
Efficiently Crawling, Collecting,
and Condensing News Comments

by

Gobaan Raveendran

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Gobaan Raveendran 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Traditionally, public opinion and policy is decided by issuing surveys and performing cen-
suses designed to measure what the public thinks about a certain topic. Within the past five
years social networks such as Facebook and Twitter have gained traction for collection of
public opinion about current events. Academic research on Facebook data proves difficult
since the platform is generally closed. Twitter on the other hand restricts the conversa-
tion of its users making it difficult to extract large scale concepts from the microblogging
infrastructure.

News comments provide a rich source of discourse from individuals who are passionate
about an issue. Furthermore, due to the overhead of commenting, the population of com-
menters is necessarily biased towards individual who have either strong opinions of a topic
or in depth knowledge of the given issue. Furthermore, their comments are often a collec-
tion of insight derived from reading multiple articles on any given topic. Unfortunately the
commenting systems employed by news companies are not implemented by a single entity,
and are often stored and generated using AJAX, which causes traditional crawlers to ignore
them. To make matters worse they are often noisy; containing spam, poor grammar, and
excessive typos. Furthermore, due to the anonymity of comment systems, conversations
can often be derailed by malicious users or inherent biases in the commenters.

In this thesis we discuss the design and creation of a crawler designed to extract com-
ments from domains across the internet. For practical purposes we create a semiautomatic
parser generator and describe how our system attempts to employ user feedback to predict
which remote procedure calls are used to load comments. By reducing comment systems
into remote procedure calls, we simplify the internet into a much simpler space, where we
can focus on the data, almost independently from its presentation. Thus we are able to
quickly create high fidelity parsers to extract comments from a web page.

Once we have our system, we show the usefulness by attempting to extract meaningful
opinions from the large collections we collect. Unfortunately doing so in real time is
shown to foil traditional summarization systems, which are designed to handle dozens of
well formed documents. In attempting to solve this problem we create a new algorithm,
KLSum+, that outperforms all its competitors in efficiency while generally scoring well
against the ROUGE SU4 metric. This algorithm factors in background models to boost
accuracy, but performs over 50 times faster than alternatives. Furthermore, using the
summaries we see that the data collected can provide useful insight into public opinion
and even provide the key points of discourse.

iii

Acknowledgements

I would like to acknowledge my advisor Charles Clarke for his mentorship and guidance in
completing this thesis. I would also like to acknowledge Frauke Zeller and Abby Goodrum
for their co-operation and discussions on the uses for our unique data set. Zach Weiner of
SMBC-comics also deserves some thanks for giving me permission to use his comic within
my thesis. Last but not least, I would like to thank the research and commercialization
network GRAND NCE for their sponsorship of my research.

iv

Dedication

This thesis is dedicated to my friends and family for always being interested in my rantings
about news comments. I would also like to thank Andrew Russell and my dog Shiba for
dealing with my one sided discussions about what to add to my thesis. Daniel Nicoara
should also receive a special mention, as our constant competition is likely the only thing
that kept me on course.

v

Table of Contents

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 3

1.3 Contributions . 4

2 Related Work 6

2.1 Crawlers . 6

2.2 Parsers . 8

2.3 Summarization . 12

3 Implementation 17

3.1 AJAX Simulation Framework . 19

3.2 Parsing comments . 26

3.3 Results . 31

vi

4 Diverse Opinion Summarization
for Scalable Opinion Mining 32

4.1 Problem Description . 33

4.2 KLSum+ . 35

4.2.1 Summary of Enhancements . 35

4.2.2 Implementation . 35

4.3 Baseline Methods . 38

4.3.1 Iterative Random Summarization 38

4.3.2 SumBasic . 38

4.3.3 MEAD Summarization . 39

4.3.4 LexRank Summarization . 41

4.3.5 Topic Model Based Summarization 41

4.3.6 Aspect Mining with Sentiment Methods 42

4.3.7 Other Methods . 46

4.4 Experimental Setup . 46

4.4.1 Data . 46

4.4.2 Efficiency . 49

4.4.3 ROUGE Scores . 50

4.4.4 Example Summaries . 53

4.5 Discussion . 62

5 Conclusion 65

Appendix 67

A HTTP Request Header 68

B Data Description 70

References 72

vii

List of Tables

2.1 Readability’s Regular Expressions . 10

3.1 Sample Google Parameters . 18

3.2 List of Parameters for Comment Fetching 25

3.3 Example Values for Parameters . 25

3.4 Parser for HTML Comments . 28

3.5 Parser for JSON Comments . 30

3.6 Parser for Embedded HTML Object . 31

4.1 List of Key Terms for discussing Summarization 34

4.2 Sentiments for every word sense of the word ‘Smart’ 43

4.3 Syntactic Patterns Predicting Key Noun Phrases 45

4.4 Document Count for Top 5 Websites . 47

4.5 Document Count for Top 5 Topics . 47

4.6 First 100 words for summaries with the query “SOPA” 55

4.7 Continued: First 100 words for summaries with the query “SOPA” 56

4.8 Top 25 terms from each of algorithm . 57

4.9 Example Summaries from KLSum+ . 59

4.10 Example Summaries from KLSum+ . 60

4.11 Example Summaries from KLSum+ . 61

viii

List of Figures

1.1 Sample CNN.com Comment . 2

1.2 “How Internet Fighting Works” by Zach Weiner 2

2.1 AJAX Model of the Web . 8

2.2 Example News Article . 9

2.3 Example HTML and associated DOM Tree 11

2.4 Graphical model representation of LDA . 15

3.1 Overview of Crawler Architecture . 17

3.2 Sample Result Page . 19

3.3 How AJAX Works image by Kevin Liew 20

3.4 Graphical Representation of Least Upper Bound 27

3.5 CBC JSON Layout . 29

4.1 Graph of Domains vs Number of Documents 48

4.2 Graph of Topics vs Number of Documents 48

4.3 Summarization Time versus Number of Sentences 50

4.4 DUC Scores . 51

4.5 Cross Evaluated DUC Scores . 53

4.6 Snapshot from gobaan.com:8000 . 64

ix

List of Algorithms

3.1 Monitoring User Traffic . 21
3.2 Dynamic programming solution to Longest Common Subsequence problem 24
4.1 Snippet Selection Algorithm . 37
4.2 Sentiment Scoring Algorithm . 45

x

1

Introduction

Huxley feared the truth would be drowned in a sea of irrelevance.

– Neil Postman, Amusing Ourselves to Death, Penguin Books

1.1 Motivation

Social media has reformed the way the world shares information. In the last few years, we
have seen social media used to enhance presidential campaigns, monitor crime around the
world, and even start global revolutions[27]. The news itself has become a giant mixture of
voices that wish to be heard. The read-only days of print media, where articles are written
by journalists and consumed by the masses, is over. In its place the web has created a
fluid space of discourse, where every article can be commented on, discussed and analyzed.
Readers can now converse, debate, and share related articles, with the ease of pouring a
coffee. However, with this ease comes information overload.

In the past five years the number of blogs has increased five fold. Furthermore, online
news has been shown to be preferred over offline news for most individuals[43]. The barrier
of entry for creating and releasing news articles is much lower and hundreds of domains
exist that rehash content or provide an editors specific spin on a topic. One of the core
advantages to online news is the ability for the audience to create comments, such as the
one presented in Figure 1.1, which enable users to discuss and highlight the key points of a
story. Furthermore, commenters often debate using context derived from outside articles,
and thus comments as a whole contain much more context than the original article.

1

Figure 1.1: Sample comment from cnn.com article about Obamacare

By analyzing these comments, some journalist have gained valuable feedback that may
help drive future articles and discussion on the site[26]. Websites such as Reddit have shown
that news aggregation also benefits greatly from commenting, as commenters discuss both
the strengths and flaws of the article, along with the long reaching implications of the issue
being discussed. With controversial issues, the comments can often be extremely polar
and become representative of distinct groups with varying interests in the topic at hand.
Unfortunately, often it seems that the loudest voice is the most prominent, as highlighted
by the SMBC[62] web comic below. Thus despite comments providing a rich set of opinions,
the overall opinion can be drowned out by the noisiest individuals.

Figure 1.2: Excerpt from SMBC comic titled “How Internet Fighting Works” by Zach
Weiner

Gathering these comments for analysis is foiled by various sites using different methods
to track and store comments. One of Twitter’s core uses is for commenting on news articles
publicly and spreading opinion. The expressiveness of tweets however, is restricted by a
character limit that can make analysis and clustering of tweets difficult. Furthermore,
links on Twitter are often to outside domains, and thus ignored by summarization research
because they are difficult to parse and interpret. The general academic community has
recognized the value in tweets however, and experiments such as the TREC microblogging

2

task focus on attempting to classify and retrieve tweets based on keywords. Supervised
data for the microblogging task requires filtering through hundreds of thousands of tweets,
providing a fundamental challenge to the task.

1.2 Goal

The goal of this thesis is to describe the creation and uses of my open source custom
comment crawler1. This crawler is uniquely designed such that it can quickly and efficiently
crawl news articles and their comments. I accomplish this by creating a framework for
writing specialized parsers that are able to extract content from a single domain. The
proposed framework is designed to fetch only the data necessary for collecting comments,
ignoring images, ads, videos, and other extraneous data located on various news domains.
This is unique from the general approaches described later in the thesis that usually require
rendering the entire page and predicting which components are needed.

We accomplish this by exploiting the implementation of Asynchronous JavaScript and
XML (AJAX) as described in Chapter 3. By determining which AJAX calls are required
to acquire the comments for a given article, I can figure out what specific parameters fetch
the comments, and then directly guess the AJAX calls for future articles.

With this framework in place I then describe some of the tools created to aid in the
creation of customized parsers. Once I collected the large set of data, I dug into under-
standing the information hidden within the data. However, the data collected was found to
be very noisy, and difficult for traditional methods to summarize. In Chapter 4, I finish this
thesis by discussing my algorithm, KLSum+, that was designed to efficiently summarize
the opinions presented in noisy comment datasets.

1https://github.com/Gobaan/NewsCrawler

3

https://github.com/Gobaan/NewsCrawler

1.3 Contributions

My crawler provides the following contributions:

• The ability to crawl dozens of domains quickly and efficiently. Moreover, by minimiz-
ing the amount of data requested and naturally throttling the number of connections
to a given domain, I avoid negatively affecting the target domain. This also allows
me to use a single machine to crawl these domains saving on infrastructure costs.

• The ability to quickly be updated to domain changes or to add new domains. Previous
solutions were found to be difficult to customize and require days of analysis and be
relatively fragile to variation. By fetching the comments directly I disconnect myself
from any dependence on layout code.

• The ability to be crowd sourced. The modular nature of the parsers means that
a community can work together and add new parsers with virtually no interaction
with the other parsers. This plugin structure allows the system to be distributed and
decentralized.

• The ability to . Other solutions often attempt to predict what section of text belongs
to the comments. This often means gathering extra unwanted data or incorrect
sections. By fetching the comments directly I acquire raw structured data, which is
designed to be processed by layout code later in the website rendering process.

• The expectation of failure. Given the amount of variety and the special care required
to craft each parser, my crawler was designed with failure in mind. This means that
I implement various logging and recovery techniques to quickly detect when failures
occur rather than letting them silently disappear.

By analyzing my dataset I provide the following contributions:

• I create an open source baseline2, called KLSum+, for summarization on multidocu-
ment sets. Specifically, much of the literature focuses on document sets with dozens
to hundreds of documents. While my corpus can easily contain hundreds of thousands
of microdocuments.

2https://github.com/Gobaan/Summarization

4

https://github.com/Gobaan/Summarization

• I show the uniqueness of the data. The data itself is quite different from other
document sets such as books and blogs. The data is much less structured and can
contain much more variety, while not having the limited context of similar sets such
as the Twitter dataset.

• I analyze efficiency of popular algorithms with a new dataset. Since much of the
summarization literature focuses on a dataset with various differences, this work
helps evaluate these algorithms in a different context.

5

2

Related Work

If I have seen further it is by standing on ye shoulders of Giants.

– Sir Isaac Newton, Letter to Robert Hooke

The problem of extracting comments that can be dynamically generated has received
some attention in the past few years. Google for example has created a proposal [18]
for webmasters that allows them to specify how to make their AJAX content searchable.
However, this solution only works if webmasters follow the designed solution and requires
creation of a custom crawler that understands these specialized rules.

Alternatively, large domains such as YouTube.com have created comment APIs that
allow comments to be gathered from a given url via HTTP requests. However, this ap-
proach is not employed by many large news web domains, and unlikely to be implemented
by smaller domains.

For this work I worked on to writing a crawler and parser that is able to navigate and
extract comments from various news portals, for example CNN.com which is presented in
Figure 2.2. In order to simplify this task I used metasearch techniques via Google, thus I
was able to ignore the much larger task of finding relevant articles.

2.1 Crawlers

When implementing a search engine, crawlers are designed to explore a domain, finding
all the links connected to a given web page. When it comes to comment extraction this
involves finding all the comment pages attached to a given article.

6

The field of web crawling is full of diverse tasks that researchers have attempted to
address. In 2010 Olston and Najork [45] performed a comprehensive survey of the state of
the art in web crawling. Traditionally research has focused on politely extracting content
from across the web, while maintaining either freshness or convergence.

A crawler is considered polite if it has a fetching policy that follows the web servers
rules while avoiding overloading the target domains by making excessive requests within a
finite period of time. A simple policy to encourage politeness is to navigate the web and
add URLs to a priority queue. In this queue, urls are sorted by the time to next fetch:

b+K ∗ tfetch (2.1)

where b is the base time to wait before fetching urls, K is an arbitrary constant, usually 10,
and tfetch is the time it took to fetch the last resource we fetched from the given domain.
This policy helps ensure that slower domains, with less resources to handle requests, receive
less traffic. This priority can be extended to factor in domains that update more frequently,
or are more relevant, for example by using Google PageRank [46].

On the other hand, the ideal crawler should be able guarantee freshness and thus
ensure that as a page updates the crawled version of the page updates with it. In order
to maintain freshness, visited urls are regularly revisited, while maintaining the politeness
policy mentioned above.

Unfortunately, when attempting to cover a single topic a general purpose crawler can
quickly become encumbered by extraneous links throughout the web. A topical crawler
attempts to rerank links based on how relevant they are to a given topic. Given a topic
crawler we can say the crawler converges if two separate executions, with a disparate seed
set of urls, covers the same set of articles.

These mechanisms and measures focus on urls and links to determine what to extract.
However, with many sites comments are setup to load dynamically using AJAX. When
AJAX is used no hyperlink exists, so a crawler may be unable to find content. Furthermore,
crawlers rely on caching websites and parsing the documents offline, decoupling the data
extraction from the data fetching. However with dynamic content, links can vary and
change before a page is revisited from the breadth first queue. Traditional deduplication
based on url no longer works, because an AJAX website will update content without
changing the url.

Research around AJAX crawling focuses on simulating a browser that can load each
page and then simulating user behaviour [13, 42, 47]. Specifically, these approaches require
creating an event model that represent JavaScript events. This model assigns a unique

7

node to each comment page, and maps each JavaScript event as a transition between
states. In this approach the model of the web is extended, and is no longer a series of
nodes connected via hyperlinks. Instead the model becomes more like Figure 2.1, where
each node (representing a page) contains a series of substates and transitions between
states.

Figure 2.1: AJAX Model of the Web

Under this approach the traditional priority queue for crawlers is extended to include
triggers which navigate between states within a given web page. Choosing which triggers
to apply depends on the application, with some approaches targeting clickable elements
[13] and others preferring to populate search bars using term lists in order to attempt full
coverage of a given domain [37, 42].

This kind of system can be considered a full page crawl, and can get expensive quickly
due to state explosion from events that generate infinite unique states, or from requiring
hundreds of calls to the server to emulate all the events. Rules can be created to only
follow certain events, however determining which events to follow is difficult. The easiest
resolution is to implement caching to AJAX function calls with equal parameters, but this
will still inevitably lead to excess fetches.

It should also be noted that Olston’s[45] work briefly discusses the lack of current liter-
ature focus on both crawling scripts and vertical crawling. A vertical crawling architecture
is one that focuses on creating high fidelity crawling systems for a few domains, rather
than a general purpose solution that uses no domain specific knowledge.

2.2 Parsers

For my work I am only interested in article text and comment data from each of the articles
I find. However, news domains often contain erroneous data, such as ads, summaries,
and related articles. For example, Figure 2.2 shows an article, where the dotted boxes

8

(a) Article Section (b) Comment Section

Figure 2.2: Example news article. The interesting text is highlighted with the dotted box.

highlight the only text not considered superfluous for document summarization. Thus, the
second task involves extracting and classifying the data such that I have the comments
and article data properly separated from this extra metadata. For news articles, this is a
well recognized problem and various solutions have been proposed. Two of the most well
adopted solutions include heuristic classifiers [9, 30] and text categorization via machine
learning [14, 59, 60, 61]

With heuristic classifiers a set of rules are created that help determine if the section in
question is contains relevant information. The project Readability[66] is an example of an
associative rule miner designed to extract article text. This project uses regular expressions
that search HTML elements and attempt to predict which ids are important.

To explain this approach we first give a quick primer on HTML. HTML consists of a
series of nested tags that browsers read and interpret. This structure can be described as
an acyclic tree often called the Document Object Model (DOM). Figure 2.3b is an example

9

Classification Regular Expression

Unlikely Candidates
combx|comment|disqus|foot|header|menu|

nav|rss|shoutbox|sidebar|sponsor
Probable Candidates and|article|body|column|main

Article Text
article|body|content|entry|hentry|page|

pagination|post|text

Not Article Text
combx|comment|contact|footer|footnote|

link|media|meta|promo|related|foot|
scroll|shoutbox|sponsor|tags|widget

Video http://(www.)?(youtube|vimeo).com

Table 2.1: List of regular expressions used in Readability to classify content

of a DOM tree corresponding to the HTML in Listing 2.3a.

Each tag may have any number of optional attributes. These attributes are normally
used by the browser to determine how to format the data (such as text or images) attached
to the tag. Other attributes such as class and id help uniquely identify a single tag or a set
of tags. Normally this is used by AJAX or CSS formatting, however parsers can also use
these formatting tips to gain some insight into what sections of an article are important.

Heuristic parsers construct this DOM Tree for each website they visit. They then
use heuristics to determine what sections of the DOM tree are important. In the case
of Readability the regular expressions in Table 2.1 are used to guess at candidates or
determine which sections should be extracted.

These regular expressions were handcrafted in the hope that they are general enough
for most articles on the internet. However, this approach is tied to English sources, and
often these rules will not be valid among multiple domains. Furthermore these perform
well in general, but are likely to fail for edge cases.

Alternatively, I can create specialized wrappers which are templates designed to extract
text from a special domain. This approach however is costly, since each domain needs a
custom template to be designed. These templates can be difficult to maintain, as they are
fragile and may break whenever the layout of a page changes. In order to decouple the
extraction from the creation of templates, support vector machines are often employed in
order to automatically build templates for domains. Junfeng Wang et al. [60] describes
how to extract news articles using this approach.

This work relies on content features and spatial features. The content features employ
the layout of the DOM tree and formatting to determine what sections are important. For

10

<html>
<head> <title> Homepage </title> </head>
<body>
 CNN
<p>Current News </p>
</body>

</html>

(a) Sample HTML

(b) Associated Document Object Model

Figure 2.3: Example HTML and associated DOM Tree

11

example, titles often use a larger font than the rest of the text. The spatial features on the
other hand require rendering the page and then tracking where each element in the DOM
tree appears. The relative position can then be used to help the system learn where titles
and text are often placed and to separate ads from content.

This approach has proven successful for extracting articles. However it suffers from
three key shortcomings. First this approach can be slow, since rendering a page requires
loading all the ads, videos, and miscellaneous content for a site. Second, many of the
feature values that help classify article text causes false negatives with user comments. For
example, user comments will often occur at the bottom of a page, possibly after ads or
related articles. Thus relative position may dismiss comments as unnecessary. The third
problem comes from the asynchronous nature of comments. Large sites often do not load
all user comments during page load in order to save bandwidth. This means comments
are on a separate page or require clicks to be tracked. Determining which icon or which
clickable resource fetches comments, versus ads or other articles, can prove difficult to
accomplish using spatial or content features.

Diffbot[59] is a startup centered around the concept of ‘a visual learning bot that allows
users to create APIs for any site’. The tool is designed to extract content from across the
web, and although the implementation is a trade secret, they often discuss the use of
machine learning and visual cues to determine how a website is laid out. This system also
allows customers to help by specifying rules when components fail to extract in cases where
the robot fails. Despite Diffbot’s great set of features, the comment extraction component
does not work as of the writing of this thesis. This serves to exemplify the difficulty in
extracting user comments.

2.3 Summarization

The task of summarization is an open field of research that has acquired much attention
in the last decade. The goals of a summarization system may vary greatly depending on
the target audience. News summarization in particular may focus on extracting events,
tracking memes, or determining relevant details. On the other hand, email summarization
and review summarization focus on extracting out themes for a given thread or determining
opinions about different aspects of a product. In recent years, microblog summarization
over Twitter has also gained some traction. This work focuses on extracting meaningful
content from large collections of documents that are all under 140 characters, many of
which are hashtags, links, or other metasequences.

12

The most traditional approach to summarization depends on scoring terms and sen-
tences, in an attempt to find important passages within the article. Term importance based
summarization attempts to determine the importance of each n-gram within the collection.
Using these n-grams, sentences are then selected based on the overall score of the n-grams
within them. Generally, term importance is decided using a mixture of TF-IDF scores
[25, 55, 64], sentiment scores [5, 23], and temporal scores [8, 41].

Some canonical examples of summarization using these scores include SumBasic [40]
and KLSum [21]. SumBasic scores terms based on their likelihood of occurring within
the corpus, iteratively selecting sentences that are highly probable but different from the
currently selected sentences. These scores are generated from simple frequency counters,
ranking terms by how often they occur in the corpus. KLSum extends this concept by
attempting to generate a summary whose term-wise K-L Divergence mirrors that of the
initial comment collection. This extension directly penalizes any summary that adds ex-
traneous words, or any summary that misses frequent words. In order to find this solution,
sentences are selected greedily based on which sentences cause the summary to most mirror
the word distribution of the target documents.

Temporal summarization focuses on the extraction of key events from text by analyzing
breakpoints in public opinion[8]. This approach works over real time data and has worked
well over Twitter as tweets naturally spike in popularity around key events. One way
of accomplishing this task relies on creating a Hidden Markov Model (HMM) trained to
recognize breakpoints in opinion. In this HMM all tweets that occur during a given time
window are considered a single observed state. By feeding tweets into this HMM it can
be used to determine how the distribution of words diverges from one state to the next.
Using the Viterbi algorithm[49] the events are segmented and summaries can be generated
that present words that spiked during a given time frame.

Graph based summarization on the other hand focuses on creating relationships between
sentences within the corpus and then isolating sentences that are especially important. Two
well known algorithms in this field are LexRank [15] and TextRank [39]. LexRank creates
sentence by sentence adjacency matrix and uses cosine similarity between sentences in
TF-IDF space to measure how related two sentences are. Then by applying PageRank,
the system generates a score for the centrality of all the sentences within the collection.
Summaries are generated by selecting the top highest scoring sentences.

On the other hand TextRank which was developed at the same time creates the same
sentence by sentence graph but defines similarity of two sentences as

Similarity(Si, Sj) =
|{wk|wk ∈ Si&wk ∈ Sj}|
log(|Si|) + log(|Sj|)

(2.2)

13

It is mentioned that this similarity score leads to a highly connected graph and thus
the resulting graph must be weighted. For both LexRank and TextRank, if diversity
is preferred then documents are preclustered before summarizing, however the choice of
clustering algorithms is up to the implementation.

The two dominating clustering based summarization approaches are centroid based
summarization and topic model based summarization. Centroid based summarization is
based on clustering documents then choosing sentences that have terms that are statisti-
cally important to the clusters’ centroids. MEAD is a widely cited and publicly available
summarization toolkit that uses CIDR based clustering to perform centroid based sum-
marization [51]. Topic models on the other hand, rely on factoring a term-doc matrix
into a term-topic and topic-term matrix. The term-topic matrix then allows me to decide
which terms are important for each of the separate topics and sentences can be selected to
describe each topic. This approach often uses Latent Dirichlet Allocation(LDA) to factor
the term-doc matrix [1].

LDA is a generative probabilistic model of a corpus where we assume all words and
documents are generated by mixtures over latent topics as visualized in 2.4. In a generative
probabilistic model we make the simplifying assumption that all documents are generated
from a random process. This random process generates sentences by selecting words from a
topic based on some statistical distribution. Documents themselves are a mixture of topics,
and thus every word is drawn from a set of topics. We can infer the original distribution
from from analyzing a corpus. In this model w represents the known distribution of words
that we observe in our corpus. The words belong to N topics and attempt to estimate
θ and φ. φ is the latent model that determines what words are drawn from a topic,
and theta determines what topics are drawn for each document. α and β are priors over
the documents that we can assign based on domain specific knowledge of our corpus.
The literature discusses estimating φ and θ using variational expectation maximization or
Gibb’s Sampling.

Query based summarization[58] extends LDA for cases where we need to solve an in-
formation need, expressed by a query. In this model, each time a word is sampled, we flip
a coin which decides if we should draw a word from the query distribution or from the
document specific distribution. The goal of incorporating this query information is to make
the summaries more closely related to the query. Furthermore, queries may have multi-
ple topics, and thus multiple summaries may be generated, which may highlight different
aspects of the query.

Once the topics are extracted, sentences can be selected using a similar approach to
the centroid based summarizer, choosing sentences that either represent one topic well

14

Figure 2.4: Graphical model representation of LDA. The boxes are “plates” representing
replicates. The outer plate represents documents, while the inner plate represents the
repeated choice of topics and words within a document.

or represent multiple topics. Unfortunately, on a large scale the parameter estimation
required to execute PLSA and LDA can become a bottleneck due to the time required to
have the algorithms converge.

Natural language research has started using sentiment analysis to perform opinion
extraction[4, 23, 24]. Sentiment based summarization systems work by attempting to
determine words used to express opinion within a given corpus. This is based on the as-
sumption that opinion words are often tied to the most important aspects of a story or
product. By using natural language processing and syntactic patterns sentiment systems
are able to achieve some success in classifying terms as expressing an opinion. The senti-
ment score of a word i.e. how positive or negative, is usually decided either via machine
learning or by sentiment dictionaries such as SentiWordNet[3, 24].

The machine learning systems are built by bootstrapping a classifier, which users initial
human judgment and then constant feedback from humans to refine a classifier until it is
able to accurately predict sentiment scores. These systems can be enhanced by using
synonym sets and other natural language resources to create word nets and propagate
sentiment throughout a corpus [5]. Once a sentiment scoring mechanism is created, buckets
are created for positive and negative sentiment and individual summaries are created for
each bucket. These systems usually focus on selecting either extremely positive, extremely
negative, or completely neutral sentences. These systems may also be built to focus on
noun sequences and the sentiments associated with them.

Evaluation of summarization systems comes in two flavors, extrinsic or intrinsic. In
extrinsic evaluation we decide on a second task and evaluate the system based on this task.
For example, one possible task is attempting to determine if a new document is relevant
to a collection based on the summary[11]. Another alternative is creating a search system

15

that compares the rank order of documents given a query, before and after summarization.
The ideal summary should preserve the rank order since only information that is repeated
or irrelevant to the core content of the article is dismissed.

Intrinsic evaluation on the other hand relies on evaluating summaries against a gold
standard. The DUC 2007 task[7] was one approach to automated summarization that took
this approach. In this task, judges were tasked with reading a set of up to twenty five docu-
ments, and generating 100 - 250 word summaries of the collections. Automated summaries
were then evaluated against these manual summaries using ROUGE-N and ROUGE-LCS
scores[35]. Another group of work by Inouye and Kalita[25] discuss generation of human
readable summaries of thousands of tweets. Their work relies on clustering to present
judges tweets, that the judges then use to create summaries. They then evaluated ten sys-
tems using these gold standards and determined that simple term frequency based systems
performed slightly better than alternative systems over tweets.

Overall the field of summary evaluation is a rich in research over the last four years.
The National Institute of Standards and Technology runs a conference every year where
one track is dedicated to the Automatically Evaluating Summaries of Peers[44]. In this
task contestants attempt to create unsupervised metrics for linguistic quality and topic
coverage that correlate well with human generated ground truth. As of the writing of this
thesis no clear winner has surfaced however some systems show promise for opinionated
and news data[28, 32].

16

3

Implementation

A good idea is about ten percent and implementation and hard work, and luck is
90 percent.

– Guy Kawasaki via Twitter

The first task in extracting news comments was the creation of a vertical crawling
framework, designed to quickly create specialized crawlers for news domains around the
internet. My crawler is composed of three main components. These components and
interactions are described in Figure 3.1.

Figure 3.1: Overview of Crawler Architecture. Query dispatcher fetches article URLs and
forwards them to customized parsers for further processing.

The first and simplest component, called the Query Dispatcher, is designed to find
relevant articles from the internet, given a query. This is accomplished by using metasearch
techniques. Metasearch implies forwarding my search requests to Google and parsing the

17

Parameter Description Example Value
query Relevant terms US Election
tbs Date restriction cdr:1,cd min:10/1/2012,cd max=10/31/2012
site Domain restriction www.cnn.com
start Result page selection 0
num Results per page 100
complete Disable Google Instant 0

Table 3.1: Parameters used to fetch US Election Articles from CNN during October, 2012

search results. Unfortunately, Google’s API lacks parameters for filtering based on a date
range. Thus, I open a single connection to Google.com and simultaneously search each
domain for articles related to a user provided query. For my work I implemented the ability
to search for all articles that fall within a given year, for example 2012, or alternatively
around a given day, for example a month of articles before and after November, 6, 2012.
Below is a sample query that requests up to 100 articles between 01-10-2012 and 31-10-2012
for www.cnn.com about the topic “US Election”.

https://www.google.com/search?q=US+election+site%3Awww.cnn.com
&num=100&tbs=cdr%3A1%2Ccd_min%3A10%2F1%2F2012%2Ccd_max%3A10%2F
31%2F2012&start=0&complete=0

This is equivalent to a request to www.google.com/search with the parameter values in
Table 3.1. By executing this query I get a search page, such as that in Figure 3.2. Once
the results are fetched, I may simply parse the HREFs, which specify link destinations, to
determine the article URLs. Since the search page contains various other links, I restrict
on links that formatted properly. I do this by restricting on HREFs found within subtrees
of the form:

<li class=g>

18

https://www.google.com/search?q=US+election+site%3Awww.cnn.com
&num=100&tbs=cdr%3A1%2Ccd_min%3A10%2F1%2F2012%2Ccd_max%3A10%2F
31%2F2012&start=0&complete=0

Figure 3.2: Sample Result Page

3.1 AJAX Simulation Framework

Once the relevant URLs have been fetched the next step is to extract the article and com-
ment text from the results. I solve this problem by implementing a framework for content
extraction. Given a URL from a given domain, the goal of a customized parser should
be to extract every page of comments. In order to accomplish this two fundamental tasks
need to be completed: finding all the comment pages, then extracting all the comments
while eliminating unnecessary metadata.

Since comments are likely to be fetched from the web server and positioned by AJAX,
link crawling generally fails. Thus, various crawlers often fall back to loading the page,
executing all the JavaScript, and simulating user clicks. However, browsers implement
AJAX requests by performing traditional HTTP requests to servers. Furthermore, during
preliminary work we found that all surveyed websites used HTTP get requests. Thus, the
necessary parameters for the server to understand the remote procedure call are embedded
in the request url. This process is visualized in the image by Kevin Liew shown in Figure
3.3[17].

Thus, if I am able to visit a url, and determine how to generate the HTTP request that
fetches the comments, I am able to fetch the comments directly. In order to accomplish this

19

Figure 3.3: How AJAX Works image by Kevin Liew

I create a semi-supervised parser generator that attempts to determine what the important
requests are, based on some simple user feedback. I start by attaching a monitor to a
browser (Mozilla Firefox in my case), and monitoring all traffic opened by this browser.
I then request that the user navigates to an article and provide the system with at least
three comments from the target website. Next I attempt to determine the most efficient
way to extract the comments, which varies based on how comments are presented by the
target domain.

In order to instrument the browser I use a library designed for browser automation
called Selenium [33]. Using Selenium I prompt the user to navigate to their desired domain,
and fetch two comments from each of the second and third page of comments. Selenium
enables the ability to capture network traffic, specifically the HTML Response messages
from each URL fetched. For completeness I provide an example HTTP Response messages
in Appendix A. For my work it is only necessary to understand that the URLs for all
HTTP requests made are contained within the URL parameter of these headers. Thus,
I extract the URLs and filter out only those that contain text, and filter once more for
URLS that contain the comments I provided to the system earlier. The pseudocode for
this is shown in Algorithm 3.1. Listing 3.1 shows an example of the data I request for one
article on the news website arstechnica.com.

Once the URLs are fetched, the next goal is to determine how to transform the starting
url into the comment url. I found that a few simple heuristics could be used to estimate

20

Algorithm 3.1 Pseudocode for monitoring user traffic and extracting AJAX calls con-
taining comments.

function GetTargetedUrls(Fields[1..n])
browser = Selenium.FirefoxBrowser() . Start an instrumented session
targetURLs = empty-map
for all field in fields do

targetText = User.request(field) . Request text to search for from the User
headers = browser.networkTraffic() . Fetch a list of http requests made
for all header in headers do

url = header[”url”]
if ContainsText(url) then: . Dismiss URLs that link to images, videos, etc.

data = curl.fetch(url)
if data.contains(targetText) then

targetURLs[field] = url
end if

end if
end for

end for
return targetURLs

end function

21

http://arstechnica.com/apple/2012/10/the-ghost-of-jobs-apples
-challenge-to -decide-what-would-steve-do/?comments=1&start=40

http://arstechnica.com/apple/2012/10/the-ghost-of-jobs-apples
-challenge-to-decide-what-would-steve-do/?comments=1&start=80

Listing 3.1: Two sample comment urls

["http", "://", "arstechnica", ".", "com", "/", "apple",
"/", "2012", "/", "10", "/", "the", "-", "ghost", "-",
"of", "-", "jobs", "-", "apples", "-", "challenge", "-",
"to", "-", "decide", "-", "what", "-", "would", "-",
"steve", "-", "do", "/?", "comments", "=", "1", "&",
"start", "=", "40"]

Listing 3.2: Token stream created from the first URL in Listing 3.1

which values in the url are parameters, and where these parameters come from. In order
to explain this process I will provide example URLs, and explain how I dealt with issues I
discovered during implementation.

I start off by requesting two comment pages from the same article. For example two
comment URLs from arstechnica.com as shown in Listing 3.1. I then tokenize the URLs by
splitting them on non-alphanumeric sequences creating a token sequence like the presented
in Listing 3.2.

The next task is splitting this list into components such that the parameters are isolated
and easily compared. This entails finding the values that change between the two token
sequences. This problem is similar to the well known diff algorithm where I take the diff
of token sequences rather than two files. In order to accomplish this I use solution to the
longest common subsequence problem shown in Algorithm 3.2.

This solution uses dynamic programming based on two cases: First, if both sequences
contain the ith term I copy it into the final solution. Second, if both sequences do not
contain the ith term I take the larger of the two subsequences created by removing the
current term from each list and recursing down both paths.

Given this subsequence I can group tokens in the original two streams into two groups,
base url or parameter, depending on their existence in the common subsequence. Specifi-

22

{
” s ent ence s ” : {

”Author” : ” Jacqui Cheng” ,
”Pg2 Comment 1” : ” oog l e wanted was Google branding and Lat i tude

i n t e g r a t i o n and you would have had the same awesome Android
Google Maps expe r i ence as ” ,

”Pg2 Comment 2” : ” g l e i s e s p e c i a l l y good at that , whi l e Maps appears
to be e s p e c i a l l y bad . But I don ’ t th ink d i f f e r e n t map data would
help much with that ” ,

”Pg3 Comment 1” : ”happen anymore s c a r e s me about the fu tu r e o f the
comp” ,

” T i t l e ” : ”he ghost o f Jobs : Apple” ,
} ,
” u r l s ” : {

”Author” : [
” http : //cdn . api . tw i t t e r . com/1/ use r s /show . j son ? screen name=

eJacqui&ca l l ba ck=twttr . setFol lowersCount ” ,
” http : // a r s t e chn i c a . com/ apple /2012/10/the−ghost−of−jobs−apples−

cha l l enge−to−decide−what−would−steve−do/”
] ,
”Pg2 Comment 1” : [

” http : // a r s t e chn i c a . com/ apple /2012/10/the−ghost−of−jobs−apples−
cha l l enge−to−decide−what−would−steve−do/?comments=1&s t a r t=40”

] ,
”Pg2 Comment 2” : [

” http : // a r s t e chn i c a . com/ apple /2012/10/the−ghost−of−jobs−apples−
cha l l enge−to−decide−what−would−steve−do/?comments=1&s t a r t=40”

] ,
”Pg3 Comment 1” : [

” http : // a r s t e chn i c a . com/ apple /2012/10/the−ghost−of−jobs−apples−
cha l l enge−to−decide−what−would−steve−do/?comments=1&s t a r t=80”

] ,
” T i t l e ” : [

” http : // a r s t e chn i c a . com/ apple /2012/10/the−ghost−of−jobs−apples−
cha l l enge−to−decide−what−would−steve−do/”

] ,
” s t a r t i n g u r l ” : ” http : // a r s t e chn i c a . com/ apple /2012/10/the−ghost−of−

jobs−apples−cha l l enge−to−decide−what−would−steve−do/”
}

}

Listing 3.3: Output of URL Extraction Phase

23

Algorithm 3.2 Dynamic programming solution to Longest Common Subsequence problem

function LCS(X[1..m], Y [1..n])
C = array(0..m, 0..n) . Initialize known sequences to 0
for i from 1..m do

for j from 1..n do
if X[i] == Y[j] then . Include matching characters

C[i, j] = C[i-1, j-1] + 1
else . Decide which token to remove

C[i, j] = max(C[i, j-1], C[i-1, j])
end if

end for
end for
return C

end function

["http://arstechnica.com/apple/2011/10/the-ghost-of-jobs
-apples-challenge-to-decide-what-would-steve-do/?comments=1&
start=", ("40", "80")]

Listing 3.4: Output of running the diff algorithm on the two urls in Listing 3.1

cally, any token in the longest common subsequence is considered part of the base url and
any variation is considered a parameter. The output of this grouping, on the example, is
shown in Listing 3.4.

My next task is to discover how parameter values are likely determined. Table 3.2 below
summarizes some of the basic parameter classifications and how their values are extracted.
For conciseness I construct fake urls using the given parameters in my examples. These
example values are shown in Table 3.3.

I now explain each of these parameters in finer detail. The three parameters, URL,
Encoded URL, and Article ID, are used to determine which article to fetch the comments
from. The first two parameters are generally easy to detect by separating the url path
from the article url, and then encoding it if necessary. Once this is done I can replace all
instances of the parameter with placeholders. I do this before running the LCS algorithm
as these components often contain a mix of alphanumeric and non-alphanumeric terms
that foil tokenization. An advantage to this approach is the simplification of the output
from the LCS algorithm and a reduction in possible errors.

24

Parameter Type Description Extraction
Base URL Initial URL URL visited by crawler
URL Unique slice of the url Extract path from original url
Encoded URL Safely encoded url Encode URL using standard
Article ID ID of this article Use regex on URL or article body
Comment ID ID of first comment to fetch Use regex on article/comment response
Page number Page/Comment number to fetch Increment counter before fetching
Arbitrary Useless Parameters, or call ID’s Set to 0 or empty

Table 3.2: Most common parameters for comment fetching

Parameter Type Example
Base URL http://www.fake.com/post/this-is-my-article–14131
URL /post/this-is-my-article–14131
Encoded URL %2fpost%2fthis-is-my-article–14131
Article ID 14131
Comment ID 914131
Page number 5
Arbitrary 0

Table 3.3: Example Values for Parameters

25

The article id on the other hand is a unique identifier sometimes assigned to an article.
By crafting regular expressions targeting these ids I can ease the extraction. These regular
expressions are autogenerated by searching urls and the original HTML source for lines
containing the ids. I then present the user with a set of possible regular expressions that
will extract the necessary id. The comment ID is similar to article ID, however usually
marks the first comment in a set to search. Therefore, the comment ID usually changes
with each page that needs to be extracted, thus the regular expression needs to be reapplied
before each page is fetched.

The last two parameters are the page number and arbitrary ids. Most websites use
some form of counter to decide which comment to get, this counter can either represent a
page number or the index of the first comment. In order to determine what the counter
represents I compare the values from the second and third page of comments, if the values
between two separate articles match up then I guess that this value comes from counter.
To determine how to increment the counter I can subtract the two values. For example, if
I have comment=40 and comment=80, I know to increment my counter by 40 between
each page. Sometimes arbitrary id’s exist to help track function calls, or provide unique
names for callbacks. I detect these by setting their values to 0 and checking if the same
comments are fetched.

Once I have my comment crawling systems complete, I am able to automatically convert
article urls to comment urls. When generating URLs I insert them into a priority queue
that allows me to maintain my politeness policy. However, since we only need to request a
few kilobytes of text data per a comment page, we fetch multiple pages in one connection.
This has the added benefit of lowering the number of connections I make to the server,
and thus lowering the CPU overhead on the target’s end.

3.2 Parsing comments

Once the comment url is determined the next task is extracting the comments. In my
work I found that most sites belong to one of three different systems: comments embedded
in HTML, comments in JSON objects, or comments embedded in strings within a larger
request.

The simplest comment system involves embedding the comments in HTML, where each
page request fetches an entirely new url containing the comments. This is traditionally
implemented via an HREF attribute, and links to an HTML page that needs to be processed
to extract the comments. However, many domains also have AJAX fetch simple html

26

responses containing the comments, and these comments are loaded within a frame. In
order to parse comments in this form I use a library called BeautifulSoup[53]. I choose
to use this library because most websites do not follow HTML standards. For example,
a study done in 2008 by Opera, found that only 4.13% of websites visited passed WC3
validation [63]. Browsers, and libraries such as BeautifulSoup, are designed to recover from
common mistakes that users make and create a deterministic parse of a given website.
Furthermore, as a consequence to the malformed nature of HTML, alternatives such as
regular expressions can prove both difficult to create, and fragile to website changes.

However when parsing hundreds of pages per a domain BeautifulSoup can be slow, due
to creating an in-memory DOM Tree representing all the nodes within an HTML website.
Furthermore, my system was designed to be relatively simple for newcomers to generate
new parsers and the overhead of learning BeautifulSoup foiled this goal. Thus I create
a simplified wrapper around BeautifulSoup and boosted efficiency by restricting which
sections of the DOM Tree are created.

By using example comments provided by users, I can restrict BeautifulSoup to create
nodes only for the subtree rooted at the least upper bound of all comment nodes. The least
upper bound of two nodes in a tree is the youngest ancestor of the two nodes as shown in
Figure 3.4.

Figure 3.4: Graphical Representation of Least Upper Bound. Dotted lines represent an
arbitrary amount of intermediate nodes

I determine the least upper bound by finding the path to both comment examples, then
navigating these paths and return the last node that is shared by both paths. BeautifulSoup
also provides the ability to find all nodes that have certain attributes or tags. For example
it is possible to extract all nodes of the form:

27

1 def discussions_chicagotribune_rename(self, url, site):
2 title = self.regex.search(url).group("title")
3 return Template(self.template.substitute({"title":title}))
4

5 def discussions_chicagotribune_postprocess(self, comment_list):
6 for comment in comment_list:
7 text = comment.text
8 comment.text = text[text.find("\n \t \n"):]
9 return comment_list

10

11 discussions_chicagotribune = HtmlParser(
12 regex = re.compile(".*?chicagotribune.com/.*/(?P<title>.*?),.*"),
13 rename = discussions_chicagotribune_rename,
14 postprocess = discussions_chicagotribune_postprocess,
15 site = "www.chicagotribune.com",
16 template = Template("http://discussions.chicagotribune.com
17 /20/chinews/$title/10"),
18 strainer = SoupStrainer("div", {u"id": u"comment-list"}),
19 targets = SoupStrainer("div", {u"class": u"comment"}),
20)

Example 3.4: Parser for HTML Comments. Lines 1-3 specify how to convert the base
template into a comment url, Lines 5-9 remove extra characters, Line 12 is used to extract
parameters, Line 18 creates the DOM Tree for the LUB of all comments, Line 19 fetches
all comments

<p class="comment.*">

Thus, once I have the tree for the least upper bound extracted, my system automatically
generates the necessary BeautifulSoup code to extract just the comments. Unfortunately,
some domains insert extra data such as authorship or dates at the beginning or end of a
comment. Thus I allow users to specify Python code that can trim away the necessary
characters. I present an example of this type of parser in Example 3.4.

The second case is similar, however instead the server returns a JSON object. In this
case, the url is usually generated via a JavaScript function call. The JSON object is
formatted as needed by the calling function, and thus it often contains extra metadata.

28

{
”Envelopes ” : [
{

”Payload” : {
” Items” : [
{

”Body” : ”Comment One”
} ,
{

”Body” : ”Comment Two”
}

]
}

}
]

}

Figure 3.5: Example CBC comment JSON Layout
,

For my purposes, I can determine the JSONPath that represents all comments within the
object and extract those directly.

JSONPath is a notation for selecting components from a JSON object that match a
given pattern, much like regular expressions are used over text data. JSONPath is built on
navigating a JSON object by specifying which elements to match at each level of a JSON
object. It has three tools I require for navigation: keyword, integer index, and a catch-all
character, *. Keyword navigation allows me to navigate JSON dictionaries by selecting
the element with a given key, e.g. ‘url’. Index navigation selects elements of a list with a
given index, and the * character selects all elements at a given level of a hierarchy.

An example JSONPath for CBC is ‘$.Envelopes[1].Payload.Items.*.Body’. Here I nav-
igate the JSON object in Listing 3.5 and return the two comments, while removing any
extra data, which I do not show in this example.

I can determine the JSONPath by finding the JSONPath of two comments on the same
article. I then split the path on the ‘.’ token and replace any differences with the catch all
operator, *. The parser in Example 3.5 extracts comments from articles by the Washington
Post.

Finally, sometimes the target comments are part of a larger object or webpage, for
example the comments may be embedded in a larger JavaScript page. In this case I
have to isolate both which lines contains the necessary comment, and how to extract the

29

1 def washingtonpost_rename(self, url, site):
2 url = urllib.quote(self.regex.search(url).group("url"))
3 return Template(self.template.substitute({"url":url}))
4

5 washingtonpost = JSONParser(
6 regex = re.compile("(?P<url>.*?washingtonpost.com.*?.html).*"),
7 paths = ["$.entries.*.object.content"],
8 rename = washingtonpost_rename,
9 site = "washingtonpost.com",

10 template = Template("http://echoapi.washingtonpost.com/v1/
11 search?callback=jsonp1326063163544&q=((childrenof%3A+$url
12 +source%3Awashpost.com+++))+itemsPerPage%3A+100+sortOrder%3A
13 +reverseChronological+safeHTML%3Aaggressive+children
14 %3A+2+++&appkey=prod.washpost.com"),
15)

Example 3.5: Parser for JSON comments. Generally the same as HTML Parser, however
in Line 7 I track the JSON Paths used to store comments.

comment. In order to determine which lines contain the comments, I can use the comments
provided by users to preprocess the document and remove any unnecessary lines. Once
I have isolated the lines containing the comments, the next stage is determining how to
parse them. This often means finding a subset of the line that is understandable by either
the JSON parser or HTML Parser. I can then craft a regular expression that extracts the
necessary comment component of the line for other articles. This reduces the problem to
one of the first two cases, and I apply whichever solution is appropriate. An example of
this type of parser is shown in Example 3.6.

Using all these heuristics I generate a group of potential parsers and present them to
the user. The user then inspects the output of each parser and chooses which parameter
values select the targeted data.

30

1 def cbsnews_preprocess(self, comment_list):
2 return [line for comment in comment_list for line in comment
3 if line.startswith("</script> <sp")]
4

5 cbsnews = HtmlParser(
6 site = "www.cbsnews.com",
7 strainer = SoupStrainer("div", {u"id": u"commentWrapper"}),
8 preprocess = cbsnews_preprocess,
9 targets = SoupStrainer("dd", {u"id": re.compile(u"body.*")}),

10)

Example 3.6: Parser for Embedded HTML Object, In Lines 1-3 I strip out any extraneous
lines before parsing out comments

3.3 Results

Using the vertical crawling system described above I created crawlers to extract comments
on 43 different domains. Creation of each parser took approximately 10 minutes. The
average parser is implemented in 20 lines of Python code, approximately half of which is
autogenerated. A full list of sites domains targeted by my system is located in Appendix
B.

My system was originally conceived in order to extract comments from news websites
discussing the controversial ‘Northern Gateway Pipeline’[56]. As such, my seed set of
parsers targeted news domains from Canada and the west coast. In order to get breadth,
one week was spent monitoring www.reddit.com/r/news and writing parsers for the
domains that appeared frequently. It should also be noted that this system was designed
generically such that it could easily be extended to other domains, such as review mining,
but this was not tested as part of this work.

31

www.reddit.com/r/news

4

Diverse Opinion Summarization
for Scalable Opinion Mining

With a click of the “Post Comment” button, Netizens can quickly bring down the
level of dialogue ... In an era in which making noise is essential to standing out
and breaking through the clutter, naughty will, by definition, win out over nice.

– Willow Bay, Bile in the Blogosphere, Huffington Post

When attempting to isolate the opinions expressed about a given topic, be it a political
revolution or a new product, many come up short. A survey[19] on marketers found that
approximately 29% report having “little or no consumer data”. Furthermore, only 35%
collect social media data, and those that do find it difficult to measure their return on
investment. This lack of utilization occurs despite tools such as Twitter, generating 175
million tweets and Facebook generating over 100 terabytes per day[19].

One issue with Twitter is the generally conversational nature of posts, with only 3.6%
of tweets discussing the news[48]. Facebook data on the other hand is generally considered
sensitive by users and thus difficult to obtain. Using my system I was able to collect a
large collection of news comments about any given topic. Unfortunately, once I harvest
this discourse I still must determine how to understand this large collections of comments.

In this chapter I perform a case study attempting to use my novel collection of data
to evaluate various opinion summarization algorithms. This both serves to present the
usefulness of the data my tool collects and attempts to address an interesting and unsolved
problem. I start by performing a brief survey on the field of multidocument summarization.

32

Next I introduce my algorithm KLSum+. This algorithm starts with the general skeleton
of faster algorithms such as KLSum and SumBasic. However, by borrowing from topic
modeling literature, I am able to factor in background models. The background model
allows me to remove fragility introduced by stop word lists, while better encoding term-
wise information entropy. Next, by adding length and redundancy penalties, I am able to
quickly extract passages that are more meaningful and understandable. Finally, I evaluate
progress by benchmarking the system against various other systems, which are well known
for their ability to summarize multiple documents. This allows me to show that my results
are consistent with these alternatives while both executing faster and producing more
coherent summaries.

4.1 Problem Description

News comments generally have no limit on their length. Along with the free-form nature
of comments, the general lack of skill or motivation to write consistently strong comments,
can cause the quality to drop. Although I fetch comments by issuing a query to a search
engine and getting related articles, comments may not contain information directly related
to the query as a comments relevance is determined by the article they are fetched from.
Instead, comments represent the discourse occurring over articles on a given topic. Thus,
by analyzing the comments I hope to acquire insight into the general opinion about a given
query, and the events related to the query. The problem this thesis attempts to address is:

Given a query, q, and a set of comments related to the query Cq, present to the
user a summary S, which is a collection of sentences that presents the various
viewpoints related to q.

The difficulty in this problem is three-fold. The first task is determining the number
of different viewpoints related to the query. The next task is generating sentences that
summarizes each of these viewpoints. Lastly, creating a ranked list of sentences representing
the prevailing opinions.

For my work I focus on extractive summarization, where summaries are generated by
selecting a representative set of sentences from the target corpus. This is in contrast to
generative summarization, where I attempt to generate a summary by crafting summaries
that follow both natural language rules and the probability distribution of the target corpus.

33

Term Term description
t Term
s Sentence
c Comment
S Summary
C Corpus of comments
nt Instances of term t
Nt Count of unique terms
Ns Count of unique sentences
Nc Count of unique comments
Nsav Average count of sentences per comment
Ntav Average count of terms per sentence

Table 4.1: List of Key Terms for discussing Summarization

When analyzing time and memory complexity I use average case complexity, as the
worst case, where every comment has every term, is unlikely. For ease of reference I define
some useful terminology in Table 4.1.

34

4.2 KLSum+

4.2.1 Summary of Enhancements

In this section we go over the design and implementation of KLSum+. KLSum+ is a
ultrafast scalable algorithm for summarizing news comments and creating a set of diverse
opinions represented in the comments. Its design mixes together the effectiveness of fre-
quency based summarization with the injection of domain specific knowledge created from
background models in clustering based methods. Furthermore, this system is designed to
extract snippets, which are a collection of sequential sentences that are part of a larger
document. Due to the English language naturally referencing content beyond sentence
boundaries this focus on snippets, rather than sentences, adds more context and boosts
our ability to understand the opinions presented.

A list of innovative components within KLSum+ is as follows:

• Starting from KLSum work I use simple and efficient frequency based models to score
terms and present contrastive summaries.

• Merging in knowledge from topic model work, I add background models which incor-
porate information from a larger corpus to increase the relevance of our summaries
to the target corpus.

• By adding length penalties I am able to punish overly short and overly long snip-
pets. This helps reduce noise from comments which on average contain many short
sentences, while also avoiding run on sentences.

• By focusing on snippet extraction, selecting multiple contiguous sentences rather
than a single sentence from each comment, I decrease the amount of noise and boost
the context in my summaries.

Thus, I create a simple yet effective system that incorporates reasoning from various dif-
ferent approaches to summarization. In doing so I hope to set up a simple baseline and
show that more complex approaches may be unnecessary.

4.2.2 Implementation

A brief explanation of my algorithm is as follows: I start by isolating important terms for
the documents I wish to summarize. This is accomplished by finding terms that are more

35

prominent in my collection than in my general background model. This background model
is generated by a much larger corpus of comments generated from 50+ other topics. Once
important terms are scored, I score snippets within comments based on the term scores.
I present the most interesting snippets to the user, lower the score of any terms that I
showed, then select new snippets. This implicitly selects orthogonal comments that isolate
different sides of the story.

Before I discuss the details of KLSum+ I start with a discussion of KLSum[21]. The
goal of KLSum, is to generate a summary S∗, of comment collection C that minimizes
Equation (4.1).

S∗ = min
S:word(S)≤l

KL(PC‖PS) (4.1)

Where l represents the target summary length, PC represents the empirical unigram distri-
bution of the document collection, PS represents the empirical unigram distribution of the
summary, and KL(P‖Q) represents the K-L Divergence between P and Q. Traditionally,
this is estimated greedily by adding sentences to the summary as long as they decrease
K-L Divergence.

I extend this concept in many ways in order to generate contrastive summaries. First
I borrow from topic and language modeling work, which sometimes uses a background
model in lieu of stop words, to eliminate unimportant terms. These background models
are based on the assumption that naturally all documents in the English language have
some quantity of words that are low in information. This decoupling deals with domain
specific noise, which is common in comments where extra characters and misspellings are
common. In topic model approaches this model is generated by flipping a coin that decides
if a term belongs to a background model. However, I decided to generate a background
model directly, by using a much larger corpus of documents. Thus, I define p(t) and pq(t):

p(t) =
|{ci ∈ C|t ∈ ci}|+ δ

|C|+ δ
(4.2)

pq(t) =
|{ci ∈ Cq|t ∈ ci}|+ δ

|Cq|+ δ
(4.3)

where C is a large collection of comments, and Cq ⊂ C is a much smaller set of comments
related to query, q. In order to simplify calculations we add δ comments that contain every
term to both corpuses. A simple way of performing this is linear smoothing, adding δ to
the numerator and denominator of the calculation for p and pq.

It should be noted that I only count each term once per a comment. This filtering helps
deal with errors in sentence extraction, which are common due to the noise in comments.

36

For example the string ‘......’ may generate six uninteresting sentences, which would bias
my results if I counted based on sentences. Comment based counts are easier as I already
have the comments separated in the corpus. Once I have p(t) and pq(t) I can use term-wise
K-L divergence to score each term:

score(t) =

{
KL(pq(t)‖p(t)) pq(t) > p(t)

0 otherwise
(4.4)

This score tells me how important the current term is to the current query. Given this
term-wise score I can score snippets using Equation 4.5.

score(ŝ) =

{∑
unique(t)∈ŝ score(t)

|ŝ|+∇ |ŝ| < ε

0 otherwise
(4.5)

Next I generate a series of candidate snippets by applying Algorithm 4.1 to each com-
ment. In Algorithm 4.1, when given a comment I generate every contiguous subsequences
of two or more sentences. Since summaries much longer than ∇ are generally ignored, the
score function quickly dismisses any snippets of length longer than ε.

Algorithm 4.1 Snippet Selection Algorithm

Require: Sentences[1..n] List of Sentences
Require: ScoreFn Function used to score sentences

function GetSnippet(Sentences[1..n], ScoreFn)
contiguousSubsequences = empty-list
for all start, end in combinations(1..n, 2) do . Generate all sublists of sentences

contiguousSubsequences.push(sentences[start:end])
end for
return max(contiguousSubsequences, key=ScoreFn)

end function

The complete KLSum+ snippet selection process is outlined below:

1. Find a snippet ŝ that maximizes the score in Equation (4.5), where |ŝ| is the number
of words in ŝ. For my work I set δ = 1, ∇ = 40 and ε = 90.

2. Present the highest scoring snippet ŝ∗ to the user.

37

3. Set score(t) = score(t)− σ(t) ∀t ∈ ŝ∗. For this work I let σ(t) = score(t)

4. Repeat step 1-3 until score(ŝ∗) drops below a threshold, λ, or when the desired
number of viewpoints are harvested.

To ease analysis, the results in this paper are from selecting the top five snippets.
KLSum+ has O(Nt) memory efficiency as the background file must be loaded to determine
the pointwise term scores. The time efficiency is O(

(
Ns/NC

2

)
∗ NC ∗ Ntav) which can be

simplified to O(Ns ∗Nsav ∗ (Ntav)).

4.3 Baseline Methods

In this section I discuss the alternate summarization methods I chose to implement and
compare against.

4.3.1 Iterative Random Summarization

I start with random summarizer to set up a trivial baseline for my system. This system can
be implemented extremely quickly by generating random indices from a sentence list, which
are used to select what sentences to include in the summary. On the other hand my random
summarizer iteratively assigns each sentence a random score and selects the sentence with
the highest score. This adds a slight overhead, as I must iterate over the sentences and
recalculate the score before each selection, however this complication provides a more
reasonable baseline for diversive sentence extraction methods. For my work I set the
desired length to 250 words. Due to the random nature of this summarizer no additional
effort was exerted to create contrastive summaries. This algorithm is O(Ns) in terms of
computation and O(1) in terms of memory.

4.3.2 SumBasic

SumBasic[40] defines the estimate of a term’s likelihood as:

score(t) =
nt

Nt

(4.6)

38

Given these scores, SumBasic selects sentences with the highest average term score:

score(s) =

∑
ti∈s score(ti)

|s|
(4.7)

In order to gravitate towards contrastive summaries, each time a sentence is selected, I
reweigh each term such that score(t) = score(t) ∗ score(t) before selecting a new sentence.
I remove stop words and punctuation before running SumBasic in order to improve the
results. Sentences are selected until the desired length is reached, in my case 250 words.
This algorithm is O(Ns ∗Ntav) in terms of computation and O(Nt) in terms of memory.

4.3.3 MEAD Summarization

The MEAD summarizer[51] is a freely available and widely used summarizer, designed for
summarizing news articles, such as those found in the DUC task. According to their man-
ual, the platform implements various summarization algorithms such as position-based,
centroid-based, largest common subsequence[57], and query based summarization. Posi-
tion based summary generation is a trivial gold standard for news summarization, where
sentences are deemed important based on how far down the page they are. This approach
works well since the starting section of an article, called a lead, should contain a brief state-
ment of the stories essential facts [2]. For comments however this is less likely, since the
individuals writing are not professional journalist, and they are not motivated to propagate
the same information.

Centroid based summarization attempts to split the various sentences within the corpus
into separate clusters. In order to cluster documents, they are first converted to vectors
using a score known as Term Frequency - Inverse Document Frequency tf-idf. Term fre-
quency measures how frequent a term occurs in a document, for example Equation (4.8)
which denotes tf as the frequency of a term t in a document d, divided by the frequency
of the most repeated word w in the document d.

tf(t, d) =
frequency(t, d)

arg maxw frequency(w, d)
for w ∈ d (4.8)

idf on the other hand normalizes for common words, which may have traditionally been
stop words such as “the”, “and”, “or” etc. The idf score for a term t, and corpus C is
shown in Equation (4.9) and decreases depending on how many documents contain term
t.

39

idf(t, C) = log
|C|

|d ∈ C : t ∈ C|
(4.9)

These two scores are traditionally mixed using Equation (4.10) creating tf-idf.

tf-idf(t, d, C) = tf(t, d)idf(t, C) (4.10)

Sentence Sij, represent the i th sentence in document j can now be represented as the vector

Sij = [w1w2...wn] (4.11)

where wi is the tf-idf score of term i in sentence S. Once these vectors are created they can
be clustered using traditional clustering algorithms, for example K-means. MEAD uses an
algorithm called CIDR which uses the similarity score in Equation (4.12) to assign clusters
to documents. A document D is assigned to a cluster Cl if this score is greater than an
arbitrary threshold. If no cluster is assigned to a document then the document spawns a
new cluster.

sim(d, Cl, C) =

∑
t∈d tf(t, d)tf(t, Cl)idf(t, C)√∑
t∈d tf(t, d)2

√∑
t∈Cl tf(t, Cl)2

(4.12)

In order to generate sentences for the summaries, sentences are selected based on their
average distance from all the centroids. Thus, sentences that overlap all the topics within
the document set are preferred. Sentences are also penalized for being too similar to
selected sentences by eliminating sentences that cover the same or less topics than any
other sentence. With the centroid system this can be estimated by sentences that fall into
approximately the same scores for each cluster.

The centroid score of a term to a cluster Cl is defined as CS (t, Cl, C) = tf (t, Cl)idf (t, C).
The centroid score of sentence is as follows:

CS (s, Cl, C) =
∑
t∈s

CS (t, Cl, C) (4.13)

In order to select contrastive summaries, I used the MEAD maximal marginal relevance
reranker[16]. This reranker selects sentences that maximize the following score:

score(s) = λ(CS (s, Cl, C))− (1− λ)(max
sj∈S

Sim(s, sj)) (4.14)

Thus, sentences are selected that are similar to the cluster but sufficiently different from
sentences already selected. The memory efficiency of CIDR is O(NCl ∗Nt) and computa-
tional complexity is O(NCl ∗Ns ∗Ntav) where NCl is the number of clusters.

40

4.3.4 LexRank Summarization

The LexRank summarizer is based on the concept of prestige in social networks. Generally,
the goal of LexRank is to find sentences with a high eigenvector centrality. The first task is
building the adjacency matrix marking sentences that are close together. Cosine similarity
in tf-idf space defined as:

sim(si, sj) =

∑
t∈si,sj tf (t, si)tf (t, sj)idf (t, C)2√∑

t∈si(tf (t, si)idf (t, C))2
√∑

t∈sj(tf (t, sj)idf (t, C))2
(4.15)

for sentences si, sj where tf (t, s) is the number of occurrences of t in s, and idf (t, C)
is the inverse document frequency of t in Corpus C. The adjacency matrix, M, can be
constructed by following the rules in Equation (4.16).

Mij =

{
1 if Sim(si, sj) > λ

0 otherwise
(4.16)

Given this adjacency matrix, I can perform the well known PageRank algorithm [46]
to extract the centrality of each sentence in the graph. For my work I let λ = 0.2, however
I found that summaries did not change significantly for λ = 0.1 or λ = 0.3.

This algorithm is O(Ns
2 ∗Ntav) in terms of computation, and O(Ns + Nt) in terms of

memory due to sparsity of graph. The continuous version of this algorithm, that uses a
function on the similarity scores as edges, is not sparse. Thus it exceeded memory limits
during my evaluation.

In order to obtain contrastive summaries, I perform k-means clustering on the data
before I execute the LexRank algorithm. I then select sentences from each of the separate
clusters and concatenate them. This approach was adopted inside the Dragon Toolkit[65].

4.3.5 Topic Model Based Summarization

Topic model based summarization starts by creating a document-term matrix. This matrix
is then factored into two smaller matrices, a document-topic matrix, θ, and a topic-term
matrix, φ. There are a variety of methods designed to decompose this matrix. However,
recently Latent Dirichlet Allocation(LDA) has gained some traction for multidocument
summarization [1] and email topic detection[12]. In order to estimate φ and θ I perform

41

Gibbs sampling to generate a set of topics from the Dirichlet distribution. Next I find
sentences that maximize p(s|Tj) for each topic Tj.

For my work I use the modified partially generative estimation of p(si|Tj) shown in
Equation (4.17)

p(s|Tj) =

∑
ti∈s

p(ti|Tj) ∗ p(Tj|cs) ∗ p(cs)

|s|
(4.17)

where cs is the comment containing s, p(Tj|cs) is the estimate of topic Tj being drawn from
cs, and p(cs) is the prior for generating comment cs.

I generate a contrastive summary by sampling Tj from one of five topics drawn from a
multinomial distribution and choosing unselected sentences that maximize p(s|Tj). Thus,
I assume that each comment cluster is composed of approximately five separate topics and
attempt to select the most interesting sentences. I attempted to add background models
to the LDA implementation, but results were drastically worsened, hence for this work I
rely on stop words to eliminate unimportant terms.

This algorithm requires O(NC ∗ Ntav ∗ Nsav) memory. The computation complexity is
O(I ∗ |T | ∗NC ∗Ntav ∗Nsav), where |T | represents the number of topics and I is the number
of iterations of Gibbs Sampling requested. I = 1000 and |T |=5 for my work.

I also use SyntaxSum [10] which is an open sourced summarization system, created by
Darling at the University of Guelph, which uses topic models to estimate both the topics
within a corpus and the syntax class of words. This extension is used to eliminate low
content function words within the English language.

4.3.6 Aspect Mining with Sentiment Methods

Sentiment analysis based summarization relies presenting sentences to the user that are
for or against a given aspect of a story. In order to accomplish two pieces of information
need to be determined: a sentiment lexicon and the aspects of a story.

The ideal sentiment lexicon maps each word in a corpus to either a positive or negative
sentiment. In order to determine the sentiment of a term one can hand label a relatively
small set of comments or sentences. Using this human labeled data I am able to then write
a classifier that predicts the sentiment of each word within the sentence. Furthermore,
once this classifier is written I can use term co-occurrence to determine words with similar
sentiments. This is the general approach that is taken with product reviews, as most

42

Word Class Positive Negative Description
JJ 0.75 0 characterized by quickness and ease in learning
JJ 0.5 0 showing mental alertness and resourcefulness
JJ 0.5 0 capable of independent and intelligent action
JJ 0 0.125 improperly forward or bold
JJ 0.5 0 elegant and stylish
JJ 0.5 0 quick and brisk
JJ 0 0.875 painfully severe
NN 0 0.625 a kind of pain such as that caused by a burn
VB 0 0.375 be the source of pain

Table 4.2: Sentiments for every word sense of the word ‘Smart’

services provide a star rating, and this rating can be treated as a free source of human
judgments.

For my comment system, due to lack of resources I instead rely on the well known
SentiWord.net lexicon. This lexicon is built by walking the WordNet synonym graph and
assigning either positive, negative, or objective scores to each word. The assigning of scores
is done by three semi-supervised classifiers that are bootstrapped using manual training
data. The original documentation can be consulted for more information on this process
[3]

SentiWord.net also assigns sentiment based on word sense, which is the underlying
meaning of a word. For example the term “smart” can mean either “elegant” or “bold”.
Furthermore, many words can fall into different parts of speech, for example “good” can
refer to a commodity or be used as an adjective to describe a noun. By applying part of
speech tagging one can perform word sense disambiguation which allows me to use these
fine grained metrics to increase the success of sentiment based methods. SentiWord.net
also has more complex word sense disambiguation, which provides the sentiment of every
possible definition of a word, as exemplified for the word “smart” in Table 4.2. Determining
which definition is used is a much more difficult task, thus I instead average the word sense
for each part of speech (adverb, adjective, noun, and verb) and use part of speech tags to
determine the sentiment of each word.

In reviews, aspect extraction is the task of extracting which aspects of a product users
are generally discussing. Similarly, for comments aspect extraction is the task of extract-
ing which aspect of a news topic that users are commenting on. Multiple approaches exist
for aspect extraction, and it can be said that every summarization algorithm has some

43

form of aspect extraction built in. For example, KLSum+ uses K-L Divergence to deter-
mine interesting terms, and topic modeling uses word clusters determine various important
aspects.

In sentiment analysis work however, more powerful natural language processing tech-
niques are used to extract sequences of important noun phrases. The approach I took is
similar to the work done by Blair-goldensohn et al[5]. In order to determine importance I
executed the following steps.

Step 1
Filter out sentences that do not contain any sentiment words.

Step 2
Filter out noun sequences that do not occur in a syntactic pattern indicative of a
discussed topic. This is explained further below.

Step 3
Count all occurrences of each noun phrase, produce summaries for the top λ sen-
tences, where λ = 5 for my work. For my work I also decided to use KL Divergence
to determine how unique the noun phrase was to the current topic.

Step 4
Optionally, run an association miner or topic modeling system to find correlations
between noun phrases and create distinct subtopics.

Step 5
For each sentiment S and each noun phrase NP, I select the highest scoring sentences
containing NP using Algorithm 3.

Informally, this algorithm starts by dismissing sentences and noun phrases that are
unimportant, generated either by flaws in the part of speech system, or the general use of
nouns in the English language. Importance is then measured by frequency and occurrence
in sentences that are classified as discussion using syntactic patterns. Sentimental sentences
containing each noun-phrase are then selected based on their ability to maximize the score
in Algorithm 4.2. This algorithm roughly estimates the use of negation in natural language,
however does not deal with sarcasm or other flaws in natural language approaches.

The syntactic patterns I used are shown in Table 4.3. These patterns are discussed in
more detail by Khan et. Baharudin[29]. Generally, these patterns are chosen because their
high correlation with interesting aspects of a review.

44

Algorithm 4.2 Sentiment Scoring Algorithm

function GetSentiment(Sentence[1..n], Topic, TargetSentiment)
NegationTerms = {”n’t”, ”not”, ”never”} . List of terms that flip sentiment
score = 0
if Topic not in Sentence then

return -1
end if
for i from 1..n do

for j from i-3..i-1 do . Detect negation before current word
if Sentence[j] in NegationTerms then . Assume Sentence[-k] = “” ∀k ≥ 0

TargetSentiment.reverse()
end if

end for
score += sentiment(Sentence[i], TargetSentiment)

end for
return score / n

end function

Pattern Type Example
NN VB RB JJ vBNP camera/NN is/VBZ so/RB compact/JJ
NN VB RB JJ vBNP camera/NN is/VBZ so/RB light/JJ

NN VB RB JJ vBNP
camera/NN produces/VBZ fantastically/RB

good/JJ Pictures/NN
DT NN VB dBNP The/DT viewfinder/NN reflects/VB
DT JJ NN VB dBNP The/DT LCD/NN sees/VB
NN IN NN iBNP Quality/NN of/IN Photo/NN
JJ IN NN iBNP Range/NN of/IN Lenses/NN

Table 4.3: Syntactic Patterns Predicting Key Noun Phrases

45

A brief explanation is as follows: A base noun phrase (BNP) is a phrase containing 0
or more adjectives, followed by 1 or more nouns.

A linking verb based noun phrase, vBNP, is a BNP followed by a verb then followed
by an adjective or adverb.

A definite base noun phrase, dBNP, is a BNP preceded by “the”.

A preposition based noun phrase, iBNP, is a noun phrase with the preposition “of”
between two BNPs.

4.3.7 Other Methods

I dismissed first sentence selection, which displays the first sentence of each article, for two
reasons. First, despite its success in summarizing journals and blogs, it generally fails on
comments. Its success on journals is likely due to the general attempt of news articles
to convey the most important aspects of the story within the first sentence. However,
untrained commenters have different motives, and thus this principal does not hold true.
Second, with a large number of comments, choosing the first sentence still generates tens
of thousands of sentences, which will still require summarization.

Temporal methods, which are successful on tweets have been dismissed because they
are generally used to determine what articles in a larger corpus are related to an event.
However, I solved this classification problem in an earlier step by filtering to a set of
comments related to articles about my query.

4.4 Experimental Setup

In this section we discuss the results of executing all the algorithms discussed. The goal
of this section is to describe the data we collected, and concretely show how our system is
able to outperform every alternative in both efficiency and quality. However, due to lack
of human judgment we are unable to formally evaluate our system using our full dataset
and thus use the manually annotated DUC 2007 task for our quality evaluation.

4.4.1 Data

For this case study I use two datasets. The first collection is composed of the data from
the DUC 2007 task. In this task competitors are given a set of topics, with each topic

46

Website Number of Articles Number of Comments
CNN.com 2665 297273
HuffingtonPost.com 16022 299812
RawStory.com 11307 372351
FoxNews.com 9257 529033
WashingtonPost.com 8413 905225

Table 4.4: Document Count for Top 5 Websites

Topic Number of Articles Number of Comments
Alternative Energy 141602 561529
Economy 139892 595959
Health Care 170355 708449
GOP Primary 219230 802635
Rick Santorum 223600 924523

Table 4.5: Document Count for Top 5 Topics

containing up to 25 news articles. The task entails reading these documents and creating
a summary of all the articles present for each topic. Each topic is also accompanied by
summaries generated by at least four human judges, who attempt to create summaries that
help answer a predetermined information need. During the DUC task these summaries are
used as a gold standard, and I use these to create a baseline evaluation for the effectiveness
of each system I implemented.

My second collection was harvested by using the crawler discussed in Chapter 3. The
topics I selected were based on trending topics from the online community Reddit.com.
In Table 4.4 I show the top five websites sorted by the number of comments on articles
fetched. I also graph the overall distribution of comments over all the websites in Figure
4.1. From this distribution I notice that the majority of comments come from a few key
websites, however the number of articles is not necessarily co-related with the number of
comments. Thus creating a few high fidelity parsers for very popular websites can help
grab the majority of comments. However, a generalized parsing solution is useful since
different news websites may grab a different audience.

In Table 4.5 I show the five most commented on topics that I searched for. Figure 4.2
graphs the number of articles and number of comments for all the topics I searched for.
This data shows that most of the topics achieved more than 100,000 comments.

Before summarization I perform no spam filtering, however I found that many irrelevant

47

(a) Distribution Per Website (b) Distribution per Topic

Figure 4.1: Graph of Number of Left: Articles and Right: Comments per Domain ordered
by Rank

Figure 4.2: Graph of Number of Left: Articles and Right: Comments per Topic ordered
by Rank

48

articles were returned by Google. This occurs due to the indexing of dynamic content such
as related articles or current news. In order to improve relevance I filter away articles and
related comments if they do not contain all the query terms.

It should also be noted that the comment data was extremely noisy, with the average
comment containing 3.92 sentences and the average sentence containing 1.24 terms. It
should be noted that these terms can include any stop words and punctuation characters, as
well as artifacts produced from the failure of natural language based sentence tokenization
when applied to noisy comments.

4.4.2 Efficiency

For my timing evaluation I executed my tests on a Quad Core AMD Phenom II X4 955
with 7918 MB of RAM and Ubuntu 12.1. Due to the fragile nature of timing information I
briefly describe each implementation and my efforts to speed up each system. It should be
noted that SyntaxSum and MEAD results are not presented, as both these systems were
designed for smaller document sets and thus were unable to summarize my large corpus.

For sentence tokenizing, word tokenizing, and part of speech tagging I use the Stanford
CoreNLP toolkit. All my systems are implemented in Java except for LDA, where I use
the open source C++ implementation by Darling1. By using C++ and removing stop
words/infrequent words before computing φ and θ I help ensure the algorithm terminates
within a reasonable amount of time. This also requires the creation of inverted index of
documents to the terms they contain. Given this doc-term matrix I use Gibbs Sampling
with 1000 iterations to estimate φ and θ.

For LexRank I use the Java implementation by Drexel University implemented as part of
the Dragon Toolkit[65]. This toolkit implemented both clustered LexRank and traditional
LexRank. I modified the code slightly to use sparse matrices due to out of memory errors
when attempting to allocate a dense Ns x Ns matrix. This library was selected due to its
ability to handle the relatively large amount of sentences, and the amount of effort put
into optimizing the system. Before executing KLSum+ I generate a background model by
parsing all the terms in my full corpus of documents and tracking how often each term
occurs. This operation only needs to happen once, and replaces the tf-idf file used in other
summarization algorithms.

I start by analyzing the four fastest algorithms. In Figure 4.3 I show that Random, KL-
Sum+, and SumBasic perform on par with each other. Surprisingly Random and SumBasic

1www.uoguelph.ca/˜wdarling/code/syntax_sum.tar.gz

49

www.uoguelph.ca/~wdarling/code/syntax_sum.tar.gz

Figure 4.3: Summarization Time versus Number of Sentences

end up slower than KLSum+. This was likely due to the number of iterations that needed
to be executed to achieve 250 word summaries. On average KLSum+ was required to
score snippets 1/8th as many times as SumBasic and 1/16th as many times as the Random
summarizer.

This figure also shows that that LDA and LexRank performed much worse. LexRank
specifically was unable to summarize more than 30,000 sentences in under five hours. This
failure occurs due to the inability to store the document matrix in memory and the need
to constantly flush the matrix to disk.

4.4.3 ROUGE Scores

Due to the size of data, I found it difficult to generate human judgments. Summarizing
even 3000 comments becomes difficult. Inouye and Kalita[25] accomplish this task by
preclustering tweets and presenting them to annotators who then attempt to generate
summaries. However, due to the biases introduced by this method, I decided to evaluate
KLSum+ by comparison to the DUC 2007 task[7]. In this task, competitors attempted
to create 250 word summaries of 45 document sets, each containing 25 news wire articles.
The summaries generated are then evaluated using ground truth, which was created by 7
human judges manually.

When I evaluate my system I chose to use ROUGE SU4, since it is both generally
accepted for evaluating summarizers[36] and designed to measure the coverage of automatic
summaries over a set of gold standard summaries. ROUGE SU4 for given gold standard
is formally defined in Equation (4.18):

50

K
LS

um
+

S
yn

ta
xS

um

M
E

A
D

S
en

tim
en

t

S
um

B
as

ic

Le
xR

an
k

LD
A

R
an

do
m

0.05

0.10

0.15

0.20

0.25

(a) ROUGE SU4 scores

K
LS

um
+

S
yn

ta
xS

um

M
E

A
D

S
en

tim
en

t

S
um

B
as

ic

Le
xR

an
k

LD
A

R
an

do
m

0.05

0.10

0.15

0.20

0.25

(b) SU4 Precision Scores

Figure 4.4: Scores for each Summarizer Against DUC 2007 data set

ROUGE SU4(s∗, Ŝ) =

∑̂
s∈Ŝ

∑
g∈s∗

min(tf g,s∗ , tf g,ŝ)∑̂
s∈Ŝ

∑
g∈ŝ

tf g,ŝ

(4.18)

Where s∗ represents the generated summary, Ŝ represents the set of gold standard
summaries, and tf g,S represents the number of times the n-gram g occurs in summary s.
In ROUGE SU4 the n-grams used are the union of the set of unigrams with the set of skip
bigrams with at most 4 tokens skipped. I also run a Porter stemmer but do not remove stop
words before calculating ROUGE scores as described by the DUC 2007 Task. Similarly to
measure precision I use Equation (4.19):

precision(s∗, Ŝ) =

∑̂
s∈Ŝ

∑
g∈s∗

min(tf g,s∗ , tf g,ŝ)

|Ŝ|
∑
g∈s∗

tf g,s∗

(4.19)

For this comparison, I first implemented KLSum+ and the 6 algorithms described in
Section 4.3. I then summarized the DUC 2007 data set using these algorithms along

51

with the two open source toolkits MEAD and SyntaxSum[10], which were chosen for their
accessibility and published results relating to the DUC data set. When using background
and syntax models in KLSum+ and SyntaxSum I generate the models from the full DUC
2007 corpus before creating summaries for the subtopics. The notched box plots of the
recall and precision scores, as calculated by the ROUGE toolkit, are presented in Figure
4.4a and Figure 4.4b. These notched box plots display the following information:

1. The median, which is the central depression

2. The 95% confidence interval on the median, which is represented by the notches.

3. The interquartile range, i.e. the 25th to 75th percentile, represented by the boxes.

4. The spread, represented by the whiskers, which contains 99.3% of the data

5. Outliers excluded from the box plot, which are represented by circles below or above
the box.

In order to reproduce these graphs the following code written in the R programming
language can be executed on the output of the ROUGE score calculator provided with the
DUC task.

1 data <- read.csv(inputfile, header=FALSE)
2 boxplot(data, notch=TRUE, las=2)
3 error.bars(data, add=TRUE)

Listing 4.1: R code for generating notched box plots

These graphs show that KLSum+ matches or exceeds the performance of competing
algorithms in both ROUGE SU4 and SU4 Precision scores.

Alternative Evaluation

As part of this work I also attempted to use the systems I discuss in Section 4.3 to au-
tomatically evaluate KLSum+. This theory was hypothesized because of a general belief
that more complex and well known methods would perform better and serve as superior
base lines. Furthermore I reasoned that the best summarizer would be able to concisely
summarize all the summaries generated by its competitors.

Thus, my evaluation involved generating summaries with every system for the DUC
2007 task, then using the generated summaries as ground truth and evaluating all the

52

(a) ROUGE SU4 Scores (b) SU4 Precision Scores

Figure 4.5: DUC Scores with Top: Human Judgements Bottom: Automatic Judgements

competitors. If I am able to show a high correlation between rank with human judgments
and rank with automated judgments, I could reject the null hypothesis.

The results of this work is shown in Figure 4.5. From this work I notice that there is no
real prediction power from using automatic judgments. Therefore I dismissed further work
in this category. It should be noted that when using the full list of summarizers from the
DUC task some outperform KLSum+. Unfortunately, they have closed implementations
and thus we were unable to use them for our other evaluations. Furthermore, these systems
may be complex machine learners that rely on signals that are strong in professional content
but weak in comment data sets, such as first sentence selection,.

4.4.4 Example Summaries

In this section I present some summaries and highlight some obvious flaws when looking
at the empirical data. Table 4.6 shows the first 100 words of the summaries produced by
each algorithm, over comments about the controversial 2012 “SOPA” bill.

By glancing at these summaries I notice that SumBasic, Random, and LDA systems
perform extremely poorly. These summaries approach bag of word models, that stitch

53

together sentence fragments in order to generate a summary. This failure occurs because
all these systems attempt to select sentences with extremely important terms. However,
since comments are extremely noisy, these systems are able to find extremely short frag-
ments that match their selection criteria. The three other systems bypass this issue by
using drastically different methods. Random specifically appears extremely poor, however
performs as expected since the average sentence contains 1.24 terms.

Sentiment analysis systems require part of speech tags and sentiment laden words within
each selected sentence. Thus sentences naturally have to be long enough to be understand-
able before they are selected. LexRank on the other hand avoids small sentences due to
their low centrality; a sentence that is short has a very low cosine similarity to other sen-
tences and thus is not selected. However, this can also lead to run on sentences being
selected which can become abundant with larger data sets. KLSum+ is designed to solve
this problem directly, penalizing short sentences for their lower information content, and
longer sentences for their low information density.

The sentiment based system is unfortunately relatively fragile to the sentiment lexicon.
Specifically sentences containing very strong positive or negative terms (such as good or
bad) can often overwhelm the sentiment scores, and thus hide some of the discussion
occurring. On the the other hand KLSum+ calculates the scores of each term adaptively
much like SumBasic, and thus the lexicon is able to select terms that are highly relevant
to the current topic. The aspect mining component of the sentiment summarizer does
something similar, however it is used to filter out irrelevant material rather than select
important material.

In Table 4.8 I present the top 25 terms as decided by the algorithms I implemented.
For KLSum+ and SumBasic we chose these terms by running the algorithm five times and
taking the top five terms each time. Thus, if a term is not selected it stays in the list in
the next iteration. For LDA we generate five topic models, and select the top 5 terms from
each model. Finally, from the aspect miner we just select the top 25 aspects by frequency
in interesting sentences.

It can be noticed that generally there was some overlap, however overall they highlight
different aspects as important. These differences highlight the variations in algorithms,
and is some indication on the amount of coverage by each system. It is also noteworthy
that SumBasic and KLSum+ are very similar, however KLSum+ diverges from the initial
state much faster, boosting diversity.

In Tables 4.9 to 4.11 we present various summaries generated by KLSum+ over various
other queries. We present these to allow the reader to judge the quality of summaries
generated by our system. The topics were chosen due to their relatively polar discourse or

54

Algorithm Summary

KLSum+

I disagree with Lamar’s SOPA bill, This bill can destroy Internet and
disrupt global economy even they stop the piracy. This will make it worse.
How should we ensure that the pirate sites don’t operate in America? The
PIRATE SITE violate Copyright law and facilitate IP theft.
If they don’t shut up, we can take are all those: SOPA, PIPA and Holly-
wood. We know who sponsored those bills.
Yes, Google makes enormous profits from websites that sell infringing con-
tent. And from users that search for images of feet being tickled with
feathers.

SumBasic Corporations are people! Obama opposed SOPA. Time is money. A free
internet? Media companies !!! The government! Google condemns the
bill. These bills won’t actually STOP piracy. Abolish intellectual prop-
erty law. VOTE RON PAUL!! Business is Business. foreign sites?) Oc-
cupy Congress! Bad, bad idea. Wrong thing, wrong time, wrong country.
Tea Party Thesaurus. Ass real. President Nosferatu! Republicans AND
Democrats. Like Palin she lives in her own little world. Can’t debate on
reason. Maybe Lamar Smith’s website should be shut down for violating
copyright laws.

Sentiment
(+) You were lucky this time. Well he is being truthful in a way. Abolish
intellectual property law. The law is absurd. Fareed is good people. The
internet works well. If you really want to protect free speech and you
think SOPA is bad, then please suggest a viable alternative, instead of just
criticizing and complaining.
(-) It’s time to kill SOPA totally. I in no way agree that intellectual prop-
erty should be passed about freely. Good point– sane people should em-
brace these Tea Party children. Internet piracy is all for the common good.
SOPA is about making copyright infringement criminal instead of tortious.

LexRank If I can’t do what I want to do with the internet, then I don’t need it. I have
been campaigning against Sopa pipa I even did the black out BUT I have
copyright issues online ALL the time and sites like megaupload, filesonic
and other sites are a real problem they KNOW what there users are doing
and will NOT do anything to help I get 100’s of files removed from sites
like this every week but they keep letting the members do it again I have
Asked them to BLOCK MY name so it would be hard for people

Table 4.6: First 100 words for summaries with the query “SOPA”

55

Algorithm Summary
LDA No government money please. Vote Obama! Do not control the inter-

net with the SOPA bill. ”rogue foreign websites” / ”primarily dedicated
to infringing copyright.” Corporations are people! Smaller government?
They must watch Fox News. SOPA is a horrible bill! The answer is
many foreign sites simply ignore DMCA notices. Unions aren’t people!
Fareed is good people. Fox News ought to try it. The Internet should be
FREE! The PIRATE SITE violate Copyright law and facilitate IP theft.
http://www.youtube.com/watch?v... Important people. The money you
pay into Social Security does not fund YOUR retirement. Why is story
news ANYWHERE?? NO SOPA!

Random . ? ??? ! Whoopee! ?!? OMG!!! 1. Ah. Baloney. OH! OMG ! Please!!!
Dip-Shit! Stopped. Ever. WTF? Bwahahahahaha!! Yeah! McCain?!!
What? Oops. please! Right. See. Teapartiers? Therefore. Nothing. Hah!
but. Wow. indeed . Legally. Whatever. WHY? Why? Anti-Sopa? ¡rolls
eyes=””¿. omg. False. 2. WUT? Ha. PS. Quick! nah. 4. Crazy. Sweet.
202. . GHASP!!! CHRISTIAN! Crap. GOOD! Yes? Geitner? Haha!
Whoa. Scary? WHOOOPS. No. So? Wonderful. Hilarious! Almost.
AWESOME!!!!! Rant? 201. WOOO! Creator? Bi-racial. Stole? Tee-hee-
hee. 104. 102. Period. You? com . Arbitrary? Hmm? Huh? except.
Shock! McCain? Thanx. Hmmm. No? Seriously? Emails ? THIS. 3.

Table 4.7: Continued: First 100 words for summaries with the query “SOPA”

56

Algorithm Top 5 Top 10 Top 15 Top 20 Top 25

KLSum+

sopa copyright pipa content hollywood
internet pipa hollywood smith censorship
piracy sites content censorship mpaa

copyright hollywood smith mpaa dodd
bill content bills websites trump

SumBasic

people internet internet internet bill
internet sopa money bill government

sopa money bill government law
money bill government law country

bill obama time country media

LDA

sopa obama people people news
internet president money internet time

bill people tax money media
sites party government industry fox

content republican security free read

Aspect Miner

people government country something president
internet obama meia congress copyright

sopa time piracy sites news
money way us nothing content

bill law years thing world

Table 4.8: Top 25 terms from each of algorithm

57

opinionated audience. From the summaries we can quickly spot this polarity, even from as
few as two snippets.

For example in the “Evolution” summaries we are able to see two competing opinions
on the argument of “Creationism versus Evolution”. In other topics such as “BP” we are
able to see various opinions all discussing the same stance, i.e. against oil drilling, however
these arguments focus on different issues people have with oil drilling.

58

Query Summary

Gun
Control

Guns TAKE lives. Your gun is meant to KILL someone.
Legal gun ownership, and this guy wasn’t a legal gun owner, but a very
sick person, doesn’t cause mass murder. Get real! Did you know that 20
children were killed in an elementary school in China with a knife yesterday.
There are however mentally ill people that should be institutionalized. The
kid had a record of violence and mental illness that would have had him
being properly treated thirty years ago. I have something constructive to
say. Arm teachers and let law abiding citizens carry were they wish.

Gay Marriage

How does love equal freak? If you are anti-gay marriage then you don’t
have to marry a gay person.
Married Heterosexual couples do have rights that homosexual couples do
not have...such as hospital visitation, inheritance, immigration, etc. This
IS a civil rights issue, and not a religious issue.
Besides, isn’t this the same old discredited “Bible says it’s a sin” argument?
I mean, why should gays want to unaquire homosexuality?
No, a mixed race couple consisting of one woman and one man can actually
be married. A union between two people of the same sex is something else.

Israel

Palestinians living in Israel are given the same rights as Israeli Jews. There
is no apartheid in Israel.
Before 1967, The West Bank and Gaza were annexed territories of Jordan
and Egypt respectively. But no one considered them “Occupied” then,
why?! The Arabs rejected the original 1948 partition of what was then
known as Palestine into Arab and Jewish countries.
Israelis are sitting fat and happy on their stolen land. On the other hand,
the Arabs have long had a peace plan on the table endorsed in 2002 by
Palestinian President Arafat and the entire Arab/Muslim world including
Iran.

Nuclear

There are many studies about the safety of Nuclear Power Plants. In
Japan, no one has died from radiation exposure.
If Israel does send its military to attack Iran it could easily lead to World
War III. Iran is not Iraq.
Fukushima will teach us even more; and they will build safer reactors in the
future. But I believe containment is more important even than the inherent
reactor design. Chernobyl would have been fine with containment.
We need to expand nuclear energy as a safe, clean electricity source. Fur-
ther, that plant in Japan was built on a fault-line, near an ocean.

Table 4.9: Example Summaries from KLSum+

59

Query Summary

Rick
Santorum

Rick Santorum’s father, Aldo Santorum, earned a doctorate degree in psy-
chology and worked as a clinical psychologist for the VA. Aldo Santorum
said that the greatest gift he received was the GI Bill, so that he could
attend college after serving in WWII. Rick Santorum’s mother, Cather-
ine Dughi Santorum, worked as an administrative nurse. Rick Santorum’s
wife, Karen Garver Santorum, is a former nurse.
Romney carpet bombs his opponents. Romney spends most of his money
and time attacking his opponents rather than running on his record or his
vision of a Romney Presidency. This is what the Republican establishment
and Romney people don’t seem to grasp.
Ron Paul will win Iowa and South Carolina and Florida. Ron Paul will be
our next President! Ron Paul does have the Hispanic vote and the vote of
our armed forces! Go Ron Paul.

Evolution
Evolutionists have been very successful in posturing the issue as “Science
vs. religion”. The truth is that evolution is a religion and there is more
real science supporting creation than evolution. The ”evidence” that is
offered to prove evolution is based on the unscientific ASSUMPTION that
evolution has occurred.
Remember how I told you the difference between a theory and a scien-
tific theory? The “Creationism Theory” has no well-substantiated, well-
supported, well-documented explanation for our observations. In fact, this
Creationism theory is just a “guess”. The normal every-day use of the
word theory.

BP
BP ran the rig. BP was pulling up the oil. BP hired people to do work for
them and failed to make sure the work was done right. BP stood to make
all the big profits. BP is to blame.
As bad as the Deepwater Horizon Spill was, there was another spill in 1979
that spewed oil into the Gulf off the Mexican coast for nine months and
three years later, there was no residual evidence of that spill. The Ixtoc
I oil spill in the Bay of Campeche didn’t generate near the widespread
hysteria that the Deepwater Horizon Spill did, mainly because it mostly
affected Mexico.
Of course after the accident his position on drilling reverted back to his
original stance of no drilling. Well as we all know thats no drilling for
American companies.

Table 4.10: Example Summaries from KLSum+

60

Query Summary
Northern
Gateway
Pipeline

“Two litres of oil spill for every one million that are transported. In
Canada, three million litres cross pipelines every day.” The Canadian En-
ergy Pipeline Association needs to check its math. That works out to 2190
L of oil spilled in Canada a year. The 2011 Rainbow pipeline leak north
of Peace River was the largest oil spill in AB in more than 30 years: 4.5
million litres of oil.
Why shouldn’t this hearing be dominated by BC voices, and compelled to
make a decision based on BC voices? The project is a BC project, crossing
BC land, exposing BC people to any risks associated with it that would
affect BC’s lands and peoples.

Arab
Spring

First in “The Arab Spring,” Tunisia will be the first with the reality of
The Arab WInter with Islamist leading. The rest of “The Arab SPring”
will turn into a very cold Arab winter and President Obama helped that
situation. He is either that Aprentice sorcerer bumbling in foreign policy
or he prefer Arab to the USA and Israel.
Egypt has Sharia Law in its constitution. Egypt is not a democracy. Egypt
is a Dictatorship. The Muslim Brotherhood is paid by the Saudi Arabian
Dictatorship to overthrow countries for Saudi Arabia. The Saudi Dictator-
ship is the bloodiest, most genocidal, Dictatorship in the Middle East.

Oil
Prices

Oil prices jump because of Irish financial problems. Oil prices jump because
of speculation. Oil prices jump because of over-supply. Oil prices jump
because of bad weather in Gulf. Oil prices jump because of under-supply.
We The People of the US own the vast majority of the natural gas in the
US. Gas companies don’t own the natural gas. They drill, complete and
produce the natural gas for the own of the natural gas.

Table 4.11: Example Summaries from KLSum+

61

4.5 Discussion

In order to fully understand the byproducts of this research it is useful to summarize the
results and implications of my evaluation. Overall KLSum+ was designed to be a simple
and lightweight summarization system that acquired the advantages of faster algorithms
such as SumBasic, while estimating cutting edge methods such as topic modeling. Specifi-
cally, SumBasic is generally known for being efficient and generating relatively good results
that can be used as a baseline. On the other hand, LDA and topic modeling approaches
are known for being slow but providing stronger summaries by dealing with complex nat-
ural language problems such as polysemy. Furthermore, LDA systems are in theory more
robust, able to isolate general noise from key terms for the topic being discussed, by using
background models. However, in my work I found both traditional frequency based work
and topic modeling systems to perform poorly on noisy comment data. Complex part of
speech based aspect extraction systems performed better, able to isolate both important
and well formed sentences. However, these systems can lack diversity since they focus only
on opinions that use sentimental keywords.

After taking these lessons into account I created the KLSum+ algorithm. In Section
4.4.2 I show that this system performs much faster than alternatives. Upon further analysis
I find that SumBasic and Random are slower on news comment data as they select shorter
sentences, which translates into more iterations before reaching the 250 word limit. Thus
algorithms that choose a few high information content sentences will generally execute
faster than algorithms that choose hundreds of high scoring sentences.

In Section 4.4.3 I attempt to evaluate KLSum+ by comparing it to other prevalent
algorithms in the field. I generate summaries for the DUC 2007 data set and use the
ROUGE toolkit to evaluate my summaries against human judgments provided as part
of the DUC 2007 task. In this work I show that KLSum+ is able to select comparible
summaries to much more complex summarization models. This work also shows that
KLSum+ outperforms the highly related SumBasic algorithm, which shows the advantage
of using a background model. I reason that systems that use generic tf-idf tables and stop
words can be penalized, and thus domain specific background models are preferred. This
result is generally applicable to other domains where machine learning is used.

However, even I found it surprising that KLSum+ performed on par with more ad-
vanced clustering approaches like MEAD, SyntaxSum, and LDA. This may indicate that
the design of KLSum+ stumbled upon a quality of human readers that other algorithms
have estimated indirectly. This may either be the human minds ability to quickly filter
out content that is generic to all text, or a general preference for selecting multiple related

62

sentences before diversifying.

Finally, in Section 4.4.4 I quickly overview some generated summaries. From the Sum-
Basic, LDA, and Random summaries I am able to realize that the noise within a comment
corpus can quickly foil sentence extraction. LexRank and Sentiment based systems in-
directly forced criteria that ensured longer sentences and greatly improved readability.
However, these criteria also lead to the selection of run on sentences or summaries that
do not contain a cohesive idea. Thus, by selecting multiple sentence snippets, and directly
optimizing for snippet length, KLSum+ is able to approximate these advantages quickly
while providing short information dense snippets.

The snippets generated by KLSum+ were also shown to become diverse relatively
quickly. By tuning parameters the algorithm allows a quick divergence of aspects and
allows readers to quickly get an overview of a corpus of noisy data. These summaries not
only showed multiple facets of similar stories, but also showed aspects that were entirely
independent of a sentiment lexicon. Instead, the opinions of users were highlighted as they
related to different aspects of a discussed article. This separation from a static lexicon both
increases relevance and decreases the overhead with applying KLSum+ to a new domain.
However, it should be noted that one should not dismiss the power of merging algorithms.
For example using KLSum+ on terms harvested from the sentiment based aspect miner
may lead to interesting and opinionated summaries.

For more insight I deployed a web server at www.gobaan.com:8000 which allows users
to explore KLSum+ summaries and context over all the topics I summarized. A snapshot
from this tool is presented in Figure 4.6.

63

Figure 4.6: Snapshot from www.gobaan.com:8000, a tool I created to show context behind
KLSum+ Summaries

64

5

Conclusion

We don’t have better algorithms. We just have more data.

– Peter Norvig, Google’s Zeitgeist

In this thesis I present my comment crawling framework designed to extract news
comments from across the web. In the age of information I discuss the noise in news
comments and decide that I can gain great insight into various communities by analyzing
the discourse that they generate. I show that this task is not only interesting, but difficult
and unsolved by current research.

In Chapter 3 I take steps towards a generalized solution that can be extended to extract
comments from any domain across the web. Furthermore by using careful design I avoid
the trap of becoming too dependent on with machine learning. Instead I create a system
that works with users to quickly generate rules for crawling and parsing comments from
various domains. By employing user feedback I am able to create high fidelity parsers,
and by autogenerating code I reduce the difficulty such that only the most rudimentary
knowledge of computer science is needed to generate parsers for new domains.

I employ my tool to rapidly create parsers for more than 40 domains, and extract a few
million comments on various topics discussed in the last decade. Once we have this rich
set of data, we attempt to harness some useful information from it. Using this data I not
only evaluate current methods for automatic summarization, but generate a new system
that is able to quickly extract diverse opinions from the large corpus of text. My system,
KLSum+, is an algorithm that scales better than all the alternatives evaluated, while
performing on par with more complicated approaches on both small and large data sets.
By doing so I have set up a simple baseline for scalable multidocument summarization.

65

The end result of my work is two interesting open source projects that can stand
independently as useful products. In the future researchers may use my comment extraction
system to analyze other trends in social media. This corpus provides a noisy and rich stream
of data that is publicly available and freely accessible unlike many other social media
document sets. This is useful for academic circles where results must be reproducible.
Furthermore, the ease of extension and isolation of parsers means my framework can be
used for various other domains and website types. I hope that researchers will be able to
work together to create larger collections of parsers for domains in various languages and
target audiences.

As researchers focus more on using complicated semantic methods to force context into
summaries I show that instead a reversion to simpler frequency based methods can still
have strong results. Furthermore I show that these frequency based methods need not
dismiss context, instead I can use domain specific knowledge to determine the importance
of terms. By using domain specific knowledge I eliminate the need to attach myself to
stop word that can be attached to a single language, and often become stale as language
evolves.

However, my work is not without flaws. As websites change over time my system
requires some maintenance in order to generate valid summaries. Furthermore some portals
maintain dozens of versions of the site, with older articles using older versions. Future work
on the crawler may wish to use some additional heuristics to discover when websites adapt
and either notify users or automatically adapt with them. Alternatively, I currently rely on
user navigation to determine the important components of websites. However, with some
additional application of machine learning I may be able to provide the users options and
then use a system such as Amazons Mechanical Turk to rapidly adapt with them.

On the other hand my summarization work, despite its strong results, was not formally
evaluated on a large corpus. I briefly look at the summaries and decide that they are
higher quality, however I lack any form of human judgment. Future work should likely
focus on performing a direct pairwise comparison of summary systems on my large data
set. Alternatively, there may be some interesting benefits of generating ground truth for the
large corpus, despite the difficulty. The metrics I employed for evaluation also lacked any
direct measure of linguistic quality. Thus as summarization research progresses, methods of
automatic evaluation may become standardized and thus a stronger evaluation of KLSum+
can occur.

Future work can also focus on the uses of my data set. The data I harvest presents a
rich collection and although I just performed a case study on summarization, it is easy to
envision other possible uses. For example, some work into the political biases of individ-

66

uals mattering on news portals, or the effectiveness of marketing campaigns could be an
interesting venue to pursue.

67

Appendix A: HTTP Request Header

1 {
2 ” statusCode ” : 200 ,
3 ”method” : ”GET” ,
4 ” u r l ” : ” http : // widgets . outbra in . com/nanoWidget/3 rd/comScore/comScore . htm” ,
5 ” bytes ” : 445 ,
6 ” s t a r t ” : ”2012−10−21T04 : 34 : 48 . 370−0400” ,
7 ”end” : ”2012−10−21T04 : 34 : 48 . 448−0400” ,
8 ” t ime InM i l l i s ” : 78 ,
9 ” requestHeaders ” : [{

10 ”name” : ”Host” ,
11 ” value ” : ”widgets . outbra in . com”
12 } , {
13 ”name” : ”User−Agent” ,
14 ” value ” : ”Moz i l l a /5 . 0 (X11 ; Ubuntu ; Linux x86 64 ; rv : 16 . 0) Gecko/201001

01 F i r e f ox /16 . 0”
15 } , {
16 ”name” : ”Accept” ,
17 ” value ” : ” t ext /html , app l i c a t i o n /xhtml+xml , app l i c a t i o n /xml ; q=0 . 9 , ∗/∗ ; q=0

. 8”
18 } , {
19 ”name” : ”Accept−Language” ,
20 ” value ” : ”en−US, en ; q=0 . 5”
21 } , {
22 ”name” : ”Accept−Encoding” ,
23 ” value ” : ” gz ip , d e f l a t e ”
24 } , {
25 ”name” : ”Proxy−Connection” ,
26 ” value ” : ”keep−a l i v e ”
27 } , {
28 ”name” : ” Re f e r e r ” ,
29 ” value ” : ” http : //abcnews . go . com/US/ chicago−gang− l i f e −gang−members−ta lk s

− l i f e −s t r e e t s / s to ry ? id=17499354”
30 } , {

68

31 ”name” : ”Cookie ” ,
32 ” value ” : ” obuid=7521 bf 81−1963−4 f 2e−8d93−92802b169405 ; t i c k=135080848814

2 ; l v s 2=\”/+wQ+b2JMg4=\”; l vd 2=\”5qZP9A8rYKJV4ZyVLbsEwg==\”; r c c
2=\”53VdlhoVktWl+Ov6 ordf lA==\”; fcap CAM3=\”AEYAQwBBAFAAAAAFAAARdD
+AAAAAABbkP4AAAAAADn0/gAAAAAAeVT+AAAAAABh5P4AAAA==\”; recs−977d59a4
16c537e8606e93 f e 3 ece 49ed=\”QIbgLMP7cX4wqtnU78
cnOVchRXDrYLtUJjnmbTCfdojDpZ+o/HP6tV6SxhHqjHa2G9Pz6zrSMP0=\””

33 }] ,
34 ” responseHeaders ” : [{
35 ”name” : ”Date” ,
36 ” value ” : ”Sun , 21 Oct 2012 08 : 34 : 48 GMT”
37 } , {
38 ”name” : ” Server ” ,
39 ” value ” : ”Apache”
40 } , {
41 ”name” : ”Cache−Control ” ,
42 ” value ” : ” p r i va t e , max−age=2592000”
43 } , {
44 ”name” : ”Expires ” ,
45 ” value ” : ”Tue , 20 Nov 2012 08 : 34 : 48 GMT”
46 } , {
47 ”name” : ”Content−Type” ,
48 ” value ” : ” t ext /html ; cha r s e t=UTF−8”
49 } , {
50 ”name” : ”Content−Length” ,
51 ” value ” : ”445”
52 } , {
53 ”name” : ”Accept−Ranges” ,
54 ” value ” : ” bytes ”
55 } , {
56 ”name” : ”Via” ,
57 ” value ” : ”1 . 1 (j e t t y) ”
58 } , {
59 ”name” : ”Vary” ,
60 ” value ” : ”Accept−Encoding”
61 } , {
62 ”name” : ”Content−Encoding” ,
63 ” value ” : ” gz ip ”
64 } , {
65 ”name” : ”Age” ,
66 ” value ” : ”0”
67 }]
68 }

Listing A.1: Example header from capturing network traffic using Selenium

69

Appendix B: Data Description

Domain Comments Domain Comments
americanthinker.com 162815 opinion.financialpost.com 6507

aptn.ca 389 politico.com 55807
arstechnica.com 2754 rawstory.com 372351

calgaryherald.com 10605 reuters.com 61157
canadianbusiness.com 1170 seattletimes.nwsource.com 62807

cbsnews.com 18308 sfgate.com 37271
chicagotribune.com 6766 straight.com 22767

cnn.com 297273 talkingpointsmemo.com 12993
csmonitor.com 82674 terracestandard.com 269

ctv.ca 103622 theatlantic.com 54364
economist.com 25405 theglobeandmail.com 105995

edmontonjournal.com 12203 thehill.com 274598
foxnews.com 529033 thestar.com 32694

fullcomment.nationalpost.com 85246 thesudburystar.com 15573
huffingtonpost.com 299812 thisislondon.co.uk 61234

latimes.com 24107 timescolonist.com 7630
news.cnet.com 139833 upi.com 11326

newsobserver.com 30089 vancouversun.com 12731
newsvine.com 37829 voices.yahoo.com 18194

npr.org 44243 washingtonpost.com 905225
nytimes.com 6990 winnipegsun.com 13381

online.wsj.com 60576

Table B.1: Number of comments collected for each site

70

Topic Comments Topic Comments
acta 3726 israel 535894

alternative energy 561529 israel bombing iran 115347
anonymous 49361 joe biden 144273

apple 257607 john kerry 31698
arab spring 322306 john mccain 401071
bankruptcy 256040 justin bieber 8499

barack obama 365130 larry page 236308
batman 64025 libya 418869

bp 129210 mark zuckerberg 89798
cars 3311 nasa 121650

catholic 276784 natural gas 307010
charlie sheen 80123 news 456334

climate change 252412 north korea 215140
creationism 38003 northern gateway pipeline 47368

dark knight rises 152404 nuclear 436181
economy 595959 nypd 58949
evolution 217302 occupy wall street 355310
facebook 278223 oil prices 383200

gay marriage 345867 olympics 94811
george bush 97100 piracy 174471

global warming 68928 polling accuracy 23927
gop primaries 100323 riaa 13207
gop primary 802635 rick santorum 924523

greece 43871 sarah palin 337506
gun control 333339 sopa 62136
health care 708449 steve jobs 331210

hillary clinton 313082 stock act 465279
intelligent design 79798 suicide 249513

iran 442938 the pirate bay 101537
iraq 433894 wall street 548803

Table B.2: Number of comments collected for each topic

71

References

[1] Rachit Arora and Balaraman Ravindran. Latent Dirichlet Allocation based
Multi-document Summarization. In Proceedings of the 2nd Workshop on Analytics
for Noisy Unstructured Text Data, pages 91–97, New York, NY, USA, 2008.

[2] Chandra Avinash. Lead of a news story. http://journalism20.nuvvo.com
/lesson/7587-lead-of-a-news-story. Online; Accessed 08-Feb-2013.

[3] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. SentiWordNet 3.0: An
Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In
Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors,
Proceedings of the 7th International Conference on Language Resources and
Evaluation). European Language Resources Association, 2010.

[4] Alexandra Balahur, Elena Lloret, Ester Boldrini, Andrés Montoyo, Manuel Palomar,
and Patricio Mart́ınez-Barco. Summarizing Threads in Blogs using Opinion Polarity.
In Proceedings of the Workshop on Events in Emerging Text Types, pages 23–31,
Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[5] Sasha Blair-goldensohn, Tyler Neylon, Kerry Hannan, George A. Reis, Ryan
Mcdonald, and Jeff Reynar. Building a Sentiment Summarizer for Local Service
Reviews. In In NLP in the Information Explosion Era, 2008.

[6] Dustin Boswell. Distributed High-performance Web Crawlers: A Survey of The
State of the Art, 2003.

[7] Lori Buckland and Hoa Dang. DUC 2007: Documents, Tasks, and Measures.
http://duc.nist.gov/duc2007/tasks.html. Accessed: 2013-05-14.

72

http://journalism20.nuvvo.com
/lesson/7587-lead-of-a-news-story
http://duc.nist.gov/duc2007/tasks.html

[8] Deepayan Chakrabarti and Kunal Punera. Event Summarization using Tweets. In
Proceedings of the 5th International Association for the Advancement of Artificial
Intelligence Conference on Weblogs and Social Media, 2011.

[9] Tim Cuthbertson. Python Readability. https://github.com/gfxmonk/
python-readability/blob/master/readability/readability.py.
Accessed: 2012-02-18.

[10] William M. Darling and Fei Song. Probabilistic Document Modeling for Syntax
Removal in Text Summarization. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies: short
papers - Volume 2, pages 642–647. Association for Computational Linguistics, 2011.

[11] Hal Daumé and D. Marcu. Bayesian Summarization at DUC and a Suggestion for
Extrinsic Evaluation. In Document Understanding Conference, 2005.

[12] Mark Dredze, Hanna M. Wallach, Danny Puller, and Fernando Pereira. Generating
Summary Keywords for Emails using Topics. In Proceedings of the 13th
International Conference on Intelligent User Interfaces, pages 199–206, 2008.

[13] Cristian Duda, Gianni Frey, Donald Kossmann, Reto Matter, and Chong Zhou.
AJAX Crawl: Making AJAX Applications Searchable. In Proceedings of the 2009
Institute of Electrical and Electronics Engineers International Conference on Data
Engineering, pages 78–89, Washington, DC, USA, 2009. Institute of Electrical and
Electronics Engineers Computer Society.

[14] Susan Dumais and Hao Chen. Hierarchical Classification of Web Content. In
Proceedings of the 23rd Annual International Association for Computing Machinery
Special Interest Group on Information Retrieval Conference on Research and
Development in Information Retrieval, pages 256–263, New York, NY, USA, 2000.

[15] Günes Erkan and Dragomir R. Radev. LexRank: Graph-Based Lexical Centrality as
Salience in Text Summarization. Journal of Artificial Intelligence Research,
22(1):457–479, 2004.

[16] JanFrederik Forst, Anastasios Tombros, and Thomas Roelleke. Less Is More:
Maximal Marginal Relevance as a Summarisation Feature. In Leif Azzopardi,
Gabriella Kazai, Stephen Robertson, Stefan Rger, Milad Shokouhi, Dawei Song, and
Emine Yilmaz, editors, Advances in Information Retrieval Theory, volume 5766 of
Lecture Notes in Computer Science, pages 350–353. Springer Berlin Heidelberg, 2009.

73

https://github.com/gfxmonk/python-readability/blob/master/readability/readability.py
https://github.com/gfxmonk/python-readability/blob/master/readability/readability.py

[17] Jesse James Garrett. Ajax: A New Approach to Web Applications. http://www.
adaptivepath.com/ideas/ajax-new-approach-web-applications.
Accessed: 2013-01-09.

[18] Google. Making AJAX Applications Crawlable. https://developers.
google.com/webmasters/ajax-crawling/docs/html-snapshot.
Accessed: 2013-01-09.

[19] GreenBook. Study Finds Marketers Struggle with the Big Data and Digital Tools of
Today. . Online; Accessed 08-Feb-2013.

[20] Yan Guo, Kui Li, Kai Zhang, and Gang Zhang. Board Forum Crawling: A Web
Crawling Method for Web Forum. In Proceedings of the 2006 Association for
Computing Machinery International Conference on Web Intelligence, pages 745–748,
Washington, DC, USA, 2006. Institute of Electrical and Electronics Engineers
Computer Society.

[21] Aria Haghighi and Lucy Vanderwende. Exploring Content Models for
Multi-document Summarization. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 362–370. Association for Computational
Linguistics, 2009.

[22] Donna Harman and Paul Over. The Effects of Human Variation in DUC
Summarization Evaluation. In Proceedings of the Association for Computational
Linguistics-04 Workshop: Text Summarization Branches Out, pages 10–17, 2004.

[23] Minqing Hu and Bing Liu. Mining and Summarizing Customer Reviews. In
Proceedings of the 10th Association of Computing Machinery Knowledge Discovery
and Data Mining International Conference, pages 168–177, 2004.

[24] Lei Huang and Yanxiang He. CorrRank: Update Summarization Based on Topic
Correlation Analysis. In De-Shuang Huang, Xiang Zhang, CarlosAlberto
Reyes Garca, and Lei Zhang, editors, Advanced Intelligent Computing Theories and
Applications. With Aspects of Artificial Intelligence, volume 6216 of Lecture Notes in
Computer Science, pages 641–648. Springer Berlin Heidelberg, 2010.

[25] D. Inouye and J.K. Kalita. Comparing Twitter Summarization Algorithms for
Multiple Post Summaries. In Privacy, Security, Risk and Trust, 2011 Institute of
Electrical and Electronics Engineers 3rd International Conference on Social
Computing (socialcom), pages 298–306, 2011.

74

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
https://developers.google.com/webmasters/ajax-crawling/docs/html-snapshot
https://developers.google.com/webmasters/ajax-crawling/docs/html-snapshot

[26] Michael Karlsson. Flourishing but restrained. Journalism Practice, 5(1):6884, 2011.

[27] Saleem Kassim. Twitter Revolution: How the Arab Spring Was Helped By Social
Media. www.policymic.com/articles/10642/twitter-revolution-
how-the-arab-spring-was-helped-by-social-media/. Online;
Accessed 08-Feb-2013.

[28] Alistair Kennedy, Anna Kazantseva, Diana Inkpen, and Stan Szpakowicz. Getting
Emotional about News Summarization. In Leila Kosseim and Diana Inkpen, editors,
Advances in Artificial Intelligence, volume 7310 of Lecture Notes in Computer
Science, pages 121–132. Springer Berlin Heidelberg, 2012.

[29] Khairullah Khan and Baharum B. Baharudin. Analysis of Syntactic patterns for
Identification of Features from Unstructured Reviews. In Intelligent and Advanced
Systems, volume 1, pages 165–169, 2012.

[30] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate
Detection using Shallow Text Features. In Proceedings of the 3rd Association for
Computing Machinery International Conference on Web Search and Data Mining,
pages 441–450, New York, NY, USA, 2010.

[31] L. W. Ku, Y. T. Liang, and H. H. Chen. Opinion Extraction, Summarization and
Tracking in News and Blog Corpora. In Proceedings of Association for the
Advancement of Artificial Intelligence 2006 Spring Symposium on Computational
Approaches to Analyzing Weblogs, 2006.

[32] Niraj Kumar, Kannan Srinathan, and Vasudeva Varma. An Effective Approach for
AESOP and Guided Summarization Task.

[33] Sauce Labs. Selenium - Web Browser Automation.
http://docs.seleniumhq.org/. Accessed: 2013-04-15.

[34] C. Y. Lin. Looking for a Few Good Metrics: Automatic Summarization Evaluation -
How Many Samples are Enough? In Proceedings of the NTCIR Workshop 4, 2004.

[35] Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. In
Stan Szpakowicz Marie-Francine Moens, editor, Text Summarization Branches Out:
Proceedings of the Association for Computational Linguistics-04 Workshop, pages
74–81. Association for Computational Linguistics, 2004.

75

www.policymic.com/articles/10642/twitter-revolution-
how-the-arab-spring-was-helped-by-social-media/
http://docs.seleniumhq.org/

[36] Chin-Yew Lin and Eduard Hovy. Automatic Evaluation of Summaries using N-gram
Co-occurrence Statistics. In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Human
Language Technology - Volume 1, pages 71–78. Association for Computational
Linguistics, 2003.

[37] Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex Rasmussen, and
Alon Halevy. Google’s Deep Web crawl. Proceedings Very Large Data Bases
Endowment, 1(2):1241–1252, August 2008.

[38] MEAD. http://www.summarization.com/mead/, February 2013. Online;
Accessed 08-Feb-2013.

[39] Rada Mihalcea and Paul Tarau. TextRank: Bringing Order into Texts. In
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2004.

[40] Ani Nenkova and Lucy Vanderwende. The Impact of Frequency on Summarization.
Microsoft Research, Redmond, Washington, Technical Report MSR-TR-2005-101,
2005.

[41] Jeffrey Nichols, Jalal Mahmud, and Clemens Drews. Summarizing Sporting Events
using Twitter. In Proceedings of the 2012 Association for Computing Machinery
International Conference on Intelligent User Interfaces, pages 189–198, 2012.

[42] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. Downloading Hidden Web
Content. Technical report, UCLA Computer Science, 2004.

[43] Jolie O’Dell. For the First Time, More People Get News Online Than From
Newspapers. http://mashable.com/2011/03/14/
online-versus-newspaper-news/. Online; Accessed 08-Feb-2013.

[44] U.S. Department of Commerce. TAC 2011 AESOP Task Guidelines. http://www.
nist.gov/tac/2011/Summarization/AESOP.2011.guidelines.html.
Accessed: 2012-03-10.

[45] Christopher Olston and Marc Najork. Web Crawling. Founding Trends Information
Retrieval, 4(3):175–246, March 2010.

[46] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical report, Stanford Digital
Library Technologies Project, 1998.

76

http://www.summarization.com/mead/
http://mashable.com/2011/03/14/
online-versus-newspaper-news/
http://www.nist.gov/tac/2011/Summarization/AESOP.2011.guidelines.html
http://www.nist.gov/tac/2011/Summarization/AESOP.2011.guidelines.html

[47] Sandeep Pandey and Christopher Olston. User-centric Web Crawling. In Proceedings
of the 14th International Conference on World Wide Web, pages 401–411, New
York, NY, USA, 2005.

[48] PearAnalytics. Twitter Study August 2009.
http://www.pearanalytics.com/wp-content/uploads/2012/12/
Twitter-Study-August-2009.pdf. Online; Accessed 08-Feb-2013.

[49] L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the Institute of Electrical and Electronics
Engineers, 77(2):257–286, 1989.

[50] Dragomir R. Radev, Hongyan Jing, and Malgorzata Budzikowska. Centroid-Based
Summarization of Multiple Documents: Sentence Extraction, Utility-Based
Evaluation, and User Studies. In Proceedings of the 2000 North American Chapter of
the Association for Computational Linguistics Workshop on Automatic
Summarization - Volume 4, pages 21–30, 2000.

[51] Dragomir R. Radev, Hongyan Jing, Ma lgorzata Styś, and Daniel Tam.
Centroid-based Summarization of Multiple Documents. Information Processing
Management, 40(6):919–938, 2004.

[52] Readability. http://www.readability.com, February 2013. Online; Accessed
08-Feb-2013.

[53] Leonard Richardson. BeautifulSoup. http://www.crummy.com/software/
BeautifulSoup/. Online; Accessed 08-Feb-2013.

[54] Sentiwordnet. http://sentiwordnet.isti.cnr.it/. Online; Accessed
08-Feb-2013.

[55] Beaux Sharifi, Mark-Anthony Hutton, and Jugal Kalita. Summarizing Microblogs
Automatically. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, pages
685–688. Association for Computational Linguistics, 2010.

[56] Stephen Smart. Why B.C., Alberta are Ending their Pipeline Standoff.
http://www.cbc.ca/news/canada/why-b-c-alberta-are-ending
-their-pipeline-standoff-1.2126176. Online; Accessed 03-Aug-2013.

77

http://www.pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-August-2009.pdf
http://www.pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-August-2009.pdf
http://www.readability.com
http://www.crummy.com/software/
BeautifulSoup/
http://sentiwordnet.isti.cnr.it/
http://www.cbc.ca/news/canada/why-b-c-alberta-are-ending
-their-pipeline-standoff-1.2126176

[57] Hiroya Takamura, Hikaru Yokono, and Manabu Okumura. Summarizing a document
stream. In Paul Clough, Colum Foley, Cathal Gurrin, GarethJ.F. Jones, Wessel
Kraaij, Hyowon Lee, and Vanessa Mudoch, editors, Advances in Information
Retrieval, volume 6611 of Lecture Notes in Computer Science, pages 177–188.
Springer Berlin Heidelberg, 2011.

[58] Jie Tang, Limin Yao, and Dewei Chen. Multi-topic based Query-oriented
Summarization. In Society for Industrial and Applied Mathematics International
Conference Data Mining, 2009.

[59] Michael Tung. Diffbot: Identify and Extract from Any Web page.
www.diffbot.com. Accessed: 2013-02-18.

[60] Junfeng Wang, Chun Chen, Can Wang, Jian Pei, Jiajun Bu, Ziyu Guan, and
Wei Vivian Zhang. Can We Learn a Template-independent Wrapper for News
Article Extraction from a Single Training Site? In Proceedings of the 15th
Association of Computing Machinery Knowledge Discovery and Data Mining
International Conference, pages 1345–1354, New York, NY, USA, 2009.

[61] Junfeng Wang, Xiaofei He, Can Wang, Jian Pei, Jiajun Bu, Chun Chen, Ziyu Guan,
and Gang Lu. News Article Extraction with Template-independent Wrapper. In
Proceedings of the 18th International Conference on World Wide Web, pages
1085–1086, New York, NY, USA, 2009.

[62] Zach Weiner. How Internet Arguments Work.
http://www.smbc-comics.com/?id=2939. Online; Accessed 03-Aug-2013.

[63] Brian Wilson. MAMA: Key findings. http://dev.opera.com/articles/
view/mama-key-findings/. Online; Accessed 08-Feb-2013.

[64] Wen-tau Yih, Joshua Goodman, Lucy Vanderwende, and Hisami Suzuki.
Multi-document Summarization by Maximizing Informative Content-Words. In
Proceedings of the 20th International Joint Conference on Artifical Intelligence,
pages 1776–1782. Morgan Kaufmann Publishers Inc., 2007.

[65] Xiaohua Zhou, Xiaodan Zhang, and Xiaohua Hu. Dragon Toolkit: Incorporating
Auto-Learned Semantic Knowledge into Large-Scale Text Retrieval and Mining. In
Proceedings of the 19th Institute of Electrical and Electronics Engineers
International Conference on Tools with Artificial Intelligence - Volume 02, pages
197–201. Institute of Electrical and Electronics Engineers Computer Society, 2007.

78

www.diffbot.com
http://www.smbc-comics.com/?id=2939
http://dev.opera.com/articles/
view/mama-key-findings/

[66] Rich Ziade. A Free Web & Mobile App for Reading Comfortably.
www.readability.com. Accessed: 2013-02-18.

79

www.readability.com

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Goal
	Contributions

	Related Work
	Crawlers
	Parsers
	Summarization

	Implementation
	AJAX Simulation Framework
	Parsing comments
	Results

	Diverse Opinion Summarization for Scalable Opinion Mining
	Problem Description
	KLSum+
	Summary of Enhancements
	Implementation

	Baseline Methods
	Iterative Random Summarization
	SumBasic
	MEAD Summarization
	LexRank Summarization
	Topic Model Based Summarization
	Aspect Mining with Sentiment Methods
	Other Methods

	Experimental Setup
	Data
	Efficiency
	ROUGE Scores
	Example Summaries

	Discussion

	Conclusion
	Appendix
	HTTP Request Header
	Data Description
	References

