
Decentralized Runtime Verification of LTL
Specifications in Distributed Systems

by

Mennatallah Hasabelnaby

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Computer Science

Waterloo, Ontario, Canada, 2016

c©Mennatallah Hasabelnaby 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, in-
cluding any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Runtime verification is a lightweight automated formal method for specification-based run-
time monitoring as well as testing of large real-world systems. While numerous techniques exist
for runtime verification of sequential programs, there has been very little work on specification-
based monitoring of distributed systems. In this thesis, we propose the first sound and complete
method for runtime verification of asynchronous distributed programs for the 3-valued semantics
of LTL specifications defined over the global state of the program. Our technique for evaluat-
ing LTL formulas is inspired by distributed computation slicing, an approach for abstracting
distributed computations with respect to a given predicate. Our monitoring technique is fully de-
centralized in that each process in the distributed program under inspection maintains a replica of
the monitor automaton. Each monitor may maintain a set of possible verification verdicts based
upon the existence of concurrent events. Our experiments on runtime monitoring of a set of iOS
devices running a distributed program show that due to the design of our Algorithm, monitoring
overhead grows only in the linear order of the number of processes and events that need to be
monitored.

iii

Acknowledgements

I would like to thank my supervisor Borzoo Bonakdarpour for his continuous technical and
financial support, encouragement, hard work and dedication. Special thanks to my husband who
has always been my sounding board and who has helped monumentally in making this happen.
Special thanks to my parents for always reminding me of my priorities.

iv

Dedication

This is dedicated to my small family that is about to get a bit bigger.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Runtime Verification . 1

1.2 Distributed Programs Verification . 1

1.2.1 Distributed Programs Monitoring Challenges 2

1.2.2 Distributed Programs Monitoring Configurations 2

1.3 Thesis Statement . 3

1.4 Contributions . 4

1.5 Organization of the Thesis . 5

2 Background 6

2.1 Distributed Programs . 6

2.2 Linear Temporal Logic (LTL) [25] . 9

2.2.1 3-valued LTL . 10

2.3 Monitoring Distributed Programs using Linear Temporal Logic 11

3 Formal Problem Description 13

4 Monitoring Algorithm Design 15

4.1 Algorithm Sketch . 15

4.2 Algorithm Details . 17

4.3 Monitor Algorithm Optimizations . 29

4.3.1 Aggregating token messages . 29

4.3.2 Avoiding duplicate global views . 29

4.3.3 Avoid checking disjunctive transitions 30

4.4 Monitoring Algorithm Analysis . 30

vi

4.4.1 Monitoring Messages Overhead . 30

4.4.2 Memory Overhead . 31

4.5 Proof of Correctness . 31

4.5.1 Deadlock-Freedom . 31

4.5.2 Soundness and Completeness . 33

5 Experimental Results 36

5.1 Case Study . 36

5.2 Experimental Settings . 38

5.3 Results . 40

6 Related Work 48

6.1 Formal Verification . 48

6.1.1 Verification Methods . 48

6.1.2 Distributed Systems Formal Verification 49

6.2 Distributed Systems Runtime Verification . 50

6.2.1 Online Versus Offline . 50

6.2.2 Synchronous Versus Asynchronous Distributed Systems 50

6.2.3 Monitor Design . 50

6.3 Predicate Detection versus Linear Temporal Logic 52

7 Conclusion 53

7.1 Summary . 53

7.2 Future Work . 53

7.2.1 Augmented Time . 54

7.2.2 Automaton Static Analysis . 54

7.2.3 Program Static Analysis . 54

7.2.4 Monitoring Algorithms for Dynamic Networks 54

7.2.5 Monitoring Global Expressions . 54

References 55

vii

List of Tables

5.1 Number of transitions per automaton . 38

5.2 Technical specification of the iOS devices . 38

6.1 Comparison between the pros and cons of different monitor design approaches . 52

viii

List of Figures

1.1 Monitor Design . 3

2.1 A distributed program. 7

2.2 Visual order of events and computation lattice for the program in Fig 2.1 8

2.3 The monitor automaton for propertyψ = �((x1 ≥ 5)⇒ ((x2 ≥ 15) U (x1 = 10))). 11

3.1 The computation lattice for the distributed program shown in Fig. 2.1 marked
with the automaton state for the LTL property shown in Fig. 2.3 13

4.1 A computation, automaton and lattice for a distributed system with two processes
and an initial global states with all propositions set to false. 29

4.2 Lattice, automaton and computation for a distributed system with two processes
and an initial global states with all propositions set to false. 33

5.1 Transitions count per property . 39

5.2 Monitor Automaton for properties A, B and D 40

5.3 Monitor Automaton for properties E and F . 41

5.4 Messages Overhead for properties A,B and C 42

5.5 Messages Overhead for properties D,E and F 43

5.6 Delay Time Percentage . 44

5.7 Delayed Events . 45

5.8 Memory Overhead . 46

5.9 Communication Frequency . 47

6.1 Formal Verification Taxonomy . 48

ix

Chapter 1

Introduction

1.1 Runtime Verification

Correctness refers to the assertion that a computing system satisfies its specification expressed in
some logic. Achieving correctness in distributed systems is particularly challenging due to their
inherent complexity caused by the non-determinism in the execution of distributed processes,
occurrence of different types of faults, and uncertainty in the cyber and physical implementation
of communication primitives. Thus, there is a pressing need for designing techniques that ensure
correctness of distributed applications.

Runtime verification is a lightweight technique where a monitor checks at run-time whether
or not the execution of a system under inspection satisfies a given correctness property. Runtime
verification complements exhaustive verification methods such as model checking and theorem
proving, as well as incomplete solutions such as testing and debugging. A correctness property
can be expressed in any specification language that is expressive enough for the property. Usu-
ally, the correctness properties are derived from the software requirements and represent desired
safety or liveness properties. For example, a safety property for a traffic light system would be
”If the current signal becomes red, then the green signal can not be the next signal”. While an
example for a liveness property for the same traffic light system would be ”Green signal should
occur infinitely often” meaning that it should never be the case that the green signal never appears
in the execution trace. Given such a correctness property, a monitor program is synthesized that
reads the events that are added to the program’s execution trace in runtime, and decides wether
the execution adheres to the correctness property or not.

Properties that deal with events’ chronological order or eventuality require an expressive
language that can reason in the temporal domain, therefore first order logic is not used to express
such properties. For example, there is no way to express the property ”Green signal should occur
infinitely often” in first order logic. Linear Temporal Logic (LTL) [25] is a specification language
that reasons in the temporal domain and is heavily used in the runtime verification community
due to its simplicity and lightweight monitor synthesizes algorithms [1].

1.2 Distributed Programs Verification

The need for verification of distributed programs rises as our dependency on distributed system
nowadays rises. The abundance of low commodity hardware in cloud computing data centers

1

allows programmers to scale their distributed programs easily. Also, systems for coordination of
agents such as robots or drones in swarms are considered distributed programs and are becoming
very popular in many domains such as:

• Search and Rescue

• Traffic Monitoring

• Agriculture

• Inspection and Identification

However, distributed programs are more error-prone and are notoriously harder to debug. Also,
some bugs present themselves under specific conditions and corner cases that might be missed by
the system programmer. Therefore, the need for formal runtime verification rises. Given some
global correctness properties over the execution of all processes, runtime verification tests that
the distributed system does not violate these properties.

1.2.1 Distributed Programs Monitoring Challenges

Runtime verification for distributed programs is more challenging than sequential programs since
the monitor needs to construct the events trace from all the processes at run-time and then reason
about their correctness. Moreover, designing a runtime monitor for an asynchronous distributed
system is an especially difficult task. This is because asynchronous programs do not share a
global clock and, hence, processes can have different processing speeds and can suffer from
clock drifts. Therefore, events cannot be ordered based on time. Thus, lattice theory [12], partial
orders [15] and global snapshot detection [6] are used to find partial orders between events and
construct the set of possible paths for the execution trace. However, it might be impossible to
determine the actual execution path that occurred in physical time. This implies that one has
to monitor all possible execution paths based on possible partial orders. We note that runtime
verification of all possible execution paths should not be confused with model checking where
all possible executions are checked. In the former, there is an execution trace that can yield
multiple possible execution paths. While in the latter, there is no specific execution trace, rather
all the possible execution traces are checked. In this work, we attempt to design an algorithm
that monitors the correctness of asynchronous distributed programs.

1.2.2 Distributed Programs Monitoring Configurations

There are many possible configurations with respect to the monitoring a distributed system.
e.g., centralized monitor, decentralized monitors and migrating monitor [2], monitor choreog-
raphy [8]. Fig 1.1 shows the centralized monitor configuration and the decentralized monitors
configurations. In the centralized monitoring configuration, there is only one monitor process
that can reside on one of the program nodes or on an additional node dedicated for monitoring.
The central monitor receives every event that occurs at each program node and attempts to con-
struct the possible execution traces. In decentralized monitoring, each program node Pi has a
monitor process Mi that communicates with it and can read the local events that occur at Pi, and
communicates with other monitor processes via peer-to-peer messages as needed to construct the
possible execution traces.

2

MP0

P1

P3

P2 M2P0

P1

P3

P2
M3

M0

M1

(a) CentralizedMonitoring

MP0

P1

P3

P2 M2P0

P1

P3

P2
M3

M0

M1

Figure 1.1: Centralized Monitoring VS Decentralized Monitoring

migrates to the monitor that can evaluate the correctness property with minimal communication
overhead. In monitor choreography, the correctness property evaluation is shredded into multi-
ple sub-properties, such that each sub-property is evaluated on a different monitor. In this work
we use the decentralized monitoring approach since it counters most of the shortcomings of the
other approaches which we discuss in more details in Chapter 2.

1.3 Contributions

The main contribution of this work is a novel decentralized algorithm for runtime verification of
distributed programs. In our setting, a distributed program consists of a set of asynchronous pro-
cesses that communicate using message-passing primitives over reliable channels. Our algorithm
conducts runtime verification for the 3-valued semantics of the linear temporal logic (LTL3) [1],
designed for reasoning about LTL properties for finite executions. It indeed addresses the short-
comings of the related work discussed in Chapter 7 it (1) does not assume a global clock; (2) is
able to verify temporal properties and not just safety predicates at run time, and (3) is sound and
complete.

Intuitively, our technique works as follows. Each process in the program is composed with a
monitor process. Each monitor process is augmented with a monitor automaton for each LTL3

property under inspection. The monitor automaton is a deterministic finite state Moore machine
that defines how the monitor process should evaluate a property. The states of the automaton
are labeled by evaluation verdicts while the transitions are labeled by global-state predicates
(see Fig. 2.4 for an example). Thus, each monitor process should be able to evaluate these
predicates. To this end, we adapt the lattice-theoretic technique proposed in [7] for detecting
global-state predicates at run time. However, due to the existence of concurrent events (e.g.,
see lines 5 and 6 of the processes in Fig. 2.1), a monitor process may construct different finite
executions of consistent global states. Consequently, the monitor process maintains a set of
possible evaluation verdicts. This set evolves over time, meaning that monitoring verdicts may
be added or removed depending upon the truthfulness of predicates and the structure of the
monitor automaton. Adding monitoring verdicts only happens due to the existence of concurrent
events. We argue that maintaining a set of possible verification verdicts due to unresolvable non-

3

(b) Decentralized Monitoring

Figure 1.1: Monitor Design

While centralized monitoring suffers from many disadvanatges such as single point of at-
tack/failure and centralized computation and communication overhead, its design is fairly sim-
ple compared to decentralized monitoring. Simply all processes send their events to the central
monitor which is then responsible for ordering the events and constructing the possible execution
paths.

On the other hand, decentralized monitoring does not expose a single point of failure or at-
tack, since monitoring processes are independent and request only information required to verify
the correctness properties from other processes. Also, program processes in decentralized moni-
toring are notified about violations or satisfactions faster than in centralized monitoring since the
monitor process resides on the same node as the program process. However, its design can be
complicated since each monitoring process is responsible for evaluating some or all possible exe-
cution paths, evaluating missing information and requesting them from other monitor processes.

Also, decentralized monitoring could possibly suffer from security threats if the distributed
program is running on untrusted nodes that can abuse the information acquired from other pro-
gram nodes, therefore it is best suited for closed systems where all nodes are trusted.

We discuss the different approaches to monitoring in more details in Chapter 6.

In this thesis, we use the decentralized monitoring approach since our proposed decentralized
monitoring algorithm optimizes the monitoring according to the process location (i.e. a moni-
toring process Mi residing at a program process Pi is optimized to monitor possible execution
paths in which Pi participates), thus contributing to decreasing communication and computation
overhead.

1.3 Thesis Statement

In this thesis, we claim that, although the problem of runtime monitoring of asynchronous dis-
tributed systems suffers from state-space explosion due to events concurrency and execution
nondeterminism, there can be a decentralized distributed monitoring algorithm that can monitor
a distributed program for LTL properties in a sound and complete fashion while avoiding explor-
ing all states. The proposed algorithm achieves this end by (1) generating a deterministic finite

3

state machine (FSM) given the LTL property [1], (2) each monitoring process explores the global
states that can change the state of the FSM instead of exploring all possible global states.

1.4 Contributions

The main contribution of this work is a novel decentralized algorithm for runtime verification
of distributed programs. In our setting, a distributed program consists of a set of asynchronous
processes that communicate using message-passing primitives over reliable channels. Our al-
gorithm conducts runtime verification for the 3-valued semantics of the linear temporal logic
(LTL3) [1], designed for reasoning about LTL properties for finite executions. It indeed addresses
the shortcomings of the related work discussed in Chapter 6. In particular:

• it does not assume a global clock.

• it is able to verify temporal properties and not just safety predicates at run-time.

• it is sound and complete.

Intuitively, our technique works as follows:

• Each process in the program is composed with a monitor process. Each monitor process is
augmented with a monitor automaton for each LTL3 property under inspection. The mon-
itor automaton is a deterministic finite state Moore machine that defines how the monitor
process should evaluate a property. The states of the automaton are labeled by evalua-
tion verdicts while the transitions are labeled by global-state predicates (see Fig. 2.3 for
an example). Thus, each monitor process should be able to evaluate these predicates. To
this end, we adapt the lattice-theoretic technique proposed in [7] for detecting global-state
predicates at run-time. However, due to the existence of concurrent events, a monitor
process may construct different finite executions of consistent global states.

• Consequently, the monitor process maintains a set of possible evaluation verdicts. This set
evolves over time, meaning that monitoring verdicts may be added or removed depending
upon the truthfulness of predicates and the structure of the monitor automaton. Adding
more than one monitoring verdict only happens due to the existence of concurrent events.
We argue that maintaining a set of possible verification verdicts due to unresolvable non-
determinism is indeed what a decentralized monitor should propose for verification of
distributed programs since it may uncover intricate existing bugs.

We note that collecting a set of possible verdicts does not contradict soundness since the
actual sound verdict can not possibly be verified in the presence of nondeterministic execu-
tion, and also since each verdict in the set of possible verdict could have actually occurred.
We emphasize that the final size of this set is generally very small (usually less than five
even for very sophisticated properties), even if there is a high degree of concurrency.

• Finally, merging takes place, if over time, two execution paths have the same global state
and verdict. We note that for the final global state (composed of the final events at each
process) the maximum number of possible verdicts is the size of the set of automaton
states. Also, our algorithm attempts to intelligently merge execution paths that are bound
to join.

4

Our algorithm is sound, meaning that if the actual total order of events can be somehow
constructed, then our algorithm identifies the verification verdict for the actual total order as one
of the possible verdicts. It is also complete, meaning that among the set of verdicts computed by
local monitors, at least one corresponds to the verdict for the actualtotal order of events.

Our algorithm is fully implemented and we report the results of sophisticated experiments on
a case study on runtime monitoring of a network of iOS devices. Our experiments to measure
the communication overhead of monitoring, as well as the delay in evaluating different prop-
erties on the network clearly shows that although our algorithm explores all possible execution
paths, it does not result in an explosion in communication. In particular, due to the design of
our algorithm that distributes the exploration among the nodes and avoids exploring states that
does not change the automaton state, monitoring overhead grows only in the linear order of the
number of processes and events that need to be monitored. These results clearly show that our
algorithm elegantly works as a lightweight automated formal method for online reasoning about
the correctness of a distributed application.

In our paper [21], we presented a version of this algorithm where the automatons used in
the monitoring processes were not identical. Since the LTL property for a process included
propositions from some specific processes (particularly the process’s neighbouring processes).
While in this work, the automatons are identical in every process, and every process participates
in the property.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we present our computation model
for distributed programs and the specification language LTL3. We introduce the formal statement
of the problem in Chapter 3. Our runtime verification algorithm is presented in Chapter 4 along
with the analysis and the proofs of correctness, while the results of our experiments are discussed
in Chapter 5. In Chapter 6 we describe the current state of the art related work. Finally, we make
concluding remarks and discuss future work in Chapter 7.

5

Chapter 2

Background

2.1 Distributed Programs

Let V be a set of discrete variables, where the domain of each variable v ∈ V is denoted by
Dv. A state is a mapping from each variable v ∈ V to a value in its domain Dv. A process P
over the set V is defined as a tuple P = 〈s0, S, T 〉, where S is the local state space (i.e., the
set of all states), s0 ∈ S is the initial state, and T ⊆ S × S is the set of local transitions. An
atomic proposition is a subset of S. We denote the set of all atomic propositions for a process
by AP = 2S . If an atomic proposition p ∈ AP includes a state s ∈ S, we say that p holds in s
and write s |= p. We define a local-state trace of a process P = 〈s0, S, T 〉 as a finite or infinite
sequence of local states σ = s0s1s2 · · · , such that (1) s0 = s0, and (2) for all i ≥ 0, we have
(si, si+1) ∈ T .

A distributed program D = {P1, P2, . . . , Pn} is a set of n reliable processes that do not lie
nor die. We assume that no two processes share a common variable. Processes communicate
with each other over lossless FIFO channels using asynchronous messages whose time of arrival
is unbounded. An event e in a process Pi = 〈s0i , Si, Ti〉 in D, where 1 ≤ i ≤ n, is either:

• A local transition (s0, s1) ∈ T , called an internal event where the local state of Pi is
changed.

• A message send, where the local state of P remains unchanged.

• A message receive, where the local state of P remains unchanged.

Fig. 2.1 shows our running example of a distributed program that consists of two communi-
cating processes P1 and P2, with local integer variables x1 and x2 (both initialized to 0), re-
spectively. Each instruction on Lines 4-7 is an event denoted by e10 · · · e13 (respectively, e20 · · · e23)
of process P1 (respectively, P2).

Since send and receive events do not change the local state of a process P = 〈s0, S, T 〉, we
represent their occurrence by a self-loop (s, s) ∈ T , where s is the state of occurrence. Thus, any
event e can be associated with one and only state s(e) reached by execution of e. An event-trace

6

{x1=0}
Process P1()
{

send(P2,"hello");
x1=5;
x1=10;
recv(m2);

}

1 {x2=0}
2 Process P2()
3 {
4 recv(m1);
5 x2=15;
6 x2=20;
7 send(P1,"world");
8 }

Figure 2.1: A distributed program.

of a process Pi ∈ D is a finite or infinite sequence of events η = ei0e
i
1 · · · iff there exists a state

trace σ = s0s(ei0)s(e
i
1) · · · . We denote the set of all possible events in Pi by Ei and the set of

all events of D by ED = ∪ni=1Ei. Throughout this work, we denote the set of all global states of
program D = {P1, P2, . . . , Pn} by Σ = S1×, . . . ,×Sn; i.e., the Cartesian product of local state
space of all processes. A (global-state) predicate P is a subset of Σ defined using the following
syntax:

p ::= pi ∧ pj | pi ∨ pj | ¬p
where 1 ≤ i, j ≤ n, pi ∈ AP i, and pj ∈ AP j . We denote the set of all predicates by Pred . We
note that propositions pi and pj can belong to different processes or the same process.

Since processes in a distributed program do not share a global clock and do not necessarily
execute at the same speed, in order to reason about the global state of the distributed program,
we employ Lamport’s logical clocks [15].

Definition 1 (Happened Before Relation) A relation ⊆ ED ×ED is a happened before rela-
tion iff for any events a, b, c ∈ ED, the following conditions hold:

• If a = (s0, s1) and b = (s1, s2) are two internal events of a process, where s0, s1, and s2
are three distinct local states, then a b.

• If a is a send event by a process P and b is the corresponding receive event by some
process P ′, then a b.

• If a b and b c, then a c. �

Definition 2 (Concurrent Events) Two distinct events a, b ∈ ED are called concurrent events
(denoted a ‖ b) iff (a 6 b ∧ b 6 a). �

For example, in the program in Fig. 2.1, we have e10 e22 and e12 ‖ e21. A visual order of all
the events in P1 and P2 is shown in Fig. 2.2a. Notice that one can trivially define the happened
before relation for states as well.

Monitoring the execution of a distributed program requires reasoning about the global state
of the program.

7

P1P2

e11

e12

e13

e10

e22

e23

e21

e20

(a) Visual order of events.

e11, e
2
1 e10, e

2
2

e12 e11, e
2
0 e10, e

2
1

e10

e10, e
2
0

e12, e
2
0

e12, e
2
1 e11, e

2
2 e10, e

2
3

e11, e
2
3e12, e

2
2

e11

e12, e
2
3

e13, e
2
3

{}

(b) Computation lattice.

Figure 2.2: Visual order of events and computation lattice for the program in Fig 2.1

Definition 3 (Global State) A global state of a distributed program D = {P1, P2, . . . , Pn} is a
tuple g = 〈s1, s2, . . . , sn〉, where each si, 1 ≤ i ≤ n, is a local state of process Pi. �

A global transition is defined as the occurrence of a single event in exactly one process. How-
ever, since the program may have concurrent events, m concurrent events will enable m global
transitions leading to m next possible global states. Since all global states (as defined in Defini-
tion 3) are not necessarily reachable in a distributed program, we define the concept of consistent
cuts.

Definition 4 (Consistent Cut [6]) Let D = {P1, P2, . . . , Pn} be a distributed program. A cut C
is a subset of ED and is represented by a tuple of frontier events FEC = 〈e1last , e2last , . . . , enlast〉,
such that eilast , 1 ≤ i ≤ n, is the last event occurred in process Pi in C. We say that C is a
consistent cut iff ∀e ∈ C, e′ ∈ ED : ((e′ e) ⇒ (e′ ∈ C)). �

For example, in Fig. 2.2a, the cut with frontier 〈e11, e20〉 is consistent, while the cut with frontier
〈e13, e22〉 is not consistent. We denote the set of all consistent cuts in a computation by CC.

Definition 5 (Consistent Global State) We say that g = 〈s0, s1, . . . , sn〉 is a consistent global
state of a distributed program D = {P1, P2, . . . , Pn} iff there exists a consistent cut C with
frontier events FEC = 〈e1, e2, . . . , en〉, such that for all i, 1 ≤ i ≤ n, we have s(ei) = si. We
denote the fact that g is the global state corresponding to frontier FEC by g = s(FEC). �

8

For example, the global state, where x1 = 5 and x2 = 20 is a consistent global state.

Definition 6 (Computation Lattice [19]) A computation latticeL = (CC,) is a directed graph
where (1) the set of vertices is the set of all consistent cuts CC, (2) the edge relation is the hap-
pened before relation, and (3) every pair of consistent cuts have a unique greatest common
predecessor and a unique lowest common successor. �

Fig. 2.2b shows the computation lattice for the distributed program in Fig. 2.1. Note that each
node in the lattice is the frontier of a consistent cut.

We denote the set of all paths of lattice L by ΠL. A computation lattice encodes the set of
finite or infinite paths of consistent cut frontiers of the form FEC0FEC1 · · · , where each lattice
step corresponds to exactly the occurrence of one event in exactly one process. This event can
be internal, send, or receive event.

Definition 7 (Global-state Trace) Given a computation lattice L and a (finite or infinite) path
π = FEC0FEC1 · · · in ΠL, the global-state trace corresponding to π is the sequence γ = s(π) =
g0g1 · · · , such that ∀i ≥ 0 : gi = s(FECi

). �

For example, in Fig. 2.1 if the global predicate B = (x1 ≥ 5 ∧ x2 ≥ 15), then the sub-
computation lattice LB that satisfies B is a subset of the lattice in Fig. 2.2b starting from the
global state (e11, e

2
1) upwards.

Verifying the correctness of a distributed system with respect to a global conjunctive boolean
predicate B (over the set of all variables V) and the computation lattice L is now reduced to
checking the predicate against each consistent global state in every path π ∈ ΠL. However, in an
online setting, enumerating all global states poses a huge overhead on the distributed system.

So far, we have presented the background for global boolean predicate detection in distributed
systems, next we explain the background required for detecting temporal properties such as Lin-
ear Temporal Logic in distributed systems.

2.2 Linear Temporal Logic (LTL) [25]

Linear temporal logic (LTL) is a popular formalism for specifying properties of (concurrent)
programs. Recall that we denoted the set of all global states by Σ. We denote the set of all finite
traces over Σ by Σ∗ and the set of all infinite traces by Σω. For a finite trace α and a trace γ, we
write αγ to denote their concatenation.

Definition 8 (LTL Syntax) The set of LTL formulas is inductively defined as follows:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2

where p ∈ Pred , and,© (next) and U (until) are temporal operators. �

9

Definition 9 (LTL Semantics) Let γ = g0g1 . . . be an infinite global-state trace in Σω, i be
a non-negative integer, and |= denote the satisfaction relation. Semantics of LTL is defined
inductively as follows:

γ, i |= true
γ, i |= p iff gi |= p (i.e., gi ∈ p)
γ, i |= ¬ϕ iff γ, i 6|= ϕ
γ, i |= ϕ1 ∧ ϕ2 iff γ, i |= ϕ1 ∧ γ, i |= ϕ2

γ, i |=©ϕ iff γ, i+ 1 |= ϕ
γ, i |= ϕ1Uϕ2 iff ∃k ≥ i : γ, k |= ϕ2 ∧

∀j : i ≤ j < k : γ, j |= ϕ1.

In addition, γ |= ϕ holds iff γ, 0 |= ϕ holds. �

An LTL formula ϕ defines a set of traces, denoted by L(ϕ), (i.e., a language or a prop-
erty). For simplicity, we introduce abbreviation temporal operators: ♦ϕ (eventually ϕ) denotes
trueUϕ, and �ϕ (always ϕ) denotes ¬♦¬ϕ. For instance, non-starvation can be expressed by
formula �(r ⇒ ♦g), meaning that ‘if a process requests entering a critical section, then it is
eventually granted’.

Definition 10 (Satisfies) Let D be a distributed program and ϕ be an LTL property. We say that
a global-state trace γ of D satisfies ϕ iff γ ∈ L(ϕ). Otherwise, we say that γ violates ϕ. If all
global-state traces of D are in L(ϕ), then we say that D satisfies ϕ (denoted D |= ϕ). �

2.2.1 3-valued LTL

LTL semantics is defined over infinite traces and a running program can only deliver a finite trace
at a monitoring point. To formalize satisfaction of LTL properties at run time, in [1], the authors
propose semantics for LTL, where the evaluation of a formula ranges over three values {>,⊥, ?}
(denoted LTL3). The value ‘?’ expresses the fact that it is not possible to decide on the satisfac-
tion or violation of a property, given the current program finite trace.

Definition 11 (LTL3 semantics) Let α ∈ Σ∗ be a finite trace. The valuation of an LTL3 formula
ϕ with respect to α, denoted by [α |= ϕ], is defined as follows:

[α |= ϕ] =


> if ∀γ ∈ Σω : αγ |= ϕ

⊥ if ∀γ ∈ Σω : αγ 6|= ϕ

? otherwise

�

10

(x1 6= 10)

q0 q1

q⊥

(x1 < 5)∨
(x1 = 10)

(x1 ≥ 5)∧
(x2 ≥ 15)∧
(x1 6= 10) (x2 ≥ 15)∧

(x1 6= 10)

(x1 = 10)

true

(x1 ≥ 5)∧
(x2 < 15)∧
(x1 6= 10)

(x2 < 15)∧

Figure 2.3: The monitor automaton for property ψ = �((x1 ≥ 5) ⇒
((x2 ≥ 15) U (x1 = 10))).

Note that the syntax ‘[α |= ϕ]’ for LTL3 semantics is defined over finite words as opposed to
‘γ |= ϕ’ for LTL semantics, which is defined over infinite words. For example, given a finite pro-
gram trace α = g0g1 · · · gn, property ♦p holds iff gi |= p, for some i, 0 ≤ i ≤ n. Otherwise,
the property evaluates to ?.

Definition 12 (LTL Monitor Automaton) Let ϕ be an LTL formula over predicates Pred . The
monitor automaton Aϕ of ϕ is the unique deterministic finite-state automaton (DFA) Aϕ =
(Pred , Q, q0, δ, λ), where Q is a set of states, q0 is the initial state, δ ⊆ Q × Pred × Q is
the transition relation, and λ is a function that maps each state in Q to a value in {>,⊥, ?}, such
that for any finite trace α ∈ Σ∗:

[α |= ϕ] = λ(δ(q0, α))

�

For example, Fig. 2.3 shows the monitor automaton for property

ψ = �((x1 ≥ 5)⇒ ((x2 ≥ 15) U (x1 = 10))),

where λ(q0) = λ(q1) = ? and λ(q⊥) = ⊥. The proposition true denotes the set AP of all
propositions. Notice that state q⊥ is a final state with no outgoing transition to other states. This
is because once verdicts ⊥ or > are reached, according to Definition 11, they cannot change.

There are two classes of properties often used in verification:

• Safety Properties: properties that state that something bad should never happen. Example:
ϕ = (�¬p)
• Liveness Properties: properties that state that something good should always or eventually

happen. Example: ϕ = (♦p).

2.3 Monitoring Distributed Programs using Linear Temporal
Logic

Verification of LTL3 properties for distributed programs is now reduced to ensuring that none of
the distributed program execution paths run into a violating state q⊥ for safety properties or that

11

all of the paths eventually run into satisfying states q> for liveness properties. For example, in the
distributed program presented in Fig.2.1 and its execution presented in Fig.2.2a, if the program
is monitored for the LTL property in Fig.2.3, then the goal of a good monitoring technique is to
monitor all paths in the lattice in Fig.2.2b that could lead to a final state in the automaton, namely
state q⊥.

12

Chapter 3

Formal Problem Description

Roughly speaking, given a distributed programD and an LTL3 property ϕ, our goal is to construct
a setM of monitor processes, such that their composition with D can evaluate ϕ at run time in
a sound, complete, and decentralized fashion. However, since the occurrence of events in a
distributed program does not form a total order, valuation of ϕ at each time instance cannot be
a single value. I.e., since there are multiple possible execution paths in the computation lattice,
multiple monitoring verdicts may be reached.

In order to formalize the problem, let us assume that at run-time, an oracle can construct the
computation latticeL, and compute the verdict for each path π ∈ ΠL by evaluating λ(δ(q0, s(π)))

e10, e
2
0 q0

q0

q0

q0

q0

q⊥

q⊥

e13, e
2
3

e12, e
2
3

e11, e
2
3 q⊥, q1

q0e10, e
2
3

e12, e
2
2

e11, e
2
2

q⊥, q1

q⊥, q1

e12, e
2
1q⊥

{}

e11, e
2
1q⊥ e10, e

2
2e12, e

2
0

e11, e
2
0q⊥

q⊥, q0

q⊥, q0

q⊥, q0

e12 e10, e
2
1

e10

e11

Figure 3.1: The computation lattice for the distributed program shown in Fig. 2.1 marked with
the automaton state for the LTL property shown in Fig. 2.3

13

starting from the initial automaton state q0. Intuitively, this means that each global state in the
finite sequence of global state trace for path π is run through the automaton one by one given
the automaton state for the previous global state. Fig. 3.1 shows the lattice for the distributed
program shown in Fig. 2.1. Note that each global state in each path is marked with the automaton
state for the LTL property

ψ = �((x1 ≥ 5)⇒ ((x2 ≥ 15) U (x1 = 10)))

shown in Fig. 2.3. As can be seen, any path that goes through node 〈e11〉 will evaluate to⊥, while
for path β = 〈{}〉〈e10〉〈e10, e20〉〈e10, e21〉〈e10, e22〉〈e11, e22〉〈e11, e23〉〈e12, e23〉〈e13, e23〉, we have [β |= ψ] =?.
On the contrary, if we consider property

ψ′ = �((x1 ≥ 5)⇒ ((x2 = 15) U (x1 = 10)))

then all paths will evaluate to ⊥. Thus, depending upon the LTL3 property and the constructed
lattice paths in the monitor each monitor may compute different valuation(s). This is simply
due to the nature of concurrent events and the fact that determining the total order of events is
not possible. We argue that maintaining a set of possible verification verdicts is indeed what
a decentralized monitor should evaluate for verification of distributed programs since it may
uncover intricate existing bugs.

Following the above discussion, we argue that the goal of runtime verification for LTL3 in
a distributed system must be designing a decentralized runtime monitor, such that the set of
verdicts identified by the oracle is equal to the union of the set of verdicts identified by the
distributed monitors.

Decentralized LTL3 monitoring problem: Given a distributed program D =
{P1, P2, . . . , Pn} with an execution lattice L, and an LTL3 property ϕ, the goal is to
identify a set of monitor processesM = {M1,M2, . . . ,Mn}, such that

if each monitor process Mi

• can read the local state of Pi in one atomic step;

• can communicate with other monitor processes, and

• outputs set of path/verdict pairs Λi that contains a lattice path and its verdict for each
lattice path π ∈ ΠL traversed by Mi

then

∀ π ∈ ΠL : (∃ i, 1 ≤ i ≤ n : 〈π, [π |= ϕ]〉 ∈ Λi) (3.1)

and
∀ 〈π, λ〉 ∈ Λi : (∃ π′ ∈ ΠL : ([π′ |= ϕ] = λ) ∧ (π′ = π)) (3.2)

We note that for brevity, the notions of “communicating” and “reading the state” are not
formalized, but their meaning complies with the common understanding of these concepts.

We also note that the above problem statement is for soundness and completeness. Equa-
tion 3.1 is for completeness and intuitively indicates that for each path in the lattice, there should
exist at least one monitor process that can construct the trace and identify its true verdict. While
Equation 3.2 is for soundness and indicates that each path/verdict pair in a monitor’s verdict set
should map to a path in the lattice and the oracle’s verdict for that path.

14

Chapter 4

Monitoring Algorithm Design

4.1 Algorithm Sketch

First, we present the sketch of our algorithm that solves the problem of decentralized LTL3 mon-
itoring of distributed systems as stated in chapter 3.

For a distributed program D = {P1, . . . , Pn}, we compose each process in Pi with a monitor
process Mi that can read the local state of Pi in one atomic step. Recall that given a property ϕ,
each monitor Mi attempts to evaluate ϕ by constructing the global-state trace through commu-
nicating with other monitor processes inM = {M1, . . . ,Mn}. This requires dealing with three
problems, for each, we propose a solution:

1. (Predicate detection) Since each transition in a monitor automaton is labelled by a global-
state predicate, a monitoring process has to be able to evaluate such predicates. For ex-
ample, in the monitor automaton in Fig. 2.3, for the program in Fig. 2.1, if the current
monitor automaton state is q1, upon the occurrence of a local event in P1, monitor process
M1 has to evaluate predicates that label outgoing transitions q1 → q⊥ and q1 → q0. For
transition q1 → q0, monitor processM1 can verify proposition (x1 = 10) locally, hence, no
need to communicate with monitor process M2. On the contrary, for transition q1 → q⊥,
M1 can only verify proposition (x1 6= 10). Thus, if (x1 6= 10) is true, M1 has to evaluate
(x2 < 15) as well, by consulting M2.

To address this problem we adapt the distributed computation slicing algorithm in [7] for
distributed online detection of conjunctive predicates1. Computation slicing [20] is a tech-
nique to find abstract representations, called slices, that encode all concurrent and con-
secutive global states that satisfy a predicate without explicitly enumerating them. For
example in Fig. 2.1, slices for predicate (x1 ≥ 0 ∧ x2 6= 20) are represented by the set
of events {e11, e21} and {e11, e21, e12}. If a slicer is distributed, then different processes may
output different event-sets of the slice [7]. The technique applied in [7] detects the slice
satisfying a conjunctive predicate by enumerating for the join-irreducible elements that
form the sub-lattice that satisfies the predicate. We present the definitions for

Definition 13 (Computation Slice) [20] The slice of a computation with respect to a
predicate is a sub-computation that satisfies the following properties: (a) it contains all

1We emphasize that detecting only conjunctive predicates does not impose any restrictions, since transitions in
LTL3 monitor automata are only labeled by conjunctive predicates (i.e., monitor transition labeled by disjunctive
predicates are handled by splitting them into multiple transitions, one per each disjunct).

15

global states of the computation for which the predicate evaluates to true, and (b) of all
the sub-computations that satisfy condition (a), it has the least number of global states.

Definition 14 (Lattice Join/Meet) [20] Given a computation lattice L, and two consis-
tent cut elements C ′ ∈ L and C ′′ ∈ L, the join of C ′ and C ′′ is defined as: Join(C ′, C ′′) =
FEC′ ∪ FEC′′ , while the meet of C ′ and C ′′ is defined as Meet(C ′, C ′′) = FEC′ ∩ FEC′′ .

Definition 15 (Join-Irreducible Element) [20] An element C ∈ L is join-irreducible if
(1) C is not the smallest element of L (2) ∀ C ′, C ′′ ∈ L : (FEC = FEC′ ∪FEC′′)→ (C =
C ′) ∨ (C = C ′′).

Intuitively, this means that a join-irreducible element is one that can not be represented by
the join of any other two elements in the lattice. The algorithm presented in [20], finds the
join-irreducible elements for a predicate thus finding the least consistent cut that satisfies
that predicate. In the context of runtime monitoring using a monitor automaton, we need to
detect different predicates at different times, according to the current state of the monitor
automaton and the outgoing transitions from that state. Hence, after updating the current
global state with a new event, each monitor attempts to find the join-irreducible elements
at all processes that enables an outgoing transitions.

For example, in Fig. 2.3, if the current monitor automaton state is q0, then both monitors
M1 andM2 need to detect predicates ((x1 ≥ 5)∧(x2 ≥ 15)∧ (x1 6= 10)) and ((x1 ≥ 5)∧
(x2 < 15) ∧ (x1 6= 10)). And, if the current state of the monitor is q1, then M1 needs to
detect predicates ((x1 6= 10) ∧ (x2 < 15)) and (x1 = 10), while M2 needs to detect the
predicate ((x1 6= 10) ∧ (x2 < 15)) only. Unlike the framework of [7], in our setting,
the distributed monitors might be detecting different predicate of different sizes with each
event, so the communication headache differs according to the current global state. Thus,
our algorithm is more sophisticated, as the set of predicates for detection changes over
time.

2. (Concurrent events) As mentioned earlier, the existence of concurrent events results in the
possibility of having multiple global-state traces or multiple lattice paths. In order to pre-
vent exploring all possible interleavings, we only explore the global-state traces that can
trigger a transition (excluding self-loops) in the monitor automaton. Each monitor process
will attempt to explore all lattice paths that can enable an outgoing transition. We call this
forking. For example, in the monitor automaton in Fig. 2.3, for the program in Fig. 2.1,
events e12 and e21 are concurrent and as explained in Chapter 3, paths that go through these
events result in different verdicts. Hence, for each such path, its corresponding verdict is
stored. Note that the algorithm does not attempt to explore all possible orders of the con-
current events. It rather attempts to explore orders that enable outgoing transitions of the
current state of monitor automaton. Also, note that we avoid exploring self-loops transi-
tions since the monitor automaton state does not change when a self-loop is enabled. We
emphasize that since the number of states LTL3 monitors even for very complex properties
is a handful (normally less than five), keeping all possible verdicts does not lead to any
implementation issues.

3. (Merging verdicts) Obviously forking monitor automaton states can lead to degrading per-
formance, since more predicates have to be evaluated. Thus, monitor processes attempt to
merge monitor states, if starting from a set of possible monitor states, enabled transitions

16

reach the same monitor state. After merging, the maximum number of global-state traces
should be bounded by the number of states in the monitor automaton. For example, in
the monitor automaton in Fig. 2.3, if the current set of monitor states is {q0, q1}, and both
outgoing transitions to q⊥ are enabled, this yields to merging the two current monitor states
into {q⊥}. Also, the algorithm uses the slicing concept presented in [20] to merge global
states that belong to the same slice into single global state. Thus minimizing the number
of global states detected.

4.2 Algorithm Details

We assume the reader is familiar with the notion of logical clocks [15]. In a distributed program
D = {P1, P2, · · · , Pn}, a vector VC i

k = 〈υ1, υ2, . . . , υn〉 is the vector clock locally stored in
process Pi, 1 ≤ i ≤ n, at or after the kth event occurs in Pi, and before the (k + 1)th event
occurs. υj is the value of the logical clock of process Pj , 1 ≤ j ≤ n, as per the knowledge of
process Pi. In other words, VC i

k [i] = k, implies that VC i
k is a vector clock that is aware of the

occurrence of the kth local event. When a process Pi sends a message to a process Pj , the vector
clock of Pi is piggybacked with the message.

In a process Pi, we represent an event e by a tuple e = 〈T,D,VC , sn〉, where T ∈ {send,
receive, internal} is the type of the event, D is the valuation of all local variables D = {(v, t) |
v ∈ V and t is the value of v}, VC = VC i

k is the vector clock of process Pi when the event eik
occurs, and sn is the sequence number of the event.

To allow a monitoring process to trace multiple execution paths, we use Global Views. Each
global view represents a point in an execution path along with the LTL3 verdict.

A monitoring process Mi has an initial global view gv 0
i that represents the initial view of the

distributed system. A global view encapsulates the following data:

• Vector clock gcut = 〈0, 0, ..., 0〉

• Global state g = 〈s(e00), s(e10), · · · s(en0)〉 corresponding to the initial state of all the pro-
cesses.

• Initial monitor automaton state q0

• An initially empty pending events queue: p events

• An object used by global views to collect information about other monitor processes, ini-
tially set to an empty object.

• An initial unblocked state

• A boolean variable: KeepAfterFork to indicate whether the global view will be valid
after forking another global view or not.

A global view has three possible states: blocked, waiting and unblocked. A blocked global
view is waiting for events to happen at other monitoring processes. An unblocked global view is
ready to receive new events from the monitoring process. A waiting global view is waiting for a
specific event to happen at Pi.

17

Monitor processes communicate by exchanging global view’s tokens, we use the term token
and messages interchangeably to indicate the monitor communication messages. A token has
the following data:

• NextTargetProcess: represents the process that the token should be sent to next.

• NextTargetEvent: represents the event sequence number that the token should evaluate
when received at MNextTargetProcess.

• ParentProcess: represents the process that created the token.

• ParentEventV C: represents the last event that was processed by the global view owning
the token.

• OutgoingTransitions: a set of the possibly enabled outgoing transitions the global view
is searching for.

A single entry in OutgoingTransitions: contains the following data:

• TransitionId represents the id of the transition.

• gcut : represents the vector clock of the constructed global state thus far.

• depend: represents the vector clock used to check for inconsistencies in the constructed
global state.

• ConjunctsEvaluations: a vector of n entries representing a mapping between the con-
juncts in the transition’s predicate and their boolean evaluation with respect to the con-
structed global state. Each evaluation entry can take values of predtrue or predfalse
or unset. If a process has multiple conjuncts in a predicate, the conjuncts will occupy
a single entry in the vector. For example: [〈〈a ∧ b〉, predfalse〉, 〈〈c〉, predfalse〉] is a
ConjunctsEvaluation for a distributed system with 2 processes, and a predicate a∧ b∧ c
where the first process has propositions a and b, while the second process has proposition
c.

• NextTargetProcess: represents the process that the transition should be sent to next.

• NextTargetEvent: represents the event sequence number that the transition should be
sent at next.

• gstate: represents the global state corresponding to gcut

• eval: represents the state of the transition (evaluated to true, false or not evaluated)

Next, we give a brief overview description of the main procedures that constitute this algo-
rithm, and then we provide a fine-grained analysis for each procedure.

In subsubsection 4.2.0.1 the main monitor loop that receives events and messages from other
processes is described.

In subsubsection 4.2.0.2 we show the monitor INIT procedure that is responsible for the
monitor initialization process and defining the inputs and initial variables that the monitor process
maintains.

18

In subsubsection 4.2.0.3 we show the RECEIVE EVENT procedure which is the main interface
procedure between the program process and the monitor process. When a program generates an
event (internal or receive), the program increments the ith entry in its vector clock and sends the
event details along with the vector clock to the monitor using the RECEIVE EVENT procedure.

In subsubsection 4.2.0.4, the procedure PROCESS EVENT is described. After receiving the
event, RECEIVE EVENT invokes PROCESS EVENT for each Global View that is active and wait-
ing for further events to advance its current monitor automaton state.

In subsubsection 4.2.0.5, CHECKOUTGOINGTRANSITIONS procedure is described. When
PROCESSEVENT procedure decides that the global view it is processing needs to consult other
monitor processes to advance their current monitor automaton state, it invokes CHECKOUTGO-
INGTRANSITIONS to prepare the message (token) that need to be sent to other monitor processes
for all transitions that could possibly be enabled for the newly received event.

In subsubsection 4.2.0.6, procedure SENDTONEXTPROCESS is described. This procedure is
responsible for routing the tokens between monitor processes. Since a monitoring message can
contain multiple transitions to satisfy, the procedure attempts to route the message in an efficient
manner to provide equal opportunities for visiting all monitor process required by all transitions.

In subsubsection 4.2.0.7, procedure RECEIVETOKEN is described. RECEIVETOKEN is re-
sponsible for receiving tokens (monitoring messages) from other monitor processes. If the re-
ceived token’s parent is the current monitor process (a monitoring message returning to its par-
ent), then the procedure checks the transitions evaluation (enabled, disabled, inconsistent) and
updates the token’s parent global view. If the current monitor process is not the token’s parent,
then the event requested by the token is extracted from the events history and the transitions in
the token that requested this event are updated with the requested event.

In subsubsection 4.2.0.8, procedure PROCESSTOKEN is described. PROCESSTOKEN is re-
sponsible for updating and routing tokens received from other monitor processes.

In subsubsection 4.2.0.9, procedure EVALUATETOKEN is described, which can be considered
a helper procedure for PROCESSTOKEN, since its purpose is to evaluate a transition predicate in
a token.

In subsubsection 4.2.0.10, procedure TERMINATE is described, which is responsible for
preparing the monitor for termination as the program process has terminated.

4.2.0.1 ALGORITHM MAIN LOOP – Algorithm 1

The algorithm inputs are specified in the inputs for Algorithm 1, namely the following:

• Automaton Aϕ that encapsulates all the states and transitions.

• Initial global state init gstate that is simply the initial propositions valuation from all
processes.

• Number of program processes participating in the distributed system: n.

• Current monitor process index: i : 0 < i < n.

In line 1 procedure INIT is invoked. Then in Lines 3–7, Mi receives token messages from
other monitor processes (respectively, reads local events of Pi) in an infinite loop in a non-
blocking fashion and dispatches them to RECEIVETOKEN (respectively, RECEIVEEVENT). We

19

Algorithm 1 Monitor Process Mi initialization
Input: Monitor automatonAϕ = (Pred , Q, q0, δ, λ) and initial global state init gstate , process index i and number

of processes n.
1: INIT();
2: while 1 do
3: m←recv() end if
4: if m is not empty then RECEIVETOKEN(m); end if
5: e← read()
6: if m is termination event then TERMINATE();end if
7: if e is not empty then RECEIVEEVENT(e); end if
8: end while

9: procedure INIT
10: history ← 〈〉; w tokens ← {};
11: gv0.gstate ← init gstate; gv0.q ← δ(q0, gv0.gstate);
12: gv0.token ← {}; GV ← {gv0};
13: let e0 be an event representing the local initial state
14: PROCESSEVENT(gv0, e0)
15: end procedure

note that if the read event is a termination signal from the program to notify Mi that Pi has
terminated execution, the monitor invokes procedure TERMINATE.

4.2.0.2 INIT

Procedure INIT is responsible for initializing the following data structures for Mi:

• history , a vector representing the sequence of local events that occurred in Pi, is initialized
to the empty sequence.

• w tokens , a set of the tokens waiting for processing at Mi initialized to the empty set.
These tokens were received from other monitor processes and are targeting some future
events at Pi to collect information about the local state of Pi.

• The initial global view gv 0 pointing to the initial global state and initial automaton state
q0.

Then in Line 11 the next state of the monitor automaton (if exists) is computed by applying the
initial global view gv 0 on the transition relation δ from initial monitor automaton state q0. In
Line 12, gv 0.token is initialized to an empty set, and gv 0 is added to the set of all global views
GV .

In Lines 13 –14, the initial event is extracted from the initial input global state and passed
to procedure PROCESS EVENT, so that if there is an enabled transition from the initial monitor
automaton state q0, the current monitor process Mi would be able to detect it.

4.2.0.3 RECEIVE EVENT (Event eik) – Algorithm 2

The goal of this procedure is to process local events only for global views whose pending events
queue is empty.

20

Algorithm 2 Local Event Handler in Mi

1: procedure RECEIVEEVENT(event e)
2: MERGESIMILARGLOBALVIEWS()
3: history [e.sn]← e;
4: for each t ∈ w tokens do
5: if t.NextTargetEvent = e.sn then
6: PROCESSTOKEN(t, e); w tokens ← w tokens \ {t};
7: end if
8: end for
9: for each gv ∈ GV do

10: gv .p events.enqueue(e);
11: if gv .state = unblocked ∨ (gv .state = waiting ∧ gv .token.NextTargetEvent = gv .p events[0].sn)

then
12: e′ ← gv .p events.dequeue();
13: PROCESSEVENT(gv , e′);
14: end if
15: end for
16: end procedure

17: procedure PROCESSEVENT(GV gv , event e)
18: gv .gcut [i]← e.VC [i]; gv .gstate[i]← s(e);
19: gv .keepAfterFork ← false
20: isConsistent← (6 ∃j, 0 < j ≤ n : gv .gcut [j] < e.V C[j])
21: if isConsistent ∧ (∃ EnabledOutgoingTransition ∨ ∃ EnabledSelfLoopTransition) then
22: CLEARTOKENS(gv .token)
23: qn ← gv .q ← δ(gv .q, gv .gstate);
24: gv .keepAfterFork ← true
25: if λ(qn) ∈ {⊥,>} then Declare “satisfaction/violation”; end if
26: end if
27: if gv .token 6= {} then
28: UPDATETOKEN(gv .token, e)
29: end if
30: if gv .token 6= {} then
31: PROCESSTOKEN(gv .token, e)
32: else
33: if gv .keepAfterFork = true then
34: gv .keepAfterFork = false
35: GV ← GV ∪ { COPYGLOBALVIEW(gv)}
36: end if
37: CHECKOUTGOINGTRANSITIONS(gv , e);
38: end if
39: end procedure

In Line 2, Mi invokes procedure MERGESIMILARGLOBALVIEWS that is responsible for
merging global views that have the same monitor automaton state and belong to the same slice
into one global view.

In Line 3,Mi adds the kth event to its history. Then, in Lines 4 – 8,Mi invokes PROCESSTO-
KEN for each token in w tokens , where token.NextTargetEvent = event .sn.

Then each global view gv in the set of all global views GV enqueues the event to its pending
events queue in Line 10. Then In Line 11 the monitoring process calls PROCESSEVENT on
global views that are unblocked or waiting for the next local event.

21

4.2.0.4 PROCESS EVENT (GlobalView gv , Event eik) – Algorithm 2

In Line 18, the monitoring process updates the global view gv to include the new event by
updating the ith index in gv .gcut vector with the ith index in eik.V C and updates the ith state in
gv .gstate with the state of the received event s(eik).

Then in Line 20, if the gv .gcut vector is consistent with the new event (i,e, 6 ∃j : gv .gcut [j] <
eik.V C[j]), the monitoring process will start examining possible transitions on Aα given the
current monitor automaton state gv .q. The following cases are possible:

• There exist an enabled outgoing transition.

• There exist an enabled self-loop only.

• There exist an enabled self-loop and at least one possibly enabled outgoing transition.

Self-loops transitions are transitions whose source and target automaton states are the same.
Outgoing transitions are transitions whose source and target automaton states are different. En-
abled transitions are transitions whose label predicate is satisfied by the current consistent global
state. Possibly enabled transitions are transitions where at least the local state of the process
Pi satisfies the conjuncts with Pi’s propositions in the label predicate. Hence, there might be a
consistent global state that satisfies the whole predicate.

Since Aα is a deterministic automaton, a single global state can enable only one transition.
However, due to concurrency, there might be more than one possible consistent global states.
To avoid state space explosion, each monitor process attempts to only explore global states that
can result in enabling an automaton transition. In Line 19, gv .keepAfterFork is initialized to
false.

In Line 20, the global view is evaluated for consistency by comparing the gv .gcut and e.VC ,
if e.VC has any entry bigger than gv .gcut then the global view is inconsistent since the event
knows more information about other processes that gv is unaware of.

In Lines 21–25 if gv .gcut is consistent with the new event, and there exist an enabled
outgoing or self-loop transitions, then gv .q is advanced to the new automaton state. If the
new automaton state is a final state, then the monitor process declares satisfaction/violation.
gv .keepAfterFork is set to true to indicate that this global view is valid, and should be kept
even if forked.

If the global view is inconsistent or consistent with no enabled transitions, then the global
view would maintain gv .keepAfterFork = false so that it would be deleted after forking to a
new global state. Since gv is out of sync and does not represent a global state that can occur in
realtime.

In Line 27, if the global view has a token, then it is in the waiting state (i.e. waiting for local
events to update the token’s outgoing transitions state). Procedure UPDATETOKEN is invoked
to update the outgoing transitions in gv .token with the new local event. UPDATETOKEN could
result in no action if the new event’s gstate is identical to the event that created the token (i.e.
same set of possibly enabled transitions), or could result in removing some transitions or adding
new ones. In Line 30, since UPDATETOKEN could result in deleting all transitions without
adding any new ones, gv .token is checked again and if it is not empty then PROCESSTOKEN

is invoked to update the remaining transitions with the new event and evaluate the state of the
global view.

22

In Lines 33–36, if gv .keepAfterFork was set to true, forking occurs by creating a new copy
of gv and adding it to the set of all global views GV after setting gv .keepAfterFork to false.

CHECKOUTGOINGTRANSITIONS is invoked in Line 37 to search for possible outgoing tran-
sitions.

4.2.0.5 CHECKOUTGOINGTRANSITIONS (GlobalView gv , Event eik) – Algorithm 3

Procedure CHECKOUTGOINGTRANSITIONS is responsible for creating the token object for a
global view. gv .token holds all the data needed to search for consistent global states that proceed
gv . To achieve this purpose, the procedure searches for transitions whose label predicate can
be satisfied by the current local state of event eik. In other words, transitions which the state of
process Pi is not forbidding the predicate from becoming true. Note that a forbidding process
can either be a process whose known state does not satisfy the predicate or a process whose state
is inconsistent with gv .

In Line 2, the ParentProcess and ParentEventV C variables are set to the current process
and the vector clock of the event eik.V C respectively, the rest of the data in gv .token will be set
at the end of the procedure.

In Line 4, the procedure iterates over all transitions whose source is gv .q and target is not
gv .q (not a self-loop).

Then in Line 6, the set of forbidding processes for pred is computed and if Pi is not an ele-
ment in this set (i.e. local state of Pi satisfies the transition partially), an emptyOutgoingTransition
object is initialized with the transition id.

In Lines 8 –10, each index j in the depend and gcut vectors is updated with the maximum of
gv .gcut [j] and eik[j] to ensure that the token would search process Pj’s local history for events
that gv is not already aware of yet.

Then in Line 11, each conjunct in pred is evaluated against gv .gstate and then the conjuncts
along with the evaluations are set into OutgoingTransition.ConjunctsEvaluation.

In Line 12, the next process which this transition should visit is set to the forbidding process
with the smallest index. Note that this is the next target process for this OutgoingTransition
only, not for gv .token and that procedure SENDTONEXTPROCESS has optimized logic that
routes the token to processes in a manner that attempts to minimize visits between processes.

In Line 13, the event which the transition should check at the NextTargetProcess is set to
be the max of gv .gcut [NextTargetProcess] + 1 and eik.VC [NextTargetProcess], the reason
for using the max is to make sure that the OutgoingTransition will not target event that has
already been consumed.

And then the OutgoingTransition is added to gv .token.OutgoingTransitions. Finally, in
Line 17 the procedure SENDTONEXTPROCESS is invoked to decide which process and which
event the token as a whole should be sent to.

4.2.0.6 SENDTONEXTPROCESS (token t)

The purpose of SENDTONEXTPROCESS is to route the tokens between monitor processes with
the objective of evaluating all OutgoingTransition in t to either enabled or disabled. SEND-
TONEXTPROCESS is responsible for setting t.NextTargetProcess and t.NextTargetEvent.

23

Algorithm 3 Token Handler in Mi (1)
1: procedure CHECKOUTGONIGTRANSITIONS(GlobalView gv , event eik)
2: gv .token.ParentProcess← i
3: gv .token.ParentEventV C ← eik.VC

4: for each q′, pred st. ((gv .q 6= q′)) ∧ (gv .q
pred−−−→ q′) ∈ δ do

5: transition ← gv .q
pred−−−→ q′;

6: forbidding ←GETFORBIDDINGPROCESSES(gv , q′)
7: if Pi 6∈ forbidding then
8: let outgoingTransition be an empty transition token;
9: outgoingTransition.transition ← transition

10: outgoingTransition.gcut ← outgoingTransition.depend← max(gv .gcut , eik.VC)
11: outgoingTransition.ConjunctsEvaluation←GETCONJUNCTSWITHEVALUATION(pred, gv .gstate)
12: outgoingTransition.NextTargetProcess← forbidding[0]
13: outgoingTransition.NextTargetEvent ← max(gv .gcut [forbidding[0]] +

1, eik.VC [forbidding[0]])
14: gv .token.OutgoingTransitions← gv .token.OutgoingTransitions ∪ {outgoingTransition};
15: end if
16: end for
17: SENDTONEXTPROCESS(gv .token); gv .token.sent ← true;
18: end procedure

19: procedure RECEIVETOKEN(token t)
20: if (t.ParentProcess) = i then
21: let gv be the owner global view for t
22: for each OutgoingTransition tran ∈ t.OutgoingTransitions do
23: if tran.eval = predtrue then
24: SPAWNNEWGLOBALVIEW(tran, gv)
25: t.OutgoingTransitions← t.OutgoingTransitions \ {tran}
26: else if tran.eval = predfalse then
27: t.OutgoingTransitions← t.OutgoingTransitions \ {tran}
28: else if ∃k, 1 < k ≤ n : tran.gcut [k] < tran.depend[k] then
29: tran.NextTargetEvent← tran.gcut [k] + 1
30: tran.NextTargetProcess← Pk

31: end if
32: end for
33: if t.OutgoingTransitions = {} then
34: if gv .keepAfterFork = false then
35: GV ← GV \ {gv}
36: end if
37: else // there still exist tokens with pending evaluation
38: SENDTONEXTPROCESS(t)
39: end if
40: else // Mi is not the parent of the token
41: tokenReturned← false
42: while ∃f ∈ history : f.sn = t.NextTargetEvent do
43: //required event has happened
44: tokenReturned←PROCESSTOKEN(t, f)
45: if tokenReturned then break; end if
46: end while
47: if tokenReturned = false then
48: w tokens ← w tokens ∪ t
49: end if
50: end if
51: MERGESIMILARGLOBALVIEWS()
52: end procedure

24

The procedure will try to find a transition in t.OutgoingTransitions that can satisfy any
of the following ordered rules, if no transition is found that can satisfy the first three rules, the
procedure falls back to the last rule and returns the token back to its parent.

1. A transition with all conjuncts evaluated to true (i.e. enabled).

2. A transition targeting the current process.

3. A transition targeting a process other than the parent of the token and the current process.

4. If all of the previous rules are not satisfied, the token is sent back to the parent process.

After setting t.NextTargetProcess and t.NextTargetEvent, the current monitoring pro-
cess Mi sends t to Mt.NextTargetEvent. We note that SENDTONEXTPROCESS presents a heuristic
algorithm for routing tokens, and while routing each OutgoingTransition in t individually
would guarantee faster inspecting for each outgoing transition, it adds a significant communica-
tion overhead between monitor processes. Therefore, we decided to route transitions in bulk to
decrease communication overhead.

4.2.0.7 RECEIVETOKEN (token t) – Algorithm 3

When a monitoring process Mi receives a token object from Mj , it first checks if Pi is the parent
of the received token.

If Pi is the parent of t – Line 20:

t was created earlier by Pi to search for global states that can satisfy some transitions. When
Pi receives back the token, in Line 22, it iterates over all the transitions with the following rules:

• In Line 23, if the transition was evaluated to predtrue, then a new global view is created
(copied from the parent global view that created t) with the target monitor state of the
transition, and then the global state and global state cut are updated with tran.gstate and
tran.gcut respectively. If the new monitor state is a violation or satisfaction state, then the
program is notified. Then the transition is deleted from the set of outgoing transitions in t.

• In Line 26, if the transition was evaluated to predfalse, then the transition is deleted from
the set of outgoing transitions in t.

• In Line 28, if the transition is inconsistent which can occur when tran has collected one
or more recent events than the parent global view gv , then tran.NextTargetEvent and
tran.NextTargetProcess are set to target the inconsistent process, which might be Pi
itself.

In Line 35, if after applying the previous rules, the set of outgoing transitions in t is empty
and gv was marked to be deleted after forking, then gv will be removed from the set of all
global views. If the set of outgoing transitions in t is not empty, then SENDTONEXTPROCESS is
invoked to attempt to send the token to the next process that can satisfy the remaining transitions.
Note that SENDTONEXTPROCESS can determine that t should remain at Pi and then the gv will
be in the waiting state.

If Pi is not the parent of t – Line 40:

25

Algorithm 4 Token Handler in Mi (2)
1: procedure ADDEVENTTOTOKEN(OutgoingTransition tran, event e)
2: tran.gstate[i]← s(e)
3: tran.gcut[i]← e.sn
4: tran.depend← max(tran.depend, e.VC)
5: end procedure

6: procedure PROCESSTOKEN(token t, event e)
7: for each OutgoingTransition tran ∈ t.OutgoingTransitions do
8: if tran.NextTargetProcess = i ∧ tran.NextTargetEvent = e.sn then
9: ADDEVENTTOTOKEN(tran, e)

10: end if
11: end for
12: EVALUATETOKEN(t, e)
13: for each OutgoingTransition tran ∈ t.OutgoingTransitions do
14: if tran.eval = predtrue ∨ tran.eval = predfals then
15: tran.NextTargetProcess← t.ParentProcess
16: if t.ParentProcess = i then HANDLECOMPLETEDTRANSITION(tran); end if
17: else if tran.gcut is inconsistent then
18: /*find k: tran.gcut[k] < tran.depend[k]*/
19: tran.NextTargetEvent← tran.gcut [k] + 1
20: tran.NextTargetProcess← Pk

21: else // transition evaluation incomplete, need to visit other processes
22: /*find k: tran.ConjunctsEvaluation[k] = unset*/
23: tran.NextTargetEvent← tran.gcut [k] + 1
24: tran.NextTargetProcess← Pk

25: end if
26: end for

return SendToNextProcess(t)
27: end procedure

t was sent to Mi by t.ParentProcess looking for the earliest event eik that can satisfy at
least one of the outgoing transitions in t.OutgoingTransitions. In Lines 42–46, the mon-
itor loops through the history events invoking PROCESSTOKEN for each event starting with
t.NexrTargetEvent until the token is routed to another monitor process or the requested event
has not yet occurred. PROCESSTOKEN returns true if t was sent to another process. In Line 47,
if the event has not yet occurred then t is added to the set of waiting tokens.

Finally before the procedure terminates, in Line 51 Mi invokes procedure MERGESIMI-
LARGLOBALVIEWS that is responsible for merging global views that has same monitor automa-
ton state and belong to the same slice into one global view.

4.2.0.8 PROCESSTOKEN (token t, Event eik) – Algorithm 4

PROCESSTOKEN purpose is applying and evaluating the local state of eik to the transitions in t
that have both (1) Pi as its NextTargetProcess and (2) eik as its NextTargetEvent.

In Line 9, Mi invokes ADDEVENTTOTOKEN for the transitions that satisfy the above two
rules.

In Lines 2 –3 ,ADDEVENTTOTOKEN updates the transition’s gcut and gstate with the new
event. In Line 4 it also updates each index k in the transition’s depend vector with the maximum

26

of tran.depend[k] and e.VC [k]. The depend vector helps identify inconsistent processes in the
cut.

Afterwards in Line 12, PROCESSTOKEN invokes EVALUATETOKEN which updates the
ConjunctsEvaluations for each transition in t that has both (1) Pi as its NextTargetProcess
and (2) eik as its NextTargetEvent.

Afterwards, in Line 16 if any transition was evaluated to either predtrue or predfalse then
the transition’s NextTargetProcess will be set to t.ParentProcess. In Line 16, if the current
process is the parent of t, then procedure HANDLECOMPLETEDTRANSITION is invoked to either
spawn a new global view at the new discovered automaton state (if the transition is enabled) or
to delete the transition (if the transition is disabled). Else if the transition’s eval is set to unset,
then it is either because the transition is inconsistent and/or incomplete (i.e, some conjuncts have
not been evaluated yet).

In Lines 17 –20 if the transitions is inconsistent, then transition’s NextTargetProcess will
be set to the first inconsistent process found in the gcut vector clock.

In Lines 22 –24, if the transition is incomplete, then the transition’s NextTargetProcess
will be set to the first process that has an incomplete conjunct in the ConjunctsEvaluations
vector. After all transitions have been processed, Mi invokes SENDTONEXTPROCESS which
examines the new NextTargetProcess for each transition and attempts to find the next process
to send t to in order to minimize messages overhead and detection latency. SENDTONEXTPRO-
CESS returns true if the token was sent to another process and false otherwise. We note that
the strategy used in SENDTONEXTPROCESS is best effort in the sense that it attempts first to
return tokens that have at least one transition evaluated to predtrue to avoid detection latency.
However, in theory there might be an incomplete transition that would lead to a violation state
and better be checked first. As an optimization, SENDTONEXTPROCESS can be tuned to prefer
processing transitions with certain target monitor automaton states first.

4.2.0.9 EVALUATETOKEN(token t, Event e) – Algorithm 5

The purpose of this procedure is to set the conjuncts evaluation in each transition in t against the
global state constructed by the transition so far and also set the transition’s eval if possible.

In Line 4, Mi enumerates all transitions that satisfies all of the following:

• Pi participates in

• has Pi as its NextTargetProcess

• has e as its NextTargetEvent

• have not already been evaluated

For each enumerated transition, Mi checks if the conjunct(s) for Pi are satisfied by the tran-
sitions’ gstate.

In Line 6, if the conjuncts(s) are satisfied then the ith entry in ConjunctsEvaluation will
be set to predtrue. If not satisfied, in Line 9 the ith entry in ConjunctsEvaluation will be set
to predfalse.

27

Algorithm 5 Token Handler in Mi (2)
1: procedure EVALUATETOKEN(token t, event e)
2: flag ← false
3: for each transition tran ∈ t.OutgoingTransitions do
4: if (Pi participates in tran) ∧ (tran.NextTargetProcess = Pi) ∧ (tran.NextTargetEvent = e.sn) ∧
(tran.eval = unset) then

5: if EVAL(tran.ConjunctsEvaluations[i], tran.gstate[i]) then
6: tran.ConjunctsEvaluations[i]← predtrue
7: flag ← true
8: else
9: tran.ConjunctsEvaluations[i]← predfalse

10: end if
11: end if
12: end for
13: for each transition tran ∈ t.OutgoingTransitions do
14: if (Pi participates in tran) ∧ (tran.NextTargetProcess = Pi) ∧ (tran.NextTargetEvent = e.sn) ∧

(tran.eval = unset) then
15: if flag = true then //at least one transition evaluated true for ConjunctsEvaluations[i]
16: if tran.ConjunctsEvaluations[i] = predfalse then
17: tran.eval← predfalse
18: else if ∀k, 0 < k ≤ n : tran.ConjunctsEvaluations[k] = predtrue then
19: tran.eval← predtrue
20: end if
21: else
22: tran.ConjunctsEvaluations[i] = unset
23: tran.eval = unset
24: end if
25: end if
26: end for
27: end procedure

In Line 15 If at least one transition had predtrue for Pi’s conjuncts, then in Line 17 all the
transitions that had Pi’s conjuncts evaluated to predfalsewill have eval set to predfalse as well.
This is to ensure the order of events remains consistent, since if Mi was to enable a transition
based on event ejk, it should not enable another transition based on ejm where m ≥ k.

For example, consider the distributed computation in Fig 4.1, when the tokens object created
by M1 - after the occurrence of event e11 - is checking both outgoing transitions at P2, it will first
encounter event e21 which would enable the transition to q1. If the other transitions to q2 is not
disabled, then when event e22 occurs both transitions would be enabled at the same time. Which
is not correct when tracing the left most path in the lattice (that starts by advancing event e11).

In Line 19, if all the conjuncts in the enumerated transition are evaluated to predtrue, then
the transition’s eval will be set to predtrue. If the state of event e did not satisfy any transitions’s
conjuncts, then the evaluation of the conjuncts in the enumerated transitions will be set to unset
instead of predfalse to allow it to be processed for next events.

4.2.0.10 TERMINATE

Procedure TERMINATE is responsible for preparing the monitor process to termination, it kicks
off the following operations:

28

Figure 4.1: A computation, automaton and lattice for a distributed system with two processes
and an initial global states with all propositions set to false.

• Return all the waiting tokens in the set w tokens that are waiting for events beyond the
last event in the history vector.

• Inform other monitor processes that Pi has terminated and will not be producing events
beyond the last event in the history vector.

• Receiving program and monitor processes termination signals from other monitor pro-
cesses.

• Sending program and monitor processes termination signals to other monitor processes.

• Terminating the monitor if all other monitors have sent termination signals.

4.3 Monitor Algorithm Optimizations

In this section, we describe some optimizations that we applied to the proposed algorithm to
decrease the monitor communication overhead and monitor detection latency.

4.3.1 Aggregating token messages

Since a monitor process can have multiple global views sending and receiving token messages,
we attempt to send messages to other monitoring processes after all global views have finished
processing procedure PROCESSEVENT, and aggregate messages targeting the same monitor pro-
cess to decrease the communication overhead between monitor processes.

4.3.2 Avoiding duplicate global views

When a new event enables a self-loop transition for a global view and has the same set of possible
outgoing transitions as a previous event, we avoid both forking a new global view and invoking
CHECKOUTGOINGTRANSITIONS if there already exists a global view forked for checking the
same set of possibly enabled outgoing transitions for the previous event(s). This is inspired by
the slicing technique [20], since the new event is considered to be an element in the slice being
constructed by the preceding global view.

29

4.3.3 Avoid checking disjunctive transitions

Due to the design of our algorithm and its dependency on predicate detection, we were forced to
split transitions with disjunctive predicates into multiple transitions with conjunctive predicates
only. This resulted in possibly two automaton states having more than one transition between
them. Which could cause a global view to exert more effort trying to satisfy all these transitions
although they lead to the same automaton state, while in practice only satisfying one transition
suffices. Therefore, whenever a transition is enabled, we delete pending transitions that have the
same automaton state destination.

4.4 Monitoring Algorithm Analysis

In this section, we show the complexity analysis of the monitoring algorithm presented in sec-
tion 4.

4.4.1 Monitoring Messages Overhead

When a monitoring message (token) is created by a global view to check the satisfaction of some
transitions, the monitoring processes are responsible for routing the token until all transitions
are either enabled or disabled. We argue that the routing complexity which we measure by the
maximum number of visits a token makes (until it returns to the parent, and then either gets
deleted or the token’s parent event is changed) depends on the rate of inconsistencies that occur
between processes. This can be inferred from the rules with which SENDTONEXTPROCESS

procedure operates. The procedure first tries to return the token to its parent if any transition in
the token is enabled. If not, it attempts to keep the token at the current monitor process if any
transition is targeting it. Then finally if the previous two conditions are not met, it sends the
token to a process targeted by at least one transition. If none is found, the token is returned to its
parent. This indicates that in the worst case happens when a token bounces between monitoring
processes (before returning to its parent) is O(E) times, where E is the total number of events
in the distributed systems.

This could happen if the token has a transition that is targeting a process that is repeatedly
inconsistent with other process(es) but not the parent (since if a token revisits the parent for
inconsistencies, the parent event is updated and hence the token should be calculated as overhead
for the new event), thus the token keeps jumping between the inconsistent processes until either
the transition is satisfied or the parent is inconsistent, and finally the token returns the parent.
Therefore, it is expected that as the communication frequency decreases, and consequently the
inconsistency between processes decreases, the number of messages exchanged should decrease.

The number of tokens created at a monitoring process depends on the number of global
views created. The latter depends on the communication pattern between the program processes
(frequency of inconsistencies) and on the trace produced by the program. Whether the program
generates events that cause the monitor process to stay at the same automaton state, or jumps
between states. Therefore, the best case for the number of global views created per monitor
process is O(1), while the worst case is O(E). However, we note that the final number of global
views would be much less than that since the procedure MERGESIMILARGLOBALVIEWS would
eventually merge global views with the same automaton state. Therefore, the final number of
global views is bounded by the number of automaton states in the automaton.

30

4.4.2 Memory Overhead

Memory overhead in the algorithm can be attributed to two things: (1) the growing events list
maintained by the algorithm, (2) the global views created.

4.4.2.1 Events List

An event e can easily be removed from the event list at a monitoring process Mi, if an extra
type of communication between monitors is introduced to ensure all global views at all moni-
tor nodes have gcut[i] greater than e.VC [i]. We do not currently implement this optimization.
Therefore, the size of the events list at each monitoring process is bounded by the number of
events generated by the program process.

4.4.2.2 Global Views

As noted in the previous subsection, the number of global views created depends mainly on the
program execution. However, as the number of program processes increase, the number of global
views should not be affected. This is due to the fact that global views are created for events and
their tokens are routed between processes.

4.5 Proof of Correctness

In order to proof the correctness of our proposed technique, we need to proof that the algorithm
is deadlock-free, sound and complete.

4.5.1 Deadlock-Freedom

In this section, we present the proof of the deadlock freedom property of Algorithm 1.

Lemma 1 A token t created by Mi and sent out to other processes, will eventually return to Mi

in finite time.

Proof 1 Let’s assume that t never returns to Mi, then it is either waiting indefinitely at some
monitor process Mj or it is in a continuous send/receive state between other processes.

For a token to wait indefinitely at some process, this implies that t.NextTargetEvent is
equal to a number greater than the sequence number of the last event at Pj . This is a contradiction,
since in procedure TERMINATE when the Pj sends the termination event to Mj , the latter sets all
its conjuncts evaluation of the waiting tokens to false and sends them out to the next process or
their parent (depending on the transitions state). And since we assume that all our processes are
terminating processes, then returning all waiting tokens is bound to happen.

According to procedure SENDTONEXTPROCESS, t is sent out to a monitor process Mi ac-
cording to the following rules:

31

1. Mi is the parent of t and there exist at least one enabled transitions.

2. Mi is the current process at which t reside, and at least one transition is still searching for
an event that can enable it.

3. Mi is targeted by at least one transition since the transition is inconsistent or incomplete.
(Mi might be the parent of t)

With every call of PROCESSTOKEN, the NextTargetEvent and NextTargetProcess of each
transition are updated to reflect the state of the transition, and then the NextTargetEvent and
NextTargetProcess of t are set according to the previous rules. Let’s imagine that monitor
process Mk is currently hosting t while it is waiting for the next event ex that can enable its
conjuncts in at least one transition, when the next event occurs which is a receive event from
Pj , all the transitions will be in inconsistent state with process Pj (since t has outdated informa-
tion about Pj), so t is sent to Mj targeting the inconsistent event which is guaranteed to have
occurred. When Mj receives t, it looks up the target event and updates the transitions and in-
vokes SENDTONEXTPROCESS which sends back t to Mk with target event ex+1. If Pk keeps on
receiving events from Mj and Pk’s conjuncts participating in the transitions never become true,
then t will keep on being sent back and forth between Mk and Mj , however since the sequence
number of the NextTargetEvent is always incremented by updating gcut [k] + 1, then when
either Pk terminates, the conjunct will be set to false, and hence the sending/receiving cycle will
be broken. We note that if the parent process of t is in an inconsistent state, then when t returns
to the monitor process of the parent Mi, the new event might delete t or disable some transition
or add new transitions.

Lemma 2 A monitor process Mi never deadlocks.

Proof 2 Each monitor process starts by: (1) sending out tokens to forbidding processes, and then
(2) the monitor process waits to receive the tokens back. As shown in the previous lemma, each
token returns in finite time, hence the routine is guaranteed to never deadlock.

Theorem 1 Algorithm 1 eventually terminates when it monitors a terminating program.

Proof 3 First, we note that our algorithm is designed for terminating programs and that a ter-
minating program only produces finite computations, hence producing a finite number of local
events in all normal processes. In order to prove the lemma, let us imagine that when the pro-
gram terminates, it sends a stop signal to all normal and monitor processes. When such a signal
is received by a normal process, it will not produce new events. When received by a monitor
process Mi, it starts processing all the events stored in its history vector. There can be two cases
with respect to the waiting tokens list w tokens in Mi. If processing events in history results in
the truthfulness of a local proposition for which there exists a waiting token in w tokens , then
the token will be sent back to the owner of the token with true valuation for the local proposition.
Otherwise, if history becomes empty, then all waiting tokens should be sent back to the owners
with value false for the corresponding propositions. This would simply result in termination of
all pending actions and, hence, the algorithm.

32

Figure 4.2: Lattice, automaton and computation for a distributed system with two processes and
an initial global states with all propositions set to false.

4.5.2 Soundness and Completeness

In this section, we show that the algorithm presented is sound and complete. First, we present
the following definitions that help us describe the oracle’s lattice:

Definition 16 (A lattice path π) A path in the oracle’s lattice is a sequence of nodes, each node
representing a global state. Each global state is the result of exactly one process advancing its
vector clock on one of the node’s immediate parent state.

For example in the lattice in Fig 4.2, the final node 〈a, b〉 with VC = [1, 1] is the result of
process P2 advancing its state from 〈a,¬b〉 with VC = [1, 0] or P1 advancing state from 〈¬a, b〉
with VC = [0, 1].

Definition 17 (Pivot global state gqp) A pivot global state is a global state that exists as a node
in the oracle’s lattice and is labelled by the oracle with an automaton state q that is different
than any of gqp’s immediate parent nodes in the lattice.

For example in the lattice in Fig 4.2, nodes 〈a,¬b〉 and 〈a, b〉 are pivot global states with monitor
state q1 since they both have a parent node with a different monitor state.

Definition 18 (Process Progress Path πi) For each process in the distributed system, there exist
a progress path πi in the oracle’s lattice that attempts to advance the global state on Pi only, until
Pi receives a message from another process Pj which forces πi to advance on both processes at
the same time. Afterwards the path splits into multiple paths, where one of these new paths takes
the role of πi by advancing the global state on Pi only, if possible.

To prove the soundness of the algorithm we need to prove that any path followed by a monitor
process Mi to detect a pivot global state gqp at automaton state q is a path in the oracle’s lattice.
On the other hand to prove the completeness of the algorithm we need to prove that every path
in the lattice that detects pivot global states is traced in at least one monitor process.

4.5.2.1 Soundness

Lemma 3 If an event ei received by the monitor process Mi participates in a pivot global state
gqp in the oracle lattice, Mi will eventually detect gqp.

33

Proof 4 When the monitor process Mi receives the event ei, the event is added to the global
view’s gv .gcut and gv .gstate which might cause gcut to be inconsistent (out of date) with some
processes in gstate array. This inconsistency occurs since the new event might have more up-
dated information about other processes than gcut , which indicates that Pi has received messages
from other processes. We show our proof for both cases, consistent gcut and inconsistent gcut .

• If gcut is consistent (6 ∃k, 0 < k ≤ n : gv .gcut [k] < e.VC [k]), there are three possibilities
for the next state of the lattice:

1. There exist only an enabled self-loop transition:
Which indicates that ei does not participate in any pivot global state, since there is no
outgoing transition to a new state.

2. There exist only an enabled outgoing transition:
gv will advance to the new monitor state, thus detecting the pivot global state and
advancing πi on Pi . This is guaranteed in Algorithm 2 – Line 21, where the monitor
state of gv is advanced and gv .keepAfterFork is also set to true to ensure that if
there are next possible outgoing transitions, gv will not be deleted.

3. There exists an enabled self-loop or an enabled outgoing transition in addition to a
possibly enabled outgoing transition:
After advancing to the new monitor state in the case of an enabled outgoing transition,
or staying in the same monitor state in the case of enabled self-loop, gv will send a
token object that returns in finite time as shown in lemma 1, if the outgoing transition
is enabled then gv forks a new global view for the newly detected pivot global state.
If token returns with a disabled or an inconsistent state for the outgoing transition,
then ei does not participate in a pivot global state.

Note that it is not possible to have a consistent global state with no enabled self-loops or
enabled outgoing transitions.

• If gcut is inconsistent, i,e ∃k, 0 < k ≤ n : gv .gcut [k] < e.V C[k].V C, then
gv .keepAfterFork will be set to false. Afterwards, there are three options:

1. There are no possible outgoing transitions:
This indicates that the event does not participate in any pivot global state, however, gv
stays in the same automaton state since the automaton is complete, there must exist
a possibly enabled self-loop. We do not attempt to fix this global state inconsistency
since the monitor automaton state is not changed. The global state in this lattice
path may have inconsistent data for other processes but the monitor automaton state
is correct. Also, the inconsistent nodes will be corrected once there is a possibly
enabled outgoing transition. Hence, gv will have with the same monitor state for ei.

2. There exists at least one possibly outgoing transition:
This indicates that the event may participate in a pivot global state, then when CHECK-
OUTGOINGTRANSITIONS is invoked and gv .token is created and sent out to other
processes with the possibly enabled transitions, gv .token may return back to Pi with
at least one enabled transition thus detecting pivot global state(s).

The previous breakdown for the algorithm shows that Mi will always detect if a received event
participates in a pivot global state.

34

Theorem 2 A monitor process Mi running at Pi always traces progress path πi.

Proof 5 WhenMi receives an event it attempts to maintain gv as long as there is an enabled self-
loop transition. If there are no enabled self-loop transitions, then as shown in lemma 3 at least
one outgoing transition must be enabled and at least one new global view will be forked from gv
and then gv will be deleted. The newly created global view will continue tracing progress path
πi in a similar manner.

Theorem 3 Any path followed by a monitor process Mi to detect a pivot global state gqp at
automaton state q is a path that exists in the oracle’s lattice.

Proof 6 Since the oracle lattice include every possible execution path for the program, then any
path detected by a monitoring process that has consistent global states nodes exists in the oracle
lattice. As shown in the previous lemmas, all global states detected by a monitoring process are
consistent. Therefore, any path detected by a monitoring process is a path in the oracle lattice.

4.5.2.2 Completeness

Theorem 4 Every pivot global state in the oracle lattice is detected by at least one monitor
process.

Proof 7 We will prove this theorem by contradiction, let’s assume that there is a pivot global
state that is undetected by any monitor process. If this pivot global state coincide with a process
progress path πi then there is a contradiction with Theorem 2 since the monitor process Mi

must have detected this pivot global state. If the pivot global state node is spawned by multiple
process progress paths, then as shown in Theorem 2 all the monitor processes tracing these
process progress paths will fork a new global view that detects the pivot global state.

35

Chapter 5

Experimental Results

In this section, we present the results of a set of experiments to evaluate our monitoring algo-
rithm. Section 5.1 introduces our case study, while Sections 5.2 and 5.3 describe the experimental
settings and result, respectively.

5.1 Case Study

To illustrate the resilience of our proposed algorithm, we ran our monitoring algorithm on a
network of iOS devices. Each device is running a simple program that updates local variables
and communicates with other devices using peer to peer communication. The program running
on the devices loads a trace file containing the wait time between events. Events are either a
variable’s value change (internal) event or a send event to other processes. A process can be idle
or doing computations that does not affect the local propositions during the wait time. The wait
time between events is generated using normal distribution, we show results for different values
of mean and sigma. Each program running on process Pi has two propositions: Pi.p and Pi.q,
the values of the propositions are also read from the trace file.

We generated the automaton for six different LTL3 properties to demonstrate how the com-
plexity of the automaton affects the performance of the monitor. Note that that automaton com-
plexity differs according to the number of propositions and processes participating in the prop-
erty. As the number of processes and propositions increase, the number of transitions increase,
also the number of conjuncts in the predicates labelling the transitions increase.

• Property A
�((P0 .p ∧ P1 .p)U (P2 .p ∧ P3 .p))

That is, it is always the case that proposition p for processes P0 and P1 should stay true until
the propositions p for processes P2 and P3 are true concurrently. For simplicity, fig. 5.2a
shows the LTL3 monitor automaton for Property A with only 2 processes.

• Property B
♦(P0 .p ∧ P1 .p ∧ P2 .p ∧ P3 .p)

That is, eventually, the propositions for all the processes becomes true concurrently. For
simplicity, fig. 5.2b shows the LTL3 monitor automaton for Property B with 2 processes.
We note that since the automaton only includes one outgoing transition, the overhead
should be relatively lower than other automatons overhead.

36

• Property C
�((P0 .p)U (P1 .p ∧ P2 .p ∧ P3 .p))

That is, it is always the case that proposition p for process P0 should stay true until propo-
sition p for processes P1, P2 and P3 are all true concurrently. We note that this automaton
resembles the automaton for property A, therefore we skip showing the automaton dia-
gram. The main difference between property A and C is that for property A, processes P0

and P1 will have a higher load than the other two processes since the propositions for P2

and P3 would only need to be checked if the propositions at P0 and P1 are false. However,
automatons A and C for the 2 processes and 3 processes experiments are identical.

• Property D

�((P0 .p ∧ P1 .p ∧ P2 .p ∧ P3 .p)U (P0 .q ∧ P1 .q ∧ P2 .q ∧ P3 .q))

That is, it is always the case that the propositions p for process P0, P1, P2 and P3 must
remain true until the proposition q for process P0, P1, P2 and P3 become true concurrently.
For simplicity, fig. 5.2c shows the LTL3 monitor automaton for Property A with 2 pro-
cesses. We note that all processes appear equally in all outgoing transitions which indicate
fair overhead among processes.

• Property E

♦(P0 .p ∧ P1 .p ∧ P2 .p ∧ P3 .p ∧ P0 .q ∧ P1 .q ∧ P2 .q ∧ P3 .q)

That is, eventually, all the propositions for all the processes become true. Fig. 5.3a shows
the LTL3 monitor automaton for Property E with 2 processes. We note that since the only
outgoing transition is a conjunction between all the propositions, then a process would
only send a message if locally both propositions are true.

• Property F

�((P0 .pU (P1 .p ∧ P2 .p ∧ P3 .p) ∧ (P0 .q U (P1 .q ∧ P2 .q ∧ P3 .q)))

That is, it is always the case that (1) the propositions p for process P0 must remain true
until the proposition p for process P1, P2 and P3 become true concurrently, and (2) the
propositions q for process P0 must remain true until the proposition q for process P1,
P2 and P3 become true concurrently. For simplicity, fig. 5.3b shows the LTL3 monitor
automaton for Property A with 2 processes.

We note that properties A, C and D can be reduced to a simple automaton that verifies that
all propositions are not false at the same time, however we use the complicated version of the
automaton for two reasons: (1) it provides more information as q1 is a q? state, and (2) it provides
a more complicated structure to test our algorithm.

The variable valuation change events were designed such that there would be a path in the
execution lattice that would lead to a final state.

Table 5.1 shows the number of transitions in the generated automatons for each property.
Also Fig. 5.1a and Fig. 5.1b shows the graphical representation for all transitions and outgoing
transitions only count respectively.

37

Table 5.1: Number of transitions per automaton

2 3 4 5
Number of
Processes Total

Out-
going

Self-
loops

Total
Out-
going

Self-
loops

Total
Out-
going

Self-
loops

Total
Out-
going

Self-
loops

Property
A

7 4 3 11 7 4 15 11 4 21 16 5

Property
B

4 1 3 5 4 1 6 1 5 7 1 7

Property
C

7 4 3 11 7 4 15 11 4 19 13 6

Property
D

15 11 4 27 22 5 43 35 7 63 56 7

Property
E

6 1 5 8 1 7 10 1 9 12 1 11

Property
F

31 23 8 49 37 12 67 51 16 85 65 20

Table 5.2: Technical specification of the iOS devices

Device CPU Memory

iPhone 5s
Dual-core 1.3 GHz Cyclone
(ARM v8-based) 1 GB RAM DDR3

iPad mini 3
Dual-core 1.3 GHz Cyclone
(ARM v8-based) 1 GB RAM DDR3

iPad Air 2 Triple-core 1.5 GHz 2 GB RAM
iPhone 6 (simulator) Dual-core 1.4 GHz Typhoon (ARM v8-based) 1 GB RAM DDR3

5.2 Experimental Settings

We tested our distributed monitoring algorithm on a heterogeneous collection of iOS devices
connected by wifi. The experiments included 2 iPhone 5S devices, and 1 iPad Air 2 and 1 iPad
mini 3 and 1 iPhone 6 simulator, Table 5.2 shows the specifications for the used devices.

The algorithm is implemented in C and was integrated with Objective-C code that is re-
sponsible for loading the generated traces, updating the variables and communicating with other
devices. We consider the following experimental parameters:

• LTL3 Properties A, B, C, D, E and F.

• Number of iOS devices; i.e., 2, 3, 4 and 5 devices.

• Normal distribution parameters (Evtµ and Evtσ) for the wait time of variable’s valuation
change events.

• Normal distribution parameters (Commµ andCommσ) for the wait time of processes com-
munication events. We note that when a communication event occurs, the program at Pi
sends a message to each other process in the distributed system.

We measure the following metrics:

38

0

10

20

30

40

50

60

70

80

90

2 3 4 5

All	Transitions	Count	Per	Property

Property	 A	all	transitions	 count

Property	 B	all	transitions	 count

Property	 C	all	transitions	 count

Property	 D	all	transitions	 count

Property	 E	all	transitions	 count

Property	 F	all	transitions	 count

(a) All transitions (outgoing and self-loops) count per experiment size for each property.

0

10

20

30

40

50

60

70

2 3 4 5

Outgoing	Transitions	Count	Per	Property

Property	 A	outgoing	transitions	 count

Property	 B	outgoing	 transitions	 count

Property	 C	outgoing	 transitions	 count

Property	 D	outgoing	 transitions	 count

Property	 E	outgoing	transitions	 count

Property	 F	outgoing	transitions	 count

(b) Outgoing transitions count per experiment size for each property.

Figure 5.1: Transitions count per property

• Total number of monitoring messages sent from all monitor processes.

• Average delay in terms of the mean number of events delayed at the monitor process wait-
ing for other monitor processes.

• Percentage of extra monitoring time needed to process the program events versus the actual
program time. To normalize this metric with respect to the trace complexity, we divide the
percentage by the total number of global states found in the execution.

• The total number of global views created in all the monitoring processes.

We have replicated the experiments three times with different randomly generated traces and
averaged the results.

39

true

(a) Property A for 2 processes

true

(b) Property B for 4 processes

true

p0.p ∧ p1.p ∧ ¬p0.q

p
0 .p ∧ p

1 .p ∧ ¬p
0 .q

p
0 .p ∧ p

1 .p ∧ ¬p
1 .q

p0.q ∧ p1.q

¬p0.p
∧ ¬p0.q

¬p0.p ∧ ¬p0.q

p
0 .q ∧ p

1 .q

¬p0.p ∧ ¬p1.q

¬p0.p
∧ ¬p1.q¬p0.q

∧ ¬p1.p

¬p1.p ∧ ¬p1.q

¬p1.p
∧ ¬p1.q

p0.p ∧ p1.p ∧ ¬p1.q

(c) Property D with 2 processes

Figure 5.2: Monitor Automaton for properties A, B and D

5.3 Results

5.3.0.1 Monitoring Communication Overhead

• (Property A) As can be seen in Fig 5.4a, the number of monitoring messages is growing
linearly with the number of processes and events. This indicates that the monitor is able to
scale well with the number of events generated by the program.

• (Property B) As can be seen in Fig 5.4b, the growth in the number of monitoring messages
is sub-linear to the number of all events. This is because for the only outgoing transition
from the initial state, monitor processes do not have to check other processes unless their
local proposition is evaluated to true.

• (Property C) As can be seen in Fig 5.4c, similar to property A, the number of messages is
growing linearly with the events.

• (Property D) As can be seen in Fig 5.5a, the number of messages is growing linearly with
the events.

40

true

(a) Property E for 4 processes

q1

q0

q3

q2
q⊥

p0.q ∧ p1.p ∧ ¬p1.q

p0.p ∧ p1.q ∧ ¬p1.p

p0.p ∧ p0.q ∧ ¬p1.p

p0.q ∧ p1.p ∧ ¬p1.q

p0.q ∧ p0.p ∧ ¬p1.q

p0.q ∧ p1.p ∧ p1.q

p0.q ∧ p1.p ∧ p1.q

p0.q ∧ p1.q ∧ p0.p

p1.p ∧ p1.q ∧ ¬p0.q

p1.q ∧ p0.p ∧ ¬p0.q

1

p0.q ∧ p1.p ∧ ¬p1.q

p0.q ∧ p0.p ∧ ¬p1.q

¬p0.p ∧ ¬p1.p

¬p0.q ∧ ¬p1.q

p0.q ∧ p1.p ∧ ¬p1.q

p1.p ∧ p1.q ∧ ¬p0.q

p1.q ∧ p0.p ∧ ¬p0.q

p1.p ∧ p1.q ∧ ¬p0.q

p0.q ∧ p1.p ∧ p1.q
¬p0.q ∧ ¬p1.q

¬p0.p ∧ ¬p1.p

¬p0.p ∧ ¬p1.p

¬p0.q ∧ ¬p1.q

p0.q ∧ p1.p ∧ p1.q

p0.q ∧ p1.q ∧ p0.p

p1.p ∧ p1.q ∧ ¬p0.q

¬p0.q ∧ ¬p1.q

¬p0.p ∧ ¬p1.p
p0.p ∧ p1.q ∧ ¬p1.p

p0.p ∧ p0.q ∧ ¬p1.p

(b) Property F for 2 processes

Figure 5.3: Monitor Automaton for properties E and F

• (Property E) As can be seen in Fig 5.5b, the growth is similar to the growth of property B,
since both properties have only one outgoing transition.

• (Property F) As can be seen in Fig 5.5c, the number of messages is growing linearly with
the events.

We argue that since the number of messages grows linearly with the number of events, one
can piggyback the monitoring messages on the processes communication and decrease the num-
ber of monitoring messages significantly.

5.3.0.2 Detection Latency

In Fig. 5.6a and Fig 5.6b, we use the following formula to calculate the delay time percentage
per global state:

41

0

0.5

1

1.5

2

2.5

3

2 3 4 5

Lo
g	
Sc
al
e

Number	of	Processes

Events Monitor	Messages

(a) Property A Monitoring Messages with Commµ = 3sec, Commσ = 1sec, Evtµ = 3sec and Evtσ =
1sec

0

0.5

1

1.5

2

2.5

3

2 3 4 5

Lo
g	
Sc
al
e

Number	of	Processes

Events Monitor	Messages

(b) Property B Monitoring Messages with Commµ = 3sec, Commσ = 1sec, Evtµ = 3sec and Evtσ =
1sec

0

0.5

1

1.5

2

2.5

3

2 3 4 5

Lo
g	
Sc
al
e

Number	of	Processes

Events Monitor	Messages

(c) Property C Monitoring Messages with Commµ = 3sec, Commσ = 1sec, Evtµ = 3sec and Evtσ =
1sec

Figure 5.4: Messages Overhead for properties A,B and C

((MonitorExtraTime/ProgramTime) ∗ 100)/TotalGlobalStatesCreated

The purpose of this formula is to capture normalized delay in terms of time instead of delayed
events. Monitors are expected to terminate with the program, however, in our experiments, we
ran across experiments whose monitoring lasted more than the program time due to the program

42

0

0.5

1

1.5

2

2.5

3

2 3 4 5

Lo
g	
Sc
al
e

Number	of	Processes

Events Monitor	Messages

(a) Property D Monitoring Messages with Commµ = 3sec, Commσ = 1sec, Evtµ = 3sec and Evtσ =
1sec

0

0.5

1

1.5

2

2.5

3

2 3 4 5

Lo
g	
Sc
al
e

Number	of	Processes

Events Monitor	Messages

(b) Property E Monitoring Messages with Commµ = 3sec, Commσ = 1sec, Evtµ = 3sec and Evtσ =
1sec

0

0.5

1

1.5

2

2.5

3

2 3 4 5

Lo
g	
Sc
al
e

Number	of	Processes

Events Monitor	Messages

(c) Property F Monitoring Messages with Commµ = 3sec, Commσ = 1sec, Evtµ = 3sec and Evtσ =
1sec

Figure 5.5: Messages Overhead for properties D,E and F

execution that resulted in a large number of global states.

In Fig. 5.7a and Fig 5.7b, we show the average number of events queued (delayed) at the
monitor processes while the monitor was processing final events.

Both graphs show clearly that the increase in the delay is significant as the number of pro-
cesses increase for properties A,C,D and F, while properties B and E have a linear growth in the

43

0

1

2

3

4

5

6

7

8

9

2 3 4 5

De
la
y	
Ti
m
e	
pe

r	G
V	

Number	of	Processes

Property	A

Property	B

Property	C

(a) Delay measured as the extra time percentage required by the monitor to detect final state.

0

5

10

15

20

25

2 3 4 5

De
la
y	
Ti
m
e	
pe

r	G
V	

Number	of	Processes

Property	D

Property	E

Property	F

(b) Delay measured as the extra time percentage required by the monitor to detect final state.

Figure 5.6: Delay Time Percentage

delay. This can be attributed to the simple design of these two properties leading to lower number
of spawned global states.

Also, the increase in the delay as the number of processes increase can be attributed to our
algorithm design that attempts to decrease the communication overhead (by routing all token’s
transitions together and aggregating global views tokens in send messages) on the expense of the
delay.

5.3.0.3 Memory Overhead

Fig. 5.8a and Fig 5.8b show the memory overhead represented in the total number of global views
created in all processes for all properties. As can be seen, the general trend is that the growth is
linear with the number of processes, which indicates that the memory usage of the algorithm is
scalable as the number of processes increase. Also, the graphs indicate that the complexity of the
automaton affects the number of global views created. For example, properties B and E have the
least total number of global views, this can be attributed to their simple automaton shape (only
one outgoing transition). While more complicated automatons such as property F automaton (85
transitions for the 5 processes experiment) has significant higher number of global views.

44

0

5

10

15

20

25

30

35

2 3 4 5

De
la
ye
d	
	E
ve
nt
s

Number	of	Processes

Property	A

Property	B

Property	C

(a) Delay measured as the average number of events queued while processing final events.

0

5

10

15

20

25

30

2 3 4 5

De
la
ye
d	
Ev
en

ts

Number	of	Processes

Property	D

Property	E

Property	F

(b) Delay measured as the average number of events queued while processing final events.

Figure 5.7: Delayed Events

5.3.0.4 Communication Frequency

Fig. 5.9a shows the effect of varying the communication frequency on messages overhead for
the 4 processes experiment running property C. As can be seen the number of events decrease
when the communication frequency decreases since receive events are counted along with the
total events because receive events affects the vector clock of the receiving process. As a result,
the messages overhead also decreases. However, another factor contributes to the decrease in the
number of messages overhead, which is the fact that less communication means less inconsistent
global views leading to fewer messages exchange between monitors to fix the inconsistent states.

Fig 5.9b shows the effect of varying the communication frequency on the delay for the 4
processes experiment running property C. As can be seen as the communication frequency de-
creases, the delay decreases as well, since fewer events are inconsistent with local global views
and processed directly without waiting for other monitors to fix the inconsistency.

We note that the delay is significantly larger for the no communication experiment since as the
communication between processes disappear, any event e at process Pi is considered concurrent
with event f at process Pj . Which shows that absence of communication affects delay as much
as the abundance of communication does. This also shows that must be an optimum frequency
of communication that optimizes the delay and communication overhead.

Fig 5.9c shows the effect of varying the communication frequency on the total number of
global views created for the 4 processes experiment running property C. As can be seen the total
number of global views is generally increasing as the frequency of communication decreases.

45

0

5

10

15

20

25

2 3 4 5

To
ta
l	G
lo
ba

l	V
ie
w
s	

Number	of	Processes

Property	A	

Property	B	

Property	C	

(a) Memory overhead measured as the total number of global views created through out the experiment.

0

5

10

15

20

25

2 3 4 5

To
ta
l	G
lo
ba

l	V
ie
w
s	

Number	of	Processes

Property	D	

Property	E

Property	F	

(b) Memory overhead measured as the total number of global views created through out the experiment.

Figure 5.8: Memory Overhead

This is due to the increased width of the execution lattice as more events are concurrent, therefore
more global views are created to explore the paths in the lattice.

46

0

0.5

1

1.5

2

2.5

commMu=	3,	eventMu=	3 commMu=	6,	eventMu=	3 commMu=	9,	eventMu=	3 commMu=	15,	eventMu=	3 No	comm,	eventMu	=	3

Lo
g	
Sc
al
e

Total	events Total	messages

(a) Varying communication frequency effect on monitoring messages for 4 processes running property C.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

commMu=	3,	eventMu=	3 commMu=	6,	eventMu=	3 commMu=	9,	eventMu=	3 commMu=	15,	eventMu=	3 No	comm,	eventMu	=	3

Delayed	Events	(Log	Scale) Delay	Time	%	per	GS	(Log	Scale)

(b) Varying communication frequency effect on delay for 4 processes running property C.

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

commMu=	3,	eventMu=	3 commMu=	6,	eventMu=	3 commMu=	9,	eventMu=	3 commMu=	15,	eventMu=	3 No	comm,	eventMu	=	3

Lo
g	
Sc
al
e

Total	Global	Views	

(c) Varying communication frequency effect on memory measured as the total global views created
through out the 4 processes experiment running property C.

Figure 5.9: Communication Frequency

47

Chapter 6

Related Work

In this chapter we discuss the related work for the three different aspects of this work:

• Formal Verification

• Distributed Systems Verification

• Runtime verification with Linear Temporal Logic

6.1 Formal Verification

6.1.1 Verification Methods

The taxonomy in Fig. 6.1 shows the two types of formal verification: online and offline. In Static
Analysis [27], the source code for the program is analyzed against all possible inputs to ensure a
certain correctness property is satisfied. For example, to check a program is free of the division
by zero bug, all possible inputs for the division operator will be generated and tested. A good
static analysis technique would only consider the inputs that can actually be passed on to the
division operator not all possible values for the operands. Static analysis tools are languages
specific and can not reason about pointers.

Unlike static analysis, Model Checking [27] deals with the model of the program, not the
code. A model for a program typically consists of states and transitions, where states describe
the program state, variables, and stack while the transitions describe how the program advances
from a state to another. Model checking algorithms verifies recursively that all the states reach-
able from the initial state satisfy the correctness property and provides a counter-example if the

Formal Verification

Runtime Verification

Automata
Based

Rewriting
Based

Offline Verification

Theorem ProvingExecution Trace
Verification

Model CheckingStatic Analysis

Figure 6.1: Formal Verification Taxonomy

48

model does not conform to the property. Model checking suffers from state-space explosion for
relatively large programs. Also model checking accuracy depends on the model accuracy, i,e, if
a system model representation is incorrect, model checking will yield incorrect results.

In Execution Trace verification the execution trace of a terminated program is passed on to
the verification algorithm. The algorithms verify the execution trace conforms to the correctness
property. Note that the verification algorithm only checks the execution path executed by the
program, not every possible execution path as in model checking or static analysis. Since exe-
cution trace verification is an offline technique, there is no way to rectify the incorrect behavior
of the program. Also, it can only detect incorrect behavior if they appear in the trace, i,e, some
bugs may go unnoticed since they have not been executed.

Theorem Proving [14] aims at verifying that an implementation satisfies a correctness prop-
erty through mathematical reasoning. The implementation and the correctness property are both
expressed as logical formulas and an equivalence or implication relation between them is proved.
Theorem provers reason in the syntactic domain through constraints on states, unlike model
checkers which reason in the semantics domain through enumerating all possible states, theorem
provers are better suited for data-intensive programs where model checkers run into state-space
explosion problems [23]. However, theorem provers suffer from the lack of complete automation,
language limitations such as lack of pointers support, proofs are large and difficult to understand
and lastly practical systems that can be efficiently represented by logical formulas are limited.

Runtime Verification is considered a nice tradeoff between ad-hoc testing and heavy tech-
niques such as model checking and theorem proving. Runtime verification is a lightweight tech-
nique, where the verification algorithm runs in parallel with the program under scrutiny. The
algorithm reads the events that occur in the program immediately and analyzes the state of the
program with respect to the correctness property. Since the verification occurs in runtime, the
verifying algorithm can issue warnings to the program to rectify/terminate the incorrect behavior.
However, as with execution trace verification, runtime verification only inspects execution paths
that occurred. So it may fail to detect a violation to the correctness property that requires specific
scenario to occur.

Linear Temporal Logic (LTL) is used heavily in runtime verification as it is best suited to
model infinite execution traces. In [13], the authors present a technique to monitor programs
for an LTL property using formula rewriting where the LTL formula consumes each state in the
trace and produces a new formula, and at the end of the trace, the formula should be evaluated
to either true or false. In [4], the authors present a technique to synthesize a deterministic finite
state machine given an LTL3 property, such that the FSM can identify the trace as satisfying or
falsifying a property as early as possible.

6.1.2 Distributed Systems Formal Verification

Formal verification of distributes systems is crucial for many systems [17, 16, 24] especially
safety critical systems where the non-determinism nature of distributed systems can be catas-
trophic if not anticipated. Therefore, critical systems usually undergo both online and offline
verification next to other mechanisms such as redundancy and diversity.

49

6.2 Distributed Systems Runtime Verification

In this subsection, we describe the different parameters that affect the design of distributed sys-
tems verification.

6.2.1 Online Versus Offline

In online monitoring, the monitor(s) are running alongside the monitored program nodes and are
expected to detect violation/satisfaction to the correctness properties as soon as they occur.

Offline monitoring takes place after the distributed program has terminated. Offline monitor-
ing is best used for testing purposes, where the program is executed many times with different
inputs and then the test logs are processed by the monitor(s). Usually, in offline monitoring,
a single monitor is enough since no runtime requirements are present, however in some cases
where the terminated program traces are large, decentralized monitors may be used.

6.2.2 Synchronous Versus Asynchronous Distributed Systems

The design of the distributed systems affects greatly the design of the monitoring system. Syn-
chronous distributed systems that depend on global clock are relatively easier to monitor than
asynchronous distributed systems, where each node has local clock. In a synchronous distributed
system, a monitoring node(s) can easily order different events generated by different nodes and
apply them sequentially to the correctness property.

However, asynchronous distributed systems suffer greatly from clock drifts and therefore, the
monitoring node(s) can not use the events’ timestamps from different nodes to order the events.
Instead, monitoring node(s) use partial order inferred by the communication between the nodes
to order the events. Note that total order can not be accomplished in an asynchronous setting,
therefore the monitoring node(s) has to consider some events to be concurrent.

6.2.3 Monitor Design

In this subsection we talk briefly about the different approaches for distributed systems moni-
toring designs. Table 6.1 shows a brief comparison between the pros and cons of the different
approaches discussed below.

6.2.3.1 Centralized Monitor

A centralized monitor resides on either, a node dedicated for monitoring the program nodes par-
ticipating in the distributed systems, or resides on one of the program nodes. A centralized moni-
tor is responsible for receiving all event from program nodes, evaluating the correctness property
and declaring violation or satisfaction. The central monitor is also responsible for ordering the
events it receives from the program nodes, which is a harder job if the system is asynchronous.

In [3], the authors present a framework for detecting and analyzing synchronous distributed
systems faults in a centralized manner using LTL properties.

50

In [18], the authors present a monitoring technique that uses symbolic composition of events
with the monitor to detect satisfaction/violation of LTL properties in an asynchronous distributed
system.

6.2.3.2 Decentralized Monitors

Decentralized monitoring aims at decentralizing the monitoring load from one centralized moni-
toring node to several monitoring nodes. Each monitoring node is attached to one program node
and receives the events from the program node as soon as they happen. The decentralized de-
sign offers many advantages compared to the centralized design such as the absence of single
point of failure/attack, faster notification of failures or violations, distributed memory and com-
putation overload among the monitoring nodes. However, decentralized monitors are required to
communicate together to evaluate the correctness property leading to a complicated design.

In [26], the authors design a method for monitoring safety properties in distributed systems
using the past-time linear temporal logic (PLTL). However, their algorithm is not sound, meaning
that valuation of some predicates and properties may be overlooked. This is because monitors
gain knowledge about the state of the system by piggybacking on the existing communication
among processes. That is, if processes rarely communicate, then monitors exchange very little
information and, hence, some violations of properties may remain undetected.

Lattice-theoretic centralized and decentralized online predicate detection has been studied
in [7, 20]. However, this line of work does not address monitoring properties with temporal
requirements. This shortcoming is addressed in [22] for a fragment of temporal operators, but
for offline monitoring.

Also, in [5], the authors introduce parallel algorithms for runtime verification of sequential
programs. Finally, in [10], the authors introduce a lower-bound on the number of values that a
logic must have in order to monitor safety properties in distributed algorithms in a decentralized
fashion in the presence of crash faults.

6.2.3.3 Migration

In the migrating monitors design, the monitor process migrates from a program process to an-
other with the objective of minimizing computation and communication overhead.

In [2], the authors present a runtime verification algorithm of LTL for synchronous distributed
systems, where processes share a single global clock. The LTL property is progressed as it
migrates between processes using formula rewriting techniques.

6.2.3.4 Choreography

In the choreography design presented first in [8], the authors present a technique where the
monitor nodes are arranged in a tree-like structure, and the LTL formula is divided into sub-
formulas, each leaf node is responsible for evaluating local propositions, while the intermediate
nodes aggregate the results and forwards it upwards until the formula is evaluated. In [11],
dynamic choreography is proposed which is similar to state choreography presented in [8], but
dynamic choreography rearranges the network of monitors during execution allowing monitoring
dynamic properties such as properties that are created or evolved during runtime.

51

Table 6.1: Comparison between the pros and cons of different monitor design approaches

Centralized Decentralized Migration Choreography

Pros
Simple design

No single point of
failure/attack

Monitor location
is optimized to
reduce overhead

Security is
enforced as
processes do not
expose data to
each other

Little overhead
incurred on
program processes

Decentralized network
overhead

Little overhead
incurred on program
processes

Distributed
communication
load

Cons

Single point of
failure/attack

Memory and
computational
overhead on program
processes

Moving single point
of failure/attack

Sensitive to the
depth of the LTL
formula

Events history can
cause memory
overhead

Complicated design Complicated design May require
more nodes
than the program
nodes.Centralized network

overhead

Security concerns if
some nodes
are not
trusted

Migration process
adds overhead
and delay

6.3 Predicate Detection versus Linear Temporal Logic

Predicate Detection is considered to be an easier problem than monitoring LTL properties, this
is due to the fact that the latter is a subset problem of the former. Predicate detection aims at
collecting the consistent cuts that satisfy a single predicate, while LTL monitoring aims at (1)
identifying a consistent cut that satisfies any of the predicate labelling the current state’s out-
going transitions, (2) advancing the automaton state, then (3) identifying a new consistent cut
for any of the predicates labelling the outgoing transitions of the new automaton state. There-
fore, techniques such as Computation Slicing introduced in [20] can not be applied as-is in LTL

monitoring since the predicate is constantly changing, and the monitor could possibly be dealing
with more than one predicate at the same time. However, we borrow some of the techniques of
computation slicing, particularly the technique for finding the least consistent cut that satisfies
the predicate.

52

Chapter 7

Conclusion

7.1 Summary

In this thesis, we proposed an algorithm for runtime verification of asynchronous distributed
applications with respect to LTL formulas. Our technique addresses the shortcomings of the state
of the art, such as requiring global clock [2], or sacrificing soundness in favour of minimizing
communication [26]. Our approach is lightweight and provides a robust monitoring technique
per process that is essential for critical distributed systems.

Our specification language is full LTL and, hence, our method can monitor temporal prop-
erties as well as logical predicates. Furthermore, since our algorithm depends on finite state
machines, our monitoring technique does not depend on LTL directly, and therefore can be used
with any language that can generate a finite state machine.

Finally, our algorithm is sound and complete, meaning that if the total order of events in the
system under inspection can be constructed and presented in a lattice, and then each path in the
lattice is processed through the finite state machine, then the combined final verification verdicts
(if exists) will be determined by our algorithm as well (and vice versa). We also showed how the
automaton shape and communication frequency affect the complexity of the algorithm.

We implemented and tested our algorithm on a network of five iOS devices communicating
over wifi network with six LTL3 properties. We reported the experimental results experiments for
monitor overhead in terms of communication overhead, memory overhead, and detection latency.

Our experimental results clearly shows that our algorithm does not result in an explosion in
communication or local memory usage, due to the following reasons:

1. Each monitor process explores a subset of all paths in the total order event lattice.

2. The algorithm does not attempt to collect information about the global state unless it results
in automaton state change (ignores self-loop transitions).

The experimental results also show that the monitoring overhead grows only in the linear order
of the number of processes and events that need to be monitored.

7.2 Future Work

Three are several open problems for further research and we elaborate on them next.

53

7.2.1 Augmented Time

In [9], the authors presented a technique for augmenting vector clocks with real time to enable
better ordering of events. However, most distributed operating systems (e.g., a network of smart-
phones) attempt to keep real time to within 50 milliseconds of true time, so it would only be
useful for applications that produce events with frequency less than 50 milliseconds. Therefore,
this idea is more applicable to applications that run on devices that are not connected to NTP
(Network Time Protocol), such as drones flying in the air using an ad-hoc network.

7.2.2 Automaton Static Analysis

This idea involves analyzing the automaton transitions and states in order to provide the monitor-
ing algorithm with data that can help routing token messages to be more efficient. For example,
if the monitoring algorithm knows that two paths in the automaton lead to the same final state, it
would prioritize exploring the shorter path first.

7.2.3 Program Static Analysis

In this idea, the distributed program under monitoring is statically analyzed to detect local states
from different processes that can never occur at the same time, thus transition with conjunctions
of such states can be ignored and never explored.

7.2.4 Monitoring Algorithms for Dynamic Networks

Dynamic networks where processes can join and leave is particularly challenging in distributed
systems, as the system is always changing and suffering from instability. Decentralized monitor-
ing of such systems can be more challenging as the monitoring algorithm needs to be able to add
and remove monitoring processes, and recover lost messages.

7.2.5 Monitoring Global Expressions

The idea basically is that a decentralized monitoring algorithm can verify a global arithmetic
expressions or optimization objectives over the set of processes. For example, monitoring that a
swarm of drones maximizes their inter-distance in a 3D plane.

54

References

[1] A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology (TOSEM), 20(4):14, 2011.

[2] A. K. Bauer and Y. Falcone. Decentralised LTL monitoring. In Proceedings of the 18th
International Symposium on Formal Methods (FM), pages 85–100, 2012.

[3] Andreas Bauer, Martin Leucker, and Christian Schallhart. Model-based runtime analysis of
distributed reactive systems. In Australian Software Engineering Conference (ASWEC’06),
pages 10–pp. IEEE, 2006.

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for ltl and
tltl. ACM Transactions on Software Engineering and Methodology (TOSEM), 20(4):14,
2011.

[5] S. Berkovich, B. Bonakdarpour, and S. Fischmeister. GPU-based runtime verification. In
Proceedings of the 27th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pages 1025–1036, 2013.

[6] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of dis-
tributed systems. ACM Transactions on Computer Systems, 3(1):63–75, Feb 1985.

[7] H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal. A distributed abstraction algorithm
for online predicate detection. In Proceedings of the 32nd IEEE Symposium on Reliable
Distributed Systems (SRDS), pages 101–110, 2013.

[8] C. Colombo and Y. Falcone. Organising LTL monitors over distributed systems with a
global clock. In Proceedings of the 14th International Conference on Runtime Verification
(RV), pages 140–155, 2014.

[9] M Demirbas and S Kulkarni. Beyond truetime: Using augmentedtime for improving google
spanner. In Workshop on Large-Scale Distributed Systems and Middleware (LADIS), 2013.

[10] P. Fraigniaud, S. Rajsbaum, and C. Travers. On the number of opinions needed for fault-
tolerant run-time monitoring in distributed systems. In Proceedings of the 14th Interna-
tional Conference on Runtime Verification (RV), pages 92 – 107, 2014.

[11] Adrian Francalanza, Andrew Gauci, and Gordon J Pace. Distributed system contract mon-
itoring. J. Log. Algebr. Program., 82(5-7):186–215, 2013.

[12] Vijay K Garg, Neeraj Mittal, and Alper Sen. Applications of lattice theory to distributed
computing. ACM SIGACT Notes, 34(3):40–61, 2003.

55

[13] Klaus Havelund and Grigore Roşu. Monitoring programs using rewriting. In Automated
Software Engineering, 2001.(ASE 2001). Proceedings. 16th Annual International Confer-
ence on, pages 135–143. IEEE, 2001.

[14] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

[15] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 21(7):558–565, 1978.

[16] Sarah M Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid, dis-
tributed, and now formally verified. In FM 2011: Formal Methods, pages 42–56. Springer,
2011.

[17] Sarah M Loos, David Renshaw, and André Platzer. Formal verification of distributed air-
craft controllers. In Proceedings of the 16th international conference on Hybrid systems:
computation and control, pages 125–130. ACM, 2013.

[18] Thierry Massart and Cédric Meuter. Efficient online monitoring of ltl properties for asyn-
chronous distributed systems. Université Libre de Bruxelles, Tech. Rep, 2006.

[19] F. Mattern. Virtual time and global states of distributed systems. In Proceedings of the
Workshop on Distributed Algorithms (WDAG), pages 215–226, 1989.

[20] N. Mittal and V. K. Garg. Techniques and applications of computation slicing. Distributed
Computing, 17(3):251–277, 2005.

[21] Menna Mostafa and Borzoo Bonakdarpour. Decentralized runtime verification of ltl specifi-
cations in distributed systems. In Parallel and Distributed Processing Symposium (IPDPS),
2015 IEEE International, pages 494–503. IEEE, 2015.

[22] V. A. Ogale and V. K. Garg. Detecting temporal logic predicates on distributed compu-
tations. In Proceedings of the 21st International Symposium on Distributed Computing
(DISC), pages 420–434, 2007.

[23] Martin Ouimet and Kristina Lundqvist. Formal software verification: Model checking and
theorem proving. Embedded Systems Laboratory, MIT, 2007.

[24] Lucia Pallottino, Vincenzo G Scordio, Antonio Bicchi, and Emilio Frazzoli. Decentralized
cooperative policy for conflict resolution in multivehicle systems. Robotics, IEEE Trans-
actions on, 23(6):1170–1183, 2007.

[25] A. Pnueli. The temporal logic of programs. In Symposium on Foundations of Computer
Science (FOCS), pages 46–57, 1977.

[26] K. Sen, A. Vardhan, G. Agha, and G.Rosu. Efficient decentralized monitoring of safety
in distributed systems. In Proceedings of the 26th International Conference on Software
Engineering (ICSE), pages 418–427, 2004.

[27] Vijay D Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated tech-
niques for formal software verification. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 27(7):1165–1178, 2008.

56

	List of Tables
	List of Figures
	Introduction
	Runtime Verification
	Distributed Programs Verification
	Distributed Programs Monitoring Challenges
	Distributed Programs Monitoring Configurations

	Thesis Statement
	Contributions
	Organization of the Thesis

	Background
	Distributed Programs
	Linear Temporal Logic (LTL) p77
	3-valued LTL

	Monitoring Distributed Programs using Linear Temporal Logic

	Formal Problem Description
	Monitoring Algorithm Design
	Algorithm Sketch
	Algorithm Details
	Monitor Algorithm Optimizations
	Aggregating token messages
	Avoiding duplicate global views
	Avoid checking disjunctive transitions

	Monitoring Algorithm Analysis
	Monitoring Messages Overhead
	Memory Overhead

	Proof of Correctness
	Deadlock-Freedom
	Soundness and Completeness

	Experimental Results
	Case Study
	Experimental Settings
	Results

	Related Work
	Formal Verification
	Verification Methods
	Distributed Systems Formal Verification

	Distributed Systems Runtime Verification
	Online Versus Offline
	Synchronous Versus Asynchronous Distributed Systems
	Monitor Design

	Predicate Detection versus Linear Temporal Logic

	Conclusion
	Summary
	Future Work
	Augmented Time
	Automaton Static Analysis
	Program Static Analysis
	Monitoring Algorithms for Dynamic Networks
	Monitoring Global Expressions

	References

