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ABSTRACT

Multi-hop wireless network are promising techniques in fileé&d of wireless communi-
cation. The dynamic topology of the network and the indepeanhdelfish participants of
the network make it difficult to be modeled by traditional ®boGame theory is one of
the most powerful tools for such problems. However, mostemirworks have certain
limitations. There has not been a widely accepted solubothfe problem yet.

In this thesis we propose our solutions for the problem oflvadth sharing in wire-
less networks. We assume the nodes are rational, selfishpbatalicious, independent
agents in the game. In our model, nodes are trying to senddhtzi to the gateway. Some
nodes may require others to forward their packets to sutidgssonnect to the gateway.
However, nodes are selfish and do not wish to help others.efdrerit is possible that
some nodes may refuse the requirement. In that case, theasgpit nodes may punish
the others by slowing down their traffic, in which case botttipa will suffer. Therefore
it is non-trivial to find out the equilibrium for these nodef$ea the bargaining process.
What is the proper distribution of resources among theses®d\Ve propose a solution
based on the game theory. Our solution fulfills the goal aihteés and social-welfare

maximization.
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1 INTRODUCTION

Wireless networks play an indispensable role in today’sldvavulti-hop wireless net-
works, such asd hocnetworks, wireless mesh networks, and community mesh net-
works, have been studied since the 1970’s. They became grognudl received tremen-
dous research interest recently. However, incentivesdoperation irad hocnetworks

and fairness in wireless mesh networks are currently biglpros. In wireless multi-hop
networks, there is currently no widely-accepted technigueompensate users for their
forwarding services [17]. Good economic models are desoedipport the operation of
these networks. We introduce the concept of the Raiffa gwidtom game theory and
propose a cooperative game model to study the behavior efsniodnulti-hop wireless

networks.

1.1 MOTIVATION

Multi-hop wireless networks are promising techniques impater science. lad hoc
wireless networks, the topology is not fixed as in traditiaretworks. New nodes may
join in or leave a network at any time. All nodes may forwartess’ packets and also
require other nodes to forward their own packets. The nékwanrks best when all the
nodes are not selfish, but cooperate well with each other.

In ad hocnetworks interesting problems arise from the fact that thetigpants do
not necessarily have an incentive to cooperate with eadtr.othe behavior of nodes
is not defined in the protocol. Therefore the nodes are somelmilar to agents in a
game situation. They are selfish, but not malicious; theyatenal, but easily run into

the situation of the “prisoner’s dilemma”, where each nodpds the other nodes will
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forward its packets while it does not forward packets frora tither nodes. However,
if every node acts in this way, the network would be non-existsince no node would

forward any other node’s packets.

In wireless mesh networks we can force the nodes to coopdriteever, just like
the difference of market economics and planned econoniieshandwidth schedule is
usually unfair to the some of the nodes [13]. It causes fasr@oblems in wireless

mesh networks, which received a lot of research interesinthc

We want to build a model that helps us understand the role dé¢siin such a game,
and reveals the equilibrium in such a game. These studi¢sisd help us understand

fairness from a new perspective.

1.2 CONTRIBUTIONS

In this thesis we propose our solutions for the bandwidthisggroblem. We assume the
nodes are rational, selfish, but not malicious, indepenalgents in the game. Our model
works when every node is trying to compete with other nodesfore bandwidth. The
incentive for the nodes to forward others’ packets is thettaat if they do not cooperate
the other nodes may punish them by competing more stringant they will get less
bandwidth in this case. We modeled the idea of “cooperatibilevthreatening” in this

thesis.

We adopt the cooperative-game model to solve the problenfirgtestudy the two-
node game where we accept the solution proposed by Raiffal8l&1]. Then we claim
that there are only two basic ways nodes can participateeingtwork, either completely
competing or completely cooperating. We use the routing toerepresent the network
topology. By treating a subtree as the same as a node in the, gemreduce the game

to a two-player game, recursively. An algorithm to detererine appropriate bandwidth
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allocation among the nodes in the system is then proposed.

The solution works well for networks without concurrentrtsanissions. For larger
networks that are not in a single collision domain, we adbpthethod from Jakubczak
et al [12] and propose a more-realistic solution for wirelegesh networks.

Our contributions include:

1. We formalize the two-node game and solve the game.
2. We generalize the model to solve multi-node games.
3. We simulate our approach using the 2simulator.

4. We find out that our solution leads to temporal fairnessmihe nodes are coop-

erating, subject to certain conditions which are non-afivi

1.3 THESISSTRUCTURE

The rest of the thesis consists of the following chapter&€Hapter 2 we present a survey
on the background and related work as well as introduce s@sie knowledge of game
theory which is most related to our work. In Chapter 3 we pnéseir model in the
order we studied the problems. In Chapter 4 we take intartereange into account and

discuss the simulation results. We present our conclusidrf@ture work in Chapter 5.






2 BACKGROUND AND RELATED WORK

In this chapter we review the basics of wireless networksgamde theory. We show there
are incentive and fairness problems in multi-hop wirelestsvorks. We show why game
theory is desired in wireless networks. We also introdueerttated work in applying

game theory in wireless networks.

2.1 WIRELESSNETWORKS

Wireless networks consist of nodes that are not connectddwities or fibers, but com-

municate through radio signals. Wireless communicati@mshie modeled by transmis-
sion range and interference range. The transmission ramgenéerference range are
usually from several meters to several kilometers. Thestrassion range is smaller than
the interference range. If the receiver is within transmissange of the sender, the re-
ceiver can successfully receive the signal from the sendérdecode the message. If
the receiver is out of interference range of the sender,gbeive can neither receive nor
sense the signal from the sender. If the receiver is withi@rfarence range, but out of
transmission range of the sender, it cannot receive thakigtowever, it can sense the

signal and the interference may cause it fail to receive fammther sender.

Some of the nodes in the wireless network may be connectedrbytavthe Internet.
We call such nodes gateways. Usually several nodes cormeciet gateway to access

the Internet, and form the many-to-one traffic.
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2.1.1 MULTI-HOPWIRELESSNETWORKS

If two nodes are not within each other’s transmission raiigey cannot communicate
directly. However, if there exists another node which ishiitthe transmission range
of both nodes and agrees to forward data for them, they canmeoncate with each
other via the intermediate node. Sometimes the network flay traverse multiple such

intermediate nodes. We call such networks multi-hop wegleetworks [1, 3].

In a multi-hop wireless network, nodes have to join the nekwo benefit from the
network, while having the obligation to forward other nodesckets. The problem is,
because of energy and bandwidth limitations, nodes woutdugh to forward these
packets. Thus the problem arises: how to decide whether totonforward data, and
how to decide the proper portion of the received data thdtheilforwarded? A lot of

interesting discussions and research arises from theséepns.

2.1.2 Ad-hocWIRELESSNETWORKS

Ad-hocnetworks [22] are one example of multi-hop wireless netwofd-hocnetworks
are wireless networks without fixed infrastructure or calieed administration. Such
networks are instantaneously formed when interested noole® within each other’s
transmission rangeAd-hocnetworks can be very useful in situations where there is no
need for an infrastructure or where its creation would bedostly. Sometimes nodes in
ad-hocnetworks are powered by batteries and only participateemtwork for a short
time. The advantages afl-hocnetworks include: it is very fast to deploy the network;
it is robust to changes; it is flexible; it allows nodes in thework with either high or
low mobility, etc.

A lot of research has studied how to motivate nodes to cotpevdh each other to

make the network operate well. We will survey these workshim last section of this
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chapter.

2.1.3 WRELESSMESHNETWORKS

Another example of multi-hop wireless networks is calledéMss Mesh Networks [3,
8]. These networks are composed of regular mesh nodes ttest bhoth data sources/sinks
and as routers, and gateway nodes that bridge traffic betiheenesh and the wired net-
work (usually the Internet) [4]. The traffic in a Wireless Mesetwork is usually from
one of the node to the gateway, or the reverse.

Generally there exists a single administrative authontyvireless mesh networks.

Nodes are designed to work appropriately.

2.1.4 (GOMMUNITY MESHNETWORKS

Neighbors connecting their home networks together withosdorm a Community
Mesh Network. When enough neighbors cooperate and forwaect ethers packets,
they do not need to individually install a gateway but indtean share Internet access
via gateways that are distributed in their neighborhoodkP&s dynamically find a route,
hopping from one neighbor’s node to another to reach theratehrough one of these
gateways.

In our model, we assume low mobility, no power constraintg] ao single admin-
istrative domain. Therefore, our model works best in theatibn of community mesh

networks.

2.2 GAME THEORY

Game theory is the mathematical study of the interactionrmmaodependent, self-

interested agents. It has been applied to a wide range ot fietduding economics,
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political science, biology, psychology, linguistics, acmimputer science. This section
introduces some basic knowledge of game theory, which wiltdferred to in the re-
minder of the thesis. Most of the contents of the sectionseciom the book of Von
Neumann et al [16, 18].

2.2.1 BASIC ELEMENTS OF A GAME

The basic elements of a game consist of the participanteajdime, the action space of
these participants, the consequences of these actionthapceference (utility) of these

participants.

2.2.1.1 ELF-INTERESTED AGENTS

The participants of a game are self-interested indeperaggarits. “Self-interested” does
not necessarily mean that agents want to cause harm to eaeh dhstead, it means
that each agent has its own description of which states ottréd it prefers, which
can include good things happening to other agents and thatdtto make these states
realized.

In multi-hop networks we discuss in this thesis, we assumadides are self-interested

agents only caring for themselves.

2.2.1.2 ULty

Each agent may have different preferences for the samemetoba game. Utility is the
numerical value that represents the preference of the sgéotr a fixed playef, and
two outcomes\/ and N, the utility functionU () satisfies:U(M) < U(N) if and only if
P prefersN to M.

The expected-utility hypothesis widely accepted in the field of game theory. The

hypothesis asserts that when faced with uncertainty abbiechmutcomes it will receive,
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the agent prefers outcomes that maximize its expectedyutilf the utility function
satisfies this hypothesis, then we say the utility functslinear.

The absolute value of the utility function evaluated atetiint outcomes is unim-
portant. Instead, every positive affine transformation afibty function yields another
utility function for the same agent. In other wordsljifA) is a linear utility function for
a given agent A thet’(A) = aU(A) + b is also a linear utility function for the same
agent, ifa andb are constants and is positive. Therefore, we can always perform a
linear transformation on a utility function without changithe preference represented
by that utility function. In many situations people lingantansform the utility functions

such that the utility ranges from O to 1.

2.2.1.3 ACTION SPACE

The action space is the set of actions an agent can take. Iy sitaations each agent
has exactly two actions that it can choose from. The smdlkattion space is, the more
such games have been studied. Games with an infinite actzme spe generally hard to

analyze.

2.2.1.4 QTCOME OF A GAME

Once each agent chooses an action from the action space wilebe some outcome
of the game. Sometimes there are several steps in each df Wdagents have to take
actions. In the view of game theory, the outcome can be espdess an array of utilities

of all the agents, which reflects the preferences of the agerthe outcome.

2.2.2 TWO-PLAYER NORMAL-FORM GAME

Two-player normal-form games are the most-studied gameshi$ case the game can

be represented by a payoff matrix. In the matrix all four glagscombinations of the
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agents’ actions are shown, and the utility of the two agemtsaich outcome is given.

Here we introduce some examples of two-player normal-foames.

2.2.2.1 HRISONERS DILEMMA

The most famous game in game theory is the prisoner’s dilermimastory is: suspect 1
and suspect 2 are arrested by the police. The police havHiamsot evidence for a con-
viction, and, having separated both prisoners, visit ed¢hem to offer the same deal:
if one testifies for the prosecution against the other andther remains silent, the be-
trayer goes free and the silent accomplice receives thd@ujlear sentence. If both stay
silent, both prisoners are sentenced to only six monthslifojaa minor charge. If each
betrays the other, each receives a two-year sentence. Haohgr must make the choice
of whether to betray the other or to remain silent. Howeveither prisoner knows for
sure what choice the other prisoner will make. This dilemroags the question: how
should the prisoners act?

The game may be represented by the payoff matrix shown ireT@bl), where we

assume the utility of each agent is simply zero minus the rarrabyears in prison.

2.2.2.2 B\TTLE OF SEXES

Imagine a couple, husband and wife. The husband prefers to tiee football game.
The wife would like to go to the opera. Both would prefer to gahe same place rather
than different ones. Where should they go?

The payoff matrix is shown in Table (2.2).

2.2.3 RRETO EFFICIENCY

Pareto efficiency is usually a desirable requirement forsnytion of a game. A strategy

profile is said to be Pareto efficient if for any other stratpgyfile, there will be at least
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Suspect 2

Stays silent | Betrays

Suspect 1 stayssilent  (-1,—1) | (-10,0)

Betrays (0,-10) (-2,-2)

Table 2.1: Prisoner’s Dilemma

one agent with lower utility. The principle is that if sometbke agents can get higher
utility without harming other agents, they should. It isural to expect Pareto efficiency

in any solution.

2.2.4 SRATEGY

The strategy of an agent may be any action from the actionsesmat a combination
of them. We use the notatidp; A;, p2As, . .., p,A,), whered ", p, = 1to denote a
strategy of an agent. The strategy means the agent woulcptan A; with probability
pi, Wherei = 1,2,...,n. If one of thesep;’s is 1, then it is called a pure strategy;
otherwise, it is called a mixed strategy.

A strategy profile is an array of strategies of each agentengdime. For example,
let the strategy for playere 1,2,. ..,k bes;, thens = {sq, ..., sx} is a strategy profile.

The solution of a game can be represented by a strategy profile
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Wife

Football | Opera

Husband Football| (2,1) | (0,0)

Opera | (0,0) (1,2)

Table 2.2: Battle of Sexes

The utility of a strategy profile is a vector of the expecteitlitids of all the agents
when every one acts according to the stratebg., u(s) = (ui(s), ua(s),. .., ux(s))

whereu;(s) is the expected utility of agemntvhen agenj playss;, forall j = 1,2, ... k.

2.2.4.1 MaX-MIN STRATEGY

To ensure some certain level of safety, the straightfonstiategy of a game is the “max-
min” strategy, in which case the agent chooses its actian tiee action space such that
it maximizes its worse-case payoff. The rational of thistggy is obvious: choosing

any other action may lead to some outcome where the agerd ¢miser utility.

2.2.4.2 [DDMINATED STRATEGY

To define dominated strategy, we use the following notatiGiven a strategy profile

S = {81, e Sn}, we defin8_i = {81, ey 8im1y Sid 1y - - Sn}, and{si, S—i} = S.
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Definition 1 (Dominated strategy) For some agent |, if there exist two strategiess; « €
S; such thatu;(s;, s—;) < wu;(s;*, s_;) for all strategies of the other agents; and for at

least one strategy._;, u;(s;, s—;) < u;(s;%,s_;) , then we say the strategyis dominated
by s;x. If w; (s, s—;) < u;(s;%,s_;) for all strategies of the other agents;, then we say

the strategy; is strictly dominated by; .

The dominated strategy should not be used.

2.2.5 NasH EQUILIBRIUM

The Nash Equilibrium is a strategy profile such that no playes anything to gain by
changing only his or her own strategy unilaterally. It is tikely outcome of a game if
agents are non-cooperativie2., they do not communicate with each other and choose

the actions by themselves. The formal definition is constdias follows:

Definition 2 (Best response to a strategy profile)A best response of Playérto the
strategy profiles_; is a mixed strategy;*x € S; such thatu;(s;*,s_;) > w;(s;, s_;)

for all strategiess; € S;.

The best response may not be unique.

Definition 3 (Nash Equilibrium) A strategy profiles = (s, ..., s,) is a Nash equilib-

rium if, for all agentsi, s; is a best response to ;.

In other words the Nash Equilibrium is a strategy profile véheo agent can benefit
by playing any other strategy if the other agents do not cadhgir strategy. Therefore,
the Nash Equilibrium is a stable outcome of the game. Howeusre the best response
may not be unique, the Nash Equilibrium may not be uniqueseith

Sometimes we can find the Nash Equilibrium of a game by dejdtie dominated

strategies from the Payoff matrix. For example, recall tamg of Prisoner’s Dilemma
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illustrated in Table (2.1). “Stay Silent” is dominated byetay” for both A and B. If
we delete the outcomes related to “Stay Silent” of both A anthBre will be only one

outcome left, which is the Nash Equilibrium of the game: baglents betray.

2.2.6 (QOOPERATIVE GAME

In a cooperative game the agents can communicate with eaehand take actions after
they have an agreement. The communication makes some atigpeatrategy feasible.
For example, assume there are two agen&d2. The action space dfis A;, A,, and
the action space dfis By, Bs. Then a cooperative strategy may be

{p1(A1, By), p2(As, By)}, which means with probability,, agentl playsA; and agent
2 plays By ; with probability p,, agentl plays A, and agen® playsBs;.

The above cooperative strategy is impossible to carrieduoigss the agents can
communicate with each other and agree to cooperate. We hallvsexamples where
the cooperative strategy performs much better than eitieeNash Equilibrium or the
max-min strategy in a cooperative game.

In the game of “Prisoner’s dilemma”, as illustrated in TaBl&, one easily identifies
that both the Nash Equilibrium and the max-min strategy legtie outcome Betrays,
Betrayg. The utility of both agents will be-2. On the other hand, the cooperative
strategy is{ 1(Stay silent, Stay silent) where both agents get a utility ef0.5. However,
it is impossible to reach to the cooperative optimal unldégsagents can communicate
and there exists some way to enforce the cooperative sigateg

In the game “Battle of sexes”, there are three Nash Equélifffiootball, Football
(where the husband gets utility 2 and the wife gets utility {Qpera, Operp (where
the husband gets utility 1 and the wife gets utility 2) gid.75 Football, 0.25 Opera),
(0.25 Football, 0.75 Operp)(where both get expected utility 0.75). However, none

of these are good solutions for the game. Instead, in the alaecooperative game
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where agents can communicate, we have the optimal sol{tié0F ootball, Football),
0.5(Opera, Opera)}, where both agents get expected utilit§.

The cooperative solution is difficult to implement unless #8gents can communicate
with each other and the game is repeated for many times. Hawigis usually reason-
able to assume the availability of communication and réipetiespecially in a wireless
network. In general, cooperative solutions may be muchebeittan non-cooperative

ones.

2.2.7 RAIFFA SOLUTION

In the thesis we adopt the Raiffa solution to find the outcameec¢ooperative game. We
introduce it in this section.

For two player games we can use a graph to help us understandea of Raiffa
solution. For any strategy profile= (sa, sg), we will have an outcome of the game and
the utility is (U(A), U(B)). Since it is a cooperative game with mixed strategies, if we
plot all possible outcome utility pointd/(A), U(B)) in a graph, we have a convex set

as shown in Figure 2.1

uB)

U(A)

Figure 2.1: All possible outcome of the game

However, not all of these outcomes are possible in a game. ageats will not

adopt dominated strategies; using max-min reasoning theplso guarantee themselves
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some minimal level of utility. We call the utility in the maxin strategy of an agent
the security level. Only the outcomes that equal or exceedséturity-level point are

possible, as illustrated in Figure 2.2

U(B)

U(A)
Figure 2.2: Security Level: only the grey area is feasible

By Pareto efficiency, the outcomes on the boundary form thiengpsets, as depicted
in Figure 2.3; the points not on the boundary are always datathby some other point

on the boundary. Therefore, a cooperative solution shoeldrbthe black line in Figure

2.4.

U(B)

AN

U(A)

Figure 2.3: Any outcome not on the boundary is not preferable

Adding the last constraint will lead to the Raiffa solutidtaiffa suggests the reason-

able solution should be on the 45-degree line starting frioensiecurity-level point. In
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UB)

5
U(A)

Figure 2.4: Pareto efficiency

other words, the difference between the security level ettéto agents should be main-
tained in the solution. As illustrated in Figure 2.5, anyrgaiot on the 45-degree line,
like the white points, will cause unfairness. The consegaaf unfairness is that agent
A may threaten B that it will terminate the cooperation, inigthcase the new equilib-
rium points will be the security level, and therefore agenbBes more utility than A

does.

UB)

5
U(A)

Figure 2.5: 45-degree fair line

The above reasoning suggests that the Raiffa solution idéaésolution concept for
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cooperative games. We adopt the solution idea in our studies

2.3 GAME THEORY IN WIRELESSNETWORKS

There is a lot of research studying wireless networks froegdime-theory view recently
(e.g, see [2, 5]), especially fard hocwireless networks. It is not surprising that many
people try to explain the behavior of nodesaith hocnetworks as a game. The topology
structure ofad-hocnetworks is extremely dynamic; nodes may join or leave the/ok
arbitrarily according to their own interest. Even if a nodigys in the network, it may de-
cide on its own to forward the packets of other nodes or noeré&lore,ad hocnetworks
form a typical situation where a game is played betweenmatiagents.

Most such research assumes that the nodes are selfish, vdlgbus, independent
agents in a game. Most game-theory-based approachesfalls categories: reputation
mechanism and virtual-currency mechanism.

The reputation mechanism assumes that each node shoultrtomiithe packets and
nodes can monitor the behavior of its neighborhood. Any etislvior will be reported,
and any node that does not forward packets will not be abletatg own packets for-
warded in the future [26]. However, this mechanism doeselbtis how many packets
should be forwarded; it assumes all packets should be faiedarOur focus is on what
the reasonable expectation is of packets to be forwarded.

The virtual-currency mechanism assumes there exists somedf virtual currency
in the networks such that nodes can earn money by forwardaeggis or make other
contributions, and need to pay money to get their own padeats [11]. This method,
along with the well-studied VCG [24] payment mechanismpse be a good solution
for the problem. However, it may be very complex.

Both mechanism are promising ways. However, it may not bg &asnplement
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reputation or banking services in the network. In this thetie factor we are concerned
with is the proper proportion of bandwidth that is allocatedthese nodes. Therefore,

we are studying the problem from a different aspect fromehegrks.

2.3.1 BVERGY CONSTRAINTS

The bottleneck for most nodes ad hocnetworks may be energy constraints. It costs
energy for nodes to act as routers for others. For mobile siogieergy may be a very
limited resource and usually should be reserved for the itsd.

A lot of research starts from the energy constragg( [25]). However, power is not
a major constraint for nodes in community wireless netwotkghis thesis we will not

take energy constraints into account. Rather, we focusmmugfmput.

2.3.2 NaSH EQUILIBRIUM

A lot of research models the network as a non-cooperativeeg@ngy, [19]). Each
node tries to maximize its own utility. It is widely acceptit the Nash Equilibrium is
usually the outcome of such a game. However, we do not prieéeNash Equilbirium

because of the following reasons:

1. Sometimes the Nash Equilibrium is far from optimal, ai@famous game “Pris-

onner’s Dilemma”.

2. We prefer to model the network as a cooperative game, iclwtise agents can
improve each other’s utility by wise cooperation which cahioe taken in the Nash

Equilibrium of a non-cooperative game.

3. Itis still an open problem to find the equilibrium point in afficient way when
there are a lot of agents in the game. It is now known that fopdilNash Equilib-

rium with even 2-players belongs to PPAD which is thoughtedhlarder than P.
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Moreover, finding a Nash Equilibrium that max social welfes® P hard. In fact,
most research in this category differ in their ways to find Mash equilibrium, or
in their mechanisms whose outcome will converge to the Nasiilibrium with

high probability.

2.3.3 MAXIMIZE THE AGGREGATEUTILITY

Some research assigns the resources among agents sudhetisant of the utility of
all nodes is maximized [6, 9]. However, it is unclear whetties assignment will be
advocated by the nodes or not. Not surprisingly, in manysasimizing social welfare
means some nodes have to sacrifice. Since each node is aemadeep agent, we do not
think it will accept the aggregate-utility maximizing agsment if it conflicts with the
node’s own interest. If there exists any node which can iwgits utility if it plays some
other strategy, the cooperation has to be unstable. Insteddth the Nash equilibrium

and our solution, nodes are not supposed to sacrifice foeggtg utility.

2.4 FAIRNESS INWIRELESSMESHNETWORKS

In wireless mesh networks, operators enforce cooperatimugh predefined protocols
or programs. For example, gateway control [13] controlsrésource distribution in
wireless mesh networks such that every node get a fair (asipdrin the work) through-
put.

Ad hocnetworks and community mesh networks are more suitable tmdgeled
as a game, since the decision of forwarding packets is matieidnally based on the
individual interest of the nodes. On the other hand, in wselmesh networks where
nodes do not have the right to make a decision the incentolaegam appears in the form

of fairness. After the network operator has made a policysilee, people would ask: is
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this a fair resource assignment? [20]

Current wireless mesh networks based on the IEEE 802.11 MWG&ndard network-
layer protocols cannot provide fairness to each node in géteark. In particular, it has
been demonstrated that nodes close to the gateway can staven shut off those that
are more hops away without rate-control mechanisms [13]we¥er, it is not self-
evident that different nodes having different bandwidtlundair. We have to note the
fact that different nodes in the network are indeed not sytrimand some may con-
tribute much more for the network. A very deliberate desigoigion has to be made to
advocate for any “fair” schedule.

We study the problem in this way: assume the nodes are fregsagein other multi-
hop wireless networks, then find the cooperative outcoméeiame, and compare it
with existing fairness conceptions.

Before we start our analysis, we show some well-known dedimstof fairness below.
Some forms of fairness are with respect to cost, and somesotlie with respect to

outcome.

2.4.1 ABSOLUTEFAIRNESS

Some people referring to absolute fairness require fagrmath respect to the outcome.
Under absolute fairness with respect to outcome, the rag¢escpually distributed between

all the streams. All the nodes in the network get the sameutjirput.

2.4.2 MaX-MIN FAIRNESS

Assume each node get a fair share of throughput defined bjudbsairness. Sometimes
the network topology is such that a few nodes can improve thesughput without any
other node’s throughput decreasing. Therefore, it is noesgary to insist that all nodes

should get the same throughput.



22 CHAPTER 2. BACKGROUND AND RELATED WORK

The definition of max-min fairness [20] assumes a singlelé¢ck. All nodes that
are limited by the bottleneck get equal share of the botdkiiak. Other nodes can get
higher throughput.

The max-min fairness concept is consistent with the ideaacéte efficiency. People
observe that in addition to absolute fairness, some nod#sinetwork can get higher
throughput without reducing the performance of the oth&herefore, people introduce
max-min fairness to maximize the overall throughput, whglteviding basic fairness

guarantees.

2.4.3 HROPORTIONALFAIRNESS

An allocationz is said to be proportionally fair if for any other feasibléoglationz’, the

aggregate of the proportional change is 0 or negatige,

/_ .
Y E <o (2.1)

ier Ui
Kelly [14] showed that if the utility function is logarithmito throughput, and the
fairness goal is to maximize the sum of utility of all the nedinen we reach proportional

fairness.

2.4.4 TEMPORAL FAIRNESS

The link capacity of different links in the network may be wudifferent. It is not nec-
essarily fair to have a 55Mbps link have the same throughparather link which is
only 1Mbps. Temporal fairness [10] considers time, instehthroughput as the re-
source to be fairly distributed. In temporal fairness, esitham takes the same amount
of spectrum time to arrive at the gateway, subject to the maxlimitations.

In this thesis, we assume the nodes in the wireless netwarknzke independent
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decisions as irad hocnetworks and community wireless networks. Then we find the
Raiffa equilibrium of the game, and advocate the outcomeetthb fair share. We show
that if the utility function is the throughput, the securigyel of each node is 0, and the

fairness goal is to realize the Raiffa equilibrium, then waah the temporal fairness.






3 GAMES IN MANY-TO-ONE ROUTING

In this chapter, we focus on those problems where there argy mades but only one
gateway in the network. As observed by Cheng et al. [7], thevowk topology will
form a confluent tree. We also make the assumption that noucamt transmitting is
allowed in such networks. This assumption is true if the ekws small and all links
are within each other’s interference range. On the othedhammay be far from real
life when applied to larger networks. However, making thessumptions makes things
easier initially, so we can focus on the game-theory views; istriction will be removed
in Chapter 4.

This chapter is organized as follows: first, we study someesgntative specific
examples of the simplest scenario with two nodes; we thelyayp solution to general
two-node games; finally, with induction and recursion, wieedaine the solution for the

general case.

3.1 TwoO-NODE GAME: NUMERICAL SCENARIO

The simplest game happens between two nodes. Let us assareeatle two nodes,
denoted by A and B, both trying to connect to the gateway O eDdjmg on the available
links, there are three potential scenarios, as illustratd€ig.3.1. In Fig. 3.1(a), both A
and B can access O directly, while they cannot communicateegich other. In this case,
the interests of A and B are incompatible. They compete vattheother for bandwidth.
In Fig. 3.1(b), A can access O directly, but B can only accegsd@ectly if A agrees to
forward B’s packets. In this case B has to cooperate with Actieas O. In Fig. 3.1(c),

both A and B can access O directly, while B can also send psitked and ask A to

25
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forward them. Thus, they may be either competing or coopegatith the other party.

0 0
0
A A
A B s
(a)

B
a (b) ()

Figure 3.1: Three possible scenarios between two nodes

There are some assumptions and settings throughout théechape assume the
nodes always have data to transmit to the gateway. Thisasftthie network is busy and
no node has enough bandwidth. This is also a reasonableifstapbn at the beginning
of the analysis. The objective of these nodes is to get as tmohghput as possible.

In this chapter, we define the utilityy of a nodeX to be equal to its throughput,

Tx:

Ux =Ux(Tx) =Tx (3.1)

Since the throughput of any node in any network must be fitiite,range of our
utility for any node is|0, co).

It might be reasonable to have some more elaborate utilitgtfan defined here.
However, it is nontrivial to choose the proper utility fuists. Advocating for a certain
utility function for nodes in wireless network is out of trésope of the thesis; however,
we believe the utility function can be replaced with mosteottunctions (as long as they
are continuous and monotonically increasing) and the wolyirocedure will still be
effective.

We assume the nodes are selfish. They only care for the intdrdeemselves. They
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do not wish to contribute to the whole network unless it isdf@ml for themselves.
They can make independent decisions as agents do in a tg@ios. As such, each
agent will attempt to maximize its own utility, and not catmat the aggregate utility of

the network.

In this section, we will assume all packets are of the sames $ie link capacities
are known specific numerical values. We study how the bangdirproceed and how

equilibrium will be found in the three cases in the followidigcussions.

3.1.1 GOMPETITION GAME

Consider the situation illustrated in Fig. 3.1(a). Assumeah communicate with O at
10Mb/s and B can communicate with O at 1Mb/s. What is the yikeltcome of the

competition?

Lett 4 be the fraction of time A can access O in one second{ grimk the fraction of

time B can access O in one second.

The utility of node A is given by:

Us=T4y=1t4 x10 (3.2)

The utility of node B is given by:

UB:TB:tBX1 (33)

By the selfish assumption, both A and B wish to maximize them atility, therefore
their goal is to get as much time as possible. On the other,lsamek the network is busy,

we have:
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tittp=1 (3.4)

That is, the interest of A and B are incompatible and therenisvay that they can
cooperate to get any better outcome. There is no betteegyratther than to compete
with each other for bandwidth. In this case, the 802.11MAGtquol will ensure that
each packet from both parties has the same chance to gemittets We assume the

packets are of the same size; therefore:

tax10=tp x1 (35)

From Eqg. (3.4) and Eq. (3.5) the solutiontis = 1—11 seconds andz = % seconds.
Both parties get a throughput é% Mbps.

The same results are reported by Gambiroza et al. [10].tinély, in the equilibrium
both nodes should try to send as much as possible, whichtgesuhe above outcome.
We now study this as a normal-form game and advocate thi# fesm the game-theory
view.

The basic elements of the game are:

e The participants of the game: A and B

e Action space of A: A can keep silent, try to send all the tinetrp to send some

of the time and keep silent in the rest of the time.

e Action space of B: B can keep silent, try to send all the tinrerypto send some

of the time and keep silent in the rest of the time.

It is impossible to write down the payoff matrix for gamesmibfinite actions. We

have to parameterize the action space for each agent. Lattiom space of X (either A
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or B) be{Active, Silen. Then the strategy X plays in the game can be expressed as
(pActive, (1 — p)Silent), wherep € [0, 1].

This is a mixed strategy formed by the two pure strategieefSi and “Active”, andp

is the probability of X being active. Then we have the folloggigame with the payoff

matrix shown in Table (3.1):

e The participants of the game: A and B

Action space of A: Silent, Active

Action space of B: Silent, Active

Strategy of A: paActive, (1 — p4)Silent);pa € [0, 1]

Strategy of B: ppActive, (1 — pg)Silent);pp € [0, 1]

B

Silent | Active

A | sient| 0.0)| ©0.1)

Active | (10,0)| (L, 0

117 11

Table 3.1: Payoff Matrix for the First Game
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No matter what strategy B uses, A can always get a highetyutiji playing “Active”;
therefore “Silent” is strictly dominated by “Active” for A-or B,"“Silent” is also strictly
dominated by “Active”. Thus, the Nash Equilibrium of the gans (Active, Active),
which results in the situation where both agents try to sénth@ time and finally both

get a throughput of? Mbps.

We will show there is no strategy such tHaith nodes get higher utility; therefore
there is no desire for any cooperation. Assume that in thé dui@ome of the game the
proportion of (Active, Active) i®, the proportion of (Active, Silent) ig,, the proportion
of (Silent, Active) isps, the proportion of (Silent, Silent) is,. Because at any time, the

nodes must be in one and only one of the four situations, we have:

D1 +p2+p3+p4:17p2€[071]7121727374 (36)

In order to make cooperation possible we should also have:

% 10 0 0 %
D1 + P2 + 3 + P4 > (3.7)

10 10
o 0 1 0 o

Which leads to:

10 10

— 1 — .
bt Ops > 11 (3.8)
10 10

— — 3.9
11]91 + p3 > 11 (3.9)

However, Eq. (3.8} Eq. (3.9)x10 yields:

10(p1 + p2 +p3) > 10 (3.10)
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or

p1+p+p3>1 (3.11)

which contradicts with Eq. (3.6).
Therefore, there is no outcome of the game whmrth nodes get higher utility than
they do in the Nash Equilibrium. Therefore, the Nash Eqtillifm in this game is Pareto

optimal outcome. In other words, the outcome of the game briite Nash Equilibrium.

3.1.2 (QGOOPERATIONGAME

We now consider the second possibility, shown in Fig. 3.1 assume A can com-
municate with O at 10Mbps. B can access A at 10Mbps, but cauuaiss O directly.

There are a lot of possible outcomes of the game. B can keag sl the time; then
A gets a bandwidth of 10 Mbps and B gets a bandwidth of 0 Mbp8 Kéeps active,
and A does not forward any of B’s data, just trying to send teh@n A gets 5Mbps, and
B gets OMbps.

Obviously, neither outcome is favorable to B. On the otherdhahe throughput A
gets varies when B adopts different strategies. It is alssibte that B sends data and A

forwards some of it. There may be such a conversion betweerd/a

¢ B: Hifriend; can you forward these packets for me?
e A:ldonotwishto. If I do, | will have less time to transmit myva data.

¢ B: If you do not forward my data, | will punish you by keepindiae to slow down

your traffic.

e A: Ok; let's make a deal. | will forward some of your data; pdeadon’t bother me

the rest of the time.
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e B: Sounds like a good deal. | will send to you at 3Mbps.
e A: No way; | will forward at most 1Mbps.

e B: ...

Note that this time it is not a zero-sum game. A and B may agr@®operate. The
difficulty is how to determine the proper allocation of bandih between the two nodes.
We analyze the cooperation in the game-theory view.

The basic elements of the game are:

e The participants of the game: A and B

e Action space of A: Forward B’s packets (Cooperative), Séndwn packets (Non-

cooperative)

e Action space of B: Keep active or keep silent

The exact definition of these actions needs to be emphadizplays “cooperative”
if it forwards all of B’s packets even if this means that A does have time to transmit
its own packets. A plays “Non-cooperative” if it keeps tryito send its own packets,
and never forwards B’s packets. B plays “Keep Silent” if iedaot attempt to send any
packets. B plays “Keep Active” if B keeps trying sending Ak time. However, since A
is also trying to send (either forwarding B’s or sending Asropackets), B can succeed
in sending only half the time. Therefore when playing “Keeptivee”, B sends packets
half the time.

A's utility is maximized if the strategy profile (Non-coofive, Keep silent) is car-
ried out. In this case A gets 10Mbps, and B gets OMbps. B’géyif maximized if the

strategy profile (Cooperative, Keep active) is carried ¢muthis case, B tries to send all
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the time but B can only succeed half the time, because the b#ifeof the time is taken

by A forwarding packets from B. Therefore in this case A gatbfds and B gets 5Mbps.

As in the previous game, the actions they actually play cacdnsidered as mixed

strategies of these actions. Then we have the payoff mdtaws in Table 3.2:

B

Silent | Active

A Cooperative | (10,0)| (0,5)

Non-cooperative (10,0)| (5,0)

Table 3.2: Payoff Matrix for the Second Game

For A, the strategy “Cooperative” is dominated by “Non-cemtive”. For B, “Silent”
is dominated by “Active”. Then it is straightforward to sd®at the pure-strategy Nash
Equilibrium of this game is (Non-cooperative, Active), whiis apparently not what we
wish to happen. However, unlike the first game, there are @@dpe outcomes that are
better than the Nash Equilibrium for both nodes. For exanguppose the outcome con-
sists 0f20% of (Cooperative, Active) and0% of (Non-Cooperative, Silent); the utility

vector shows:
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5
0.2 +038 +0 +0 = > (3.12)

Therefore we consider the cooperative version of the ganefiad the Raiffa solu-

tions with the following steps.

Assume the cooperative strategy profile is
{(p1(Cooperative, Active), po(Cooperative, Silent), ps(Non—cooperative, Active), ps(Non—
cooperative, Silent)};p1 + pa +ps+ps = 1,p; € [0,1],i=1,2,3,4
The utility vector for A and B are given by Eq. (3.13):

Uy 0 10 5 10
=Dp1 + po + p3 + P4 (3.13)
Ug 5 0 0 0
Therefore,
Ua = 10py + dps + 10py (3.14)
Up = 5p1 (3.15)

The utility of each agent is normalized such that the bebtyuéin agent may getis 1
and the worstis 0. Let'x be the utility of X (either A or B). Let\/ AX ;. be the maximal
utility a node X can get and/ 1Ny, be the minimal utility it can get. These are fixed
values once the topology and link capacities of the netwegkgaven. The normalized
utility of node X, NUy, is a function ofUx (therefore a function gb,, ps, p3, p4), defined

as:
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_ Ux—MINy,
- MAXy, — MINy,

NUx (3.16)

This is the only linear mapping from the interval of the wyilof X, [M I Ny, , MAXy, ],
to [0, 1]. Any non-linear mapping implicitly changes the underlyirtgity functions and

therefore is not preferred. After normalization, the P&yéétrix is shown in Table 3.3.

B

Silent | Active

A Cooperative | (1,0) | (0,1)

Non-cooperative (1,0) | (0.5,0)

Table 3.3: Normalized Payoff Matrix for the Second Game

Therefore, the normalized utility of A and B, as a functiorpefp., p3, p4, are given

by:

NU4 = py +0.5p3 + pa (3.17)

Second, we observe thdt and B have different powers in the bargainl is much
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stronger since it can ensure itself a normalized utility & l@avingB with 0 by playing
“non-cooperative”. The difference between nodes is charaed by the security level.
As introduced in Chapter 2, the security level is the highisity a node can guarantee
itself. Any other strategy may lead to lower utility.

The security levelSLy, of a nodeX is the highest utility it can guarantee itself.

From the normalized-utility matrix shown in Table 3.3 we bav

SL,=0.5 whenA takes “Non-cooperative” (3.19)

SLp =0 whenB takes either action (3.20)

The normalized utility and security level reveal the asyrtmnbetween the nodes.

Raiffa suggests that the difference between the secuvigjdshould be maintainedin
the solution profile. If the relative advantage is kept, aggra that unilaterally deviates
from the solution profile will lose at least the same as theeotgent does since the
cooperation will be terminated and both will get the utilitithe security level.

The Raiffa solution is given by the following optimizatioroplem:

Maximize NU 4 under the constraints:
e NUy— NUg=SLy— SLp
e pit+prtp3tps=1

® D1,P2,P3, P4 S [07 1]

Expressing all terms ip;, p», p3 andp, the problem becomes:
Maximize

NUA =p2 + 0.5]93 + P4 (321)
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given:

p2+0.5p3 +ps —p1 =05 (3.22)
PLtpetpst+pi=1 (3.23)

andpi, p2, ps, ps € [0,1].

Taking Eg. (3.22) from Eq. (3.21) yields:

NU,y =p1 4+ 05 (3.24)
Eq. (3.23)- Eq. (3.22) yields:
2p1 +0.5p3 = 0.5 (3.25)
Therefore,
p1 = 0.25 — 0.25ps (3.26)
NU4 = 0.75 - 0.25p3 < 0.75 (3.27)

Therefore,NU 4 is maximized to b&.75 whenps; = 0, which yieldsp; = 0.25 and
P2+ Py = 0.75.

Therefore, one of the solutions for this game is
{0.25(Cooperative, Active), 0.75(Cooperative, Silent) }; i.e., B should be “active” for
25% of the time, andA should forward all these packetd.has75% of the time to send
its own packets while B keeps silent. In this casgets 7.5Mbps an@® gets 1.25Mbps.
Both nodes get better throughput than the Nash Equilibriwtrere A gets 5Mbps and
B gets OMbps.
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3.1.3 QGOOPERATION ANDCOMPETITION GAME

We now consider the third possibility, shown in Fig. 3.1(dVe assume thatl can
communicate withD at 10Mbps. B can accessi at 10Mbps, and also acceésat

1Mbps. First, we identify the participants and their actspaces:

e The participants of the gamet and B
e Action space ofd: Cooperative or Non-cooperative

e Action space of3: Keep silent, send to A or send to O

The difference in this case from the scenario in Sectior23iés in the fact that B can
access O directly. However, the link between B and O is weakethe more-efficient
way is that B sends its packets to A, which will hopefully fama them to O. If B keeps
sending to O, thus competing with A, the traffic will be slowdsmivn significantly; both
will get % Mbps, as analyzed in the first game.

Will the outcome of game be that of the first or the second gamdifferent from the
both? B is likely to get more than it gets in the first game, aglas it has an alternative
route which can send data much faster. Moreover, this timg ilBuch stronger than it
was in the second game. It can access O even if A does not @eperoreover, he can
slow down A's traffic from 10Mbps to less than 1 Mbps. This ieda the current 802.11
MAC protocol, which gives the packets from A and B equal cleatbe transmitted.
One can expect this time the outcome is better for B.

We apply the same reasoning procedure as in Section 3.1e2 twlsat the exact solu-
tion is. The normal-form game is represented by the matrikable 3.4. Normalization
of utility will yield the payoff matrix in Table 3.5.

Assume the strategy profile is

{p1(Cooperative, KeepSilent), ps(Cooperative, SendtoO),
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Keep Silent| Sending to O Sending to A
Cooperative (10,0) (0,1) (0,5)
Non-cooperative  (10,0) 2,0 (5,0)

Table 3.4: Payoff Matrix for the Third Game

ps(Cooperative, SendtoA), ps(Non — cooperative, KeepSilent),

ps(Non — cooperative, SendtoO), ps(Non — cooperative, SendtoA)}
wherep; € [0, 1], and Zle p; = 1, the utility vector is given by:

Therefore,

10
11
+Ds 0
11

10
UA = 10]91 + 10]94 + ﬁp5 + 5p6

+Ds

39

(3.28)

(3.29)
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Keep Silent| Send to O] Send to A

A Cooperative (1,0) (0.4) (0,1)

Non-cooperative  (1,0) (&, &) 1,0)

Table 3.5: Normalized Payoff Matrix for the Third Game

10
Up = ps + 5p3 + 1P (3.30)
1 1
NUy =p1 +ps+ 7P + 5P (3.31)
1 2
NUp = gpz +p3s+ ﬁp5 (3.32)

Then the security level ol is given by:

1 . :
SLy = 11 when A is non-cooperative (3.33)



3.1. TWO-NODE GAME: NUMERICAL SCENARIO

the security level of3 is given by:
2
SLp = 1 when B sends to O

The Raiffa solution is given by the following optimizatioroplem:

Maximize NU 4 under the constraint:
e NUy— NUg=SLy—SLp

d Z?:l pi=1

e p; €[0,1]

Expressing all terms ip; the problem becomes:

Maximize
NUs=p1 + +1 +1
A=D1 T D4 11295 2176
given:
++1+1 (1++2)_1
P11 P4 11295 2p6 5292 p3 11295 T
P1+p2+ps+pstps+ps=1
andp; € [0, 1].

Taking Eg. (3.36) into Eq. (3.35) yields:

1 2 1
NUy = = L — —
A 5292 +p3+ 11295 11

Eq. (3.35)+ Eq. (3.38) yields:

3 1 1 1
INU, = = ps+ =pe+ = -
Uas=p1+ps+ 11]?5 + 2176 + 5]92 + 3 11

41

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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Sincep; > 0, for all 4, from Eq. (3.39) and Eq. (3.37) we have:

1 10

2NU4 §p1+p4+p5+p6+p2+p3—ﬁ=ﬁ (3.40)
5
NUL <+ (3.41)

Where =" is valid if and only if p, = p5 = pg¢ = 0. If po = p5 = pg = 0, from
Eq. (3.36) we have

1

- (3.42)

P11+ Py —p3=

from Eq. (3.37) we have

pr+pstpa=1 (3.43)

from Eq. (3.42) and Eq. (3.43) we spg = % andp; + py = % Therefore,NU 4
is maximized to be’ whenp, = ps = ps = 0,p3 = >,andp, + ps = >. Therefore, a

solution profile may be

{3 (Cooperative, KeepSilent), & (Cooperative, SendtoA)}

So B should send data to A fq@f of the time and never try to connect to O directly.
A should forward all of the data received and send its own pm:for% of the time.
These strategy lead to the outcome that A Q%Mbps and B ge%Mbps. As expected,
this time the outcome is much more balanced as B’s abilityargdin is much stronger

than before.
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3.1.3.1 EAMPLE OF COMPETITION

In this section we see that the nodes do not necessarily baomperate with each other.

Sometimes they compete for the bandwidth.

We now consider the scenario that is similar to that disaisd®mve. However, we
now assume thatt can communicate witlh) at 10Mbps. B can accessi at 10Mbps,
and also accesS at 8Mbps. Intuitively, neither B nor A can benefit from coogén,

because it costs more time for B's packets to arrive at O if thee not transmitted

directly. A formal proof is shown as below.

The Payoff Matrix is given by:

Keep Silent| Send to O] Send to A
A Cooperative (10,0) (0,8) (0,5)
Non-cooperative  (10,0) C (5,0)

Table 3.6: Payoff Matrix for the Third Game

Note that forB, the strategies “Keep Silent” and “send to A” are both diyidom-
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inated by “Send to O”. The only reasonable strategy for A wBeplays “Send to
O” is “Non-cooperative”. Therefore, the Nash equilibriurhtbe game will be (Non-
cooperative, Sending to O), which is the same as the scemati® first game, where

nodes compete with each other to connect to O.

We will show it is impossible for any cooperative strategystopass the Nash equi-
librium of the game. Assume the strategy profile is
{p1(Cooperative, KeepSilent), ps(Cooperative, SendtoO),
ps(Cooperative, SendtoA), ps(Non — cooperative, KeepSilent),
ps(Non — cooperative, SendtoO), ps(Non — cooperative, SendtoA)}
wherep; € [0,1], and E?:lpi = 1. If both nodes get higher utility than they do in the

Nash Equilibrium, we have:

10 0 0 10 2 5 2
p1 +D2 +Pp3 +Pa +Ds +Ds >
0 8 5 0 2 0 Y
(3.44)

Which leads to:

10p; + 10py + 450135 + Hpg > t—o (3.45)
8m+%+%m>% (3.46)

Eqg. (3.45) leads to:
10p; + 10p4 + 5pg > 4—90(1 —Dps) (3.47)

EqQ. (3.46) leads to:
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40
8p2 + dpz > 5(1 — Ds) (3.48)

Eq. (3.47)x8+ EQ. (3.48)x 10 yields:

80p1 + 80p2 + 50p3 + 80p4 + 40ps > 80(1 — ps) (3.49)

80p1 + 80py + 50p3 + 80p4 + 80ps + 40pg > 80 (3.50)

Sinceps > 0, pg > 0, we have

80p1 +80p2+80p3+80p4+80p5+80ps > 80p1 +80p2+50p3+80p4+80ps +40pg > 80
(3.51)
Therefore

P1+ P2+ ps+ps+ps+ps > 1 (3.52)

Which contradicts witty"0_, p; = 1.
Therefore, it is impossible for any cooperative strateggugoass the Nash equilib-

rium of the game.

3.2 GENERAL SOLUTIONS

After studying four basic scenarios in two-nodes games,nesgnt our general solutions
for two-nodes games in this section.

The generalized two-nodes game is as shown in Fig. 3.1(cgreldre two nodesd
and B competing for a single access nade The bandwidth is as follows: from to O,
x Mbps, fromB to O, z Mbps, andr > 2. Instead of sending data directly, B also has
the option to send its packets to A with the hope that A willsfard its packets. Itisy
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Mbps fromB to A. Supposed and B are rational, selfish, but agreed to try to cooperate
to maximize both’s utility; what is the best outcome whichtbaould likely to agree to?

The payoff matrix for the game is shown in Table. 3.7:

B

Keep Silentf Sendto O | Send to A

A Cooperative (x,0) (0,2) Or+)
Non-cooperative  (z,0) (o) | (1.0)

Table 3.7: Payoff Matrix for the General Two-node game

Depending on the value of x,y and z, there may be differentaoes, as the examples

we have shown in Section 3.1 illustrates. One of the follaatimo will be true:

°
[
\Y
8=

+

< =

[ ]
IS
IN
8 |~
+
< |=

We study the game in each case.
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3.21 Gusel:i< %qﬁ

Lemmallf i <14 ;» “Send to O” is a dominant strategy for B; (Non-cooperative,

Send to O) is the Nash equilibrium of the game.

Proof:

If A plays “Cooperative”, then

Ugp(SendtoO) = z > 0 = Ug(KeepSilent) (3.53)
Ugp(SendtoO) = z > T Ugp(SendtoA) (3.54)
z Ty
If A plays “Non-cooperative”, then
Ugp(SendtoO) = 1 > 0 = Ug(KeepSilent) (3.55)
Up(SendtoO) = l—il > 0 = Up(SendtoA) (3.56)

Therefore, no matter which strategy plays, we always havé/z(SendingtoO) >
Ug(SendingtoA) andUg(SendingtoO) > Ug(KeepSilent); therefore, all other strate-
gies for B are dominated by “Sending to O”. Similarly, we can show “Cexgtive” is

dominated by “Non-cooperative” for A. Therefore, (Non-peoative, Send to O) is the
Nash equilibrium of the game.

Lemma 2 If % < % + i no cooperative strategy improves the utility of both nodes

simultaneously compared with (Non-cooperative, Send to O)

Proof: Assume the cooperative strategy
{p1(Cooperative, KeepSilent), ps(Cooperative, SendtoO),
ps(Cooperative, SendtoA), ps(Non — cooperative, KeepSilent),
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ps(Non — cooperative, SendtoO), pg(Non — cooperative, SendtoA)}
wherep; € [0, 1], and Z?zlpi = 1, improves the utility of both nodes simultaneously,

we have:

x 0 0 T
D1 + P2 + D3 . + Pa + (3.57)
0 z T, T 0
z y
1 1 1 1 : 1 1 L 1
po | T L T T (3.58)
li; 0 Lil
Which leads to:
1 1 1
p1x+p4x+p5%+%+p6%+%>%+% (3.59)
1 1 1
P22+P3%+§+P5%+%>%+% (3.60)
However,y > 0, thereforer > l—}rl so Eq. (3.59) leads to:
z 'y
1
P1T + pax +p5§ + pgx > % +% (361)
1
P1T + pax + pex > (1 — ps) 1,1 (3.62)
: <3+, = 2> 17,50 EQq. (3.60) leads to:
z 'y
pa g > (3.63)
z z .
b2 b3 p5%+% - %‘l‘%
1
pez + p3z > (1 — ps) (3.64)

8 |
_I_
N =
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Eq. (3.62)/z+ Eq. (3.64)/z yields:

1 1 1
prtprtpstpates > —ps) (o + ) =1-ps (3.65)
D1+ D2+ P34+ pa+ +ps +ps > 1 (3.66)

which contradicts with the fact"_, p; = 1. Proof completed.
Lemma (1) and Lemma (2) show that there is no strategy sudlbtth nodes get
higher utility than they do in the Nash equilibrium. Moregvehe Nash equilibrium

consists of dominant strategies; therefore we have theviallg theorem:

Theorem 1 If £ <14 i the outcome of the game must be (Non-cooperative, Send to
O); both nodes get utility o

The case; = 0, where B cannot access A can be regarded as a special case in th

category.

3.22 (wse2:i>141

If % > % + i cooperation becomes possible. Before we try to find the e@tpe
solution of the game, we have the following lemma to simpdify work.

In the following discussion, we assume the cooperativeegyais
{p1(Cooperative, KeepSilent), ps(Cooperative, SendtoO),
ps(Cooperative, SendtoA), ps(Non — cooperative, KeepSilent),
ps(Non — cooperative, SendtoO), ps(Non — cooperative, SendtoA)}

wherep; € [0, 1], and 2?21 pi = L.

Lemma3If 1> 14 i for any given strategy characterized by, ps, ps, P4, s, Ps),
there exists som@, g3 € [0, 1] such thaty; + g3 = 1, and both nodes get at least the

same utility if they play the strategy characterized fy 0, g3, 0,0, 0).
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The lemma shows that any Pareto-efficient strategy showld ha= py, = ps =

pe = 0. This observation will greatly simplify our work.

Proof:
1 1 1
R (3.67)
z vy z Y
= 1+->2+- (3.68)
z Yy
1 2t % 3.69
= 1>—2 )
1 +§ ( )
1 Lt % 1 3.70
= 1> .
11z 152 (3.70)
1+ 1
= v> 3.71
1+2° 1+2 (3.71)
Therefore, we can choose some= R, such that
L % 3.72
— > > .
1+z” YT T 3.72)

z

Letqy = p1+pa+ps+wps andgs = py+ps+(1—w)ps; obviously,q: +¢3 = Z?zl pi=1,
andgq, g3 € [0, 1]. We will show both nodes get at least the same utility if thiayp the
strategy characterized lfy;, 0, g3, 0,0, 0).

(3.73)

(3.74)

—_
w8
8 |
+| =
ISE I

We also have:
x> (3.75)
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and; < 2+ . so0
1
Pp—— (3.76)
e Ty
Eq. (3.75)x(p1 + ps)+ Eq. (3.76)xps+Eq. (3.74)xps yields:
1 1
P1T + Pax + P + P5sTW = 1T + pa +p61—+l +p5l—+l (3.77)
T Y T z
or
1 1
QT 2 P12+ pat +pe1—T T P57 (3.78)
s Ty s T2
On the other hand,
142
Eq.(372) = 1—— L >u (3.79)
1+2
1 Lt % 3.80
= 1-w>— : (3.80)
1 I+2 1
= (1—w>;+;>1+§;+; (3.81)
x Yy Y Yy
S (l—w) s (3.82)
W)t 1 T, 1 :
sty zT3
We also have:
1 1
> (3.83)
1 1 = 1 1
sty zty
andi > 14 1g0
z T y 1
>z (3.84)

1
Y
Eq. (3.84)xps+ EqQ. (3.83)xps+EQ. (3.82)xp5 yields:
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1 1 1 1 1
p21 1+p31 1+p5(1_w>1 1 Zp22‘|‘p31 1"‘]751 1 (385)
sty sty s Ty s Ty s T3
or
1 1 1
The utility vector(U,4, Ug)of the strateg\(p1, p2, p3, P4, Ps, Pe) iS given by:
Ua x 0 0
=D + D2 + D3 . (3.87)
Up 0 z T, T
Ty
Xz T 1 T 1 ! T
+Pa + Ps ;Jlrz +ps | Y (3.88)
0 T,1 0
l.e.,
U PIT + pat + Pt + D5 ToT
Tl = A (3.89)
Us p22’+p3%—+% +p5§
The utility vector(U’,, Uj,) of the strategyq, 0, g3, 0, 0, 0) is given by:
U x 0 0
=@ +0 + g3 . (3.90)
UB O z %—i_i
X T 1 T 1 L T
+0 +0 == | 40| =Ty (3.91)
0 . 0
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l.e.,
A QT
Ug %ﬁ

From Eq. (3.89), Eq. (3.92), Eq. (3.78) and Eq. (3.86), welsge> U, and

(3.92)

Uy > Ug. Proof completed.
We now try to find the Raiffa solution for the game. Normaliagdity yields the

payoff matrix in Table (3.8)

Keep Silentf Sendto O | Sendto A
Cooperative (1,0) 0z(;+3)| (O
. 1 oty :
Non-cooperative (1,0) (gig , %Jr%) (%Jr% ,0)

Table 3.8: Normalized Payoff Matrix for the General Two-eaghme

By Lemma (3) we know any strategy that is Pareto efficient rhastharacterized by
(¢1,0,493,0,0,0). The Raiffa solution is Pareto efficient. So we can assumediseed

strategy profile is p(Cooperative, Silent),q(Cooperabend to A), where, ¢ € [0, 1]
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andp + ¢ = 1. Then we can write down the normalized utility and securgyel as

functions ofp andg:

NU4 =p (3.93)
NUg =g (3.94)
1
SIA:%i% (3.95)
141
SIB—§+§ (3.96)

We requireNU, — NUg = SLy — SLg, therefore,

1
p—g=——" (3.97)

p:(L—%i%VQ (3.98)
1
q:(L+%+%V2 (3.99)

1
Finally we get the solution of the game1l — +*+)/2(Cooperative, Silent)] +

ﬁ)/Q(Cooperative,Send to A). A gets a throughputxot — ﬁ)/z and B gets a

1
throughput of(1 + +*1)/2( + ;).
Concluding the discussions in this section, we see for twadesdhere are only two
cases, either completely competing or completely cooperatVe address the problem

by given the analytical formula for the strategy profile fach situation.
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3.3 MULTIPLE-NODE GAMES

The fact that only the most efficient path should be used doesniy apply to two-node
networks if we assume all nodes are within the same collidmmain. The proof is as
follows. Suppose an inefficient route is used with non-zewbability in the strategy.
We rearrange the data sending along the inefficient way tebels/ the more efficient
route. This will cost less time since it is more efficient. Bldhat all the nodes still get
the same bandwidth but we have some extra time that maylilited to any route to
improve the benefits of at least one other node. In other wdingse exist other strategy
profiles such that at least one node’s utility increases aitltany other node’s utility

decreasing. Therefore, by Pareto efficiency, it would betgeballocation.

3.3.1 FROUTING TREE

The wireless network can be regarded as a graph. Each particof the network is a
node in the graph. The edges are the used network links betiheanodes. As observed
above, only the most efficient path is ever used. Then we wilbegconfluent tree which
represents the topology of the network. This is usuallyrrefito as the routing tree of
the network formed by the shortest path. The gateway wilhieeroot.

It is possible to recursively play two-player games to getgblution for a multiple-
player game if they form a tree topology. A similar observatis discussed by Cheng et

al. [7]. There is some research of combinatorial agency whlso resembles our ideas

[4].

3.3.2 (QROUPS

To extend our solution to multi-node networks we first intiod the concept of group

and group coordinator. In this section we assume all themmédion is public.
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Definition 4 (Group) A group is a set of nodes which forms a subtree in the routig tr

A group may consist of a node and its parent, or two or more @timg nodes and
their parent. It may also contains smaller groups. A groypeaps to be a single node
to the outside and acts (either compete or cooperate) agke siade. After it gets the
bandwidth from the outside, it will share it within the groapcording to the agreement

of the group memebers.

Definition 5 (Group Coordinator) The root of the subtree formed by the nodes of a

group is called the group coordinator.

The group coordinator acts as the representative of thepgcommunicating with

the outside world. It has the responsibility to forward patskfrom other nodes in the

group.
Some examples of groups are shown below:

A O

»

Ao
C B A
D C DC 5

(@) Ex. 1 (b) Ex. 2 (c) Ex. 3

Figure 3.2: Example of groups

In Fig. 3.2(a), Node C and D form a group, which cooperateb ®itC is the group

coordinator, which will be in charge of distributing the oesce between C and D.
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In Fig. 3.2(b), Node B,C,D form a group, which cooperatesiit Within the group,
B cooperates with C and D while C competes with D for resources

In Fig. 3.2(c), Node B and C form a group, which competes witlolDresources.

A group can be as large as the whole network with the gatewdlieasoot, or as
small as a single node. We have to determine how groups plaggavith each other.
There are two types of games: the competition game may happeng several groups;

the cooperation game may happen between a node and a group.

3.3.3 OOMPETITION GAME BETWEEN GROUPS

As illustrated in Fig. 3.3, several groups are competingdonect to the parent. Each

small node may represent a group in the routing tree.

Definition 6 (Competition Factor) The competition factor for a group is the relative
proportion of time assigned to this group with respect togpectrum time received by
the whole group. Each group is assigned a different competiaictor, which sum up to
1.

Assume the group coordinator gets some spectrum time frerpatent. Then it
divides the time into several slots according to the contipetifactors assigned to its
child groups. In each slot the coordinator makes a deal wiartain child groupij.e.,
forwards some packets from the group and sends its own aftkdhe rest of the time.
Each group tries to get more time (a bigger competition fadim cooperate with the
group coordinator.

For a competition game, we have the following information:

e Groups involved in the gamé&il, G2, G3, ..., Gn

e Their parent, P



58 CHAPTER 3. GAMES IN MANY-TO-ONE ROUTING

Figure 3.3: Competition between groups

e For each groug-k, k = 1,2, 3, ...,n, we know the number of nodes in the group,
ng, as well as the nodesk,, Gk, ..., Gk,

e For each nodé&:k,,, we know the bandwidth from them 0, denoted byGk?

Let T, be thecompetition factofor groupGk, k = 1,2, ...n. To be fair to assign
the proper competition factor, we have to ensure that eachpgget enough proportion
of time such that no agent can benefit from deviating from gsgament. Any node’s
deviation from the assignment may lead to pure competitionhis case, all the nodes
just try to fight for bandwidth and try to connect to the subtr®de directly. Denote the

time nodeGk,, gets byl ; the following conditions will be true:

m?

e The sum of all times should be ie.,

i i Ten, = 1 (3.100)

k=1 m=1
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e By 802.11 scheduling, for any k,m,i,j,

Ter,, Gky, = Tei,Git (3.101)

The solution for the above conditions are:

1
Tek,, = el ] (3.102)

" EZ:1 Enmk:1 GkL

Groupk(k = 1,2,n) as a whole will get the following proportion of time, which we

define as the competition factor:

(3.103)

ng ng 1
m—1 Zk:l Em:l GkE

3.3.4 (QOOPERATIONGAME BETWEEN NODES AND SUBTREES

A cooperation game always happens between a node and a gioicph,may be as small
as a single node. As illustrated in Fig. 3.4, nadéelp forwarding the packets from the
groupG to P. As observed in the previous sections, in the optimal caske Goshould
always forward all the packets frod. The only uncertainty is the proportion of time

the link betweerZ andO is active.

Definition 7 (Cooperation Factor) The cooperation factor for a group is the relative

proportion of time it is active when it is cooperating with garent.

We wish to assign the grou@ a cooperation factor If node O, the parent of group
G, has only one child, then tlemoperation factowill be the relative time for groug- to
be active. Otherwise, in cagehas more than one child, the proportion of time for group

G being active should be the product of dsoperation factorand competition factor
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since groug= should first compete with other groups for acces®{@nd then distribute

the time betweew andG after that bargain.

PO

Figure 3.4: Cooperation between a group and a node

For a cooperation game, we have the following information:

Participants of the game: Grodpand NodeD

For groupG, we know the number of nodes in the group,as well as the nodes

Go, G1, G, ..., G, WhereG, is the group coordinator

For each nodé/,, k = 0, 1, 2, ...n, we know the bandwidth from them 1 and to

O, denoted byG¥ andG¢

Bandwidth fromO to P is OP

Denote the cooperation factor, the tifés sending in 1 second, lfy. The through-

put of groupG would be:
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Ue=Gf xC (3.104)

The throughput of nodé® would be:

Uo=(1-C—-CGY/OP)x OP (3.105)

The minimal throughput of both parties may be zero. The marwpossible through-

put for group G is:

1
G§ T op

The maximum possible throughput for no@ds O P.

The normalized utility forG andO are:

1 1
NUg = GOC(— + — 107
NUo=1-C—-CG§/OP (3.108)

The security level of G would be the sum of all its membersdtlghput in case there

IS no cooperationi,e.,

k:GP#£0
51— JE:GE#0)]
ZGkP;éoG_gjLﬁ

(3.109)

Where| X | denotes the number of elements in the finite’set

The security level of O is a little more difficult to determin@ome nodes will try to
access P directly, and some may just bother O by interferitiy @/s ability to transmit.

The security level is:
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1 oP
ZG}jnerGLkP + #’ Hk : Gg 7& 0}|

The Raiffa solution suggests findidgto maximizeNU (G) under the constraint:

(3.110)

SLo = min

e NUg— NUp = SLg — SLo
e 0<C,NUg,NUy <1

Solving for C we have:

1+ 5Lg—SLo

C
2(1+ g—i>

(3.111)

3.4 SOLUTION ALGORITHMS

Being able to find the equilibrium of both kinds of games thalyrappear in a network,
the solution algorithm can recursively solve the game. Tésdidea of the algorithm
is that the gateway distributes bandwidth among the selaigést groups; then each
group coordinator recursively distributes the resourcemgnts subgroups. Subgroups
compete with each other, and cooperate with the group coatali such that the group
coordinator forwards data for the subgroups.

We assume the tree topology is given, and all the link-gqualfiomation needed is
known. Every node maintains two numbers, nodeShare an8tere, which are the
share distributed to the node and the subtree with the notteeasot. Then Algorithm
1 calculates the proper share for each node:

The function solve(A), where A is a node in the network, woaksstated in Algo-
rithm 2:

The complexity of the algorithm i©(n?), where n is the number of nodes in the net-

work. In algorithm 1, the function “solve()” will be calledkactly n times. In algorithm
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Algorithm 1 Solution for multiple nodes game
Set the nodeShare and treeShare of all the nodes to be 1
root — the gateway
solve(root)

Algorithm 2 Solve(A)
if Ais not a leafthen
n = number of A's first-level children
B = set of Ass first-level children
BWxy = Bandwidth from Xto Y
Play a competition game amoiiy, B-, ..., B,
fori=1...n do
B;.treeShare— B,’s competition factorx A.treeShare
if A'is not the gatewayhen
P = As parent
Play a cooperation game betweBnand A
B;.treeShare— B;’s cooperation factok B;.treeShare
A.nodeShare— A.nodeShare - B.treeSharg(1 + £A4L)
end if l
B;.nodeShare— B,.treeShare
end for
end if
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2, most steps are within constant time. only the for loop nmaglve at most (n) steps.

Therefore, the complexity of the algorithmd¥n?)

3.5 RESULTS ANDDISCUSSIONS

We have implemented the algorithm presented in the preseaton. Given any tree
topology and link quality information, the program is abdecalculate the proper band-
width sharing according to the Raiffa solution.

We list several examples here to illustrate the resultsrgbyethe algorithm.

3.5.1 THE POWER OF THREATENING

Experiments show that with a potential alternative linkdes get much better throughput
even if the link is never used in the optimal Equilibrium. ¢t the ability to disrupt
communication of the other party that makes the improvermessible.

In Fig. 3.5(a), two nodesl and B are trying to access the gatewé&y and the

outcome is:

e Throughput of Node 1: 7.5Mbps

e Throughput of Node 2: 1.25Mbps

In Fig. 3.5(b),B has an alternative link t&. This time, the outcome is:

e Throughput of Node 1: 4.4Mbps

e Throughput of Node 2: 2.8Mbps
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Figure 3.5: The power of threatening
3.5.2 HAINS

Our studies show that even in the view of game theory, distadées tend to get starved.
This should not be a big surprise to us. Distant nodes hayefe@er or even no contribu-
tion to the network at all. It costs other nodes great effoffiorward their traffic. There

is no hope they should get equal throughput as other nodes.

Figure 3.6: Distant nodes get starved

In Fig. 3.6, we assume each node can communicate with ithibeigat 10Mbps.

The outcome of the game is:

e Throughput of Node 1: 7.64Mbps

e Throughput of Node 2: 0.956Mbps
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e Throughput of Node 3: 0.12Mbps

e Throughput of Node 4: 0.02Mbps

If we assume in addition to the 10Mbps link with the neighbomes can commu-
nicate with each other at 1Mbps, the outcome is more balatcgadentered nodes still

enjoy a higher shares:

e Throughput of Node 1: 4.76Mbps
e Throughput of Node 2: 1.42Mbps
e Throughput of Node 3: 0.43Mbps

e Throughput of Node 4: 0.28Mbps

We are not alone. Leino [15] shows consistent results. Irsinmilation, the nodes
in the center of the network always tend to escape from th&orkt which results in the
next centered node wishing to escape. Our study also sihedtto keep the interest

of the center node to stay in the network, it should be assigeey high bandwidth.

3.5.3 SYMMETRY

Let us study another example.
Assuming all links shown in Fig. 3.7 are 10Mbps, the game gas the following

outcome:
e Throughput of Node 1: 2.51Mbps

e Throughput of Node 2: 3.35Mbps

e Throughput of Node 3: 2.51Mbps
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Figure 3.7: Another example

Throughput of Node 4: 0.21Mbps

Throughput of Node 5: 0.21Mbps

Throughput of Node 6: 0.31Mbps

Throughput of Node 7: 0.05Mbps

Again we see the nodes get less throughput as they are furtdrerthe gateway.
Moreover, we see that symmetric nodes in the network getaheeghroughput, which
naturally makes sense. Nodes 4 and 5 get the same througkqaude they are sym-
metric in the network. Nodes 1 and 3 get the same throughmaiLise both of they have
the same link quality to the gateway and both of them haveldnl with the same link
quality.

Now we assume there are additional links between every twiesian the network

with the link quality of 1Mbps; the outcome would be diffeten

e Throughput of Node 1: 2.23Mbps
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e Throughput of Node 2: 0.24Mbps

Throughput of Node 3: 2.13Mbps

Throughput of Node 4: 0.71Mbps

Throughput of Node 5: 0.71Mbps

Throughput of Node 6: 0.65Mbps

Throughput of Node 7: 0.41Mbps

The surprise may be the fact that this time node 2 gets theegbtiroughput. How-
ever, if the cooperation senario is broken, all nodes jystdiconnect to the gateway by
their competition; then all nodes will get a throughput a232 Mbps. Therefore it is
still beneficial for node 2 to accept the equilibrium. For titeer nodes, it is obviously
much better than the non-cooperative case. However, dueetovierhead of protocols,
the improvements is so small to make the solution imprakftidais is a simplified math-
ematic model and a lot of further work should be done. We atg@a that simplifying
the multi-node game to recursively two-node game may losgesaformation and lead
to some problems. We will keep studying in future works.

These examples show the fact that nodes that act as a impatder in the center of
the network get the highest throughput. The fewer hops iwsyarom the gateway, the

higher the throughput it gets; likewise, if the node acts esuger for many other nodes.

3.5.4 LMITATIONS

Our algorithm assumes the whole network is within a singlguel. Therefore, there are
no concurrent trasmissions in the network. While this magrbe if the network is small
and all nodes are within the interference range of each oithédoes not apply to larger

networks. We will address this problem in the following cteap
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The algorithm in Chapter 4 only works within a single clique;,., we assumed all the
nodes are within the same collision domain. Therefore, kperghm works well only if
the network is small. For larger networks we need furthelttom study and analyze the

problem.

Interference and collision [23] are a nontrivial probleragieal with. For example,
the nodes 1,2 and 3 in Fig. 4.1 are within each other’s inteniee range; therefore they
cannot transmit at the same time. Moreover, nodes 2, 3 arel@dso within each other’s
interference range. However, node 4 can transmit to nodeil@ wbde 1 transmits to the

gateway as long as link and linkl, are not in each other’s interference range.

Figure 4.1: Interference range in a chain

In larger networks the problem may be even more complicakemtunately, there

has already been some research to study this problem.

69



70 CHAPTER 4. REALISTIC SOLUTIONS AND SIMULATIONS

4.1 RELATED WORK

By adopting the concepts of link-usage matrix and mediuagasnatrix, people man-
aged to achieve a certain form of fairness in their simutetioThese works are intro-
duced by Jakubczah et al. [12]. We first have a look how thedeaas work.

Before we introduce the matrix, we list all our notationsdvel

number of streams in the network:

number of links in the networkn

streams in the networlg;, so, ..., s,

throughput of stream;: R;,i =1,2,...,n

links in the networkiy, ls, ..., 1,

link capacity of linki;: C;,i=1,2,...,m

collision domain for linkl;: w; C {l1,ls,...,l,},i=1,2,....m

The first matrix L is called the link-usage matrix. L israx n matrix defined as:

o 1, if streams; uses linki;
Lli,j] =
0, otherwise;

The link-usage matrix provide us with the information abaultich links are in-
volved in each stream. To also included the link-capacifgrmation, we define the
m x nweighted link-usage matrix’ as:

L', j] = 1L[z’ 1 (4.1)
7] - C 7] .

7
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The third matrix M is called the medium-usage matrix, whishaim x m matrix

defined as:

o 1, if lj € Uy,
M[i, j] =
0, otherwise;

The stream-throughput vectéris defined as:

R= (R, Ry,....R,)" (4.2)

The constraint of the throughput of the streams in a netwarklme represented by

the following formula:

MLR<1,, (4.3)

Wherel,, is a m-dimensional vectdi, 1, 1...1).

Note thatM is am x m matrix, L’ is am x n matrix, andR is an x 1 matrix, therefore
both M L' R and1,, are m-dimensional vector. Thus, the above vector inequaditually
contains n numerical inequalities.

We use the senario in Fig. 4.1 as an example to show how tolatddhe absolute

fairness share with the matrix.

e number of streams in the network:= 4
e number of links in the networkn = 4

e streams in the networksy, s, s3, s4, Wheres; denotes the stream originated from

node: to the gateway.

e throughput of streams;: R;,i =1,2,3,4
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e links in the networkiy, ls, I3, 14
e link capacity of linkl;: C;,i =1,2,3,4

e collision domain for linkl;: u; C {ly,1s,13,14},7=1,2,3,4

Matrix L is:
1 111
01 11
I =
0 011
0 001
Matrix L' is:
1 1 1 4
Ch Ch Ch Ch
o L 1 1
Ll — 02 02 02
1 1
0 0 o o
1
0O 0 O &
Matrix M is:
1110
1 1 1 1
M =
1111
0111

By the definition of absolute fairnes®; = R, = R; = R, = R, therefore,

R = (Ry,Ry, R, k)" (4.4)

Finally, the constraint can be expressed as:
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1 1 1 1
1 1 1
Lo & & &R _]
1 1 -
11110 0 & ARl |t
1
01110 0 0 AR |
Calculating this yields:
1 1 1 1 1 1 1 1 1
o oto atates otota || |
1 1 1 1 1 1 1 1 1 1
o ote atate atate ta| |l |
1 1 1 1 1 1 1 1 1 1 -
o ote atote atotetal|lf |
1 1 1 1 1 1
0 0—2 0—2 C_s C_2+C_3+C_4 Rl 1

Which is equivalent to the combination of the four inequedit

(i+i+i+i+i+i+i+i+in<1
C, C, e, O e, OO Oy Oy t=

(i+i+i+i+i+i+i+i+i+in<1
c, ¢ "o, oo, Cs oo, O3y b=

(i+i+i+i+i+i+i+i+i+in<1
c, ¢ "o, oo, cs oo, O3 Oy b=

1 1 1 1 1 1

S T <1
(@+@+%+@+%+@M&_

We hope to maximizé?; under the above constraints, which yields:

T3 ;2 1
C1+ +03+C4

So R, is the fair share for the four nodes if absolute fairness diag.
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(4.6)

4.7)

(4.8)

(4.9)
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4.2 OUR SOLUTION

Our work may be considered as an extension of the above wardtedd of absolute
fairness, we take game playing into account.

The core idea of the Raiffa solution is that the differencereen the normalized
security level of agents should be maintained in their fisgigned normalized utility.
Therefore, when we maximize the normalized utility of angiaig the normalized utility
of all agents reach their maximum.

Recall that, in the previous section, with the goal of absofairness, we have the

following constraint:

R=(Ry, R, R, R)" (4.10)

If we replace this constraint with the constraint that thigedence between the nor-
malized utilities of agents should be maintained, we getrarcsolution, which meets
all the interference constraints as well as implements tnédrsolution concept.

To implement the solution, we have to address two criticabfgms: How to nor-
malized the utiltiy of each node? How to find out the secusiel of each node?

The former problem is relatively easier to address. Kebe any node in the net-
work. The linear transformation frortyy € [MAXy,, MINy,|to NUx € [0,1] is

straightforward:

NU~ — Ux—MINy
X = MAXy,—MINy,

Where MINUx = 0 for all X and M AX Uy is the solution ofRyx in Eq. ( 4.3)

when

Rl Ry, if streamiis originated from node X
1| =
0, otherwise;
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The latter problem is difficult to address. In a large netwdris not clear what is the
minimum bandwidth a node can guarantee itself. Howevenmg &s there are so many
nodes in the network, if all the other nodes act against ortleerh, then it is very likely
that the actual bandwidth that node gets will be approxiipaero. In other words, all
the nodes have very low, if not zero, security level. Morepifeve assume nodes can
perform a Denial of Service (DoS) attack by continually latcasting, then every node
does have zero security level, as any of them can perform adit@ag€k and stop every
node from transmitting. Therefore, we adopt an approxiomeith our final solution: we
assume all nodes have zero security level. This may not lee lbut it should be very

close to the reality.

We will use the example from Section 4.1 to show how we cateullae fair share.
The network topology is the same as shown in Fig. 4.1. We wsedme notations as in

Section 4.1. The matrice¥, L, andL’ are the same as in Section 4.1.

First we normalize the utility of the nodes. To find the norimedl utility of node 1,

we needV/ AXy;,, which is the solution of?; in Eq. (4.3) whenkR = (R;,0,0,0)7, i.e,

11 10|& & & &I’k |1
111100%0%0%0<1
11110 0 & &||0 1
01 1 1|0 0 0 &[0 1

Solving these inequalities we find the maximal possibledtu R, < . There-

fore, the normalized utility of nodé is given by:

U —~MINy, R —0 R

NU, = — _
"7 MAXy,, — MINy;, C,—0 C

(4.11)

Similarly, the solution of?, in Eq.(4.3) whenRk = (0, R», 0, 0)” yields theM A X, :
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11 1 1
111 0||& & & &0 1
1 1 1
111100—20—20—2R2<1
1111000%0%0 1
011 1[0 0 0 &[]0 1
4

Solving these inequalities we find the maximal possible edr R, < 1.

oy T oy
Therefore, the normalized utility of nodes given by:
U2 - MINU R2 - 0 1 1
NU, — 2 = — 412
U MAXy, — MINy, —L1——0 Rz(q i 02) (4.12)

orte;
Similarly, the solution ofR; in Eq. ( 4.3) whenR = (0,0, R3,0)T yields the
MAXUs:

11 1 1
111 0||& & & &0 1
1 1 1
111100—20—20—20<1
1111000%0%1%31
011 1[0 0 0 &[]0 1
4

Solving these inequations we find the maximal possible veElué&; <

1 1 1 -
o to o

Therefore, the normalized utility of nodes given by:

Us—MINy,  Ry—0 111

_ — = Ra(— 4+ — + — 4.13
MAXy, — MINy, ——+——— -0 3(01 et Cs) *.13)
’ et

NUs

Similarly, the solution ofR, in Eq. ( 4.3) whenR = (0,0,0, R,)T yields the
MAXUy:
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1110 & & o0 1
111100%0%0%0<1
11110 0 & &||0 1
011 1/{0 0 0 &||R |1

Solving these inequations we find the maximal possible Valug, < LJF_}FLJFL.

Therefore, the normalized utility of nodeis given by:

Uy — MINy, Ry —0 111 1

- R 4 4.14
MAXy, — MIN, ﬁ —0 4(01 Cy ' Cy 04) (4.14)
1 2 3 4

NU, =

Since we assume zero security level, the requirement of
NUx — NUy = SLx — SLy
whereX,Y € {1,2,3,4} leads to
NU, = NU, = NU3; = NU, (4.15)

Taking Eq.(4.11),Eq.(4.12),Eq.(4.13) and ,Eq.(4.14) iag.( 4.15) yields:

1 11 111 1111
RS ]
me =g ta)=Mgta+g)=Rlgta e te) @16

as our fairness constraint. Finally, |Bt= ( Ry, R2, R3, R4) Where
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r
Rl = ROCI
R, = Rp—1—
2 — OL+L
Cp ' Cy
1
R3 = Ry T 11T
Cq Co C3
1
R4 = Rom
\ C1 C2 CS C4

and takeR into Eq. (4.3) to findRy:

11 1 1 R,C
L1 O0E & o o o !
1 1 1 Ry———
111110 7 & o Cartes | |
1 1 1 -
01110 0 0 A||lppo—t 1

Solving the inequalities we have, < i Therefore, our fair shares are:

R=
o=

Ity = 4(0%+ii+c%5)
= g

4.3 39MULATION AND DISCUSSIONS

We implement our solution in the Shoshin ns2 simulationbiedflily]. A source-rate-
control algorithm limits the rate of each stream. We modified piece of code that
calculates the fair share for each node.

We use the ns-2 simulator to do the simulation. The defausigll interface has

transmission range of 250.0 meters and interference rah§800 meters. We set the
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MacDataRate to be 1Mbps for each link. The link capacity i 86ps. We used a
packetSize of 1500 bytes. The simulation runs for 125 sexond
We implement the simulation of the scenario depicted in Fg2, where we place

the nodes 200 meters apart.

5 4 3 2 1 GW

@ @ @ @ @ @
Ss >
Sa >
S3 >
So >

S5 —m

Figure 4.2: Simulation set up

Initially we use TCP traffic without our fairness algorithemd the throughputs of the
four streams are shown in Fig. 4.3. We then turn our algoritmmand the throughputs
of the streams are shown in Fig. 4.4.

We see several things from the simulation:

1. The relative order of the throughputs of the streams ar®sit the same in both

cases

2. The centered nodes get worse throughput in our solutiorkid. 4.3, stream 1
get more than 200 kbps most of the time, while in Fig. 4.4 wessmthat in our

solution, stream 1 gets only 150kbps.

3. The distant nodes get better throughput in our solutiarFig. 4.3, stream 5 get

starved some times, and the average throughput is arourtsp20while in Fig.
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Figure 4.3: TCP without fairness
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4.4 we can see that in our solution, stream 5 gets stable 30KHpe throughput

of node 3 and 4 are also improved a little.

The simulation results make sense. The relative order dhtteeighputs of the nodes
is maintained; therefore the solution of our algorithm retilethe different cost for the
nodes to access the gateway. On the other hand, the balasgigdraent prevents far

away nodes from starving.

4.4 TEMPORAL FAIRNESS AND OUR SOLUTIONS

In the examples in Section 4.1 and 4.2, our fair share assgtsrare the same as in the
definition of temporal fairness. This is non-trivial. We cstmow our solution does lead
to temporal fairness.

In temporal fairness, each stream takes the same amoun¢ctism time to arrive
at the gateway, subject to the max-min limitations.

Recall in our solution, we assume cooperation and require:

NU; — NU; = SL; — SL;

where

Ui =T, NU; = 5755, andSL; = 0

for every twoi, ;.

Therefore, our requirement leads to:

szgcui = MZ;'(Uj for every two node., ;.
where M AXy, is the throughput nodéegets when there is only one stream frono
the gateway in the network. Thereforﬁ,ATiTm equals the spectrum time for the stream
from node i to the gateway. Therefore, thelrequirement besditine spectrum time for
stream from node# the spectrum time for the stream from node j” for every twoe®d

1, j. This is exactly what temporal fairness claims.



5 CONCLUSIONS ANDFUTURE WORK

In this thesis we proposed our work in applying game theorgdrhocnetworks (as
well as wireless mesh networks) to determine the propeuresalistribution among the

nodes. A framework algorithm is proposed, simulations agrmed and discussed.

The thesis is organized in the order we studied the problere. fitst did a brief
survey ofad hocand wireless mesh networks, and evaluated the relatedrchseathis
field. Then we studied the simplest two-node games. By paeinmag the action space,
we reduce the game to a normal-form game with mixed-straspgge. Since the Nash
equilibrium is not always Pareto optimal we looked for a sioluusing cooperative game

theory. We adopted the Raiffa solution.

The Raiffa solution is the best solution concept we feelograble. However, there
may be other solution ideas that are also good in this casde that the solution is
independent of the framework algorithm, so one can readlibose other solution ideas

and still make use of the framework to address the problem.

Then we studied ways to extend our work to multiple nodes. &deice the network

to a tree, which leads to the recursive-solution idea.

After that, we take the interference range into account amaie realistic algorithm
is presented. Combined with existing source-rate-comtigrithms, we have validated

our work by simulation.

Finally, we found out that our solution from the cooperatgjgme view coincides

with temporal fairness, which goes beyond our expectation.
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5.1 RJUTUREWORK

Some assumptions in our algorithm, like the topology knaolgkeis known to every node,
need to be justified. It is possible that local topology krexge would be enough, but
further works needs to be done to make it clear.

The model in the thesis implements the simplest utility fiorcand normalization to
convert the throughput to the normalized utility. Our §ilfunction is simplyU (X) =
X; our normalization is just the linear transformation. Ityree better to introduce other
utility functions and normalization procedure to model tieeme and get results other
than temporal fairness.

We may also consider other solution concept like Nash bargauilibrium, and see
if the outcome is different.

Finally, more simulations with different settings are regd to study and validate

the model better.
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