appearance function and the recurrence
function.

86

• We can prove the following theorem about subword complexity, due to Allouche [2].
Theorem 4.27. For all f ∈ {0, 1}ω, the subword complexity of pf is ρ : N → N
where

ρ(1) = 2
ρ(2) = 4
ρ(3) = 8
ρ(4) = 12
ρ(5) = 18
ρ(6) = 23
ρ(n) = 4n, for all n ≥ 7.

For ordinary k-automatic sequences, it is non-trivial to express subword complexity
as a predicate [30]. Fortunately, since the first difference sequence (ρ(n)−ρ(n−1))∞n=1
is k-automatic (in fact, ultimately constant), we can verify the conjecture as follows.

1. Verify the conjecture by hand for n ≤ 7. The maximum appearance function,
A(n), indicates that we only need to consider the first A(7) = 54 symbols.

2. We say a subword x is right special if x0 and x1 are both subwords. If x is not
right special, then either x0 or x1 is a subword, since any occurrence of x is
followed by some symbol. Let s(n) be the number of right special subwords of
length n. Observe that the s(n) right special subwords of length n give us 2s(n)
subwords of length n+1, and the remaining ρ(n)−s(n) length-n subwords yield
ρ(n)− s(n) subwords of length n+ 1. Therefore

ρ(n+ 1) = ρ(n) + s(n),
so it suffices to show that s(n) = 4 for all n ≥ 8.

• Observe that Theorem 3.14 applies to paperfolding words. Suppose φ is a first-order
formula with corresponding automatic function f : (Θ×Σk)∗ → {0, 1} corresponding
to Λ(φ). When we apply the theorem, we linearize along one of the integer free
variables and group all other free variables (integers and instructions) into Θ. One
application involves the generalized Rudin-Shapiro sequences, defined below.
Definition 4.28. Let f ∈ {0, 1}ω be an infinite sequence of unfolding instructions.
Define the associated generalized Rudin-Shapiro word, rf ∈ {0, 1}ω, such that

rf [i] =
i−1∑
j=0

pf mod 2.

87

There is clearly an automaton T over {0, 1} that computes the sum of its input bits
modulo 2 (in fact, this is the Thue-Morse automaton). Using Theorem 3.14, we can
transform the automaton for the family of paperfolding words into an automaton for
the family of generalized Rudin-Shapiro sequences.
• Consider the following lemma about ω-regular languages, which we present without

proof.

Lemma 4.29. Suppose Σ is an ordered finite alphabet. Let L ⊆ Σω be a non-empty
ω-regular language. Then the lexicographically least (or similarly, greatest) element
of L is ultimately periodic.

Recall that by Theorem 4.24, any formula φ in our first-order theory corresponds to
an ω-regular language Λ(φ). Applying the lemma gives us the following interesting
corollary.

Corollary 4.30. Let φ be any formula in the first-order theory of paperfolding words.
Either φ is unsatisfiable (any assignment of values to free variables renders φ false)
or there is a satisfying assignment where all instruction sequence variables are ulti-
mately periodic sequences (and hence, by Theorem 4.23, correspond to 2-automatic
paperfolding words).

Conversely, given an ultimately periodic sequence f ∈ {0, 1}ω, we can use the fact
that pf [2k] = f [k] to construct a formula φ that is satisfied only by f . If f has period
p and preperiod n then n+p−1∧

j=0
pg[2j] = f [j]


checks that g[0..n+ p− 1] matches f [0..n+ p− 1], and

(i > 2n) ∨ (i = V2(i)) ∨ (pg[i] = pg[2pi])

ensures that g[n..∞] is periodic with period p. Combining these two formulas gives
us a formula φ, such that f is the only satisfying assignment for the free variable g.

4.2.2 Paperfolding with DFAs and DFAOs

Recall that for a single automatic sequence w ∈ Γ, we can mechanically evaluate first order
predicates using DFAs or DFAOs instead of ω-automata. The difficulty with DFAs and
DFAOs is that there are multiple representations of each natural number. In particular,

88

we perform existential quantification by deleting the quantified variable and determinizing
the remaining automaton, but if all satisfying assignments for that variable have longer
representations than the rest of the variables, the resulting automaton may be incorrect.
For ordinary automatic sequences, we devised an operation (see Theorem 3.6) to repair
the automaton, allowing us to use DFAs.

For paperfolding sequences, the situation is complicated by the instructions, which we
receive in parallel with the rest of the input. Consider, as a concrete example, the predicate
“there exists x of the form 2k − 1 such that pf [x] = pf [y]”. Given x, y and f as input,
there is an automaton that decides whether x is of the form 2k−1 and pf [x] = pf [y]. Now
recall that pf [2k − 1] = f [k], so the predicate is equivalent to “there exists f [k] such that
f [k] = pf [y]”. We cannot say that there does not exist k such that f [k] = pf [y] without
knowing all of f , so a DFA that takes a finite prefix of f as input will be unable decide
certain inputs. Hence, we have been unable to extend Theorem 3.6 for formulas involving
paperfolding sequences.

Despite the theoretical difficulties described above, we can use DFAs to decide a number
of practical queries about paperfolding sequences, but we must state the queries much
more carefully. The key observation is that there is a linear universal upper bound for the
recurrence function of paperfolding words.

Theorem 4.31. There exists a function R : N→ N such that
• R(n) is in O(n), and
• for any paperfolding word pf , the corresponding recurrence function Rf : N→ N has

the property that Rf (n) ≤ R(n) for all n.

Proof. See Allouche and Bousquet-Mélou [3]. They show that R(n) = 44n is an upper
bound for the recurrence function. Note that we can also verify this statement with a full
implementation (based on ω-automata) of the algorithm implied by Theorem 4.24.

How does Theorem 4.31 help us? Consider the predicate “there exists a palindrome
of length n in pf”. A priori, the length-n palindrome could be anywhere in pf , forcing
us to check every pf [i..i+ n− 1], and hence requiring knowledge of the entire instruction
sequence. With the theorem, we observe that the palindrome must occur in the first
pf [1..Cn], so we only need the first dlog2(Cn)e instructions, or about log2C + O(1) past
the end of n. Suppose we have a DFA M for the language associated with the predicate
“the factor pf [i..i+ n− 1] is a palindrome”. We can quantify over i ≤ Cn by deleting the
corresponding input and determinizing, and the resulting DFA T will be accurately decide
whether there exists a palindrome of length n as long as we feed it a representation of n

89

with at least log2C +O(1) leading zeros. We can then fix T by a procedure similar to the
one in Theorem 3.6, by considering the output of T when we add log2C + O(1) leading
zeros to n and log2C +O(1) additional instructions to f .

In a personal communication, Shallit claims that all the example queries in the previous
section can be solved with DFAs in this way. It is an open problem to characterize which
queries we can mechanically decide with DFAs. It is crucial that the length of the quantified
variable is bounded by the lengths of the remaining variables plus a constant, but we are
unable to prove that this is sufficient.

90

Chapter 5

Abelian and Additive Powers

This section covers abelian powers and additive powers. These powers are like ordinary
powers in that they are sequences of consecutive, equivalent words, but with a weaker
notion of equivalence than equality. Abelian powers provide our first example of a query
that we provably cannot express as a logical formula in FO(N, <,+, Vk). Nevertheless, our
decidability results are frequently useful in abelian and additive power avoidance problems.

5.1 Definition and Notation

Definition 5.1. We say two words x, y ∈ Σ∗ are abelian equivalent if we can permute the
symbols in one to obtain the other. Equivalently, x is abelian equivalent to y if ψ(x) = ψ(y).

An abelian dth power is a finite word x ∈ Σ∗ of the form x = x1 · · ·xd where the xis
are pairwise abelian equivalent.
Definition 5.2. We say two words x, y ∈ N∗ are additively equivalent if ∑x = ∑

y and
|x| = |y|.

An additive dth power is a finite word x ∈ N∗ of the form x = x1 · · ·xd where the xis
are pairwise additively equivalent.

5.2 Inexpressibility

Abelian powers are not as susceptible to the predicate techniques as ordinary powers.
Intuitively, it is easy to test if two factors are identical, but difficult to check for abelian

91

equivalence. We will prove that the set of occurrences of abelian squares (or higher abelian
powers) in the paperfolding word is not automatic. This proves that there is no general
formula for the query “is w[i..j] an abelian square?” in our logical framework. For certain
automatic sequences, we show that the set of occurrences of abelian squares is not even
expressible in FO(N, <,+, Vk).

Recall the paperfolding word, (from Section 4.2)
p = p[1..∞] = 110110011100100 · · · ,

given by iterating the map f(w) = w1wR.
Definition 5.3. Given an infinite binary word w = w[1..∞] ∈ {0, 1}∗, define a function
∆w : N→ Z such that ∆w(i) = |w[1..i]|1 − |w[1..i]|0.
Theorem 5.4. Let i ∈ N be a natural number, and suppose z ∈ {0, 1}∗ is a binary
representation for i with at least one leading zero. Then

∆p(i) = |z|01 + |z|10 .

Proof. Suppose that i = 2k + j for some 0 ≤ j < 2k−1. That is, 2k is the place value of the
leading one. Given the binary representation for i, we may obtain the binary representation
for j by deleting the most significant one. Then the binary representation for 2k − 1− j is
the digit-wise complement of j, since the binary representation of j+ (2k− 1− j) = 2k− 1
is all ones. If we let z′ be a binary representation for 2k − 1− j with at least one leading
zero, then it is not hard to see that |z|01 + |z|10 = 1 + |z′|01 + |z′|10. If we can show that
∆p(i) = 1 + ∆p(2k − 1− j) then a simple induction completes the proof.

Let us show that ∆p(i) = |z|01 + |z|10 by induction on i. If i = 0 then clearly ∆p(0) =
0 = |z|01 + |z|10.

If i > 0 then we can write i = 2k + j for some k ≥ 0 and 0 ≤ j < 2k. Recall that the
paperfolding word can be obtained by iterating f(w) = w1wR, starting at the empty word.
In particular, f (n)(ε) is the length n prefix of p, w := p[1..2n− 1]. Since i = 2k + j < 2k+1,
it is contained in f(w) = w1wR. Then p[1..i] is of the form uv1vR, where w = uv. Notice
that |u| = 2k − 1− j and |v| = j. Hence,

∆p(i) = |p[1..i]|1 − |p[1..i]|0
=
∣∣∣uv1vR

∣∣∣
1
−
∣∣∣uv1vR

∣∣∣
0

= 1 + |u|1 − |u|0
= 1 +

∣∣∣p[1..2k − 1− j]
∣∣∣
1
−
∣∣∣p[1..2k − 1− j]

∣∣∣
0

= 1 + ∆p(2k − 1− j).

92

By the induction hypothesis, ∆p(2k − 1 − j) = |z′|01 + |z′|10, where z′ is a binary
representation for 2k − 1− j with at least one leading zero. Hence, it suffices to show that

|z|01 + |z|10 = 1 + |z′|01 + |z′|10 .

Assume without loss of generality that |z| = |z′| ≥ k + 1. Note that if we add i = 2k + j
and 2k − 1 − j, we obtain 2k+1 − 1. The least significant k + 1 bits of 2k+1 − 1 are all
ones, and the only way this can happen is if the least significant k + 1 bits of z and z′

are complementary. That is, z[n] = z′[n] for all the least significant k + 1 positions. In
other words, we obtain z′ by flipping the least significant k + 1 bits of z. This flips every
occurrence of 01 to 10 and vice versa, except for the most significant occurrence of 01,
which is removed. Hence

|z|01 = |z′|10 + 1
|z|10 = |z′|01

which completes the proof.

Theorem 5.5. The set

A = {(i, j, k) : p[i+ 1..k] is an abelian square and i+ k = 2j}

is not 2-automatic.

Proof. Suppose that A is 2-automatic. Then

L := {(a)2 : a ∈ A} ⊆ ({0, 1}3)∗

is a regular language. Define a morphism h : {a, b}∗ → ({0, 1}3)∗ such that

h(a) =
00000
00100
01000

h(b) =
00010
00110
01010

,

where the columns represent triples in {0, 1}3. We will call h(a) and h(b) blocks, and think
of a word h(x) as composed of blocks.

Let x ∈ {a, b}∗ and suppose that (i, j, k) = 〈h(x)〉2 ∈ N3. It is not hard to check that
i+ k = 2j, simply by performing the addition a block at a time (there are no carries from
one block to another).

93

Each block starts and ends in 0 in each coordinate, so any occurrences of 01 or 10 are
within blocks. Hence,

∆p(i) = 2 |x|b
∆p(j) = 2 |x|a + 2 |x|b
∆p(k) = 2 |x|a + 4 |x|b .

Then p[i + 1..k] is an abelian square if and only if ∆p(i),∆p(j),∆p(k) is an arithmetic
progression. That is, when

∆p(i) + ∆p(k) = 2∆p(j)
2 |x|a + 6 |x|b = 4 |x|a + 4 |x|b

|x|a = |x|b

Therefore,
h−1(L) = {x ∈ {a, b}∗ : |x|a = |x|b}

which is a textbook non-regular language. On the other hand, L is a regular language, and
therefore h−1(L) is regular.

Corollary 5.6. The set

A = {(i, j, k) ∈ N3 : p[i+ 1..k] is an abelian square and i+ k = 2j}

is not k-automatic for any k ≥ 2.

Proof. Suppose that A is k-automatic, for some k ≥ 2. By the previous theorem, k is not
multiplicatively dependent with 2, since that would make A a 2-automatic set.

If A is k-automatic then we can constructively show that

B := {i ∈ N : p[i+ 1..i+ 2] is an abelian square}

is also k-automatic by adding the condition k = i + 2, then quantifying out j and k. But
p[i + 1..i + 2] is an abelian square if and only if p[i + 1] = p[i + 2]. Then the sequence
q = q[1..∞] ∈ {0, 1}ω where

q[i] = (p[i+ 1]− p[i]) mod 2

is k-automatic. That is, q is the sequence of first differences of p, modulo 2. There is a
DFAO that computes the running sum modulo 2, so we can apply Theorem 3.14 to recover
p from q, and hence p is k-automatic.

94

Of course, p is 2-automatic and aperiodic, so by Theorem 2.15, k and 2 are multiplica-
tively dependent. But we already know k and 2 are not multiplicatively dependent, so by
contradiction, A is not k-automatic for any k ≥ 2.

As we noted earlier, there cannot be a general formula that describes abelian squares,
and for some automatic sequences we cannot even give a formula specific to that sequence.
However, for many k-automatic sequences that arise in practice, the set of occurrences of
abelian squares is k-automatic. .

5.3 Counting Symbols with Automata

In this section, we suppose that we are given an automaton that tells us how many times
each symbol occurs in a given prefix of our automatic sequence. For example, the Thue-
Morse sequence is clearly composed of 01 and 10 blocks. Hence, the number of 0s and
number of 1s in a given prefix are either equal, or differ by 1. The DFAO in Figure 5.1
shows that function ∆t(n) = |t[0..n− 1]|1 − |t[0..n− 1]|0 is 2-automatic.

0start 0

−1 1

0 0

1
1

1

1

0 0

Figure 5.1: Automaton for computing ∆t(n), given n in binary.

If w is a k-automatic binary word such that ∆w(n) is k-automatic, then it follows that

95

the set of occurrences of abelian squares in w,

{(a, b, c) ∈ N3 : ∆w(a) + ∆w(c) = 2∆w(b), a+ c = 2b},

is also k-automatic, and similarly for higher abelian powers.
The following theorem generalizes this idea to words with larger alphabets, and where

the limiting frequencies of symbols are not necessarily uniform.

Theorem 5.7. Let w ∈ Σω be a k-automatic word. Suppose there exists a vector ν ∈ R|Σ|
such that ψ(w[0..n− 1]) − nν is bounded. Then the sequence (ψ(w[0..n− 1]) − nν)∞n=0 is
k-automatic.

Proof. Note that
lim
n→∞

‖ψ(w[0..n− 1])− nν‖
n

= 0

because the numerator is bounded. It follows that limn→∞ ψ(w[0..n− 1]) /n = ν, so ν is
the limiting frequency vector. Since w is a k-automatic sequence, the limiting frequency of
each symbol (if it exists) is rational (see [6, Theorem 8.4.5, p. 268]). Then ν is a rational
vector, which we can express as ν′

d
for ν ′ ∈∈ N|Σ| an integer vector and some integer d > 0.

Observe that dψ(w[0..n− 1])−nν ′ is an integer vector, and it is bounded, so it belongs to
a finite set of vectors. This establishes that (ψ(w[0..n− 1])− nν)∞n=0 is a sequence over a
finite alphabet.

Now consider the first differences.

(ψ(w[0..n])− (n+ 1)ν)− (ψ(w[0..n− 1])− nν) = ψ(w[n])− ν

It follows that the first difference sequence is a coding of w, and therefore k-automatic.
Then (ψ(w[0..n− 1])−nν)∞n=0 is k-regular by Corollary 2.20. Since (ψ(w[0..n− 1])−nν)∞n=0
is k-regular and bounded, Theorem 2.18 implies that it is k-automatic.

This result is of limited use if we hope to prove a k-automatic sequence avoids abelian
d-th powers, since the following the result by Au, Robertson and Shallit shows that such
a word cannot avoid abelian powers.

Theorem 5.8. Let w ∈ Σω be a k-automatic word. Suppose there exists a vector ν ∈ Q|Σ|
such that ψ(w[0..n− 1])−nν is bounded. Then w contains abelian dth-powers for all d ≥ 0.

Proof. See [7, Theorem 2].

96

Synchronized Functions

What happens when ψ(w[0..n− 1]) − nν is not bounded? For example, consider the
binary word z = 01021408116 . . . where z[i] is the parity of the length of the canonical
representation of i (with the convention that 0 is represented by ε). It is not difficult to
show that ∆z(n) achieves −n

3 + O(1) and n
3 + O(1) infinitely many times. Clearly ∆z(n)

is not k-automatic.
Recall from Section 2.4.2 that a function f : N → N is k-synchronized if the graph,

{(n, f(n)) : n ∈ N}, is k-automatic. Since the graph is k-automatic, we can add a predicate
F to FO(N, <,+, Vk, {Pa}a∈Γ) such that F (n,m) is true if and only if m = f(n). This
allows us to express queries involving that function. In particular, if n 7→ ψ(w[0..n− 1]) is
a k-synchronized then we can use it to express queries about abelian and additive powers.

For instance, consider the graph of ∆z(n),

S = {(n,∆z(n)) : n ∈ N}.

With some attention to detail, one can show that

∆z(n) =



0, if n = 0;
−4k−2

3 , if n = 4k;
2·4k−2

3 , if n = 2 · 4k;
∆z(4k) + n− 4k, if 4k < n < 2 · 4k;
∆z(4k)− n+ 2 · 4k, if 2 · 4k < n < 4 · 4k.

We have seen how to find the largest power of 4 less than n in the first-order theory
FO(N, <,+, V2). We can also add/subtract/multiply/divide by constants, so we can com-
pute 2·4k−2

3 . Hence, there is a predicate for the set S in FO(N, <,+, V2). Therefore S is
2-automatic, and ∆z(n) is 2-synchronized. It follows that the map n 7→ ψ(z[0..n− 1]) is
2-synchronized because

|z[0..n− 1]|0 = 1
2 (n+ ∆z(n))

|z[0..n− 1]|1 = 1
2 (n−∆z(n)) .

Then ψ(z[i..j − 1]) = ψ(z[j..k − 1]) if and only if

∃xi, xj, xk, yi, yj, yk P (i, xi, yi)∧P (i, xj, yj)∧P (k, xk, yk)∧ (2xj = xi +xk)∧ (2yj = yi + yk)

Therefore the set of occurrences of abelian squares in z is 2-automatic, and similarly for
higher abelian powers.

97

5.3.1 Linear Algebra and Abelian Properties

Recall that for a pure morphic word w = ϕω(c) ∈ Γω, we have a morphic numeration
system where the representation of n is connected to the morphic decomposition,

w[0..n− 1] = ϕ(ϕ(· · ·ϕ(ϕ(ck)ck−1) · · · c2)c1)c0

for short words c0, . . . , ck ∈ ∆ϕ ⊆ Γ∗.
Now observe that ψ(xy) = ψ(x) + ψ(y) because ψ is a homomorphism, and ψ(ϕ(x)) =

Mψ(x) for some matrix M . We see that the columns of M must be ψ(ϕ(c)) for c ∈ Γ, so
M ∈ Nn×n (where n = |Γ|) is the incidence matrix of ϕ. Using these two properties, we
see that

ψ(w[0..n− 1]) = M (M (· · ·M (Mψ(ck) + ψ(ck−1)) + ψ(c2)) + ψ(c1)) + ψ(c0)

=
k∑
i=0

M iψ(ci)

Repeated multiplication by M leads us to consider an eigendecomposition of M . Specifi-
cally, let M = PΛP−1 where Λ ∈ Cn×n is the Jordan normal form of M , and P ∈ Cn×n is
invertible. Then let τ : Γ∗ → Cn be the map x 7→ P−1ψ(x), and note that

τ(w[0..n− 1]) = P−1ψ(w[0..n− 1])

= P−1
k∑
i=0

(PΛP−1)iψ(ci)

=
k∑
i=0

ΛiP−1ψ(ci)

=
k∑
i=0

Λiτ(ci).

Then the structure of Λ tells us about the Parikh vectors corresponding to factors of w,
which helps us describe the set of abelian powers. In some cases, we can use it to show
that n 7→ τ(w[0..n − 1]) is semi-synchronized, and note that τ(x) = τ(y) if and only if
ψ(x) = ψ(y) since τ is invertible. In other cases, we give a direct method (i.e., without
building a semi-synchronized automaton) for proving morphic words avoid abelian squares.

98

5.3.2 First Example

For example, let Γ = {0, 1, 2, 3} and consider the word q ∈ Γω defined as the fixed point
of ϕ : Γ∗ → Γ∗ where

ϕ(0) = 01
ϕ(1) = 12
ϕ(2) = 23
ϕ(3) = 30.

The incidence matrix of ϕ is

M =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 .
However, the incidence matrix of ϕ4 is M4, and it turns out that M4 has integer eigenvalues
16, −4 (with multiplicity 2) and 0. Since q is a fixed point of ϕ4, we will work with ϕ4

instead of ϕ. Decompose M4 as PΛP−1 where P,Λ ∈ Q4×4 are as follows

P = 1
4


1 1 0 1
1 0 1 −1
1 1 0 1
1 0 1 −1

 Λ =


16 0 0 0
0 −4 0 0
0 0 −4 0
0 0 0 0


Define τ : Γ∗ → N4 such that τ(x) = P−1ψ(x). We claim that n 7→ τ(q[0..n− 1]) is semi-
synchronized, over base 16 and base −4. We will prove this, but first we need a technical
lemma about conversion between representations in base r.

Lemma 5.9. Let r ≤ 2 be an integer. and let S ⊆ Z be a finite set of integers. We define
〈·〉−r : (Σr ∪ S)∗ → N where

〈a[0]a[1] · · · a[n− 1]〉−r :=
n−1∑
i=0

a[i](−r)i.

Then the language
L = {(u, v) ∈ (S × Σr)∗ : 〈u〉−r = 〈v〉−r}

is regular.

99

Proof. We construct a DFA for the language L where the set of states, Q, is a finite subset
of integers and a dead state q∗. For now, assume that Q contains all integers; we will
bound Q to a finite set. Suppose that (u, v) ∈ (S × Σr)∗ is a word in L. Consider the
equation 〈u〉−r = 〈v〉−r modulo rk for all 0 ≤ k ≤ n.

k−1∑
i=0

u[i](−r)i ≡
k−1∑
i=0

v[i](−r)i (mod rk) (5.1)

We design our automaton to assume (5.1) holds for k, and using information in the current
state and the values of u[k] and v[k], decide whether (5.1) holds for k + 1. If not, we
transition to the dead state. Otherwise, we transition to a state such that we preserve the
invariant in (5.2).

δ(q0, (u[0..k − 1], v[0..k − 1]))(−r)k =
k−1∑
i=0

(u[i]− v[i])(−r)i (5.2)

Observe that when k = 0, (5.2) implies that q0 = 0. If we let δ(q0, (u[0..k− 1], v[0..k− 1]))
be state q ∈ Q, then

δ(q, (u[k], v[k]))(−r)k+1 = δ(q0, (u[0..k], v[0..k]))(−r)k+1

=
k∑
i=0

(u[i]− v[i])(−r)i

=
k−1∑
i=0

(u[i]− v[i])(−r)i + (u[k]− v[k])(−r)k

= q(−r)k + (u[k]− v[k])(−r)k,

so δ(q, (u[k]− v[k]))(−r) = q + u[k]− v[k]. Hence, we define our automaton so that there
is a transition from q to q′ on input (a, b) if and only if −rq′ = q + a − b, and this will
preserve the invariant (5.2). Let all other inputs transition to the dead state, q∗. It is clear
from (5.2) that 〈u〉−r = 〈v〉−r if and only if we end in state 0, so let 0 be the sole final
state.

All that is left is to show that we can only reach a finite set of states starting from 0.
Let B = maxs∈S |s| be an upper bound for values in S. We will show by induction that
any reachable state in Q\{q∗} is at most B

r−1 + 1. Note that bounds holds for q0 = 0, and

100

any other reachable state q′ is of the form δ(q, (a, b)) for some reachable state q. Then

q′(−r) = q + a− b
|q′|r ≤ |q|+ |a|+ |b|

≤ B

r − 1 + 1 +B + r − 1

= r
(

B

r − 1 + 1
)

|q′| ≤ B

r − 1 + 1.

This completes the induction, and the proof.

Theorem 5.10. Let ϕ, q, P , Λ and τ be defined as above. Then n 7→ τ(q[0..n − 1]) is
semi-synchronized where the input and first output coordinate are in base 16, the next two
coordinates are in base −4, and any numeration system for the last coordinate.

Proof. The natural numeration system for a fixed point of ϕ4 is base-16, since ϕ4 is 16-
uniform. Theorem 2.11 says that L ⊆ ∆ϕ4 , the language of all morphic decompositions of q,
is regular. Consider the coding h : ∆∗ϕ4 → (Σ16×∆ϕ4)∗ such that h(a) = (a, |a|). Then h(L)
is also regular. It follows that the function from a base-16 representation d = d[0..k− 1] ∈
Σ16 (for an integer n) to the unique morphic decomposition c = c[0..k − 1] ∈ ∆∗ϕ4 for the
prefix q[0..n− 1], is a synchronized function, since h(L) accepts (d, c) (and in general, the
graph of the function).

Therefore, we will assume that we are given the morphic decomposition c = c[0..k − 1]
for q[0..n − 1], since we can combine synchronized functions with predicates. Now recall
the equation

τ(q[0..n− 1]) =
k−1∑
i=0

Λiτ(c[i])

for a morphic decomposition. For each coordinate j = 1, 2, 3, 4, we have

τ(q[0..n− 1])(j) =
k−1∑
i=0

λijτ(c[i])(j).

where λ1 = 16, λ2 = λ3 = −4 and λ4 = 0 are the eigenvalues (along the diagonal of Λ). It
suffices to show that some automaton computes τ(q[0..n−1])(j) from c[0], . . . , c[k−1] ∈ ∆ϕ4 .

101

In the first coordinate, it turns out 1 that τ(c[i])(1) is the sum of the entries in ψ(c[i]).
The sum of the entries in ψ(c[i]) is just |c[i]|, so

τ(q[0..n− 1]) =
n−1∑
i=0

16i |c[i]| = n.

It is therefore trivial to compute the first coordinate given a base-16 representation for n.
In the fourth coordinate, all terms vanish except for τ(c[0])(4) because λ4 = 0. Therefore

we can compute τ(q[0..n− 1])(4) in any numeration system, given n in base 16.
Finally, observe that the second and third coordinates are of the form

n−1∑
i=0

(−4)iτ(c[i])(j) = 〈c〉−4

for j = 2, 3. Then τ(c[i])(j) is in the finite set

Sj = {τ(c)(j) : c ∈ ∆ϕ4}

This is precisely the situation where Lemma 5.9 applies, with r = 4 and S = Sj. This
gives us (with some minor remapping of the input) an automaton that converts from c to
the canonical base-(−4) representation of 〈c〉−4. Hence, the second and third coordinates
are synchronized.

Using the fact that n 7→ τ(q[0..n − 1]) is semi-synchronized, we can given a fairly
mechanical proof of the following theorem.

Theorem 5.11. There are no abelian cubes in q.

Proof. Observe that there is an abelian cube in q if we can find i, j, k, ` such that

ψ(q[0..j − 1])−ψ(q[0..i− 1]) = ψ(q[0..k − 1])−ψ(q[0..j − 1]) = ψ(q[0..`− 1])−ψ(q[0..k − 1]) .

Of course, ψ(x) = ψ(y) if and only if τ(x) = τ(y). Since n 7→ τ(q[0..n − 1]) is semi-
synchronized, and addition is automatic in base-16 and base-(−4), we can construct an
automaton that decides if

τ(q[0..j−1])−τ(q[0..i−1]) = τ(q[0..k−1])−τ(q[0..j−1]) = τ(q[0..`−1])−τ(q[0..k−1]).

The automaton rejects all inputs, so we conclude that there are no abelian cubes in q.
1This will always happen when ϕ is k-uniform, and is related to the fact that [1, . . . , 1] is a left eigenvector

for the incidence matrix with eigenvalue k.

102

5.3.3 Second Example

For our second example is taken from [15]. Let Σ = {0, 1, 3, 4} ⊆ N and define a morphism
ϕ : Σ∗ → Σ∗ where

ϕ(0) = 03
ϕ(1) = 43
ϕ(3) = 1
ϕ(4) = 01.

Let w = ϕω(0) ∈ Σω be the fixed point of ϕ.
Cassaigne et al. prove the following theorem about w in [15].

Theorem 5.12. There are no additive cubes in w.

We give a rough sketch of their approach, and discuss how similar ideas might be applied
to abelian/additive problems in other morphic words.

Recall that there is a morphic numeration system for ϕ over Σ2. Since we will be
working directly with the morphic decompositions, we prefer the numeration system N =
(Γ, L, 〈·〉N) where Γ = ∆ϕ = {ε, 0, 4} (recall that ∆ϕ is a set of words), L is the language of
morphic decompositions (most significant “digit” first), and 〈·〉N maps a morphic decom-
position to the length of the prefix it decomposes. Note that L is a regular language by
Theorem 2.11, and L is accepted by the DFA in Figure 5.2. Note that N is essentially the
morphic numeration system; if we apply the coding ε 7→ 0, 0 7→ 1, 4 7→ 1 to L, we obtain
the set of representations for the morphic numeration system.

103

0start 3

4 1

ε

0

ε

ε

4ε

0

Figure 5.2: DFA for L.

There is an additive cube in w if and only if there exist i0, i1, i2, i3 ∈ N such that
• i0 < i1 < i2 < i3,
• |w[i0..i1 − 1]| = |w[i1..i2 − 1]| = |w[i2..i3 − 1]|, and
• ∑w[i0..i1 − 1] = ∑

w[i1..i2 − 1] = ∑
w[i2..i3 − 1].

Note that the set
R := {(i0, i1, i2, i3) ∈ N4 : i0 < i1 < i2 < i3}

is N -automatic, which covers the first condition. The length and sum conditions we must
check separately. To do this we consider Parikh vectors, and the first step is to relate
ψ(w[0..n− 1]) to (n)N , the N representation for n.

Let M ∈ N4×4 be the incidence matrix of ϕ

M =


1 0 0 1
0 0 1 1
1 1 0 0
0 1 0 0

 .

We decompose M as PΛP−1 again, for P,Λ ∈ C4×4. We let τ : Σ∗ → C4 be such that
τ(x) = P−1ψ(x), as before. Unfortunately, the eigenvalues of M are all rational, or even

104

real.

λ1
.= 1.69028

λ2
.= −1.50507

λ3
.= 0.40739 + 0.47657i

λ4
.= 0.40739− 0.47657i.

As far as we know, there is no choice of numeration systems such that n 7→ τ(w[0..n−1]) is
a semi-synchronized function, so we cannot proceed as we did in the first example. Instead,
we have the following theorem.

Theorem 5.13. Let c = c[0..m− 1] ∈ L be an MSD-first N representation for an integer
n ≥ 0. Then there is a sequence of vectors v0, v1, . . . , vm ∈ C4 such that v0 = (0, 0, 0, 0),
vm = τ(w[0..n− 1]) and vi+1 = Λvi + τ(c[i]).

Proof. Each prefix of c corresponds to a representation, since it is MSD-first.

n0 = 0
n1 = 〈c[0]〉N
n2 = 〈c[0..1]〉N
...

nm = 〈c[0..m− 1]〉N
and n = nm is the number represented by c. Since N is based on morphic decompositions,
we have the following equation for length ni and ni+1 prefixes.

w[0..ni+1 − 1] = ϕ(w[0..ni − 1])c[i].

Now take vi = τ(w[0..ni − 1]) and note that

vi+1 = τ(w[0..ni+1 − 1])
= P−1ψ(w[0..ni+1 − 1])
= P−1ψ(ϕ(w[0..ni − 1])c[i])
= P−1Mψ(w[0..ni − 1]) + P−1ψ(c[i])
= ΛP−1ψ(w[0..ni − 1]) + τ(c[i])
= Λvi + τ(c[i]),

as desired.

105

Let v(j)
i denote the jth coordinate of vi for j = 1, 2, 3, 4. The condition vi+1 = Λvi +

τ(c[i]) is equivalent to
v

(j)
i+1 = λjv

(j)
i + τ(c[i])(j)

for all j = 1, 2, 3, 4. Since c[i] comes from the finite set Γ, τ(c[i])(j) is one of finitely many
values, and is bounded above by some Bj. Let us abstract away from the problem at hand,
and consider sequences with similar properties.

Definition 5.14. Let (xi)mi=0 be a sequence of complex numbers such that x0 = 0. We
say (xi)mi=0 is a pseudo-geometric sequence if there exists λ ∈ C and B ∈ R such that
|xi+1 − λxi| ≤ B for all 0 ≤ i < m.

It is not surprising that pseudo-geometric sequences behave like geometric sequences in
the following sense. If |λ| < 1 then exponential decay prevents the sequence from growing
large. On the other hand, if |λ| > 1 then exponential growth will cause the sequence to
explode unless it is kept below some threshold. We make these ideas precise in the following
two propositions.

Proposition 5.15. Let (xi)mi=0 be a pseudo-geometric sequence, witnessed by λ ∈ C and
B ∈ R, and suppose |λ| < 1. Then |xi| < B

1−|λ| for all i ≥ 0.

Proof. We show that |xi| < B
1−|λ| by induction. Clearly the induction hypothesis holds for

i = 0. For i > 0, we have

|xi+1| ≤ |λxi|+ |xi+1 − λxi|
≤ |λ||xi|+B

<
B|λ|

1− |λ| +B

= B

1− |λ| .

Proposition 5.16. Let (xi)mi=0 be a pseudo-geometric sequence, witnessed by λ ∈ C and
B ∈ R, and suppose |λ| > 1. If |xi| > C for some real C ≥ B

|λ|−1 then |xj| > C for all
j ≥ i.

106

Proof. We use induction to show that |xj| > C for j ≥ i. The base case j = i holds by
assumption. Then for j > i we have

|xi+1| ≥ |λxi| − |xi+1 − λxi|
≥ |λ||xi| −B
≥ |λ||xi| − C(|λ| − 1)
> |λ|C − C(|λ| − 1)
= C.

Using these two propositions, we give an upgraded version of Theorem 5.13.

Theorem 5.17. Let w[a1 + 1..b1] and w[a2 + 1..b2] be a pair of factors in w such that

|w[a1 + 1..b1]| = |w[a2 + 1..b2]|∑
w[a1 + 1..b1] =

∑
w[a2 + 1..b2].

Suppose c ∈ (Γ4)∗ be a N representation for (a1, a2, b1, b2), and |c| = m. Then there
exists a function f : Γ4 → C4 and a sequence of vectors (vj)mj=0 such that v0 = 0, vm =
τ(w[a2..b2 − 1])− τ(w[a1..b1 − 1]), and vj+1 = Λvj + f(c[j]) is bounded. Furthermore, the
vector lengths, ‖vj‖, are bounded by some universal (i.e., not dependent on a1, a2, b1, b2)
constant B for all j.

Proof Sketch. We apply Theorem 5.13 four times, for each of the factors w[0..a1 − 1],
w[0..a2−1], w[0..b1−1] and w[0..b2−1]. The theorem gives us four sequences of vectors, and
immediately consolidate them into a single sequence (vj)mj=0 by taking a linear combination
such that

vm = τ(w[0..a1 − 1])− τ(w[0..a2 − 1])− τ(w[0..b1 − 1]) + τ(w[0..b2 − 1]).

Then vm = τ(w[a2..b2 − 1]) − τ(w[a1..b1 − 1]), clearly v0 = 0 and vj+1 = Λvj + f(c[j]),
where f(d1, d2, d3, d4) = τ(d1)− τ(d2)− τ(d3) + τ(d4).

Now observe that (v(`)
m)mj=0 is a pseudo-geometric sequence for each coordinate ` =

1, 2, 3, 4, since v(`)
j+1 − λ`v

(`)
j is bounded. When ` = 3, 4, Proposition 5.15 applies because

|λ`| < 1, so the third and fourth coordinates of vj are bounded for all j.

107

The fact that two coordinates of vj are bounded is like having two linear equations that
vj must satisfy. The constraints

|w[a1 + 1..b1]| = |w[a2 + 1..b2]|∑
w[a1 + 1..b1] =

∑
w[a2 + 1..b2]

give us two additional linear equations that vm must satisfy. These 4 linear constraints on
the 4-dimensional vector vm are enough to show that ‖vm‖ is bounded by some constant
C0.

Now consider the first two coordinates of vj. Proposition 5.16 applies because |λ`| < 1
for ` = 1, 2. If we choose the constant C > C0 in Proposition 5.16, then since |v(`)

m | ≤ C,
we have that |v(`)

j | ≤ C for all j. For all j, we have bounded |v(`)
j | for each coordinate

` = 1, 2, 3, 4, so ‖vj‖ is bounded. This completes the proof.

We can now sketch a proof of our main result: w avoids additive cubes.

Proof Sketch. Suppose that w contains an additive cube, with blocks w[i0..i1−1], w[i1..i2−
1] and w[i2..i3−1] for i0, i1, i2, i3 ∈ N. Apply Theorem 5.17 to w[i0..i1−1] and w[i1..i2−1],
and then again to w[i1..i2 − 1] and w[i2..i3 − 1]. If c ∈ (Γ4)∗ is the N representation for
(i0, i1, i2, i3) and |c| = m, then this gives us two sequences of vectors, (uj)mj=0 and (vj)mj=0,
and a pair of functions f1, f2 : Γ4 → C4 such that
• u0 = v0 = 0,
• um = τ(w[i1..i2 − 1])− τ(w[i0..i1 − 1]) and vm = τ(w[i2..i3 − 1])− τ(w[i1..i2 − 1]),
• uj+1 = Λuj + f1(c[j]) and vj+1 = Λvjf2(c[j]), and
• uj and vj are bounded length vectors for all j.

Note that uj is of the form P−1xj, for xj ∈ Z4 an integer vector. Since uj has bounded
length, xj also has bounded length, because P is invertible. There are only finitely many
bounded length integer vectors, so uj belongs to some finite set of possible vectors X ⊆ C4.
Similarly, vj belongs to X.

Hence, we can construct a finite automaton T that reads c ∈ (Γ4)∗ representing i0 <
i1 < i2 < i3, and keeps track of uj and vj, as long as they are within X. At the end of the
input, um and vm are encoded in the state of the automaton, so we can deduce whether

|w[i0..i1 − 1]| = |w[i1..i2 − 1]| = |w[i2..i3 − 1]|∑
w[i0..i1 − 1] =

∑
w[i1..i2 − 1] =

∑
w[i2..i3 − 1]

108

from the state, and hence whether (i0, i1, i2, i3) delimits an additive cube. When we do
this for w, we find that the automaton does not accept any words, so there are no additive
cubes in w.

Note that the proof in [15] proves better bounds than Proposition 5.15 and Proposi-
tion 5.16 in an effort to minimize the number of states in the finite automaton T . Even
so, there are hundreds of thousands of states, so a computer is necessary to construct the
automaton and test if it is empty.

5.3.4 Decidability for Abelian Powers

Consider the problem of finding abelian d-powers in a pure morphic word w = ϕω(a). In
many cases, the approach from the previous section will work.
• Compute the incidence matrix M of ϕ, and its eigendecomposition, PΛP−1.

• Show that a representation c ∈ (Γd+1)∗ for d blocks leads to a sequence of vectors
(vj)mj=0 such that

– v0 = 0,
– vj+1 = Λvj + f(c) for some f from Γd+1 to vectors, and
– vm = 0 if and only if c represents an abelian d-power.

• Argue that vj has bounded length, because
– if |λ`| < 1 then coordinate ` is bounded by an analogue of Proposition 5.15,
– if |λ`| > 1 then coordinate ` is bounded by an analogue of Proposition 5.16.

• Construct a finite automaton that keeps track of vj in the state as it reads the input
c ∈ (Γd+1)∗, and uses it to decide whether c represents an abelian d-power.

We can follow these steps to construct an automaton that accepts the set of occurrences
of all abelian d-powers in a given morphic word w = ϕω(a), with one important caveat.
The method fails when some eigenvalue λ occurs with multiplicity or has unit modulus
(i.e., |λ| = 1). Removing these caveats to obtain a decision procedure for abelian power
avoidance is the subject of Problem 6.3. Note that Theorem 5.5 does not rule out the
possibility of a decision procedure; it simply shows that we cannot always construct an
automaton for the occurrences of abelian powers.

Compare this decision procedure to Currie and Rampersad’s procedure in [22].

Theorem 5.18. Let w = ϕω(a) ∈ Γω be a morphic word. It is decidable whether w is
abelian k-power free as long as

109

• |ϕ(α)| > 1 for all α ∈ Γ,
• the incidence matrix M of ϕ is nonsingular,
• ‖M−1‖ < 1 where ‖A‖ = supx 6=0

‖Ax‖
‖x‖ .

Their result is very similar to ours. In lieu of conditions on the eigenvalues of M ,
Currie and Rampersad require M to be nonsingular2, and ‖M−1‖ < 1. However, these
conditions can be related to the eigenvalues as follows. A matrix is singular if and only if
0 is an eigenvalue, so the first condition says that 0 is not an eigenvalue of M . If x is an
eigenvector of M and λ 6= 0 is the corresponding eigenvalue then

∥∥∥M−1
∥∥∥ ≥ ‖M−1x‖

‖x‖
= |λ|

−1 ‖x‖
‖x‖

= |λ|−1.

The second condition says that ‖M−1‖ < 1, so |λ| > 1 for all eigenvalues λ of M . Hence,
their condition requires all eigenvalues to be outside the unit circle.

2In a personal communication with Currie, he suggested that this condition is not essential.

110

Chapter 6

Open Problems

We list a handful of open problems on decidability in automatic sequences.

6.1 Complexity Problems

First, a general question about the complexity of our algorithms.

Problem 6.1. What is the complexity of deciding sentences in FO(N, <, {Pa}a∈Γ) about
an automatic sequence w ∈ Γω?

Our bounds do not accurately reflect the practical complexity of our decidability al-
gorithms. In some places, we can improve our crude upper bounds. For instance, the
predicate “i + j + k = n” translates into “(∃m (i + j = m) ∧ (m + k = n))”, but the
corresponding machine is much smaller than the bounds predicate. In general, the state
complexity of a machine for “i1 + i2 + · · · + im = n” grows logarithmically with m, the
number of summands. Can we improve our bounds for other common subformulas? Test-
ing two subwords for equality is probably the most common operation, so that seems like
a good place to start.

Problem 6.2. Give nontrivial bounds for the state complexity of an automaton deciding
“w[i..i+ n− 1] = w[j..j + n− 1]”, where w ∈ Γω a k-automatic sequence.

111

6.2 Abelian Power Decidability

In Chapter 5, we outline an algorithm for deciding abelian k-power freeness of a given pure
morphic word w = ϕω(a) ∈ Γω. Unfortunately, the algorithm only works if the eigenvalues
of the incidence matrix of ϕ occur without multiplicity, and do not lie on the unit circle.

Problem 6.3. Let w = ϕω(a) ∈ Γω be a pure morphic word. Suppose M is the incidence
matrix of w. Can we extend our algorithm to decide whether w is abelian k-power free
when
• M has repeated eigenvalues, or
• M has eigenvalues on the unit circle?

If not, can we extend the algorithm in the cases where
• all repeated eigenvalues are outside the unit circle, or
• if the eigenvalues on the unit circle are roots of unity?

6.3 Automatic Rational Sets

In Section 4.1 we showed how to compute the supremum, infimum and largest/smallest
special points of the set

S =
{
a

b
: (a, b) ∈ X

}
where X ⊆ N2 is a k-automatic set. Is this still possible X is an N -automatic set for N
some other numeration system? We conjecture that it is possible when N is the Fibonacci
representation.

Recall that for k-automatic sets, we start with an automaton T that accepts X in
base-k. Suppose we have an infinite walk e0e1e2 · · · in T , where e0e1 · · · denote directed
edges of T . Then we assign each ei a weight, w(ei), proportional to the place value of
the corresponding digit, and normalized so that the leading digit has weight 1. Since the
places values in base-k are powers of k, we have w(ei) = kw(ei+1). We assign weights xe
to edges e of T by summing weights in our infinite path:

xe =
∑
i:ei=e

w(ei).

Since w(ei) = kw(ei+1) holds for all i, we see that the sum of the xes going into some
vertex is k times the sum of the xes leaving the same vertex (ignoring the source at the

112

initial vertex). If we set up a linear program based on these conditions, it turns out that
the optimal solutions correspond to infinite walks, and hence give us the supremum of S.

This works for Fibonacci representation until we get to the point where w(ei) =
kw(ei+1). Instead, since the place values are Fibonacci numbers, we have w(ei) = w(ei+1)+
w(ei+2). This is not a condition that can be enforced at each vertex in the digraph of
T . Instead, consider the line digraph L of T where, loosely speaking, each vertex of L
corresponds to an edge in T , and each edge in L corresponds to a walk of length 2 in
T . We can translate the infinite walk e0e1e2 · · · in the digraph of T to an infinite walk
(e0, e1)(e1, e2)(e2, e3) · · · on L. The edge (ei, ei+1) in L has a pair of weights, xi = w(ei)
and yi = w(ei+1) associated with it. The next edge, (ei, ei+1) also has a pair of weights,
xi+1 = w(ei+1) and yi+1 = w(ei+2). Hence, at any vertex in L we have yi = xi+1 (for
consistency) and xi = yi + yi+1 (the Fibonacci recurrence). We conjecture that a linear
program based on L with a pair of weights (xe, ye) on each edge with the constraints∑

e∈in(v)
ye =

∑
e∈out(v)

xe

∑
e∈in(v)

xe =
∑

e∈in(v)
ye +

∑
e∈out(v)

ye

will have optimal value supS.

Problem 6.4. Let N be the Fibonacci numeration system, and let X ⊆ N2 be an N -
automatic set. Is there a linear fractional program that computes

sup
{
a

b
: (a, b) ∈ X

}
based on the line digraph construction suggested above?

And more generally,

Problem 6.5. Let N be a morphic numeration system. Is there an algorithm that com-
putes

sup
{
a

b
: (a, b) ∈ X

}
for a given N -automatic set X?

113

6.4 Shift Orbit Closure

Recall that the shift orbit closure of a word w ∈ Γω is a set S ⊆ Γω such that for all z ∈ S
every prefix of z is a subword of w. We have seen a predicate for the nth symbol in the
lexicographically least element of the shift orbit closure of a k-automatic sequence, and
therefore the lexicographically least element is k-automatic and computable.

Suppose we are given a word w ∈ Γω that is not recurrent. Rampersad [42] gives a
non-constructive proof that S, the shift orbit closure of w, contains a recurrent word. This
raises questions about the set of recurrent words in S.

Problem 6.6. Let w ∈ Γω be a k-automatic word, and let S ⊆ Γω be the orbit closure
of w. Can we construct a k-automatic recurrent word in S? Is the lexicographically least
recurrent word in S necessarily k-automatic?

One possible approach to this problem is based on the observation that, like the family
of paperfolding words, the shift orbit closure of w is (usually) an uncountably infinite set
of infinite words. Hence, like the paperfolding words, we may be able to extend our theory
to quantify over elements of the shift orbit closure. There are three points that make
the paperfolding extension possible. First, there is a sequence of instructions for each
paperfolding sequence. Second, the first n instructions describe approximately 2n symbols
in the paperfolding word. Third, there is a DFAO that computes the ith symbol in a
paperfolding word given the bits of i in parallel with an equal number of instructions.

Note that for the shift orbit closure, the first kn symbols are some subword of w. We can
specify any subword of length kn by the position of its first occurrence. The first occurrence
of any subword is less than Aw(kn), where Aw(m) is the appearance function of w. Since
w is k-automatic, the appearance function is k-synchronized and hence Aw(m) = O(m) by
Theorem 2.23. Hence, we can describe the first kn symbols of an element of S with a string
of digits (representing a position) of length n+O(1). Furthermore, there is an automaton
which, given an index i and position j (with 0 ≤ i < kn and 0 ≤ j < Aw(kn)) in base-k,
computes w[i+ j], the ith element of the subword specified by position j.

In summary, given an arbitrary element z ∈ S, we can describe z[0..kn − 1] by the
position where it first occurs in w, which turns out to be O(kn). This description takes
n + O(1) digits, and there is an automaton for indexing into z, given a position 0 ≤ i <
kn and the description. Unfortunately, the position of z[0..kn − 1] and the position of
z[0..kn+1 − 1] might be completely different, so it is not clear how to generate an infinite
instruction sequence for z with the necessary properties, but it is certainly plausible that
some related encoding will work.

114

Problem 6.7. Suppose w ∈ Γω is a k-automatic word with shift orbit closure S ⊆ Γω. Is
there an alphabet Σ and ω-language L ⊆ Σω such that
• there is a bijection f : L→ S,
• L is regular, and
• there is an ω-automaton that takes a word x ∈ L and a position i in base-k as input

and computes f(x)[i]?
Can we extend our first-order theory to the shift orbit closure, similar to our extension for
paperfolding words?

Note that if the answer is “yes”, then we can immediately answer many of our earlier
questions about recurrent words in S, since they can be expressed with predicates.

115

References

[1] J.-P. Allouche and M. Bousquet-Mélou. Facteurs des suites de Rudin-Shapiro
généralisées. Bull. Belg. Math. Soc., 1:145–164, 1994.

[2] Jean-Paul Allouche. The number of factors in a paperfolding sequence. Bulletin of
the Australian Mathematical Society, 46:23–32, 1992.

[3] Jean-Paul Allouche and Mireille Bousquet-Mélou. Canonical positions for the factors
in paperfolding sequences. Theoretical Computer Science, 129(2):263–278, 1994.

[4] Jean-Paul Allouche, Narad Rampersad, and Jeffrey Shallit. Periodicity, repetitions,
and orbits of an automatic sequence. Theor. Comput. Sci., 410(30–32):2795–2803,
2009.

[5] Jean-Paul Allouche and Jeffrey Shallit. The ring of k-regular sequences. Theor.
Comput. Sci., 98(2):163–197, 1992.

[6] Jean-Paul Allouche and Jeffrey O. Shallit. Automatic Sequences : Theory, Applica-
tions, Generalizations. Cambridge University Press, 2003.

[7] Yu Hin Au, Aaron Robertson, and Jeffrey Shallit. Van der Waerden’s theorem and
avoidability in words. Integers, 11:61–76, 2011.

[8] Vince Bárány. A hierarchy of automatic ω-words having a decidable MSO theory.
RAIRO — Theor. Inf. Appl., 42(3):417–450, 2008.

[9] Marie-Pierre Béal and Olivier Carton, editors. Developments in Language Theory
— 17th International Conference, DLT 2013, Marne-la-Vallée, France, June 18-21,
2013. Proceedings, volume 7907 of Lecture Notes in Computer Science. Springer, 2013.

[10] V. Bruyère. Entiers et automates finis, mémoire de fin d’études. Master’s thesis,
University of Mons, Belgium, 1985.

116

[11] Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Villemaire. Logic
and p-recognizable sets of integers. Bull. Belg. Math. Soc, 1:191–238, 1994.

[12] Julius R. Büchi. On a decision method in restricted second-order arithmetic. In
International Congress on Logic, Methodology, and Philosophy of Science, pages 1–
11. Stanford University Press, 1962.

[13] Arturo Carpi and Cristiano Maggi. On synchronized sequences and their separators.
RAIRO — Theor. Inf. Appl., 35(6):513–524, 2001.

[14] Olivier Carton and Wolfgang Thomas. The monadic theory of morphic infinite words
and generalizations. Information and Computation, 176(1):51–65, 2002.

[15] Julien Cassaigne, James D. Currie, Luke Schaeffer, and Jeffrey Shallit. Avoiding three
consecutive blocks of the same size and same sum. CoRR, abs/1106.5204, 2011. To
appear, J. ACM .

[16] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval
Research Logistics Quarterly, 9(3–4):181–186, 1962.

[17] Alan Cobham. On the base-dependence of sets of numbers recognizable by finite
automata. Mathematical Systems Theory, 3(2):186–192, 1969.

[18] Alan Cobham. Uniform tag sequences. Mathematical Systems Theory, 6(1-2):164–192,
1972.

[19] John H. Conway. On Numbers and Games. AK Peters, Ltd., 2nd edition, Dec 2000.

[20] Ethan M. Coven and G. A. Hedlund. Sequences with minimal block growth. Mathe-
matical Systems Theory, 7(2):138–153, 1973.

[21] James D. Currie and Narad Rampersad. A proof of Dejean’s conjecture. Math.
Comput., 80(274):1063–1070, 2011.

[22] James D. Currie and Narad Rampersad. Fixed points avoiding abelian k-powers. J.
Comb. Theory, Ser. A, 119(5):942–948, 2012.

[23] Adrian Horia Dediu and Carlos Mart́ın-Vide, editors. Language and Automata Theory
and Applications — 6th International Conference, LATA 2012, A Coruña, Spain,
March 5–9, 2012. Proceedings, volume 7183 of Lecture Notes in Computer Science.
Springer, 2012.

117

[24] Adrian Horia Dediu, Carlos Mart́ın-Vide, and Bianca Truthe, editors. Language and
Automata Theory and Applications — 7th International Conference, LATA 2013, Bil-
bao, Spain, April 2-5, 2013. Proceedings, volume 7810 of Lecture Notes in Computer
Science. Springer, 2013.

[25] F. M. Dekking. Iteration of maps by an automaton. Discrete Mathematics, 126(1–
3):81–86, 1994.

[26] Calvin C. Elgot and Michael O. Rabin. Decidability and undecidability of extensions
of second (first) order theory of (generalized) successor. J. Symb. Log., 31(2):169–181,
1966.

[27] C. Frougny. Fibonacci representations and finite automata. IEEE Trans. Inf. Theor.,
37(2):393–399, March 1991.

[28] Christiane Frougny and Jacques Sakarovitch. Synchronized rational relations of finite
and infinite words. Theor. Comput. Sci., 108(1):45–82, 1993.

[29] Daniel Goč. Automatic theorem proving. Master’s thesis, University of Waterloo,
2013.

[30] Daniel Goč, Luke Schaeffer, and Jeffrey Shallit. Subword complexity and k-
synchronization. In Béal and Carton [9], pages 252–263.

[31] Daniel Goč and Jeffrey Shallit. Primitive words and Lyndon words in automatic
sequences. CoRR, abs/1207.5124, 2012.

[32] Štěpán Holub. Abelian powers in paper-folding words. J. Comb. Theory, Ser. A,
120(4):872–881, 2013.

[33] Veikko Keranën. Abelian squares are avoidable on 4 letters. In W. Kuich, editor,
Automata, Languages and Programming, volume 623 of Lecture Notes in Computer
Science, pages 41–52. Springer Berlin Heidelberg, 1992.

[34] C. Kimberling. The Zeckendorf array equals the Wythoff array. Fibonacci Quart.,
33:3–8, 1995.

[35] P. B. A. Lecomte and M. Rigo. Numeration systems on a regular language. Theory
of Computing Systems, 34(1):27–44, 2000.

[36] J. A. Leech. A problem on strings of beads. Math. Gaz., 41:277–278, 1957.

118

[37] Arnaud Maes. An automata theoretic decidability proof for first-order theory of
〈N, <, p〉 with morphic predicate p. Journal of Automata, Languages and Combi-
natorics, 4(3):229–246, 1999.

[38] Marston Morse and Gustav A. Hedlund. Symbolic dynamics. American Journal of
Mathematics, 60(4):815–866, Oct 1938.

[39] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, October 1966.

[40] Dominique Perrin and Jean-Eric Pin. Infinite Words: Automata, Semigroups, Logic
and Games. Elsevier, 2004.

[41] Mojzesz Presburger and Dale Jacquette. On the completeness of a certain system of
arithmetic of whole numbers in which addition occurs as the only operation. History
and Philosophy of Logic, 12(2):225–233, 1991.

[42] Narad Rampersad. Non-constructive methods for avoiding repetitions in words, 2013.
To appear at WORDS 2013.

[43] Michaël Rao. Last cases of Dejean’s conjecture. Theor. Comput. Sci., 412(27):3010–
3018, 2011.

[44] Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Abelian complexity of mini-
mal subshifts. Journal of the London Mathematical Society, 2010.

[45] Michel Rigo. Generalization of automatic sequences for numeration systems on a
regular language. Theor. Comput. Sci., 244(1-2):271–281, 2000.

[46] Eric Rowland and Jeffrey Shallit. k-automatic sets of rational numbers. In Dediu and
Mart́ın-Vide [23], pages 490–501.

[47] Kalle Saari. On the frequency and periodicity of infinite words. PhD thesis, University
of Turku, 2008.

[48] Luke Schaeffer. Ostrowski numeration and the local period of sturmian words. In
Dediu et al. [24], pages 493–503.

[49] Luke Schaeffer and Jeffrey Shallit. The critical exponent is computable for automatic
sequences. Int. J. Found. Comput. Sci., 23(8):1611–1626, 2012.

[50] Alfred Tarski, Andrzej Mostowski, and Raphael M. Robinson. Undecidable Theories.
North-Holland, 1953.

119

	List of Figures
	Introduction
	Introduction
	Words and Languages
	Monoids
	Finite Automata
	omega-Languages and omega-Automata
	Automata with Multiple Inputs

	Morphic Words
	Properties of Infinite Words
	Subword Complexity
	Recurrence, Appearance and Condensation

	Automatic Sequences
	Numeration Systems
	Properties of Numeration Systems
	omega-Numeration Systems
	Morphic Numeration Systems

	N-Automatic Sequences
	k-Regular and k-Synchronized Functions
	k-Regular Functions
	k-Synchronized Sequences

	Decidability in Automatic Sequences
	Introduction
	Deciding First-Order Sentences
	Additional Operations
	Decidability using DFAs and DFAOs
	Complexity

	Deciding Monadic Second-Order Sentences
	DFAO Application and sigma T
	Implementation of sigma T
	Applications of sigma T

	Applications
	Critical Exponent and k-Automatic Sets of Rational Numbers
	Basic Operations on k-Automatic Rational Sets
	Limit Points and Special Points
	Computing the Supremum and Largest Special Point

	Decidability for Paperfolding Words
	First-Order Theory for Paperfolding Words
	Paperfolding with DFAs and DFAOs

	Abelian and Additive Powers
	Definition and Notation
	Inexpressibility
	Counting Symbols with Automata
	Linear Algebra and Abelian Properties
	First Example
	Second Example
	Decidability for Abelian Powers

	Open Problems
	Complexity Problems
	Abelian Power Decidability
	Automatic Rational Sets
	Shift Orbit Closure

	References

