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Abstract

This thesis presents a technique to improve the precision of data-flow analyses on object-
oriented programs in the presence of correlated calls. We say that two method calls are
correlated if they are polymorphic (have multiple targets) and are invoked on the same
object. Correlated calls are problematic because they can make existing data-flow analyses
consider certain infeasible data-flow paths as valid. This leads to loss in precision of the
analysis solution.

We show how infeasible paths can be eliminated for Inter-procedural Finite Distributive
Subset (IFDS) problems, a large class of data-flow analysis problems. We show how the
precision of IFDS problems can be improved in the presence of correlated calls, by using the
Inter-procedural Distributive Environment (IDE) algorithm to eliminate infeasible paths.
Using IDE, we eliminate the infeasible paths and obtain a more precise result for the
original IFDS problem.

Our analysis is implemented in Scala, using the WALA framework for static program
analysis on Java bytecode.
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Chapter 1

Introduction

Static program analysis aims to discover properties of computer programs without running
them. Static analysis has applications in compiler optimization, development of program-
ming tools, and computer security, among others. As an example, we might want to
analyze a program to know which variables are constants. We could then write a com-
piler optimization that ensures that the values of those variables are computed only once.
Alternatively, we could use the information about constant variables in an integrated de-
velopment environment; for instance, to notify the user when an if-expression executes only
one of its branches because its test condition has a constant value.

There are demonstrable limits on what information we can obtain about a program without
running it. Rice’s theorem states that verifying any non-trivial property of a program is an
undecidable problem [19]. However, it is sometimes possible to design an algorithm that
over - or underapproximates the solution that we are seeking.

Data-flow analysis is an area of program analysis whose goal is to compute approximations
of certain information (for example, which variables must be constants) for each program
point.

Other examples of data-flow analyses are reaching definitions (finding out up to which
instruction a given assignment of a variable must be valid) and available expressions (re-
trieving the expressions in the program that do not need to be recomputed at a given
program point).

Another example of a data-flow analysis is taint analysis [25]. Taint analysis discovers
if “secret” values, like passwords or other confidential user information, can leak to an
external observer. Methods that generate secret values, e.g. those that read user input,
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are called sources. Methods that can leak information, e.g. those that write data to a file
or send data through a network, are called sinks. The goal of taint analysis is to find out
whether data can propagate from sources to sinks.

An important property of a data-flow analysis is precision. Precision reflects how closely a
data-flow-analysis result over- or underapproximates the information we are interested in.
In the case of taint analysis, let T be the number of sinks that the analysis considers to
leak secret information, and R the real number of potential information leaks. The smaller
the difference between T and R, the greater the precision of the taint analysis.

Data-flow analyses operate on control-flow graphs that model the order in which the in-
structions of a program are executed. A data-flow-analysis problem defines flow functions
that represent how data is propagated along the edges of the control-flow graph. The
confluence operator specifies how the data that has been computed along different paths
should be merged when the paths join.

Since a control-flow graph is an overapproximation of the possible flows of control in con-
crete executions of a program, the graph may contain infeasible paths that cannot occur
at runtime.

One way to improve the precision of a data-flow analysis is to detect and eliminate infeasible
paths.

The goal of this thesis is to improve the precision of solutions to problems that can be
solved by the Inter-procedural Finite Distributive Subset (IFDS) algorithm [18]. The IFDS
algorithm is a general data-flow algorithm that can compute solutions to various data-flow
problems, like reaching definitions, available expressions, and taint analysis.

We improve the precision of IFDS problem solutions by eliminating infeasible paths that
occur in object-oriented programs in the presence of correlated method calls — polymorphic
calls that are invoked on the same object [24].

1.1 Correlated Calls

Consider a call site r.m() in an object-oriented programming language, where the variable r
is the receiver variable of the call site and m is the name of the invoked method1. In the
rest of the thesis, we use the general term receiver to mean a receiver variable. At runtime,
the actual method that will be invoked by the call site depends on the runtime type of the

1We assume an internal representation of the program in which for each call site er.m(), the expression er
has been evaluated to the variable r.
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object referenced by r. If the call site r.m() can be associated with more than one method
at compile time, we will say that the call site is polymorphic.

For example, in Listing 1.1, it is not possible to infer statically whether the runtime type
of the variable a in line 17 is A or B. The call a.foo() can be dispatched to either A.foo or
B.foo, and a.bar(v) can be dispatched to either A.bar or B.bar. A concrete execution
path for the main method might therefore go through A.foo and A.bar, or through B.foo

and B.bar. However, there cannot be an execution path through A.foo and B.bar or
through B.foo and A.bar.

1 class A {

2 String foo {

3 return secret();

4 }

5 void bar(String s) {}

6 }

7 class B extends A {

8 String foo {

9 return "not secret" ;

10 }

11 void bar(String s) {

12 System.out.println(s);

13 }

14 }

15 class Main {

16 public static void main(String[] args) {

17 A a = args == null ? new A() : new B(); // a has runtime type A or B

18 String v = a.foo();

19 a.bar(v);

20 }

21 }

Listing 1.1: Example program containing correlated calls

We call the invocations to methods foo and bar correlated. More generally, correlated
calls occur when more than one polymorphic call is invoked on the same receiver variable.

Suppose we wanted to perform a taint analysis on the program in Listing 1.1. Most
dataflow-analysis algorithms, including IFDS, would conservatively assume that the call
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a.bar could be dispatched to both A.bar and B.bar, independently of what a.foo had
been dispatched to in the previous line.

As a result, such an analysis would consider a path through A.foo and B.bar feasible.
This means that the variable v would be considered secret. We would conclude that a
secret value is passed to B.bar and printed to the user. In other words, we would consider
the program to leak secret information, which it does not do in any concrete execution.

Our technique for improving the precision of an IFDS result is based on transforming the
original IFDS problem into a more expressive Inter-procedural Distributive Environment
(IDE) problem. IDE problems can be solved with the IDE algorithm which is a general-
ization of IFDS [21]. The IDE algorithm can, for instance, solve certain versions of the
constant propagation problem that IFDS cannot.

To improve the precision of IFDS results, given an IFDS problem P , we convert it into an
IDE problem Q that accounts for correlated calls. We then use the IDE algorithm to obtain
a solution to Q. Finally, we convert the IDE result into a IFDS result. In the presence of
correlated calls, the obtained IFDS result can be more precise than the solution that the
IFDS algorithm would compute for P .

1.2 IFDS and IDE

The IFDS framework is a precise and efficient algorithm for data-flow analysis. IFDS was
developed in 1995 by T. Reps, S. Horwitz, and M. Sagiv at the University of Wisconsin and
has been used to solve a variety of data-flow analysis problems [4, 14, 11, 25]. The IFDS
analysis is a version of the classic functional approach to data-flow analysis proposed by
M. Sharir and A. Pnueli [22].

Given a data-flow problem that satisfies the restrictions of IFDS, the algorithm provides
a context-sensitive solution in polynomial time. In other data-flow algorithms not based
on the functional approach, the result of the analysis at the entry of a procedure “merges”
the incoming data obtained from all callers of the procedure. As a consequence, there
is one global data-flow result computed at the end of the procedure. Context-sensitivity,
however, allows an analysis to compute the data-flow result for a given procedure as a
function of the data-flow value at the start of the procedure. In other words, the analysis
result for a procedure varies depending on where the procedure was called from. This
significantly improves the precision of a data-flow analysis, which is why context-sensitivity
is an important advantage of IFDS over classic data-flow algorithms.
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Compared to IFDS, most data-flow analyses are either general but do not run in polynomial
time [9, 22] or handle a very specific set of problems [10].

The IFDS algorithm is applicable to problems which can be expressed with data-flow
functions that satisfy certain restrictions. Inter-procedural flow functions specify how data
flows from the invocation of a procedure to its start, and from the procedure’s end back
to its call site. Distributive flow functions are those that distribute over the confluence
operator. In the context of IFDS, the confluence operator is called meet, and it can be
either union or intersection. The data-flow facts on which the analysis operates must be a
finite set D. Each flow function operates on a subset of D (for example, the set of variables
in the program) which makes the domain of the flow functions the power set of D. We
describe the IFDS restrictions in detail in Section 2.3.1.

The IDE framework is an expressive extension to IFDS that was created by the same
authors in 1996. The problems that IDE can solve include, but are not limited to, IFDS
problems. Just as the IFDS algorithm, the IDE algorithm is suitable for data-flow analyses
that can be encoded with inter-procedural, distributive flow functions. However, in IDE,
the domain of the flow functions is not restricted to sets D of data-flow facts. The IDE
domain of a flow function consists of environments that map data-flow facts from the set
D to lattice elements.

As an example, in a constant propagation problem, an IDE environment would map each
variable to the (possibly) constant value that it is bound to. To illustrate the distinction
between IFDS and IDE we could say that IFDS can find out which variables in a program
are constants, whereas IDE can additionally retrieve the values of the constant variables.

1.3 Thesis Outline

The goal of the correlated-calls analysis presented in this work is to modify the output of
an IFDS analysis to account for correlated calls. Specifically, the correlated-calls analysis
improves the precision of IFDS problem results by eliminating infeasible execution paths
caused by correlated calls. This is done by converting the input-IFDS problem to an IDE
problem that detects infeasible paths, and converting the IDE result back to a more precise
IFDS result.

The contributions of this thesis are:

• A transformation from IFDS to IDE problems that considers correlated calls.
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• An implementation in Scala of the correlated-calls transformation and the IDE algo-
rithm which is based on the WALA framework for static analysis on Java bytecode [6].

We prove that the solution to an IDE problem that considers correlated calls is more precise
than the solution to the original IFDS problem. We also show that the correlated-calls
analysis is sound, i.e. that it never considers concrete execution paths as infeasible.

Finally, we evaluate the effectiveness of the correlated-calls analysis using an implementa-
tion of taint analysis as the source IFDS problem.

The remainder of this thesis is organized as follows. In the next chapter, we describe the
IFDS and IDE analyses in detail. In Chapter 3 we present the correlated-calls analysis
as a transformation of IFDS problems into a special kind of IDE problem. Chapter 4
describes an efficient representation of the data structures that are required to define a
correlated-calls IDE transformation. In Chapter 5 we address some implementation aspects
of the correlated-calls analysis and present an evaluation of its results. Chapter 6 contains
concluding remarks.
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Chapter 2

Background

The purpose of the correlated-calls analysis is to solve IFDS problems more precisely than
using the standard IFDS algorithm by ruling out some infeasible paths. The correlated-
calls analysis works by transforming an IFDS problem to an IDE problem, solving the IDE
problem, and transforming the IDE result to a solution to the original IFDS problem. This
chapter describes the general ideas underlying IFDS and IDE.

2.1 Related Work

IFDS is a version of the functional approach to data-flow analysis developed by M. Sharir
and A. Pnueli [22]. Their algorithm is based on computing summary functions that return
the data-flow value at the end of a procedure, given the data-flow value at the start of
the procedure. IFDS problems form a more restricted set of data-flow problems: unlike
in the functional approach, IFDS flow functions have to be distributive, and the set of
data-flow facts D has to be finite. However, the IFDS algorithm is more general than
Sharir’s and Pnueli’s algorithm in that it can handle programs containing local variables
and parameters in recursive methods.

IFDS has been used to encode a variety of data-flow problems. More complex examples of
applications include typestate analysis (determining which operations can be performed on
an object at a given program point) [14] or shape analysis (detecting errors and validating
properties of programs at compile time) [11].

IFDS is implemented for two popular static-analysis frameworks, the T.J. Watson Libraries
for Analysis (WALA) [6] and Soot [26].
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WALA is a framework for static analysis on Java bytecode developed by the IBM T.J. Wat-
son Research Center. In the implementation of our work, we use WALA to build and
traverse the supergraph (a special kind of control-flow graph) of a Java program2.

Soot is a framework for program analysis and optimization on Java bytecode, developed
by the Sable Research Group at McGill University. Unlike WALA, Soot also has an im-
plementation of the IDE algorithm. The IFDS and IDE implementations for Soot are part
of the Heros project [3].

Whereas one advantage of Soot’s IFDS implementation (and other static analysis tools) is
ease of use and extensibility, WALA’s primary focus is efficiency. For example, WALA uses
bit-vectors to represent some of the analysis data types, like local variables and parameters.
Another difference is that WALA’s intermediate representation of a program uses static
single assignment (SSA) form [5]. SSA form is a representation of the program in which
each variable has only one definition (assignment). SSA can make dataflow analysis simpler
and more efficient [1].

Work on improving the IFDS algorithm includes Practical Extensions by N. Naeem and
O. Lhoták [15]. Their paper presents four extensions to the IFDS algorithm. Two of the
extensions improve the efficiency of the IFDS analysis for certain classes of IFDS problems.
Another extension widens the class of problems applicable for the IFDS analysis. However,
those extensions do not affect the precision of IFDS problems. Our analysis, in contrast,
does not improve the efficiency or generality of IFDS, but it allows us to solve IFDS
problems more precisely.

The fourth extension is targeted towards programs that are represented in SSA form. Ex-
ecuting the IFDS analysis on such programs results in loss of precision in the presence of
control-flow constructs (e.g. conditionals and loops), compared to programs in non-SSA
form. The extension makes the IFDS analysis on programs in SSA form as precise as on
programs that are not represented in SSA form. In contrast, the correlated-calls analysis
is applicable to programs in both SSA and non-SSA forms. Even if applied to a program
in SSA form, our analysis and the extension improve the precision of IFDS in unrelated
situations: the first analysis handles correlated calls, and the latter handles control-flow
constructs. Thus, an IFDS analysis could benefit from both precision improvements inde-
pendently.

Another work on improving the efficiency of the IFDS algorithm is E. Bodden et al.’s frame-
work for the analysis of software products lines [4]. Their paper uses transformations from
IFDS to IDE problems, a technique we also employ. Finally, J. Rodriguez and O. Lhoták

2However, we do not use WALA’s IFDS implementation, as explained in Chapter 5.
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implemented a concurrent version of the IFDS algorithm using actors [20]. However, nei-
ther of those works is concerned with improving the precision of IFDS results.

The correlated-calls analysis improves the precision of a data-flow analysis by eliminating
a special type of infeasible paths. This is similar to the idea of context-sensitive analysis:
just as a context-sensitive analysis eliminates infeasible paths from the end of a procedure
to the call sites that do not match the given procedure call, the correlated-calls analysis
eliminates infeasible paths caused by correlated method calls.

The idea of using correlated calls to remove infeasible paths in data-flow analyses of object-
oriented programs was introduced by F. Tip [24]. The possibility of using IDE to achieve
this is mentioned, but not elaborated upon. Our work presents a concrete solution to the
problem and an implementation of that solution.

The idea of eliminating infeasible paths caused by correlated calls is similar to M. Sridharan
et al.’s work on improving the precision of pointer analysis for JavaScript programs [23].
For each pointer, a pointer analysis determines the possible set of objects (the points-to
set) that the pointer can reference at a given program point. In JavaScript, it is challenging
to compute the points-to set of fields because in general, field names can be derived from
arbitrary expressions and bound at runtime. As a result, an imprecise data-flow analysis
will include infeasible paths between values of the form o[p] (access of a property p of
object o), where at compile time, p can be bound to different values. The idea of the
paper is to track all dynamic property accesses (reads and writes) on an object o with
property name p. The code snippets containing the references o[p] are then extracted
into a separate function f . The analysis is then run so that for each possible value of p,
f is analyzed separately; therefore, for a given property name, all correlated objects with
that name are analyzed together.

The differences between this method of tracking correlated calls and our analysis are the
following.

• Type of target data-flow analysis whose precision is to be improved. Our analysis
improves the precision of IFDS data-flow analyses, whereas the JavaScript analysis
improves the precision of pointer analysis.

• Target language. Our analysis is for object-oriented languages where polymorphic
methods, and not property names (which are known at compile time), cause infeasible
paths.

• Different handling of correlated calls. Extracting code that contains correlated calls
into separate methods would not prevent infeasible paths. Instead, our analysis uses
IDE flow functions to detect and eliminate infeasible paths caused by correlated calls.
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2.2 Terminology and Notation

We will start by introducing several concepts used by the IFDS and IDE analyses.

A control-flow graph is a directed graph in which nodes correspond to instructions and edges
represent transfer of control between the instructions during an execution of the program.
A control-flow graph has a unique start node, startmain, which is the node corresponding to
the program entrypoint.

An intra-procedural path is a path in a control-flow graph whose nodes are in the same
procedure. By contrast, an inter-procedural path is one that contains nodes from different
procedures.

A control-flow supergraph is a control-flow graph in which each procedure p is augmented
with an additional start node startp and end node endp, and for each call cq to a procedure
q, there is a call node callcq and subsequent return node returncq .

A control-flow supergraph allows us to model the control flow in inter-procedural paths.
The flow from the caller to the callee is represented using an edge (callcq , startq). The
control flow from the callee back to the caller goes through an edge (endq, returncq).

Example 2.2.1. Consider the program in Listing 2.2. The supergraph corresponding to
that program is shown in Figure 2.1.

A flow-sensitive data-flow analysis is one that takes the order of program instructions into
account.

Let each call node in a program be labeled with a distinct opening parenthesis and the
corresponding return node with the matching closing parenthesis. For a given path p, let
s be the string that is obtained by concatenating the labels of the nodes in p. Then p
is valid if s belongs to the language of substrings of balanced parentheses. The set of all
inter-procedurally valid paths from the start node to a node n is denoted as VP(n). The
set VP(n) is a conservative approximation of all concrete execution paths from the start
node to n.

A context-sensitive data-flow analysis is an analysis that considers only inter-procedurally
valid paths.

Example 2.2.2. In the supergraph in Figure 2.1, let us assign {, } parentheses to callA.f
and returnA.f, and 〈, 〉 parentheses to callf and returnf. Then the string corresponding to
the path

p1 =
[
callA.f , startf , if (s == null) , return s , endf , returnA.f

]
10



startmain

callsecret

returnsecret
a = secret()

callA.f

returnA.f
b = f(a)

endmain

startsecret

return "secret"

endsecret

startf

if (s == null)

return scallf

returnf
r = f("not secret")

return r

endf

intra-procedural edge
inter-procedural edge

Figure 2.1: An example supergraph for Listing 2.2
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1 class Main {

2 public static void main(String[] args) {

3 String a = secret();

4 String b = A.f(a);

5 }

6 static String secret() {

7 return "secret" ;

8 }

9 }

10 class A {

11 static String f(String s) {

12 if (s == null) {

13 String r = f("not secret" );

14 return r;

15 }

16 return s;

17 }

18 }

Listing 2.2: An example Java program

is {}, which indicates that p1 is valid. Every prefix of p1 is also a valid path.

However, the graph also contains an inter-procedurally invalid path

p2 =
[
callf , startf , if (s == null) , return s , endf , returnA.f

]
with corresponding string 〈}.

A lattice is a partially ordered set in which each subset has a least upper bound and a
greatest lower bound.

A meet semilattice L = (S, u) is defined by a set S and a meet operation u that is
associative, commutative, and idempotent. The meet operation induces a partial order
(S, v) where every subset contains a greatest lower bound: For all x, y ∈ S, x v y if
xu y = x. The greatest lower bound, or top element, of the semilattice is denoted as >. If
k is the length of the longest chains of elements in the semilattice, then the height of the
semilattice is k − 1.

12



Finally, we introduce the notion of distributivity. Given a set D, a function f : 2D → 2D

is distributive if ∀x1, x2 ∈ 2D,

f(x1 ∪ x2) = f(x1) ∪ f(x2).

In this thesis, we will denote a map from a set of keys K to values from set V as

{(k, v) | k ∈ K, v ∈ V }.

For an arbitrary map m, m(x) is the value to which x is mapped in m. We denote by
m[x → y] a map identical to m, except that the element x is mapped to y. To avoid
excessive parentheses, we write (m[x1 → y1]) [x2 → y2] as m[x1 → y1][x2 → y2].

We will denote the identity function λx .x by id. We will use a typed version of this function
in various contexts, where the type of x will vary with the context.

2.3 IFDS

The purpose of the IFDS framework is to solve a special subset of inter-procedural, flow-
sensitive, context-sensitive data-flow-analysis problems. The main idea of IFDS is to encode
the data-flow analysis problem into a graph-reachability problem.

2.3.1 Data-Flow Problems Suitable for IFDS

In this section we describe the data-flow problems that can be solved by an IFDS analysis.
We will start with an intuitive definition and later on formalize the notion of an IFDS-
suitable problem.

Informally, an IFDS analysis can only solve decision problems. An IFDS analysis answers
questions of the following kind: “is property X true at program point Y ?”. For example,
a taint-analysis problem asks, for each variable v in the program, “is v secret at a given
program point?”. An available-expressions problem asks, for each expression e, “does e
have to be recomputed at a given program point?”.

Formally, a data-flow analysis problem is suitable for an IFDS analysis if it can be encoded
as an IFDS problem

(G∗, D, F, MF , u),

13



where G∗ = (N∗, E∗) is the supergraph of the input program with nodes N∗ and edges
E∗, D is a finite set of data-flow facts, F is a set of distributive dataflow functions of type
2D → 2D, MF : E∗ → F is a function that maps supergraph edges to dataflow functions,
and MF is extended to paths by composition3. The meet operator u is either union or
intersection.

Without loss of generality, we will take meet to denote union. It can be shown that any
problem where meet is defined as intersection can be reformulated into an equivalent one
where meet is defined as union [18].

2.3.2 Overview of the IFDS Algorithm

Formally, given an IFDS problem, for each node n ∈ N∗ the IFDS algorithm computes the
meet-over-all-valid-paths solution

MVPF (n) =
l

q∈VP(n)

MF (q)(∅).

To compute the meet-over-all-valid-paths solution, each node in the control-flow supergraph
is paired with a fact d ∈ D∪{0}, 0 /∈ D, yielding the nodes N# of the exploded supergraph
G# = (N#, E#). Roughly, for each node in the program, a fact denotes a binary property
whose value (true or false) we want to find out. The start node of the exploded supergraph
is the node (startmain, 0).

The flow functions F define the edges of the exploded supergraph. Using the flow functions,
the IFDS algorithm computes the inter-procedurally realizable paths from the start to the
rest of the exploded graph’s nodes. A realizable path is a valid path in the exploded
supergraph that starts with the entry node startmain.

If there is a realizable path from the node (startmain, 0) to a given node (n, d), d 6= 0, then
the fact d is considered to hold at node n. A path to a node (n, 0) means that in the
control-flow supergraph, there is a path from startmain to n.

In this way, the IFDS algorithm reduces the input data-flow problem to a graph-reachability
problem.

3Let A be a set and f : E∗ → (A → A) a function from supergraph edges to functions on A. We say
that f is extended to paths by composition to denote that for a path q consisting of the edges e1, . . . , ek,
f(q) = f(ek) ◦ . . . ◦ f(e1) ◦ id.

14



Example 2.3.1. In a taint analysis, D is the set of variables in the program. If a fact
d ∈ D is reachable at a given node, then the variable is considered secret at that node.
Otherwise, it is considered not secret. The question “is d secret at node n?” becomes “is
there a realizable path from (startmain, 0) to (n, d)?”.

Example 2.3.2. In an available-expressions analysis, D is the set of all expressions in the
program. If an expression d ∈ D is reachable at a certain node, it means that it does not
need to be recomputed at that node.

Example 2.3.3. The exploded supergraph for Listing 2.2 is shown in Figure 2.2. We can
see that there is a realizable path from the start node of the exploded graph to the variable
b at the node returnA.f in the main method. This means that at that node, b is considered
secret.

The flow functions F ⊆ 2D → 2D allow us to establish the edges in the exploded super-
graph.

Given a control-flow-graph edge e = (n1, n2) ∈ E∗ and a distributive dataflow function
f = M(e), the representation relation Rf : (D ∪ {0})× (D ∪ {0}) of f is defined as

Rf = {(0, 0)} ∪ {(0, dj) | dj ∈ f(∅)} ∪ {(di, dj) | dj ∈ f({di}), dj /∈ f(∅)}.

Each pair (di, dj) ∈ Rf corresponds to an edge ((n1, di), (n2, dj)) in the exploded super-
graph.

Note that Rf constructs pairs of dataflow facts so that

• there is always an edge (0, 0) corresponding to the control-flow-graph edge;

• if there is an edge (0, dj), then there is no other edge leading to dj; in particular,
there is never an edge (di, 0) where di 6= 0.

Example 2.3.4. The representation relation Rf for a set of data-flow facts D = {u, v, w}
and dataflow function f = λS . S \ {v} ∪ {u} looks as follows:

Rf = {(0, 0), (0, u), (w, w)}.

The corresponding exploded-graph edges are shown below.

0 u v w
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startmain

callsecret

returnsecret
a = secret()

callA.f

returnA.f
b = f(a)

endmain

0 a b

startsecret

return "secret"

endsecret

0

startf

if (s == null)

return s
callf

returnf
r = f("not secret")

return r

endf

sr0

0 r s

Figure 2.2: The exploded supergraph corresponding to a taint analysis for the input program
in Listing 2.2
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The representation relation lets us decompose a flow function into functions that operate
on each fact individually. This is possible due to distributivity: we can apply the flow
function on each single fact and take the union of the results, rather than applying the
function to the union of the facts.

The representation relation allows us to compactly represent the composition and meet
operations which are required for the IFDS algorithm.

For two representation relations Rf1 , Rf2 , the composition and meet operations are defined
as follows:

Rf1 ◦Rf2 = {(d1, d3) | ∃d2 : (d1, d2) ∈ Rf1 , (d2, d3) ∈ Rf2}.

and

Rf1 uRf2 = Rf1 ∪Rf2 .

The representation relation distributes over composition and meet:

Rf1 ◦Rf2 = Rf1◦f2 ,

and
Rf1 uRf2 = Rf1uf2 ,

On the exploded graph, the composition of two functions is represented by the paths that
are formed when the exploded-graph edges are combined.

Example 2.3.5. If g = λS . S \ {w} and f is defined as in example 2.3.4, then

Rf ◦Rg = {(0, 0), (0, u)},

as illustrated by the corresponding exploded graph edges:

0 u v w

Rf

Rg

0 u v w

Rf ◦Rg
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To convert a representation relation Rf back into the original flow function f , we can use
the interpretation function JRfK:

f = JRfK = λD1 . ({d2 | ∃d1 ∈ D1 : (d1, d2) ∈ Rf} ∪ {d2 | (0, d2) ∈ Rf}) \ {0}.

We presented an overview of the IFDS analysis. IFDS problems are transformed into IDE
problems by the correlated-calls analysis. The IDE analysis is described in the next section.

2.4 IDE

There exists an entire class of data-flow problems that cannot be formulated as IFDS prob-
lems. Informally, the problems cannot be formulated as decision problems. For instance, a
constant-propagation problem asks, for each variable v in the program, “if v is a constant
at a given program point, what is v’s value?”. The questions asked by constant propaga-
tion are of the form “if property X (v being a constant) is true at program point Y , what
is the value of some property Z (the value of the constant) corresponding to X?”. It turns
out that problems with such questions can often be solved by the IDE algorithm.

Instead of just telling us whether a fact holds or not, the IDE analysis can provide us with
additional information about facts.

Just as in the IFDS analysis, the IDE algorithm reduces a data-flow problem to a graph-
reachability problem. Additionally, for each program point, the algorithm computes an
environment Env(D, L), where data-flow facts are mapped to values of a lattice L.

For example, using the IDE analysis, we can encode a restricted version of a constant-
propagation analysis4. The data-flow facts correspond to program variables, and the lattice
incorporates all possible values for constants. If a fact d in the exploded supergraph is
reachable at node n, and Env(d) /∈ {⊥, >}, it means that the variable associated with d is
a constant. Furthermore, the value of the constant can be inferred from the environment
for the corresponding node and is equal to Env(d).

Formally, an IDE problem is defined as a four-tuple

(G∗, D, L, MEnv),

where G∗ is a control-flow supergraph, D is a set of data-flow facts, and L is a meet
semilattice with finite height. Finally, MEnv : E∗ → (Env(D, L)→ Env(D, L)) is a function

4In the general case, constant propagation cannot be encoded with distributive flow functions and is
therefore not suitable for an IDE analysis [13].

18



from the edges of the control-flow supergraph to distributive environment transformers.
MEnv is extended to paths by composition.

Given an IDE problem, for each node n ∈ N∗ and fact d ∈ D, the IDE algorithm computes
the meet-over-all-valid-paths solution

MVPEnv(n, d) =
l

q∈VP(n)

MEnv(q)(Ω)(d), (2.1)

where MEnv is extended to paths by composition and

Ω = λd .>

is the top element in the environment lattice Env(D, L).

The IDE analysis is a generalization of the IFDS analysis: every IFDS problem can be
converted into an equivalent IDE problem [18]. The equivalent problem can be solved by
the IDE algorithm, and the result converted into an IFDS result. In an IFDS-equivalent
IDE problem, the graph G∗ and the set D of data-flow facts remain the same. The L
lattice is a two-point lattice: if a fact is mapped to the top (bottom) element, then it is
reachable (unreachable). The conversion between IFDS and IDE problems is discussed in
detail in Section 3.2.

2.4.1 Environment Transformers

For each node in the control-flow graph, the result of an IDE analysis computes an envi-
ronment Env(D, L), which is a map from data-flow facts to lattice elements.

Instead of flow functions that show how to propagate facts, the IDE framework uses dis-
tributive environment transformers to propagate environments. For each edge (n1, n2) in
the control-flow supergraph, an environment transformer indicates how the environment
at node n1 is modified at node n2.

From Section 2.3.2 we know that flow functions can be represented with exploded-graph
edges. To represent environment transformers, we will construct labeled exploded-graph
edges, where each edge is associated with a distributive micro function5 f : L → L.
A micro function shows how to change a lattice element for a given node and fact.

If an IDE problem is equivalent to an IFDS problem, the edges of the exploded supergraph
are the same for both problems. In the IDE problem, the edges of the exploded supergraph
are labeled with identity micro functions.

5See Sagiv et al. [21] for a formal definition of the representation relation for environment transformers.
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We extend the meet operator to work on micro functions by defining

(f1 u f2)(l) = f1(l) u f2(l)

for all l ∈ L.

In IDE problems, the auxiliary fact analogous to 0 in IFDS is denoted as Λ.

Example 2.4.1. One version of the constant propagation analysis that can be encoded
with IDE is linear constant propagation. A linear constant propagation analysis can detect
constants of the form a ·x+ b, where a and b are integers and x is a variable. In particular,
a variable can only be considered constant if it depends on at most one other constant
variable: even if y and z are variables that are considered constant, the variable x = y+ z
will be considered not constant. If we encoded the analysis in a way to handle non-linear
constant assignments, we would have to use non-distributive flow functions, which would
violate the requirements of the IDE algorithm.

For linear constant propagation, the L lattice consists of the set of integers Z, a top element
denoting “not a constant”, and a bottom element denoting an unknown value. The meet
of two lattice elements is defined as follows: for any lattice element l ∈ L,

> u l = > and ⊥ u l = l.

For two lattice elements l1, l2 ∈ Z,
l1 u l2 = >.

We define the addition and multiplication operations on lattice elements l ∈ L and integers
c ∈ Z as follows:

l + c =


⊥ if l = ⊥;

> if l = >;

l + c otherwise.

c · l =


⊥ if l = ⊥;

> if l = >;

c · l otherwise.

Let the function M that maps supergraph edges to environment transformers be defined
in the following way:

M = λ((n1, n2)) .


λenv . env[x→ a · env(y) + c ] if n1 contains an assignment

x = a · y + c, where y is a variable

and a, c are constants;

id otherwise.
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Here, we denote with env[x → a] an environment env in which the key x is mapped to a,
and all other keys y 6= x are mapped to their old values env(y). When M is applied to an
edge whose source node contains an assignment for a variable x, M returns an environment
transformer that updates the argument environment with a new value for x.

Consider the following program:

1 int u = 1;

2 int v = u + 2;

3 int w = u + v;

4 u = 5;

For the edges e1, e2, e3, and e4 that start at the first, second, third, and fourth instruction,
M creates the following environment transformers:

M(e1) = λenv . env[u→ 1]

M(e2) = λenv . env[v→ env(u) + 2]

M(e3) = λenv . env[w→ >]

M(e4) = λenv . env[u→ 5].

The corresponding labeled exploded supergraph is shown in Figure 2.3.

The result of the analysis yields a map from nodes to environments. Each environment
maps variables to elements of the constant-propagation lattice. The environment at the
last node will look as follows:

{(u, 5), (v, 3), (w, >)}.

In this way, each edge in the exploded graph is labeled with a micro function. The mapping
from exploded-graph edges to the corresponding micro functions is stored in edge functions,
denoted as EdgeFn: E# → (L→ L).

2.4.2 Overview of the IDE Algorithm

Given a labeled exploded supergraph, the IDE algorithm computes the environments for
all nodes in the control-flow graph.

The algorithm first computes the lattice elements ln, d that correspond to each reachable
node (n, d) in the exploded supergraph. The union of the exploded nodes (n, d) for a
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Λ u v w

id λl.1

id λl.l + 2id

id id id

id id

id

id λl.5 id id

Figure 2.3: A labeled exploded supergraph for a constant-propagation analysis described in
Example 2.4.1. The dashed edges are edges not reachable from the entry node.

given control-flow node n, mapped to the corresponding lattice elements ln, d, form the
environment Envn for that node:

Envn =
{

(d, ln, d) | (n, d) ∈ N#
}
.

The overall idea behind computing the lattice elements ln, d is the following. For each
inter-procedurally realizable path

p = [(startmain, Λ), (n1, d1), . . . , (nk, dk)]

that starts with the entrypoint of the exploded supergraph, we compute the function fp
that corresponds to p. The micro function consists of the composition of all individual
micro functions with which the edges of p are labeled:

fp = EdgeFn((nk−1, dk−1), (nk, dk)) ◦ . . . ◦ EdgeFn(startmain, Λ), (n1, d1)).

Let the lattice element that (n, d) is mapped to according to path p be denoted as lpn, d.
As shown in Sagiv et al. [21], the lattice element can be obtained by applying fp to the
bottom element:

lpn, d = fp(⊥).

Let Q be the set of paths that start at the entry point and end at the given node (n, d).
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The lattice element ln, d is the meet of the lattice elements corresponding to all the paths
in Q:

ln, d =
l

q∈Q

lqn, d.

This is a general outline of the IDE analysis. We use the IDE framework to improve the
precision of IFDS problems in the presence of correlated calls. The next chapter describes
how this is done.
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Chapter 3

Correlated Calls Analysis

The correlated-calls analysis is presented as a transformation from an arbitrary IFDS
problem to a corresponding IDE problem.

After solving the generated IDE problem, its result can be converted to an IFDS result. If
the input program contains correlated calls, the converted IFDS result can be more precise
than the original IFDS result.

In this chapter, we first discuss what is necessary to define IFDS and IDE problems. Next
we describe how to convert any IFDS problem into an equivalent IDE problem, and, given
a solution to the generated IDE problem, how to obtain the result of the original IFDS
problem. We then show how to transform an IFDS problem into an IDE problem using the
correlated-calls transformation, and how to convert the solution to the latter IDE problem
into a more precise IFDS result.

3.1 Defining IFDS and IDE Problems

In Chapter 2, we defined what IFDS and IDE problems are, their applications, and their
constraints. In this section, we describe how to create instances of IFDS and IDE problems.

3.1.1 Defining an IFDS Problem

Recall that an IFDS problem instance is defined as a five-tuple

(G∗, D, F, MF , u),
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where G∗ = (N∗, E∗) is the control-flow supergraph of the program, D is the set of dataflow
facts, F ⊆ 2D → 2D is a set of distributive dataflow functions, and the function

MF : E∗ → (2D → 2D)

maps the supergraph edges to dataflow functions, and is extended to paths by composition.

In practice, an IFDS problem can be defined by providing an exploded supergraph G# =
(N#, E#). Each node of G# is a pair (n, d), where n ∈ N∗ is a node in the control-flow
supergraph and d ∈ (D ∪ {0}), 0 /∈ D, where 0 is an auxiliary fact that is necessary for
the IFDS algorithm.

The meaning of an edge in the exploded supergraph is the following. Let (n1, d1) and
(n2, d2) be two nodes in the exploded supergraph G#. Furthermore, assume that if fact
d1 at node n1 holds, then the fact d2 at node n2 also holds. Then there is an edge
(n1, d1), (n2, d2) ∈ E#.

3.1.2 Defining an IDE Problem

An IDE problem instance is a four-tuple

(G∗, D, L, MEnv),

where G∗ and D are defined in the same way as for IFDS. L is a finite-height lattice
that represents the values to which dataflow facts are mapped in an IDE problem. An
environment Env(D,L) maps dataflow facts to lattice elements. Finally, the map

MEnv : E∗ → (Env(D,L)→ Env(D,L))

is a function from the control-flow-supergraph edges to environment transformers, extended
to paths by composition.

An IDE problem can be defined with a labeled exploded supergraph6, in which an edge
function

EdgeFn : E# → (L→ L)

pairs edges with micro functions, and is extended to paths by composition.

The set of micro functions of an IDE problem is a subset of L → L that is closed under
function meet and composition.

6 The exploded supergraph in an IDE problem is defined in the same way as in an IFDS problem. The
only difference is that the 0 fact is denoted as Λ [18, 21].
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The meaning of an edge in the labeled exploded supergraph is the following. Let e =
((n1, d1), (n2, d2)) ∈ E# be an edge in the exploded supergraph with label f = EdgeFn(e).
Then

• if at node n1 the fact d1 was mapped to a lattice element l1 by an environment
Env(D, L), then the fact d2 at node n2 should be mapped to f(l1).

As shown in Sagiv et al. [21], the relationship between environment transformers and edge
functions can be described with the following equations. For individual edges (n1, n2) ∈ E∗,

MEnv((n1, n2))(env)(d)

= EdgeFn((n1, Λ), (n2, d))(>) u
l

d′∈D

EdgeFn((n1, d
′), (n2, d))(env(d′)), (3.1)

where env is an environment Env(D, L). Informally, for a given control-flow-supergraph
edge e and data-flow fact d, the MEnv function captures the meet of the edge function
applied to all possible exploded-graph edges along e.

For paths p that start with the entry point startmain,

MEnv(p)(Ω)(d) =
l

r∈RP(p, d)

EdgeFn(r)(>), (3.2)

where n ∈ N∗, d ∈ D, p ∈ VP(n), and RP is the set of all inter-procedurally realizable
paths.

To summarize, an IDE problem can be defined by a labeled exploded supergraph

(G#, L, EdgeFn),

where each edge of the exploded supergraph corresponds to a micro function.

3.2 Transformations Between IFDS and IDE

The correlated-call analysis transforms an existing IFDS problem into a special kind of IDE
problem. We described what is necessary to define IFDS and IDE problems independently.

Let P = (G#) be an IFDS problem and Q = (G#, EdgeFn) an IDE problem obtained by
a conversion from P .
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IFDS problem

Equivalent IDE
problem

Correlated-calls
IDE problem

Equivalence-
IDE result

Correlated-
calls result

IFDS result

Improved
IFDS result

U≡

Ub

U≡

T ≡

T b

R

R

Figure 3.1: Transformations between IFDS and IDE problems and their results

We will look at two kinds of transformations

T : (G#)→ (G#, EdgeFn)

from IFDS to IDE problems:

• an equivalence transformation T ≡ (pronounced as “t-equiv”), in which we show how
to transform IFDS problems into equivalent IDE problems;

• a correlated-call transformation T b (pronounced as “t-c-c”), where we show how
to convert IFDS problems into a special form of IDE problems that help eliminate
infeasible paths.

In each case we also show how to convert the result of the generated IDE problem to a
result of the original IFDS problem.

An overview of the transformations is shown in Figure 3.1.

3.2.1 Equivalence Transformation

We start with an equivalence transformation T ≡ to present a simple IFDS-to-IDE conver-
sion that does not change the result of the original IFDS problem. We will compare the
correlated-calls transformation with the equivalence transformation, and use the latter to
show that the correlated-calls analysis results in a precision improvement of the original
IFDS problem result.
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3.2.1.1 Converting IFDS problems to IDE problems

Since IDE is a generalization of IFDS, any IFDS problem can be converted into an equiv-
alent IDE problem [21]. For an equivalence transformation T ≡, the generated lattice L≡

consists of two elements, bottom and top:

L≡ = {⊥, >},

where ⊥ means “reachable”, and > means “not reachable”.

All micro functions are identity functions.

Given an exploded supergraph G# provided by an IFDS problem, we want to create an
edge function EdgeFn≡ that maps G#’s edges E# to micro functions L≡ → L≡.

The edge functions EdgeFn≡ are defined as

EdgeFn≡ =

{
λe . λm .⊥ if d1(e) = Λ and d2(e) 6= Λ;

λe . id otherwise,

where d1(e) is the source fact of an edge e and d2(e) is its target fact. At a “diagonal” edge
from a Λ-fact to a non-Λ-fact d, the micro function is a constant function that returns ⊥,
which makes it a bottom element in the L → L lattice. Since the initial lattice element
passed to the micro function at the start node is the top element (see (3.2)), the bottom
function at the diagonal edge swaps the top element to bottom to make the fact d reachable.

The resulting equivalence transformation looks as follows:

T ≡((G#)) = (G#, L≡, EdgeFn≡).

Thus, in T ≡, all non-diagonal edges in the original IFDS problem are mapped to identity
functions.

3.2.1.2 Converting IDE Results to IFDS Results

The output of an IFDS analysis states whether a node is reachable in the exploded su-
pergraph. This means that for an IFDS problem P , the IFDS-analysis result RIFDS(P ) :
N∗ → 2D is a map from nodes of the control-flow supergraph to sets of facts:

RIFDS(P ) = {(n, MVPF (n)) |n ∈ N∗}.
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Example 3.2.1. The solution to the taint-analysis IFDS problem P in Listing 2.2 whose
exploded supergraph is presented in Figure 2.2 looks as follows:

RIFDS(P) = {( returnsecret , {a}), ( startf , {s}), ( returnf , {r, s}),

( callA.f , {a}), ( if(s==null) , {s}), ( return r , {r, s}),

( returnA.f , {a, b}), ( callf , {s}), ( endf , {r, s})}.

( endmain , {a, b}), ( return s , {s}),

All other nodes of the control-flow supergraph are mapped to the empty set.

The IDE analysis associates a lattice element with each node in the exploded supergraph.
For an IDE problem Q, the resultR(Q) : N# → L maps nodes of the exploded supergraph
to lattice elements (see (2.1)):

R(Q) = {((n, d), MVPEnv(n, d)) | n ∈ N∗, d ∈ D}. (3.3)

In other words, for each fact d ∈ D at a given node n ∈ N∗, R(Q)(n, d) returns a lattice
element. If a fact d ∈ D is unreachable, R(Q)(n, d) = >.

In the case of an equivalence transformation from IFDS to IDE, if a node in the IFDS
result is reachable, it will be also reachable in the IDE result, and it will be mapped to the
bottom lattice element. For an exploded node in the IDE result, being mapped to the top
element means being not reachable.

The domain of an equivalence-IDE result

R≡ = R(T ≡(P ))

consists of pairs of control-flow-supergraph nodes and data-flow facts. The range of the
result is the set of lattice elements. To transform an IDE result to an IFDS result, we
need to map each control-flow-supergraph node to the set of facts with which it is paired,
provided that the pair is mapped to the bottom lattice element.

Example 3.2.2. Converting the IFDS problem P from Example 3.2.1 into an equivalent
IDE problem and solving it will yield the following result:

R(T ≡(P)) = {(( returnsecret , a), ⊥),

(( callA.f , a), ⊥),

(( returnA.f , a), ⊥),

(( returnA.f , b), ⊥),

. . . }.
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Suppose that for a pair (n, d), where n ∈ N∗ and d ∈ D, there is no corresponding result
in RIFDS(P) (see Example 3.2.1). Then (n, d) appears in R(T ≡(P)) as ((n, d), >).

Let ρ be the result of an equivalence-IDE analysis for an IFDS problem P :

ρ = R(T ≡(P )).

For a node n ∈ N∗, let D≡n (ρ) be a set of data-flow facts such that

D≡n (ρ) = {d | d ∈ D ∧ ρ(n, d) 6= >}.

Then the transformation function U≡ : (N# → L) → (N∗ → 2D) from an IDE result
to an IFDS result looks as follows:

U≡ (ρ) = {(n, D≡n (ρ)) | n ∈ N∗} .

Obviously, if applied to the result of an equivalence-IDE problem, U≡ returns a result
equivalent to the original IFDS problem result. In other words, for any IFDS problem P
with supergraph N∗, and any node n ∈ N∗,

U≡ (R(T ≡(P ))) (n) = RIFDS(P )(n).

Example 3.2.3. Converting the result in Example 3.2.2 with the equivalence-transformation
from an IDE result to an IFDS result U≡ will yield the same result as in Example 3.2.1.

3.2.2 Correlated-Call Transformation

To improve the precision of an IFDS problem, we can convert it to a special type of IDE
problem, and use lattice elements to provide us with additional information about a node.
When converting the IDE result to an IFDS result, lattice elements will tell us whether to
make the corresponding exploded nodes reachable. This is the idea of the correlated-calls
analysis.

3.2.2.1 Lattice Elements

Just like in the equivalence transformation T ≡, the exploded supergraph for T b is the
same as in the original IFDS problem. The elements of the correlated-calls lattice Lb are
functions that map receivers to sets of types:

Lb =
{
m : R→ 2T

}
,
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where R is the set of receivers and T is the set of all types in the program. The type power
set 2T is also a lattice with a bottom element

⊥T = T

and top element

>T = ∅.

The top element of the function lattice

>b = λr.>T

is a function that maps any receiver to the empty set7. The bottom element

⊥b = λr.⊥T

maps any receiver to all types in the program.

To understand the meaning of lattice elements in a correlated-call analysis, suppose that
an IFDS problem has been converted to an IDE problem using the correlated-calls trans-
formation. Assume also that s is the entrypoint of the program, n is a node in the exploded
supergraph, and that in the IDE result, n is mapped to a lattice element l ∈ Lb. Then
the purpose of l is to provide information about the set of types of the objects that may
be referenced by each receiver at runtime at a path from s to n. If a receiver is mapped to
the empty set >T , it means that for the given program point, the receiver cannot reference
an object of any type. In other words, the corresponding data-flow fact is considered not
reachable.

3.2.2.2 Micro Functions

Unlike in the equivalence transformation, the micro functions returned by the edge function
EdgeFnb are not always identity functions.

Let e = (n1, n2) ∈ E# be an edge in the exploded supergraph. EdgeFnb(e) returns a micro
function f ⊂ Lb → Lb. Given a micro function (a map from receivers to sets of types)
m ∈ Lb, f(m) returns a new map from receivers to sets of types. In other words, f shows
how to update the map from receivers to sets of types when we encounter program point
n1.
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Let f1 and f2 be two micro functions such that f1 = λm . λr . t1(r) and f2 = λm . λr . t2(r).
We define the meet operation on micro-functions as follows:

λm . λr . t1(r) u λm . λr . t2(r) = λm . λr . t1(r) ∪ t2(r). (3.4)

The composition of micro functions is defined as ordinary function composition.

3.2.2.3 Edge Functions

Let F be the set of methods in a program with a signature sF .

Definition 3.2.4. Let r.c() be a call site on a receiver r ∈ R with runtime type t ∈ T .
Let sF be the method signature corresponding to the call c(). For sF and t, a lookup function
returns the method implementation f ∈ F to which the call r.c() is dispatched:

lookup(sF , t) = f.

Definition 3.2.5. For a method signature sF and a method implementation f ∈ F , the
static-type function τ returns the set of types for which the lookup function yields f :

τ(sF , f) = { t | lookup(sF , t) = f}.

In other words, τ computes the set of types for which calls to methods with signatures sF
are dispatched to f .

If there is a supergraph path from a method call with signature sF to the start of f , then
the set τ(sF , f) is always non-empty.

Definition 3.2.6. A call site is called monomorphic if it can be dispatched to only one
method. If a call site can be dispatched to more than one method it is called polymorphic.

Let r.c() be a call on a receiver r ∈ R with a method signature sF to a function f ∈ F . If
the call site is monomorphic, then τ(sF , f) contains all types T ′ ⊆ T that are compatible
with the static type of r. If the call site is polymorphic, then τ(sF , f) ⊂ T ′, since some
types t ∈ T ′ cause dispatch to a method other than f .

Definition 3.2.7. For an edge e, let n1(e) and n2(e) be the source and target nodes of e,
and d1(e) and d2(e) be its source and target facts. A correlated-call edge function for the
set S ⊆ R is defined as follows:

EdgeFnbS = λe .


id if d1(e) = d2(e) = Λ,

λm . εS(e)(⊥b) if d1(e) = Λ and d2(e) 6= Λ,

λm . εS(e)(m) otherwise,

(3.5)
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where εS : E → (L→ L) is a function defined as

εS = λe .



λm .m[r → m(r) ∩ τ(sF , f)], if e is a call-start edge. r.c() is the call

site at n1(e), f is the called procedure

with signature sF , and r ∈ S;

λm .m[r → m(r) ∩ τ(sF , f)] if e is an end-return edge. v1, . . . , vk ∈ S
λm .m[v1 → ⊥T ] are the local variables in the callee method,

λm .m . . . r.c() is the call corresponding to the return

λm .m[vk → ⊥T ], node at n2(e), f is the called method with

signature sF , and r ∈ S;

λm .m [r → ⊥T ] , if n1(e) contains an assignment for r ∈ S;

id otherwise.

(3.6)
We define both EdgeFnbS and εS to be extended to paths by composition.

In the above definition, the purpose of the set S is to limit the set of considered receivers.
We will use S in Section 3.2.2.5.

The micro functions returned by a correlated-calls edge function can be described as follows.
Along Λ-edges, the micro functions are identity functions. All other functions can be
described with εS. On “diagonal” edges from Λ facts to non-Λ facts, εS creates edge-
specific mappings for a set of receivers, and maps all the other receivers to the set of all
types ⊥T . On all other edges, εS modifies the mappings for a set of receivers and leaves
the mappings for the other receivers unchanged.

Example 3.2.8. Consider the program Listing 1.1. The exploded supergraph for that
program is shown in Figure 3.2.

Returning a secret value in method A.foo creates a “diagonal” edge from the Λ-fact to the
secret fact ψ. The diagonal edge is labeled with the micro function λm .⊥b. Thus, at the
end node of the method, every receiver is mapped to the set of all types ⊥T .

On the end-return edge from A.foo to main, we need to restrict the set of types for the
receiver a by labeling the end-return edge from the fact ψ to the fact v with the micro
function λm .m[a→ m(a) ∩ {A}].
Similarly, on the call-start edge from method main to method B.bar, from fact v to s,
we restrict the type of the receiver a to the set {B} with the micro function λm .m[a →
m(a) ∩ {B}].
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startmain

a = args==null ?

new A() : new B()

callfoo

returnfoo
v = a.foo()

callbar

returnbar

endmain

Λ v
startA.foo

return secret()

endA.foo

ψΛ

λ
m
.⊥

b

λm
.m

[a
→
m
(a
) ∩

{A}
]

startA.bar

endA.bar

sΛ

λm
.m

[a
→
m
(a
) ∩

{A
}]

startB.foo

return "not secret"

endB.foo

Λ
startB.bar

print(s)

endB.bar

sΛ
λm.m[a → m(a) ∩ {B}]

Figure 3.2: An example program demonstrating correlated-call edge functions on the Λ-node
path for Listing 1.1. All non-labeled edges are implicitly labeled with identity functions id. The
variable corresponding to an initial secret value is denoted as ψ.

After we have shown the definitions for the meet and composition operations, we will show
in Example 4.2.8 how the correlated-calls analysis uses the presented micro functions to
detect infeasible paths.

Definition 3.2.9. For an IFDS problem P = (G#) and a set S, the correlated-calls trans-
formation T b

S is defined as

T b
S ((G#)) =

(
G#, Lb

S , EdgeFn
b
S

)
,

where Lb
S : S → 2T .

Then, for an edge e, the correlated-call micro functions can be defined as EdgeFnbR and a
correlated-calls transformation is defined as T b

R .
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3.2.2.4 Converting IDE Results to IFDS Results

Let P be an IFDS problem. Let E : N × D be the domain of the IDE result R(Q). To
convert R(T b

R (P )) to an IFDS result, we need to map the control-flow-supergraph nodes
n ∈ N∗ to the corresponding facts d ∈ D. Unlike in U≡, we will only map each n to the
facts d for which R(T b

R (P ))(n, d) does not contain an empty mapping for any receiver.

For a node n ∈ N∗ and a correlated-calls IDE problem result ρ = R(T b
S (P )), let Db

n (ρ) be
a set of data-flow facts defined as

Db
n (ρ) = {d | d ∈ MVPF (n) ∧ ∀r ∈ R : ρ(n, d)(r) 6= >T} . (3.7)

Then, for a set S ⊆ R, the correlated-calls-conversion function from a correlated-calls
IDE result ρ to an IFDS result looks as follows:

Ub (ρ) = {(n, Db
n (ρ) | n ∈ N∗} . (3.8)

In the following lemma we show that the result of an IDE problem obtained through a
correlated-calls transformation is a subset of the original IFDS result.

Lemma 3.2.10 (Precision). For an IFDS problem P and all n ∈ N∗,

Ub (R(T b
R (P ))) (n) ⊆ RIFDS(P )(n). (3.9)

Proof. The transformation Ub is the same as U≡, except that it can remove data-flow facts
from the result:

Ub (R(T b
R (P ))) (n) = {(n′, D′bn (R(T b

R (P )))) | n ∈ N∗}(n)

= Db
n (R(T b

R (P )))

⊆ MVPF (n)

= RIFDS(P )(n).

We will next show, in Lemma 3.2.13, that our analysis is sound, i.e. that the result of an
IDE problem obtained through a correlated-calls transformation removes only facts that oc-
cur on infeasible paths. To prove the Soundness Lemma, we first introduce Lemmas 3.2.11
and 3.2.12.

We will denote the top element in the environment lattice as

Ω = λd .>b.
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For the purpose of the proofs, we will rewrite Equation (3.5) that defines an edge function
as follows:

EdgeFnbS = λe .

{
id if d1 = d2 = Λ,

λm . ε(e)(δ(m)) otherwise,
(3.10)

where S ⊆ R, d1 and d2 are the source and target facts, and for a map m ∈ Lb
U , δ(m) is

either m or ⊥b:

δ(m) =

{
⊥b if d1 = Λ

m otherwise.
(3.11)

Additionally, for a path p = [startmain, . . . ] and a fact d ∈ D, we will denote the lattice
element that is mapped to d according to the flow functions of path p as follows:

ξ(p, d) = MEnv(p)(Ω)(d).

The following Lemma shows that the lattice elements (receiver-to-types maps) of a correlated-
calls IDE analysis correctly overapproximate the possible types of a receiver in a program
execution.

Lemma 3.2.11. Let p = [startmain, . . . , n] be some concrete execution trace of the program,
and let r ∈ R be a receiver. If after the execution trace p, at node n, r points to an object
of runtime type t, and d ∈ D is a fact such that d ∈MF (p)(∅), then

t ∈ ξ(p, d)(r).

Proof. By induction on the length of the trace.

Basis: p = [startmain]. Then there is no instruction at which a receiver r could be instanti-
ated, and the Lemma is trivially true.

Induction hypothesis: Let p = [startmain, . . . , nk−1], and let τ be the set of types to which
ξ(p, dk−1) maps r:

τ = ξ(p, dk−1)(r).

Assume that for a concrete execution path p = [startmain, . . . , nk−1], at node (nk−1, dk−1),
the Lemma holds, i.e. t ∈ τ.

Induction step: Let p′ = [startmain, . . . , nk−1, nk] and t′ ∈ T be the type to which r is
mapped at nk.

For each i, let ei be the edge ((ni−1, di−1), (ni, di)). Note that e1 = ((startmain, Λ), (n1, d1)).
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Observe that

ξ(p′, d) = MEnv(p
′)(Ω)(d)

= (MEnv(ek) ◦MEnv(ek−1) ◦ . . . ◦MEnv(e1)) (Ω)(d)

= MEnv(ek) (MEnv(p)(Ω)) (d).

According to (3.1),

MEnv(ek) (MEnv(p)(Ω)) (d)(r)

=

(
EdgeFnbR((nk−1, Λ), (nk, d))(>b) u

l

d′∈D

EdgeFnbR((nk−1, d
′), (nk, d))(MEnv(p)(Ω)(d′))

)
(r)

⊇
l

d′∈D

EdgeFnbR((nk−1, d
′), (nk, d))(MEnv(p)(Ω)(d′))(r)

⊇EdgeFnbR((nk−1, dk−1), (nk, d))(ξ(p, dk−1))(r).

Therefore,
EdgeFnbR(ek)(ξ(p, dk−1))(r) ⊆ ξ(p′, d)(r). (3.12)

We will now show that
t′ ∈ EdgeFnbR(ek)(ξ(p, dk−1))(r),

which, due to (3.12), means that the Lemma holds.

According to (3.10), there are two cases in which EdgeFnbR(ek) could fall.

If dk−1 = dk = Λ, then dk /∈ MF (p)(∅), since it does not belong to the set D, and the
Lemma trivially holds.

Otherwise,
EdgeFnbR(ek) = λm .ε(ek)(δ(m)).

It follows that

EdgeFnbR(ek)(ξ(p, dk−1))(r) = (λm .ε(ek)(δ(m)))(ξ(p, dk−1))(r)

= ε(ek)(δ(ξ(p, dk−1)))(r). (3.13)

Let us denote the lattice element δ(ξ(p, dk−1)) with ∆:

∆ = δ(ξ(p, dk−1)).
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Note that since ∆, according to (3.11), can be either ⊥b or ξ(p, dk−1), it always maps r to
a set containing t:

t ∈ ∆(r). (3.14)

Note also that unless the instruction at nk−1 contains an assignment for r, r is mapped to
the same object of type t as at node nk−1, and t = t′. Therefore, for the non-assignment
instructions, it is sufficient to prove that t ∈ ∆(r).

Depending on the instructions at the nodes nk−1 and nk, there are four cases:

1. The instruction at nk−1 is an assignment for a receiver r′ ∈ R. Since εR(ek) =
λm .m[r′ → ⊥T ],

EdgeFnbR(ek)(ξ(p, dk−1))(r) = (λm .m[r′ → ⊥T ])(∆)(r)

= ∆[r′ → ⊥T ](r).

In the resulting map, r′ is mapped to ⊥T . Then

(a) if r = r′, then EdgeFnbR(ek)(ξ(p, dk−1))(r) = ⊥T , which contains t′.

(b) If r 6= r′, then r has not been reassigned a value, and still maps to the same
object of type t. The receiver r is mapped to ∆(r), which, according to (3.14),
contains t. Since t = t′, ∆(r) contains t′.

2. ek is a call-start edge with signature sF , and f ∈ F is the called procedure. Then

EdgeFnbR(ek)(ξ(p, dk−1))(r) = (λm .m[r′ → m(r′) ∩ τ(sF , f)])(∆)(r)

= ∆[r′ → ∆(r′) ∩ τ(sF , f)],

where r′ is the receiver of the call.

• If r′ = r, then ∆(r′) = ∆(r) which contains t. Since t ∈ τ(sF , f), it follows that
t ∈ ∆(r) ∩ τ(sF , f), and t ∈ EdgeFnbR(ek)(ξ(p, dk−1))(r).

• If r′ 6= r, see (1b).

3. ek is an end-return edge, r1, . . . , rk ∈ R are the local variables in the callee method,
r′ is the receiver of the call site corresponding to the return node nk, and f ∈ F is
the called method with signature sF . Then

εR(ek) = λm .m[r′ → m(r′) ∩ τ(sF , f)][r1 → ⊥T ] . . . [rk → ⊥T ].

If r ∈ {r1, . . . , rk}, see Case 1. Otherwise, the case is analogous to Case 2.
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4. The node contains any other instruction. Then

EdgeFnbR(ek)(ξ(p, dk−1))(r) = id(∆)(r) = ∆(r),

which contains t according to (3.14).

We will now show that on a node of a concrete execution path, the correlated-calls analysis
does not map receivers to >T . In other words, the analysis never considers nodes of a
concrete execution path unreachable.

Lemma 3.2.12. Let p = [startmain, . . . , n] be a concrete execution path, r ∈ R a receiver,
and d ∈ D a data-flow fact. Then if d ∈MF (p)(∅),

ξ(p, d)(r) 6= >T .

Proof. By induction on the length of the execution trace.

Basis: Let p = [startmain]. Since the only realizable path corresponding to p is [(startmain, Λ)],
there is no fact d ∈ D such that d ∈MF (p)(∅), and the claim follows immediately.

Induction hypothesis: Let p = [startmain, . . . , nk−1]. Let τ be the set of types to which r is
mapped by ξ(p, dk−1):

τ = ξ(p, dk−1)(r).

Assume the Lemma holds for that for a concrete execution path p = [startmain, n1, . . . , nk−1],
i.e. τ 6= >T for an arbitrary r ∈ R and dk−1 ∈ D.

Induction step: Let p′ = [startmain, n1, . . . , nk−1, nk] be a concrete execution path.

Let ek = ((nk−1, dk−1), (nk, d)). As shown in (3.12),

ξ(p′, d)(r) ⊇ EdgeFnbR(ek)(ξ(p, dk−1))(r).

From Definition 3.2.7, we can see that unless ek is a call-start edge or an end-return edge,
the result follows from the induction hypothesis. More formally, if ek is not a call-start or
end-return edge, then for all m ∈ Lb

R,

EdgeFnbR(ek)(m) v m.

The edge function corresponding to the call-start and end-return edges is the only place in
which the set of types that a receiver maps to can be reduced.
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Assume that ek is a end-return edge with a call on the receiver r′ ∈ R with a signature sF
to a function f ∈ F .

EdgeFnbR(ek)(ξ(p, dk−1))(r)

= (λm .m[r′ → m(r) ∩ τ(sF , f)][r1 → ⊥T ] . . . [rl → ⊥T ]) (ξ(p, dk−1))(r)

= (ξ(p, dk−1)[r
′ → τ ∩ τ(sF , f)][r1 → ⊥T ] . . . [rl → ⊥T ]) (r),

where r1, . . . , rl ∈ R are the local variables in the called method.

If r ∈ {r1, . . . , rl}, then EdgeFnbR(ek)(ξ(p, dk−1))(r) = ⊥T 3 t8.

Otherwise, if r = r′, then EdgeFnbR(ek)(ξ(p, dk−1))(r) = τ ∩ τ(sF , f).

According to Lemma 3.2.11 and by the induction hypothesis, the runtime type t of r
must be contained in ξ(p, dk−1)(r) = τ. At the same time, by definition, t is part of
τ(sF , f). Therefore, t ∈ τ ∩ τ(sF , f) ⊆ EdgeFnbR(ek)(ξ(p, dk−1))(r), which means that
EdgeFnbR(ek)(ξ(p, dk−1))(r) 6= >T .

The same reasoning applies to the case where ek is a call-start edge.

Finally, we will prove the soundness of the correlated-calls analysis: we will show that our
analysis only considers a path infeasible if it cannot occur in a concrete execution of a
program.

Lemma 3.2.13 (Soundness). Let p = [startmain, . . . , n] be a concrete execution path, and
let d ∈ D. If d ∈MF (p)(∅), then

d ∈ Ub (R(T b
R (P ))) (n).

Proof. Let ρ = R(T b
R (P )). Then

Ub(ρ)(n) = Db
n (ρ)

= {d′ | d′ ∈ MVPF (n) ∧ ∀r ∈ R : ρ(n, d′)(r) 6= >T} .

Since MVPF (n) =
d
q∈VP(n)MF (q)(∅), and p ∈ VP(n), it follows that

d ∈MF (p)(∅)

⊆ MVPF (n).

8In the case of a recursive call, it is possible that both r ∈ {r1, . . . , rl} and r = r′. In that case, the
set to which r will be mapped would be still “overwritten” by ⊥T .
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At the same time, for all receivers r ∈ R,

ρ(n, d)(r) =

 l

q∈VP(n)

ξ(q, d)

 (r)

=
l

q∈VP(n)

ξ(q, d)(r).

According to Lemma 3.2.12, ξ(p, d)(r) 6= >T . Since p ∈ VP(n),

ξ(p, d)(r) ⊆
l

q∈VP(n)

ξ(q, d)(r).

From
d
q∈VP(n) ξ(q, d)(r) = ρ(n, d)(r) it follows that ξ(p, d)(r) ⊆ ρ(n, d)(r). Therefore,

ρ(n, d)(r) 6= >T , and d ∈ Db
n (ρ) = Ub(ρ)(n).

3.2.2.5 Correlated-Call Receivers

We will now show that in a correlated-calls transformation, it is enough to consider only
some of the receivers of set R.

Definition 3.2.14. Let c1 and c2 be two call sites on a receiver r ∈ R. If both call sites
are polymorphic, then we say that r is a correlated-call receiver.

In other words, a correlated-call receiver is a receiver that has at least two polymorphic
call invocations. We will denote the set of correlated-call receivers as Rb.

We will describe a “reduced” correlated-calls transformation in which we only consider
receivers from Rb and ignore other receivers of R. We will show that IDE problems
obtained through ordinary and reduced correlated-calls transformations yield the same
results.

The following Lemma shows that the types to which a given receiver is mapped in the
result of the algorithm is not affected by other receivers and the types to which they are
mapped.

Lemma 3.2.15. Let P be an IFDS problem. Let N∗ be the supergraph for P , D the set
of data-flow facts, n ∈ N∗ a node, and p = [startmain, . . . , n] a path in the supergraph. Let
d ∈ D ∪ {Λ}. Then for any realizable path p′ ∈ RP(p, d), set S ⊆ R, and receiver r ∈ S,

EdgeFnbS (p′)(>b)(r) = EdgeFnb{r}(p
′)(>b)(r).
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Proof. By induction on the length of p.

Basis: p′ = [(startmain, Λ)]. Then EdgeFnbS (p′) = id = EdgeFnb{r}(p
′), and the Lemma

follows directly.

Induction hypothesis: Suppose that for a path q = [(startmain, Λ), . . . , (nk−1, dk−1)], where
q ∈ RP(n, d), the Lemma holds, i.e. both edge functions map r to the same set of types τ:

τ = EdgeFnbS (q)(>b)(r)

= EdgeFnb{r}(q)(>b)(r).

Induction step: Let q′ = [(startmain, Λ), . . . , (nk−1, dk−1), (nk, dk)] and the edge ek =
((nk−1, dk−1), (nk, dk)).

Observe that for any set U ⊆ R such that r ∈ U ,

EdgeFnbU(q′)(>b)(r) = EdgeFnbU(ek)(EdgeFn
b
U(q)(>b))(r). (3.15)

We can see from (3.10) that there are two cases.

If dk−1 = dk = Λ, EdgeFnbS (ek) = id = EdgeFnb{r}(ek), and, due to (3.15),

EdgeFnbS (q′)(>b)(r) = τ

= EdgeFnb{r}(q
′)(>b)(r).

Otherwise, there are four sub-cases.

1. ek is a call-start edge, r′.c() is the call site at nk−1 with signature sF , f ∈ F is the
called procedure, and r′ ∈ U . Then

EdgeFnbU(ek) = λm . δ(m)[r′ → δ(m)(r) ∩ τ(sF , f)].

There are two sub-cases.

(a) If r = r′, then, according to (3.15), the resulting set of types

EdgeFnbU(q′)(>b)(r) = δ(EdgeFnbU(q)(>b))(r) ∩ τ(sF , f).

If dk−1 = Λ, then δ(EdgeFnbU(q)(>b))(r) = ⊥b(r) = ⊥T . If dk−1 6= Λ, then
δ(EdgeFnbU(q)(>b))(r) = EdgeFnbU(q)(>b)(r) = τ. The set τ(sF , f) is the same
for either case.

Therefore, the value of EdgeFnbU(q′)(>b)(r) has the same result regardless of U ,
which means that EdgeFnbS (q′)(>b)(r) = EdgeFnb{r}(q

′)(>b)(r), and the Lemma
holds.
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(b) If r 6= r′, then

EdgeFnbU(q′)(>b)(r) = δ(EdgeFnbU(q)(>b))(r),

which, as we have seen in Case (1a), does not depend on U , and the Lemma
holds.

2. ek is an end-return edge, r1, . . . , rl ∈ U are the local variables in the callee method,
r′.c() is the call corresponding to the return node at nk, f ∈ F is the called method
with signature sF , and r′ ∈ U . Then

EdgeFnbU(ek) = λm . δ(m)[r′ → δ(m)(r) ∩ τ(sF , f)][r1 → ⊥T ] . . . [rl → ⊥T ].

There are three sub-cases.

(a) If r ∈ {r1, . . . , rl}, then regardless of the value of U ,

EdgeFnbU(q′)(>b)(r) = ⊥T ,

and the Lemma holds.

(b) Otherwise, if r = r′, the case is analogous to Case (1a).

(c) If r /∈ {r′, r1, . . . , rl}, then see Case (1b).

3. nk−1 contains an assignment for r′ ∈ U . Then

EdgeFnbU(ek) = λm . δ(m)[r′ → ⊥T ].

If r = r′, see Case (2a). If r 6= r′, see Case (1b).

4. Otherwise,
EdgeFnbU(ek) = λm . δ(m),

and the case is analogous to Case (1b).

The following Lemma shows that the correlated-calls analysis computes the results for each
receiver independently, or separately. To compute the set of types to which a receiver r is
mapped at each exploded-graph node, we can exclude all other receivers in the program
from the analysis (recall from (3.5) that the set of receivers that are considered in the
analysis is specified by the set S in a correlated-calls transformation T b

S ). Therefore, for a
given receiver r, the results of a T b

S - and a T b
{r}-analysis are the same.
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Lemma 3.2.16. Let P be an IFDS problem. Let N∗ be the supergraph for P , D the set of
data-flow facts, and S ⊆ R a set of receivers. Then for any n ∈ N∗, d ∈ D, and receiver
r ∈ S,

R (T b
S (P )) (n, d)(r) = R(T b

{r}(P ))(n, d)(r).

Proof. According to (3.3), (2.1), and (3.2),

R (T b
S (P )) (n, d)(r) = MVPEnv(n, d)(r)

=

 l

q∈VP(n)

MEnv(q)(Ω)(d)

 (r)

=

 l

q∈VP(n)

l

q′∈RP(q, d)

EdgeFnbS (q′)(>b)

 (r)

=
⋃

q∈VP(n)

⋃
q′∈RP(q, d)

EdgeFnbS (q′)(>b)(r). (3.16)

Then from Lemma 3.2.15,

R (T b
S (P )) (n, d)(r) =

⋃
q∈VP(n)

⋃
q′∈RP(q, d)

EdgeFnb{r}(q
′)(>b)(r)

= R
(
T b
{r}(P )

)
(n, d)(r).

The next lemma shows that the set of types to which a receiver is mapped in a correlated-
calls lattice element can be represented as an intersection of static-type function applica-
tions τ(sFi , fi).

Lemma 3.2.17. For an IFDS problem P , a node n ∈ N∗, and fact d ∈ D, let p ∈ RP(n, d)
be a realizable path and r ∈ R a receiver. Then there exists a non-negative number γ of
calls on the receiver r with signatures sFγ to the functions fγ ∈ Fγ, for which

EdgeFnb{r}(p)(>b)(r) =
⋂
γ≥0

τ(sFγ , fγ).

Proof. Let p have the following form9:

p = [(startmain, Λ), (n1, Λ), . . . , (nk, Λ), (nk+1, dk+1), . . . , (nk+l, dk+l)],

9It can be shown from the definition of a pointwise representation in Sagiv et al. [21] that in a realizable
path, there is never an edge from a fact of the set D to a Λ fact. Therefore, we can represent p as a sequence
of nodes that has a prefix of Λ-fact nodes, after which all nodes are non-Λ facts.
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where l ≥ 1 and the facts for all nodes up to nk are equal to Λ and dk+i ∈ D for 0 < i ≤ l.

As previously, for all i, we will denote the edge (ni, ni+1) by ei.

From (3.5) we can infer that

EdgeFnb{r}(p) = EdgeFnb{r}(ek+l) ◦ . . . ◦ EdgeFn
b
{r}(ek+2) ◦ (λm . β) ◦ id ◦ . . . ◦ id,

where

β =


⊥b[r → τ(sF , f)] if (nk, nk+1) is a call-start or end-return edge, and the call

site r.c() with signature sF to the function f ∈ F corresponds

to the call-start or end-return edge,

⊥b otherwise10.

Therefore,

EdgeFnb{r}(p)(>b) =
(
EdgeFnb{r}(ek+l) ◦ . . . ◦ EdgeFn

b
{r}(ek+2)

)
((λm . β)(>b))

=
(
EdgeFnb{r}(ek+l) ◦ . . . ◦ EdgeFn

b
{r}(ek+2) ◦ id

)
(β). (3.17)

We can now prove the lemma by induction on l.

Basis: If l = 1, then EdgeFnb{r}(p)(>b) = id(β) = β. There are two cases.

If β = ⊥b, then

EdgeFnb{r}(p)(>b)(r) = β(r)

= ⊥T ,

and γ = 0.

If β = ⊥b[r → τ(sF , f)], then

EdgeFnb{r}(p)(>b)(r) = τ(sF , f),

and γ = 1.

10Since dk = Λ and dk+1 6= Λ, the micro function for the edge ek+1 is equal to λm . ε{r}(ek+1)(⊥b).
From the definition of εS (3.6) we can see that the only case where ε{r}(ek+1)(m) would not be equal to
⊥b is when ek+1 is call-start or end-return edge.
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Induction hypothesis: Assume that for a path p = [(startmain, Λ), . . . , (nk+l, dk+l)], the
Lemma holds for γ = N , where N ≥ 0.

Induction step: Let p′ = [(startmain, Λ), . . . , (nk+l, dk+l), (nk+l+1, dk+l+1)].

Recall that

EdgeFnb{r}(p
′)(>b)(r) = EdgeFnb{r}(ek+l+1)

(
EdgeFnb{r}(p)(>b)

)
(r).

From (3.6) we can see that unless ek+l+1 is a call-start or end-return edge corresponding
to a call on the receiver r, then EdgeFnb{r}(ek+l+1)(r) must be equal to either ⊥T or m(r),

where m = EdgeFnb{r}(p)(>b).

If EdgeFnb{r}(ek+l+1)(r) = ⊥T , then the Lemma holds for γ = 0.

Otherwise,

EdgeFnb{r}(ek+l+1)(>b)(r) = EdgeFnb{r}(p)(>b)(r)

=
⋂
N

τ(sFN , fN),

and therefore γ = N .

Suppose that ek+l+1 is a call-start edge with a call on the receiver r with signature sG to
a function g ∈ G. Then, according to (3.6),

EdgeFnb{r}(ek+l+1) = λm .m[r → m(r) ∩ τ(sG, g)].

Therefore,

EdgeFnb{r}(p
′)(>b)(r)

= λm .m[r → m(r) ∩ τ(sG, g)]
(
EdgeFnb{r}(p)(>b)

)
(r)

= EdgeFnb{r}(p)(>b)(r) ∩ τ(sG, g)

=

(⋂
N

τ(sFN , fN)

)
∩ τ(sG, g),

and the Lemma holds for γ = N + 1.

The case where ek+l+1 is an end-return edge is analogous to the previous case.

We now show that a receiver will be only mapped to >b if it is the receiver of a correlated
call.
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Lemma 3.2.18. For an IFDS problem P , let n ∈ N∗ be a node, and d ∈ D a dataflow
fact such that there exists a realizable path p ∈ RP(n, d). Let T be the set of all types in
the program. If there exists a receiver r ∈ R such that

EdgeFnb{r}(p)(>b)(r) = >T ,

then r ∈ Rb.

Proof. According to Lemma 3.2.17,

EdgeFnb{r}(p)(>b)(r) =
⋂
γ≥0

τ(sFγ , fγ).

Let τi = τ(sFi , fi). For a given k, let r.mk() be the call site corresponding to τk, and T ′

the set of types compatible with the static type of r. Recall from Section 3.2.2.3 that

• τk 6= >T ;

• if τk = T ′ then the corresponding call site is monomorphic;

• if τk ⊂ T ′ then the call site is polymorphic.

From the conditions of the Lemma, ⋂
γ≥0

τγ = >T .

If all τk = T ′, then
⋂
γ≥0 τγ is also equal to T ′. Since T ′ 6= >T , this is a contradiction.

If exactly one τk ⊂ T ′ and the rest are equal to T ′, then
⋂
γ≥0 τγ is equal to τk, which

cannot be >T either.

Therefore, there are at least two sets, τi and τj, which are strict subsets of T ′. Since both
τi and τj are non-empty and their intersection equals >T , τi and τj must be disjoint. If τi
and τj are disjoint, they must correspond to different call sites.

In other words, there are at least two calls on the same receiver for which the static-type
function is a strict subset of the set of types compatible with a given receiver r. It follows
that both calls have to be polymorphic. Therefore, r ∈ Rb.

We will now show that if a receiver ever gets mapped to top, then it is a correlated-calls
receiver.
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Lemma 3.2.19. For an IFDS problem P , let n ∈ N∗ be a node, and d ∈ D a dataflow
fact such there exists a realizable path p ∈ RP(n, d). Then, if there exists a receiver r ∈ R,
such that

R
(
T b
{r}(P )

)
(n, d)(r) = >T ,

then r ∈ Rb.

Proof. As shown in (3.16),

R
(
T b
{r}(P )

)
(n, d)(r) =

⋃
q∈VP(n)

⋃
q′∈RP(q, d)

EdgeFnb{r}(q
′)(>b)(r).

Since the latter is equal to >T , it follows that for each realizable path p′ to node n,
EdgeFnb{r}(p

′)(>)(r) = >T . According to Lemma 3.2.19, this is only possible if r ∈ Rb.

Finally, we show that if a correlated calls analysis considers only correlated-call receivers,
no precision is lost. A correlated-calls analysis that considers all receivers computes the
same result as an analysis that considers only correlated-call receivers.

Lemma 3.2.20. Let P be an IFDS problem. Then

Ub (R (T b
Rb(P ))) = Ub(R (T b

R (P ))).

Proof. From (3.8) we know that

Ub(R (T b
R (P ))) = {(n, Db

n (R(T b
R (P )))) | n ∈ N∗} .

According to (3.7) and Lemma 3.2.16, for a given n ∈ N∗,

Db
n (R(T b

R (P ))))

=
{
d | d ∈ MVPF (n) ∧ ∀r ∈ R :

{
(r, R(T b

{r}(P ))(n, d)(r)) | r ∈ R
}

(r) 6= >T
}

=
{
d | d ∈ MVPF (n) ∧ ∀r ∈ R : R(T b

{r}(P ))(n, d)(r) 6= >T
}
.

Since, according to Lemma 3.2.19, R(T b
{r}(P ))(n, d)(r) can only be equal to >T when

r ∈ Rb, we can conclude that

Db
n (R(T b

R (P ))))

=
{
d | d ∈ MVPF (n) ∧ ∀r ∈ Rb : R(T b

{r}(P ))(n, d)(r) 6= >T
}

= Db
n (R(T b

Rb(P )))).
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Therefore,

Ub(R (T b
R (P ))) = {(n, Db

n (R(T b
Rb(P )))) | n ∈ N∗}

= Ub(R (T b
Rb(P ))).

To summarize, Lemma 3.2.13 shows that the result Rb of a correlated-calls analysis is
sound since it overapproximates the data flow of all possible concrete execution paths. We
have also shown in Lemma 3.2.10 that the correlated-calls analysis improves the precision
of the original IFDS result RIFDS, because the correlated-calls result Rb underapproxi-
mates an equivalence-IDE result R≡ = RIFDS. Finally, we showed that a correlated-call
transformation to IDE that considers only correlated-call receivers Rb achieves the same
result Rb that is obtained when considering all receivers R.

This is the general idea of the correlated-calls analysis. The analysis involves a transfor-
mation from IFDS to IDE problems. To implement an IDE problem, it is necessary to
define a representation of lattice elements and micro functions. An efficient representation
of those data structures for the correlated-calls analysis is presented in the next chapter.

49



Chapter 4

Correlated Calls Representations

In order to define a correlated-calls transformation, we need to represent lattice elements
Lb
Rb : Rb → 2T of the target IDE problem, which are functions from receivers to sets of

types, and micro functions Lb
Rb → Lb

Rb .

As defined in Sagiv et al. [21], a representation of micro functions is efficient if the following
conditions hold:

1. There is a representation for the identity and top functions.

2. The representation is closed under the meet and composition operations.

3. The micro functions form a finite-height lattice.

4. The apply, meet, composition, and equality-check operations can be computed in
constant time.

5. There is a constant bound on the storage space for a micro function representation.

We will distinguish the representation of a concept from its denotation. For a concept c,
we will write JcK for its denotation and just c for its representation. For example, if we
want to represent a constant function g with the constant value v that it returns, we will
write for g’s representation, g = v, and for g’s denotation, JgK = λx . v.
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4.1 Lattice Elements

Elements of the Lb
Rb lattice can be represented with a map from receivers to sets of types.

The bottom element maps each receiver to the set T of all types:

⊥b = {(r, T ) | r ∈ Rb}

and the top element maps each receiver to the empty set:

>b = {(r, ∅) | r ∈ Rb} .

4.2 Micro Functions

In the context of the correlated-calls transformation to an IDE problem, a lattice element
is a map from receivers to sets of types. Thus, a micro function transforms, or updates, an
existing receiver-to-types map with new information about the types of a receiver.

We will represent micro functions with update maps which we describe in the next section.

4.2.1 Update Maps

To represent micro functions that transform maps from receivers to sets of types, we use
update maps. To define update maps, we first introduce the notions of update functions
and normalization.

Let f be a micro function, r ∈ Rb a correlated-call receiver, and T the set of types in a
program.

Definition 4.2.1. A non-normalized update function update∗f, r is a pair of sets

update∗f, r = 〈If, r, Uf, r〉 ,

where If, r ⊆ T is called the intersection set and Uf, r ⊆ T the union set of the update
function.

Definition 4.2.2. Let 〈I, U〉 be a pair of sets. The normalization function N is defined
as

N (〈I, U〉) = 〈I ∪ U, U〉 .
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Definition 4.2.3. An update function updatef, r is a normalized pair of sets

updatef, r = N (update∗f, r) = N (〈If, r, Uf, r〉).

Definition 4.2.4. The update map of f is a map from receivers to update functions:

updatef = {(r, updatef, r) | r ∈ Rb}.

Thus, each micro function f is represented with an update map:

f =
q
updatef

y
.

4.2.2 Denotation of Update Maps

Intuitively, the meaning of a micro function is the update that it performs on a receiver-
to-types map. To represent a micro function, it is enough to specify how the set of types
for a given receiver has to be transformed. This is what the update map does.

For a micro function f , an update map takes a receiver and returns an update function:
q
updatef

y
= λr .

q
updatef, r

y
.

Given a micro function f : (Rb → 2T )→ (Rb → 2T ), an update map is defined so that

f(m) =
{(
r,

q
updatef

y
(r)(m(r)

)
| r ∈ Rb

}
,

where the update map
q
updatef

y
has type Rb → (2T → 2T ), and the update functionq

updatef, r
y

=
q
updatef

y
(r) has type 2T → 2T .

For any receiver-to-types map m, an update function specifies two things:

• which elements of m(r) should be preserved, and

• which new elements should be added to m(r).

This can be achieved by maintaining the intersection If, r and union set Uf, r, where
q
updatef, r

y
(m(r)) = (m(r) ∩ If, r) ∪ Uf, r.

However, as we will see in Section 4.2.3, we need to be able to check update functions for
equality, which is difficult to do with non-normalized update functions.
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Example 4.2.5. For a non-empty set of types T , consider two update functions

u1 = 〈T, T 〉

and
u2 = 〈∅, T 〉 .

The denotations of the functions look as follows:

Ju1K = λt . (t ∩ T ) ∪ T

and
Ju2K = λt . (t ∩∅) ∪ T.

We can see that both Ju1K and Ju2K are equal to the function λt . T .

Therefore, the same function can have more than one non-normalized representation. This
means that to check two functions for equality, it is not enough to compare their non-
normalized representations.

This is why Definition 4.2.3 requires update functions to be normalized. Normalization
makes the union set of the update function a subset of the intersection set. As we show
later, normalization guarantees that each update function has a unique representation.

4.2.3 Equality of Micro Functions

We will now show that micro functions can be checked for equality if their representations
use normalized update functions.

First, let us show that normalization does not change the behaviour of an update function.
This means that the normalized and non-normalized versions of an update function always
denote the same function.
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Lemma 4.2.6.
q
N (update∗f, r)

y
=

q
update∗f, r.

y

Proof. Let update∗f, r = 〈I, U〉. For any τ ∈ T,
q
N (update∗f, r)

y
(τ) = JN (〈I, U〉)K (τ)

= J〈I ∪ U, U〉K (τ)

= τ ∩ (I ∪ U) ∪ U
= (τ ∩ I) ∪ (τ ∩ U) ∪ U
= τ ∩ I ∪ U
= J〈I, U〉K (τ)

=
q
update∗f, r

y
(τ).

Thus,
q
N (update∗f, r)

y
=

q
update∗f, r.

y
.

Let us show that two update functions are equal if and only if their normalized represen-
tations are equal.

It is obvious that two functions represented with the same pairs of sets are equal. Let us
prove that two different pairs of sets represent different update functions.

Lemma 4.2.7. Let 〈I, U〉 and 〈I ′, U ′〉 be two normalized update functions such that
〈I, U〉 6= 〈I ′, U ′〉. Then J〈I, U〉K 6= J〈I ′, U ′〉K.

Proof. Let us show that there always exists a set τ ⊆ T such that J〈I, U〉K (τ) 6= J〈I ′, U ′〉K (τ).
There are two cases:

1. U 6= U ′. Then for the empty set τ = ∅,

J〈I, U〉K (τ) = J〈I, U〉K (∅) = (∅ ∩ I) ∪ U = U,

whereas
J〈I ′, U ′〉K (τ) = J〈I ′, U ′〉K (∅) = (∅ ∩ I ′) ∪ U ′ = U ′.

Hence, J〈I, U〉K 6= J〈I ′, U ′〉K.

2. I 6= I ′. Then for the set of all types τ = T ,

J〈I, U〉K (τ) = J〈I, U〉K (T ) = (T ∩ I) ∪ U = I ∪ U.
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Since 〈I, U〉 is normalized, U ⊆ I, and

I ∪ U = I.

At the same time,

J〈I ′, U ′〉K (τ) = J〈I ′, U ′〉K (T ) = (T ∩ I ′) ∪ U ′ = I ′ ∪ U ′ = I ′.

Since I 6= I ′, it follows that J〈I, U〉K 6= J〈I ′, U ′〉K.

We have shown that transfer functions can be represented using update maps.

4.2.4 Operations on Update Maps

Let us now define the apply, compose, meet, and equals functions on micro function rep-
resentations.

For an update map f and a receiver r ∈ Rb, let the update function f(r) = 〈If, r, Uf, r〉.
Then the operations on the update maps f1 and f2 are defined as follows:

applyf1 =λm . {(r, (m(r) ∩ If, r) ∪ Uf, r) | r ∈ Rb} ,

f1 ◦ f2 = {(r, N (〈If1, r ∩ If2, r, (If1, r ∩ Uf2, r) ∪ Uf1, r〉)) | r ∈ Rb} ,

f1 u f2 = {(r, 〈If1, r ∪ If2, r, Uf1, r ∪ Uf2, r〉) | r ∈ Rb} ,

equals(f1, f2) =

{
true if f1 and f2 are structurally equal,

false otherwise.

The denotation of the operations on update maps can be explained in the following way.

The apply function of a micro function f maps over all receivers. For each receiver r ∈ Rb,
updatef (r) transforms the argument receiver-to-types map m. It returns a new map in
which r is mapped to a new set of types, updatef, r(m(r)):

q
applyf

y
= Jλm . {(r, (m(r) ∩ If, r) ∪ Uf, r) | r ∈ Rb}K
= λm .

{(
r,

q
updatef, r

y
(m(r))

)
| r ∈ Rb

}
.
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Note that in the beginning of the algorithm, m maps each receiver to ⊥T (all types).

Composing two micro functions means to compose their update-map denotations:

Jf1 ◦ f2K = J{(r, N (〈If1, r ∩ If2, r, (If1, r ∩ Uf2, r) ∪ Uf1, r〉)) | r ∈ Rb}K
= 11λm . {(r, J〈If1, r ∩ If2, r, (If1, r ∩ Uf2, r) ∪ Uf1, r〉K (m(r))) | r ∈ Rb}
= λm . {(r, (If1, r ∩m(r) ∩ If2, r) ∪ (If1, r ∩ Uf2, r) ∪ Uf1, r) | r ∈ Rb}
= λm . {(r, (((m(r) ∩ If2, r) ∪ Uf2, r) ∩ If1, r) ∪ Uf1, r) | r ∈ Rb}
= (λm . {(r, (m(r) ∩ If1, r) ∪ Uf1, r) | r ∈ Rb})
◦ ((λm . {(r, (m(r) ∩ If2, r) ∪ Uf2, r) | r ∈ Rb})

= J{(r, 〈If1, r, If2, r〉)}K ◦ J{(r, 〈If2, r, Uf2, r〉)}K
= Jf1K ◦ Jf2K . (4.1)

Finally, the meet operation on two micro functions is the union of their update maps:

Jf1 u f2K = J{(r, 〈If1, r ∪ If2, r, Uf1, r ∪ Uf2, r〉) | r ∈ Rb}K
= λm . {(r, m(r) ∩ (If1, r ∪ If2, r) ∪ Uf1, r ∪ Uf2, r) | r ∈ Rb}
= λm . {(r, ((m(r) ∩ If1, r) ∪ Uf1, r) ∪ ((m(r) ∩ If2, r) ∪ Uf2, r)) | r ∈ Rb}
= λm . {(r, (m(r) ∩ If1, r) ∪ Uf1, r) | r ∈ Rb}
u λm . {(r, (m(r) ∩ If2, r) ∪ Uf2, r) | r ∈ Rb}

= Jf1K u Jf2K . (4.2)

We can now show how the correlated-calls definitions of the meet and composition opera-
tions on micro functions allow us to detect infeasible paths in a program.

Example 4.2.8. The edges of the exploded supergraph in Figure 3.2 correspond to the
edges of an IFDS taint analysis. We can see that there is a path from the node ( startmain , Λ)

to ( print(s) , s). This means that the IFDS taint analysis considers s to be a secret value
that is leaked at the print statement.

The correlated-calls analysis, on the other hand, detects that the path to ( print(s) , s)
is infeasible: at the print node, the lattice element corresponding to the fact s contains a
mapping a→ >T .

The lattice element for the print statement is evaluated as follows:

((λm .m[a→ m(a) ∩ {B}]) ◦ id ◦ (λm .m[a→ m(a) ∩ {A}]) ◦ (λm .⊥b) ◦ id ◦ . . . ◦ id) (>b)

=(⊥b[a→ m(a) ∩ ({A} ∩ {B})])
=(⊥b[a→ >T ]).

11See Lemma 4.2.6.
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Therefore, the path to the print statement will be considered infeasible, and the analysis
does not claim that the program leaks a secret value.

4.2.5 Efficiency

In this section, we will show that our representation of micro functions is efficient according
to the definition of efficiency discussed in Section 4.

Lemma 4.2.9. The correlated-call representation of a micro function is efficient.

Proof.

1. The identity function is represented as

JidK = {(r, 〈⊥T , >T 〉) | r ∈ Rb};

the top function is represented as

Jλm .>bK = {(r, 〈>T , >T 〉) | r ∈ Rb}.

2. Equations (4.1) and (4.2) show that the representation of micro functions is closed
under composition and meet.

3. To show that our representation for micro functions forms a lattice with finite height,
let us first show that Lb

Rb : Rb → 2T forms a lattice. Since T is a finite set, (2T , ⊆)
is a finite-height lattice. Rb is a finite set. Hence, the mapping

Rb 7→ 2T = {(r, t) | r ∈ Rb, t ∈ 2T} = Lb
Rb

also forms a finite-height lattice [16].

Furthermore, Lb
Rb is a finite set. Every element of Lb

Rb can be applied to |Rb|
receivers, where each receiver is mapped to a set of types. There are |Rb| · 2|T |

different possibilities to form those mappings, so

|Lb
Rb| = |Rb| · 2|T |.

Therefore, Lb
Rb 7→ Lb

Rb also forms a finite-height lattice.
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4. All operations can be computed in O(Rb × T ) time. Note that the Rb and T sets
are an input to the correlated-calls analysis, and the time it takes to compute the
meet or composition of micro functions is independent of the representation of the
specific operand micro functions.

5. The space bound is O(Rb × T ).

Final Remarks. A straightforward solution to representing micro functions would be to
use the function constructs that are provided by many programming languages. The effi-
ciency requirement prohibits us from doing so. For most programming languages, equality
for functions is either defined as reference equality (as in Scala), or is not defined at all
(as in Haskell). Even if we were to define our own definition of equality for functions,
we would have to iterate over the whole domain of the functions and compare the results
of the function applications, which would be inefficient. Additionally, the equality check
would be non-terminating if the domain of the functions were infinite, and undecidable if
the language for defining the functions were Turing-complete.

Second, a composition f of two functions f1 and f2 would have to store both f1 and f2.
For instance, if f1 = λx . x + 1 and f2 = λx . x + 2, then f = f2 ◦ f1 would be represented
as

f = λx . (λy . y + 2)((λz . z + 1)x)

instead of
f = λx . x+ 3.

Having a compact representation for function composition is especially important for the
first phase of the IDE algorithm, in the computation of jump functions [21]. The same
argument applies to computing function meets.

4.2.6 Edge Function Representation

We will now show the representations for the correlated-call micro functions EdgeFnbRb(e),
described in Definition 3.2.7. Let identity = 〈⊥T , >T 〉 represent the identity function id
and bottom = 〈⊥T , ⊥T 〉 represent the function λt .⊥T .

On the call-start edge,

m [r → (m(r) ∩ τ(sF , f))] = J{(r, 〈τ(sF , f), >T 〉)} ∪ {(r′, identity) | r′ ∈ Rb, r′ 6= r}K .
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On the end-return edge,

λm .m [v1 → ⊥T ] . . . [vk → ⊥T ][r → (m(r) ∩ τ(sF , f))]

= J{(r, 〈τ(sF , f), >T 〉)} ∪ {(r′, w(r′)) | r ∈ Rb, r′ 6= r}K ,

where

w(r) =

{
bottom if r is a local variable in the exiting method,

identity otherwise.

For assignments in the source node of e,

λm.m [r → ⊥T ] = J{(r, bottom)} ∪ {(r′, identity) | r′ ∈ Rb, r′ 6= r}K .

In the default case,
id = J{(r, identity), r ∈ Rb}K .

We have shown how IDE problems that account for correlated calls can be represented
in an efficient way. In the next chapter, we address the implementation and present an
evaluation of the correlated-calls analysis.
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Chapter 5

Evaluation

This chapter discusses implementation aspects of the correlated-calls analysis and presents
experimental results.

5.1 Implementation of the Analysis

The correlated-calls analysis was implemented in the Scala programming language [17].
We chose Java as the target language for client programs of the analysis. To retrieve infor-
mation about an input program, such as its control-flow supergraph or the set of receivers
and their types, we used the WALA framework for static analysis on Java bytecode [6].

Since WALA currently only contains an implementation of IFDS, we implemented IDE
from scratch. Instead of using WALA’s IFDS implementation, to run an IFDS problem,
we converted it to an IDE problem and used our own IDE solver.

5.1.1 IFDS

As described in Section 3.1.1, an IFDS problem is defined in terms of an exploded super-
graph. The control-flow supergraph of an input program can be retrieved using WALA.
Hence, our implementation of an IFDS problem should be able to convert a control-flow
supergraph into an exploded supergraph.

We represent an IFDS problem with a trait, or protocol, that contains declarations of four
flow functions. Each function has type

F : (N ×D ×N)→ 2D
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and defines a set of edges on the exploded graph. Given an edge (n1, n2) of the control-flow
supergraph and the fact d1 that corresponds to the source node n1, F (n1, d1, n2) returns
the set of all facts d2 ∈ D2 such that ((n1, d1), (n2, d2)) ∈ E#12. The four functions are:

• call-start, for inter-procedural edges from a call node to the start node of the target
method;

• call-return, for intra-procedural edges from a call node to its return node;

• end-return, for inter-procedural edges from the end node of a method to the return
node of the callee;

• default, for all other intra-procedural edges.

5.1.1.1 Taint Analysis

Using this representation of an IFDS problem, we implemented an IFDS problem instance
for taint analysis. We used it as a sample IFDS problem on which to evaluate the correlated-
calls-IDE construction.

Let N∗ be the control-flow supergraph of a program and D the set of the program variables.
Let encl(n) be a function that returns the enclosing method of a node n ∈ N∗. Finally, let
the function rm : D → 2D be defined as follows:

rm(d) =

{
∅ if d is a local variable in method m,

{d} otherwise.

When defining the flow functions for a taint analysis, we will use rm to avoid the propaga-
tion of local variables, as shown below.

For a fact d1 ∈ D∪{0} and two nodes n1, n2 ∈ N∗, the simplified13 version of flow functions
for a taint-analysis looks as follows.

If n1 is a call node that calls method m, and n2 is m’s start node,

call-start(n1, d1, n2) =


rencl(n1)(d1) ∪ {v} if a is the ith argument of the call, d1 = a,

and v is the ith parameter of m;

rencl(n1)(d1) otherwise.

12In each invocation of a flow function, the fact d1 is provided by the IDE algorithm.
13For simplicity, the shown flow functions do not account for different Java-specific features such as

arrays, fields, operations on strings, etc.
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If n1 is a call node with corresponding return node n2,

call-return(n1, d1, n2) =

{
{d1} if d1 is a local variable in encl(n1),

∅ otherwise.

If c is a call node calling method m, n1 is m’s end node, and n2 is c’s return node,

end-return(n1, d1, n2) =


rencl(n1)(d1) ∪ {x} if n1 is a return statement returning v

n2 is an assignment with left-hand side x,

and d1 = v;

rencl(n1)(d1) otherwise.

Otherwise,

default(n1, d1, n2) = {d1}.

Example 5.1.1. Consider the supergraph in Figure 2.2. The call-to-start flow function
from method main to f looks as follows:

call-start( callA.f , a, startf ) = rmain(a) ∪ {s}
= {s}.

We can see that correspondingly, the exploded supergraph contains an edge from ( callA.f , a)

to ( startf , s).

5.1.2 IDE

The correlated-calls analysis was implemented as an IDE problem instance.

We defined an IDE problem in the same way as an IFDS problem, except that the IDE
flow functions are of type

(N ×D ×N)→ 2D×(L→L).

With the new flow functions, we can implement a labeled exploded supergraph, since the
new flow functions return a set of facts that are paired with micro functions.

For example, if Q is an IDE problem, then the call-to-start flow function for Q is defined
as follows:

call-startQ(n1, d1, n2) =
{

(d2, f) | d2 ∈ D, f ∈ LQ → LQ : EdgeFnQ((n1, d1), (n2, d2)) = f
}
.

The other flow functions are defined analogously.
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5.2 Testing

In this section we assess the correctness and effectiveness of the correlated-calls analysis.

5.2.1 Conversion from IFDS to IDE

We implemented the equivalence transformation T ≡ and the correlated-calls transforma-
tion T b

Rb from IFDS to IDE described in Section 3.2.1. To run an IFDS problem, we
converted it to an IDE problem using T ≡ and T b

Rb and used our IDE analysis algorithm
to run the latter.

Given an IFDS problem described with IFDS flow functions, an equivalence transformation
creates an IDE problem described with the following IDE flow functions:

call-start≡(n1, d1, n2) ={(d2, ε(d1, d2)) | d2 ∈ call-start(n1, d1, n2)}
call-return≡(n1, d1, n2) ={(d2, ε(d1, d2)) | d2 ∈ call-return(n1, d1, n2)}
end-return≡(n1, d1, n2) ={(d2, ε(d1, d2)) | d2 ∈ end-return(n1, d1, n2)}

default≡(n1, d1, n2) ={(d2, ε(d1, d2)) | d2 ∈ default(n1, d1, n2)},

where ε is the bottom function on an edge from a Λ-fact to a non-Λ-fact, and the identity
function otherwise:

ε(d1, d2) =

{
λl .⊥ if d1 = Λ and d2 6= Λ;

id otherwise.

We also implemented a correlated-call transformation from IFDS into IDE problems that
consider correlated calls. This transformation is described in Section 3.2.2. The flow
functions can be easily inferred from Section 4.2.6.

5.2.2 Regression Testing

We used regression tests to assess the correctness of the implemented analyses. Each test
involves running a certain analysis on one input Java program.
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5.2.2.1 IDE-Implementation Correctness

To test the correctness of the IDE algorithm implementation, we implemented a copy-
constant-propagation IDE problem [21]. In a copy-constant propagation analysis, a variable
is considered constant if it is assigned a constant literal or another variable that is also a
constant. For example, in a program

1 int a = 1;

2 int b = a;

3 int c = a + b;

4 int d = a + 2;

a and b are considered constant, but c and d are not (although d would be considered
constant in linear-constant propagation).

We tested the propagation of constants on different intra- and inter-procedural data-flow
paths, in parameter passing, and in conditional branches. Each regression test contained
assertions of the form “at the end of method m, variable with name x should be (not)
constant”.

We also tested the implementation of the IDE algorithm on an IDE problem generated by
conversion from an IFDS problem.

To do that, we implemented an IFDS instance for taint analysis.

Recall from Section 2.3 that taint analysis aims to discover variables that are secret at a
given program point called a sink.

We used assertions of the form “at program statement n, variable x should be (not) secret”
by defining the sink of a secret value through special isSecret and notSecret methods.
Those methods asserted that the parameter passed to them is secret and not secret, respec-
tively. To define a source secret value we created a static secret() method that returned
a string.

Example 5.2.1. Listing 5.3 illustrates the use of the isSecret and notSecret assertions.
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1 public static void main(String[] args) {

2 String n = "not secret" ;

3 notSecret(n); // assert that n is not secret

4 String s1 = f(n);

5 isSecret(s1); // in the next statement, f is invoked with a secret value

6 // hence, the argument of f will always be considered secret

7 // and f will always return a secret value

8 String s2 = f(secret());

9 }

10 static String f(String str) {

11 isSecret(str); // the function is once invoked with a secret value

12 // hence, assert that str is secret

13 return str;

14 }

15 public static String secret() { // the secret source

16 return "secret" ;

17 }

Listing 5.3: Example usage of isSecret and notSecret assertions in regression tests

We tested data flow through

• method calls and returns;

• conditional branches and loops, including nested constructions, the ternary operator,
and switch statements;

• arrays and fields14;

• static and instance class members;

• classes and interfaces that involve inheritance, overriding, and overloading;

• recursion;

14In Java, arrays are allocated on the heap, and array elements can be aliases of each other. Hence, if
any array element gets assigned a secret value, we considered all elements of any String or Object array
in the program secret. For the same reason, if a field f of an object of class A is assigned a secret value,
then we considered the field f of any object of class A secret.
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• library calls15;

• string concatenation and usage of the StringBuffer and StringBuilder classes16;

• generics, type conversions through castings, and exception handling.

Our taint analysis implementation becomes unsound in the presence of static initializers.
If a static field is initialized to a secret value, our analysis will not detect it as such.

A static initializer is invoked only once, before the instance creation of a class or the ac-
cess of a static member of that class. Static initializers are invoked lazily by the Java
Virtual Machine [12]. This makes finding out at which program point a static initializer
is invoked undecidable [8]. To account for static initializers in the analysis would require
modifying WALA’s control-flow supergraph (which does not have edges to static initializ-
ers) or using a data-flow analysis for static initialization. Since the primary purpose of the
taint-analysis implementation was to test the correlated-call analysis, we did not include
a static-initializer analysis in this work.

5.2.2.2 Correlated-Calls-Analysis Correctness

We tested the implementation of the correlated-calls analysis by converting the taint anal-
ysis into an IDE problem with an implementation of T b

Rb .

Since none of the test cases in the previous section contained correlated calls, we used the
same tests with the same assertions to ensure that the correlated-calls analysis produces
the same results as an IFDS-equivalent analysis in the absence of correlated calls.

We then added test cases that contained correlated calls. We added a new assertion
method, notSecretCC. For the IFDS-equivalent analysis, the method asserted that the
argument passed to it was secret, and for the correlated-calls analysis, it asserted that the
argument was not secret.

Separately, we used unit tests to check the implementation correctness of micro functions.
We wrote assertions for the results of the equality, meet, and composition operations on
all possible combinations of the identity, top, bottom, and constant functions.

15We created a specification for library functions that allowed us to indicate under which conditions a
library function returned a secret value. This let us avoid the expensive analysis of library functions.

16Using mutation, objects of these classes can be converted into wrappers around secret strings. This is
why we added a special handling for StringBuffer and StringBuilder objects. For instance, if a field
had the StringBuilder type, it was considered secret.

66



5.2.3 Benchmark Testing

To assess the benefit of the correlated-calls analysis, we counted the frequencies of correlated-
call occurrences in the Dacapo benchmarks [2]. We then ran the normal- and correlated-
call-taint analysis on the Dacapo benchmarks to see what improvement we would get from
the correlated-calls analysis.

5.2.3.1 Occurrences of Correlated Calls

Our goal was to obtain an upper bound on the number of redundant IFDS-result nodes
that could be potentially removed by our analysis. We counted the number of correlated
calls that occurred in programs of the Dacapo benchmarks, as shown in Table 5.1.

In the table, the number of all call sites in a program is denoted as C. Polymorphic call
sites are denoted as CP , and correlated call sites as Cb. The first four columns indicate
the overall number of various call sites and correlated-call receivers in a program. The last
three columns indicate the ratio of polymorphic to all call sites, the ratio of correlated to
polymorphic call sites, and the ratio of correlated call sites to correlated-call receivers.

Benchmark |C| |CP | |Cb| |Rb| |CP |
|C|

|Cb|
|CP |

|Cb|
|Rb|

antlr 7,610 428 299 70 6% 70% 4
bloat 18,157 933 429 119 5% 46% 4
chart 18,101 466 195 61 3% 42% 3
eclipse 3,222 100 35 10 3% 35% 4
fop 4,831 129 40 12 3% 31% 3
hsqldb 3,573 81 35 10 2% 43% 4
jython 12,149 487 129 54 4% 26% 2
luindex 7,190 188 79 29 3% 42% 3
lusearch 9,043 350 126 47 4% 36% 3
pmd 10,972 219 68 23 2% 31% 3
xalan 3,889 110 35 10 3% 32% 4
Geom. mean 7,572 240 91 29 3% 38% 3

Table 5.1: Frequencies of correlated-call occurrences in the Dacapo benchmarks

We can see that on average, 3% of all call sites C are polymorphic call sites CP . Out of
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those call sites, 38% are correlated call sites Cb. We also see that for one correlated-call
receiver, there are on average three correlated calls.

5.2.3.2 Experiments

We ran the analysis on the Dacapo benchmarks to test if the taint analysis would benefit
from the improved, correlated-calls based, analysis. We defined any user input string to
be considered a secret source and compared the overall number of results in the original
and correlated-call taint analyses. If the number of secret values in the original result were
larger than in the correlated-call result, we would see a practical benefit from our analysis.

However, even when we considered each program point as a sink, the “improved” analysis
revealed the same number of secret values as the original taint analysis.

A correlated call that could affect a taint-analysis result could most likely occur in the
following scenario:

• there is a receiver with at least two polymorphic calls;

• at least one of the calls c1 returns a string — this would mean that the method
potentially returns a secret value;

• at least one of the calls c2 takes a string parameter — this would mean that a secret
value could potentially be propagated to the method as an argument.

Then, if the correlated call occurred on an invocation c2(c1()), there might be a possibility
of benefiting from the correlated-calls analysis. Given the relatively rare occurrence of
correlated calls, this situation is not likely to appear often. This is illustrated in Table 5.2
which shows how often correlated calls would invoke methods that either take a string as
a parameter or return a string. The set of receivers on which there are invocations of such
methods is denoted as Rb

S. A situation where one correlated call returned a string, and
another correlated call on the same receiver took a string parameter, appeared in only one
case in the antlr benchmark. However, the strings invoked were not designated as secret.

This explains why, specifically for a taint analysis as the client analysis, and specifically
for the Dacapo benchmarks, the correlated call analysis did not make a difference.
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Benchmark |Rb
S| |Rb|

|Rb
S|

|Rb|
antlr 43 70 62%
bloat 0 119 0%
chart 1 61 2%
eclipse 0 10 0%
fop 0 12 0%
hsqldb 0 10 0%
jython 6 54 23%
luindex 0 29 0%
lusearch 2 47 6%
pmd 1 23 3%
xalan 0 10 0%
Geom. mean 3 29 9

Table 5.2: Frequency of correlated-call receivers for which at least one of the correlated calls
takes a string as a parameter or returns a string

5.3 Future Work

In this section we point out the limitations of the correlated-calls analysis and suggest
improvements to the analysis for future work.

One limitation of the analysis is that it only works for IFDS problems like taint analysis,
reachable definitions, or available expressions. The correlated-call analysis is not applicable
to IDE problems like copy- or linear-constant propagation. Therefore, a possible direction
for future work is to create a correlated-calls analysis that transforms an original IDE
problem into one that considers correlated calls (with a modified lattice and edge function
definition), and then transforms the correlated-calls result into a more precise result of the
original IDE problem.

Another constraint of the algorithm is that it only accounts for intra-procedurally-correlated
receivers, or receivers on which correlated calls occur within one method. For example,
in Listing 5.4, a is a correlated-call receiver, since there are two polymorphic method in-
vocations on a. However, the first one, a.setString(), is inside method main, and the
second one, a.printString(), is inside method propagate. Therefore, we do not treat a
as a correlated-call receiver, and the analysis would not improve the original IFDS result
for this program.
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1 class A {

2 String string;

3 public static void main(String[] args) {

4 A a = args == null ? new A() : new B();

5 a.setString();

6 propagate(a);

7 }

8 static void propagate(A a) {

9 a.printString();

10 }

11 void setString() {

12 string = secret();

13 }

14 void printString() {

15 System.out.println("not secret" );

16 }

17 }

18 class B extends A {

19 void setString() {

20 string = "not secret" ;

21 }

22 void printString() {

23 System.out.println(a);

24 }

25 }

Listing 5.4: Inter-procedurally-correlated calls

Finally, correlated calls can occur on multiple receivers and other scenarios discussed in [24]
that are not handled in this work.
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Chapter 6

Conclusions

We presented a technique to improve the precision of solutions to IFDS problems in the
presence of correlated calls. Correlated calls occur when there are multiple polymorphic
method invocations on the same receiver. Such method calls cause a data-flow analysis to
consider infeasible paths, which makes the data-flow analysis less precise.

Our method of eliminating infeasible paths caused by correlated calls works by transforming
an existing IFDS problem into a specialized IDE problem. In this way, we are able to track
the classes to which method invocations get dispatched. After solving the specialized IDE
problem, we convert its result into an IFDS result that is potentially more precise than the
solution to the original IFDS problem. The increase in precision can occur for programs
that contain correlated calls. Specifically, if, on a certain data-flow path, there are two
polymorphic method invocations on the same receiver that dispatch to incompatible classes,
the IDE analysis will consider the path infeasible.

We proved that the correlated-calls analysis is sound and that it improves the precision of
IFDS results.

Our Scala implementation of the correlated-calls analysis includes

• an implementation of the IDE analysis, which is based on the WALA static program
analysis framework;

• a taint-analysis implementation as an IFDS problem instance;

• a transformer of IFDS problems to equivalent IDE problems, and a second trans-
former that accounts for correlated calls.
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We tested the correlated-calls analysis on our taint analysis implementation by comparing
the number of secret values that were leaked when using an IFDS taint analysis and a
taint analysis that accounts for correlated calls. We used the Dacapo benchmarks as input
programs. Although the benchmarks contained a number of correlated calls, we were not
able to improve the precision of the taint analysis, because the correlated calls did not
occur on paths of secret information leaks.

We are hopeful that other analyses can benefit from the extra information provided by the
correlated-calls analysis, and plan to test this hypothesis in the future.
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