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ABSTRACT

Multi-hop wireless network are promising techniques in thefield of wireless communi-

cation. The dynamic topology of the network and the independent selfish participants of

the network make it difficult to be modeled by traditional tools. Game theory is one of

the most powerful tools for such problems. However, most current works have certain

limitations. There has not been a widely accepted solution for the problem yet.

In this thesis we propose our solutions for the problem of bandwidth sharing in wire-

less networks. We assume the nodes are rational, selfish, butnot malicious, independent

agents in the game. In our model, nodes are trying to send their data to the gateway. Some

nodes may require others to forward their packets to successfully connect to the gateway.

However, nodes are selfish and do not wish to help others. Therefore it is possible that

some nodes may refuse the requirement. In that case, the unpleasant nodes may punish

the others by slowing down their traffic, in which case both parties will suffer. Therefore

it is non-trivial to find out the equilibrium for these nodes after the bargaining process.

What is the proper distribution of resources among these nodes? We propose a solution

based on the game theory. Our solution fulfills the goal of fairness and social-welfare

maximization.
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1 INTRODUCTION

Wireless networks play an indispensable role in today’s world. Multi-hop wireless net-

works, such asad hocnetworks, wireless mesh networks, and community mesh net-

works, have been studied since the 1970’s. They became popular and received tremen-

dous research interest recently. However, incentives for cooperation inad hocnetworks

and fairness in wireless mesh networks are currently big problems. In wireless multi-hop

networks, there is currently no widely-accepted techniqueto compensate users for their

forwarding services [17]. Good economic models are desiredto support the operation of

these networks. We introduce the concept of the Raiffa Solution from game theory and

propose a cooperative game model to study the behavior of nodes in multi-hop wireless

networks.

1.1 MOTIVATION

Multi-hop wireless networks are promising techniques in computer science. Inad hoc

wireless networks, the topology is not fixed as in traditional networks. New nodes may

join in or leave a network at any time. All nodes may forward others’ packets and also

require other nodes to forward their own packets. The network works best when all the

nodes are not selfish, but cooperate well with each other.

In ad hocnetworks interesting problems arise from the fact that the participants do

not necessarily have an incentive to cooperate with each other. The behavior of nodes

is not defined in the protocol. Therefore the nodes are somehow similar to agents in a

game situation. They are selfish, but not malicious; they arerational, but easily run into

the situation of the “prisoner’s dilemma”, where each node hopes the other nodes will

1



2 CHAPTER 1. INTRODUCTION

forward its packets while it does not forward packets from the other nodes. However,

if every node acts in this way, the network would be non-existent, since no node would

forward any other node’s packets.

In wireless mesh networks we can force the nodes to cooperate. However, just like

the difference of market economics and planned economics, the bandwidth schedule is

usually unfair to the some of the nodes [13]. It causes fairness problems in wireless

mesh networks, which received a lot of research interest recently.

We want to build a model that helps us understand the role of nodes in such a game,

and reveals the equilibrium in such a game. These studies will also help us understand

fairness from a new perspective.

1.2 CONTRIBUTIONS

In this thesis we propose our solutions for the bandwidth sharing problem. We assume the

nodes are rational, selfish, but not malicious, independentagents in the game. Our model

works when every node is trying to compete with other nodes for more bandwidth. The

incentive for the nodes to forward others’ packets is the fact that if they do not cooperate

the other nodes may punish them by competing more stringently and they will get less

bandwidth in this case. We modeled the idea of “cooperation while threatening” in this

thesis.

We adopt the cooperative-game model to solve the problem. Wefirst study the two-

node game where we accept the solution proposed by Raiffa [16, 18, 21]. Then we claim

that there are only two basic ways nodes can participate in the network, either completely

competing or completely cooperating. We use the routing tree to represent the network

topology. By treating a subtree as the same as a node in the game, we reduce the game

to a two-player game, recursively. An algorithm to determine the appropriate bandwidth
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allocation among the nodes in the system is then proposed.

The solution works well for networks without concurrent transmissions. For larger

networks that are not in a single collision domain, we adopt the method from Jakubczak

et al [12] and propose a more-realistic solution for wireless mesh networks.

Our contributions include:

1. We formalize the two-node game and solve the game.

2. We generalize the model to solve multi-node games.

3. We simulate our approach using thens-2simulator.

4. We find out that our solution leads to temporal fairness when the nodes are coop-

erating, subject to certain conditions which are non-trivial.

1.3 THESISSTRUCTURE

The rest of the thesis consists of the following chapters. InChapter 2 we present a survey

on the background and related work as well as introduce some basic knowledge of game

theory which is most related to our work. In Chapter 3 we present our model in the

order we studied the problems. In Chapter 4 we take interference range into account and

discuss the simulation results. We present our conclusion and future work in Chapter 5.





2 BACKGROUND AND RELATED WORK

In this chapter we review the basics of wireless networks andgame theory. We show there

are incentive and fairness problems in multi-hop wireless networks. We show why game

theory is desired in wireless networks. We also introduce the related work in applying

game theory in wireless networks.

2.1 WIRELESSNETWORKS

Wireless networks consist of nodes that are not connected with wires or fibers, but com-

municate through radio signals. Wireless communications can be modeled by transmis-

sion range and interference range. The transmission range and interference range are

usually from several meters to several kilometers. The transmission range is smaller than

the interference range. If the receiver is within transmission range of the sender, the re-

ceiver can successfully receive the signal from the sender and decode the message. If

the receiver is out of interference range of the sender, the receive can neither receive nor

sense the signal from the sender. If the receiver is within interference range, but out of

transmission range of the sender, it cannot receive the signal. However, it can sense the

signal and the interference may cause it fail to receive fromanother sender.

Some of the nodes in the wireless network may be connected by wire to the Internet.

We call such nodes gateways. Usually several nodes connect to one gateway to access

the Internet, and form the many-to-one traffic.

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 MULTI -HOP WIRELESSNETWORKS

If two nodes are not within each other’s transmission range,they cannot communicate

directly. However, if there exists another node which is within the transmission range

of both nodes and agrees to forward data for them, they can communicate with each

other via the intermediate node. Sometimes the network flow may traverse multiple such

intermediate nodes. We call such networks multi-hop wireless networks [1, 3].

In a multi-hop wireless network, nodes have to join the network to benefit from the

network, while having the obligation to forward other nodes’ packets. The problem is,

because of energy and bandwidth limitations, nodes would not wish to forward these

packets. Thus the problem arises: how to decide whether or not to forward data, and

how to decide the proper portion of the received data that will be forwarded? A lot of

interesting discussions and research arises from these problems.

2.1.2 Ad-hocWIRELESSNETWORKS

Ad-hocnetworks [22] are one example of multi-hop wireless networks. Ad-hocnetworks

are wireless networks without fixed infrastructure or centralized administration. Such

networks are instantaneously formed when interested nodescome within each other’s

transmission range.Ad-hocnetworks can be very useful in situations where there is no

need for an infrastructure or where its creation would be toocostly. Sometimes nodes in

ad-hocnetworks are powered by batteries and only participate in the network for a short

time. The advantages ofad-hocnetworks include: it is very fast to deploy the network;

it is robust to changes; it is flexible; it allows nodes in the network with either high or

low mobility, etc.

A lot of research has studied how to motivate nodes to cooperate with each other to

make the network operate well. We will survey these works in the last section of this
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chapter.

2.1.3 WIRELESSMESH NETWORKS

Another example of multi-hop wireless networks is called Wireless Mesh Networks [3,

8]. These networks are composed of regular mesh nodes that act as both data sources/sinks

and as routers, and gateway nodes that bridge traffic betweenthe mesh and the wired net-

work (usually the Internet) [4]. The traffic in a Wireless Mesh network is usually from

one of the node to the gateway, or the reverse.

Generally there exists a single administrative authority in wireless mesh networks.

Nodes are designed to work appropriately.

2.1.4 COMMUNITY MESH NETWORKS

Neighbors connecting their home networks together with radios form a Community

Mesh Network. When enough neighbors cooperate and forward each others packets,

they do not need to individually install a gateway but instead can share Internet access

via gateways that are distributed in their neighborhood. Packets dynamically find a route,

hopping from one neighbor’s node to another to reach the Internet through one of these

gateways.

In our model, we assume low mobility, no power constraints, and no single admin-

istrative domain. Therefore, our model works best in the situation of community mesh

networks.

2.2 GAME THEORY

Game theory is the mathematical study of the interaction among independent, self-

interested agents. It has been applied to a wide range of fields including economics,
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political science, biology, psychology, linguistics, andcomputer science. This section

introduces some basic knowledge of game theory, which will be referred to in the re-

minder of the thesis. Most of the contents of the sections come from the book of Von

Neumann et al [16, 18].

2.2.1 BASIC ELEMENTS OF A GAME

The basic elements of a game consist of the participants of the game, the action space of

these participants, the consequences of these actions, andthe preference (utility) of these

participants.

2.2.1.1 SELF-INTERESTED AGENTS

The participants of a game are self-interested independentagents. “Self-interested” does

not necessarily mean that agents want to cause harm to each other. Instead, it means

that each agent has its own description of which states of theworld it prefers, which

can include good things happening to other agents and that itacts to make these states

realized.

In multi-hop networks we discuss in this thesis, we assume the nodes are self-interested

agents only caring for themselves.

2.2.1.2 UTILITY

Each agent may have different preferences for the same outcome of a game. Utility is the

numerical value that represents the preference of the agents. For a fixed playerP , and

two outcomesM andN , the utility functionU() satisfies:U(M) < U(N) if and only if

P prefersN to M .

The expected-utility hypothesisis widely accepted in the field of game theory. The

hypothesis asserts that when faced with uncertainty about which outcomes it will receive,
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the agent prefers outcomes that maximize its expected utility. If the utility function

satisfies this hypothesis, then we say the utility function is linear.

The absolute value of the utility function evaluated at different outcomes is unim-

portant. Instead, every positive affine transformation of autility function yields another

utility function for the same agent. In other words, ifU(A) is a linear utility function for

a given agent A thenU ′(A) = aU(A) + b is also a linear utility function for the same

agent, ifa andb are constants anda is positive. Therefore, we can always perform a

linear transformation on a utility function without changing the preference represented

by that utility function. In many situations people linearly transform the utility functions

such that the utility ranges from 0 to 1.

2.2.1.3 ACTION SPACE

The action space is the set of actions an agent can take. In many situations each agent

has exactly two actions that it can choose from. The smaller the action space is, the more

such games have been studied. Games with an infinite action space are generally hard to

analyze.

2.2.1.4 OUTCOME OF A GAME

Once each agent chooses an action from the action space, there will be some outcome

of the game. Sometimes there are several steps in each of which the agents have to take

actions. In the view of game theory, the outcome can be expressed as an array of utilities

of all the agents, which reflects the preferences of the agents to the outcome.

2.2.2 TWO-PLAYER NORMAL-FORM GAME

Two-player normal-form games are the most-studied games. In this case the game can

be represented by a payoff matrix. In the matrix all four possible combinations of the
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agents’ actions are shown, and the utility of the two agents in each outcome is given.

Here we introduce some examples of two-player normal-form games.

2.2.2.1 PRISONER’ S DILEMMA

The most famous game in game theory is the prisoner’s dilemma. The story is: suspect 1

and suspect 2 are arrested by the police. The police have insufficient evidence for a con-

viction, and, having separated both prisoners, visit each of them to offer the same deal:

if one testifies for the prosecution against the other and theother remains silent, the be-

trayer goes free and the silent accomplice receives the full10-year sentence. If both stay

silent, both prisoners are sentenced to only six months in jail for a minor charge. If each

betrays the other, each receives a two-year sentence. Each prisoner must make the choice

of whether to betray the other or to remain silent. However, neither prisoner knows for

sure what choice the other prisoner will make. This dilemma poses the question: how

should the prisoners act?

The game may be represented by the payoff matrix shown in Table (2.1), where we

assume the utility of each agent is simply zero minus the number of years in prison.

2.2.2.2 BATTLE OF SEXES

Imagine a couple, husband and wife. The husband prefers to goto the football game.

The wife would like to go to the opera. Both would prefer to go to the same place rather

than different ones. Where should they go?

The payoff matrix is shown in Table (2.2).

2.2.3 PARETO EFFICIENCY

Pareto efficiency is usually a desirable requirement for anysolution of a game. A strategy

profile is said to be Pareto efficient if for any other strategyprofile, there will be at least
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Suspect 2

Stays silent Betrays

Suspect 1 Stays silent (−1
2
,−1

2
) (-10,0)

Betrays (0,-10) (-2,-2)

Table 2.1: Prisoner’s Dilemma

one agent with lower utility. The principle is that if some ofthe agents can get higher

utility without harming other agents, they should. It is natural to expect Pareto efficiency

in any solution.

2.2.4 STRATEGY

The strategy of an agent may be any action from the actions space, or a combination

of them. We use the notation(p1A1, p2A2, . . . , pnAn), where
∑n

k=1 pn = 1 to denote a

strategy of an agent. The strategy means the agent would playactionAi with probability

pi, wherei = 1, 2, . . . , n. If one of thesepi’s is 1, then it is called a pure strategy;

otherwise, it is called a mixed strategy.

A strategy profile is an array of strategies of each agent in the game. For example,

let the strategy for playeri ∈ 1, 2, . . . , k besi, thens = {s1, ..., sk} is a strategy profile.

The solution of a game can be represented by a strategy profile.
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Wife

Football Opera

Husband Football (2,1) (0,0)

Opera (0,0) (1,2)

Table 2.2: Battle of Sexes

The utility of a strategy profile is a vector of the expected utilities of all the agents

when every one acts according to the strategy.I.e., u(s) = (u1(s), u2(s), . . . , uk(s))

whereui(s) is the expected utility of agenti when agentj playssj, for all j = 1, 2, . . . , k.

2.2.4.1 MAX -MIN STRATEGY

To ensure some certain level of safety, the straightforwardstrategy of a game is the “max-

min” strategy, in which case the agent chooses its action from the action space such that

it maximizes its worse-case payoff. The rational of this strategy is obvious: choosing

any other action may lead to some outcome where the agent getsa lower utility.

2.2.4.2 DOMINATED STRATEGY

To define dominated strategy, we use the following notation.Given a strategy profile

s = {s1, ..., sn}, we defines−i = {s1, . . . , si−1, si+1, . . . , sn}, and{si, s−i} = s.
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Definition 1 (Dominated strategy) For some agent i, if there exist two strategiessi, si∗ ∈

Si such thatui(si, s−i) ≤ ui(si∗, s−i) for all strategies of the other agentss−i and for at

least one strategys−i, ui(si, s−i) < ui(si∗, s−i) , then we say the strategysi is dominated

by si∗. If ui(si, s−i) < ui(si∗, s−i) for all strategies of the other agentss−i, then we say

the strategysi is strictly dominated bysi∗.

The dominated strategy should not be used.

2.2.5 NASH EQUILIBRIUM

The Nash Equilibrium is a strategy profile such that no playerhas anything to gain by

changing only his or her own strategy unilaterally. It is thelikely outcome of a game if

agents are non-cooperative;i.e., they do not communicate with each other and choose

the actions by themselves. The formal definition is constructed as follows:

Definition 2 (Best response to a strategy profile)A best response of Playeri to the

strategy profiles−i is a mixed strategysi∗ ∈ Si such thatui(si∗, s−i) ≥ ui(si, s−i)

for all strategiessi ∈ Si.

The best response may not be unique.

Definition 3 (Nash Equilibrium) A strategy profiles = (s1, . . . , sn) is a Nash equilib-

rium if, for all agentsi, si is a best response tos−i.

In other words the Nash Equilibrium is a strategy profile where no agent can benefit

by playing any other strategy if the other agents do not change their strategy. Therefore,

the Nash Equilibrium is a stable outcome of the game. However, since the best response

may not be unique, the Nash Equilibrium may not be unique either.

Sometimes we can find the Nash Equilibrium of a game by deleting the dominated

strategies from the Payoff matrix. For example, recall the game of Prisoner’s Dilemma
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illustrated in Table (2.1). “Stay Silent” is dominated by “Betray” for both A and B. If

we delete the outcomes related to “Stay Silent” of both A and B, there will be only one

outcome left, which is the Nash Equilibrium of the game: bothagents betray.

2.2.6 COOPERATIVEGAME

In a cooperative game the agents can communicate with each other and take actions after

they have an agreement. The communication makes some cooperative strategy feasible.

For example, assume there are two agents,1 and2. The action space of1 is A1, A2, and

the action space of2 is B1, B2. Then a cooperative strategy may be

{p1(A1, B1), p2(A2, B2)}, which means with probabilityp1, agent1 playsA1 and agent

2 playsB1; with probabilityp2, agent1 playsA2 and agent2 playsB2.

The above cooperative strategy is impossible to carried outunless the agents can

communicate with each other and agree to cooperate. We will show examples where

the cooperative strategy performs much better than either the Nash Equilibrium or the

max-min strategy in a cooperative game.

In the game of “Prisoner’s dilemma”, as illustrated in Table2.1, one easily identifies

that both the Nash Equilibrium and the max-min strategy leadto the outcome{Betrays,

Betrays}. The utility of both agents will be−2. On the other hand, the cooperative

strategy is{1(Stay silent, Stay silent)}, where both agents get a utility of−0.5. However,

it is impossible to reach to the cooperative optimal unless the agents can communicate

and there exists some way to enforce the cooperative strategies.

In the game “Battle of sexes”, there are three Nash Equilibria {Football, Football}

(where the husband gets utility 2 and the wife gets utility 1), {Opera, Opera} (where

the husband gets utility 1 and the wife gets utility 2) and{(0.75 Football, 0.25 Opera),

(0.25 Football, 0.75 Opera)} (where both get expected utility 0.75). However, none

of these are good solutions for the game. Instead, in the caseof a cooperative game
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where agents can communicate, we have the optimal solution{0.5(Football, Football),

0.5(Opera, Opera)}, where both agents get expected utility1.5.

The cooperative solution is difficult to implement unless the agents can communicate

with each other and the game is repeated for many times. However, it is usually reason-

able to assume the availability of communication and repetition, especially in a wireless

network. In general, cooperative solutions may be much better than non-cooperative

ones.

2.2.7 RAIFFA SOLUTION

In the thesis we adopt the Raiffa solution to find the outcome in a cooperative game. We

introduce it in this section.

For two player games we can use a graph to help us understand the idea of Raiffa

solution. For any strategy profiles = (sA, sB), we will have an outcome of the game and

the utility is (U(A), U(B)). Since it is a cooperative game with mixed strategies, if we

plot all possible outcome utility points(U(A), U(B)) in a graph, we have a convex set

as shown in Figure 2.1

Figure 2.1: All possible outcome of the game

However, not all of these outcomes are possible in a game. Theagents will not

adopt dominated strategies; using max-min reasoning they can also guarantee themselves
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some minimal level of utility. We call the utility in the max-min strategy of an agent

the security level. Only the outcomes that equal or exceed the security-level point are

possible, as illustrated in Figure 2.2

Figure 2.2: Security Level: only the grey area is feasible

By Pareto efficiency, the outcomes on the boundary form the optimal sets, as depicted

in Figure 2.3; the points not on the boundary are always dominated by some other point

on the boundary. Therefore, a cooperative solution should be on the black line in Figure

2.4.

Figure 2.3: Any outcome not on the boundary is not preferable

Adding the last constraint will lead to the Raiffa solution.Raiffa suggests the reason-

able solution should be on the 45-degree line starting from the security-level point. In
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Figure 2.4: Pareto efficiency

other words, the difference between the security level of the two agents should be main-

tained in the solution. As illustrated in Figure 2.5, any point not on the 45-degree line,

like the white points, will cause unfairness. The consequence of unfairness is that agent

A may threaten B that it will terminate the cooperation, in which case the new equilib-

rium points will be the security level, and therefore agent Bloses more utility than A

does.

Figure 2.5: 45-degree fair line

The above reasoning suggests that the Raiffa solution is theideal solution concept for
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cooperative games. We adopt the solution idea in our studies.

2.3 GAME THEORY IN WIRELESSNETWORKS

There is a lot of research studying wireless networks from the game-theory view recently

(e.g., see [2, 5]), especially forad hocwireless networks. It is not surprising that many

people try to explain the behavior of nodes inad hocnetworks as a game. The topology

structure ofad-hocnetworks is extremely dynamic; nodes may join or leave the network

arbitrarily according to their own interest. Even if a node stays in the network, it may de-

cide on its own to forward the packets of other nodes or not. Therefore,ad hocnetworks

form a typical situation where a game is played between rational agents.

Most such research assumes that the nodes are selfish, but notmalicious, independent

agents in a game. Most game-theory-based approaches falls in two categories: reputation

mechanism and virtual-currency mechanism.

The reputation mechanism assumes that each node should forward all the packets and

nodes can monitor the behavior of its neighborhood. Any misbehavior will be reported,

and any node that does not forward packets will not be able to get its own packets for-

warded in the future [26]. However, this mechanism does not tell us how many packets

should be forwarded; it assumes all packets should be forwarded. Our focus is on what

the reasonable expectation is of packets to be forwarded.

The virtual-currency mechanism assumes there exists some form of virtual currency

in the networks such that nodes can earn money by forwarding packets or make other

contributions, and need to pay money to get their own packetssent [11]. This method,

along with the well-studied VCG [24] payment mechanism, seems to be a good solution

for the problem. However, it may be very complex.

Both mechanism are promising ways. However, it may not be easy to implement
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reputation or banking services in the network. In this thesis, the factor we are concerned

with is the proper proportion of bandwidth that is allocatedfor these nodes. Therefore,

we are studying the problem from a different aspect from these works.

2.3.1 ENERGY CONSTRAINTS

The bottleneck for most nodes inad hocnetworks may be energy constraints. It costs

energy for nodes to act as routers for others. For mobile nodes, energy may be a very

limited resource and usually should be reserved for the nodeitself.

A lot of research starts from the energy constraint (e.g., [25]). However, power is not

a major constraint for nodes in community wireless networks. In this thesis we will not

take energy constraints into account. Rather, we focus on throughput.

2.3.2 NASH EQUILIBRIUM

A lot of research models the network as a non-cooperative game (e.g., [19]). Each

node tries to maximize its own utility. It is widely acceptedthat the Nash Equilibrium is

usually the outcome of such a game. However, we do not prefer the Nash Equilbirium

because of the following reasons:

1. Sometimes the Nash Equilibrium is far from optimal, as in the famous game “Pris-

onner’s Dilemma”.

2. We prefer to model the network as a cooperative game, in which case agents can

improve each other’s utility by wise cooperation which cannot be taken in the Nash

Equilibrium of a non-cooperative game.

3. It is still an open problem to find the equilibrium point in an efficient way when

there are a lot of agents in the game. It is now known that finding a Nash Equilib-

rium with even 2-players belongs to PPAD which is thought to be harder than P.
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Moreover, finding a Nash Equilibrium that max social welfareis NP hard. In fact,

most research in this category differ in their ways to find theNash equilibrium, or

in their mechanisms whose outcome will converge to the Nash equilibrium with

high probability.

2.3.3 MAXIMIZE THE AGGREGATEUTILITY

Some research assigns the resources among agents such that the sum of the utility of

all nodes is maximized [6, 9]. However, it is unclear whetherthis assignment will be

advocated by the nodes or not. Not surprisingly, in many cases maximizing social welfare

means some nodes have to sacrifice. Since each node is an independent agent, we do not

think it will accept the aggregate-utility maximizing assignment if it conflicts with the

node’s own interest. If there exists any node which can improve its utility if it plays some

other strategy, the cooperation has to be unstable. Instead, in both the Nash equilibrium

and our solution, nodes are not supposed to sacrifice for aggregate utility.

2.4 FAIRNESS IN WIRELESSMESH NETWORKS

In wireless mesh networks, operators enforce cooperation through predefined protocols

or programs. For example, gateway control [13] controls theresource distribution in

wireless mesh networks such that every node get a fair (as pursued in the work) through-

put.

Ad hocnetworks and community mesh networks are more suitable to bemodeled

as a game, since the decision of forwarding packets is made individually based on the

individual interest of the nodes. On the other hand, in wireless mesh networks where

nodes do not have the right to make a decision the incentive problem appears in the form

of fairness. After the network operator has made a policy decision, people would ask: is
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this a fair resource assignment? [20]

Current wireless mesh networks based on the IEEE 802.11 MAC and standard network-

layer protocols cannot provide fairness to each node in the network. In particular, it has

been demonstrated that nodes close to the gateway can starveor even shut off those that

are more hops away without rate-control mechanisms [13]. However, it is not self-

evident that different nodes having different bandwidth isunfair. We have to note the

fact that different nodes in the network are indeed not symmetric and some may con-

tribute much more for the network. A very deliberate design decision has to be made to

advocate for any “fair” schedule.

We study the problem in this way: assume the nodes are free agents as in other multi-

hop wireless networks, then find the cooperative outcome of the game, and compare it

with existing fairness conceptions.

Before we start our analysis, we show some well-known definitions of fairness below.

Some forms of fairness are with respect to cost, and some others are with respect to

outcome.

2.4.1 ABSOLUTE FAIRNESS

Some people referring to absolute fairness require fairness with respect to the outcome.

Under absolute fairness with respect to outcome, the rates are equally distributed between

all the streams. All the nodes in the network get the same throughput.

2.4.2 MAX -MIN FAIRNESS

Assume each node get a fair share of throughput defined by absolute fairness. Sometimes

the network topology is such that a few nodes can improve their throughput without any

other node’s throughput decreasing. Therefore, it is not necessary to insist that all nodes

should get the same throughput.
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The definition of max-min fairness [20] assumes a single bottleneck. All nodes that

are limited by the bottleneck get equal share of the bottleneck link. Other nodes can get

higher throughput.

The max-min fairness concept is consistent with the idea of Pareto efficiency. People

observe that in addition to absolute fairness, some nodes inthe network can get higher

throughput without reducing the performance of the others.Therefore, people introduce

max-min fairness to maximize the overall throughput, whileproviding basic fairness

guarantees.

2.4.3 PROPORTIONALFAIRNESS

An allocationx is said to be proportionally fair if for any other feasible allocationx′, the

aggregate of the proportional change is 0 or negative,i.e.,

∑

i∈I

x′
i − xi

xi

≤ 0 (2.1)

Kelly [14] showed that if the utility function is logarithmic to throughput, and the

fairness goal is to maximize the sum of utility of all the nodes, then we reach proportional

fairness.

2.4.4 TEMPORAL FAIRNESS

The link capacity of different links in the network may be quite different. It is not nec-

essarily fair to have a 55Mbps link have the same throughput as another link which is

only 1Mbps. Temporal fairness [10] considers time, insteadof throughput as the re-

source to be fairly distributed. In temporal fairness, eachstream takes the same amount

of spectrum time to arrive at the gateway, subject to the max-min limitations.

In this thesis, we assume the nodes in the wireless network can make independent
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decisions as inad hocnetworks and community wireless networks. Then we find the

Raiffa equilibrium of the game, and advocate the outcome to be the fair share. We show

that if the utility function is the throughput, the securitylevel of each node is 0, and the

fairness goal is to realize the Raiffa equilibrium, then we reach the temporal fairness.





3 GAMES IN MANY-TO-ONE ROUTING

In this chapter, we focus on those problems where there are many nodes but only one

gateway in the network. As observed by Cheng et al. [7], the network topology will

form a confluent tree. We also make the assumption that no concurrent transmitting is

allowed in such networks. This assumption is true if the network is small and all links

are within each other’s interference range. On the other hand, it may be far from real

life when applied to larger networks. However, making theseassumptions makes things

easier initially, so we can focus on the game-theory view; this restriction will be removed

in Chapter 4.

This chapter is organized as follows: first, we study some representative specific

examples of the simplest scenario with two nodes; we then apply our solution to general

two-node games; finally, with induction and recursion, we determine the solution for the

general case.

3.1 TWO-NODE GAME : NUMERICAL SCENARIO

The simplest game happens between two nodes. Let us assume there are two nodes,

denoted by A and B, both trying to connect to the gateway O. Depending on the available

links, there are three potential scenarios, as illustratedin Fig.3.1. In Fig. 3.1(a), both A

and B can access O directly, while they cannot communicate with each other. In this case,

the interests of A and B are incompatible. They compete with each other for bandwidth.

In Fig. 3.1(b), A can access O directly, but B can only access Oindirectly if A agrees to

forward B’s packets. In this case B has to cooperate with A to access O. In Fig. 3.1(c),

both A and B can access O directly, while B can also send packets to A and ask A to

25
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forward them. Thus, they may be either competing or cooperating with the other party.

(a) (b) (c)

Figure 3.1: Three possible scenarios between two nodes

There are some assumptions and settings throughout the chapter. We assume the

nodes always have data to transmit to the gateway. This is true if the network is busy and

no node has enough bandwidth. This is also a reasonable simplification at the beginning

of the analysis. The objective of these nodes is to get as muchthroughput as possible.

In this chapter, we define the utilityUX of a nodeX to be equal to its throughput,

TX :

UX = UX(TX) = TX (3.1)

Since the throughput of any node in any network must be finite,the range of our

utility for any node is[0,∞).

It might be reasonable to have some more elaborate utility function defined here.

However, it is nontrivial to choose the proper utility functions. Advocating for a certain

utility function for nodes in wireless network is out of thisscope of the thesis; however,

we believe the utility function can be replaced with most other functions (as long as they

are continuous and monotonically increasing) and the solution procedure will still be

effective.

We assume the nodes are selfish. They only care for the interest of themselves. They
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do not wish to contribute to the whole network unless it is beneficial for themselves.

They can make independent decisions as agents do in a typicalgame. As such, each

agent will attempt to maximize its own utility, and not care about the aggregate utility of

the network.

In this section, we will assume all packets are of the same size; the link capacities

are known specific numerical values. We study how the bargainwill proceed and how

equilibrium will be found in the three cases in the followingdiscussions.

3.1.1 COMPETITION GAME

Consider the situation illustrated in Fig. 3.1(a). Assume Acan communicate with O at

10Mb/s and B can communicate with O at 1Mb/s. What is the likely outcome of the

competition?

Let tA be the fraction of time A can access O in one second, andtB be the fraction of

time B can access O in one second.

The utility of node A is given by:

UA = TA = tA × 10 (3.2)

The utility of node B is given by:

UB = TB = tB × 1 (3.3)

By the selfish assumption, both A and B wish to maximize their own utility, therefore

their goal is to get as much time as possible. On the other hand, since the network is busy,

we have:
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tA + tB = 1 (3.4)

That is, the interest of A and B are incompatible and there is no way that they can

cooperate to get any better outcome. There is no better strategy other than to compete

with each other for bandwidth. In this case, the 802.11MAC protocol will ensure that

each packet from both parties has the same chance to get transmitted. We assume the

packets are of the same size; therefore:

tA × 10 = tB × 1 (3.5)

From Eq. (3.4) and Eq. (3.5) the solution istA = 1
11

seconds andtB = 10
11

seconds.

Both parties get a throughput of10
11

Mbps.

The same results are reported by Gambiroza et al. [10]. Intuitively, in the equilibrium

both nodes should try to send as much as possible, which results in the above outcome.

We now study this as a normal-form game and advocate this result from the game-theory

view.

The basic elements of the game are:

• The participants of the game: A and B

• Action space of A: A can keep silent, try to send all the time, or try to send some

of the time and keep silent in the rest of the time.

• Action space of B: B can keep silent, try to send all the time, or try to send some

of the time and keep silent in the rest of the time.

It is impossible to write down the payoff matrix for games with infinite actions. We

have to parameterize the action space for each agent. Let theaction space of X (either A
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or B) be{Active, Silent}. Then the strategy X plays in the game can be expressed as

(pActive, (1− p)Silent), wherep ∈ [0, 1].

This is a mixed strategy formed by the two pure strategies “Silent” and “Active”, andp

is the probability of X being active. Then we have the following game with the payoff

matrix shown in Table (3.1):

• The participants of the game: A and B

• Action space of A: Silent, Active

• Action space of B: Silent, Active

• Strategy of A: (pAActive, (1− pA)Silent);pA ∈ [0, 1]

• Strategy of B: (pBActive, (1− pB)Silent);pB ∈ [0, 1]

B

Silent Active

A Silent (0,0) (0,1)

Active (10,0) (10
11

, 10
11

)

Table 3.1: Payoff Matrix for the First Game



30 CHAPTER 3. GAMES IN MANY-TO-ONE ROUTING

No matter what strategy B uses, A can always get a higher utility by playing “Active”;

therefore “Silent” is strictly dominated by “Active” for A.For B,“Silent” is also strictly

dominated by “Active”. Thus, the Nash Equilibrium of the game is (Active, Active),

which results in the situation where both agents try to send all the time and finally both

get a throughput of10
11

Mbps.

We will show there is no strategy such thatbothnodes get higher utility; therefore

there is no desire for any cooperation. Assume that in the final outcome of the game the

proportion of (Active, Active) isp1, the proportion of (Active, Silent) isp2, the proportion

of (Silent, Active) isp3, the proportion of (Silent, Silent) isp4. Because at any time, the

nodes must be in one and only one of the four situations, we must have:

p1 + p2 + p3 + p4 = 1; pi ∈ [0, 1], i = 1, 2, 3, 4 (3.6)

In order to make cooperation possible we should also have:

p1





10
11

10
11



 + p2





10

0



 + p3





0

1



 + p4





0

0



 >





10
11

10
11



 (3.7)

Which leads to:

10

11
p1 + 10p2 >

10

11
(3.8)

10

11
p1 + p3 >

10

11
(3.9)

However, Eq. (3.8)+ Eq. (3.9)×10 yields:

10(p1 + p2 + p3) > 10 (3.10)



3.1. TWO-NODE GAME: NUMERICAL SCENARIO 31

or

p1 + p2 + p3 > 1 (3.11)

which contradicts with Eq. (3.6).

Therefore, there is no outcome of the game wherebothnodes get higher utility than

they do in the Nash Equilibrium. Therefore, the Nash Equilibrium in this game is Pareto

optimal outcome. In other words, the outcome of the game mustbe the Nash Equilibrium.

3.1.2 COOPERATIONGAME

We now consider the second possibility, shown in Fig. 3.1(b). We assume A can com-

municate with O at 10Mbps. B can access A at 10Mbps, but cannotaccess O directly.

There are a lot of possible outcomes of the game. B can keep silent all the time; then

A gets a bandwidth of 10 Mbps and B gets a bandwidth of 0 Mbps. IfB keeps active,

and A does not forward any of B’s data, just trying to send to O,then A gets 5Mbps, and

B gets 0Mbps.

Obviously, neither outcome is favorable to B. On the other hand, the throughput A

gets varies when B adopts different strategies. It is also possible that B sends data and A

forwards some of it. There may be such a conversion between A and B:

• B: Hi friend; can you forward these packets for me?

• A: I do not wish to. If I do, I will have less time to transmit my own data.

• B: If you do not forward my data, I will punish you by keeping active to slow down

your traffic.

• A: Ok; let’s make a deal. I will forward some of your data; please don’t bother me

the rest of the time.
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• B: Sounds like a good deal. I will send to you at 3Mbps.

• A: No way; I will forward at most 1Mbps.

• B: ...

Note that this time it is not a zero-sum game. A and B may agree to cooperate. The

difficulty is how to determine the proper allocation of bandwidth between the two nodes.

We analyze the cooperation in the game-theory view.

The basic elements of the game are:

• The participants of the game: A and B

• Action space of A: Forward B’s packets (Cooperative), Send its own packets (Non-

cooperative)

• Action space of B: Keep active or keep silent

The exact definition of these actions needs to be emphasized.A plays “cooperative”

if it forwards all of B’s packets even if this means that A doesnot have time to transmit

its own packets. A plays “Non-cooperative” if it keeps trying to send its own packets,

and never forwards B’s packets. B plays “Keep Silent” if it does not attempt to send any

packets. B plays “Keep Active” if B keeps trying sending all the time. However, since A

is also trying to send (either forwarding B’s or sending A’s own packets), B can succeed

in sending only half the time. Therefore when playing “Keep active”, B sends packets

half the time.

A’s utility is maximized if the strategy profile (Non-cooperative, Keep silent) is car-

ried out. In this case A gets 10Mbps, and B gets 0Mbps. B’s utility is maximized if the

strategy profile (Cooperative, Keep active) is carried out.In this case, B tries to send all
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the time but B can only succeed half the time, because the other half of the time is taken

by A forwarding packets from B. Therefore in this case A gets 0Mbps and B gets 5Mbps.

As in the previous game, the actions they actually play can beconsidered as mixed

strategies of these actions. Then we have the payoff matrix shown in Table 3.2:

B

Silent Active

A Cooperative (10,0) (0,5)

Non-cooperative (10,0) (5,0)

Table 3.2: Payoff Matrix for the Second Game

For A, the strategy “Cooperative” is dominated by “Non-cooperative”. For B, “Silent”

is dominated by “Active”. Then it is straightforward to see that the pure-strategy Nash

Equilibrium of this game is (Non-cooperative, Active), which is apparently not what we

wish to happen. However, unlike the first game, there are cooperative outcomes that are

better than the Nash Equilibrium for both nodes. For example, suppose the outcome con-

sists of20% of (Cooperative, Active) and80% of (Non-Cooperative, Silent); the utility

vector shows:



34 CHAPTER 3. GAMES IN MANY-TO-ONE ROUTING

0.2





0

5



 + 0.8





10

0



 + 0





5

0



 + 0





10

0



 =





8

1



 >





5

0



 (3.12)

Therefore we consider the cooperative version of the game, and find the Raiffa solu-

tions with the following steps.

Assume the cooperative strategy profile is

{(p1(Cooperative, Active), p2(Cooperative, Silent), p3(Non−cooperative, Active), p4(Non−

cooperative, Silent)}; p1 + p2 + p3 + p4 = 1, pi ∈ [0, 1], i = 1, 2, 3, 4

The utility vector for A and B are given by Eq. (3.13):





UA

UB



 = p1





0

5



 + p2





10

0



 + p3





5

0



 + p4





10

0



 (3.13)

Therefore,

UA = 10p2 + 5p3 + 10p4 (3.14)

UB = 5p1 (3.15)

The utility of each agent is normalized such that the best utility an agent may get is 1

and the worst is 0. LetUX be the utility of X (either A or B). LetMAXUX
be the maximal

utility a node X can get andMINUX
be the minimal utility it can get. These are fixed

values once the topology and link capacities of the network are given. The normalized

utility of node X,NUX , is a function ofUX (therefore a function ofp1, p2, p3, p4), defined

as:
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NUX =
UX −MINUX

MAXUX
−MINUX

(3.16)

This is the only linear mapping from the interval of the utility of X, [MINUX
, MAXUX

],

to [0, 1]. Any non-linear mapping implicitly changes the underlyingutility functions and

therefore is not preferred. After normalization, the Payoff Matrix is shown in Table 3.3.

B

Silent Active

A Cooperative (1,0) (0,1)

Non-cooperative (1,0) (0.5,0)

Table 3.3: Normalized Payoff Matrix for the Second Game

Therefore, the normalized utility of A and B, as a function ofp1, p2, p3, p4, are given

by:

NUA = p2 + 0.5p3 + p4 (3.17)

NUB = p1 (3.18)

Second, we observe thatA andB have different powers in the bargain.A is much
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stronger since it can ensure itself a normalized utility of 0.5 leavingB with 0 by playing

“non-cooperative”. The difference between nodes is characterized by the security level.

As introduced in Chapter 2, the security level is the highestutility a node can guarantee

itself. Any other strategy may lead to lower utility.

The security level,SLX , of a nodeX is the highest utility it can guarantee itself.

From the normalized-utility matrix shown in Table 3.3 we have:

SLA = 0.5 whenA takes “Non-cooperative” (3.19)

SLB = 0 whenB takes either action (3.20)

The normalized utility and security level reveal the asymmetry between the nodes.

Raiffa suggests that the difference between the security levels should be maintained in

the solution profile. If the relative advantage is kept, any agent that unilaterally deviates

from the solution profile will lose at least the same as the other agent does since the

cooperation will be terminated and both will get the utilityof the security level.

The Raiffa solution is given by the following optimization problem:

MaximizeNUA under the constraints:

• NUA −NUB = SLA − SLB

• p1 + p2 + p3 + p4 = 1

• p1, p2, p3, p4 ∈ [0, 1]

Expressing all terms inp1, p2, p3 andp4 the problem becomes:

Maximize

NUA = p2 + 0.5p3 + p4 (3.21)
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given:

p2 + 0.5p3 + p4 − p1 = 0.5 (3.22)

p1 + p2 + p3 + p4 = 1 (3.23)

andp1, p2, p3, p4 ∈ [0, 1].

Taking Eq. (3.22) from Eq. (3.21) yields:

NUA = p1 + 0.5 (3.24)

Eq. (3.23)- Eq. (3.22) yields:

2p1 + 0.5p3 = 0.5 (3.25)

Therefore,

p1 = 0.25− 0.25p3 (3.26)

NUA = 0.75− 0.25p3 ≤ 0.75 (3.27)

Therefore,NUA is maximized to be0.75 whenp3 = 0, which yieldsp1 = 0.25 and

p2 + p4 = 0.75.

Therefore, one of the solutions for this game is

{0.25(Cooperative, Active), 0.75(Cooperative, Silent)}; i.e., B should be “active” for

25% of the time, andA should forward all these packets.A has75% of the time to send

its own packets while B keeps silent. In this caseA gets 7.5Mbps andB gets 1.25Mbps.

Both nodes get better throughput than the Nash Equilibrium,whereA gets 5Mbps and

B gets 0Mbps.
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3.1.3 COOPERATION ANDCOMPETITION GAME

We now consider the third possibility, shown in Fig. 3.1(c).We assume thatA can

communicate withO at 10Mbps. B can accessA at 10Mbps, and also accessO at

1Mbps. First, we identify the participants and their actionspaces:

• The participants of the game:A andB

• Action space ofA: Cooperative or Non-cooperative

• Action space ofB: Keep silent, send to A or send to O

The difference in this case from the scenario in Section 3.1.2 lies in the fact that B can

access O directly. However, the link between B and O is weaker, so the more-efficient

way is that B sends its packets to A, which will hopefully forward them to O. If B keeps

sending to O, thus competing with A, the traffic will be sloweddown significantly; both

will get 10
11

Mbps, as analyzed in the first game.

Will the outcome of game be that of the first or the second game,or different from the

both? B is likely to get more than it gets in the first game, as long as it has an alternative

route which can send data much faster. Moreover, this time B is much stronger than it

was in the second game. It can access O even if A does not cooperate; moreover, he can

slow down A’s traffic from 10Mbps to less than 1 Mbps. This is due to the current 802.11

MAC protocol, which gives the packets from A and B equal chance to be transmitted.

One can expect this time the outcome is better for B.

We apply the same reasoning procedure as in Section 3.1.2 to see what the exact solu-

tion is. The normal-form game is represented by the matrix inTable 3.4. Normalization

of utility will yield the payoff matrix in Table 3.5.

Assume the strategy profile is

{p1(Cooperative, KeepSilent), p2(Cooperative, SendtoO),
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B

Keep Silent Sending to O Sending to A

A Cooperative (10,0) (0,1) (0,5)

Non-cooperative (10,0) (10
11

, 10
11

) (5,0)

Table 3.4: Payoff Matrix for the Third Game

p3(Cooperative, SendtoA), p4(Non− cooperative, KeepSilent),

p5(Non− cooperative, SendtoO), p6(Non− cooperative, SendtoA)}

wherepi ∈ [0, 1], and
∑6

i=1 pi = 1, the utility vector is given by:





UA

UB



 = p1





10

0



+p2





0

1



+p3





0

5



+p4





10

0



+p5





10
11

10
11



+p6





5

0





(3.28)

Therefore,

UA = 10p1 + 10p4 +
10

11
p5 + 5p6 (3.29)
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B

Keep Silent Send to O Send to A

A Cooperative (1,0) (0,1
5
) (0,1)

Non-cooperative (1,0) ( 1
11

, 2
11

) (1
2
,0)

Table 3.5: Normalized Payoff Matrix for the Third Game

UB = p2 + 5p3 +
10

11
p5 (3.30)

NUA = p1 + p4 +
1

11
p5 +

1

2
p6 (3.31)

NUB =
1

5
p2 + p3 +

2

11
p5 (3.32)

Then the security level ofA is given by:

SLA =
1

11
whenA is non-cooperative (3.33)
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the security level ofB is given by:

SLB =
2

11
whenB sends to O (3.34)

The Raiffa solution is given by the following optimization problem:

MaximizeNUA under the constraint:

• NUA −NUB = SLA − SLB

•
∑6

i=1 pi = 1

• pi ∈ [0, 1]

Expressing all terms inpi the problem becomes:

Maximize

NUA = p1 + p4 +
1

11
p5 +

1

2
p6 (3.35)

given:

p1 + p4 +
1

11
p5 +

1

2
p6 − (

1

5
p2 + p3 +

2

11
p5) = −

1

11
(3.36)

p1 + p2 + p3 + p4 + p5 + p6 = 1 (3.37)

andpi ∈ [0, 1].

Taking Eq. (3.36) into Eq. (3.35) yields:

NUA =
1

5
p2 + p3 +

2

11
p5 −

1

11
(3.38)

Eq. (3.35)+ Eq. (3.38) yields:

2NUA = p1 + p4 +
3

11
p5 +

1

2
p6 +

1

5
p2 + p3 −

1

11
(3.39)
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Sincepi ≥ 0, for all i, from Eq. (3.39) and Eq. (3.37) we have:

2NUA ≤ p1 + p4 + p5 + p6 + p2 + p3 −
1

11
=

10

11
(3.40)

NUA ≤
5

11
(3.41)

Where “=” is valid if and only if p2 = p5 = p6 = 0. If p2 = p5 = p6 = 0, from

Eq. (3.36) we have

p1 + p4 − p3 = −
1

11
(3.42)

from Eq. (3.37) we have

p1 + p3 + p4 = 1 (3.43)

from Eq. (3.42) and Eq. (3.43) we seep3 = 6
11

andp1 + p4 = 5
11

. Therefore,NUA

is maximized to be5
11

whenp2 = p5 = p6 = 0, p3 = 6
11

,andp1 + p4 = 5
11

. Therefore, a

solution profile may be

{ 5
11

(Cooperative, KeepSilent), 6
11

(Cooperative, SendtoA)}

So B should send data to A for6
11

of the time and never try to connect to O directly.

A should forward all of the data received and send its own packets for 5
11

of the time.

These strategy lead to the outcome that A gets50
11

Mbps and B get30
11

Mbps. As expected,

this time the outcome is much more balanced as B’s ability to bargain is much stronger

than before.
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3.1.3.1 EXAMPLE OF COMPETITION

In this section we see that the nodes do not necessarily have to cooperate with each other.

Sometimes they compete for the bandwidth.

We now consider the scenario that is similar to that discussed above. However, we

now assume thatA can communicate withO at 10Mbps.B can accessA at 10Mbps,

and also accessO at 8Mbps. Intuitively, neither B nor A can benefit from cooperation,

because it costs more time for B’s packets to arrive at O if they are not transmitted

directly. A formal proof is shown as below.

The Payoff Matrix is given by:

B

Keep Silent Send to O Send to A

A Cooperative (10,0) (0,8) (0,5)

Non-cooperative (10,0) (40
9
, 40

9
) (5,0)

Table 3.6: Payoff Matrix for the Third Game

Note that forB, the strategies “Keep Silent” and “send to A” are both strictly dom-
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inated by “Send to O”. The only reasonable strategy for A whenB plays “Send to

O” is “Non-cooperative”. Therefore, the Nash equilibrium of the game will be (Non-

cooperative, Sending to O), which is the same as the scenarioin the first game, where

nodes compete with each other to connect to O.

We will show it is impossible for any cooperative strategy tosurpass the Nash equi-

librium of the game. Assume the strategy profile is

{p1(Cooperative, KeepSilent), p2(Cooperative, SendtoO),

p3(Cooperative, SendtoA), p4(Non− cooperative, KeepSilent),

p5(Non− cooperative, SendtoO), p6(Non− cooperative, SendtoA)}

wherepi ∈ [0, 1], and
∑6

i=1 pi = 1. If both nodes get higher utility than they do in the

Nash Equilibrium, we have:

p1





10

0



+p2





0

8



+p3





0

5



+p4





10

0



+p5





40
9

40
9



+p6





5

0



 >





40
9

40
9





(3.44)

Which leads to:

10p1 + 10p4 +
40

9
p5 + 5p6 >

40

9
(3.45)

8p2 + 5p3 +
40

9
p5 >

40

9
(3.46)

Eq. (3.45) leads to:

10p1 + 10p4 + 5p6 >
40

9
(1− p5) (3.47)

Eq. (3.46) leads to:
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8p2 + 5p3 >
40

9
(1− p5) (3.48)

Eq. (3.47)×8+ Eq. (3.48)×10 yields:

80p1 + 80p2 + 50p3 + 80p4 + 40p6 > 80(1− p5) (3.49)

80p1 + 80p2 + 50p3 + 80p4 + 80p5 + 40p6 > 80 (3.50)

Sincep3 ≥ 0, p6 ≥ 0, we have

80p1+80p2+80p3+80p4+80p5+80p6 ≥ 80p1+80p2+50p3+80p4+80p5+40p6 > 80

(3.51)

Therefore

p1 + p2 + p3 + p4 + p5 + p6 > 1 (3.52)

Which contradicts with
∑6

i=1 pi = 1.

Therefore, it is impossible for any cooperative strategy tosurpass the Nash equilib-

rium of the game.

3.2 GENERAL SOLUTIONS

After studying four basic scenarios in two-nodes games, we present our general solutions

for two-nodes games in this section.

The generalized two-nodes game is as shown in Fig. 3.1(c) : There are two nodes,A

andB competing for a single access nodeO. The bandwidth is as follows: fromA to O,

x Mbps, fromB to O, z Mbps, andx > z. Instead of sending data directly, B also has

the option to send its packets to A with the hope that A will forward its packets. It is y
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Mbps fromB to A. SupposeA andB are rational, selfish, but agreed to try to cooperate

to maximize both’s utility; what is the best outcome which both would likely to agree to?

The payoff matrix for the game is shown in Table. 3.7:

B

Keep Silent Send to O Send to A

A Cooperative (x,0) (0,z) (0, 1
1

x
+ 1

y

)

Non-cooperative (x,0) ( 1
1

x
+ 1

z

, 1
1

x
+ 1

z

) ( 1
1

x
+ 1

y

,0)

Table 3.7: Payoff Matrix for the General Two-node game

Depending on the value of x,y and z, there may be different scenarios, as the examples

we have shown in Section 3.1 illustrates. One of the following two will be true:

• 1
z

> 1
x

+ 1
y

• 1
z
≤ 1

x
+ 1

y

We study the game in each case.
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3.2.1 CASE 1: 1

z
≤ 1

x
+ 1

y

Lemma 1 If 1
z
≤ 1

x
+ 1

y
, “Send to O” is a dominant strategy for B; (Non-cooperative,

Send to O) is the Nash equilibrium of the game.

Proof:

If A plays “Cooperative”, then

UB(SendtoO) = z > 0 = UB(KeepSilent) (3.53)

UB(SendtoO) = z ≥
1

1
x

+ 1
y

= UB(SendtoA) (3.54)

If A plays “Non-cooperative”, then

UB(SendtoO) =
1

1
x

+ 1
z

> 0 = UB(KeepSilent) (3.55)

UB(SendtoO) =
1

1
x

+ 1
z

> 0 = UB(SendtoA) (3.56)

Therefore, no matter which strategyA plays, we always haveUB(SendingtoO) ≥

UB(SendingtoA) andUB(SendingtoO) ≥ UB(KeepSilent); therefore, all other strate-

gies forB are dominated by “Sending to O”. Similarly, we can show “Cooperative” is

dominated by “Non-cooperative” for A. Therefore, (Non-cooperative, Send to O) is the

Nash equilibrium of the game.

Lemma 2 If 1
z
≤ 1

x
+ 1

y
, no cooperative strategy improves the utility of both nodes

simultaneously compared with (Non-cooperative, Send to O).

Proof: Assume the cooperative strategy

{p1(Cooperative, KeepSilent), p2(Cooperative, SendtoO),

p3(Cooperative, SendtoA), p4(Non− cooperative, KeepSilent),
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p5(Non− cooperative, SendtoO), p6(Non− cooperative, SendtoA)}

wherepi ∈ [0, 1], and
∑6

i=1 pi = 1, improves the utility of both nodes simultaneously,

we have:

p1





x

0



 + p2





0

z



 + p3





0

1
1

x
+ 1

y



 + p4





x

0



 + (3.57)

p5





1
1

x
+ 1

z

1
1

x
+ 1

z



 + p6





1
1

x
+ 1

y

0



 >





1
1

x
+ 1

z

1
1

x
+ 1

z



 (3.58)

Which leads to:

p1x + p4x + p5
1

1
x

+ 1
z

+ p6
1

1
x

+ 1
y

>
1

1
x

+ 1
z

(3.59)

p2z + p3
1

1
x

+ 1
y

+ p5
1

1
x

+ 1
z

>
1

1
x

+ 1
z

(3.60)

However,y ≥ 0, thereforex > 1
1

x
+ 1

y

, so Eq. (3.59) leads to:

p1x + p4x + p5
1

1
x

+ 1
z

+ p6x >
1

1
x

+ 1
z

(3.61)

p1x + p4x + p6x > (1− p5)
1

1
x

+ 1
z

(3.62)

1
z
≤ 1

x
+ 1

y
⇒ z > 1

1

x
+ 1

y

, so Eq. (3.60) leads to:

p2z + p3z + p5
1

1
x

+ 1
z

≥
1

1
x

+ 1
z

(3.63)

p2z + p3z ≥ (1− p5)
1

1
x

+ 1
z

(3.64)
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Eq. (3.62)/x+ Eq. (3.64)/z yields:

p1 + p2 + p3 + p4 + p6 > (1− p5)
1

1
x

+ 1
z

(
1

x
+

1

z
) = 1− p5 (3.65)

p1 + p2 + p3 + p4 + +p5 + p6 > 1 (3.66)

which contradicts with the fact
∑6

i=1 pi = 1. Proof completed.

Lemma (1) and Lemma (2) show that there is no strategy such that both nodes get

higher utility than they do in the Nash equilibrium. Moreover, the Nash equilibrium

consists of dominant strategies; therefore we have the following theorem:

Theorem 1 If 1
z
≤ 1

x
+ 1

y
, the outcome of the game must be (Non-cooperative, Send to

O); both nodes get utility of 1
1

x
+ 1

z

.

The casey = 0, where B cannot access A can be regarded as a special case in this

category.

3.2.2 CASE 2: 1

z
> 1

x
+ 1

y

If 1
z

> 1
x

+ 1
y
, cooperation becomes possible. Before we try to find the cooperative

solution of the game, we have the following lemma to simplifyour work.

In the following discussion, we assume the cooperative strategy is

{p1(Cooperative, KeepSilent), p2(Cooperative, SendtoO),

p3(Cooperative, SendtoA), p4(Non− cooperative, KeepSilent),

p5(Non− cooperative, SendtoO), p6(Non− cooperative, SendtoA)}

wherepi ∈ [0, 1], and
∑6

i=1 pi = 1.

Lemma 3 If 1
z

> 1
x

+ 1
y
, for any given strategy characterized by(p1, p2, p3, p4, p5, p6),

there exists someq1, q3 ∈ [0, 1] such thatq1 + q3 = 1, and both nodes get at least the

same utility if they play the strategy characterized by(q1, 0, q3, 0, 0, 0).
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The lemma shows that any Pareto-efficient strategy should have p2 = p4 = p5 =

p6 = 0. This observation will greatly simplify our work.

Proof:

1

z
>

1

x
+

1

y
⇒

x

z
> 1 +

x

y
(3.67)

⇒ 1 +
x

z
> 2 +

x

y
(3.68)

⇒ 1 >
2 + x

y

1 + x
z

(3.69)

⇒ 1 >
1 + x

y

1 + x
z

+
1

1 + x
z

(3.70)

⇒ 1−
1 + x

y

1 + x
z

>
1

1 + x
z

(3.71)

Therefore, we can choose somew ∈ R, such that

1−
1 + x

y

1 + x
z

> w >
1

1 + x
z

(3.72)

Let q1 = p1+p4+p6+wp5 andq3 = p2+p3+(1−w)p5; obviously,q1+q3 =
∑6

i=1 pi = 1,

andq1, q3 ∈ [0, 1]. We will show both nodes get at least the same utility if they plays the

strategy characterized by(q1, 0, q3, 0, 0, 0).

Eq. (3.72) ⇒ w >
1

1 + x
z

(3.73)

⇒ xw >
x

1 + x
z

=
1

1
x

+ 1
z

(3.74)

We also have:

x ≥ x (3.75)
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and 1
x
≤ 1

x
+ 1

y
so

x ≥
1

1
x

+ 1
y

(3.76)

Eq. (3.75)×(p1 + p4)+ Eq. (3.76)×p6+Eq. (3.74)×p5 yields:

p1x + p4x + p6x + p5xw ≥ p1x + p4x + p6
1

1
x

+ 1
y

+ p5
1

1
x

+ 1
z

(3.77)

or

q1x ≥ p1x + p4x + p6
1

1
x

+ 1
y

+ p5
1

1
x

+ 1
z

(3.78)

On the other hand,

Eq. (3.72) ⇒ 1−
1 + x

y

1 + x
z

> w (3.79)

⇒ 1− w >
1 + x

y

1 + x
z

(3.80)

⇒ (1− w)
1

1
x

+ 1
y

>
1 + x

y

1 + x
z

1
1
x

+ 1
y

(3.81)

⇒ (1− w)
1

1
x

+ 1
y

>
1

1
x

+ 1
z

(3.82)

We also have:
1

1
x

+ 1
y

≥
1

1
x

+ 1
y

(3.83)

and 1
z

> 1
x

+ 1
y

so
1

1
x

+ 1
y

> z (3.84)

Eq. (3.84)×p2+ Eq. (3.83)×p3+Eq. (3.82)×p5 yields:
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p2
1

1
x

+ 1
y

+ p3
1

1
x

+ 1
y

+ p5(1− w)
1

1
x

+ 1
y

≥ p2z + p3
1

1
x

+ 1
y

+ p5
1

1
x

+ 1
z

(3.85)

or

q3
1

1
x

+ 1
y

≥ p2z + p3
1

1
x

+ 1
y

+ p5
1

1
x

+ 1
z

(3.86)

The utility vector(UA, UB)of the strategy(p1, p2, p3, p4, p5, p6) is given by:





UA

UB



 = p1





x

0



 + p2





0

z



 + p3





0

1
1

x
+ 1

y



 (3.87)

+p4





x

0



 + p5





1
1

x
+ 1

z

1
1

x
+ 1

z



 + p6





1
1

x
+ 1

y

0



 (3.88)

I.e.,




UA

UB



 =







p1x + p4x + p6
1

1

x
+ 1

y

+ p5
1

1

x
+ 1

z

p2z + p3
1

1

x
+ 1

y

+ p5
1

1

x
+ 1

z






(3.89)

The utility vector(U ′
A, U ′

B) of the strategy(q1, 0, q3, 0, 0, 0) is given by:





U ′
A

U ′
B



 = q1





x

0



 + 0





0

z



 + q3





0

1
1

x
+ 1

y



 (3.90)

+0





x

0



 + 0





1
1

x
+ 1

z

1
1

x
+ 1

z



 + 0





1
1

x
+ 1

y

0



 (3.91)
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I.e.,




U ′
A

U ′
B



 =





q1x

q3
1

1

x
+ 1

y



 (3.92)

From Eq. (3.89), Eq. (3.92), Eq. (3.78) and Eq. (3.86), we seeU ′
A ≥ UA and

U ′
B ≥ UB. Proof completed.

We now try to find the Raiffa solution for the game. Normalizedutility yields the

payoff matrix in Table (3.8)

B

Keep Silent Send to O Send to A

A Cooperative (1,0) (0,z( 1
x

+ 1
y
)) (0,1)

Non-cooperative (1,0) (
1

x
1

x
+ 1

z

,
1

x
+ 1

y
1

x
+ 1

z

) (
1

x
1

x
+ 1

y

,0)

Table 3.8: Normalized Payoff Matrix for the General Two-node game

By Lemma (3) we know any strategy that is Pareto efficient mustbe characterized by

(q1, 0, q3, 0, 0, 0). The Raiffa solution is Pareto efficient. So we can assume thedesired

strategy profile is p(Cooperative, Silent),q(Cooperative,Send to A), wherep, q ∈ [0, 1]
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andp + q = 1. Then we can write down the normalized utility and security level as

functions ofp andq:

NUA = p (3.93)

NUB = q (3.94)

SLA =
1
x

1
x

+ 1
z

(3.95)

SLB =

1
x

+ 1
y

1
x

+ 1
z

(3.96)

We requireNUA −NUB = SLA − SLB, therefore,

p− q = −

1
y

1
x

+ 1
z

(3.97)

We also knowp + q = 1, therefore

p = (1−

1
y

1
x

+ 1
z

)/2 (3.98)

q = (1 +

1
y

1
x

+ 1
z

)/2 (3.99)

Finally we get the solution of the game:(1 −
1

y
1

x
+ 1

z

)/2(Cooperative, Silent),(1 +
1

y
1

x
+ 1

z

)/2(Cooperative,Send to A). A gets a throughput ofx(1 −
1

y
1

x
+ 1

z

)/2, and B gets a

throughput of(1 +
1

y
1

x
+ 1

z

)/2( 1
x

+ 1
y
).

Concluding the discussions in this section, we see for two nodes there are only two

cases, either completely competing or completely cooperating. We address the problem

by given the analytical formula for the strategy profile for each situation.
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3.3 MULTIPLE-NODE GAMES

The fact that only the most efficient path should be used does not only apply to two-node

networks if we assume all nodes are within the same collisiondomain. The proof is as

follows. Suppose an inefficient route is used with non-zero probability in the strategy.

We rearrange the data sending along the inefficient way to be sent by the more efficient

route. This will cost less time since it is more efficient. Note that all the nodes still get

the same bandwidth but we have some extra time that may distributed to any route to

improve the benefits of at least one other node. In other words, there exist other strategy

profiles such that at least one node’s utility increases without any other node’s utility

decreasing. Therefore, by Pareto efficiency, it would be a better allocation.

3.3.1 ROUTING TREE

The wireless network can be regarded as a graph. Each participant of the network is a

node in the graph. The edges are the used network links between the nodes. As observed

above, only the most efficient path is ever used. Then we will get a confluent tree which

represents the topology of the network. This is usually referred to as the routing tree of

the network formed by the shortest path. The gateway will be the root.

It is possible to recursively play two-player games to get the solution for a multiple-

player game if they form a tree topology. A similar observation is discussed by Cheng et

al. [7]. There is some research of combinatorial agency which also resembles our ideas

[4].

3.3.2 GROUPS

To extend our solution to multi-node networks we first introduce the concept of group

and group coordinator. In this section we assume all the information is public.
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Definition 4 (Group) A group is a set of nodes which forms a subtree in the routing tree.

A group may consist of a node and its parent, or two or more competing nodes and

their parent. It may also contains smaller groups. A group appears to be a single node

to the outside and acts (either compete or cooperate) as a single node. After it gets the

bandwidth from the outside, it will share it within the groupaccording to the agreement

of the group memebers.

Definition 5 (Group Coordinator) The root of the subtree formed by the nodes of a

group is called the group coordinator.

The group coordinator acts as the representative of the group communicating with

the outside world. It has the responsibility to forward packets from other nodes in the

group.

Some examples of groups are shown below:

(a) Ex. 1 (b) Ex. 2 (c) Ex. 3

Figure 3.2: Example of groups

In Fig. 3.2(a), Node C and D form a group, which cooperates with B. C is the group

coordinator, which will be in charge of distributing the resource between C and D.
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In Fig. 3.2(b), Node B,C,D form a group, which cooperates with A. Within the group,

B cooperates with C and D while C competes with D for resources.

In Fig. 3.2(c), Node B and C form a group, which competes with Dfor resources.

A group can be as large as the whole network with the gateway asthe root, or as

small as a single node. We have to determine how groups play games with each other.

There are two types of games: the competition game may happenamong several groups;

the cooperation game may happen between a node and a group.

3.3.3 COMPETITION GAME BETWEEN GROUPS

As illustrated in Fig. 3.3, several groups are competing to connect to the parent. Each

small node may represent a group in the routing tree.

Definition 6 (Competition Factor) The competition factor for a group is the relative

proportion of time assigned to this group with respect to thespectrum time received by

the whole group. Each group is assigned a different competition factor, which sum up to

1.

Assume the group coordinator gets some spectrum time from its parent. Then it

divides the time into several slots according to the competition factors assigned to its

child groups. In each slot the coordinator makes a deal with acertain child group;i.e.,

forwards some packets from the group and sends its own packets for the rest of the time.

Each group tries to get more time (a bigger competition factor) to cooperate with the

group coordinator.

For a competition game, we have the following information:

• Groups involved in the game:G1, G2, G3, ..., Gn

• Their parent, P
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Figure 3.3: Competition between groups

• For each groupGk, k = 1, 2, 3, ..., n, we know the number of nodes in the group,

nk, as well as the nodesGk1, Gk2, ..., Gknk

• For each nodeGkm, we know the bandwidth from them toP , denoted byGkP
m

Let TGk be thecompetition factorfor groupGk, k = 1, 2, ...n. To be fair to assign

the proper competition factor, we have to ensure that each group get enough proportion

of time such that no agent can benefit from deviating from the assignment. Any node’s

deviation from the assignment may lead to pure competition.In this case, all the nodes

just try to fight for bandwidth and try to connect to the subtree node directly. Denote the

time nodeGkm gets byTGkm
; the following conditions will be true:

• The sum of all times should be 1.i.e.,

n
∑

k=1

nk
∑

m=1

TGkm
= 1 (3.100)
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• By 802.11 scheduling, for any k,m,i,j,

TGkm
GkP

m = TGijGiPj (3.101)

The solution for the above conditions are:

TGkm
=

1
GkP

m
∑n

k=1

∑nk

m=1
1

GkP
m

(3.102)

Groupk(k = 1, 2, n) as a whole will get the following proportion of time, which we

define as the competition factor:

TGk =

nk
∑

m=1

TGkm
=

∑nk

m=1
1

GkP
m

∑n

k=1

∑nk

m=1
1

GkP
m

(3.103)

3.3.4 COOPERATIONGAME BETWEEN NODES AND SUBTREES

A cooperation game always happens between a node and a group,which may be as small

as a single node. As illustrated in Fig. 3.4, nodeO help forwarding the packets from the

groupG to P . As observed in the previous sections, in the optimal case nodeO should

always forward all the packets fromG. The only uncertainty is the proportion of time

the link betweenG andO is active.

Definition 7 (Cooperation Factor) The cooperation factor for a group is the relative

proportion of time it is active when it is cooperating with its parent.

We wish to assign the groupG a cooperation factor. If nodeO, the parent of group

G, has only one child, then thecooperation factorwill be the relative time for groupG to

be active. Otherwise, in caseO has more than one child, the proportion of time for group

G being active should be the product of itscooperation factorandcompetition factor,
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since groupG should first compete with other groups for access toO, and then distribute

the time betweenO andG after that bargain.

Figure 3.4: Cooperation between a group and a node

For a cooperation game, we have the following information:

• Participants of the game: GroupG and NodeO

• For groupG, we know the number of nodes in the group,n, as well as the nodes

G0, G1, G2, ..., Gn, whereG0 is the group coordinator

• For each nodeGk, k = 0, 1, 2, ...n, we know the bandwidth from them toP and to

O, denoted byGP
k andGO

k

• Bandwidth fromO to P is OP

Denote the cooperation factor, the timeG is sending in 1 second, byC. The through-

put of groupG would be:
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UG = GO
0 × C (3.104)

The throughput of nodeO would be:

UO = (1− C − CGO
0 /OP )×OP (3.105)

The minimal throughput of both parties may be zero. The maximum possible through-

put for group G is:

MAXU (G) =
1

1
GO

0

+ 1
OP

(3.106)

The maximum possible throughput for nodeO is OP .

The normalized utility forG andO are:

NUG = GO
0 C(

1

GO
0

+
1

OP
) (3.107)

NUO = 1− C − CGO
0 /OP (3.108)

The security level of G would be the sum of all its members’ throughput in case there

is no cooperation;i.e.,

SLG =
|{k : GP

k 6= 0}|
∑

GP
k
6=0

1
GP

k

+ 1
OP

(3.109)

Where|X| denotes the number of elements in the finite setX.

The security level of O is a little more difficult to determine. Some nodes will try to

access P directly, and some may just bother O by interfering with O’s ability to transmit.

The security level is:
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SLO = min
1

∑

GP
k

neq0
1

GP
k

+ 1
OP

,
OP

|{k : GO
k 6= 0}|

(3.110)

The Raiffa solution suggests findingC to maximizeNU(G) under the constraint:

• NUG −NUO = SLG − SLO

• 0 ≤ C, NUG, NUO ≤ 1

Solving for C we have:

C =
1 + SLG − SLO

2(1 +
GO

0

OP
)

(3.111)

3.4 SOLUTION ALGORITHMS

Being able to find the equilibrium of both kinds of games that may appear in a network,

the solution algorithm can recursively solve the game. The basic idea of the algorithm

is that the gateway distributes bandwidth among the severallargest groups; then each

group coordinator recursively distributes the resource among its subgroups. Subgroups

compete with each other, and cooperate with the group coordinator such that the group

coordinator forwards data for the subgroups.

We assume the tree topology is given, and all the link-quality infomation needed is

known. Every node maintains two numbers, nodeShare and treeShare, which are the

share distributed to the node and the subtree with the node asthe root. Then Algorithm

1 calculates the proper share for each node:

The function solve(A), where A is a node in the network, worksas stated in Algo-

rithm 2:

The complexity of the algorithm isO(n2), where n is the number of nodes in the net-

work. In algorithm 1, the function “solve()” will be called exactly n times. In algorithm
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Algorithm 1 Solution for multiple nodes game
Set the nodeShare and treeShare of all the nodes to be 1
root← the gateway
solve(root)

Algorithm 2 Solve(A)
if A is not a leafthen

n = number of A’s first-level children
B = set of A’s first-level children
BWXY = Bandwidth from X to Y
Play a competition game amongB1, B2, . . . , Bn

for i = 1 . . . n do
Bi.treeShare← Bi’s competition factor× A.treeShare
if A is not the gatewaythen

P = A’s parent
Play a cooperation game betweenBi and A
Bi.treeShare← Bi’s cooperation factor×Bi.treeShare
A.nodeShare← A.nodeShare - B.treeShare×(1 + BWAP

BWBiA
)

end if
Bi.nodeShare← Bi.treeShare

end for
end if
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2, most steps are within constant time. only the for loop may involve at mostO(n) steps.

Therefore, the complexity of the algorithm isO(n2)

3.5 RESULTS AND DISCUSSIONS

We have implemented the algorithm presented in the previoussection. Given any tree

topology and link quality information, the program is able to calculate the proper band-

width sharing according to the Raiffa solution.

We list several examples here to illustrate the results given by the algorithm.

3.5.1 THE POWER OF THREATENING

Experiments show that with a potential alternative link, nodes get much better throughput

even if the link is never used in the optimal Equilibrium. It is the ability to disrupt

communication of the other party that makes the improvementpossible.

In Fig. 3.5(a), two nodesA andB are trying to access the gatewayG, and the

outcome is:

• Throughput of Node 1: 7.5Mbps

• Throughput of Node 2: 1.25Mbps

In Fig. 3.5(b),B has an alternative link toG. This time, the outcome is:

• Throughput of Node 1: 4.4Mbps

• Throughput of Node 2: 2.8Mbps
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(a) (b)

Figure 3.5: The power of threatening

3.5.2 CHAINS

Our studies show that even in the view of game theory, distantnodes tend to get starved.

This should not be a big surprise to us. Distant nodes have very few, or even no contribu-

tion to the network at all. It costs other nodes great effort to forward their traffic. There

is no hope they should get equal throughput as other nodes.

Figure 3.6: Distant nodes get starved

In Fig. 3.6, we assume each node can communicate with its neighbor at 10Mbps.

The outcome of the game is:

• Throughput of Node 1: 7.64Mbps

• Throughput of Node 2: 0.956Mbps
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• Throughput of Node 3: 0.12Mbps

• Throughput of Node 4: 0.02Mbps

If we assume in addition to the 10Mbps link with the neighbors, nodes can commu-

nicate with each other at 1Mbps, the outcome is more balanced, but centered nodes still

enjoy a higher shares:

• Throughput of Node 1: 4.76Mbps

• Throughput of Node 2: 1.42Mbps

• Throughput of Node 3: 0.43Mbps

• Throughput of Node 4: 0.28Mbps

We are not alone. Leino [15] shows consistent results. In hissimulation, the nodes

in the center of the network always tend to escape from the network, which results in the

next centered node wishing to escape. Our study also suggests that to keep the interest

of the center node to stay in the network, it should be assigned very high bandwidth.

3.5.3 SYMMETRY

Let us study another example.

Assuming all links shown in Fig. 3.7 are 10Mbps, the game generates the following

outcome:

• Throughput of Node 1: 2.51Mbps

• Throughput of Node 2: 3.35Mbps

• Throughput of Node 3: 2.51Mbps
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Figure 3.7: Another example

• Throughput of Node 4: 0.21Mbps

• Throughput of Node 5: 0.21Mbps

• Throughput of Node 6: 0.31Mbps

• Throughput of Node 7: 0.05Mbps

Again we see the nodes get less throughput as they are furtherfrom the gateway.

Moreover, we see that symmetric nodes in the network get the same throughput, which

naturally makes sense. Nodes 4 and 5 get the same throughput because they are sym-

metric in the network. Nodes 1 and 3 get the same throughput because both of they have

the same link quality to the gateway and both of them have children with the same link

quality.

Now we assume there are additional links between every two nodes in the network

with the link quality of 1Mbps; the outcome would be different:

• Throughput of Node 1: 2.23Mbps
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• Throughput of Node 2: 0.24Mbps

• Throughput of Node 3: 2.13Mbps

• Throughput of Node 4: 0.71Mbps

• Throughput of Node 5: 0.71Mbps

• Throughput of Node 6: 0.65Mbps

• Throughput of Node 7: 0.41Mbps

The surprise may be the fact that this time node 2 gets the poorest throughput. How-

ever, if the cooperation senario is broken, all nodes just try to connect to the gateway by

their competition; then all nodes will get a throughput of 0.232 Mbps. Therefore it is

still beneficial for node 2 to accept the equilibrium. For theother nodes, it is obviously

much better than the non-cooperative case. However, due to the overhead of protocols,

the improvements is so small to make the solution impractical. This is a simplified math-

ematic model and a lot of further work should be done. We also notice that simplifying

the multi-node game to recursively two-node game may lose some information and lead

to some problems. We will keep studying in future works.

These examples show the fact that nodes that act as a important router in the center of

the network get the highest throughput. The fewer hops it is away from the gateway, the

higher the throughput it gets; likewise, if the node acts as arouter for many other nodes.

3.5.4 LIMITATIONS

Our algorithm assumes the whole network is within a single clique. Therefore, there are

no concurrent trasmissions in the network. While this may betrue if the network is small

and all nodes are within the interference range of each other, it does not apply to larger

networks. We will address this problem in the following chapter.
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The algorithm in Chapter 4 only works within a single clique;i.e., we assumed all the

nodes are within the same collision domain. Therefore, the algorithm works well only if

the network is small. For larger networks we need further tools to study and analyze the

problem.

Interference and collision [23] are a nontrivial problems to deal with. For example,

the nodes 1,2 and 3 in Fig. 4.1 are within each other’s interference range; therefore they

cannot transmit at the same time. Moreover, nodes 2, 3 and 4 are also within each other’s

interference range. However, node 4 can transmit to node 3 while node 1 transmits to the

gateway as long as linkl1 and linkl4 are not in each other’s interference range.

Figure 4.1: Interference range in a chain

In larger networks the problem may be even more complicated.Fortunately, there

has already been some research to study this problem.

69
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4.1 RELATED WORK

By adopting the concepts of link-usage matrix and medium-usage matrix, people man-

aged to achieve a certain form of fairness in their simulations. These works are intro-

duced by Jakubczah et al. [12]. We first have a look how these matrices work.

Before we introduce the matrix, we list all our notations below:

• number of streams in the network:n

• number of links in the network:m

• streams in the network:s1, s2, . . . , sn

• throughput of streamsi: Ri, i = 1, 2, . . . , n

• links in the network:l1, l2, . . . , lm

• link capacity of linkli: Ci, i = 1, 2, . . . , m

• collision domain for linkli: ui ⊂ {l1, l2, . . . , lm}, i = 1, 2, . . . , m

The first matrix L is called the link-usage matrix. L is am× n matrix defined as:

L[i, j] =











1, if streamsj uses linkli;

0, otherwise;

The link-usage matrix provide us with the information aboutwhich links are in-

volved in each stream. To also included the link-capacity information, we define the

m× nweighted link-usage matrixL′ as:

L′[i, j] =
1

Ci

L[i, j] (4.1)
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The third matrix M is called the medium-usage matrix, which is am × m matrix

defined as:

M [i, j] =











1, if lj ∈ ui;

0, otherwise;

The stream-throughput vectorR is defined as:

R = (R1, R2, . . . , Rn)T (4.2)

The constraint of the throughput of the streams in a network can be represented by

the following formula:

ML′R ≤ 1m (4.3)

Where1m is a m-dimensional vector(1, 1, 1...1)T .

Note thatM is am×m matrix,L′ is am×n matrix, andR is an×1 matrix, therefore

bothML′R and1m are m-dimensional vector. Thus, the above vector inequality actually

contains n numerical inequalities.

We use the senario in Fig. 4.1 as an example to show how to calculate the absolute

fairness share with the matrix.

• number of streams in the network:n = 4

• number of links in the network:m = 4

• streams in the network:s1, s2, s3, s4, wheresi denotes the stream originated from

nodei to the gateway.

• throughput of streamsi: Ri, i = 1, 2, 3, 4
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• links in the network:l1, l2, l3, l4

• link capacity of linkli: Ci, i = 1, 2, 3, 4

• collision domain for linkli: ui ⊂ {l1, l2, l3, l4}, i = 1, 2, 3, 4

Matrix L is:

L =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Matrix L′ is:

L′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
C1

1
C1

1
C1

1
C1

0 1
C2

1
C2

1
C2

0 0 1
C3

1
C3

0 0 0 1
C4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Matrix M is:

M =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 0

1 1 1 1

1 1 1 1

0 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

By the definition of absolute fairness,R1 = R2 = R3 = R4 = R, therefore,

R = (R1, R1, R1, R1)
T (4.4)

Finally, the constraint can be expressed as:
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Calculating this yields:
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Which is equivalent to the combination of the four inequalities:

(
1

C1
+

1

C1
+

1

C2
+

1

C1
+

1

C2
+

1

C3
+

1

C1
+

1

C2
+

1

C3
)× R1 ≤ 1 (4.5)

(
1

C1
+

1

C1
+

1

C2
+

1

C1
+

1

C2
+

1

C3
+

1

C1
+

1

C2
+

1

C3
+

1

C4
)×R1 ≤ 1 (4.6)

(
1

C1
+

1

C1
+

1

C2
+

1

C1
+

1

C2
+

1

C3
+

1

C1
+

1

C2
+

1

C3
+

1

C4
)×R1 ≤ 1 (4.7)

(
1

C2

+
1

C2

+
1

C3

+
1

C2

+
1

C3

+
1

C4

)× R1 ≤ 1 (4.8)

We hope to maximizeR1 under the above constraints, which yields:

R1 =
1

4
C1

+ 3
C2

+ 2
C3

+ 1
C4

(4.9)

SoR1 is the fair share for the four nodes if absolute fairness is applied.
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4.2 OUR SOLUTION

Our work may be considered as an extension of the above work. Instead of absolute

fairness, we take game playing into account.

The core idea of the Raiffa solution is that the difference between the normalized

security level of agents should be maintained in their final assigned normalized utility.

Therefore, when we maximize the normalized utility of any agent, the normalized utility

of all agents reach their maximum.

Recall that, in the previous section, with the goal of absolute fairness, we have the

following constraint:

R = (R1, R1, R1, R1)
T (4.10)

If we replace this constraint with the constraint that the difference between the nor-

malized utilities of agents should be maintained, we get another solution, which meets

all the interference constraints as well as implements the Raiffa-solution concept.

To implement the solution, we have to address two critical problems: How to nor-

malized the utiltiy of each node? How to find out the securtiy level of each node?

The former problem is relatively easier to address. LetX be any node in the net-

work. The linear transformation fromUX ∈ [MAXUX
, MINUX

] to NUX ∈ [0, 1] is

straightforward:

NUX =
UX−MINUX

MAXUX
−MINUX

WhereMINUX = 0 for all X andMAXUX is the solution ofRX in Eq. ( 4.3)

when

R[i] =











RX , if stream i is originated from node X

0, otherwise;
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The latter problem is difficult to address. In a large network, it is not clear what is the

minimum bandwidth a node can guarantee itself. However, as long as there are so many

nodes in the network, if all the other nodes act against one ofthem, then it is very likely

that the actual bandwidth that node gets will be approximately zero. In other words, all

the nodes have very low, if not zero, security level. Moreover, if we assume nodes can

perform a Denial of Service (DoS) attack by continually broadcasting, then every node

does have zero security level, as any of them can perform a DoSattack and stop every

node from transmitting. Therefore, we adopt an approximation in our final solution: we

assume all nodes have zero security level. This may not be true, but it should be very

close to the reality.

We will use the example from Section 4.1 to show how we calculate the fair share.

The network topology is the same as shown in Fig. 4.1. We use the same notations as in

Section 4.1. The matricesM ,L, andL′ are the same as in Section 4.1.

First we normalize the utility of the nodes. To find the normalized utility of node 1,

we needMAXU1
, which is the solution ofR1 in Eq. ( 4.3) whenR = (R1, 0, 0, 0)T , i.e.,
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Solving these inequalities we find the maximal possible value for R1 ≤ C1. There-

fore, the normalized utility of node1 is given by:

NU1 =
U1 −MINU1

MAXU1
−MINU1

=
R1 − 0

C1 − 0
=

R1

C1
(4.11)

Similarly, the solution ofR2 in Eq.( 4.3) whenR = (0, R2, 0, 0)T yields theMAXU2
:
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Solving these inequalities we find the maximal possible value for R2 ≤
1

1

C1
+ 1

C2

.

Therefore, the normalized utility of node2 is given by:

NU2 =
U2 −MINU2

MAXU2
−MINU2

=
R2 − 0
1

1

C1
+ 1

C2

− 0
= R2(

1

C1
+

1

C2
) (4.12)

Similarly, the solution ofR3 in Eq. ( 4.3) whenR = (0, 0, R3, 0)T yields the

MAXU3:
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Solving these inequations we find the maximal possible valuefor R3 ≤
1

1

C1
+ 1

C2
+ 1

C3

.

Therefore, the normalized utility of node3 is given by:

NU3 =
U3 −MINU3

MAXU3
−MINU3

=
R3 − 0
1

1

C1
+ 1

C2
+ 1

C3

− 0
= R3(

1

C1
+

1

C2
+

1

C3
) (4.13)

Similarly, the solution ofR4 in Eq. ( 4.3) whenR = (0, 0, 0, R4)
T yields the

MAXU4:
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Solving these inequations we find the maximal possible valuefor R4 ≤
1

1

C1
+ 1

C2
+ 1

C3
+ 1

C4

.

Therefore, the normalized utility of node4 is given by:

NU4 =
U4 −MINU4

MAXU4
−MINU4

=
R4 − 0
1

1

C1
+ 1

C2
+ 1

C3
+ 1

C4

− 0
= R4(

1

C1

+
1

C2

+
1

C3

+
1

C4

) (4.14)

Since we assume zero security level, the requirement of

NUX −NUY = SLX − SLY

whereX, Y ∈ {1, 2, 3, 4} leads to

NU1 = NU2 = NU3 = NU4 (4.15)

Taking Eq.( 4.11),Eq.( 4.12),Eq.( 4.13) and ,Eq.( 4.14) into Eq.( 4.15) yields:

R1
1

C1
= R2(

1

C1
+

1

C2
) = R3(

1

C1
+

1

C2
+

1

C3
) = R4(

1

C1
+

1

C2
+

1

C3
+

1

C4
) (4.16)

as our fairness constraint. Finally, letR = (R1, R2, R3, R4) where
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and takeR into Eq. ( 4.3) to findR0:
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Solving the inequalities we haveR0 ≤
1
4
. Therefore, our fair shares are:
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4.3 SIMULATION AND DISCUSSIONS

We implement our solution in the Shoshin ns2 simulation testbed[lily]. A source-rate-

control algorithm limits the rate of each stream. We modifiedthe piece of code that

calculates the fair share for each node.

We use the ns-2 simulator to do the simulation. The default physical interface has

transmission range of 250.0 meters and interference range of 550.0 meters. We set the
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MacDataRate to be 1Mbps for each link. The link capacity is 860 kbps. We used a

packetSize of 1500 bytes. The simulation runs for 125 seconds.

We implement the simulation of the scenario depicted in Fig.4.2, where we place

the nodes 200 meters apart.

Figure 4.2: Simulation set up

Initially we use TCP traffic without our fairness algorithm,and the throughputs of the

four streams are shown in Fig. 4.3. We then turn our algorithmon, and the throughputs

of the streams are shown in Fig. 4.4.

We see several things from the simulation:

1. The relative order of the throughputs of the streams are almost the same in both

cases

2. The centered nodes get worse throughput in our solution. In Fig. 4.3, stream 1

get more than 200 kbps most of the time, while in Fig. 4.4 we cansee that in our

solution, stream 1 gets only 150kbps.

3. The distant nodes get better throughput in our solution. In Fig. 4.3, stream 5 get

starved some times, and the average throughput is around 20kbps, while in Fig.
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Figure 4.3: TCP without fairness
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Figure 4.4: TCP with fairness
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4.4 we can see that in our solution, stream 5 gets stable 30Kbps. The throughput

of node 3 and 4 are also improved a little.

The simulation results make sense. The relative order of thethroughputs of the nodes

is maintained; therefore the solution of our algorithm reflects the different cost for the

nodes to access the gateway. On the other hand, the balanced assignment prevents far

away nodes from starving.

4.4 TEMPORAL FAIRNESS AND OUR SOLUTIONS

In the examples in Section 4.1 and 4.2, our fair share assignments are the same as in the

definition of temporal fairness. This is non-trivial. We canshow our solution does lead

to temporal fairness.

In temporal fairness, each stream takes the same amount of spectrum time to arrive

at the gateway, subject to the max-min limitations.

Recall in our solution, we assume cooperation and require:

NUi −NUj = SLi − SLj

where

Ui = Ti, NUi = Ui

MAXUi

andSLi = 0

for every twoi, j.

Therefore, our requirement leads to:

Ti

MAXUi

=
Tj

MAXUj

for every two nodei, j.

whereMAXUi
is the throughput nodei gets when there is only one stream fromi to

the gateway in the network. Therefore,Ti

MAXUi

equals the spectrum time for the stream

from node i to the gateway. Therefore, the requirement becomes “the spectrum time for

stream from node i= the spectrum time for the stream from node j” for every two nodes

i, j. This is exactly what temporal fairness claims.



5 CONCLUSIONS AND FUTURE WORK

In this thesis we proposed our work in applying game theory inad hocnetworks (as

well as wireless mesh networks) to determine the proper resource distribution among the

nodes. A framework algorithm is proposed, simulations are performed and discussed.

The thesis is organized in the order we studied the problem. We first did a brief

survey ofad hocand wireless mesh networks, and evaluated the related research in this

field. Then we studied the simplest two-node games. By parameterizing the action space,

we reduce the game to a normal-form game with mixed-strategyspace. Since the Nash

equilibrium is not always Pareto optimal we looked for a solution using cooperative game

theory. We adopted the Raiffa solution.

The Raiffa solution is the best solution concept we feel reasonable. However, there

may be other solution ideas that are also good in this case. Note that the solution is

independent of the framework algorithm, so one can readily choose other solution ideas

and still make use of the framework to address the problem.

Then we studied ways to extend our work to multiple nodes. We reduce the network

to a tree, which leads to the recursive-solution idea.

After that, we take the interference range into account and amore realistic algorithm

is presented. Combined with existing source-rate-controlalgorithms, we have validated

our work by simulation.

Finally, we found out that our solution from the cooperative-game view coincides

with temporal fairness, which goes beyond our expectation.
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5.1 FUTURE WORK

Some assumptions in our algorithm, like the topology knowledge is known to every node,

need to be justified. It is possible that local topology knowledge would be enough, but

further works needs to be done to make it clear.

The model in the thesis implements the simplest utility function and normalization to

convert the throughput to the normalized utility. Our utility function is simplyU(X) =

X; our normalization is just the linear transformation. It may be better to introduce other

utility functions and normalization procedure to model thegame and get results other

than temporal fairness.

We may also consider other solution concept like Nash bargain equilibrium, and see

if the outcome is different.

Finally, more simulations with different settings are required to study and validate

the model better.
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