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Abstract

Several finite dimensional quasi-probability representations of quantum states
have been proposed to study various problems in quantum information theory and
quantum foundations. These representations are often defined only on restricted
dimensions and their physical significance in contexts such as drawing quantum-
classical comparisons is limited by the non-uniqueness of the particular representa-
tion. In this thesis it is shown how the mathematical theory of frames provides a
unified formalism which accommodates all known quasi-probability representations
of finite dimensional quantum systems.

It is also shown that any quasi-probability representation is equivalent to a frame
representation and it is proven that any such representation of quantum mechanics
must exhibit either negativity or a deformed probability calculus.

Along the way, the connection between negativity and two other famous notions
of non-classicality, namely contextuality and nonlocality, is clarified.

This thesis is an extension of work found in [16].
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Chapter 1

Introduction

At nearly a century old, quantum theory is humankind’s most successful physical
theory. However, its conceptual foundations are still debated today. Quantum
theory is so counterintuitive that all other physical theories, when compared to
it, are commonly referred to as “classical”. The differences between the theories
of classical and quantum physics are not hard to find. But, perhaps this is only
because the mathematics of these theories are so different. And, perhaps if we are
able to find a common mathematical language, many differences between quantum
and classical theory will disappear. What is left may give insights into further
understanding of both theories and how they contrast.

One approach in establishing a common ground between classical and quantum
theory is phase space. Phase space is a natural concept in classical theory since
it is equivalent to the state space. The idea of formulating quantum theory in
phase space dates back to the early days of quantum theory when the so-called
Wigner function was introduced [49]. The Wigner function is a quasi-probability
distribution on a classical phase space which represents a quantum statd'} The term
quasi-probability refers to the fact that the function is not a true probability density
as it takes on negative values for some quantum states. The Wigner function for-
malism can be lifted into a fully autonomous phase space theory which reproduces
all the predictions of the standard quantum theory of infinite dimensional systems
[3]. In other words, this phase space formulation of quantum theory is equivalent
to the usual abstract formalism of quantum theory in the same sense that Heisen-
burg’s matrix mechanics and Schrodinger’s wave mechanics are equivalent to the
abstract formalism.

In the abstract formulation of quantum theory there are many conceptual bar-
riers to overcome in gaining an intuition for the behaviour of a quantum system.
However, the phase space formulation allows for visualization and other analytical
techniques that are already well understood and applied to classical probability

INote that Wigner function is not the only such function. A review of the Wigner function
and other choices appears in [34].



distributions. In this way, many conceptual problems are replaced by one: negative
probability.

There is, however, one problem with the Wigner function approach: it is not
valid when the quantum system it is describing has finitely many distinguishable
states. Approaches to overcome this limitation have only been considered recently,
probably motivated by experimental advances in the coherent control of finite di-
mensional quantum systems such as nuclear spins, superconducting circuits and
trapped atomic systems. These systems cannot be described by the Wigner func-
tion phase space formulation discussed above, which is often called the continuous
phase space approach.

In recent years various analogs of the Wigner function for finite dimensional
quantum systems have been proposed. Again, here, the term quasi-probability is
often used because of the appearance of negative values meant to represent prob-
abilities. Such discrete phase space representations of quantum states have pro-
vided insight into fundamental structures for finite-dimensional quantum systems.
For example, the representation proposed by Wootters identifies sets of mutually
unbiased bases [50}, 20]. Inspired by the discovery that quantum resources lead
to algorithms that dramatically outperform their classical counterparts, there has
also been growing interest in the application of discrete phase space formalism to
analyze the quantum-classical contrast for finite-dimensional systems. Examples
are quantum teleportation [41], the effect of decoherence on quantum walks [37],
quantum Fourier transform and Grover’s algorithm [38], conditions for exponential
quantum computational speedup [I8, [12], and quantum expanders [24].

Note that the term phase space is often given a meaning independent of the
notion of state although it can be identified with the state space. The discrete
phase space is an analogy to the classical phase space. Since this analogy is quite
weak in some examples, the discrete phase space is more accurately described as
a (discrete) state space. Where the analogy is weak, the terminology phase space
representation is replaced with quasi-probability representation. A quasi-probability
representation is a more general concept which includes phase space representations.

As noted above, central concept in studies of the quantum-classical contrast in
the quasi-probability formalisms of quantum theory is the appearance of negativ-
ity. A non-negative quasi-probability function is a true probability distribution,
prompting some authors to suggest that the presence of negativity in this func-
tion is a defining signature of non-classicality. Unfortunately the application of
any one of these quasi-probability representations in the context of determining
criteria for the non-classicality of a given quantum task is limited in significance
by the non-uniqueness of that particular representation. Ideally one would like to
determine whether the task can be expressed as a classical process in any quasi-
probability representation. Indeed the sheer variety of proposed quasi-probability
representations prompts the question of whether there is some shared underlying
mathematical structure that might provide a means for identifying the full family
of such representations.



Moreover, from an operational view, states alone are an incomplete description
of an experimental arrangement. For example, Reference [12] proves that within a
class of quasi-probability representations, the only positive pure states are the so-
called stabilizer states. Hence, these states are “classical” from the point of view of
allowing an efficient classical simulation via the stabilizer formalism [22]. However,
this set of positive states includes the Bell state; and, Bell states maximally violate
a Bell inequality [4]. Hence by a more conventional criteria of “classicality”, namely
locality, these states are maximally non-classical. The resolution of this paradox
is that one must also consider a self-consistent representation of measurements
in order to assess the classicality of an entire experimental procedure. Hence, it
is important to elucidate the ways in which a quasi-probability representation of
states alone can be lifted into an autonomous quasi-probability representation of
both the states and measurements defining any set of experimental configurations.

The purpose of this thesis is to present a mathematical structure which underlies
the known quasi-probability representation for finite dimensional quantum states.
Also, this thesis outlines a general construction for lifting any representations of
quantum states alone to a fully autonomous formulation of the whole quantum
formalism. Along the way, it will be shown how non-locality, and more generally
contextuality (another well-studied criterion for non-classicality), relates to presence
of negativity in quasi-probability representations.

The outline of this thesis is as follows. Chapter [2] introduces the mathemati-
cal formulations of classical and quantum theory from an operational perspective.
Chapter [3] offers a review of the existing quasi-probability representations found
in the literature. In Chapter [ the mathematical theory of frames is introduced
and shown to be the sought after mathematical structure which unifies the quasi-
probability representations of quantum states. Examples of frame representations
are given in Chapter 5} In Chapter [0] it is shown, using frame theory, how to con-
sistently incorporate quantum measurements into any quasi-probability formalism.
It is shown in Chapter [7] that negativity in quasi-probability representations is nec-
essary. The connection between negativity and another notion of non-classicality,
contextuality, is studied in Chapter [§] The connection between negativity and, per-
haps the most famous notion of non-classicality, non-locality is studied in Chapter
Ol Conclusions and directions for future research is presented in Chapter [I0] A in-
troduction to some mathematical concepts and notations is provided in Appendix
[A]l Some pictorial representations of Wigner functions are provided in Appendix [B]



Chapter 2

Probability in classical and
quantum theory

An introduction to the operational formulations of classical and quantum theory are
presented in the following two sections. A standard treatment of classical physics
heavily relies on dynamical equations of motion [2I]. The same is true in quantum
theory which is often introduced through the quantization of classical dynamical
systems. Such a treatment is often omitted when considering an operational per-
spective of a given experiment. To be specific, an operational theory is one which
specifies a set of instructions (called preparations and measurements) for an ex-
periment. The role is to specify the outcomes (perhaps only probabilistically) of
measurements performed when the preparation procedure is given.

2.1 Probabilistic structure of classical theory

Studying quantum theory gives a perspective on classical theories which one nor-
mally would not have. From this perspective one notices that many assumptions
go unstated in an exposition of a classical theory. Two such assumptions are objec-
tivity and determinism: a physical object that could be experimented on exists and
possess properties whether a scientist is there to measure (or think about measur-
ing) these properties or not and a scientist could in principal know with arbitrary
accuracy the exact value of the properties possessed by the object. Of course tech-
nical constraints will always limit the accuracy of an experiment. However, in
classical theories it is always assumed that a more accurate experiment could be
devised.

On the other hand, as one requires more accuracy to predict the roll of dice
for example, the experimental devices required to produce such accuracy are most
likely to become unimaginably large and complex. Again, although it is assumed
that such a device could be built, it is certain that a casino, for example, would not
let you use such a device at its craps table. In the face of this necessary uncertainty,



probability theory is used to gain as much constrained knowledge of the outcome
of experiments as possible.

Consider a practical situation in which certainty in the knowledge (or acquisition
of knowledge) of the properties of a classical system may or may not be obtained.
In particular, consider a set of experimental configurations: a preparation device
which produces a variety of classical systems and a measuring device which outputs
a numerical value on a screen, audible “click” or some other sensory cue for a variety
of detector settings. Such a situation is described mathematically as follows.

Let the set S along with the positive measure p represent the properties of a
classical system and the function p(s) > 0 represent the probabilistic knowledge of
these properties. A measurement is a partitioning of the space S into disjoint sub-
sets {A;}. The probability that the system has properties in A; (called “outcome

Pr(i) = |

j’) is

where x;(s) € {0,1} is the indicator function of A;. The measurement is equiv-
alently specified by the set {x;(s)}. Each x;(s) is interpreted as the conditional
probability of outcome j given the system is known to have the properties s. A
measurement of this type is deterministic; it reveals with certainty the properties
of the system. Consider now an indeterministic measurement specified by the con-
ditional probabilities {My(s) € [0,1]}. The above description is summarized with
the following concise definition.

dyu(s) pls) = / api(5)x;(5)p(s),

j N

Definition 2.1.1. Any model of a set of experimental configurations is a classical
probabilistic description if all of the following properties hold.

(a) There is a set of allowed properties S with a positive measure .

(b) A preparation (state) is represented by a probability density p(s) > 0 which
satisfies the normalization condition [ du(s)p(s) = 1.

(c) A measurement is represented by a set { My (s) € [0, 1]} which satisfies Y, My(s)
1.

(d) For a system with probability density p subject to the measurement { My}, the
probability of obtaining outcome k is given by the law of total probability

Pr(k) = / dpu(s)p(5) M (s). (2.1)

To ensure the understanding of these concepts, they will now be applied to the
simplest example possible: a coin toss. It is assumed that the results of a coin could
be predicted with certainty if the experimenter had enough control over the tossing
of the coin, the surface it lands on, and the vast number of air and dust particles
striking it while in flight. Again, it would be painstakingly difficult to devise such a



precise experiment. In a typical coin toss then, only two properties of the coin can
be distinguished: heads and tails. The set of allowed properties or state space is
then S = {H,T}. Here the notion of measure is not needed. However, to conform
to the definitions, the measure i can be taken to be the counting measure. Then,
any integration becomes summation over the state space. A preparation might be
to choose a coin and take it in hand. Since the outcome of any measurement (toss)
is uncertain, this preparation corresponds to the probability distribution p(H) = %
and p(T) = 1. A measurement is the toss of the coin including its landing. This
measurement is deterministic and is thus represented by the two indicator functions

xu and yp. Verifying the law of total probability for the outcome H (heads) yields

Pr(H)= Y p(i)xu(j) = p(H)xu(H) + p(T)xu(T) = 5(1) +

j:{HvT}

as expected. This example is easily extrapolated to any of the usual applications
of discrete and continuous probability densities: dice, cards, stock markets, etc.

A classical probabilistic description models many careful experiments done in
physics labs as well. However, at the turn of the twentieth century, new experiments
began to surface which violated the long standing physical laws of Newton. A new
theory was slowly built out of necessity to describe the results of these experiments
which seemed to suggest that uncertainty was an unavoidable fact of nature. This
new theory came to be called quantum theory and it is described in the next section.

2.2 Probabilistic structure of quantum theory

As opposed to a classical theory, quantum theory is not derived from a set of phys-
ical axioms. It begins with a specification of the mathematical objects representing
states, observables and values obtained in measurements. An introductory textbook
[7] will present quantum theory as a set of laws or postulates assigning mathemat-
ical objects to the physical concepts of state, observable and measurement. Each
state is assigned a vector in a Hilbert space. The observables are assigned self-
adjoint operators and the values obtained in a measurement of an observable are
the eigenvalues of the operator associated with that observable. If an observable
is given a name, say A, then the operator assigned to that observable is denoted
A. Denote the eigenvalues and corresponding eigenvectors of A as {an, ¥ }. If
the state of the system is one of the eigenvectors 1, the value of A obtained in
a measurement is always a,,. However, there is no deterministic rule for the value
obtained in a measurement of A when the state of the system is not an eigenvalue.
The last postulate of quantum theory resolves this problem but at the expense of
introducing uncertainty: the probability of obtaining the value a,, in a measurement
of the observable A when the system is in state v is | (1, 1,)|?.

[gnoring foundational and interpretational issues, what has been described so
far can be thought of as a traditional or orthodox approach to quantum theory. A



more general and modern approach exists and its applications include fields such
as quantum computing and quantum information theory. This modern approach
often comes with the pragmatic interpretation that quantum theory is nothing more
that a new theory of probability which may be necessary to describe experiments
for which a classical probabilistic description does not exists. One variant of this
approach is called operationalism [25]. This is a formulation of quantum theory
which describes a set of experimental configurations as a preparation device which
produces a variety of “physical systems” and a measuring device which outputs a
numerical value on a screen, audible “click” or some other sensory cue for a variety
of detector settings. Note that, despite the fact that the “physical system” is not
assumed to be classical, this is the same experimental scenario that a classical
probabilistic description is applied to. An operational set of axioms for quantum
theory are as follows.

Definition 2.2.1. Any model of a set of experimental configurations is a quantum
probabilistic description if it can be modeled as follows.

(i) There exists a Hilbert space H with dim(H) = d.

(11) A preparation (state) is represented by a density operator p satisfying (Y, pi) >
0, for all ¢ € H, and Tr(p) = 1.

(ii) A measurement is represented by a set of effects {Mk} satisfying 0 < (1, Mmﬂ) <
1, for allyp € H, and >, M) = 1.

() For a system with density operator p subject to the measurement {My}, the
probability of obtaining outcome k is given by the Born rule

Pr(k) = Tr(Mgp). (2.2)

The simplest example of such an experiment is the Stern-Gerlach experiment
(see Figure for a schematic diagram). A beam of silver atoms is directed at an
inhomogeneous magnetic field. According to classical electrodynamics, the beam
should be deflected in a continuum of directions. However, when the experiment
is performed, the beam is deflected into two distinct directions. This happens no
matter how the magnet is oriented.

In a operational sense, the silver atoms are prepared by the source and the
measurement is made by the magnet (Stern-Gerlach device or S-G device) with
two outcomes. Consider what happens when two identical S-G devices are placed
in succession (Figure 2.2(a)). The first S-G device is aligned with the z-axis (of
the lab frame) and by blocking one beam of particles it prepares “z-up” particles.
As one would expect from classical intuition, the second S-G device measures the
particles also to “be” (or have the “property”) “z-up”. One might think, then,
this experiment is exactly analogous to a classical coin toss with “z-up” and “z-
down” replacing “heads” and “tails”. However, something peculiar happens when
a sequence of Stern-Gerlach experiments are made. Consider the same situation



(a) Source »  Magnet <

(b) Source » Magnet

Figure 2.1: Schematic of the Stern-Gerlach experiment in (a) classical electrody-
namics and (b) actual experiment.

but now the second S-G device is aligned with the z-axis (i.e. perpendicular to
the first S-G device). This set-up is depicted in Figure 2.2(b). Again the first
S-G device prepares “z-up” particles. The second S-G device measures whether the
particles have the “property” “x-up” or “x-down”. That is fine, each particle can
have two “properties” (its z-direction and its x-direction) and this experiment has
determined which two each particle “possesses”, right? Wrong! Consider a third
S-G device (aligned along z) placed after the “x-down” beam has been blocked in
the previous example. This is depicted in Figure (C) Classical intuition suggests
that the particles entering the third S-G device have the “z-up” “property” since
they were prepared that way by the first S-G device. However, what happens in
the experiment is a random mixture of “z-up” and “z-down” outcomes. So much
for classical “properties”!

Certainly the Stern-Gerlach experiment is not definitive proof against objectiv-
ity and determinism although such experimental results (and those like them) have
been difficult (if not impossible) to explain from any physical theory with intuitive
classical assumptions. On the other hand, quantum theory has proven to be an
incredibly accurate tool in predicting the probabilistic results of experiments such
as the Stern-Gerlach experiment. This does not immediately suggest that a classi-
cal probabilistic description is impossible. Indeed, already some alignment can be
seen in the classical (Definition and quantum (Definition description
of an experiment. In fact, the only difference seems to be the mathematical lan-
guage in which they are stated. There is no a prior: reason to believe that the
two are not (mathematically) equivalent. If this were the case, then the quantum
density operator (state) could be interpreted as representing probabilistic knowl-
edge over some classical state space. Building such an interpretation of quantum
theory is the goal of the hidden variables program [19]. The hidden variables are
classical states which are undetectable according to quantum theory. However, as
discussed later in Chapters[7]through[9] these models have necessary features which



Z-up Z-up
{2) | Source S-G device 1 8-G device >
7-axis _)l:l Z-axis
z-down
Z-up X-up
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> - > S S
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Figure 2.2: Sequences of Stern-Gerlach experiments.

are thought by most to be non-classical by criteria such as negativity, non-locality,
and contextuality.



Chapter 3

Quasi-probability representations
of quantum states

Reviewed in this chapter are the existing phase space formalisms of quantum states
found in the literature. The original phase space representation put forth by Wigner
and later realized as an alternative, and equivalent, formulation of the full quantum
theory (of particles) by Moyal [39] and others [3] is reviewed first. This phase space
picture is valid for infinite dimensional Hilbert spaces but it will be presented here
as it has motivated all known phase space pictures for finite dimensions. Sections
3.6/ of this chapter are devoted to reviewing a representative sample of the known
quasi-probability representations of finite dimensional quantum states.

In Section a summary of these and a few other quasi-probability represen-
tations is presented in a concise manner. The purpose of the chapter shifts from
presentation of the known quasi-probability representations to unification in Section
[3.8 where the precise mathematical definition of quasi-probability representation of
quantum states is given.

3.1 Wigner phase space representation

The position operator, Q and momentum operator, P, are the central ob jects in the
abstract formalism of infinite dimensional quantum theory. The operators satisfy
the canonical commutation relations

Q. P = ih.

Since Q and P do not commute, the choice of the quantization map (q,p) — (Q, ]5)
is not unique. This is the so-called “ordering problem”. A class of solutions to this
problem is the association e+ — ei€Q+nP (£ n) for some arbitrary function f
(See Table 1 of [34] for a review of the traditional choices for f).

10



Consider the classical particle phase space R? and the continuous set of operators

{F(q,p) = (27102 /R dedn =LY (g ) (q,p) € RQ}- (3.1)

When f(&,n) = 1, the distribution

pE (g, p) == Tr(pF (g, p)) (3:2)
1 A . n
— 5018 (Q—a)+in(P—p)
)2 /R2 dédn Tr [pe ] (3.3)

is the celebrated Wigner function [49]. The Wigner function is a member of a class
of functions called quasi-probability distributions: functions on the phase space R?

which are both positive and negative. Some examples of Wigner functions are given
in Appendix [B]

The Wigner function is the unique quasi-probability distribution satisfying the
properties [5]

Wig(1) For all p, pWV'e"r(q, p) is real.
Wig(2) For all p; and po,

Tr(p1p2) = QW/ dgdn py ™ (€, m) 2V ET (€, ).
RQ

Wig(3) For all p, integrating pV's" along the line ag+ bp = ¢ in phase space yields the

probability that a measurement of the observable aQ +bP = ¢ has the result c.

Notice from Equation that Wigner function is obtained from the set of opera-
tors in Equation (3.1) (for f = 1) via the trace. Thus the properties Wig(1)-(3) can
be transformed into properties on a set of operators F (¢, p) which uniquely specify
the set in Equation for f = 1. These properties are

A

Wig(4) F(q,p) is Hermitian.

Wig(5) 2 Tr(F(q,p)F(d,p) = 6(g — ¢)3(p — p').
Wig(6) Let P, be the projector onto the eigenstate of aQ + bP = ¢ with eigenvalue c.
Then,

/ dgqdp 6(ag+bp —¢) = P,
RQ

The Wigner functions has many properties and applications [28] which are not
of concern here. However, it is important to note that wide variety of fruitful
applications of the Wigner function is responsible for the interest in its generaliza-
tion. The properties Wig(1)-(6) were presented here as most authors have aimed
at a finite dimensional analogy of the Wigner function defined such that it satisfies
properties analogous to Wig(1)-(6) for discrete phase spaces. The remainder of the
chapter is devoted to generalizing the definition of the Wigner function to finite
dimensional quantum systems.

11



3.2 Wootters discrete phase space representation

In [50], Wootters is interested in obtaining a discrete analog of the Wigner function.
Associated with each Hilbert space H of finite dimension d is a discrete phase space.
First assume d is prime. The prime phase space, ®4, is a d x d array of points
a = (q,p) € Zq X Zq. The simplest example of a discrete phase spaceﬂ for a qubit
(the common name for a quantum system with d = 2) is shown in Figure 3.1}

Figure 3.1: Discrete phase space of a qubit.

A line, \, is the set of d points satisfying the linear equation aq + bp = ¢, where
all arithmetic is modulo d. Two lines are parallel if their linear equations differ in
the value of ¢. The prime phase space ®, contains d + 1 sets of d parallel lines
called striations. The three sets of two parallel lines for the discrete phase space
for d = 2 is depicted in Figure |3.2]

Assume the the Hilbert space ‘H has composite dimension d = dyds - - - d. The
discrete phase space of the entire d dimensional system is the Cartesian product of
two-dimensional prime phase spaces of the subsystems. The phase space is thus a
dy X dy X dyxdyX---Xdxdy array. Such as construction is formalized as follows. The
discrete phase space is the multi-dimensional array ®4 = @4, X Py, X - - - X Dy, , where
each @, is a prime phase space. A point is the k-tuple a = (aq, ag, . . ., ay) of points
a; = (g;,p;) in the prime phase spaces. A line is the k-tuple X = (A, Ag, ..., \g)
of lines in the prime phase spaces. That is, a line is the set of d points satisfy the
equation

(a1q1 + bip1, asqa + bapa, . . . arqy + bkpk) = (017 Coy. .. 7Ck)a

! Although the phase space is defined to be a array of points, it is often easier to depict it as
an array of boxes where each box represents a point.
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Figure 3.2: Complete set of lines in the qubit discrete phase space.

which is symbolically written aq + bp = c¢. Two lines are parallel if their equations
differ in the value ¢. As was the case for the prime phase spaces, parallel lines
can be partitioned into sets, again called striations; the discrete phase space ®4
contains (dy + 1)(da + 1) --- (dg + 1) sets of d parallel lines.

The construction of the discrete phase space has now been completed. To
introduce Hilbert space into the discrete phase space formalism, Wootters chooses
the following special basis for the space of Hermitian operators. The set of operators
{fla :a € §4} acting on an d dimensional Hilbert space are called phase point
operators if the operators satisfy

Woo(4) For each point a, A, is Hermitian.
Woo(5) For any two points o and 3, Tr(A,Ag) = dngs.

Woo(6) For the lines A in a given striation, the operators P, = %Z A, form a projec-

aEA
tive valued measurement (PVM): a set of d orthogonal projectors which sum

to identity.

Notice that these properties of the phase point operators Woo(4)-(6) are discrete
analogs of the properties Wig(4)-(6) of the function F' defining the original Wigner
function. This definition suggests that the lines in the discrete phase space should
be labeled with states of the Hilbert space. Since each striation is associated with
a PVM, each of the d lines in a striation is labeled with an orthogonal state. For
each @4, there is a unique set of phase point operators up to unitary equivalence.

Although the sets of phase point operators are unitarily equivalent, the induced
labeling of the lines associated to the chosen set of phase point operators are not

13



equivalent. This is clear from the fact that unitarily equivalent PVMs do not project
onto the same basis.

The choice of phase point operators in [50] will be adopted. For d prime, the
phase point operators are
= ,
A = pj—gm+Igt i om
Aa—d'Zw > XIZm, (3.4)
7,m=0

where w is a d’th root of unity and X and Z are the generalized Pauli operators
(See Appendix [A.1]). For composite d, the phase point operator in ®; associated
with the point o = (g, aa, ..., ) is given by

Ay=A4, @Ay, ® - ® A, (3.5)
where each /Alai is the phase point operator of the point «; in @, .

The d? phase point operators are linearly independent and form a basis for the
space of Hermitian operators acting on an d dimensional Hilbert space. Thus, any
density operator p can be decomposed as

p~ _ ZpWOOtters(q,p)A(q,p),

a.p

where the real coefficients are explicitly given by

V\foottelrs(q7 p) — lTr(ﬁA(ng)) (36)

p d

This discrete phase space function is the Wootters discrete Wigner function. This
discrete quasi-probability function satisfies the following properties which are the
discrete analogies of the properties Wig(1)-(3) the original continuous Wigner func-
tion satisfies.

Woo(1) For all p, pWeotters(q p) is real.

Woo(2) For all g and po,

Tr(ﬁ1ﬁ2) —d Z p1Wootters (q’p)pQWootters ((],p)-
q;p

Woo(3) For all p, sum pWeoterss along the line A in phase space yields the probability
that a measurement of the PVM associated with the striation which contains

A has the result associated with the outcome associated with A.

14



3.3 0Odd dimensional discrete Wigner functions

In [II], Cohendet et al. define a discrete analogue of the Wigner function which
is valid for integer spin. That is, dim(H) = d is assumed to be odd. Whereas
Wootters builds up a discrete phase space before defining a Wigner function, the
authors of [II] implicitly define a discrete phase space through the definition of
their Wigner function.

The operators R
Wmn¢k’ = w2n(k—m)¢k72m’

with m,n € Z,; are the discrete analog of the Weyl operators. Then, the discrete
Wigner function of a density operator p is

1 . .
pP*a,p) = STr(pWepP), (3.7)

where P is the parity operator (see Appendix .

The authors call the operators qu = quﬁ Fano operators and note that they
satisfy

~ ~

Tr(quAq’p’) = d‘gqq’ép%
W:ZkAQPWJ»‘k = Aq—2:z: p—2k-

The Fano operators play a role similar to Wootters’ phase point operators; they form
a complete basis of the space of Hermitian operators. The phase space implicitly
defined through the definition of the discrete Wigner function is Zg X Zg.
When d is an odd prime, this phase space is equivalent to Wootters discrete phase
space. In this case the Fano operators are qu = A(_q7p). This can seen by writing
the Wootters phase point operators as

~ 1 Ao 2o A
Ay = ZXM277 P,

3.4 Even dimensional discrete Wigner functions

In [35], Leonhardt defines discrete analogues of the Wigner function for both odd
and even dimensional Hilbert spaces. In a later paper [36], Leonhardt discusses the
need for separate definitions for the odd and even dimension cases. Naively applying
his definition, or that of Cohendet et al., of the discrete Wigner function for odd
dimensions to even dimensions yields unsatisfactory results. The reason for this
is the discrete Wigner function carries redundant information for even dimensions
which is insufficient to specify the state uniquely. The solution is to enlarge the
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phase space until the redundant information becomes sufficient to specify the state
uniquely.

Suppose dim(H) = d is odd. Leonhardt defines the discrete Wigner function as
1 N Ao A
pLeonhardt(% p) — aTr(ﬁX2qZ2pr2‘”’).

Leonhardt’s definition of an odd dimensional discrete Wigner function is unitarily
equivalent to the Cohendet et al. definition pteonherdt(q p) = pedd(—g p). To define
a discrete Wigner function for even dimensions, Leonhardt takes half-integer values
of ¢ and p. This amounts to enlarging the phase space to Zog X Zog. Thus the even
dimensional discrete Wigner function is

1 S A gp
P e, p) = o Tr(pXZP PL™),

where the operators
1 ~ A~ ~ o
TAVMEES _2dX 17P Pw

could be called the even dimensional Fano or phase point operators. Of course,
these operators do not satisfy all the criteria which the Fano operators (in the case
of Cohendet et al.) or the phase point operators (in the case of Wootters) satisfy;
they are not orthogonal. Moreover, they are not even linearly independent which
can easily be inferred since there are 4d* of them and a set of linearly independent
operators contains a maximum of d? operators.

3.5 Wigner functions on the sphere

In [27], Heiss and Weigert are concerned with a set of postulates put forth by
Stratonovich [46]. The aim of Stratonovich was to find a Wigner function type
mapping, analogous to that of a infinite dimensional system on R2, of a finite
dimensional system (of dimension d of course) on the sphere S?. The first postulate
is linearity and is always satisfied if the Wigner functions on the sphere satisfy

p7 () = Tr(pA (m), (3.8)

where n is a point on S?2. The remaining postulates on this quasi-probability map-
ping are

sphere ( * sphere (

n)" = p*""*(n),

p
d

el dn psphere(n) — 1’
47 S2

d ere ere A A
oo [ dn o () o () = Tr(pa ),
™ Js2

(9= p)™"*(n) = p™*(n)?, g € SU(2),
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where ¢ - p is the image of U,pU. I and U : SU(2) — U(H) is an irreducible unitary
representation of the group SU(2).
The continuous set of operators A(n) is called a kernel and plays the role of the

phase point and Fano operators of the previous sections. Requiring that Equation
(3.8) hold changes the postulates to new conditions on the kernel

A(m)' = A(n), (3.9)
% dn A(n) =1, (3.10)
d o . .
e dn Tr(A(n)A(m))A(n) = A(m), (3.11)
™ Js2
A(g-n) =U,Am)U}, g € SU(2). (3.12)
Heiss and Weigert provide a derivation of 22°, where s = % is the spin, unique

kernels satisfying these postulates. They are

Amy= Zel”“cm b()5, (1), (3.13)

where C' denotes the so-called Clebsch-Gordon coefficients; ¢,,(n) are the eigenvec-
tors of the operator S - n, where § = (X,V,2); and ¢, = £1, for [ = 1...2s and
€) — 1.

Heiss and Weigert relax the postulates Equations - on the kernel A(n)
to allow for a pair of kernels A™ and A,,. The pair individually satisfy Equation
(3-9), while one of them satisfies Equation and the other Equation (3.12)).
Together, the pair must satisfy the generalization of Equation (3.11]

4 dnTr(APAm)A® = Ap,. (3.14)
47 2

A pair of kernels, together satisfying Equation (3.14)), is given by

s 2s

l
= 30 S gm0,

m=—s [=0

S 2s l
= 3 S il ), (),

m=—s [=0

where 7, = +1 for [ = 1...2s and 79y = 1. The original postulates are satisfied
when v, =7, = €.

The major contribution of [27] is the derivation of a discrete kernel A, = Any,
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for v = 1...d? which satisfies the discretized postulates

Al =A,, (3.15)

1

EZA”: i, (3.16)
v=1

1 &

y > Tr(AAA, = A (3.17)
v=1

Ay =U,AUL, g € SU(Q2). (3.18)

The subset of points n, is called a constellation. The linearity postulate is not
explicitly stated since it is always satisfied under the assumption

ﬁ _ pconstellation(y) _ Tr(ﬁAV) (319)

Equation (3.17)) is called a duality condition. That is, it is only satisfied if A, and

AP are dual bases for Herm(H). In particular,

émAyM — 5

Although the explicit construction of a pair of discrete kernels satisfying Equations
(3-15)-(3-18) might be computationally hard, their existence is a trivial exercise
in linear algebra. Indeed, so long as A, is a basis for Herm(H), its dual, AH s
uniquely determined by

d2
~ . 1]
Ar=3N"a 1A,
v=1

where the Gram matrix G is given by

~

G = Tr(A D).

The authors of [27] note that almost any constellation leads to a discrete kernel A,
forming a basis for Herm(H). The term almost any here means that a randomly
selected discrete kernel will form, with probability 1, a basis for Herm(H).

3.6 Finite fields discrete phase space representa-
tion

Recall that when dim(H) = d is prime, Wootters defines the discrete phase space
as a d X d lattice indexed by the group Zg. In [51], Wootters generalizes his original
construction of a discrete phase space to allow the d x d lattice to be indexed by
a finite field F; which exists only when d = p™: an integer power of a prime num-
ber. This approach is discussed at length in the paper [20] authored by Gibbons,
Hoffman and Wootters (GHW).
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Similar to his earlier approach, Wootters defines the phase space, 4, as a d x d
array of points a = (¢q,p) € Fy x Fyq. A line, A, is the set of d points satisfying
the linear equation aq + bp = ¢, where all arithmetic is done in ;. Two lines are
parallel if their linear equations differ in the value of c.

The mathematical structure of Fy is appealing because lines defined as above
have the following useful properties: (i) given any two points, exactly one line
contains both points, (ii) given a point o and a line A not containing «, there
is exactly one line parallel to A that contains «, and (iii) two nonparallel lines
intersect at exactly one point. Note that these are usual properties of lines in
Euclidean space. As before, the d? points of the phase space ®; can be partitioned
into d 4+ 1 sets of d parallel lines called striations. The line containing the point
(¢, p) and the origin (0,0) is called a ray and consists of the points (sq, sp), where
s is a parameter taking values in Fy. We choose each ray, specified by the equation
aq + bp = 0, to be the representative of the striation it belongs to.

A translation in phase space, 7,,, adds a constant vector, ag = (qo, po), to every
phase space point: 7,,a = o + ag. Each line, A, in a striation is invariant under a
translation by any point contained in its ray, parameterized by the points (sq, sp).

That is,
T(sqsp) A = A (3.20)

The discrete Wigner function is
e 1 ~ A
P"Na,p) = ZTr(pAy),

where now the Hermitian phase point operators satisfy the following properties for
a projector valued function @, called a quantum net, to be defined later.

GHW(4) For each point a, A is Hermitian.
GHW(5) For any two points o and 3, Tr(A,Az) = db,gs.

GHW(6) For any line A, Y A, = dQ()).

aEX

The projector valued function Q assigns quantum states to lines in phase space.
This mapping is required to satisfy the special property of translational covariance,
which is defined after a short, but necessary, mathematical digression. Notice first
that properties GHW(4) and GHW(5) are identical to Woo(4) and Woo(4). Also
note that if GHW(6) is to be analogous to Woo(6), the property of translation
covariance must be such that the set {Q(\)} when A ranges over a striation forms
a PVM.

The set of elements E = {eq, ...,e,_1} C Fyqis called a field basis for Fy if any
element, x, in [F; can be written

n—1
T = inei, (3.21)
=0
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where each z; is an element of the prime field Z,. The field tmceﬂ of any field
element is given by

tr(z) = Z . (3.22)

There exists a unique field basis, E = {&,...6n_1}, such that tr(é;e;) = 6;;. We call
E the dual of E.

The construction presented in [20] is physically significant for a system of n
objects (called particles) having a p dimensional Hilbert space. A translation oper-
ator, T, associated with a point in phase space a = (¢, p) must act independently
on each particle in order to preserve the tensor product structure of the composite
system’s Hilbert space. We expand each component of the point « into its field
basis decomposition as in Equation (3.21])

n—1
q= Z qgi€; (3.23)
i=0

and ,
p= Zpiféia (3.24)
i=0

with f any element of F;. Note that the basis we choose for p is a multiple of the
dual of that chosen for q. Now, the translation operator associated with the point

(¢,p) is

n—1
Tigm = Q) X127, (3.25)
=0

Since X and Z are unitary, T}, is unitary.

We assign with each line in phase space a pure quantum state. The quantum
net Q is defined such that for each line, A, Q()\) is the operator which projects onto
the pure state associated with A\. As a consequence of the choice of basis for p in
Equation , the state assigned to the line 7, is obtained through

Q(ra)) = TLQ(NT. (3.26)

This is the condition of translational covariance and it implies that each striation
is associated with an orthonormal basis of the Hilbert space. To see this, recall
the property in Equation (3.20)). From Equation , this implies that, for each
s € Fy, T(sq,sp) must commute with Q()\), where the line X is any line in the striation
defined by the ray consisting of the points (sq, sp). That is, the states associated
to the lines of the striation must be common eigenstates of the unitary translation
operator T (sq,sp)> for each s € Fy. Thus, the states are orthogonal and form a basis

2Note that we will distinguish the field trace, tr(-), from the usual trace of a Hilbert space
operator, Tr(-), by the case of the first letter.
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for the Hilbert space. That is, there projectors form a PVM which makes GHW (6)
identical to Woo(6) when d is prime.

In [20], the author’s note that, although the association between states and
vertical and horizontal lines is fixed, the quantum net is not unique. In fact, there
are d~! quantum nets which satisfy Equation ([3.20). When d is prime, one of these
quantum nets corresponds exactly to the original discrete Wigner function defined
by Wootters in Section [3.2]

3.7 Summary of existing quasi-probability func-
tions

This section summarizes the phase space functions reviewed in Sections |3.2
which form only a subset of the literature on finite dimensional phase space func-
tions. There are indeed several others (for a recent review see [47]). More gen-
erally, there exist what will be called quasi-probability representations, which are
real-valued representations that do not necessarily reflect any preconceived classi-
cal phase space structure. For example in [25] Hardy shows that five axioms are
sufficient to imply a special quasi-probabilistic representation which is equivalent
to an operational form of quantum theory. In [26] Havel also proposes an kind of
analog of the Wigner function called the “real density matrix”.

A concise summary of all quasi-probability representations for finite dimensional
quantum systems reviewed here (and a couple more) is presented in Table . The
table gives the first author, reference and year of the publication. It also shows
the phase space structure and mathematical field which indexes it (if applicable).
The second to last column indicates whether or not the representation contains
redundant information. The last column reveals the scope of quantum theory the
paper aims to cover (notice that typically only states are considered).
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3.8 Unification of existing quasi-probability func-
tions

Each of the quasi-probability functions discussed above are linear representations
of the density operator. These representations are also invertible as the density op-
erator can be obtained from any quasi-probability function. To ensure the finiteness
of the formalism, each quasi-probability function is a member of the function space
L?(S, 1), where S represents a classical state space (i.e. the phase space, where
applicable). These three properties will constitute the following minimal definition
of a quasi-probability representation of quantum states alone.

Definition 3.8.1. A quasi-probability representation of quantum states is any map
Herm(H) — L?(S, ) that is linear and invertible.

One might object that the restrictions imposed on this map are too strong. In-
deed there is no mention of linearity, invertibility, or L? spaces in the definition of
classical probability. Recall however from Definition [2.1.1|that a classical probabilis-
tic description describes an entire experimental arrangement. It could be argued
that classical intuition is lost and mathematical descriptions become arbitrary if
one begins to consider individual experimental procedures without specification of
the entire scope of the experiment. How is one to describe a coin if it is not known
whether it will be tossed or not? Definition 3.8.1] was chosen since all the known
quasi-probability representations of states satisfy it. Moreover, later in Chapter [0]
a definition of a quasi-probability representation of an entire quantum experiment
(i.e. states and measurements) will be given that follows more closely a classical
intuition and happens to reduce to Definition [2.1.1] on the part of the definition
which represents states.

Given Definition [3.8.1] any phase space function is then a particular type of
quasi-probability representation.

Definition 3.8.2. If there exists symmetry group on I', G, carrying a unitary
representation U : GA—>A?<{(H) and a quasi-probability representation satisfying the
covariance property UyAUS — {A(g())}aer for all A € Herm(H) and g € G, then

A A(a) is a phase space representation of quantum states.

All phase space functions in the literature correspond to quasi-probability rep-
resentations that satisfy this additional covariance condition.

Table shows that the range of validity in the Hilbert space dimension of
these functions are often disjoint. Moreover, the construction of the phase spaces
use varying mathematical structures: integers, finite fields and points on a sphere.
Coupled with the fact that at least two known representations required redundancy,
it may seem at first that Definition is as far as one can can go in unifying the
quasi-probability functions. All is not lost however; in the next chapter it is shown
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that the mathematical theory of frames is both sufficient and necessary to describe
any representation of quantum states satisfying Definition [3.8.1]

If one accepts negative probability, then these quasi-probability representations
constitute a hidden variable theory. The variables here are “hidden” since negative
probabilities have never been observed. Later, in Chapter [7} it will be shown that
negativity is a necessary feature of quasi-probability representations.
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Chapter 4

Frame representations of quantum
states

This chapter first introduces the idea of a frame in the context of signal analysis, the
branch of mathematics in which frames were discovered. Then, a precise definition
of a frame is given in the context of quantum theory. Finally, it is shown that
a frame representation (Definition and a quasi-probability representation of
quantum states (Definition are equivalent.

4.1 Gentle introduction to frames

Frames are mathematical objects invented within the signal analysis community to
rigorously deal with a common conceptual tool used in everyday life: redundancy.
We all use redundancy; we repeat ourselves and double-check things to avoid errors.
The same idea of reducing error is used in signal analysis [33]. A simple example
will introduce the concept of a frame.

Consider the two dimensional Hilbert space H. The canonical basis is {¢g, ¢1}.

The simplest frame is the Mercedes-Benz frame {¢ }7_, := {gbo, —3¢0 + \/quﬁl, —3¢0 —

This is depicted in in Figure |4.1

Any vector £ € H can be decomposed in the canonical basis as £ = (&, ¢o) oo +
(&, $1)¢1. In communications applications the coefficients « := (£, ¢p) and § :=
(€, ¢1) are transmitted between parties. These coefficients will typically be subject
to noise and what is received are & and 3. The receiver can only reconstruct an
estimate { = a@o + B¢ from the noisy coefficients. If the noise is white, with
variation o2, the mean squared error (the average value of ||€ — &||?) is also o2.

A short calculation will verify that the vector ¢ can be decomposed in the

2
Mercedes-Benz frame as § = % (&, Y)b. Now, the three coefficients & 1= (£, 1)
k=0
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Figure 4.1: Mercedes-Benz frame {1 }.

are transmitted, subjected to the same white noise and received as Ek Again the
receiver reconstructs the estimate £ = % Zi:o &xr from the noisy coefficients. Now
the mean square error can be verified to be §a2 which is lower than that for the
same protocol using the basis coefficients.

As a second example, consider the case when one coefficient is lost in transmis-
sion. When the coefficients are taken from a basis, it is impossible to reconstruct
the signal perfectly; the possible reconstructed vectors can never span the entire
Hilbert space. However, if one of the Mercedes-Benz coefficients are lost, the re-
maining two can still be use to reconstruct the vector perfectly; any two elements
of the frame still span H.

The above two situations illustrate the utility of frames. This thesis is not so
concerned with the communication applications of frames but it will be shown how
various structures in quantum theory are equivalent to frames. In the next section
a precise definition of a frame for a particular Hilbert space important in quantum
theory will be presented.

4.2 Frame representations of quantum states

A frame can be thought of as a generalization of an orthonormal basis. However,
the particular Hilbert space under consideration here is not H. Considered here is
a generalization of a basis for Herm(H), which is the set of Hermitian operators
on an complex Hilbert space of dimension d. With the trace inner product (or
Hilbert-Schmidt inner product) (4, B) := Tr(AB), Herm(H) forms a Hilbert space
itself of dimension d?. Let S be some set with positive measure p.

Definition 4.2.1. A frame for Herm(H) is a mapping F:8— Herm(H) which
satisfies

a AJI? < /8 du(s) [((s), AY[2 < Bl A%, (4.1)
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for all A € Herm(H) and some constants a,b > 0.

The definition of a finite frame is of course subsumed by Definition 4.2.1, How-
ever, since the majority of the phase space representations are discrete, the defini-
tion of a finite frame will be given explicitly. When |S| < oo and p is the counting
measure, a (finite) frame for Herm(H) is a set of operators F := {F(s) : s € S} C
Herm(H) which satisfies

all AP <Y (E(s), AP < bl AP, (4.2)

seS

for all A € Herm(H) and some constants a,b > 0. This definition generalizes a
defining condition for an orthogonal basis { By}~ |

d2

Y B AP = AP, (4.3)

k=1
for all A € Herm(H).

Definition 4.2.2. A frame E : & — Herm(H) which satisfies
A= [ du) (). A EG), (4.4
for all A € Herm(H), is a dual frame (to F).

The frame operator associated with the frame F' is defined as
S(A) = | duts) Fs)F(s). A

If the frame operator satisfies S = a1, the frame is called tight. The frame operator
is invertible and thus every operator has a representation

A=S5715A = / du(s) (F(s), AYS™1F(s). (4.5)
S
The map S~F is called the canonical dual frame. When S is finite and |S| = d?,

the canonical dual frame is the unique dual, otherwise there are infinitely many
choices for a dual.

A tight frame is ideal from the perspective that its canonical dual is proportional
to the frame itself. Hence, the reconstruction is given by the convenient formula

PR 1

A=S5715A = - /S du(s) (F(s), AYF(s).
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The utility of this formula is emphasized when the frame is finite. It that case it
becomes

A= 2SR (s), ()
seS
which is to be compared with
&2
A=Y (B, A) By
k=1

which defines {B;}%" | as an orthonormal basis.

The mapping A — (F (s), fl} is usually called the analysis operation in the frame
literature as it encodes the signal in terms of the frame. Here the notion of a signal
not appropriate and a more suggestive name has been chosen and formalized in the
following definition.

Definition 4.2.3. A mapping Herm(H) — L*(S, 1) of the form

~

A A(s) = (E(s), A), (4.6)

where F is a frame, is o frame representation of Herm(H).

4.3 Equivalence of the quasi-probability and frame
representation of quantum states

Since each frame has at least a canonical dual, a frame representation (Definition
4.2.3)) can always be inverted according to the reconstruction formula in Equation
([4.5). A frame representation is defined such that it exists in L*(S, u). It is clear
that a frame representation is linear by virtue of the linearity of the inner product.
Thus each frame representation is guaranteed to be a quasi-probability of quan-
tum states (Definition where S is interpreted as a classical state space (and
possibly also a phase space). However, it is not clear that the converse is true,
which is that every quasi-probability representation of quantum states is a frame
representation. Indeed, the following lemma establishes the equivalence between
frame representations and quasi-probability representations of quantum states.

Lemma 4.3.1. A mapping R : Herm(H) — L*(S, ) is quasi-probability represen-
tation of quantum statesf Definition if and only if it is a frame representation
for some unique frame F'.

The proof of this lemma appears in [16]. For completeness it is reproduced here.
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Proof. 1t is clear that a frame representation is a quasi-probability representation.
Suppose a mapping R : Herm(H) — L?(S, i) is a quasi-probability representation.
i.e. it is linear and invertible. The Riesz representation theorem implies that
R(A)(s) := (F(s), A) for some unique mapping F' : S — Herm(H). Since Herm(H)
is finite dimensional, the inverse R~! is bounded. Thus R is bounded below by the
bounded inverse theorem. That is, there exists a constant a > 0 such that

AL < [ dute) 1P AP
Since (F(s), A) € L*(S), there exists a constant b > 0 such that
J ) 1) AE < bl AP
Hence [ is a frame. O]
Thus there is a unique frame which defines each of the quasi-probability func-
tions reviewed in Chapter [3] In the cases where the representation of the density
operator is not redundant, the frame is just a basis. In the redundant cases, Leon-
hardt’s even dimensional representation (Section for example, the formalism
of frame theory is necessary as a basis will not suffice. In the next chapter, the

examples of quasi-probability functions will be analyzed using the frame formalism
presented in this Chapter.
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Chapter 5

Examples of frame representations
of quantum states

Recall the examples of Chapter [3] Here it is demonstrated how each is a frame
representation by identifying the frame which gives rise to each. After reading this
chapter and going over the examples presented in Chapter [3| a second time, it be-
comes clear that the frame formalism presented in Chapter [4] provides a remarkably
powerful tool in the unification of the known quasi-probability functions.

5.1 Wigner phase space representation

Let d be a prime number. Here S = Z; x Z4. Consider the frame JFWootters —

{FWootters(qu) . (qu) c S}, where

FWOOtters(q p) — iXQqZAQpprqp
Y d2 N

The quasi-probability function pWeoter is a frame representation given by the frame

FWootters " The frame operator of FooUer is §~: d~'1. The unique dual frame of
FWootters jg given by S—IFWoeotters where here S~ = d1. Comparing this result to
Equation (3.4), the dual frame to F W' ig a set of phase point operators.

Consider the group of translations on & with unitary representation T(q,p) =
X177, Then,
I "Wootters 7 1 o n o g A A s .

T(q’p)FW b (q/’p/)T(Tq,p) = EXQZPXZq 720 PP X —4,,24p
1

T

_ FWOOtters(q—f—q/,p—f—p,).

X2q+d) 72(0+0") p,2(a+4") (p+p")

Thus, by definition, the Wootters representation is a phase space representation.
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Recall from Section [3.2| that Wootters also considered non-prime dimensions. In
that case, the phase point operators (Equation (3.5])) were a tensor product of phase
point operators (Equation (3.4)) for prime dimensions. The same is true here for
the frame in composite dimensions. When d is composite with prime decomposition
d=didy---dp. Let § =8 X Sy x-S where each S; = Z4, X Zg,. When d is
composite the frame is FWeotters — {F° Wootters (g, piiy) ¢ (4w, Py) € Siiy} where

FWootters(q(i) : p(z)) _ FWootters(q(l) : p(l))®FWootters(q(2) ,D@) )® . .®FW00tters(q(k) : p(k))

FWO otters (

and each (), P(s)) is a frame as in Equation (5.1)).

5.2 0Odd dimensional discrete Wigner functions

Let d be an odd integer. Here S = Zg x Zy. Consider the frame F°dd = {Fodd (g p)
(¢.p) € S}, where

~ 1 - e A
FOdd(q,p) = ﬁX_ZqZ%Pw_Z‘”’.

The quasi-probability function p°3 is a frame representation given by the frame
Fodd  The frame operator of F°44 is § = d~'1. The unique dual frame of F°dd ig
given by S~1F°d where here S~ = d1. The dual frame to F° is what Cohendet
et al. call a set of Fano operators.

Consider the group of translations on & with unitary representation T(qyp) =
X797P. Then,

T(q,p)ﬁ()dd(q/a p/>TT

Ly =Yg +d p+0).

By definition, this odd dimensional representation is a phase space representation.

5.3 Even dimensional discrete Wigner functions

Let d be an even integer. Then & = Zyg X Zyq. Consider the frame F®" =
{F**"(q,p) : (¢,p) € S}, where

~ 1 o A~ o~
F(q,p) = 4—d2XqZpr7.

even

The quasi-probability function p is a frame representation given by the frame
Feven The frame operator of F¢¥" is S = (2d)~'1. However, this implies the frame
is only tight; it is not a basis and the dual is not unique. The canonical dual frame

of Fevem ig given by S™1Fe¥" where here S~! = 2d1. The canonical dual frame to
Fev is what was called a set of Fano operators.
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Consider the group of translations on & with unitary representation T, (ap) =
Z%. Then,

N

X

T(%p)ﬁveven(q/’p/)f(’[q’p) _ Feven(q + qup + p/)

Thus, by definition, this odd dimensional representation is a phase space represen-
tation.

5.4 Wigner functions on the sphere

Let d be any integer. Here the phase space is & = S?. Consider the (continuous)
frame FsPRee : §? — Herm(H) given by

Fsphere(n) _ A(I’l),

where A(n) is the same kernel given in Equation (3-13). The quasi-probability
function p*Pher is a frame representation given by the frame frsphere From Equation
, it follows that the frame operator of Frsphere i & — 4rd=11. Thus the frame
is tight. Equation (3.12) is the group covariance property defining is a phase space
representation for the group SU(2).

Now consider the discrete representation on sphere defined by Heiss and Weigert.
Now the phase space § is a subset of points on the sphere which form a valid
constellation. Consider the frame JFeonstellation — f preonstellation(g) - g € S} where

~

Fconstellation(s) _ A
- S

where A, is a kernel satisfying the postulates ([3.15)-(3.18). The quasi-probability
function peonstellation i o frame representation given by the frame JFeonstellation = Ag wag
the case for the other discrete representation in the previous examples, the frame
operator of JFeonstellation jo & — 7-17  The unique dual frame of Feonstellation g ¢iyer
by S—1fconstellation where here S—1 = 1. Thus, the dual frame to Jeonstellation
is what Heiss and Weigert call a dual kernel. Again, from Equation (3.18), this
representation satisfies definition of a phase space representation.

5.5 Finite fields discrete phase space representa-
tion

Let d be a power of a prime number. Here § = F; x Fy. Consider the frame
Fleld — fppfeld (g n) 1 (q,p) € S}, where

F(q, p) :é > -1



The quasi-probability function pf€'d is a frame representation given by the frame

Fheld The frame operator of Fi! is S’~: d~'1. The unique dual frame of Ffie'd i
given by STIFed where here S~! = d1. The dual frame to F5 is a set of phase
point operators.

This particular representation is constructed to be translationally covariant (re-
call Equation (3.26])) and is thus a phase space representation.
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Chapter 6

Frame representations of quantum
states and measurements

Table shows that most proposed quasi-probability functions are representations
of quantum states alone. In Sections [6.1] and it is shown that there are two
approaches within the frame formalism to lift any representation of states to a fully
autonomous representation of finite dimensional quantum theory. In Section [6.3] a
set of internal consistency conditions for each of the two approaches is given that
allows one to view quantum theory independent of the standard operator theoretic
formalism.

A short detour is taken in Section to show that a more complete operational
formulation of quantum theory (namely, one which includes transformations) is
not outside the scope of the frame formalism. Finally in Section a novel quasi-
probability representation based on SIC-POVMs is presented which relates the
frame formalism a recent research topic in quantum information.

6.1 Deformed probabilistic frame representations

The first frame representation approach consists of mapping both states and mea-
surements to L?(S, 1) via a particular choice of frame F. i.e. p— p(s) := (p, F(s))
and My — My(s) := (M, F(s)). The functions in the range of this frame repre-
sentation when the domain is restricted to the density operators are called quasi-
probability densities. Similarly, the functions in the range of the frame represen-
tation when the domain is restricted to the effects are called conditional quasi-
probabilities. Together these mappings are called a deformed probabilistic frame
representation. The reason for the qualifier deformed will become apparent. The
deformed probabilistic frame representation achieves the following description of
an experiment which is equivalent to Definition of a quantum probabilistic

description.
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Definition 6.1.1. Any model of a set of experimental configurations is a deformed
probabilistic frame description if all of the following properties hold.

(a) There is a set of allowed properties S with a positive measure .

(b) A preparation (state) is represented by a quasi-probability density p(s) € R
which satisfies the normalization condition [¢du(s)p(s) = 1.

(c) A measurement is represented by a set of conditional quasi-probabilities { My(s) €
R} which satisfies Y, My(s) =1 for all s € S.

(d) For a system with quasi-probability density p subject to the measurement { My},
the probability of obtaining outcome k is given by

Pr(k) = | du(s,r)p(s) Ma(r) (), E()) (6
S
where E is any frame dual to F.

Equation is called the deformed law of total probability. Recall from
Lemma that all quasi-probability representations of states are frame repre-
sentations. Given a quasi-probability representation (of states), one can identify
the unique frame which gives rise to it. Then, using that frame to represent the
measurement operators, one obtains a deformed probabilistic frame description of
quantum experiment (Definition [6.1.1).

If the frame F is a positive operator, then p(s) > 0, and My(s) € [0,1] could
be satisfied. Note that if this were the case and (F(s), E(r)) = d(s —r), then a de-
formed probabilistic frame description would be a classical probabilistic description

(Definition [2.1.1]).

6.2 Quasi-probabilistic frame representations

Notice that the deformed probability calculus in Equation (6.1)) can be written

Pr(k) = [ duts) p(s) 1), (6.2

where

Mj(s) = /Sdu(r) Mi(r)(E(s), B(r)). (6.3)

Recall that M), is the frame representation of M i for the frame F. Hence Mj, can be
identified as the frame representation of Mj using a frame F that is dual to . The
second frame representation approach consists of mapping states to L2(F @) via a
particular choice of frame F' and measurements to L3(T, u) via a frame E that is dual
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to F. i.e. pr pla) := (p, F(a)) and M, — M () := (My, E(a)). The term quasi-
probability density has the same meaning as before. However, the functions in the
range of the frame representation of the measurements (i.e. the frame representation
defined via the dual E) when the domain is restricted to the effects will still be
called conditional quasi-probabilities. It should be clear which definition is being
used from the context. Together these mappings are called a quasi-probabilistic
frame representation. The quasi-probabilistic frame representation achieves the
following description of an experiment which is equivalent to Definition of a
quantum probabilistic description.

Definition 6.2.1. Any model of a set of experimental configurations is a quasi-
probabilistic frame description if all of the following properties hold.

(a) There is a set of allowed properties S with a positive measure .

(b) A preparation (state) is represented by a quasi-probability density p(s) € R
which satisfies the normalization condition [ du(s)p(s) = 1.

(c) A measurement is represented by a set of conditional quasi-probabilities { M (s) €

R} which satisfies Y, M;(s) =1 for all s € S.

(d) For a system with quasi-probability density p subject to the measurement { M},
the probability of obtaining outcome k is given by the law of total probability
FEquation (6.2)).

Equation (6.2)), for true probabilities, is the law of total probability. Again,
given a quasi-probability representation (of states), one can identify the unique
frame which gives rise to it. Then, using that dual frame to represent the mea-

surement operators, one obtains a quasi-probabilistic frame description of quantum
experiment (Definition [6.1.1]).

Forget, for the moment, about frames and consider the following definition.

Definition 6.2.2. Any model of a set of experimental configurations is a quasi-
probabilistic description if all of the following properties hold.

(a) There is a set of allowed properties S with a positive measure .

(b) A preparation (state) is represented by a function p(s) € R which satisfies the
normalization condition [ du(s)p(s) = 1.

(¢) A measurement is represented by a set of functions { My(s) € R} which satisfies
Yo Mi(s)=1 forallseS.

(d) For a system with preparation function p subject to the measurement { My}, the
probability of obtaining outcome k is given by

Pr(k) = / dyu(s) p(s)Mi(s).

36



The differences in this definition and Definition [6.2.1] are subtle but important.
Definition does not refer to frames and is more general. If one has a quasi-
probabilistic frame representation (a pair of mathematical mappings), then one has
an effective description of a quantum experiment which satisfies Definition [6.2.1
and in turn also satisfies Definition [6.2.2] The converse is not true; if such a quasi-
probabilistic description exists (Definition , it is not necessarily given by a
quasi-probabilistic frame representation.

Note that, in Definitions [6.2.2] and [6.2.1] if p(s) > 0, and My(s) € [0, 1], then
a quasi-probabilistic description is a classical probabilistic description (Definition
2.1.1)).

6.3 Internal consistency conditions

Recall that in a deformed probabilistic frame representation the definition of a
quasi-probability density is a function in the range of a frame representation when
the domain is restricted to the density operators. And, the conditional quasi-
probabilities are the functions in the range of a frame representation when the
domain is restricted to the effects. Of course, for a particular choice of frame, not
every function in L?(S, i) will correspond to a valid quantum state or effect. Here
a set of internal conditions is provided, independent of the standard axioms of
quantum theory, which characterize the valid functions in L?(S, it). The conditions
can be found by noting that the frame representation Equation (4.6)) is an isometric
and algebraic isomorphism from Herm(H) to L?(S, 1) equipped with inner product

(A, By = / du(s, ) A(s)B(r)E(s,7),
S2
where E(s, r) := (E(s), E(r)), and algebraic multiplication

(A B i= [ du(rit) Ar)BO)F(s.1:1),

82

where F(s,r,t) = (F(s), E(r)E(t)).

Now the condition for a function in L?(S, ) to be a valid state or effect can be
stated. A pure state is a function ppyre € L3(8, i) satisfying Ppure *§ Ppure = Ppure- A
general state is a function p € L*(S, u) satisfying (p, ppure)e > 0 for all pure states
and [ du(s)p(s) = 1. A measurement is represented by a set {M;, € L*(S,u)} of
effects which satisfies (M, ppure)e > 0 for all pure states and for which ), M; = 1,
where 1 is the identity element in L*(S, ) with respect to the algebra defined by
xz. That is, 1 is the unique element satisfying 1 3 A = Axz 1 for all A € L*(S, ).

Recall for a quasi-probabilistic frame representation of quantum theory, the
term quasi-probability density has the same meaning as in a deformed probability
representation. And, the conditional quasi-probabilities are the functions in the
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range of the frame representation of the measurements (i.e. the frame representa-
tion defined via the dual E) when the domain is restricted to the effects. Again
for this approach, states and measurements in L*(S, 1) must meet certain criteria
to be valid. The conditions are similar to those in the deformed probability repre-
sentation. Indeed the pure states and general states are equivalently characterized.
However, a measurement is now represented by a set { My € L*(S, )} which satis-
fies (M, ppure) > 0 (now the usual pointwise inner product) for all pure states and
for which >°, M), = 1, where 1 is the identity element in L*(S, u) with respect to
the algebra defined by x¢ (which is defined in the same way as xz with the roles of
the frame and its dual reversed).

6.4 Transformations

A transformation is a superoperator (an operator acting on operators) ® : D(H) —
D(H). Operationally, an experiment consists of preparations followed by transfor-
mations and ending in a measurement. Note that, in a purely operational sense,
the transformations are somewhat redundant as they could be bundled with ei-
ther the preparations (to make new preparations) or measurements (to make new
measurements).

A completely positive (CP) map is a linear superoperator P satisfying
Tr[(¢ ® 1)5] > 0,

for every pure state p on extended system of arbitrary finite dimension. If in ad-
dition, the CP map satisfies Tr(®(p)) = Tr(p), it is called a completely positive
trace-preserving (CPTP) map. The CPTP maps are the transformations which
are admissible. Admissible means the mathematical objects which could conceiv-
ably describe the transitions a systems experiences between the preparation and

measurement phase of an experiment.

In classical theories, transitions in probability are represented by matrices called
stochastic matrices. It is natural to attempt a similar representation of transitions of
quantum states here. Matrix representation are typical in quantum theory. A linear
operator A is usually mapped to a matrix with entries a;; given by a;; = (¢;, /Algbﬂ
where {¢;} is an orthonormal basis for H. Then the action of the operator is repre-
sentation as the usual matrix multiplication. However, a slightly modified approach
is required here when using frames (which reduces to usual matrix representations
when the frame and an orthonormal basis coincide).

Let A(s) be a frame representation of Hermitian operator A for a frame F. Let
E be a dual frame of F' and consider the action of a superoperator

HA— /S du(s)A(s)E(s). (6.4)
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Denote the frame representation of ®A as A®(r) := (F(r),®A). As was the case
for including measurements into a frame representations, two approaches can be
identified.

The first approach follows directly from Equation (|6.4])

A% (r) :/Sd,u(s)fl)qp(r, s)A(s), (6.5)

where ®®(r,s) = (F(r),®E(s)) (“qp” is a label meant to abbreviate “quasi-
probability”). Notice that Equation is just the usual (perhaps infinite dimen-
sional) matrix multiplication rule It is the same rule for transitioning probability
distributions via stochastic matrices in classical theories. However, as opposed to
stochastic matrices, ®% could have negative entries.

Alternatively, consider the intermediate step
B(s) = [ au)(B0). B F(), (6.6)

Then Equation (6.4)) becomes
A% = [ duls, )8 B ) A(5), (6.7)
82

where ®%f(r,t) = (F(r), DE(t)) (“def” is a label meant to abbreviate “deformed
probability”). This second approach is analogous to the deformed probabilistic
frame representation of Section [6.1]

6.5 Example: SIC-POVM representation

In [42], the authors conjecturd!] that the set {¢po € H : & € Zq X Za} = {Up,g)¢
(p,q) € Zq X Zg} for some ¢ € H and

Uy = w2 XPZ1 (6.8)

forms a symmetric informationally complete positive operator valued measure (SIC-
POVM). The defining condition of a SIC-POVM is

2 _

(6.9)
The set is called symmetric since the vectors have equal overlap. The POVM is
formed by taking the projectors onto the one-dimensional subspaces spanned by
the vectors. It is informationally complete since these d? projectors span Herm(H).

! Apparently this was conjectured earlier by Zauner in a Ph.D. thesis not available in english.
See http://www.imaph.tu-bs.de/qi/problems/23.html.
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As of writing, there is still no proof that SIC-POVMs exist in every dimension.
However, it is still highly believed they do exist as there is numerical evidence for
there existence for every dimension up to d = 45 [42]. Some authors have expressed
urgency in determining whether SIC-POVMs exist or not by showing some desirable
property they have if they were to exist [2].

Suppose then that for any dimension d, a SIC-POVM exists. Notice that a
SIC-POVM forms a frame. Explicitly, let

~ 1
F = {Fa = EgzﬁagbZ:QEZdXZd}

denote this frame. From the definition of the SIC-POVM, Equation (6.9)),

A A 6aﬁd+1
Faﬂ = <Fa7 ,3> = m

Since the frame forms a basis, the dual frame is unique and thus the inverse frame

operator must be satisfy o
(Fuy, STHER) = bap.

By inspection R o R )
Es=S"Fs=d(d+1)F; — 1.

Representing a quantum state via the frame or canonical dual yields the neat re-
construction formulae

p=> (d(d+1)ps — 1)F,, (6.10)
p=> paldd+1)F, - 1), (6.11)

where po := (F,, p) is the frame representation of .

Equation (6.10) was given in [2]. This equation fits naturally into the deformed
probabilistic frame representation formalism discussed in Section [6.1] Notice that
the dual frame satisfies

Eap = <EQ7E5>
—(d(d+1)F, —1,d(d+1)F; — 1)
=d*(d+1)°Fap — 2(d+ 1) +d
=d(d+1)0ap —d+ 1.

If an arbitrary measurement {Mk} is also represented via the SIC-POVM frame as
My 3 = (F3, My), then Equation (6.10]) is identical to the deformed law of total
probability

Pr(k) = paMy gEas.
ap
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Equation fits more naturally into the quasi-probabilistic frame representa-
tion formalism discussed in Section If an arbitrary measurement {M} is
represented via the canonical dual to the SIC-POVM frame as M; , := (Eq, M),
then Equation is identical to the deformed law of total probability

Pr(k) = 3 paMi,,.

Since the SIC-POVM frame is made of projectors, the frame representation of
the density operator is a true probability distribution. However, the dual frame
operators are not positive. Thus in a quasi-probabilistic frame representation (Sec-
tion , the conditional quasi-probabilities will not be true probabilities as they
must possess negative values. It will be shown in the next chapter than this is
a general feature of quantum theory and applies to any quasi-probabilistic frame
representation.
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Chapter 7

Negativity and the
non-classicality of quantum theory

It has been mentioned already in this thesis that negativity is a necessary feature
of quasi-probability representations. This is significant because if it were false,
a classical probabilistic description whole suffice for any physical experiment. A
mapping from a quantum probabilistic description to a classical probabilistic de-
scription, called a classical representation, is defined in Section[7.I] A minimal gen-
eralization of a classical representation allows for a definition of a quasi-probability
representation (of quantum theory) which makes no references to linearity, invert-
ibility, or L? spaces as was the case for the quasi-probability representation for
states alone (Definition . This definition of a quasi-probability representation
for an entire quantum experiment is given in Section [7.2] It is then shown how
frames are made necessary for this more general definition of a quasi-probability
representation. Finally, in Section the theorem that denies the existence of a
classical representation and enforces negativity in quasi-probability representations
is presented.

7.1 Classical representations of quantum theory

Suppose a quantum probabilistic description (Definition is given for an ex-
perimental arrangement and an equivalent classical probabilistic description (Defi-
nition is desired. Then a mapping from the set of density operators D(H) to
probability densities p — p(s) and a mapping from the set of effects E(H) to the
measurable functions M — M (s) is required. An important implicit assumption
here is that the domain of these mappings are the sets D(H) and E(H). Oper-
ationally this means that the quantum probabilistic description is exhaustive in
the sense that it is describing the most general quantum experiment. The most
important requirement these mappings must satisfy is convex-linearity; they must
preserve the convex structure of E(H). This can be motivated with the following
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counterexample. Consider a non-convex-linear representation in which the density
operators p; and py are represented by the functions p;(s) and py(s). Now sup-
pose a coin is flipped to decide which state to prepare; with probability p, p; is
prepared and with probability 1 — p po is prepared. The quantum state that has
been prepared is represented by p = pp; + (1 — p)pe. However, the function p(s),
representing p, is not equal to pp;(s) + (1 — p)p2(s). Thus the theory changes in a
fundamental way depending on whether or not a simple coin is chosen to be tossed.
Convexity is of such foundational importance in probability theory that is often
taken as an obvious requirement and implicitly assumed.

In addition to convex-linearity, the mappings must also satisfy the conditions
of the following definition.

Definition 7.1.1. Let p be any arbitrary density operator and M an arbitrary effect.
A classical representation of quantum theory is a pair of convez-linear mappings
p— p(s) and M — M(s) for which

p(s) > 0 and /S duls) pls) = 1, (7.1)
M(s) € 0,1] and 1(s) =1, (7.2)

where 1 +— 1(s) and the law of total probability holds

T(V0) = [ dnls) M9l (7.3)

If such a classical representation exists, then a classical probabilistic description
exists for any quantum experiment. However, as Theorem will show, such a
classical representation does not exist. It is important to note that this does not
rule out a classical probabilistic description. Thus, a classical representation is still
possible, but it is less plausible if the constraints on the mappings of a classical
representation are held to be reasonable.

7.2 Equivalence of the quasi-probability and frame
representation of quantum theory

Recall from Section that a quasi-probability representation of quantum states
is a map Herm(H) — L*(S, p) which is linear and invertible. One might ask for a
set of less restrictive conditions for a quasi-probability representation of quantum
theory (i.e. of states and measurements). Consider Definition of a classi-
cal representation. The minimal generalization of allowing negative values in the
probability assignments will be made.
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Definition 7.2.1. Let p be any arbitrary density operator and M an arbitrary
effect. A quasi-probability representation of quantum theory is a pair of conve-
linear mappings p — p(s) and M — M(s) for which

p(s) € R and /du(s) p(s) =1, (7.4)
s
M(s) € R and 1(s) =1, (7.5)

where 1 — 1(s) and the law of total probability holds
T(7) = [ duts) M(s)olo) (7.6

If p(s) > 0 and M(s) € [0, 1], then indeed a quasi-probability representation
is a classical representation of quantum theory. It can now be asked if this more
general representation can be achieved. This is an easy question to answer because
it is now known from Section [6.2 that a frame can achieve the desired result via a
quasi-probabilistic frame representation. That is, frames are sufficient to describe
this more general requirement of a quasi-probability representation of quantum
theory. But are frames also necessary as was the case for only quantum states?
The answer is no unless an additional assumption, which is discussed further along,
is met. First a short lemma is needed.

Lemma 7.2.2. A convex-linear mapping T from the set of effects to real valued
functions on S can be uniquely extended to a linear function on the space of all
Hermitian operators.

Proof. Busch [8] has shown that a convex-linear map R : E(H) — [0,1] can be
extended uniquely to a linear map on the space of all Hermitian operators through
the association R(A) = R(P,) — R(P,), where A = P, — P, is any decomposition of
A€ Herm(H) in terms of positive operators. The same logic is applied to T'. That
is, too each convex-linear mapping 7', there exists a unique extension to a linear
map T : A — A(s ) defined by T(A) = T(P)) — T(P,), where A = P, — P, is any
decomposition of A € Herm(H) in terms of positive operators. ]

Unless noted otherwise, the mappings of a quasi-probability representation will
be taken to be this unique extension to Herm(H). Recall that frames were not
necessary to describe a quasi-probability representation of quantum theory (Defi-
nition . However, the following theorem shows that frame representations are
in some sense “half-necessary”.

Theorem 7.2.3. The mapping p — p(s) in a quasi-probability representation is
necessarily a frame representation of Herm(H) for some unique frame F'.

Proof. Call the mapping 7. Lemma [7.2.2] implies T has a unique linear extension
on Herm(H). The Riesz representation theorem implies that T(A)(s) = (F(s), A)
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for some unique mapping F : S — Herm(H) (not necessarily a frame). Condition
(7.4) implies
/ﬁmgﬁgy:i (7.7)
S

Application of the Cauchy-Schwarz inequality yields

/S du(s) [(E(s), AP < / dyu(s) | E(s) 21 A2 (7.8)

Now consider

where B has be implicitly defined as the operator which achieves this maximum.

Define b := Tr(B) < oo. From (7.8) and using (7.7)

,AMM@@AWSLM@@@ﬁmw
= (1,B)||A|
— blJAJ2

Thus T(A) € L*(S) for all A € Herm(H). Now, Equation (7.6) must hold for all
p € D(H) which also spans Herm(H). Thus

M:L@@M@ﬂg (7.9)

Since this holds for all M € E(H), F' must also span Herm(H). Suppose T(A) =
T(B) for all A|B € Herm(H). In particular, <F(s),fl> = (F(s),B). Linearity
and the fact that F' spans Herm(H) implies A = B and T is therefore one-to-one.
Applying Lemma yields the desired result. O

Note that sufficiency holds if the frame satisfies Equation (7.7). Also note that
the theorem does not imply that the mapping M — M (s)isa frame representation.
Although there is a unique operator valued mapping E : & — Herm(H) such that
M(s) = <E(s), M), it need not be a frame. This is due to the fact that there is no
condition on £ analogous to Equation ([7.7] . for the frame £ The following theorem
provides a necessary and sufficient condition on the mapping M — M(s) being a
frame representation.

Theorem 7.2.4. The mapping M M(s) in a quast-probability representation is
a frame representation of Herm(H) for some unique frame E, dual to F if and only
if the measure space (S, ) is finite.
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Proof. Assume the measure space is finite. That is, u(S) < co. Through Lemma
and the Riesz representation theorem there is a unique operator valued map-
ping E : & — Herm(H) such that M(s) = (E(s), M) which need not be a frame.
Application of the Cauchy-Schwarz inequality yields

/du(S) [(E(s), A)* < /du(S) 1EG)IP1A]®. (7.10)
S S

Since Herm(H) is finite, |[E(s)||?> < e for some finite e. Then Equation (7.2)
becomes

/SdM(S) [(E(s), A)]* < 6||/1||2/$d#(8) = e AIPu(S) < oo.
Now, Equation (7.6) must hold for all M € E(H) which also spans Herm (). Thus
p= [ duts) p(s) ). (7.11)

Since this holds for all j € D(H), E must also span Herm(H). Suppose (E(s), A) =
(E(s), B). Linearity and the fact that E spans Herm(H) implies A = B and the
mapping is therefore one-to-one. Lemma implies that E is a frame. Rewriting
Equation (8.4) as

ﬁ:[ﬁM@ww»mm@

shows that £ is dual to F.

Now assume the converse: E is a frame (being dual to F' does not matter here).
By definition

~

[ dut) [¢EGs) A < o (712
S
Consider the particular effect 1. From Equation (7.5) in the definition of a quasi-
probability representation, 1 +— 1(s) = 1. Applying this particular choice to Equa-
tion ([7.12)) yields
() = [ duts) < 0.
S

Thus (S, i) is a finite measure space. ]

7.3 Non-classicality of quantum theory

Theorem 7.3.1. A classical representation of quantum theory (Deﬁmtionm)
does not exist.
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Proof. The statement of the theorem is equivalent to the following statement. A
quasi-probability representation of quantum theory satisfying p(s) > 0 and M (s) €
[O 1] does not exists. Recall that for a quasi-probability representation, Equation
must hold. Now although M— M (s) is not necessary a frame representation,
1t must be given by M (s) = (E(s), M) for some unique mapping £ : S — Herm(H)
(again, not necessarily a frame). Thus

A ~

M= du (E(s), M)YF(s). (7.13)

Consider the mapping

~ ~ ~

(1) = / dyu(s) (B(s), NI)E(s), (7.14)

If ® were the identity super-operator, then F and E would satisfy the constraints
of a quasi- probability representation in Equation ((7.13 - It is now shown this is not
possible when both F'(s) and E(s) are positive operators. Let {6:®} 1, j € Za} be

the standard basis for L(). Then the Choi-Jamiolkowski representation of ® is

J(®) = > (6ig) ® ¢ig}

1,JELg

Z/Sdu(S) (Z <¢j7E(S)¢i>F(S)®¢i¢;’>

1,J€ELq

= /S dp(s) (F(s>® > <¢,-,E<s>¢@->¢i¢;>

1,J€ELq

= /Sd,u(s) (ﬁ(s) ® E(S)> 5

which is a separable operator 48] on H @ H when both F(s) and E(s) are positive
operators. However, J(1) is not a separable operator on H ® M and thus ® cannot
be the identity super-operator. Hence there does not exist a quasi-probability
representation in which p(s) > 0 and M (s) € [0, 1]. O

This theorem can also be proven using the results of Reference [29]. Theorem
2 of that paper shows that the channel ® defined by Equation - ) for positive
operators I and E is so-called entanglement breaking. However, Theorem 6 of Ref-
erence [29] states that if ® has fewer than d Kraus operators, it is not entanglement
breaking. Since the identity superoperator has fewer than d Kraus operators, P is
not entanglement breaking and therefore E is not the dual of F.

The following corollary, of purely mathematical interest, was proven in [16] using
the same proof technique.

Corollary 7.3.2. There does not exist a dual frame of positive operators for a
frame of positive operators.
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Theorem establishes the necessity of negativity in quasi-probability rep-
resentations of quantum theory. In the next chapter another, older, notion of
non-classicality, contextuality, will be compared with negativity.
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Chapter 8

Connection with contextuality

Within the quantum formalism there are many notions of non-classicality. In the
previous chapter, negativity was proven to be such a notion. In this chapter the
idea of contextuality is considered as an alternative candidate. In Section the
traditional notion of contextual is reviewed. A generalization due to Spekkens is
presented in Section [8.2] In Section the argument of Spekkens that “negativ-
ity and contextuality are equivalent” is studied. It is shown in Section that
a generalization of the traditional notion of contextuality can be stated in a con-
cise mathematical definition which makes the relationship between classicality and
contextuality clear (as is case for the definition of quasi-probability). The most fa-
mous example of a contextual hidden variable model (the de Broglie Bohm model)
is discussed in Section [R.5l

8.1 Traditional definition of contextuality

The traditional definition of contextuality evolved from a theorem which appears
in a paper by Kochen and Specker [32]. The Kochen-Specker theorem concerns the
standard quantum formalism: physical systems are assigned states in a complex
Hilbert space H and measurements are made of observables represented by Her-
mitian operators (the standard quantum formalism was discussed in Section [2.2)).
The theorem establishes a contradiction between a set of plausible assumptions
which would imply quantum systems possess values for observable quantities in
the classical sense. Let H be the Hilbert space associated with a quantum system
and A € Herm(H) be the operator associated with an observable A . The func-
tion fy,(A) represents the value of the observable A when the system is in state
1. The added assumption used to derive the contradiction is for any function F,
fu(F(A)) = F(fy(A)). This is plausible because, for example, we would expect
that the value of A? could be obtained in this way from the value of A.

Assuming that physical systems do possess values which can be revealed via
measurements, the Kochen-Specker theorem leads to the following counterintuitive
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example [31]. Suppose three operators A, B, and C satisfy [A, B] = 0 = [A, C], but
[B,C] # 0. The the value of the observable A will depend on whether observable
B or C is chosen to be measured as well. That is, the value of A depends on the
context of the measurement.

What the Kochen-Specker theorem establishes then is the mathematical frame-
work of quantum theory does not allow for a noncontextual model. This fact is
often shortened to the terminology “quantum theory is contextual”.

8.2 (Generalized definition of contextuality

The original notion of contextuality in lacking in the sense that it only applies to
the standard form of quantum theory and does not apply to general operational
models. This problem was addressed by Spekkens in Reference [45] and the results
of that paper will be discussed here.

Give the preparation procedures the label P and measurement procedures the
label M. In a general operational model (including classical and quantum theory),
the role is to specify the probabilities p(k|P, M) for the outcomes of a measurement
procedure M given preparation procedure P. Each P belongs to an equivalence
class e(P) in which any two preparations, P and P’ are equivalent if p(k|P, M) =
p(k|P’, M) for all M. Each M defines an equivalence class is a similar manner. The
features of an experimental configuration which are not specified by the equivalence
class of the procedure are called the context of the experiment.

One may supplement the operational theory with a classical state space (or
ontological space) (S, ). Then the preparation procedures become probability
densities pp(s) while the measurement procedures become conditional probabilities
M k(s). The probabilities of the outcomes of the measurements is required to
satisfy the law of total probability

p(E[P, M) = /3 dyu(s) po () Mii(s) (8.1)

Such a supplemented operation model is called an ontological model. The ontolog-
ical model is preparation noncontextual if

pp(s) = pep)(s)- (8.2)

That is, the representation of the preparation procedure is independent of context.
Similarly the ontological model is measurement noncontextual if

MMyk(S) = ME(M)Jg(S). (83)

The terminology “contextual” is again shorthand for the inability of an operational
theory to admit a (preparation or measurement) noncontextual ontological model.
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However, the term “contextual” is also used to describe specific ontological model

which do not satisfy Equations (8.2)) and (8.3).

At first sight, this might not seem like a generalization of the traditional notion
initiated by Kochen and Specker. However, the standard quantum formalism is an
instance of an operational model. Moreover, considering only measurements, one
can see that Spekkens generalizes the notion of noncontextuality from outcomes of
individual measurements being independent of the measurement context to prob-
abilities from outcomes of measurements being independent of the measurement
context. In Reference [45], it was proven that quantum theory is both preparation
and measurement contextual.

8.3 Equivalence of negativity and contextuality

Recall from Definition that a preparation is specified by a density operator p
and a measurement outcome by an effect M. Thus a (preparation and measure-
ment) noncontextual ontological model of quantum theory would require

and the law of total probability

T(U7) = [ dits) My ().
Assuming the probabilities satisfy the usual normalization conditions these equa-

tions are equivalent to those in Definition[7.1.1]of a classical representation. Spekkens
first noticed this equivalence [44]. He has therefore independently obtained a con-

nection between negativity and non-classicality. Similarly, our direct proof of the

non-existence of a positive dual frame to a positive frame gives a new independent

proof of this generalized notion of contextuality.

In addition to this indirect proof of the necessity of negativity, Spekkens provides
the following independent direct proof [44]. Assume a classical representation exists
(Definition [7.1.1]). Theorem and the comment following the proof imply

~

F(s), p),

p(s) = (
M(s) = (E(s), M),

where F' is a frame and E may not be a frame (although it is an injective linear
mapping S — Herm(H)). Equation (7.6)) must hold for for all effects M € E(H)
and thus

5= / dyu(s) (E(s), ) E(s). (8.4)
S

51



Since this must hold for all states p, it must hold in particular for pure states. Let p
be pure. Since p(s) > 0, Equation ({8.4]) implies p is in the convex hull of the range
of E. However, pure states are extremal and admit only the trivial decomposition.
Thus p(s) must be zero for all s € S for which F(s) # p. That is, F is a POVM
which discriminates the entire set of pure states. This is known to be impossible
and hence the contradiction is derived.

Note that the terminology “negativity and contextuality are equivalent” is some-
what misleading. A quasi-probability model of a quantum experiment is not equiv-
alent to a contextual ontological model. Within the formalism of quasi-probability
representations of quantum theory, a classical representation (Definition is a
particular instance. A classical representation of quantum theory is also a particu-
lar instance of a general operational model, a non-contextual ontological model to
be specific. The “equivalence” is obtained through the fact one can establish the
non-existence of a classical representation (Theorem starting from either for-
malism. In other words, a classical representation does not exist but one can relax
the constraints on Definition to achieve a representation which may contain
negativity, contextuality, both, or something entirely different which has not yet
been considered.

8.4 Concise definition of contextuality

Recall Definition of a classical representation. As shown in Theorem and
the previous section, the requirements of such a representation are inconsistent.
However, relaxing the requirement of positivity, one can obtain a quasi-probability
representation (Definition . In other words, a classical representation is a
special case of a quasi-probability representation when p(s) > 0 and M(s) € [0, 1].
Presented in this concise mathematical fashion, the difference between classical and
quasi-probability is clear. The notion of contextuality provided by Spekkens is the
inability of an operational theory to admit a non-contextual ontological model.
This notion does not make it clear how a classical representation is an instance of
an ontological model which may be contextual. A definition of contextuality which
makes the relationship clear is as follows.

Definition 8.4.1. Let p be any arbitrary density operator and M an arbitrary effect.
Let Cp and Cyy be sets (called the contexts) and denote their elements by cp and
¢, respectively. A contextual representation of quantum theory is a pair of convex-
linear (for each fired context) mappings (p,cp) — pey(s) and (M, cpq) — M., (s)
for which

penls) 2 0 and [ dp(s) pen(s) = 1. (8.5)
M., (s) €0,1] and 1.,,(s) = 1, (8.6)
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where (1, cp) — 1,,(s) and the law of total probability holds

~

TV epon) = [ din(s) Mo (9en(5), (8.7

The sets Cp and Cyy form the context of the preparation and measurement.
They could be a list of instructions on what to do in the lab for example. Thus
a classical representation is a contextual representation for which p.,(s) = pa,(s)
for all cp,dp € Cp and M., (s) = Mg, (s) for all cp,dpm € Cpry or, without
loss of generality, |Cp| = |Ca| = 1. It is now explicitly clear that negativity
and contextuality are not equivalent if one takes these notions to describe specific
representations which satisfy a more relaxed set of constraints than Definition
imposes on a classical representation.

8.5 de Broglie-Bohm model

A hidden variable theory originally formulated by de Broglie [13] and later by
Bohm [6] is perhaps the most famous example of an ontological model of quantum
theory. The model assumes that for a given experimental configuration, there exists
particles with well defined trajectories and a quantum state ¢). The hidden variables
are the positions of the particles in real spaces. That is, the classical state space is
S = R3 x H. The Hilbert space is included in the state space as its serves as a wave
which guides the particle. The equation of motion of the particles is such that the
quantum probability distribution [¢|? is invariant. Thus, so long as it is assumed
that the particles are prepared according to this distribution, the model provides
the same predictions as the standard formulation of quantum theory.

Note that this model does not fit into the framework of quasi-probability repre-
sentations or ontological models for two reasons. First, the model applies to infinite
dimensional Hilbert spaces. The theory can be accommodated by extending the
quasi-probability framework to infinite dimensions. Indeed the results of negativity
and contextuality are conjectured to hold in infinite dimensions; it is assumed that
the subtleties of infinite dimensions can be accounted for upon deeper mathemat-
ical analysis. The second reason the de Broglie-Bohm model does not fit into the
framework considered in this thesis is not a deficiency of the framework considered
in this thesis. The reason is the de Broglie-Bohm model does not consider the
entire range of possible quantum states. Where a classical representation (Defini-
tion contains a convex-linear mapping p — p(s) for all p € D(H), the de
Broglie-Bohm model considers only a mapping ¢ — py(s) for all ©» € H. Bell notes
that [4] “in the de Broglie-Bohm theory a fundamental significance is given to the
wavefunction, and it cannot be transferred to the density matrix.”

Bell does not claim that the situation is such that the de Broglie-Bohm model
cannot be extended to include density operators. The key words in his comment
are “fundament significance”. Indeed, the de Broglie-Bohm model can be extended
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to include density operators provided this extension is either contextual or contains
negativity. In either case, the pure states (wavefunctions) retain their significance
while the density operators possess non-classical features.

As an example, the de Broglie-Bohm model could be such that (p, cp) — pe,(s)
where each preparation consists of a density operator p supplied with a context
cp which specifies a particular convex decomposition of p into pure states. Such a
model would be preparation contextual.
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Chapter 9

Connection with non-locality

Up to now no mention of composite systems has been made in this thesis. In order
to prove the various theorems connecting quantum theory with non-locality, one
requires knowledge of the quantum formalism of composite systems. However, un-
derstanding the statements and consequences of these results does not. References
will be made to the tensor product and collapse postulate. These are concepts which
appear in the axioms of quantum theory when composite systems are considered
and can be found in any introductory textbook on quantum theory [7]. They are
only mentioned to assist the keen reader.

In Section locality is defined. Also discussed is the famous argument of
Einstein and his colleagues that sparked the debate about the curious nonlocal
features possessed by quantum theory which could be avoided if there existed hidden
variables. Bell’s theorem claimed to show, as recalled in Section [9.2] that even a
hidden variable theory must nevertheless possess non-locality. This conclusion,
when extended to the broadest class of hidden variable models, is questioned and
its relation to negativity is presented in Section [9.3

9.1 EPR incompleteness argument

In a paper by Einstein, Podolsky and Rosen (EPR) [15], it was argued that quantum
mechanics is incomplete (each element of physical reality does not have a counter-
part in quantum theory) if special relativity remains valid. The latter means phys-
ical causation must be local or events cannot have causes outside of their past light
cones. Using a particular spatially separated quantum system, and some standard
quantum theory, EPR concluded that quantum mechanics is either incomplete or
nonlocal (or both!). Locality was such a desired property of any theory that quan-
tum mechanics was concluded to be incomplete. That is, there must be elements
of physical reality (hidden variables) which quantum mechanics does not account
for.

%)



The argument of EPR was reformulated by Bohm [6] for the simplest bipartite
system possible: two qubits. The argument is built around the following hypothet-
ical experiment. Two parties, Alice and Bob, are at distant locations with a source
midway between them creating quantum systems described by the quantum state

1

V2

where {¢1, 2} is an orthonormal basis for a qubit. One particle is sent to Alice and
the other to Bob. Alice performs the projective two-outcome measurement {]51, ]52}
on the particle which was sent to her. The state in Equation is such that Alice,
once she performs her measurement, she can predict with certainty the outcome
Bob receives when he performs the same measurement at his side of the experiment
regardless of whether or not the measurement events are spacelike separated (i.e.
nonlocal). For example, Alice could perform the measurement {¢1¢7, dod5}. Ac-
cording to the collapse postulate, if Alice registers the first outcome, Bob particle
will immediately collapse to ¢5 and he is certain to obtain the second outcome if he
were to make the same measurement. Therefore, unless there exists hidden variables
which pre-determine the possible outcomes when the particles are created, quan-
tum theory is nonlocal. Out of these arguments came the notion of entanglement
and what Einstein referred to as “spooky action-at-a-distance”.

(G (01 @ P2 — 2 @ @), (9.1)

9.2 Bell’s theorem

Bell later investigated the possibility of finding the hidden variables Einstein thought
to exist [4]. He noted immediately that the de Broglie-Bohm theory was such a
theory yet in contained an astonishingly nonlocal character. He soon was able to
prove that any hidden variable theory of quantum phenomena must possess nonlo-
cal features. This is now called Bell’s theorem.

The proof is by contraction and follows the general line of reasoning which lead
to the results in this thesis: build a mathematical model with assumptions that
can be identified with (or motivated by) some notion of classicality then prove that
quantum theory does not satisfy these assumptions. Consider the EPR experimen-
tal setup where the particles sent to Alice and Bob are not assumed to be quantum
systems. Alice and Bob can each perform a two-outcome measurement with out-
comes labeled A and B, respectively. Without loss of generality, the outcomes can
be assigned numerical values A, B = +1.

Suppose there exist a classical state space (S, i) (i.e. a set of hidden variables)
which serve to determine the outcomes A and B. Probabilistic knowledge of the
state is represented by a density p(s) > 0 which is normalized

/S dp(s)p(s) = 1.

56



The different measurements Alice and Bob can perform are parameterized by de-
tector settings a and b, respectively. Locality is enforced by assuming that the
outcomes A and B depend only the local detector settings and the global state.
That is A = A(a, s) is allowed but A = A(a,b,s) is not. Define the correlation
function

Cla,b) = /S du(s)A(a, ) B(b, s)p(s). 9.2)

Bell’s theorem states that the correlations obtained in the EPR experiment (i.e. a
particular quantum experiment) cannot satisfy this equation. The proof follows by
deriving an inequality from Equation (9.2) such as

|C(a,b) = C(a,c)| <1+ C(b,c). (9.3)

This inequality holds for any hidden variable model which satisfies the locality
assumption. For the quantum state in Equation (9.1), the inequality is violated.
This is the contradiction between the quantum theory and a local hidden variable
model which proves Bell’s theorem.

It was noted that the assumptions which go into the hidden variable models
first considered by Bell imply those models are deterministic. That is, the theorem
did not exclude models which suggested quantum theory only provided stochastic
(or probabilistic) information of the possible outcomes of measurements. Bell later
extended the theorem to include such models. For the EPR experimental setup,
let the conditional probability of outcome A = 1, for Alice, given the state (hidden
variable) is s € S be denoted M,(s) and similarly define Mp(s) for Bob. Now
denote the conditional joint probability of the simultaneous outcomes A, B = 1 by
Map(s). Fine [I7] defines a stochastic hidden variable model as one which satisfies

Pr(A=1) = [ du(s)MA(9)n(s) (9.4)

and
Pr(A=1,B=1)= /S dp(s) Mg (s)p(s). (9.5)

If Mag(s) = Ma(s)Mp(s), then the model is factorizable. Bell claimed this also
encoded the assumption of locality. Again, it can be shown that quantum theory
is in contradiction with an inequality derived from these assumptions. The proof is
quite simple. Fine [I7] showed that a factorizable stochastic hidden variable model
exists for the EPR-type correlation experiment if and only if a deterministic hidden
variable model exists for the experiment. Since the latter is ruled out, the former
is also ruled out.

It is often stated that the consequence of Bell’s theorem is “quantum theory is
non-local”. However the theorem only states that quantum theory does not satisfy
the assumptions which go into a classical model Bell defines as local. It is not
necessary that the locality assumption is violated. Nor is it unanimously agreed
that the mathematical condition Bell refers to as locality in the stochastic hidden
variable models reflects any physical significance [I7]. In the next section it will be
shown how such a claim can be supported by appealing to the notions of negativity.
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9.3 Negativity connection

Notice that a (non-factorizable) stochastic hidden variable model is exactly a clas-
sical representation. Suppose that for the EPR experiment such a classical proba-
bilistic description is possible. Then, factorizability (Bell locality) is an additional
requirement. In Section [7.3] a classical probabilistic description was deemed ques-
tionable due to Theorem which ruled out a classical representation indepen-
dently of any assumption of locality for the most general quantum experiment.

Theorem implies that one (or more) of the constraints which go into Defini-
tion are false. Indeed, relaxing the assumptions of positive probability yields a
quasi-probability representation which is not in conflict with quantum theory. This
poses a problem for those who hold that Bell’s theorem implies locality is violated
in quantum theory. The existence of positive probability distributions in the hid-
den variables Bell is trying to rule out is considered an unquestionable assumption.
However, if it is the case that negative probability encodes something about Nature
that is independent of locality, then it is not necessary that Bell’s theorem implies
locality is violated.

If Bell’s theorem turned out not to have any significance on the concept of
locality, this would come as a surprise to many students of quantum theory who
have been taught otherwise. The current situation, however, bears a remarkable
similarity to the situation Bell faced at the time he introduced his theorem. Indeed,
an early argument of von Neumann claimed that no hidden variable model (local or
otherwise) of quantum theory could exist. Bell was able to show that an assumption
von Neumann made of hidden variable theories was too strong stating [4] “the
formal proof of von Neumann does not justify his informal conclusion.”
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Chapter 10

Conclusions and future directions

In this thesis it has been shown that frame theory provides a formalism that unifies
the known quasi-probability representations of quantum states. It was then shown
that there exists two different ways (the deformed and quasi-probability approach)
to lift a quasi-probability representation of states to a consistent and equivalent
formulation of quantum theory. These quasi-probability representations of quan-
tum states and measurements were then shown to require either negativity or a
deformation of the rule for calculating probabilities. Thus a mathematically rigor-
ous set of criteria have been that establish the (long suspected) connection between
negativity and non-classicality.

10.1 Directions for future research

10.1.1 Infinite dimensions

While the results of this paper have been proven only for finite dimensional Hilbert
spaces (while allowing for continuous representation spaces), it is conjectured that
the results continue to hold also for infinite dimensional quantum systems (i.e., all
separable Hilbert spaces).

For separable Hilbert spaces the definition of a frame is essentially the same [10].
However, a frame is not simply a spanning set as in the finite dimensional case.
The first immediate road block in applying the methods used in this thesis to all
separable Hilbert spaces is the unboundedness of operators on infinite dimensional
spaces. In particular, the Hilbert-Schmidt (trace) inner product is undefined for
unbounded operators such as the familiar position and momentum operators. One
could however restrict the class of operators to the bounded ones as an unbounded
operator can be approximated arbitrarily well by a sequence of bounded operators
[14]. In any case, the set of mathematical tools [I] used to analyze frames in infinite
dimensional Hilbert space is different from those used in this thesis.
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10.1.2 Quantum mechanics

The scope of quantum theory that has been consider in this thesis can be thought
of as kinematical; only the description of experimental configurations is of concern.
There exist many dynamical approaches to quantum theory where the interest
shifts to how and why quantum systems change in time. This theory is often called
quantum mechanics.

Finite dimensional quantum mechanics differs from what is presented in this
thesis (namely Definition by the addition of equations of evolution. A signif-
icant reason why adding evolution to the frame representation formalism could be
fruitful is the Wigner function analogy. Recall the original Wigner function (de-
scribed in Section for infinite dimensional Hilbert spaces. Using the Wigner
function formalism to describe the dynamical transformations predicted by quan-
tum mechanics yields the dynamical law

0 > 1 82n+1H aZn—O—lp
Y {H’ p} + Z 2n | 2n+1 2n+1"
ot = 2°"(2n +1)! Oq Op

(10.1)

where H is the classical Hamiltonian and {H, p} is the classical Poisson bracket.
Notice then that Equation is of the form “classical evolution” + “quantum
correction terms”. Using this formalism, one can then do more than discuss which
experimental procedures are classical. Now one can discuss the transitions between
quantum and classical descriptions, a process known as decoherence [52].

It would be of interest to see if an equation analogous to Equation can be
found for a frame representation of finite dimensional quantum mechanics. This is
not a simple task as finite dimensional quantum systems have no classical analogue.
Whereas, infinite dimensional quantum system are usually quantized systems of
classical mechanical particles. The classical analogy is then obvious and its mathe-
matical description is well known. The first step for the finite dimensional case is to
develop appropriate classical analogies to finite dimensional quantum systems and
derive the dynamical laws these classical system must satisfy. Then it can be deter-
mined if the quantum dynamical laws are represented in the frame representation
as “classical evolution” + “quantum correction terms”.

10.1.3 “Quantumness” of information processing tasks

The “physical system” prepared according to a set of experimental configurations
may not be classical in the sense that it obeys the assumptions of objectivity and
determinism, yet it is conceivable that technical constraints allows us to interpret
these “physical systems” as classical. In other words, a experiment on a truly clas-
sical system can achieve the same mathematical description. It is thus of interest to
known when a particular experiment with a quantum probabilistic description also
has a classical probabilistic description. This question is important from a quan-
tum information theoretic prospective since it is of great interest to know when a
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given communication protocol or algorithm can be simulated with classical systems.
In other words, one would like to know whether a given communication protocol
possess “quantumness” in the sense that it requires truly quantum resources.

The proof by contradiction of Theorem [7.3.1] establishes that a classical rep-
resentation of quantum theory does not exist. This fact on its own is not very
insightful. A future direction of research is to analyze quantum information tasks
within the frame representation formalism with the goal of identifying the true
quantumness of such tasks. Consider a given quantum information task. Such a
task will not require the full state space nor the full set of possible measurements
allowed by quantum theory. It is then conceivable that one can identify a frame
and a dual which represents the restricted set of states and measurements used
in a particular protocol as positive functions hence satisfying the constraints of a
classical model.

More generally, it would be of interest to characterize the various combinations
of subsets of D(H) and E(H) which require negativity. For example, supposes a
set of experimental configuration is such that it can prepare any density operator.
This leads to (Equation ([7.9) in the proof of Theorem

M= /S du(s) M(s)F(s).

The question becomes which subsets of E(H) must the experimental procedure be
able to perform before M(s) must have negative values? One obvious answer is
E(H) itself, this is of course the statement of Theorem [7.3.1} Suppose only the

trivial measurement 1 can be performed. Then,

~

i— /Sdu(s) 1(s)E(s).

From Equation (7.7), 1(s) = 1 and so long as F(s) is positive, this constitutes a
classical description of the experiment. In some sense this is obvious; there is no
“quantumness” in an experiment which asks “is something there”. In other words,
a quantum system on its own is classical; it is what one can “do” with it that is
truly quantum.
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Appendix A

Mathematical Background

Provided in this appendix are some brief comments to serve as an introduction to
the mathematical concepts and notations used throughout this thesis. Some knowl-
edge of the reader will be assumed. Namely, the knowledge that a typical student
(say, the author of this thesis) would acquire during an undergraduate degree in
mathematical physics. The mathematical concepts used in quantum information
are presented in detail in Nielsen and Chaung [40].

The term Hilbert space is ubiquitous in any branch of quantum theory. In
quantum information theory, where only finite dimensions are concerned, a Hilbert
space is better understood as an inner product space, a concept which is assumed to
be known to the reader. An attempt will be made to explain some of the notation
which is commonplace in the quantum information community. The Hilbert space
is a vector space (which can be over the real or complex field) along with an inner
product. The Hilbert space and the underlying vector space are always given the
same label, say H. The inner product itself is always denoted (-,-);, where the
label L is to distinguish the underlying vector space where ambiguity is possible.
More often than not, the vector space can be inferred immediately from the vectors
which appear in the inner product. In such a case, the label is removed for brevity.

All finite dimensional Hilbert spaces are isomorphic; a bijective mapping pre-
serving the linear and inner product structure exists between any two Hilbert spaces
of the same dimension. It is assumed in quantum theory that the “quantum sys-
tem” is associate with an abstract complex Hilbert space of a given dimension.
Since all Hilbert spaces of a given dimension are isomorphic, any concrete Hilbert
space will do. For dimension d, this concrete Hilbert space is most often taken to
be C¢ with the usual dot product (or pointwise product) as the inner product.

A.1 Linear operators

Linear operators on a complex Hilbert space H, with dimension d, are always
denoted with a “hat” A. The unique operator A" implicitly defined via (Afe, ) =
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(1, AQﬁ) for all ¢» € H is called the adjoint of A. The subset of all linear operators
which satisfy A = Al are called Hermitian and denoted Herm(H). The Hilbert-
Schmidt or trace inner product is defined as (A, B) := Tr(AB). The space of
Hermitian operators together with the trace inner product is a real Hilbert space.
The dimension of this space is d?.

Here are a few examples of a Hermitian operators important to quantum theory.
Con81der the operator Z whose spectrum is spec(Z) = {w* : k € Z4}, where
wh = e'T*. The eigenvectors form a basis for ‘H and are denoted {or + k € Za}.
Consider also the operator defined by X ¢k = Pr+1, where all arithmetic is modulo
d. Define Y implicitly through [X, Z] = 2iY". The operators Z, X and Y are often
called generalized Pauli operators since they are indeed the usual Pauli operators

when d = 2. The parity operator is defined by Pgbk = ¢_.

Three important subsets of the Hermitian operators are used throughout this
thesis: the projectors, the density operators (also known as density matrices) and
the effects. All three are sets of positive operators. A positive operators A is one
that satisfies (¢, Aw> > 0 for all ¢y € H. The short-hand A > 0 is often used to
denote a positive operator with A> B meaning A—B >0 A projector is an
operator P, such that P2 = P. The set of projectors is denoted P(H). A density
operator p is a positive operator with trace one. That is p > 0 and Tr(p) = 1. The
set of all density operators is denoted D(H). An effect M is a positive operator
which is “less than” the identity. That is 0 < M < 1. The set of all effects is
denoted E(H). Note that P(H) € D(H) C E(H).

A.2 Convexity

The notion of convexity is vital to both classical and quantum probability. It will
be defined and discussed here. For a reference see [43].

A subset C' of a vector space X is convex if (1 — p)x + py € C whenever
xr € C,y € Cand 0 < p < 1. For example, the set of all classical probability
vectors is convex. A convex combination is a sum

P11 + - +pnxn

in which each p; > 0 and p; +--- + p, = 1. An equivalent definition of a convex
set is a set which contains all the convex combinations of its elements. A point x
in a convex set C' is called an extreme point if there is no way to express x as a
convex combination (1 — p)y + pz such that y € C,z € C' and 0 < p < 1 unless
x =y =z A mapping f: C — C’ of one convex set into another is convex-linear
if f(l=plz+py)=1—p)f(x)+pfly) forallz € C,y € Cand 0 <p < 1.

The important examples of these notions are the projectors, density operators
and effects. The sets D(H) and E(H) are convex. The projectors P(H) are extreme
points of both sets D(H) and E(H).
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Appendix B

Gallery of Wigner functions

If p = yY1p* is a pure state, the the definition of the Wigner function in Equation
(3.2) reduces to

P (ap) =+ [y U - ) (B.1)

Some examples of Wigner functions are now given. Consider the quantum state
1 —(z—a)?

= — 2b2

P(x) Qbﬁe : (B.2)
The Wigner function of this state is depicted in Figure[B.1] The Wigner function is
a Gaussian distribution and quantum states of form in Equation have come to
be known as Gaussian states. Notice that no negative values appear in the Wigner
function. It is tempting to conclude that such a state is classical. In some sense it is;
Gaussian states saturate the lower bound of the Heisenburg uncertainty principle.
The state is often interpreted as a particle which is a well localized as quantumly
possible. Now consider a superposition between two Gaussian states

U(x) = ! (e(g;b;)2 + e(z;a)Z)) : (B.3)
V207 (1 4 e=2%)

The Wigner function of this state is depicted in Figure [B.2 This state is often

called a cat state as it is interpreted as the superposition of two macroscopically

distinct states. Notice the negative values. This has prompted some authors to

suggest that negativity in the Wigner function is the signature of “quantumness”.

A final example is the n = 4 eigenstate of a harmonic oscillator

v(a) = (2ms)’ e~ (4(Vmwr)* — 12(vmwr)? + 3). (B.4)

The Wigner function of this state is depicted in Figure [B.3] Notice again the neg-
ative values. It was shown that negativity is quite ubiquitous; the only quantum
states which have positive Wigner function are Gaussian states [30]. For the in-
terested reader, Figures can be reproduced using the following MATLAB
script.
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Figure B.1: Wigner function of the Gaussian state (B.2]) for a =2 and b =1
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Figure B.2: Wigner function of the cat state (B.3)) for a =4 and b = 0.5.

%physical constants
m=1; omega=1; hbar=1;

hconstants defining the Gaussian IC
a=4; b=1;

% number of grid points (total is N+1) and the grid
N=128; z=linspace(-10,10,N+1); [y,x,ql=meshgrid(z,z,z);

%initial wave functions (choose one!)

%classical gaussian
psi=@(q)1/sqrt (2*xb*sqrt (pi))*(exp(-(g-a)."2/(2*b"2)));

%cat state
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Figure B.3: Wigner function of a harmonic oscillator eigenstate (n = 4) (B.4]) for
m=w = 1.

% psi=0@(qg)1/sqrt (2*b*xsqrt(pi)*(1+exp(-a~2)))*x(exp(-(g-a)."2/(2*xb"2))+. ..

yA exp(-(g+a)."2/(2%xb"2)));

sharmonic oscillator eigenstate n=4
% psi=0(q) (m*xomega/hbar/pi/576) " (1/4)*exp(-m*omegaxq. 2/ (2*hbar)) .*x...
% (4% (sqrt (m*omega/hbar)*q) . 4-12*x(sqrt (m*omega/hbar)*q) . 2+3);

%Wigner function of initial wave function
u0 =1/2/pi/hbar =*
trapz(z,(exp(-i*y.*q)/hbar).*conj(psi(x+q/2)).*psi(x-q/2),3);

hplot

figure (1)

clf

caxis ([-0.1,0.1]) axis([-10 10 -10 10 -0.05 0.11])
colorbar;
xlabel(’x’,’fontweight’,’bold’,’fontsize’ ,12);
ylabel (’p’,’fontweight’,’bold’,’fontsize’ ,12);
surf (x,y,u0);

shading interp;alpha(.4);
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