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Abstract

Congestion control in wireline networks has been studied extensively since the seminal work

by Mazumdar et al in 1998. It is well known that this global optimization problem can be

implemented in a distributed manner. Stability and fairness are two main design objectives

of congestion control mechanisms. Most literatures make the assumption that the number

of flows is fixed in the network and each flow has infinite backlog for transfer in developing

congestion control schemes. However, this assumption may not hold in reality. Thus,

there is a need to study congestion control algorithm in the presence of dynamic flows. It

is only until recently that short-lived flows have been taken into account. In this thesis, we

study utility maximization problems for networks with dynamic flows. In particular, we

consider the case where each class of flows arrive according to a Poisson process and has

a length given by a certain distribution. The goal is to maximize the long-term expected

system utility, which is a function of the number of flows and the rate (identical within a

given class) allocated to each flow. Our investigation shows that, as long as the average

work brought in by the arrival processes is strictly within the network stability region,

the fairness and stability issues are independent. While stability can be guaranteed by, for

example, a FIFO policy, utility maximization becomes an unconstrained optimization. We

also provide a queueing interpretation of this seemingly surprising result and show that

not all utility functions make sense under dynamic flows. Finally, we use simulation results

to show that our algorithm indeed maximizes the expected system utility.
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Chapter 1

Introduction

Congestion control plays a very important role in modern communication networks. Par-

ticularly, for traffics which can tolerate variation of delays, the sources must be able to

adjust their transmission rate adaptively according to the current condition in the net-

work. Otherwise, the network performance will be degraded significantly and the end

users will experience a high loss rate. Therefore, the requirement of such a control mech-

anism raises the notation of rate control or congestion control. In this thesis, only wired

network is analyzed. However, the analysis can be carried over to wireless networks with

the same techniques. The main difference is that the bandwidth of each link is a random

variable, and an explicit channel model is required.

To develop an efficient and meaningful congestion control scheme, there are several

issues to be considered [19]:

1. Efficient bandwidth allocation to users with different requirements

2. The crucial notation of fairness

3. The ability to implement the control scheme in a distributed manner with minimal

communication overheads

4. The performance of the network is maximized if the above congestion control scheme

is used

1



Introduction 2

Item 1 ensures that no bandwidth is wasted or overloaded. This objective suggests that

the solution should satisfy Pareto optimality. Since there are many sources competing

for the limited bandwidth, item 2 imposes some rules to guarantee fairness, which is also

a required objective of the optimization. Item 3 specifies the requirement in practical

implementation. Essentially, the control algorithm must be scalable with the size of the

network. The last item defines the main objective of the control algorithm. It also implies

that there is a need to quantify the network performance. Stability and fairness are two

nonseparable objectives of the optimization. Neglecting either objective usually renders

the problem meaningless. A well designed congestion control scheme will maintain the

network stability and fairness while maximizing the total system performance.

The seminal work of Yaiche, Mazumdar and Rosenberg [19] studied this optimization

problem from a game theoretical point of view. This work focuses on developing an algo-

rithm, which not only provides the rate settings of flows that are Pareto optimal from the

point of view of the whole system, but are also consistent with the fairness axioms of game

theory.

In their work, the network performance is measured by assigning each user a utility

function of the transmission rate. The objective is to maximize the social benefit, which

is the sum of user utilities. They have shown that this global maximization problem can

be implemented in a distributed manner by applying the so-called gradient projection

method in optimization theory. Moreover, it has been shown that the solution obtained

has the property of proportional fairness termed by Kelly [5] if the utility functions are

logarithmic functions of the allocated bandwidth. In fact, Mazumdar has shown that this

solution corresponds to a Nash bargaining solution (NBS), but the definition of NBS does

not require logarithmic utility functions.

Inspired by Mazumdar’s framework, many researchers have developed utility based

congestion control algorithms. For example, Lin and Shroff [10] adopt the same techniques

used in [19] and extends the research to networks where multipath routing is allowed. We

note that a common assumption made by aforementioned proposals is that the number of

flows in the system is fixed and each flow has infinite backlog to transfer. Therefore, these

control mechanisms aim at controlling the long-lived flows and hoping that the short-lived

flows may “fly” through the network with little delay or loss [12]. There is no strong proof
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that these mechanisms will meet the stability and fairness objectives when facing dynamic

flows.

Recently, researches began to study the networks with flows that arrive and depart

dynamically [3, 9]. Bonald and L. Massoulié [3] assume “middle-lived” flows: whose length

is not infinite but long enough to allow the control algorithm to converge to its optimal

value (also known as time-scale separation assumption). They show that the optimal rate

allocation does guarantee network stability if the utility function is chosen carefully. Lin

and Shroff [9] remove the time-scale separation assumption and prove that the network

stability can still be achieved given the fact that the traffic intensity is within the network

stability region. However, Lin and Shroff do not show what are the fairness objective being

achieved and the objective being maximized.

In this work, we study the utility maximization problem in networks with dynamic

flows. We assume that the flow length is determined by a random variable and we do not

require the time-scale separation assumption. The utility per flow is defined as a function

of the transmission rate allocated to it and the total system utility is the sum over all

flow utilities. Since flows arrive and depart dynamically, our objective is to maximize the

long-term expected system utility, under the link capacity constraints. Our analysis shows

that, as long as the traffic intensity is within the network stability region, we can achieve

the stability and fairness objectives independently: while stability can be guaranteed by,

for example, a FIFO policy, utility maximization becomes an unconstrained optimization.

Moreover, we investigate the system steady-state behavior in terms of delay. Finally, we

perform numerical simulations on our algorithms as well as algorithms in [3, 9]. The

results demonstrate that, while all these algorithms guarantee stability, ours maximizes

the long-term expected utility.

The rest of the thesis is structured as follows: Chapter 2 presents the fundamental

framework of congestion control. Furthermore, recent works about networks with random

arrivals and departures are also analyzed. In Chapter 3, a study of congestion control

for networks with random user arrivals and departures is presented. In this work, the

aim is to maximize the average system utility instead of focusing on stability region as

the existing works do. However, the stability region associated with the new strategy is

studied as well. The superiority of the new algorithm is demonstrated through simulation
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results. Finally, Chapter 4 concludes the thesis and projects on the future development of

congestion control.



Chapter 2

Related Works

2.1 Basic Framework

This section presents the fundamental framework by Mazumdar in congestion control.

More specifically, Pareto optimality and Nash bargaining solution are the core ideas em-

ployed in developing congestion control scheme.

The network setting is as follows: There are N users who have infinite backlog to

transfer. Let X ⊂ <N represent the space of all possible bandwidth allocation strategies.

Each user i ∈ N has a performance function fi defined on X and a required minimum

performance, u0
i . Suppose that there exists at least one vector in X for which the perfor-

mance vector ~f = (f1, f2, ..., fN) is superior or equal to the minimum performance vector

~u0 = (u0
1, u

0
2, ..., u

0
N)

The selection of the strategy x ∈ X is based on the efficiency and fairness criteria. Let

U ⊂ <N denote the set of all achievable performance. Clearly, U is a nonempty convex

closed and upper-bounded set. The efficiency criteria is called Pareto optimality and its

definition is: The point u ∈ U is said to be Pareto optimal if for each v ∈ U , v ≥ u, then

v = u. The interpretation of a Pareto optimum is that it is impossible to find another

point which leads to strictly superior performance for any user without sacrificing the

performance of other users. In case of a network with N users, the space of the Pareto

optimal points form a N − 1 dimensional hyper surface. An efficient congestion control

algorithm should operate at one of these points on the surface.

5



Related Works 6

To further narrow down the selection process, the fairness criteria plays a very important

role. As we know, there are many different types of fairness such as max-min fairness.

However, these fairness are not proper to use in the context of congestion control. A much

better definition of fairness is the axioms from game theory. Particularly, NBS is chosen

as the system operating point because an NBS has the following properties:

1. NBS is Pareto optimal.

2. The solution is unchanged if the performance objectives are scaled in the form of

au + b. This property is also called scale invariant.

3. The solution is not affected by enlarging the domain if agreement can be found on a

restricted domain. This property is also called the irrelevant-alternatives axiom.

4. The solution does not depend on the specific labels, i.e., users with the same minimum

requirement and objectives will realize the same performance. This property is also

called symmetry property.

The set of NBS can be found by solving the following optimization problem (PJ):

(PJ) Max
∏
j∈J

(fj(x)− u0
j) x ∈ X0

where J is the set of users who can achieve performance strictly superior to their minimum

requirement, and X0 = {x ∈ X : ~f(x) > ~u0}. The uniqueness of NBS is given by the

following theorem:

Theorem 2.1: Let fi(·): X → <, i = 1, 2, ..., N be concave upper bounded functions

defined on X which is a convex and compact subset of <N . Then, there exists a unique

NBS.

To convert the problem PJ into an additive structure, Mazumdar has proved the theo-

rem below in [19].

Theorem 2.2: In addition to the assumption in Theorem 2.1, let fj, j ∈ J be injective

on X0.
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Consider the two maximization problems PJ and P ′
J :

(PJ) Max
∏
j∈J

(fj(x)− u0
j) x ∈ X0

(P ′
J) Max

∑
j∈J

ln(fj(x)− u0
j) x ∈ X0

Then:

1. (PJ) has a unique solution

2. (P ′
J) is a convex program and has a unique solution

3. (PJ) and (P ′
J) are equivalent

It is interesting to note that the utility function used in P ′
J is the same as the one used

in Kelly’s paper [5]. Kelly has used the term “proportional fairness” to define the fairness

objective of using a log type utility function. In fact, Kelly’s solution corresponds to a

NBS. P ′
J can be viewed as a problem of maximizing social welfare, which is the sum of

individual utility. Intuitively, finding the optimal solution requires the cooperation of all

users. However, it turns out that this optimization problem can be solved as a user-level

problem. The details will be demonstrated in the next section.

To conclude this section, the optimization problem P ′
J provides a new structure to

analyze congestion control, and this seminal framework initiates a lot of researches in

network utility maximization (NUM). The choice of log utility function is not a coincidence,

but substantiated by proper efficiency and fairness reasoning. That is why many researchers

adopt log function as their objectives in dealing with utility based optimization problems.

2.2 Congestion Control for Networks with Fixed Num-

ber of Users

2.2.1 Problem Formulation

This section discusses the results presented in [19]. We consider a network with L links and

N static connections with infinite backlog to transfer. The capacity of each link is Cl. Let
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[A] be an L×N incidence matrix that represents the routes of the connections: Al
i = 1 if the

connection i goes through link l and Al
i = 0 otherwise. Furthermore, each connection has

a minimum bandwidth requirement MRi and a peak rate PRi. We assume that each link

has enough capacity to provide strictly superior performance to the minimum requirement

of users who utilize this link. The performance function fi(x) for user i is defined as xi.

Therefore, u0
i = MRi and X0 = {x ∈ <N |MRi < xi ≤ PRi ∀i ∈ N and Ax ≤ ~C}, where

~C = (C1, C2, ..., CL) is the link capacity vector.

With respect to the framework described in the previous section, the NBS is an optimal

and fair resource allocation of available network capacities to the N connections. The NBS

is the solution of the following social or global optimization problem (S):

max
xi

∑N
i=1 ln(xi −MRi)

Subject to xi > MRi, ∀i
xi ≤ PRi ∀i

N∑
i=1

Al
ixi ≤ Cl ∀l

The solution of problem S is obtained by using Lagrangian method and it is given by

xi = MRi + min{(PRi −MRi),
1∑L

l=1 Al
iµl

}, i ∈ N

where µl is the Lagrange multiplier for the capacity constraint,
∑L

l=1 Al
ixi ≤ Cl for all l.

Indeed, µl has the interpretation that it represents the cost of using link l. Since solving

the above problem requires the cooperation of all users or a centralized controller, it is not

practical to implement it in a large network. To decentralize the problem, the following

local optimization problem (Ui) catches the attention.

max
xi

ln (xi −MRi)− αixi

Subject to xi > MRi ∀i
xi ≤ PRi ∀i

where αi is the cost of getting one unit of bandwidth for user i. Mazumdar has proved

that if αi =
∑L

l=1 Al
iµl, the problem Ui yields the same solution as the problem S. The
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proof can be found in [19]. In other words, users do not have to cooperate in order to

reach social optimum. This result suggests that it is possible to implement a distributed

congestion control strategy which leads to an NBS if the cost of each link is available to

end users.

2.2.2 Distributed Algorithm

The distributed algorithm is obtained by applying primal-dual algorithm to problem S.

The associated Lagrangian equation is

L(x, ~µ) =
N∑

i=1

ln(xi −MRi) +
L∑

l=1

µl(Cl −
N∑

i=1

Al
ixi)

where ~µ = (µ1, µ2, ..., µL) is the link cost vector. Then, the dual of problem S is defined as

min
~µ≥0

F (~µ) (2.1)

where

F (~µ) = max
MRi<xi≤PRi

L(x, ~µ) (2.2)

To solve (2.1), we consider the problem in (2.2) first. For a given ~µ, the problem is separable

in i, xi(~µ) maximizes L(x, ~µ) if and only if

xi(~µ) = arg max
MRi<xi≤PRi

{ln(xi −MRi)− xi

L∑

l=1

Al
iµl} (2.3)

= MRi + min{(PRi −MRi),
1∑L

l=1 Al
iµl

}, i ∈ N (2.4)

Note that (2.3) is identical to the user problem Ui defined in the previous section. The

solution of this linear programming problem can be found by many standard methods, and

the complexity is low.

Now, we focus on solving the link cost vector ~µ, which is the solution of (2.1). The

algorithm is based on gradient projection method with a constant step-size. The partial
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derivative of L(x, ~µ) is

∂

∂µl

L(x, ~µ) = Cl −
N∑

i=1

Al
ixi

Let γ > 0 denote the step-size. Then ~µ can be solved by the following recursive equation

µl(k + 1) = [µl(k) + γ(
N∑

i=1

Al
ixi − Cl)]

+,∀l (2.5)

where [·]+ denote the projection to [0, +∞], and xi is given by (2.3). Let N(i) denote the

number of links crossed by user i and define

K =
√

L(
N∑

i=1

(PRi −MRi)
2N(i))

If γ ∈ (0, 2/K), then xi(~µ) will converge to the NBS.

(2.4) and (2.5) are often termed primal update and dual update respectively. In real-

time online implementation, the time is slotted with length T . At the end of each time

slot, the system executes these two equations.

It is important to note that by applying the primal-dual algorithm, the original global

problem is decomposed into two local optimization procedures. Each link updates its cost

according to the local traffic, and the each end user updates its bandwidth allocation

according to the total cost on its path. The only communication required is the broadcast

of link costs to end users. Most literatures in the area of congestion control are based on

the same techniques developed by Mazumdar.

2.3 Congestion Control for Networks with Multipath

Routing

2.3.1 Problem Formulation

In [10], the primal-dual control scheme has been extended to networks where multipath

routing is allowed by Lin and Shroff. The number of users in the system is assumed to be
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constant. The optimization problem is formulated as

max
xij≥0,mi≤

∑J(i)
j=1 xij≤Mi,i=1,...,I

I∑
i=1

fi




J(i)∑
j=1

xij


 (2.6)

subject to
I∑

i=1

J(i)∑
j=1

El
ijxij ≤ Rl, for all l = 1, ..., L. (2.7)

Generally, the problem (2.6) amounts to allocating resources R1, ..., RL from network com-

ponents l = 1, 2, ..., L to users i = 1, 2, ..., I such that the total system “utility” is maxi-

mized. The “utility” function fi(·) represents the performance, or level of “satisfaction,”

of user i when a certain amount of resource is allocated to it. In practice, this performance

measure can be in terms of revenue, welfare, or admission probability. The utility function

fi(·) is assumed to be concave. Each user i can have J(i) alternative paths (a path consists

of a subset of the network components). Let xij denote the amount of resources allocated

to user i on path j. Then the utility fi(
∑J(i)

j=1 xij), subject to mi ≤
∑J(i)

j=1 xij ≤ Mi, is a

function of the sum of the resources allocated to user i on all paths. Hence, the resources on

alternative paths are considered equivalent and interchangeable for user i. The constants

El
ij represent the routing structure of the network: each unit of resource allocated to user

i on path j will consume El
ij units of resource on network component l. (El

ij = 0 for net-

work components that are not on path j of user i.) The inequalities in (2.7) represent the

resource constraints at the network components (hence Rl can be viewed as the capacity

of network component l, and
∑I

i=1

∑J(i)
j=1 El

ijxij is the total amount of resources consumed

at network component l summed over all users and all alternative paths). The following

assumptions are made: Rl > 0, El
ij ≥ 0, mi ≥ 0 and Mi > 0 (Mi could possible be +∞).

Problem (2.6) is referred as the multipath utility maximization problem. Essentially,

once the network can support multipath routing, the resource allocation problem changes

from a single-path utility maximization to a multi-path utility maximization problem. The

multi-path nature of the problem leads to several difficulties in constructing solutions suit-

able for online implementation. One of the main difficulties is that, once some users have

multiple alternative paths, the objective function of problem (2.6) is no longer strictly con-

cave, and hence the dual of the problem may not be differentiable at every point. Note that

this lack of strict concavity is mainly due to the linearity
∑J(i)

j=1 xij. (The objective func-
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tion in (2.6) is still not strictly concave even if the utility function fi are strictly concave.)

On the other hand, the requirement that the solutions must be implementable online also

imposes a number of important restrictions on the design space. These restrictions are

outlined below:

• The solution has to be distributed because these communication networks can be

very large and centralized solutions are not scalable.

• In order to lower the communication overhead, the solution has to limit the amount

of information exchanged between the users and different network components. For

example, a solution that can adjust resource allocation based on online measurements

is preferable to one that requires explicit signaling mechanisms to communicate in-

formation.

• It is also important that the solution does not require the network components to

store and maintain per-user information (or per-flow information). Since the number

of users sharing a network can be large, solutions that require maintaining per-user

information will be costly and will not scalable to large networks.

• In the case where solution uses online measurements to adjust resource allocation,

the solution should also be resilient to measurement noise due to estimation errors.

In [10], Lin and Shroff developed a distributed solution to multi-path utility maximiza-

tion problem with the following major technical contributions:

• A rigorous analysis of the convergence of the distributed algorithm is provided. The

analysis is done without requiring the two-level convergence structure that is typi-

cal in standard techniques in the convex programming literature for dealing with the

lack of strict concavity of the problem. Note that algorithms based on these standard

techniques are required to have an outer level of iterations where each outer iteration

consists of an inner level of iterations. For the convergence of this class of algorithm

to hold, the inner level of iterations must converge before each outer iteration can

proceed. Such a two-level convergence structure may be acceptable for offline com-

putation, but not suitable for online implementation because in practice it is difficult



Related Works 13

for the network to decide in a distributive fashion when the inner level of iterations

can stop. A main contribution of this work is to establish the convergence of the

distributed algorithm without requiring such a two-level convergence structure.

• By providing convergence, an easy-to-verify bounds on the algorithm parameters

(i.e., step-size) to ensure convergence is provided. Note that when distributed algo-

rithms based on solution are implemented online, a practically important question

is how to choose the parameters of the algorithm to ensure efficient network control.

Roughly speaking, the step-sizes used in the algorithm should be small enough to en-

sure stability and convergence, but not too small such that the convergence becomes

unnecessarily slow. The main part of this work addresses the question of parame-

ter selection by providing a rigorous analysis of the convergence of the distributed

algorithm.

• The convergence of the algorithm in the presence of measurement noise is studied, and

guidelines on how to choose the step-sizes to reduce the disturbance in the resource

allocation due to noise are provided.

• The impact of the inherent nature of the multi-path problem on instability and

oscillation is studied.

2.3.2 Distributed Algorithm

As mentioned earlier, the objective function is not strict concave. This nature creates

difficulty, and the standard primal-dual technique can not be applied directly. However,

primal-dual method is still preferred because of its elegant decomposition. To overcome

the difficulty of lack of strict concavity, the idea from Proximal Optimization Algorithms

is adopted.

The idea is to add a quadratic term to the objective function, which transforms the

original problem to a strictly concave problem. Let ~xi = [xij, j = 1, ..., J(i)] and

Ci =



~xi|xij ≥ 0 for all j and

J(i)∑
j=1

xij ∈ [mi,Mi]



 , i = 1, ..., I. (2.8)
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Let ~x = [~x1, ..., ~xI ]
T and let C denote the Cartesian product of Ci, i.e., C = ⊗I

i=1Ci. Let yij

denote the auxiliary variable for each xij. Let ~yi = [yij, j = 1, ..., J(i)] and ~y = [~y1, ..., ~yI ]
T .

The optimization problem can be rewritten as

max
~x∈C,~y∈C

I∑
i=1

fi




J(i)∑
j=1

xij


−

I∑
i=1

J(i)∑
j=1

ci

2
(xij − yij)

2 (2.9)

subject to
I∑

i=1

J(i)∑
j=1

El
ijxij ≤ Rl, for all l (2.10)

where ci is a positive number. It has been proved that the solution of (2.9) is equivalent

to that of (2.6). In fact, if ~x∗ is the solution of (2.6), then ~x = ~x∗, ~y = ~x∗ is the solution of

(2.9).

The proximal optimization problem proceeds as follows:

Algorithm P: At the tth iteration

P1 Fix ~y = ~y(t) and maximize the augmented objective function with respect to ~x.

max
~x∈C

I∑
i=1

fi




J(i)∑
j=1

xij


−

I∑
i=1

J(i)∑
j=1

ci

2
(xij − yij)

2 (2.11)

subject to
I∑

i=1

J(i)∑
j=1

El
ijxij ≤ Rl, for all l (2.12)

Remark: The above maximization problem is taken over ~x. The additional quadratic term

in (2.11) converts the problem to a strictly concave structure. Thus, the solution of (2.11)

is always unique. Let ~x(t) be the solution of this problem.

P2 Set ~y(t) = ~x(t)

As t → ∞, the iterations will converge to ~x∗. Step P1 involves solving a global op-

timization problem. Since it is strictly concave, its solution is given by the primal-dual
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algorithm below:

~x∗i (t) = max
~xi∈Ci



fi




J(i)∑
j=1

xij


−

J(i)∑
j=1

xijqij −
J(i)∑
j=1

ci

2
(xij − yij)

2



 ,∀i (2.13)

ql(t + 1) =


ql(t) + αl




I∑
i=1

J(i)∑
j=1

El
ijxij(t)−Rl







+

,∀l (2.14)

where ql is the Lagrangian multiplier associated with constraint (2.12).

Remark: Algorithm P involves a two-level convergence structure. Each outer iteration

P1 consists of an inner level of iterations (2.13) and (2.14). For the convergence of al-

gorithm P to hold, inner level of iterations must converge before each outer iteration P2

can proceed. Such a two-level structure is not suitable for online implementation as the

network components can not determine when the inner level iteration should stop in a

distributive manner.

To solve the above problem, the following modified algorithm has been proposed:

Algorithm A: Fix K ≥ 1. At the tth iteration:

A1 Fix ~y = ~y(t) and use equation (2.13) on the dual variable ~q for K times. To be

precise, let ~q(t, 0) = ~q(t). Repeat for each k = 0, 1, ..., K − 1:

ql(t, k + 1) =


ql(t, k) + αl




I∑
i=1

J(i)∑
j=1

El
ijxij(t, k)−Rl







+

, ∀l (2.15)

A2 Let ~q(t + 1) = ~q(t,K). Let ~z(t) be the primal variable that solves (2.13). Set

yij(t + 1) = yij(t) + βi(zij(t)− yij(t)),∀i, j (2.16)

where 0 < βi ≤ 1. The convergence of algorithm A is given by the following proposition.

Proposition 2.1: Fix 1 ≤ K ≤ ∞. As long as the step-size αl is small enough, algorithm

A will converge to a stationary point (~y∗, ~q∗) of the algorithm, and ~x∗ = ~y∗ will solve the
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original problem (2.6). The sufficient condition for convergence is

maxlα
l <





2
SL mini ci, if K = ∞;

1
2SL mini ci, if K = 1;

4
5K(K+1)SL mini ci, if K > 1.

(2.17)

where L = max{∑L
l=1 El

ij, i = 1, ..., I, j = 1, ..., J(i)}, and S = max{∑I
i=1

∑J(i)
j=1 El

ij, l =

1, ..., L}.
In reality, the total load

∑I
i=1

∑J(i)
j=1 El

ijxij(t, k) is estimated through online measure-

ments with nonnegligible noise. To consider this measurement noise into the model, algo-

rithm A is replaced by

Algorithm AN:

A1-N:

ql(t, k + 1) =


ql(t, k) + ηtα

l




I∑
i=1

J(i)∑
j=1

El
ijxij(t, k)−Rl + N l(t, k)







+

, ∀l (2.18)

A2-N:

yij(t + 1) = yij(t) + ηtβi(zij(t)− yij(t)),∀i, j (2.19)

where ηt is a positive sequence which goes to zero as t →∞, and N l(t, k) is the measure-

ment noise on link l. The convergence of algorithm AN is given by the following proposition.

Proposition 2.2: If

∞∑
t=1

ηt = ∞,

∞∑
t=1

η2
t < ∞ (2.20)

E[N l(t)|~x(s), ~y(s), ~q(s), s ≤ t] = 0,∀l (2.21)
∞∑

t=1

η2
t E‖N l(t)‖2 < ∞,∀l (2.22)

then the algorithm AN will converge almost surely to a stationary point (~y∗, ~q∗) of algorithm

A.
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2.4 Congestion Control for Networks with Dynamic

Users

2.4.1 System Model

This class of work studies a network with random dynamic arrivals and departures of users.

The motivation is that the number of users in the system changes constantly in today’s

Internet. Therefore, the class of algorithms described in the previous section may never

converge to the optimal solution. However, this body of works still adopt the primal-dual

technique and can be viewed as an extension of the static analysis. Interestingly, although

all works in this class use utility based problem, they focus on exploring stability region

rather than maximizing social welfare.

The network setting is identical to the static case except that N is not a fixed number

anymore. There are S classes of users, and users of class s arrive to the network according

to a Poisson process with parameter λs. Each user brings a file to transfer whose length is

exponentially distributed with mean 1/µs. Note that µs has no relationship with the link

cost anymore, and the link cost is denoted by ql in this case. The load brought by each

class of users is ρs = λs/µs. Let ~ρ = (ρ1, ρ2, ..., ρS) be the load vector. Let ns(t) denote

the number of users in class s and xs(t) denote the bandwidth allocation to class s at time

t. The assumption being made is that users in the same class receive equal amount of

bandwidth. Similar to the static case, let A be the routing matrix. Instead of having Al
i,

we have Al
s which means that all users in class s follow the same routing path. Another

minor change is that the minimum bandwidth required is 0 and peak rate is Ms for all

users in class s.

Now, let’s present three important definitions first before we discuss the results of

researches done so far. The first definition is stability. A system is stable if

lim sup
t→∞

1

t

∫ t

0

1{∑S
s=1 ns(t)+

∑L
l=1 ql(t)>M}dt → 0, as M →∞

The second definition is the largest stability region, which is given by

Θ = {~ρ|
S∑

s=1

Al
sρs ≤ Cl, ∀l}



Related Works 18

The last definition is called the time-scale separation assumption. The assumption states

that the data rates xs(t) at each time instant t are adjusted instantaneously to the optimal

rate allocation computed by the static global optimization problem S with N =
∑S

s=1 ns(t).

Furthermore, a controller satisfying this assumption is called a perfect congestion controller.

The utility function discussed in this body of work is not restricted to log function

anymore. A more general form of the utility function is

Us(xs) = ws
x1−α

s

1− α
, α > 0 and α 6= 1 (2.23)

This utility function is also referred as weighted α-bandwidth sharing utility function.

2.4.2 Recent Results

Most results are based on the time-scale separation assumption. In [3], the ergodicity of the

stochastic process ~n(t) = [n1(t), ..., nS(t)] is considered. Conditions on the traffic intensities

ρs for which, starting from any initial state, the number of flows on each route remains

finite with probability 1 are derived. Clearly, the following conditions are necessary:

S∑
s=1

Al
sρs ≤ Cs,∀l (2.24)

The evolution of ~n(t) is governed by a Markov process, i.e. the arrival process is Poisson

and the size of the file for transfer is exponentially distributed. Its transition rates are given

by

ns(t) → ns(t) + 1, with rate λs,

ns(t) → ns(t)− 1, with rate µsxs(t)ns(t),

The following proposition gives the condition for stability with α utility function, starting

from any initial state.

Proposition 2.3: The Markov process ~n(t) is ergodic if and only if traffic condition

(2.24) is satisfied.
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The proof consists of the the study of fluid system defined by

Ns(t) = lim
w→∞

ns(wt)

w
S∑

s=1

ns(0) = w

If the limit exists,
∑S

s=1 Ns(0) = 1. Given an initial distribution of the fluid Ns(0), it

follows from the strong law of large number that the evolution of the fluid system Ns(t) is

uniquely defined by the differential equations:

d

dt
Ns = λs − µsΛs(t), for all s, t such that Ns(t) > 0 (2.25)

where Λs(t) = ns(t)xs(t) is the total bandwidth allocated to class s at time t. Let vector

Λ = (Λs) be the solution of the optimization problem:

max
Λ

S∑
s=1

wsN
α
s

Λ1−α
s

1− α

subject to
S∑

s=1

Al
sΛs ≤ Cl, ∀l

Consider the following function defined on the set of |S| dimensional positive vectors:

F (u) =
S∑

s=1

wsµ
−1
s ρ−α

s

uα+1
s

α + 1

From (2.25),

d

dt
F (N) =

S∑
s=1

wsρ
−α
s Nα

s (ρs − Λs) (2.26)

Consider now the function

G(u) =
S∑

s=1

wsN
α
s

u1−α
s

1− α
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The vector Λ attains the maximum of this function over the domain specified by the

capacity constraint. Thus, for any vector u in this convex domain, the gradient of G

satisfies G′(u)(u− Λ) ≤ 0. By concavity of G, we conclude that:

G′(u)(u− Λ) ≤ 0

Under the capacity constraint, there exists ε > 0 such that the vector u = (ρs(1 + ε))

satisfies the capacity constraint. Applying the previous inequality,

S∑
s=1

wsρ
−α
s Nα

s (ρs(1 + ε)− Λs) ≤ 0

Equivalently, in view of (2.26), this reads

d

dt
F (N) ≤ −ε

S∑
s=1

wsρ
α+1
s Nα

s

Using straightforward bounds, there exists a positive constant β such that

d

dt
F (N) ≤ −βF (N)

α
α+1

This implies that if F (N(T )) = 0 for some T > 0, F (N(t)) = 0 for all t ≥ T . In addition,

integrating this equation yields for all t ≥ 0 such that F (N(t)) > 0,

F (N(t)) ≤
(

F (N(0))
1

α+1 − β

α + 1
t

)α+1

Recalling that
∑S

s=1 Ns(0) = 1, this implies that F (N(t)) and thus N(t) are identically

equal to zero for all t ≥ T , with

T =
α + 1

β

(
1

α + 1

S∑
s=1

µ−1
s ρ−α

s

) 1
α+1

Recently, Lin and Shroff have proved that the time-scale separation assumption is not

necessary to achieve the largest stability region. In [9], the time is divided into slots of
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length T , and the link costs are updated at the end of each slot. Having defined the

structure, they proposed the following distributed algorithm:

xs(t) = xs(kT ) = min{( ws∑L
l=1 Al

sql(kT )
)1/β,Ms}, for kT ≤ t < (k + 1)T (2.27)

ql((k + 1)T ) = [ql(kT ) + γl(
S∑

s=1

Al
s

∫ (k+1)T

kT

ns(t)xs(kT )dt− TCl)]
+ (2.28)

The following proposition has been proved in [9].

Proposition 2.4: Assume that utility functions are of the form in (2.23) for some β > 1,

and that the data rates are controlled by (2.27) and (2.28). Let S = maxl

∑S
s=1 Al

s denote

the maximum number of classes using any link, and let L = maxs

∑L
l=1 Al

s denote the

maximum number of links crossed by any class. If

max
l

γl ≤ 1

TSL

2β − 1

16
min

s

ws

ρsM
β
s

then for any offered load ~ρ that resides strictly inside Θ, the system is stable.

Several remarks should be emphasized. First, the contribution of the above work is

that no time-scale separation is required to achieve stability region Θ. Secondly, careful

thought should indicate that (2.27) is identical to (2.4) with MRi = 0. Similarly, (2.28) is

identical to (2.5) except that the correction term is replaced by an integration operation.

The reason is that ns(t) is a random number. Thus, the total traffic acting on a link

must be measured by performing integration as opposed to simple addition. It seems

that the proposed algorithm is only a modification of the solution in static case. Lastly,

while (2.4) and (2.5) converge to a fixed equilibrium point, (2.27) and (2.28) converge to a

stationary stochastic process, which is due to the randomness of the arrival and departure

processes. Since the algorithm does not require time-scale separation assumption, the

allocation process xs(t) may not reach the optimal solution computed by problem S with

N =
∑S

s=1 ns(t) at all time.

A natural question to ask at this point is if we can achieve the largest stability region

and maximize the system utility simultaneously. In other words, we need to take Lin and

Shroff’s result one step further. Although stability is an important issue, the problem is

meaningless if utility maximization is overlooked. In the next chapter, a systematic study
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of utility maximization problem in the context of dynamic users is presented. We will show

that the answer to the question is affirmative.



Chapter 3

Utility Maximization for Networks

with Dynamic Users

3.1 System Model and Problem Formulation

In this section, we describe our system model and define the associated optimization prob-

lem. We consider a network with L links and S classes of flows. We denote the sets of links

and classes by L and S, respectively. The capacity of each link l ∈ L is Rl. [A] is an L×S

matrix that represents the routes of the flows: Al
s = 1 if the flows of class s ∈ S go through

link l and Al
s = 0 otherwise.1 The arrival process of the flows of any class s is Poisson with

rate λs and the durations are of an arbitrary length distribution with mean µ−1
s . Thus, the

traffic intensity brought by flows of class s is ρs = λs/µs. We further assume that ~ρ = [ρs]

is within the stability region defined by Θ = {~ρ|∑S
s=1 Al

sρs ≤ Rl,∀l}.
For each class s, let xs(t) denote the rate allocated for each flow at time t, and let

Us(xs(t)) = log xs(t) be the utility received by the flow of class s when the allocated

transmission rate is xs(t). The utility function represents the level of satisfaction of a

flow, and different utility functions will achieve different fairness objectives. Here, log (·)
function will ensure proportional fairness2 defined in Chapter 2. We assume that each flow

1Our results can be readily extended to the case where the link capacity is time-varying and the routes
are not pre-defined.

2As we will show later, we are not taking the log utility function by chance. It seems to be the only

23
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of class s has a maximum transmission rate, Ms.

Let ns(t), s = 1, 2, . . . , S denote the number of flows of class s that are present in the

system, and ~x(t) = [x1(t), x2(t), . . . , xS(t)] denote the rate vector at time t. In our model,

time is slotted and the length of each slot is T seconds. Flows arriving within a slot will

start transmission at the beginning of the next slot as shown in Fig. 3.1. Therefore, ns(t)

can be decomposed into two parts, ns(t) = nw
s (t) + nt

s(t), where nw
s (t) represent the flows

waiting for transmission and nt
s(t) represent the flows transmitting data. Therefore, the

global optimization problem can be formulated as:

 
(k-1)T (k+1)T kT 

Customer arrives 

Transfer starts 

Figure 3.1: Transmission Model

max
~x(t)∈X(t)

lim
t→∞

1

t

∫ ∞

t=0

S∑
s=1

nt
s(t)Us(xs(t))dt (3.1)

subject to lim
t→∞

1

t

∫ ∞

t=0

S∑
s=1

Al
sn

t
s(t)xs(t)dt ≤ Rl, ∀l (3.2)

(3.1) has an interpretation of maximizing expected long-term system utility. The constraint

(3.2) addresses stability requirement.

Suppose the queueing process at each source node is ergodic (we will justify this as-

sumption in Section 3.4). Let ν(~nt, ~x) denote the density (which we assume exists without

the loss of generality) of the joint distribution of ~nt and ~x in equilibrium. Given ~x, the

stationary distribution of ~n can be shown to be conditionally independent (follows from

a truncation of the M/G/∞ model). Let ν(nt
s|~x) denote the conditional density of flow

xs given ~x, then ν(~nt, ~x) = [
∏S

s=1 ν(nt
s|~x)]p(~x), where p(~x) denotes the joint density of ~x.

meaningful utility under dynamic flows.
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Then (3.1) can be written as the following problem:

max
~x

∫

X

S∑
s=1




∞∑

nt
s=0

nt
sUs(xs)ν(nt

s|~x)


 p(~x)d~x (3.3)

subject to
∫

X

S∑
s=1

Al
s




∞∑

nt
s=0

nt
sxsν(nt

s|~x)


 p(~x)d~x ≤ Rl, ∀l (3.4)

where X = {~x|xs ∈ (0,Ms], s = 1, 2, . . . , S}. Therefore, the maximization problem is

essentially about finding an optimal joint distribution p(~x). Define

g(~x) =
S∑

s=1

∞∑

nt
s=0

nt
sUs(xs)ν(nt

s|~x)

=
S∑

s=1

log (xs)
∞∑

nt
s=0

nt
sν(nt

s|~x)

=
S∑

s=1

log (xs)E[N t
s|~x]

=
S∑

s=1

log (xs)ρs/xs (3.5)

To evaluate E[N t
s|~x], we have applied Little’s law in the above derivation. It is easy to

see that the expected service time excluding the waiting time is 1/(µsxs) in equilibrium.

Thus, by Little’s law, E[N t
s|xs] = λs/(µsxs) = ρs/xs. Substitute (3.5) into (3.3), we have

max
~x

∫

X

g(~x)p(~x)d~x (3.6)

Now, we are going to investigate the properties of g(~x) to obtain the structure of p(~x).

The first order and second order partial derivative of g(~x) are given by

∂g(~x)

∂xs

=
ρs(1− log(xs))

xs

(3.7)

∂2g(~x)

∂x2
s

=
ρs(2 log(xs)− 3)

x3
s

(3.8)

∂2g(~x)

∂xsxt

= 0, s 6= t (3.9)
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According to (3.7), it is easy to see that g(~x) has a unique global maxima at x∗s = e for

all s. In addition, from (3.8) and (3.9), we can conclude that g(~x) is strictly concave if

0 < xs < e3/2 and strictly convex if xs > e3/2 for all s. Within the convex region, the

minima occurs at xs = ∞, which can be inferred from (3.7).

To maximize (3.6), p(~x) should put all its mass at ~x∗ if ~x∗ satisfies (3.4) and 0 < x∗s ≤ Ms

for all s. This is because g( ~x∗) > g(~x) for all ~x 6= ~x∗. Otherwise, p(~x) should put all its

mass at one of its boundary points of the solution space. This is because that g(~x) strictly

increases until it reaches the global maxima, and then strictly decreases on each of its

dimension. In either case, p(~x) is a Dirac delta function.

As a consequence, we can transfer the stochastic optimization problem (3.3) and (3.4)

into a deterministic one in the following:3

max
~x∈X

S∑
s=1

E[N t
s|xs]Us(xs) (3.10)

subject to
S∑

s=1

Al
sE[N t

s|xs]xs ≤ Rl, ∀l (3.11)

where N t
s is a random variable representing the number of class s flows in transmission

when rate xs is assigned. Let DL denote the above optimization problem.

We can further deduce the optimal joint distribution p(~x) by setting the following

equality:
∫

X

p(~x)d~x =

∫

X
p(~x)d~x = 1 (3.12)

where X is the set of ~x that solve problem (3.10) and (3.11). The solution is straightforward:

p(~x) can be any distribution as long as (3.12) is met. If g(~x) has an unique maxima on X,

X = {~x∗} is a singleton and thus p(~x) = δ(~x− ~x∗) where δ is the Dirac delta function.

Note that the constraint given in (3.11) refers to long-term congestion avoidance. If

instantaneous congestion avoidance is required, (3.11) will be replaced by

S∑
s=1

Al
sn

t
sxs ≤ Rl, ∀l (3.13)

3Although the density functions ν(nt
s|~x) are still involved, they are completely specified by ~x and the

Poisson assumption on the arrivals.
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Let DS denote this modified problem. In later sections, we will show the trade-off between

these two problem formulations. Intuitively, problem DS has a more stringent constraint,

which implies that its performance might be worse than that of the problem DL.

3.2 Distributed Algorithm and Stability Analysis

This section presents the derivation of the distributed control algorithm and its stability

analysis for problem DL. The standard primal-dual technique is employed to find the

solution. Note that the objective function does not have the convex property and there

will be a duality gap. We will ignore this issue now since we will show that the duality gap

actually disappears naturally in our problem. The Lagrangian function associated with

problem DL is

L(~q, ~x) =
S∑

s=1

E[N t
s|xs] log(xs)−

L∑

l=1

ql(
S∑

s=1

Al
sE[N t

s|xs]xs −Rl) (3.14)

where ~q = (q1, q2, . . . , qL) are the Lagrangian multipliers, and they represent the level of

congestion. ql has the same interpretation as the dual variable µl introduced in Chapter

2. Then, the dual of problem DL is defined as

min
~q≥0

F (~q) (3.15)

where

F (~q) = max
~x∈X

L(~q, ~x) (3.16)

Let D denote the dual problem. To solve problem D, we consider the problem in (3.16)

first. For a given ~q, the problem is separable in s, ~x(~q) maximizes L(~q, ~x) if and only if

~x(~q) = (x1(~q), x2(~q), . . . , xS(~q)), where

x∗s(~q) = arg max
0<xs≤Ms

{E[N t
s|xs] log(xs)− E[N t

s|xs]xs

L∑

l=1

Al
sql} (3.17)
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Substitute E[N t
s|xs] = λs/(µsxs) = ρs/xs into (3.17). Then, the solution of (3.17) can be

expressed as

x∗s(~q) = arg max
0<xs≤Ms

{log(xs)/xs}
= min{arg max(log(xs)/xs),Ms} (3.18)

Since the function log(x)/x strictly increases first and then strictly decreases, the solution

given in (3.18) is a global optimal solution.

An interesting observation is that the solution of xs is independent of the dual vari-

able ~q. In other words, we are showing that the utility maximization is fully decoupled

from the stability issue. This implies that the algorithm does not require the feedback

from the network in finding the optimal transmission rate, and the duality gap does not

affect the optimization at all. This result actually simplifies the implementation of the

control algorithm significantly. In classical literatures about distributed utility maximiza-

tion algorithm, the noise and delay associated with the feedback of dual variable updates

usually create non-trivial difficulties. Although some recent works have demonstrated that

the algorithm will converge to the optimal solution, they usually require assumptions such

as the noise must be unbiased and the variance of the noise must be bounded. The details

can be found in [20].

The role of the dual variable updates is to stabilize the network and thus prevent

network congestion. However, for long-term average, this step is naturally achieved. If

the traffic intensity ρs is strictly within the stability region Θ, then we can show that the

network is stable, where the network stability criterion is given by

lim sup
t→∞

1

t

∫ t

0

1{∑S
s=1 ns(t)+

∑L
l=1 ql(t)>M}dt → 0 as M →∞ (3.19)

where ns denotes the number of flows in class s. In other words, the number of flows at

each source node and the queues at each link must be finite. By Little’s law, we have

E[Ns|xs] = E[Nw
s |xs] + E[N t

s|xs], ∀s
= λsT/2 + ρs/xs (3.20)

where the term T/2 comes from the fact that given a Poisson arrival occurs within interval

[0, T ], the expected arrival time is T/2. To have a bounded number of flows, xs must
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be strictly greater than zero and the mean of the file length must be finite. According

to (3.18), xs > 0 is satisfied, and ρs is finite by definition. As a result, the first term

within lim sup of (3.19) converges to zero. Since the system is not lossy, the load injected

into the network is ρs by each class in equilibrium. Thus, the load imposed on each link is∑S
s=1 Al

sρs. If ~ρ ∈ Θ is satisfied, queues at each link will be bounded for all work conserving

scheduling policies, and this fact provides the convergence of the second term in (3.19).

3.3 Distributed Algorithm for Instantaneous Conges-

tion Control

Let us now consider the problem where the allocations are such that the instantaneous

capacity constraints are not allowed to be violated. i.e. we study the solution for the prob-

lem DS, which provides instantaneous congestion avoidance. Again, primal-dual method

is applied. The Lagrangian function associated with problem DS is

L(~q, ~x) =
S∑

s=1

E[N t
s|xs] log(xs)−

L∑

l=1

ql(
S∑

s=1

Al
sn

t
sxs −Rl) (3.21)

where ~q = (q1, q2, . . . , qL) are the Lagrangian multipliers for link capacity constraints.

Then, the dual of problem DS is defined as

min
~q≥0

F (~q) (3.22)

where

F (~q) = max
~x∈X

L(~q, ~x) (3.23)

For a given ~q, the problem is separable in s, ~x(~q) maximizes L(~q, ~x) if and only if ~x(~q) =

(x1(~q), x2(~q), . . . , xS(~q)), where

x∗s(~q) = arg max
0<xs≤Ms

{E[N t
s|xs] log(xs)− nt

sxs

L∑

l=1

Al
sql}

= arg max
0<xs≤Ms

{ρs log xs

xs

− nt
sxs

L∑

l=1

Al
sql} (3.24)
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The dual problem is solved by using gradient projection method. The partial derivative of

L(~q, ~x) is

∂

∂ql

L(~q, ~x) = Rl −
S∑

s=1

Al
sn

t
sxs (3.25)

Thus, ql is updated through

ql(k + 1) = [ql(k) + γ(
S∑

s=1

Al
sn

t
sxs −Rl)]

+, ∀l (3.26)

where γ is the step-size. To ensure the convergence of this algorithm, we set γ = 1/k.

Since nt
s is a random variable, x∗s and ql will converge to two stochastic processes. As the

result of the projection operation [·]+, E[ql] > 0 and the second term in (3.24) will be a

non-negative number all the time. Therefore, x∗s will be always smaller than or equal to

the solution given in (3.18), and E[x∗s] < e. Since g(~x) is a strictly increasing function

until it reaches its global maxima, xs = e, the performance of the solution given by (3.24)

and (3.26) will be worse than that of the long-term congestion avoidance algorithm. In

addition, a smaller transmission rate will induce a longer delay.

Thus, the trade-offs between instantaneous and long-term congestion avoidance are

utility and delay. If stability is the only requirement, the long-term congestion control

solution has much more advantages in terms of implementation and complexity. For this

reason, all the discussion from this point on will be focusing on the algorithm of problem

DL unless explicit explanation is made.

3.4 Queueing Interpretation and Discussion

We now provide intuitive explanation for the results described in Section 3.2. First of

all, we will justify the fact that the queuing process at each source node is ergodic as

mentioned in Section 3.1. In Fig. 3.2, we illustrate a simplified version of the queueing

systems under investigation. For the ease of exposition, we concatenate the two queues

that hold both nw
s (waiting queue) and nt

s (transmission queue) into one transport layer

queue. Since the first queue is a pure delay block, nw
s (t) is stationary. Moreover, the second



Utility Maximization for Networks with Dynamic Users 31

r ms s=ls/
gs s s( ) ( ) ( )t =n t x t

n ms s s( ) ( )/t =n t
Q t q ti i( )= ( )/a

r tin( )

r tni( )

Transport layer queue
Network layer queue

Figure 3.2: Relationship Between Transport Layer and Network Layer Queues

queue is of G/M/∞ type because the service rate is scaled with nt
s(t). As a result, this

queue is “self-stabilizing” and stationary, i.e., it is always stable no matter what intensity

ρs is. Consequently, ns(t) = nw
s (t) + nt

s(t) is also a stationary process. Note that the

arrival process of the second queue is in the form of periodic bursts with varying number

of customers.

Secondly, the network achieves the largest stability region without the time-scale sep-

aration assumption. Given the fact that ~ρ ∈ Θ, stabilizing the network layer queue is

straightforward: a normal FIFO policy would work [6]. Indeed, any work conserving pol-

icy will ensure stability. This fact can be proved by looking at the expected one-step drift

of the queues:

E[ql(k + 1)− ql(k)] =
S∑

s=1

Al
sxsE[N t

s]−Rl (3.27)

where xs is given by (3.18). In fact, E[N t
s] should be written as E[N t

s|xs] because N t
s

is a function of the control strategy. From the previous discussion, E[N t
s|xs] = ρs/xs.

Substitute this expression into the right hand side of (3.27) to obtain
∑S

s=1 Al
sρs−Rl ≤ 0,

which indicates that the expected one-step drift is non-positive.

Our results hold for a large class of file length distribution including even heavy tail

distributions with finite mean; the performance of the algorithm is insensitive to this

distribution. However, the expected number of flows at each source node and their sojourn

time are linearly related to the mean of the distribution.
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The utility function can be expressed in a more general form as well, and the convexity

of g(~x) can be more complicated. Thus, there may be multiple optimal solutions which

maximizes (3.6). However, from the system utility maximization’s point of view, the mass

distribution over these points will not affect the total utility. This fact implies that the

structure of ν(~x) can still be a delta function.

If the utility function is a linear function of the transmission rate (U(x) = γx), the

system utility is constant and independent of transmission rate. A simple proof is

max
~x∈X

S∑
s=1

E[N t
s|xs]Us(xs)

= max
~x∈X

S∑
s=1

ρs

xs

γxs

= Sγ

However, from individual user’s point of view, individual flow’s utility is maximized if

xs = Ms.

In addition, if we take the general α utility (2.23) introduced by Mo and Walrand [14],

then the optimal solution is given by

x∗s =





Ms, if α > 1

0, if 0 < α < 1

(3.28)

for α 6= 1 and all s. The solution can be obtained by checking the first order partial

derivative of g(~x)

g(~x) =
S∑

s=1

Us(xs)E[N t
s|~x]

=
S∑

s=1

ws
x1−α

s

1− α

ρs

xs

=
wsρs

1− α
x−α

s

∂

∂xs

g(~x) =
αwsρs

α− 1
x−α−1

s
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Note that g(~x) is either a strictly increasing or strictly decreasing function depending on α.

Consequently, the optimal solution is one of the two boundary points. This solution shows

that the general α utility (apart from the log utility that we have taken) is not suitable in

the case of dynamic flows as xs = 0 is not a feasible solution.

3.5 Delay Analysis

In this section, we present the transport layer delay analysis of our algorithm. The queueing

model is shown in Fig. 3.2. Let Dee
s denote the end-to-end delay of class s flows. Then

we have Dee
s = Dt

s + Dq
s, where Dt

s and Dq
s are the queueing delay at transport layer and

within the network (along the path towards destination), respectively. The evaluation of

network queueing delay is out of the scope of this thesis. In this thesis, we only focus on

Dt
s.

The transport layer delay for class s flows Dt
s consists of the waiting time and the

transmission time. Let W be the random variable denoting the waiting time and Fs be

the random variable denoting the file length of class s. Since the arrival process is Poisson,

given that an arrival occurs, W has an uniform distribution in the interval [0, T ]. The

transport layer delay can be written as

Dt
s = W + Fs/xs (3.29)

where the second term Fs/xs is an exponential distribution with rate xsµs. Since the arrival

time is independent of the file length, the distribution of Dt
s is given by the convolution of

the distribution of W with the distribution of Fs/xs.

fDt
s
(d) =

∫
fw(d− τ)fFs/xs(τ)dτ (3.30)

fDt
s
(d) =





1
T
(1− e−µsxsd), if 0 ≤ d ≤ T

1
T
e−µsxsd(eµsxsT − 1), if d ≥ T

(3.31)
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3.6 Numerical Results

In this section, we will compare our proposed algorithm with the works introduced in

Chapter 2 for networks with random arrivals and departures to demonstrate the superi-

ority of our scheme. To facilitate our discussion, let A denote our proposed algorithm.

Let B and C denote the algorithms with time-scale separation assumption and the one

proposed by Lin and Shroff without time-scale separation assumption respectively. We will

consider both one-hop and multi-hop network configurations in simulation. The following

two objectives will be compared.

lim
t→∞

1

t

S∑
s=1

∫ t

0

nt
s(t)Us(xs(t))dt (3.32)

lim
t→∞

1

t

∫ t

0

nt
s(t)xs(t)dt, ∀s (3.33)

(3.32) is the average system utility and (3.33) is the average throughput for each class.

Before we demonstrate the simulation results, we will present a brief description about the

operations of algorithms B and C. All algorithms run in discrete time and time is slotted

with length T .

3.6.1 Operation of Algorithm B

With time-scale separation assumption, algorithm B solves the following optimization

problem at the beginning of each time slot.

max
x∈X

S∑
s=1

ns log(xs) (3.34)

subject to
S∑

s=1

Al
snsxs ≤ Rl,∀l (3.35)

where xs denote the individual flow transmission rate of class s, and ns is the number of

class s flows in the system. The Lagrangian is given by

L(x, ~µ) =
S∑

s=1

ns log(xs)−
L∑

l=1

µl(
S∑

s=1

Al
snsxs −Rl) (3.36)



Utility Maximization for Networks with Dynamic Users 35

where ~µ = {µ1, µ2, ..., µL}. For a given ~µ, the solution of xs is

xs = min{1/(
L∑

l=1

Al
sµl),Ms} (3.37)

Suppose that Ms is a very large number, then xs = 1/(
∑L

l=1 Al
sµl). Substitute this expres-

sion into the complementary slackness equation, we have

µl(
S∑

s=1

Al
sns/(

L∑

l=1

Al
sµl)−Rl) = 0,∀l (3.38)

The explicit expression of µl depends on the routing structure. Suppose the network is a

one-hop network and only class s flows cross link l, then the explicit expression for µl is

µl(
ns

µl

−Rl) = 0

→ µl =
ns

Rl

(3.39)

where ns denote the number of class s flows crossing link l. Substitute (3.39) into the

primal solution, we get

xs =
Rl

ns

(3.40)

Equation (3.40) provides us the optimal solution to which the primal-dual algorithm will

converge in equilibrium.

Suppose that the number of flows is dynamic and the primal-dual algorithm employed

converges on a much faster scale than the dynamic of ns. In the extreme case, we assume

that the algorithm converges instantly, and the transmission rate is updated with equation

(3.40) at the beginning of each time slot for one-hop network topology. This rate update

mechanism adopts the time-scale separation assumption and describes the operation of

algorithm B.
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Figure 3.3: One-Hop Network Topology

3.6.2 Operation of Algorithm C

This algorithm has been introduced in Chapter 2. Here, we present the algorithm again

for convenience

xs(k) = min{ 1∑L
l=1 ql(k)H l

s

,Ms} (3.41)

ql(k + 1) = [ql(k) + γl(
S∑

s=1

H l
sxs(k)

∫ (k+1)T

kT

nt
s(t)dt− TRl)]

+ (3.42)

where γl is the step-size. The main result claimed in [9] is that xs(t) and ns(t) will converge

to stationary processes and the network can achieve the largest stability region Θ, provided

the step-size is small enough.

3.6.3 Performance Comparison in One-hop Network

The network topology is shown in Fig. 3.3. This network has four links: AB, BC, CD and

DA. Each link has a capacity of 10 units/second. There are four classes of flows whose file

lengthes are exponentially distributed with a mean of 1 unit/flow. The arrival rates are 8,

8.5, 9 and 9.5 flows/second for class 1 to class 4. Thus, the loads brought by each class are

8, 8.5, 9 and 9.5 units/second. Each time slot is 10ms seconds long. The simulation results

are shown in Table 3.1 and 3.2. Note that Table 3.1 also includes the relative performance

comparison between algorithm A and C with algorithm C’s performance as the baseline.

Since algorithm B’s performance is very low, its relative performance with respect to that

of algorithm C is not included.
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Table 3.1: Time Average Utility Comparison for One-hop Network

A (% improvement) B C (baseline)

class 1 2.983 (+58.67%) 1.29 1.88

class 2 3.14 (+53.92%) 0.0055 2.04

class 3 3.32 (+46.26%) -4.4764 2.27

class 4 3.47 (+29.96%) -19.7793 2.67

Table 3.2: Time Average Throughput Comparison for One-hop Network

A B C

class 1 8.108 8.02 8.06

class 2 8.54 8.46 8.53

class 3 9.01 9.03 9

class 4 9.43 9.54 9.5
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Figure 3.4: Multi-Hop Network Topology

Table 3.3: Time Average Utility Comparison for Multi-hop Network

A (% improvement) C (baseline)

class 1 0.3572 (+29.84%) 0.2751

class 2 0.7372 (+31.93%) 0.5588

class 3 1.1042 (+31.72%) 0.8383

class 4 1.2922 (+33.84%) 0.9655

Note that each class’s throughput should be the same for all algorithms theoretically.

The discrepancy appears in Table 3.2 is due to simulation.

3.6.4 Performance Comparison in Multi-hop Network

To further emphasize the advantages of our algorithm, we also investigate its performance

in a multi-hop network shown in Fig. 3.4. The network parameters are identical to the

previous example except the routing and arrival rates. In this example, the arrival rates

are 1, 2, 3 and 3.5 flows/second for class 1 to class 4. Therefore, the load on link AB, BC,

CD and DA are 1, 3, 6 and 9.5 units/second. Since the performance of algorithm B is not

comparable with that of algorithm A and C, only A and C’s simulation results are shown

in Table 3.3 and 3.4.
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Table 3.4: Time Average Throughput Comparison for Multi-hop Network

A C

class 1 0.9712 0.99

class 2 2 1.99

class 3 3 3

class 4 3.51 3.49

3.6.5 Simulation Results Discussion

According to the simulation results, algorithm A performs much better than the other two

algorithms and maintains the throughput at the same time. This result can be explained

from two different prospectives.

First, we analyze the algorithm from the stability’s point of view. In classical litera-

tures, utility maximization problem usually considers networks with fixed number flows.

In addition, each flow is assumed to have infinite backlog to transfer. Therefore, the dual

variable must be employed to regulate the flows to enure stability. However, when flow’s

arrival and departure are random, stability is not an issue if ~ρ ∈ Θ is met and the trans-

mission rate is strictly greater than zero. For this reason, the dual variable is not required

to regulate the flows, and each flow will receive more utility. In some sense, it is a trade-off

between stability and utility. If we know the system is operating within the stable region,

we should not penalize the flows to ensure stability anymore.

Secondly, from the prospective of solution space, we can also verify the advantage

of open-loop control. The constraints associated with these algorithms specify different

solution space. For algorithm A, the solution is selected from a space which ensures long-

term stability. For algorithm B and C, the solutions are chosen from spaces which ensure

instantaneous and short-term congestion avoidance. If we rank these spaces according to

their sizes, A ⊇ C ⊇ B. As the result, the performance of our algorithm should be at least

as good as that of B and C. This analysis is consistent with the simulation results.
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Conclusion

The main contribution of this work is that a systematic study of utility maximization

problem in networks with random user arrivals and departures is presented. We have

found that the network utility maximization is independent of the network stability issue.

If the network is operating within the capacity region and the network layer adopts a

work conserving scheduling policy, the queue at each link remains finite. The time-scale

separation assumption has no impact in determining the stability region. One way of

interpreting these results is that primal-dual based congestion control schemes should be

used for long-lived flows to prevent short-term congestion while short-lived flows need not

to be controlled provided they do not bring excessive work.

For future works, we would like to take delay into consideration in addition to utility

maximization. As we know, log utility function preserves the properties of an NBS, which

will guarantee social welfare. However, it does not characterize individual’s delay profile.

Specially, in the context of dynamic arrivals and departures, delay is a very critical perfor-

mance measurement. Whereas in the context of static networks, only fairness and utility

are critical factors. Thus, utility function is not a complete reflection of the user’s level

of satisfaction in dynamic case. A new framework should be developed for dynamic con-

nections with emphasis on delay performance. Perhaps, this can be done by using another

type of utility function.
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