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Abstract

We generalize the approximate greatest common divisor problem to the non-commutative,
approximate Greatest Common Right Divisor (GCRD) problem of differential polynomi-
als. Algorithms for performing arithmetic on approximate differential polynomials are
presented along with certification results and the corresponding number of flops required.
Under reasonable assumptions the approximate GCRD problem is well posed. In partic-
ular, we show that an approximate GCRD exists under these assumptions and provide
counter examples when these assumptions are not satisfied. We introduce algorithms for
computing nearby differential polynomials with a GCRD. These differential polynomials
are improved through a post-refinement Newton iteration. It is shown that Newton iter-
ation will converge to a unique, optimal solution when the residual is sufficiently small.
Furthermore, if our computed solution is not optimal, it is shown that this solution is
reasonably close to the optimal solution.
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Chapter 1

Introduction

Computing the exact Greatest Common Right Divisor (GCRD) of differential polynomials
is a well studied problem when working over exact input. It corresponds to computing
the common solutions of linear ordinary differential equations (ODEs) or indicating that
no common solution exists. Differential polynomials with coefficients from Q(t) provide a
theoretical frame work for working with linear ODEs without errors in their coefficients.
However, models obtained from measured data or experimental analysis contain machine
roundoff errors and noise in the underlying data. These differential polynomials are repre-
sented with floating point real numbers, making them approximate differential polynomials.

This thesis is concerned with numeric computation of a GCRD of two differential poly-
nomials while working in a numeric environment. Computing a GCRD numerically is an
ill-posed problem. Arbitrarily small perturbations in the input will usually indicate that
two (or more) differential polynomials are co-prime, when in fact there is an existing exact
solution. This problem is exacerbated further by the fact that even if there is a solution,
existing algorithms for working with exact input are numerically unstable when used with
floating point arithmetic. To overcome these issues we formulate the approximate GCRD
problem.

In our contributions to the approximate GCRD problem we:

• provide algorithms for computing an exact primitive GCRD and corresponding co-
factors numerically, that can be certified by linear least squares,

• prove that the approximate GCRD problem has a solution and provide conditions
for which the solution is locally unique,
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• compute a solution to the approximate GCRD problem that is a suitable initial guess
for post-refinement Newton iteration,

• demonstrate that the approximate GCRD problem is well-posed under structured
perturbations, and

• provide an upper bound on the distance between a computed solution and the optimal
solution.

This work uses techniques from convex optimization and polynomial approximate Greatest
Common Divisor (GCD). Our contributions may be extended to the more general Ore
polynomials. This thesis is a first step on how to approach non-commutative GCD problems
in a Euclidean domain with numerical errors.

Some of these results appear in Giesbrecht and Haraldson [9] and a journal publication
Giesbrecht, Haraldson and Kaltofen [10] is being prepared.
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Chapter 2

Background

This chapter provides an overview of the background necessary to understand the results
of this thesis. We first introduce differential polynomials in the exact setting and some
essential results [4,21]. These results are in the form of the more general Ore polynomials.
We adapt these results to our particular instance of differential polynomials. We approach
differential subresultants based on the work of Li [19], who considers the case of Ore
polynomials in an exact setting.

Our approach to computing a GCRD of differential polynomials is to solve a Diophan-
tine equation over the ring of differential polynomials. This corresponds to computing
the Bézout coefficients. This is done by formulating a highly structured linear algebra
problem with matrices whose entries belong to R(t) based on the subresultant techniques
of Li [20]. We linearize the corresponding Diophantine equation and transform the prob-
lem into an equivalent real linear algebra problem. We then use various numerical linear
algebra techniques to overcome roundoff errors and coefficient growth that lead to arbi-
trarily high degrees. The tools from numerical linear algebra that we make extensive use
of include the SVD [2, 5, 9, 11], (linear) least squares [3, 11, 14], and other results from
convex optimization [3]. These techniques draw upon results from polynomial approxi-
mate GCD [5,14,16,23,28]. A standard technique for computing polynomial approximate
GCDs is to linearize polynomial systems. Solutions to these systems are computed using
numerical linear algebra and optimization tools.
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2.1 Differential Operators in an Exact Setting

This section presents some well known results [4, 21] on differential polynomials. Many
important concepts relating to the non-commutativity of differential operators are covered,
which are required in later chapters.

Definition 2.1.1. Let R(t)[∂;′ ] define the ring of differential polynomials. R(t)[∂;′ ] is the
ring of polynomials in ∂ with coefficients from the commutative field of rational functions,
under the usual polynomial addition rule along with the non-commutative multiplication
rule

∂y(t) = y(t)∂ + y′(t) for y(t) ∈ R(t).

Here y′(t) is the usual derivative of y(t) with respect to t.

There is a natural action of R(t)[∂;′ ] on the space C∞[R] of infinitely differentiable
functions y(t) : R→ R. In particular, for any y(t) ∈ C∞[R],

f(∂) =
∑

0≤i≤M

fi(t)∂
i acts on y(t) as

∑
0≤i≤M

fi(t)
di

dti
y(t).

Remark 2.1.2. We will maintain a canonical form for all f ∈ R(t)[∂;′ ] by writing

f =
1

f−1

∑
0≤i≤M

fi∂
i,

for polynomials f−1, f0, . . . , fM ∈ R[t]. That is, with coefficients in R(t) always written to
the left of powers of ∂.

It will also be necessary to define a partial ordering on differential polynomials. In later
chapters we will need to make use of this partial ordering to preserve structure.

Definition 2.1.3. Let δ : R[t][∂;′ ]→ Z be the degree vector function defined as

δ(f) = (degt f0, degt f1, . . . , degt fM), for f0, . . . , fM ∈ R[t].

For f, g ∈ R[t][∂;′ ] with deg∂f = deg∂g = M we write

δ(f) < δ(g) if degt fi ≤ degt gi for 0 ≤ i ≤M.

We define δ(f) = δ(g), δ(f) < δ(g), δ(f) ≥ δ(g) and δ(f) > δ(g) analogously.
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Example 2.1.4. Let f = t2∂3 + (t− 3)∂ + 1 ∈ R[t][∂;′ ], then we write

δ(f) = (0, 1,−∞, 2).

We note that differential polynomials are written in a canonical ordering with highest
degree coefficients appearing to the left in our examples. The degree vector function and
most linearizations will appear in reverse order as a result.

Definition 2.1.5. Let f ∈ R[t][∂;′ ] where deg∂f = M is in standard form. The content
of f is given by cont(f) = gcd(f0, f1, . . . , fM). If cont(f) = 1, we say that the differential
polynomial is primitive.

Example 2.1.6. Let f = t∂ − 1 and g = ∂. Both f and g are primitive. Also,

fg = (t∂ − 1)∂

= t∂2 − ∂

and

gf = ∂(t∂)− ∂
= t∂2 + ∂ − ∂
= t∂2

This example illustrates that the multiplication between elements from R(t)[∂;′ ] is non-
commutative. It also demonstrates that the product of primitive differential polynomials
needs not be primitive. Thus we do not have an equivalent of Gauss’ Lemma [25, Chap-
ter 6.2].

Proposition 2.1.7. The ring R(t)[∂;′ ] is a non-commutative principal left (and right)
ideal domain. For f, g ∈ R(t)[∂;′ ], with deg∂f = M and deg∂g = N , we have the following
properties [21].

1. deg∂(fg) = deg∂f + deg∂g , deg∂(f + g) ≤ max{deg∂f, deg∂g}.

2. There exist unique q, r ∈ R(t)[∂;′ ] with deg∂r < deg∂g such that f = qg + r (right
division with remainder).

3. There exists h ∈ R(t)[∂,′ ] of maximal degree in ∂ with f = f ∗h and g = g∗h. h is
called the GCRD (Greatest Common Right Divisor) of f and g, written gcrd(f, g) =
h. f ∗ and g∗ are called the left co-factors of f and g. The GCRD is unique up to
multiplication from a unit belonging to R(t).
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4. There exist σ, τ ∈ R(t)[∂,′ ] such that σf = τg = ` for ` of minimal degree. ` is called
the LCLM (Least Common Left Multiple) of f and g, written lclm(f, g) = `. The
LCLM is unique up to multiplication from a unit belonging to R(t).

5. deg∂lclm(f, g) = deg∂f + deg∂g − deg∂gcrd(f, g).

In an algebraic context we can clear denominators and assume without loss of generality
that our GCRD belongs to R[t][∂;′ ]. It is also worth mentioning that the co-factors of the
GCRD need not belong to R[t][∂;′ ] even if we have f, g, h ∈ R[t][∂;′ ] such that gcrd(f, g) =
h.

Example 2.1.8. Let f = ∂2, g = t∂− 1 ∈ R[t][∂;′ ]. Then gcrd(f, g) = t∂− 1. We observe
that f has at least two factorizations,

f = (∂)(∂) and f =

(
1

t
∂

)
(t∂ − 1) ,

while g = (1)(t∂ − 1). The co-factors of f and g are 1
t
∂ and 1 respectively.

Most of our results involve transforming a representation of f ∈ R(t)[∂;′ ] into a rep-
resentation over R(t)1×K for K ≥ deg∂f . We will make extensive use of the following
mapping.

Definition 2.1.9. For f ∈ R(t)[∂;′ ] and K > deg∂f , we define

ΨK(f) =
1

f−1

(f0, f1, . . . , fM , 0, . . . , 0) ∈ R(t)1×K .

That is, ΨK maps polynomials in R(t)[∂;′ ] of degree (in ∂) less than K into R(t)1×K.

Later we find it useful to linearize (differential) polynomials, that is, express them as
an element of Euclidean space.

Definition 2.1.10. For p ∈ R[t] with degree d and f ∈ R[t][∂;′ ] with degree M we define

p = (p0, p1, . . . , pd) ∈ R1×(d+1) and f = (f0, . . . , fM) ∈ R1×L ⊆ R1×(M+1)(d+1).

The vector f with L components is the combined coefficient vector of f . We will sometimes
pad f with zeros so that it belongs to R1×(M+1)(d+1), however we will not do this unless
specifically stated.
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Example 2.1.11. Consider

f = (f22t
2 + f21t+ f20)∂2 + (f12t

2 + f11t+ f10)∂ + f02t
2 + f01t+ f00 ∈ R[t][∂;′ ],

then we write
f = (f00 , f01 , f02 , f10 , f11 , f12 , f20 , f21 , f22).

If we consider
f = ∂2 + (t+ 2)∂ + t2 ∈ R[t][∂;′ ],

then
f = (0, 0, 1︸ ︷︷ ︸

f0

, 2, 1︸︷︷︸
f1

, 1︸︷︷︸
f2

).

If we pad the latter representation with zeros, then

f = (0, 0, 1︸ ︷︷ ︸
f0

, 2, 1, 0︸ ︷︷ ︸
f1

, 1, 0, 0︸ ︷︷ ︸
f2

).

2.1.1 Linear Algebra over R(t)

Since R(t)[∂;′ ] is a right (and left) Euclidean domain [21] a GCRD may be computed
by solving a Diophantine equation corresponding to the Bézout coefficients. Using the
subresultant techniques of Li [19] we are able to transform the non-commutative problem
over R(t)[∂;′ ] into a commutative linear algebra problem over R(t). This is done through
a Sylvester-like resultant matrix. By using resultant-like matrices we are able to express
the Bézout coefficients as a linear system over R(t) and compute a GCRD via nullspace
basis computation.

Lemma 2.1.12. Suppose f, g ∈ R(t)[∂;′ ] with deg∂f = N and deg∂g = M . Then
deg∂gcrd(f, g) ≥ 1 if and only if there exist u, v ∈ R(t)[∂;′ ] such that deg∂u < N ,
deg∂v < M , and uf + vg = 0.

Proof. This follows immediately form Proposition 2.1.7.

Using Lemma 2.1.12 we can solve a Bézout-like system to compute a GCRD of two
differential polynomials. This is characterized by the differential Sylvester matrix based
on the subresultant method of Li and Nemes [20].
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Let f, g ∈ R(t)[∂;′ ] with deg∂f = M and deg∂g = N . Then by Lemma 2.1.12 we
have that deg∂gcrd(f, g) ≥ 1 if and only if there exist u, v ∈ R(t)[∂;′ ] such that deg∂u <
N, deg∂v < M and uf+vg = 0. We can encode the existence of u, v as an (M+N)×(M+N)
matrix over R(t) in what we will call the differential Sylvester matrix.

Recall that the standard form of f, g, u, v ∈ R[t][∂;′ ] is

f =
∑

0≤i≤M

fi∂
i, g =

∑
0≤i≤N

gi∂
i, u =

∑
0≤i≤N−1

ui∂
i, v =

∑
0≤i≤M−1

vi∂
i.

We now linearize uf + vg = 0 over R(t). First we write( ∑
0≤i≤N−1

ui∂
i

)( ∑
0≤i≤M

fi∂
i

)
+

( ∑
0≤i≤M−1

vi∂
i

)( ∑
0≤i≤N

gi∂
i

)
= 0.

We expand this expression in terms of the coefficients of u and v as

(u0f + u1∂f + · · ·+ uN−1∂
N−1f) + (v0g + v1∂g + · · ·+ vM−1∂

M−1g) = 0.

This can be written in vector-matrix product form as

(u0, u1, . . . , uN−1)


f
∂f
...

∂N−1f

+ (v0, v1, . . . , vM−1)


g
∂g
...

∂M−1f

 = 0.

Combining the vectors and matrices produces

(u0, u1, . . . , uN−1, v0, v1, . . . , vM−1)



f
∂f
...

∂N−1f
g
∂g
...

∂M−1g


= 0.
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Working with the coefficients, we can write

(u0, u1, . . . , uN−1, v0, v1, . . . , vM−1)



ΨM+N(f)
ΨM+N(∂f)

...
ΨM+N(∂N−1f)

ΨM+N(g)
ΨM+N(∂g)

...
ΨM+N(∂M−1g)


= 0.

We note that this is now an entirely commutative problem over R(t); there are no more
∂’s.

Definition 2.1.13. The matrix

S = S(f, g) =



ΨM+N(f)
ΨM+N(∂f)

...
ΨM+N(∂N−1f)

ΨM+N(g)
ΨM+N(∂g)

...
ΨM+N(∂M−1g)


∈ R(t)(M+N)×(M+N)

is the differential Sylvester matrix of f and g.

Example 2.1.14. Let

f =
(
f12t

2 + f11t+ f10

)
∂ + (f02t

2 + f01t+ f00)

and
g =

(
g22t

2 + g21t+ g20

)
∂2 +

(
g12t

2 + g11t+ g10

)
∂ + (g02t

2 + g01t+ g00).

The corresponding differential Sylvester matrix S is given byf02t
2 + f01t+ f00 f12t

2 + f11t+ f10 0
2tf02 + f01 f02t

2 + f01t+ 2tf12 + f00 + f11 f12t
2 + f11t+ f10

g02t
2 + g01t+ g00 g12t

2 + g11t+ g10 g22t
2 + g21t+ g20

 .
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Example 2.1.15. Let

f = (5t3 + 2t2 − 3t)∂3 + (−5t3 + 13t2 + 9t− 9)∂2 + (−9t2 − 6t+ 6)∂ + (−t2 + 3t− 2)

and
g = (9t2 + 4t)∂2 + (−8t2 + 11t+ 8)∂ + (−t2 − 5t− 7).

The corresponding differential Sylvester matrix S is given by
−t2 + 3t− 2 −9t2 − 6t+ 6 −5t3 + 13t2 + 9t− 9 5t3 + 2t2 − 3t 0
−2t+ 3 −t2 − 15t− 8 −24t2 + 20t+ 15 −5t3 + 28t2 + 13t− 12 5t3 + 2t2 − 3t
−t2 − 5t− 7 −8t2 + 11t+ 8 9t2 + 4t 0 0
−2t− 5 −t2 − 21t+ 4 −8t2 + 29t+ 12 9t2 + 4t 0
−2 −4t− 26 −t2 − 37t+ 33 −8t2 + 47t+ 16 9t2 + 4t

 .

S has rank 4 with the corresponding (left) nullspace vector
−5t5 + 52t4 + 931t3 + 145t2 − 830t− 1126
−45t5 − 497t4 + 1723t3 + 2246t2 + 310t− 136

5t5 + 48t4 + 109t3 + 473t2 + 156t+ 574
−50t5 − 295t4 − 152t3 + 137t2 − 950t− 394

25t6 + 275t5 − 984t4 − 1359t3 + 507t2 + 530t− 102


T

.

This matrix is analogous to the Sylvester matrix of real polynomials (for example,
see Gathen and Gerhard [25, Chapter 6]). As expected, many useful properties of the
Sylvester matrix over real polynomials still hold with the differential Sylvester matrix.
These similarities become evident when we consider

w = (u0, u1, . . . , uN−1, v0, v1, . . . , vM−1) ∈ R(t)1×(M+N).

Then uf+vg = 0 implies that wS = 0, hence w is a non-trivial vector in the (left) nullspace
of S. In particular, this solution is equivalent to saying that S is singular. Clearing
denominators of f and g, we may assume that u, v ∈ R[t][∂;′ ], i.e., they have polynomial
coefficients, which implies that S ∈ R[t](M+N)×(M+N). Moreover, for f, g ∈ R[t][∂;′ ] with
degt f ≤ d and degt g ≤ d then degt Sij ≤ d.

We can formally summarize these results in the following lemma.

Lemma 2.1.16. Suppose f, g ∈ R[t][∂;′ ], where deg∂f = M , deg∂g = N, degt f ≤ d and
degt g ≤ d.
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1. S = S(f, g) is singular if and only deg∂gcrd(f, g) ≥ 1.

2. deg∂gcrd(f, g) = dim null`(S), where null`(S) is the left nullspace of S.

3. For any w = (u0, . . . , uN−1, v0, . . . , vM−1) ∈ R(t)1×(M+N) such that wS = 0, we have
uf + vg = 0, where u =

∑
0≤i<N ui∂

i and v =
∑

0≤i<M vi∂
i.

4. Suppose that deg∂gcrd(f, g) ≥ 1. Then there exists w ∈ R[t]1×(M+N) such that wS = 0
and degtw ≤ µ = 2(M +N)d.

Proof. Part (1) – (3) follow from Lemma 2.1.12 and the discussion above. Part (4) follows
from an application of Cramer’s rule and a bound on the degree of the determinants of a
polynomial matrix.

2.1.2 Linear Algebra over R

The basic tools for performing linear algebra over R[t] have been met with limited success.
Round-off errors in the data lead to coefficient growth over R and considerable degree
growth in t. We can encode the existence of a GCRD as a linear algebra problem over R,
as opposed to R(t).

Let S ∈ R[t](M+N)×(M+N) be the differential Sylvester matrix of f, g ∈ R[t][∂;′ ] of
degrees M and N respectively in ∂, and degrees at most d in t. From Lemma 2.1.16 we
know that if a GCRD of f and g exists, then there is a w ∈ R[t]1×(M+N) such that wS = 0,
with degtw ≤ µ = 2(M +N)d.

Definition 2.1.17. Let b = b0 + b1t+ · · ·+ bµ+dt
µ+d ∈ R[t] and define

ξ(b) = ξµ+d+1 = (b0, b1, . . . , bµ+d) ∈ R1×(µ+d+1).

For any polynomial a ∈ R[t] of degree at most d let

Γ(a) =


ξµ+d+1(a)
ξµ+d+1(ta)

...
ξµ+d+1(tµa)

 ∈ R(µ+1)×(µ+d+1),

be the left multiplier matrix of a with respect to the basis 〈1, t, . . . , tµ+d〉.
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Definition 2.1.18. Given the (M + N) × (M + N) differential Sylvester matrix S, we

apply Γ entry-wise to S to obtain Ŝ ∈ R(µ+1)(M+N)×(M+N)(µ+d+1); each entry of S in R[t] is

mapped to a block entry in R(µ+1)×(µ+d+1) of Ŝ. We refer to Ŝ as the inflated differential
Sylvester matrix of f and g.

Example 2.1.19. Consider f = (t+ 3)∂ + (−2t+ 1) and g = ∂ + 3t. The matrix Ŝ(f, g)
is given by 

1 −2 0 0 0 0 3 1 0 0 0 0
0 1 −2 0 0 0 0 3 1 0 0 0
0 0 1 −2 0 0 0 0 3 1 0 0
0 0 0 1 −2 0 0 0 0 3 1 0
0 0 0 0 1 −2 0 0 0 0 3 1
0 3 0 0 0 0 1 0 0 0 0 0
0 0 3 0 0 0 0 1 0 0 0 0
0 0 0 3 0 0 0 0 1 0 0 0
0 0 0 0 3 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 1 0


∈ R10×12.

We note that the dimensions of Ŝ grow quadratically in terms of (M +N) and linearly
in d.

Lemma 2.1.20. Let f, g ∈ R[t][∂;′ ] have differential Sylvester matrix S ∈ R[t](M+N)×(M+N)

and inflated differential Sylvester matrix Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1). There exists a
w ∈ R[t]1×(M+N) such that wS = 0, if and only if there exists a ŵ ∈ R(µ+d+1)×(M+N)(µ+1)

such that ŵŜ = 0. More generally,

deg∂gcrd(f, g) =
dim null`(Ŝ)

µ+ d+ 1
.

Proof. This follows directly from the definition of Γ and Lemma 2.1.16.

We note that Ŝ is no longer a square matrix. This will not pose too many problems as
we will see in the following chapters.

2.1.3 Distance and Norms of Differential Polynomials

Approximations require a norm, so we need a proper definition of the norm of a differential
polynomial.

12



Definition 2.1.21. We use the Euclidean norm for polynomials and a distributed coeffi-
cient norm for differential polynomials.

1. For p =
∑

0≤i≤d pit
i ∈ R[t], define

‖p‖ = ‖p‖2 =

(∑
0≤i≤d

p2
i

)1/2

.

2. For f =
∑

0≤i≤M fi∂
i ∈ R[t][∂;′ ], define

‖f‖ = ‖f‖2 =

( ∑
0≤i≤M

‖fi‖2
2

)1/2

.

We could extend the above definition of norm over R(t) and R(t)[∂;′ ]. However it turns
out that this is unnecessary. In practice, we perform most of our computations over R[t].
In the cases where we are unable to avoid working over R(t), we simply solve an associate
problem. This is done by clearing denominators and converting back to the representation
over R(t).

Definition 2.1.22. For any matrix S ∈ R[t](M+N)×(M+N), we define the Frobenius norm
‖S‖F by

‖S‖2
F =

∑
ij

‖Sij‖2.

In the instance of real valued entries, the Frobenius norm has an important relationship
with the singular values of the matrix S [11].

Lemma 2.1.23. Let f, g ∈ R[t][∂;′ ] have deg∂f ≤M , deg∂g ≤ N , and let them both have
degree in t at most, d. Let S = S(f, g) be the differential Sylvester matrix of f and g.
Then ‖S‖2

F ≤ d2N‖f‖2 + d2M‖g‖2.

Proof. First note that ‖∂f‖2 = ‖f∂ + f ′‖2 ≤ (d2 + 1)‖f‖2, and hence ‖∂kf‖2 ≤ (d2 +
1)k‖f‖2. Thus

‖S‖2
F =

∑
0≤i<N

‖∂if‖2 +
∑

0≤i<M

‖∂ig‖2

≤
∑

0≤i<N

(d2 + 1)i‖f‖2 +
∑

0≤i<M

(d2 + 1)i‖g‖2

≤d2N‖f‖2 + d2M‖g‖2.

13



Note that, although the exponentials of d (or, more precisely, the falling factorials) are
intrinsic in the resultant formulation, they will cause considerable numerical instability
for large degrees in ∂. As is typical with differential polynomials, we generally restrict
ourselves to modest degrees in ∂.

Lemma 2.1.24. Let f, g ∈ R[t][∂;′ ] have deg∂f ≤M , deg∂g ≤ N and both have degree at

most d in t. Let Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1) be the inflated differential Sylvester matrix
of f and g, where µ = 2(M +N)d. Then ‖Ŝ‖2 ≤ (µ+ 1)(d2N‖f‖2 + d2M‖g‖2).

Proof. Each row of Ŝ consists precisely of entries of S = S(f, g), shifted in position with
respect to the previous row. Thus

‖Ŝ‖2
F ≤ (µ+ 1)‖S‖2

F ≤ (µ+ 1)(d2N‖f‖2 + d2M‖g‖2), and

‖Ŝ‖2
2 ≤ ‖Ŝ‖2

F .

2.2 Optimization Review

The resultant formulation of Section 2.1.1 leads to asymptotically fast modular algo-
rithms [20] over Q(t)[∂;′ ] that control interim coefficient growth. Working over R(t)[∂;′ ],
these tools are no longer available to us (as the modular reductions are numerically unsta-
ble). Naively using algorithms designed for Q(t)[∂;′ ] lead to substantial degree growth in t,
from round-off errors. The degree growth in t is especially problematic when considered in
the context of Lemma 2.1.24. We resolve these problems through the use of optimization
techniques. We provide a brief survey of optimization tools used to approach the approx-
imate GCRD problem. We make use of quadratic minimization, linear least squares, the
Singular Value Decomposition (SVD) and other tools from convex optimization [3, 11].

Definition 2.2.1. The symmetric matrix A ∈ Rn×n is positive definite if xTAx > 0 for
all x ∈ Rn×1\{0}. We say that A is positive semidefinite if xTAx ≥ 0.

Positive definite matrices have a close relationship with the local convexity of functions
from C2[R] around a local minimum.

Definition 2.2.2. Let X ⊆ R[t][∂;′ ] × R(t)[∂;′ ]2 ⊆ Rn×1, where × denotes the Cartesian
product, and R(t)[∂;′ ]× R(t)[∂;′ ] = R(t)[∂;′ ]2. Precisely, we treat R[t][∂;′ ]× R(t)[∂;′ ]2 as

14



a subset of Euclidean space. The set X is convex if for all x1, x2 ∈ X and a ∈ [0, 1] we
have that

ax1 + (1− a)x2 ∈ X.

A function Φ : X → R is convex if for all x1, x2 ∈ X and a ∈ [0, 1] that

Φ(ax1 + (1− a)x2) ≤ aΦ(x1) + (1− a)Φ(x2).

We say that Φ is strictly convex if the above inequality is strict.

We will treat X as a closed convex subset of R[t][∂;′ ] × R(t)[∂;′ ]2 for the rest of this
section. We note that open balls, often referred to as set neighborhoods in the literature,
are convex sets. For x ∈ X, if the function Φ(x) is convex, then Φ(x) has a minimum value
over X. That is, there exists (not necessarily unique) x∗ ∈ X such that Φ(x∗) ≤ Φ(x) for
all x ∈ X. If Φ(x) is strictly convex, then x∗ is a unique minimum.

Definition 2.2.3. Let Φ : X → R belong to C2[R]. For x ∈ X, the gradient of Φ is a
column vector, written as ∇Φ(x)i = (∂Φ/∂xi)(x), while the Hessian matrix of Φ is the sym-
metric matrix of second-order partial derivatives defined by ∇2Φ(x)ij = (∂2Φ/∂xi∂xj)(x).

Later we will observe that the local properties of the Hessian matrix are very important
around minima. For x ∈ X, we have that Φ(x) is strictly convex if and only if ∇2Φ(x) is
positive definite [3, Chapter 3.1]. This second-order condition ensures that Φ will have a
unique (local) minimum over X.

2.2.1 The Singular Value Decomposition (SVD)

The SVD is a rank revealing factorization, that when implemented with the QR decompo-
sition is robust and numerically stable [11]. The SVD is used extensively to solve approx-
imate polynomial GCD problems [5, 14, 16, 26]. We use the SVD to compute solutions to
linear least squares problems and to infer the numerical rank of real matrices.

Theorem 2.2.4 (The SVD [11, Theorem 2.4.1]). If A ∈ Rm×n, then there exist orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n such that UTAV = Σ = diag(σ1, . . . , σp) ∈ Rm×n,
p = min{m,n} where σ1, . . . , σp ≥ 0.

Corollary 2.2.5 ( [11, Corollary 2.4.3]). If A ∈ Rm×n then

‖A‖2 = σ1 and ‖A‖F =
√
σ2

1 + · · ·+ σ2
p.
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The relationship with the SVD and the Frobenius norm proves useful when we analyze
perturbations in the inflated differential sylvester matrix.

Furthermore, the SVD tends to a natural pseudo-inverse that can be used for solving
least squares problems. We can write A+ = V Σ+UT where Σ+ is a pseudo-inverse of Σ
given by Σ+ = diag(σ−1

1 , . . . , σ−1
p , 0, . . . , 0)T . We implicitly make use of this pseudo-inverse

formulation when solving least squares problems.

2.2.2 Quadratic Minimization

Quadratic minimization is computing the minimum value of a quadratic function, provided
that one exists. Although not all quadratic functions have an extreme value, they do have
one if they are convex. We consider unconstrained quadratic minimization, in the specific
application of least squares.

Definition 2.2.6. A quadratic function Φ(x) with x = (x1, x2, . . . , xn)T ∈ Rn×1 may be
written in general form as

Φ(x) =
1

2
xTAx− xT b+ c

for a symmetric A ∈ Rn×n, b ∈ Rn×1 and c ∈ R.

We are interested in unconstrained quadratic minimization, that is, computing the
minimum value of Φ(x) over all x ∈ X. If A is positive semidefinite, then there is a
minimum. The minimum value is unique if A is positive definite. This is characterized
precisely when Φ is convex and strictly convex respectively [11, Chapter 5]. Note that we
add the factor of 1/2 because A = ∇2Φ, is the Hessian matrix of Φ (the Hessian is constant
for quadratic functions).

In the case when A is positive definite the minimum is given by x = A−1b and in the
event that A is semidefinite the minimum is given by x = A+b. This particular method of
solving the quadratic minimization problem analytically is known as the normal equation
method. In practical applications the normal equations can be ill conditioned, so we
typically use the pseudo-inverse arising from the SVD to compute a solution.

2.2.3 The Method of Linear Least Squares

The method of linear least squares consists of computing a minimum value of the function
Φ(x) = ‖Ax− b‖2

2. This corresponds to the quadratic minimization problem

‖Ax− b‖2
2 = xTATAx− 2bTx+ bT b.

16



This problem always has a solution, since ATA is positive semidefinite. As a consequence,
if A has full rank then the minimization problem has a unique solution. The linear least
squares problem with linear constraints is completely solved. Golub and Van Loan [11]
describe how to solve this problem by means of the SVD, Lagrange multipliers and other
matrix factorization techniques.

2.2.4 Post-Refinement and Newton’s Method

Newton’s method of minimization is a second-order optimization technique that is well
suited for computing local extrema. With a good initial guess the Hessian matrix is locally
positive definite. Newton iteration will converge (usually quadratically) to the unique local
minimum. In the approximate GCRD problem, we consider a quartic objective function
Φ, which is not convex in general.

For any Φ ∈ C2[R] and a point x∗ ∈ X we can write the second-order approximation
about x∗ as

Φ(x) = Φ(x∗) + (x− x∗)T∇Φ(x) + (x− x∗)T
[

1

2
∇2Φ(x∗)

]
(x− x∗) +O(‖x− x∗‖2

2).

Lemma 2.2.7. Let Φ ∈ C2[R] be such that Φ : X → R and x∗ ∈ X.

1. If x∗ is a local minimum of Φ(x) then ∇Φ(x∗) = 0 and ∇2Φ(x∗) is positive semidef-
inite.

2. If ∇Φ(x∗) = 0 and ∇2Φ(x∗) is positive definite, then x∗ is a local minimum of Φ.

Proof.

1. If x∗ is a local minimum of Φ, then we consider the vector x∗ + tz for t ∈ R and
z ∈ X. The function Φ(x∗+tz) has a local minimum when t = 0, so d

dt
Φ(x∗+tz)|t=0 =

zT∇Φ(x∗) = 0 and d2

dt2
Φ(x∗ + tz)|t=0 = zT [∇2Φ(x∗)] z ≥ 0. Since z is arbitrary, we

must have that ∇Φ(x∗) = 0 and ∇2Φ(x∗) is positive semidefinite.

2. Let A = ∇2Φ(x∗). Then we can write

Φ(x) = Φ(x∗) +
1

2
(x− x∗)TA(x− x∗) +O(‖x− x∗‖2

2).
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Thus for all εX > 0 there exists a δX > 0 such that

‖Φ(x)− Φ(x∗)− 1
2
(x− x∗)TA(x− x∗)‖2

2

‖x− x∗‖2
2

< εX

when 0 < ‖x− x∗‖2 < δX . We can re-write this as

Φ(x)− Φ(x∗) >
1

2
(x− x∗)TA(x− x∗)− εX‖x− x∗‖2

2.

By hypothesis, A is positive definite, so 1
2
(x − x∗)TA(x − x∗) > 0 for all x 6= x∗.

This is a continuous function in the entries of (x− x∗), so on a closed and bounded
(compact) subset of X, it will obtain a minimum value, α > 0. For any t ∈ R we
have

1

2

t(x− x∗)T

‖x− x∗‖2

A
t(x− x∗)
‖x− x∗‖2

≥ t2α.

We can choose t = ‖x− x∗‖2 giving us

1

2
(x− x∗)TA(x− x∗) ≥ α‖x− x∗‖2

2,

so our second-order approximation gives us Φ(x)−Φ(x∗) > (α− εX)‖x− x∗‖2
2 when

0 < ‖x − x∗‖2 < δX . Since εX is arbitrary, we consider εX ∈ (0, α), so there exists
δX > 0 such that Φ(x) > Φ(x∗) for 0 < ‖x− x∗‖2 < δX . It follows that Φ has a local
minimum at x∗.

An important observation is that if another matrix is sufficiently close to a positive
definite matrix, then it too will be positive definite. In the case of Hessians, if the Hessian
is positive definite at a point, then it will be positive definite in some neighborhood around
it. If the Hessian matrix is (locally) strictly convex, then we can use descent methods to
compute the (local) minimum.

Definition 2.2.8. A descent method produces a sequence of points

{x0, x1, . . . , xi, . . . |xi ∈ X}
satisfying

Φ(xi) > Φ(xi+1) for all i,

where x0 is a special starting point. If Φ(xi) = Φ(xi+1), then xi is a stationary point and
∇Φ(xi) = 0.

Typically we will have an infinite sequence when Φ(x) is strictly convex in a neighbor-
hood around x0. This sequence will converge to a unique limit point that is the minimum,
as the only stationary point in this neighborhood is the (local) minimum. We note that
while all minima are stationary points, not all stationary points are minima.
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Newton’s Method and Gauss-Newton Iteration

The Newton step of Φ with respect to x is defined as

xNewton = −[∇2Φ(x)]−1∇Φ(x).

When ∇2Φ(x) is (locally) positive definite, this gives us

∇Φ(x)TxNewton = −∇Φ(x)T [∇2Φ(x)]−1∇Φ(x) < 0,

except when ∇Φ(x) = 0. The implication is the Newton step is a descent direction (except
when we start at a minimum). Newton’s method is then characterized by successively
computing xi from

xi+1 = xi − [∇2Φ(xi)]−1∇Φ(xi) until ‖Φ(xi)− Φ(xi+1)‖ is sufficiently small.

Under the assumption that Φ(x0) is strictly convex and that ∇2Φ(x0) is (locally) Lips-
chitz continuous (there exists L > 0 such that ‖∇2Φ(x)−∇2Φ(x∗)‖2 ≤ L‖x−x∗‖2), it can
be shown that Newton’s method converges quadratically [3, Chapter 9.5]. In our instance
we are minimizing a quartic polynomial, so all of these conditions are satisfied around a
minimum. Directly inverting the Hessian matrix can be unstable and expensive. Instead,
we compute xi+1 implicitly by solving an equivalent linear system,[

∇2Φ(xi)
]
xi+1 =

[
∇2Φ(xi)

]
xi −∇Φ(xi).

Definition 2.2.9. The residual r = r(x) ∈ C2[Rn] for x ∈ X is a vector valued function
that satisfies ‖r(x)‖2

2 = Φ(x). We define the Jacobian of r(x) as J = [Jij(x)] = [ ∂ri
∂xj

(x)].

A first-order approximation of r(x) about x∗ is given as

r(x) = r(x∗) + J(x∗)(x− x∗) +O(‖x− x∗‖2
2).

The Jacobian and Hessian are related by the gradient mapping, with ∇Φ : x → ∇Φ(x)
having Jacobian ∇(∇Φ(x∗)) = ∇2Φ(x∗) at x∗. Using this approximation instead of the
Hessian, we obtain the Gauss-Newton iteration.

In Gauss-Newton we replace the Newton step of Φ with respect to x by

xGN = −[JTJ ]−1∇Φ(x),

where ∇2Φ(x) ≈ 2JTJ when the residuals are small. The matrix JTJ is always positive
semidefinite (even if ∇2Φ is indefinite). In the approximate GCRD problem, J has full
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rank, so JTJ is always positive definite. The convergence of Gauss-Newton can approach
quadratic in some instances. However, it is typically linear, as we are using a first-order
approximation.

Gauss-Newton iteration is not always guaranteed to converge. When applicable, it has
advantages over Newton’s method. The matrix JTJ can be computed without computing
any second-order derivatives. In some situations this is preferable, especially when using
computationally expensive numerical approximations for second-order derivatives. When
the matrix JTJ is positive definite, we can compute the next step in the iteration in a
fast and stable manner using the Cholesky decomposition [11, Chapter 4.2]. Furthermore,
when JTJ is positive definite and ∇2Φ is semidefinite, we are still able to continue the
iteration, as the next value in the iteration is unique (and matrix inversion is still well
defined).

2.3 Approximate Polynomial Arithmetic

This section provides a brief overview on arithmetic for real polynomials with floating point
coefficients known only to machine precision, i.e. approximate polynomials. Addition and
subtraction are straightforward so we draw our attention to multiplication, division and
computing approximate polynomial GCDs. The standard techniques for multiplication
and division involve Fourier transforms. In the context of approximate polynomial GCD
it is advantageous to linearize the corresponding system instead. Approximate polynomial
GCD is a very rich subject with many different approaches. We restrict our discussion on
polynomial approximate GCD to widely used techniques and important results. We will
assume that the polynomials a, b ∈ R[t] satisfy deg a = m, deg b = n and m ≥ n unless
otherwise stated throughout the rest of this section.

Multiplication

Multiplication of two usual polynomials may be performed efficiently using a Fast Fourier
Transform (FFT) and Inverse FFT (IFFT). We assume that multiplication of two polyno-
mials may be computed in O(m logm) floating point operations if the degrees of the input
are bounded by m. FFT based multiplication becomes less useful when we want to create
a system of undetermined coefficients for an optimization problem. Instead we consider
convolution matrices and vector-matrix product approaches.
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Definition 2.3.1. The kth convolution matrix of a is defined as

Ck(a) =



a0

a1
. . .

...
. . . a0

am a1

. . .
...
am


∈ R(m+k+1)×(k+1).

We may compute abT = Cn(a)bT = Cm(b)aT using O(m2) floating point operations.
Despite being relatively slow, this formulation of multiplication may be reversed to perform
division numerically.

Division Without Remainder

Performing long division of two polynomials with floating point coefficients is known to
be unstable [27]. Instead we introduce interpolation and least squares based division algo-
rithms.

Division without remainder between a and b may be performed quickly using the FFT
and IFFT in O(m logm) floating point operations if special care is taken to prevent division
by zero. Performing division numerically, we can expect very small remainders, as the
division is usually not exact due to machine error. These remainders will perturb the
coefficients of the resulting quotient. Typically FFT based division is used to produce an
initial guess for an optimization procedure, such as Newton’s method.

Linearizing multiplication through convolution matrices allows us to perform this pro-
cedure in reverse. Division is equivalent to solving a linear system over the real numbers.
Input is typically known to machine precision, so solving a least squares problem is prefer-
able. Given ab and a we can write b ≈ ab

a
by computing a linear least squares solution to

abT = Cn(a)bT .

2.3.1 Approximate Polynomial GCD

Univariate polynomial approximate GCD is deeply connected to the approximate GCRD
problem, as univariate polynomial GCD is a special instance of computing a GCRD. This
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relationship provides many insights towards the approximate GCRD problem. Approxi-
mate polynomial GCD is also an important tool in obtaining primitive differential polyno-
mials. Polynomial GCD computations with floating point arithmetic are no longer straight
forward, as the Euclidean algorithm is numerically unstable. The standard techniques in-
volve linearizing a polynomial Diophantine equation in terms of the Bézout coefficients.
Numerical linear algebra techniques and optimization tools are used to solve this system.

Definition 2.3.2. The (Exact) Greatest Common Divisor (GCD) of a, b ∈ R[t] is the
polynomial p ∈ R[t] of largest degree in t that divides both a and b. We write gcd(a, b) = p.
When deg p = 0, we say that a and b are relatively prime.

In general the GCD is not unique; it differs by a unit over R. We will adopt the
convention that the GCD is normalized so that it is unique. Algebraically we make p
monic (lcoeff p = 1) and numerically we require that p has unit norm, i.e. ‖p‖ = 1.

The Euclidean algorithm for univariate polynomials is summarized as follows [25, Chap-
ter 3]. Given a and b we can write a = bq + r where deg r < deg b. Using this relationship
recursively, one may compute a GCD by computing the quotient q and the remainder r
successively on each step. The first attempts at approximate polynomial GCD consisted
of using the Euclidean algorithm in a clever manner [23], however the underlying divisions
made this algorithm unstable.

Almost all polynomials over R[t] are relatively prime, i.e. gcd(a, b) = 1 for almost all a
and b. Furthermore, if two polynomials have an exact GCD, then introducing arbitrarily
small perturbations to their coefficients will usually make them relatively prime. Instead
we look at a slightly different problem; find a nearby a pair of polynomials with an exact
GCD, or what the literature refers to as an ε-GCD [5,7, 16,23].

Definition 2.3.3. An ε-GCD of a, b is p ∈ R[t] if p satisfies the following conditions:

1. p is an exact GCD of a+ ∆a and b+ ∆b for structured perturbations ∆a,∆b ∈ R[t],

2. ‖a‖ = ‖b‖ = 1 and ‖∆a‖+ ‖∆b‖ < ε,

3. deg p is the largest possible for ε.

When this definition is generalized to multivariate polynomials, the last condition is
typically omitted or relaxed as certification becomes difficult. Most algorithms receive a
and b as input, and output nearby polynomials a + ∆a and b + ∆b that have an exact
GCD, p. The distance ‖∆a‖ + ‖∆b‖ is an output of the algorithm, i.e. ε isn’t specified
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in advance. ε-GCDs are not in general unique. Multiple ε-GCD’s are not typically scalar
multiples of each other either. To guarantee existence of an ε-GCD whose ε is minimal,
it is sufficient to verify that lcoeff p does not vanish and ‖p‖ is bounded [15]. We restrict
ourselves to ε-GCDs whose coefficients and underlying perturbations are real; there are
often nearer ε-GCDs with complex coefficients [14,16].

Definition 2.3.4. The Sylvester matrix [25, Chapter 6] of a, b ∈ R[t] is given as

Syl = Syl(a, b) =



a0

a1 a0
...

. . . . . .

am
. . . a0

am a1

. . .
...
am︸ ︷︷ ︸

n

b0

b1 b0
...

. . . . . .

bn
. . . b0

bn b1

. . .
...
bn


︸ ︷︷ ︸

m

∈ R(m+n)×(m+n).

Many authors will also define the Sylvester matrix described above to be the transpose,
as we do with our notion of differential Sylvester matrix. Intuitively the Sylvester matrix
linearizes a system of Diophantine equations. Accordingly, the Sylvester matrix plays an
important role in determining the existence and computation of a polynomial GCD.

Theorem 2.3.5 ([25]). The polynomials a and b are co-prime if and only if their Sylvester
matrix, Syl has full rank. If gcd(a, b) is non-trivial then rank Syl = deg gcd(a, b).

Theorem 2.3.6 ( [8, 18]). If the Sylvester matrix is triangularized to row echelon form
using only row operations, then the last nonzero row gives the coefficients of the polynomial
GCD over R.

In other words, the Sylvester matrix encodes enough information to obtain a GCD via
nullspace basis computation. Numerically this is exploited through the SVD [5] and other
linear algebra techniques, such as the QR decomposition [6].

Corless, Gianni, Trager and Watt [5] use the SVD on the Sylvester matrix to infer the
degree of possible ε-GCDs. They discuss how to compute an ε-GCD using techniques from
numerical linear algebra and optimization. We adapt their rank computation technique to
the instance of differential polynomials.

Karmakar and Lakshman [16, 17] improve upon Corless et al. [5] by using the SVD to
determine the degree of a likely ε-GCD and formulate the minimum perturbations of a and
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b as a positive definite quadratic minimization problem. The general idea is to express the
possible ε-GCD as a common root of a + ∆a and b + ∆b. In the real degree 1 case when
p = t− p0, we can write

a+ ∆a = (t− p0)
∑

0≤i≤m−1

a∗i t
i and b+ ∆b = (t− p0)

∑
0≤i≤n−1

b∗i t
i,

for p0, a
∗
i , b
∗
i ∈ R. The objective function ‖∆a‖2

2 + ‖∆b‖2
2 is a positive definite quadratic

function in the coefficients of a∗i and b∗i . The minimum value of the quadratic form is a
rational function in the coefficients of p. If the objective function has a minimum value,
then it occurs when this rational function is minimized. Karmakar and Lakshman handle
the cases of real and complex perturbations.

Emiris, Galligo and Lombardi [7] provide certification results that improve upon the
SVD technique of Corless et. al. [6]. They certify the degree of an ε-GCD through a gap
theorem on the singular values of subresultants; however there is an exponential factor
present in the gap that can limit the direct usefulness of the theorem. We state their
theorem below without proof.

Let ‖a‖ = ‖b‖ = 1 and let m ≤ n. Let τ0, τ1, . . . , τm be the increasing sequence of
minimal singular values of the subresultant mappings Sylr of a and b for r ≥ 1.

Theorem 2.3.7 ([7, Theorem 6]). Suppose that τr−1 ≤ ε ≤ τr/
√

2 for ε ≤ 1, 1 ≤ r ≤ m ≤
n and

τr > τr−122n+m−2r.

If, moreover, (
1 +

2 + τ 2
r

τr − τr−1

)n+1(
1 +

22n+m−2r

τr − τr−122n+m−2r

)
τr−1 ≤ ε,

then the degree of the ε-GCD of a and b is equal to r.

Corless, Watt and Zhi [6] developed a method of computing an ε-GCD through QR
factorization that handles the case when common roots are near to or outside the unit circle.
The algorithm, known as QRGCD has been included in the Symbolic-Numeric Algorithms
for Polynomials (SNAP) package included in Maple. We make use of the QRGCD algorithm
(among others) in our implementation of approximate GCRD, as it is better than the other
GCD tools present in the SNAP package.

Zeng [26] uses QR decomposition and post-refinement Gauss-Newton iteration to com-
pute univariate GCDs. This result is generalized to multivariate polynomials by Zeng
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and Dayton [28]. We adapt their optimization technique to the instance of differential
polynomials.

Conversely, we now consider the notion of relative primality of approximate polynomi-
als. One may naively consider the conditioning of the Sylvester matrix to infer relative
primality. Beckerman and Labahn [1] consider a structured approach to relative primality
by looking at the first column of the inverse of the Sylvester matrix.

Definition 2.3.8 ([1]). We define

ε(a, b) = inf{‖a− ã, b− b̃‖1 : (ã, b̃) have a common root, degt ã ≤ m, degt b̃ ≤ n}.

Under this definition we say that a and b are ε− prime.

Lemma 2.3.9 ([1, Lemma 2.1]). For any two polynomials a, b ∈ R[t] we have

ε(a, b) >
1

‖Syl(a, b)‖1

,

where ‖·‖1 is the corresponding matrix 1-norm.

The polynomials a and b, which are relatively prime if and only if there exist u, v ∈ R[t]
with deg u < n and deg v < m such that au+ bv = 1. In matrix form this can be expressed

as Syl(a, b) ·
(
v
u

)
= (1, 0, . . . , 0)T , which gives us two polynomials are relatively prime if

and only if we can determine the first column of the inverse of their corresponding Sylvester
matrix [1].

Lemma 2.3.10 ( [1, Lemma 2.4]). Let f(z) = f−1z
−1 + · · · + f1−m−nz

1−m−n = u(z)
a(z)

+

O(z−m−n)z→∞ for z ∈ C. Then Syl(a, b) is invertible with inverse given by



v0 0 · · · · · · · · · 0 b0 0 · · · · · · · · · 0
...

. . . . . .
...

...
. . . . . .

...
vn−1 · · · v0 0 · · · 0 bn−1 · · · b0 0 · · · 0
u0 0 · · · · · · · · · 0 −a0 0 · · · · · · · · · 0
...

. . . . . .
...

...
. . . . . .

...
um−1 · · · u0 0 · · · 0 −am−1 · · · −a0 0 · · · 0





1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1
0 f−1 · · · f1−m−n
...

. . . . . .
...

0 · · · 0 f−1


.
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Theorem 2.3.11 ([1, Theorem 3.1]). Let u, v be polynomials of degrees at most m−1 and
n− 1 solving au+ bv = 1. Then∥∥∥∥(vu

)∥∥∥∥
1

≤
∥∥Syl(a, b)−1

∥∥
1
≤
∥∥∥∥(vu

)∥∥∥∥
1

+ 2 ‖f‖1 · ‖(a, b)‖1 .

Corollary 2.3.12 ([1, Corollary 3.2]). Let u, v be polynomials of degrees at most m − 1
and n−1 solving au+ bv = 1 and · be the reverse operator for polynomials over R[t]. Then

κ =

∥∥∥∥(v v
u u

)∥∥∥∥
1

= max

{∥∥∥∥(vu
)∥∥∥∥

1

∥∥∥∥(vu
)∥∥∥∥

1

}
,

we have that
κ ≤

∥∥Syl(a, b)−1
∥∥

1
≤ κ+ 2 ‖f‖1 ‖(a, b)‖1 ,

where ‖f‖1 = ‖v · u− u · v‖1. Furthermore, ‖f‖1 ≤ κ2.

Corollary 2.3.13 ([1, Corollary 4.4]). ε(a, b) ≥ κ−1.

For appropriately scaled a and b, numerical experiments indicate that ‖Syl(a, b)−1‖1 is
proportional to κ and not κ2 [1]. In the context of differential operators, the results of
Beckerman and Labahn can be used for a fast test to determine if an answer is likely to
be primitive.
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Chapter 3

The Approximate GCRD Problem

This chapter formalizes the approximate GCRD problem. We describe our methodology
and prove important results. First we standardize some notation and assumptions, with
the assumptions holding unless otherwise stated. The polynomials f, g, h ∈ R[t][∂;′ ] will
be primitive and have norm 1. The co-factors f ∗, g∗ ∈ R(t)[∂;′ ] will have rational function
coefficients in lowest terms. Furthermore, we assume the degrees deg∂f = M, degt f ≤
d, deg∂g = N, degt g ≤ d, deg∂h = D, deg∂f

∗ = M −D and deg∂g
∗ = N −D. The matrices

S = S(f, g) ∈ R[t](M+N)×(M+N) will be the differential Sylvester matrix of f and g, and

Ŝ = Ŝ(f, g) ∈ R(M+N)(µ+1)×(M+N)(µ+d+1) will be the inflated differential Sylvester matrix
of f and g, where µ = 2(M +N)d.

Problem. Given f and g such that gcrd(f, g) = 1 we wish to compute f̃ , g̃ ∈ R[t][∂;′ ] such

that gcrd(f̃ , g̃) = h with D > 1 such that:

1. ‖f − f̃‖2 + ‖g − g̃‖2 ≤ ε for a (hopefully small) ε ∈ R≥0 and

2. the degree of h, D, is the largest possible for the computed ε.

The differential polynomial h is said to be an approximate GCRD of f and g if these
conditions are satisfied.

The approximate GCRD problem is a generalization of computing an ε-GCD from
Section 2.3.1. The requirement that the GCRD has maximal degree is difficult to certify
outside the exact setting, however this usually isn’t a problem in our experiments. We prove
that our formulation of the approximate GCRD problem has a solution with a minimal ε
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(opposed to an infimum). Furthermore, if D is fixed, then for a computed pair of nearby
differential polynomials, we are able to certify that ε is reasonably close to the optimal
value through a condition number.

3.1 Approximate Differential Polynomial Arithmetic

This section is an overview of approximate differential polynomial arithmetic. Addition
and subtraction are straightforward, while multiplication and division requires some care
in specifying whether a left or right canonical form is used to represent the coefficients. We
also need to pay special attention on whether multiplications and divisions are performed
on the right or left.

Division requires even more care. Long division for Ore polynomials consists of per-
forming several divisions of many polynomials on each step. Errors and perturbations
from the underlying polynomial divisions accumulate on each step, making this process
unstable.

Using resultant-like matrices, we express multiplication and division without remainder
as a linear algebra problem with rational functions. Using tools from polynomial approxi-
mate GCD, we linearize the corresponding linear algebra problem over R[t] and compute a
primitive solution. When rational functions appear, we formulate a real linear least squares
problem so that our results are in lowest terms.

3.1.1 Multiplication

Definition 3.1.1. The matrix

CRK(h) =


ΨK+D+1(h)

ΨK+D+1(∂h)
...

ΨK+D+1(∂Kh)

 ∈ R[t](K+1)×(K+D+1)

is the Kth right differential convolution matrix of h. We note that the entries of CRK(h)
are written in their right canonical form, where the ∂’s appear to the right (polynomials
appear to the left).
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We analogously define the Kth left differential convolution matrix of h as CLK(h) as

CLK(h) =


ΨK+D+1(h)

ΨK+D+1(h∂)
...

ΨK+D+1(h∂K)

 ∈ R[t](K+1)×(K+D+1),

where elements are written in their left canonical form, where the ∂’s appear to the left
(polynomials appear to the right).

Both right and left differential convolution matrices can be used to perform multipli-
cation. Recall that

f =
∑

0≤i≤M

fi∂
i, f ∗ =

∑
0≤i≤M−D

f ∗i ∂
i and h =

∑
0≤i≤D

hi∂
i

with fi, hi ∈ R[t] and f ∗i ∈ R(t). We can express the product of f ∗ and h as

(f0, f1, . . . , fM) = (f ∗0 , . . . , f
∗
M−D)CRM−D(h).

Similarly, we may write

(f0, f1, . . . , fM)T = CLD(f ∗)(h0, h1, . . . , hD)T .

In keeping with our canonical ordering, we express our results in terms of right differential
convolution matrices. We carefully observe that both the right and left differential convo-
lution matrices described correspond to right multiplication. Left multiplication can be
formulated in a similar manner.

Using differential convolution matrices, we are able to perform multiplication between
two differential polynomials whose degrees in ∂ are bounded by M using O(M2) operations
over R(t). If the degrees of the input in t are bounded above by d, then this corresponds
to roughly O(M2d2) floating point operations using standard techniques.

3.1.2 Division Without Remainder

While multiplication of approximate differential polynomials is straightforward, division is
more difficult. The Euclidean algorithm is unstable so we take a direct approach. In the
exact case, if gcrd(f, g) = h we can write f = f ∗h and g = g∗h. If we know h then we
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would compute f ∗ and g∗ by performing a division. Since h is a right factor of f and g,
the remainder of the division will be zero. In the approximate setting we can expect the
remainder to be negligible, so we choose to ignore it.

Given f and h, we can express f = f ∗h as a linear system. This equation can be
linearized over R(t) by writing

(f0, f1, . . . , fM) = (f ∗0 , . . . , f
∗
M−D)CRM−D(h). (3.1)

This is a linear algebra problem whose solution belongs to R(t)1×(M−D+1) (as f and h are
primitive). Naively attempting to solve this system will yield no solution, as CRM−D(h) is an
(M −D + 1)× (M + 1) matrix; the matrix is not square. Arbitrarily small perturbations
from round off errors will prevent the computation of an exact solution, provided that
one exists. In the event that the factorization is approximate, there is no solution. We
overcome both cases by formulating a linear least squares problem. The idea is that the first
D columns of CRM−D(h) in (3.1) are redundant, so we can ignore them during computations.

Definition 3.1.2. The matrixM(h) ∈ R[t](M−D+1)×(M−D+1) is the sub-matrix of CRM−D(h)
with the first D columns removed.

Lemma 3.1.3. The columns of the matrix M(h) are a triangular basis for the column
space of (3.1).

Proof. We note that
ΨM+1(h)

ΨM+1(∂h)
...

ΨM+1(∂M−Dh)

 =


∗ ∗ . . . ∗
∗ ∗ . . . ∗
...

... . . . ∗
∗ ∗ . . . ∗︸ ︷︷ ︸

D

hD
∗ hD

∗ ∗ . . .

∗ ∗ ∗ hD


︸ ︷︷ ︸

M−D+1

∈ R[t](M−D+1)×(M+1),

so we can write

M(h) =


hD
∗ hD

∗ ∗ . . .

∗ ∗ ∗ hD

 ∈ R[t](M−D+1)×(M−D+1).

By inspection we see that each column is linearly independent and M(h) is triangular.
M(h) is a rank M − D + 1 sub-matrix of CRM−D(h) which has rank M − D + 1. The
columns of M(h) span the columns of CRM−D(h).
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Corollary 3.1.4. hM−D+1
D is a common denominator of the coefficients of f ∗. Precisely,

hM−D+1
D f ∗ ∈ R[t][∂;′ ].

Proof. This follows by computing the Cramer solution of

(fD, fD+1, . . . , fM) = (f ∗0 , f
∗
1 , . . . , f

∗
M−D)M(h),

for the coefficients of f ∗.

The first D columns of CRM−D(h) contain the most derivatives. These entries are typi-
cally the largest magnitude and introduce considerable instability. This is noticeable when
degt h > M −D and M −D is large. Furthermore, M(h) has full rank so we can always
solve for f ∗ using linear algebra over R(t). Round-off errors and other noise in the co-
efficients no longer prevent computation of a solution (note that we have a least squares
solution instead).

In the special case when h is monic, i.e. hD = 1, naive linear algebra over R(t) will
yield the desired least squares solution. There are no fractions by Corollary 3.1.4, so the
output is in lowest terms.

In general h is not monic, so we formulate a real linear least squares problem. First
we compute a solution naively using backwards substitution over R(t), using M(h). Next
we use approximate polynomial GCD to infer the degrees of numerators and denominators
of the coefficients of f ∗. This information is used to establish an undetermined coefficient
representation of f ∗0 , . . . , f

∗
M−D that are in lowest terms. Finally, we solve for the coefficients

of f ∗ with real linear least squares.

The linear least squares formulation of the problem is necessary. Approximate poly-
nomial GCD operations do not obtain an exact divisor. Dividing the coefficients of f ∗ by
the approximate polynomial GCDs will perturb the coefficients of f ∗. If a least squares
division is used, this is still highly unstable as the approximate polynomial GCDs obtained
can be poorly conditioned. We note that the same solution obtained by linear least squares
can also be obtained using weighted total least squares subject to quadratic constraints
(although this isn’t asymptotically faster). The following example illustrates why a least
squares division is preferred over computing approximate GCDs.

Example 3.1.5. Consider f ∗ = 3t∂ + (2t− 1
7
) and h = (2t− 1)∂2 + 3t∂ + (t− 1

2
).

If we compute f = f ∗h numerically (to 10 digits), we obtain

f =
(
6.0 t2 − 3.0 t

)
∂3 +

(
13.0 t2 + 3.714285714 t+ .1428571429

)
∂2

+
(
9.0 t2 + 7.071428571 t

)
∂ +

(
2.0 t2 + 1.857142857 t+ .07142857145

)
.
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Performing division using M(h) yields

f ∗naive =
t (6.0 t− 3.0) ∂

2.0 t− 1.0
+

8.0 t3 − 8.571428572 t2 + 2.571428572 t− .1428571429

(2.0 t− 1.0)2 ,

If we use approximate GCD to make f ∗naive in lowest terms, we have the error∥∥∥∥ f ∗naive
lcoefft lcoeff∂ f ∗naive

− f ∗

lcoefft lcoeff∂ f ∗

∥∥∥∥
2

≈ .0281.

Using linear least squares, we compute

f ∗LS = .612142080t∂ + (.4080947208t− .0291496228).

Note that f and h are normalized when computing f ∗LS, i.e. ‖f‖ = ‖h‖ = 1. The error
from the least squares division is∥∥∥∥ f ∗LS

lcoefft lcoeff∂ f ∗LS
− f ∗

lcoefft lcoeff∂ f ∗

∥∥∥∥
2

≈ 5.0179× 10−10,

in other words, least squares computes f ∗ to our specified precision.

This example illustrates how small perturbations from round-off errors can prevent com-
putation of the desired solution. Furthermore, we observe the effect of the perturbations
from approximate GCD on the coefficients, and why it is necessary to perform a least
squares division over R(t)[∂;′ ].

3.1.3 Numerically Computing an Exact GCRD

Computing an exact GCRD with exact coefficients is a well studied problem. Fast modular
algorithms are available [20] based on the theory of subresultants. Tools based on mod-
ular algorithms are unstable, so we work with a linearization of the differential Sylvester
matrix. We describe how to obtain an exact GCRD numerically (or an approximation to
machine error) as a real linear least squares problem. We accomplish this by linearizing a
Diophantine equation corresponding to the Bézout coefficients.

Let u, v ∈ R[t][∂;′ ] and w ∈ R[t]1×(M+N) be from Lemma 2.1.16. Recall that S = S(f, g)
is the differential Sylvester matrix of f and g.

If gcrd(f, g) = h then we can write uf+vg = h if and only if wS = (h0, . . . , hD, 0, . . . , 0).
We know that degtw ≤ µ and degt h ≤ µ+ d, so we have an upper bound on the number
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of variables needed for the linearization. The only information we are missing is D, the
degree of the GCRD. Using the SVD [5] we can infer the rank of Ŝ = Ŝ(f, g) and scale it
by a factor of µ+ d+ 1, according to Lemma 2.1.20.

Now that D is known, in exact arithmetic we would solve for w ∈ R(t)1×(M+N) from

wS(f, g) = (∗, ∗, . . . , 1︸ ︷︷ ︸
D+1

, 0, . . . , 0), (3.2)

and clear fractions. Using exact polynomial GCD we can make this answer primitive.
Numerically this is no longer straightforward. The differential Sylvester matrix can be
ill-conditioned for large degree inputs. Furthermore, using approximate polynomial GCD
to make the answer primitive will perturb the coefficients, so this isn’t a good idea either.

Observe that (3.2) has an exact solution, so the least squares problem

min
w,h
‖wS − (h0, h1, . . . , hD, 0, . . . , 0)‖2 subject to lcoefft hD = 1

will only be minimized at an exact solution. In other words, a linear least squares solution
is also an exact solution (to machine precision). Now the problem is to determine which
solution to compute.

An upper bound on the degree in t of h is µ+ d, so we are guaranteed a solution if we
use degt lcoeff∂ h = µ + d. This solution is most likely an associate, that is not primitive.
We will make this answer primitive by using tools from approximate polynomial GCD [14].
Using a generalized Sylvester matrix of many polynomials and the SVD [14], we can infer
the degree of the content of h. Now that the degree in t of the leading coefficient of h is
known, we can formulate a linear least squares problem with a primitive solution.

Another option is to perform a binary search on degt lcoeff∂ h [12] until a primitive
solution is computed. The constraint that lcoefft lcoeff∂ h = 1 can be changed to ‖h‖2

2 =
1. However this requires a total linear least squares solution with weighting subject to
quadratic constraints. The weighting is necessary for some instances of the approximate
GCRD problem, as the solution with the least norm is not necessarily primitive according
to some approximate GCD algorithms or notions of relative primality [1]. Furthermore,
this solution can have serious problems if lcoefft lcoeff∂ h vanishes or is very small.

3.2 Approximate GCRD via Unstructured Least Squares

Our first approach to the approximate GCRD problem is to compute the nearest (with
respect to ‖ · ‖F ) singular unstructured matrix to the inflated differential Sylvester matrix
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via the SVD. Using the SVD we can find the matrix ∆Ŝ of minimal 2-norm such that
Ŝ + ∆Ŝ has a prescribed rank. First, we compute the SVD of Ŝ as

Ŝ = PΣQ,

where
P ∈ R(M+N)(µ+1)×(M+N)(µ+1), and Q ∈ R(M+N)(µ+d+1)×(M+N)(µ+d+1)

are orthogonal and

Σ = diag(σ1, . . . , σ(M+N)(µ+1)) ∈ R(M+N)(µ+1)×(M+N)(µ+d+1),

satisfies σ1 ≥ σ2 . . . ≥ σ ≥ σ(M+N)(µ+1). Note that Σ is not square (it has more columns
than rows), and we simply pad it with zeros to obtain the desired shape.

Now, by Lemma 2.1.20, we want to find a nearby matrix whose left nullspace has
reduced dimension by multiples of (µ+ d+ 1). This matrix is

P ΣQ = Ŝ + ∆Ŝ,

where

Σ = diag(σ1, σ2, . . . , σ(M+N−%)(µ+d+1), 0, . . . , 0)

∈ R(M+N)(µ+1)×(M+N)(µ+d+1),

and % = dim null`(Ŝ+∆Ŝ)
µ+d+1

.

Then Ŝ will be nearby the singular matrix Ŝ + ∆Ŝ of prescribed rank. Of course,
Ŝ + ∆Ŝ is probably an unstructured matrix, and in particular, not an inflated differential
Sylvester matrix.

Lemma 3.2.1. The matrix Ŝ + ∆Ŝ = PΣQ of rank (M +N − %)(µ+ d+ 1) is nearby Ŝ.
In particular if σ(M+N−%)(µ+d+1)+1 < ε for some ε > 0 then

‖PΣQ− Ŝ‖2
F ≤ ε2%(µ+ d+ 1).

Proof. First we note that ‖Ŝ−PΣQ‖2
F = ‖Σ−Σ‖2

F [11, Corollary 2.4.3], because PΣQ−Ŝ =
P (Σ− Σ)Q, whose singular values are easily computed by inspection. It follows that

‖Σ− Σ‖2
F =

(µ+1)(M+N)∑
i=(M+N−%)(µ+d+1)+1

σ2
i

≤ ε2 [(µ+ 1)(M +N)− (M +N − %)(µ+ d+ 1)]

≤ ε2%(µ+ d+ 1).
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Next we show that in general, a matrix of the desired rank deficiency and inflated
differential structure exists within a relatively small radius of Ŝ.

Lemma 3.2.2. Suppose there are f̃ , g̃ ∈ R[t][∂;′ ], with ‖f̃ − f‖ ≤ ε and ‖g̃− g‖ ≤ ε, such

that deg∂gcrd(f̃ , g̃) = % ≥ 1. Let ∆f = f − f̃ and ∆g = g − g̃. The differential Sylvester
matrix S(∆f,∆g) ∈ R[t][∂;′ ](M+N)×(M+N) satisfies

‖S(∆f,∆g)‖2
F < (d2N + d2M)ε2

and
‖Ŝ(∆f,∆g)‖2

F < (µ+ 1)(d2N + d2M)ε2.

Proof. The first inequality follows by Lemma 2.1.23. The second inequality follows from
Lemma 2.1.24.

Moreover, dim null`(Ŝ+ Ŝ(∆f,∆g)) = %(µ+ d+ 1). Thus, for sufficiently small ε there

exists a perturbation ∆f,∆g such that ‖Ŝ(∆f,∆g)‖ is small (at least assuming small

M,N) and Ŝ + Ŝ(∆f,∆g) has appropriate rank and structure.

3.3 Theory of Approximate GCRD via Optimization

The method of Section 3.2 is not ideal, but it does provide a suitable initial guess for an
optimization problem. We describe how to formulate an objective function Φ, that when
minimized corresponds to a solution to the approximate GCRD problem. Given f and g
such that gcrd(f, g) = h we can write

f = f ∗h,

g = g∗h.

Recall that f ∗ and g∗ are called the left co-factors of f and g respectively. The co-factors
typically have rational function coefficients. Later we will find it useful to clear fractions
and work with a primitive associate.

We define the objective function Φ : R[t][∂;′ ]× R(t)[∂;′ ]2 → R as

Φ(h, f ∗, g∗) = ‖f − f ∗h‖2
2 + ‖g − g∗h‖2

2.

In keeping up with our notation from earlier, we observe that f̃ = f ∗h and g̃ = g∗h in
the context of the objective function Φ, as f and g will typically be relatively prime. To
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compute guesses for the co-factors given h, we will perform a least squares division using
the method of Section 3.1.2. We only require an initial guess for f ∗ and g∗ to minimize Φ,
so this factorization doesn’t need to be exact, in the event that gcrd(f, g) = h.

We show that Φ has an attainable global minimum under appropriate assumptions.
More precisely, there exist non trivial f̃ and g̃ such that

‖f − f̃‖2
2 + ‖g − g̃‖2

2

is minimized. Furthermore, we will show that the approximate GCRD problem is locally
well-posed.

3.3.1 Existence of Solutions to the Approximate GCRD Problem

Lemma 3.3.1. Let f, h ∈ R[t][∂;′ ] with monic leading coefficients, but not necessarily
primitive such that f = f ∗h for f ∗ ∈ R[t][∂;′ ] with deg∂f = M and deg∂h = D. Then
‖f ∗‖ is bounded above.

Proof. It follows that f ∗ is bounded by the computing the Cramer solution to

(fD, fD+1, . . . , fM) = (f ∗0 , f
∗
1 , . . . , f

∗
M−D)M(h).

As an observation, we relax the assumption that f is primitive in order to guarantee
that f ∗ ∈ R[t][∂;′ ]. This can be taken without loss of generality as the quantity ‖ cont(f)‖2

2

is bounded above and away from zero (as its leading coefficient is monic). Thus we may
divide by it without affecting the quality of the results, as ‖f − f ∗h‖ is still well defined.

Theorem 3.3.2. Suppose that Φ is a continuous real function on a compact metric space
X. Then there exist points p and q in X such that

Φ(p) ≤ Φ(x) ≤ Φ(q),

for all x ∈ X. Precisely, Φ attains its minimum and maximum values at p and q respec-
tively.

Proof. See Theorem 4.16 from Rudin [22] for a proof.
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We state a general version of the theorem where a logic predicate Ξ can be chosen
to impose additional constraints on the problem. We prove a particular instance of the
theorem that interests us, in a less general setting. For the rest of this section let

φ : R[t][∂;′ ]2 → R(M+N+2)(d+1)

be the combined coefficient vector function, i.e. for arbitrary f, g ∈ R[t][∂;′ ] we write
φ(f, g) = (f ,g), where f and g are padded with zeros to have the desired dimensions.

Theorem 3.3.3 (Existence of Global Minima [15]). Let f, g,∈ R[t][∂;′ ]\{0}, let d =
max{degt f, degt g}, deg∂f = M , deg∂g = N and D ≤ min{M,N}. Furthermore, let
Ξ : R(M+N+2)(d+1) → {true, false} be a predicate on φ(f, g). We assume that the preimage
Ξ−1(true) is a topologically closed set in R(M+N+2)(d+1) with respect to the Euclidean norm.
For a given Ω ∈ R>0 we define the set of possible solutions by

FΩ =



(f̃ , g̃) ∈ R[t][∂;′ ]2 such that deg∂ f̃ = M,
deg∂ g̃ = N,

deg∂h̃ ≥ D,

h̃ = gcrd(f̃ , g̃),

‖h̃‖ ≤ Ω,

lcoefft(lcoeff∂ h̃) = 1,

and Ξ(φ(f̃ , g̃)) = true.


Suppose that FΩ 6= ∅. Then the minimization problem

min
(f̃ ,g̃)∈FΩ

‖f − f̃‖2
2 + ‖g − g̃‖2

2

has an attainable global minimum.

For the less general version of the theorem, given arbitrary f, g ∈ R[t][∂;′ ] we define

S = S(f, g) =
{
φ(f̃ , g̃) | f̃ , g̃ ∈ R[t][∂;′ ] such that δ(f̃) ≤ δ(f) and δ(g̃) ≤ δ(g)

}
.

We observe that S is a closed subset of R(M+N+2)(d+1), where deg∂f = M , deg∂g = N and

d = max{degt f, degt g}. The set S corresponds to the combined coefficient vectors of f̃
and g̃ that have the same degree structure as f and g.
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Theorem 3.3.4. Let f, g,∈ R[t][∂;′ ]\{0}, let d = max{degt f, degt g}, deg∂f = M ,
deg∂g = N and D ≤ min{M,N}. For a given Ω ∈ R>0 we define the set of possible
solutions by

FΩ =



(f̃ , g̃) ∈ R[t][∂;′ ]× R[t][∂;′ ] such that deg∂ f̃ = M,
deg∂ g̃ = N,

φ(f̃ , g̃) ∈ S,
deg∂h̃ ≥ D,

h̃ = gcrd(f̃ , g̃),

‖h̃‖ ≤ Ω,

and lcoefft(lcoeff∂(h̃)) = 1.


Suppose that FΩ 6= ∅. Then the minimization problem

min
(f̃ ,g̃)∈FΩ

‖f − f̃‖2
2 + ‖g − g̃‖2

2 (3.3)

has an attainable global minimum.

Proof. Without loss of generality, we assume that M ≤ N . Then we iterate the minimiza-
tion over all ` ∈ Z≥0 such that D ≤ ` ≤M and coefficients ρ in R[t]`. Let H`,ρ denote the
set of all differential polynomials over R[t][∂;′ ] of degree ` with coefficients ρ. We optimize
over the continuous real objective function

Φ(h, f ∗, g∗) = ‖f − f ∗h‖2
2 + ‖g − g∗h‖2

2,

for h ∈ H`,ρ, deg∂f
∗ ≤ M − D and deg∂g

∗ ≤ N − D. We fix the leading coefficient of h
with respect to ∂ to be monic, that is lcoefft lcoeff∂ h = 1.

Since the leading coefficient of h is monic, we can write G = gcrd(f ∗h, g∗h) with
deg∂G ≥ D. Since G is a multiple of h, we normalize G so that lcoefft lcoeff∂ G = 1, i.e.
the leading coefficient of G is also monic. The restriction on h that the leading coefficient of
h is monic enforces that deg∂G ≥ D. Furthermore, we restrict the domain of our function
Φ to those h, f ∗ and g∗ for which (f ∗h, g∗h) ∈ FΩ. If there is no such common factor h and
co-factors f ∗ and g∗, then this pair of ` and ρ does not occur in the minimization (3.3).
By assumption we have that FΩ 6= ∅, so there must be at least one possible case. We note
that if (0, 0) ∈ FΩ, then f ∗ = g∗ = 0.

Now suppose that for the given ` and ρ, there are h̃ ∈ H`,ρ and f̃ ∗, g̃∗ satisfying

deg∂ f̃
∗ ≤ M − ` and deg∂ g̃

∗ ≤ N − ` such that (f̃ ∗h̃, g̃∗h̃) ∈ FΩ. We shall prove that
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the function Φ has a value on a closed and bounded set (i.e., compact with respect to the
Euclidean metric) that is smaller than elsewhere. Hence Φ attains a global minimum by
Theorem 3.3.2.

Clearly any solution h̃ ∈ H`,ρ and f̃ ∗, g̃∗ with (f̃ ∗h, g̃∗h) ∈ FΩ but with Φ(h̃, f̃ ∗, g̃∗) >

Φ(h, f ∗, g∗) can be discarded. So the norm of the products ‖f̃ ∗h̃‖2 and ‖g̃∗h̃‖2 can be

bounded from above. We have that ‖h̃‖ is bounded above by Lemma 3.3.1 because it is

a right factor of G̃ = gcrd(f̃ ∗h̃, g̃∗h̃) with ‖G̃‖ ≤ Ω. We note that h̃ has a monic leading

coefficient, so ‖h̃‖ ≥ 1. We have that ‖f̃ ∗‖ and ‖g̃∗‖ (or the appropriate associate) are
both bounded above by Lemma 3.3.1.

Thus we can restrict the domain of Φ to values that lie within a sufficiently large closed
ball B. The function ζ that maps (h, f ∗, g∗) to the combined coefficient vector φ(f ∗h, g∗h)
of f ∗h and g∗h is continuous. We minimize over ζ−1(S∩ζ(B)), which is a compact set.

We note that Theorem 3.3.3 does not guarantee a unique minimum of Φ, merely that
Φ has an attainable minimum (opposed to infimum). The choice of h, f ∗ and g∗ that we
optimize over is important. If lcoefft lcoeff∂ h vanishes or h is ill-conditioned, then f ∗ and
g∗ can be ill-conditioned. Furthermore, choosing a poorly structured h can result in a Φ
that cannot be minimized for the specified structure, but would otherwise have a minimum
for a different choice of h. The following example illustrates this.

Example 3.3.5 ( [15]). Consider f = ∂2 and g = ∂2 + 1. We are looking for f̃ , g̃ ∈
R[t][∂;′ ] such that deg∂gcrd(f̃ , g̃) = 1. In this instance gcrd(f, g) = gcd(f, g) as differential
polynomials with constant coefficients are isomorphic to R[t]. We can write

f̃ = f̃0 + f̃1∂ + f̃2∂
2 and g̃ = g̃0 + g̃1∂ + g̃2∂

2.

We impose the constraints that f̃0 = f̃2 = g̃2 = 0 and g̃0 = 1. Thus a family of solutions is
given by f̃ = 0 and g̃ = ε∂+1. This family corresponds to f ∗ = 0, g∗ = ε and h = ∂+1/ε.
We now have that

‖f − f̃‖2
2 + ‖g − g̃‖2

2 = 2 + ε2.

If it were possible to have
‖f − f̃‖2

2 + ‖g − g̃‖2
2 = 2,

then we would have that under our constraints f̃ = 0 and g̃ = 1, which are relatively prime.
In this case, the minimum distance of 2 is not attainable. This happens because ‖ lcoefft h‖
can become arbitrarily small or ‖h‖ can become arbitrarily large depending on our choice
of g∗.
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In this example we see that under the given constraints, the objective function does
not have an attainable minimum. In order to guarantee a minimum, we need to make sure
that h is well conditioned.

Example 3.3.6. Consider f = ∂2−2∂+1 and g = ∂2 +2∂+2. Then f and g do not have
a degree 1 approximate GCRD. That is, we show that there does not exist f̃ , g̃ ∈ R[t][∂;′ ]

where deg∂gcrd(f̃ , g̃) = 1 and ‖f − f̃‖2
2 + ‖g − g̃‖2

2 is minimized.

The real monic Karmakar-Lakshman distance [16, 17] of

‖f − f̃‖2
2 + ‖g − g̃‖2

2

occurs when the rational function

2γ4
0 + 14γ2

0 + 4γ0 + 5

γ4
0 + γ2

0 + 1
(3.4)

is minimized for γ0 ∈ R. The minimum value (if it exists) of this function corresponds
to the approximate GCRD h = ∂ − γ0. There are 3 critical points. Two critical points
correspond to a local and global maximum value. The other critical point corresponds to a
local minimum (that is larger than 2). The infimum is 2, which is unattainable. There is
no attainable global minimum.

The non-monic real Karmakar-Lakshman distance is 2, which is achieved if and only if
the leading coefficient vanishes. The minimum distance occurs when the rational function

5γ4
1 − 4γ3

1 + 14γ2
1 + 2

γ4
1 + γ2

1 + 1

is minimized. The minimum value of this function corresponds to the approximate GCRD
h = γ1∂ + 1.

In particular, if we consider f̃ = (−2∂ + 1)(ε∂ + 1) and g̃ = (2∂ + 2)(ε∂ + 1), then

‖f − f̃‖2
2 + ‖g − g̃‖2

2 becomes arbitrarily near 2 as ε→ 0.

There is no real degree 1 approximate GCRD, as

min
{(f̃ ,g̃)∈R[t][∂;′]2 | deg∂gcrd(f̃ ,g̃)=1}

‖f − f̃‖2
2 + ‖g − g̃‖2

2

is not defined in the monic case. In the non-monic case, if a minimum exists then it occurs
when lcoeff∂ vanishes, so the minimum value is not defined either.

This example illustrates that not all f, g ∈ R[t][∂;′ ] have an approximate GCRD. Fur-
thermore, we see that the requirement that lcoefft lcoeff∂ h = 1 and ‖h‖ is bounded, from
Theorem 3.3.3 are required, even if there are no additional constraints imposed.
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Now it remains to show that it is possible to obtain a (locally) unique solution to Φ.
One of many equivalent conditions for uniqueness of an exact GCRD, is to require it to be
primitive and have a monic leading coefficient. Numerically, to obtain a unique solution of
the approximate GCRD problem, we impose the same constraints, making solutions locally
unique.

3.3.2 Convergence of Newton Iteration and Conditioning

Now we know a solution to the approximate GCRD problem exists. We show that ∇2Φ,
the Hessian matrix of Φ is positive definite around a global minimum, when the residual
is sufficiently small. If we consider structured perturbations, then we are able to obtain
results similar to that of Zeng and Dayton [28] to the overall conditioning of the system.

In this section we assume without loss of generality that f ∗, g∗ ∈ R[t][∂;′ ] are primitive,
and that f and g may no longer be primitive to simplify computations. We need to clear
fractions of rational functions to apply our coefficient norms, and to linearize h, f ∗ and g∗

as vectors of real numbers.

The residual of the approximate GCRD is

r = r(h, f ∗, g∗)

= (f∗h− f ,g∗h− g)T ∈ Rη×1

where

η =
∑

0≤i≤M

max{−1, degt fi}+
∑

0≤i≤N

max{−1, degt gi}+(M+1)+(N+1) ≤ (M+N+2)(d+1).

Intuitively, η represents the number of components of (f ,g) ∈ R1×η. Let ν be the number
of variables needed to represent the coefficients of h, f ∗ and g∗, i.e. (h, f∗,g∗) ∈ R1×ν .

Recall that when f = f ∗h, we can linearize this relationship with differential convolution
matrices, by writing

f = (f ∗0 , . . . , f
∗
M−D)CRM−D(h).

If fi is a coefficient of f with degt fi = d, then we may write

fi =
∑

0≤j≤M−D

f ∗j (CRM−D(h)[j, i])
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This relationship may be linearized over R through the use of convolution matrices. Writing

fi =
∑

0≤j≤M−D

f∗j · Cd
(
CRM−D(h)[j, i]

)T
,

we now have a direct method of computing fi in terms of the coefficients of f ∗ and h.

If we differentiate f∗h with respect to an entry from f∗, then we will obtain the cor-
responding (linearized) row of CRM−D(h). Similarly, differentiating f∗h with respect to an
entry of h will give us a (linearized) column of CLD(f ∗). This relationship becomes clear
when we observe that

(f ∗0 , . . . , f
∗
M−D)CRM−D(h) =

CLD(f ∗)

h0
...
hD



T

.

Differentiating g∗h with respect to variables from g∗ and h will produce similar results.

The Jacobian of r(h, f ∗, g∗) for arbitrary h, f ∗ and g∗ may be expressed (up to column
permutation) in block matrix form as

J =

(
CRM−D(h)T 0 CLD(f ∗)

0 CRN−D(h)T CLD(g∗)

)
∈ Rη×ν ,

where the block matrices are linearized accordingly. In our formulation of the approximate
GCRD problem we normalize lcoefft lcoeff∂ h so that it is a predetermined constant, which
results in essentially the same Jacobian as described above.

The only difference in the Jacobians, is that the νth column would become the zero
column if differentiated with respect to lcoefft lcoeff∂ h, since lcoefft lcoeff∂ h is constant.
When normalized for computational purposes, the Jacobian belongs to Rη×ν−1 instead
(the last column is deleted). In the general case when gcrd(f ∗, g∗) = 1, J is rank deficient
by 1 and the νth column is a linear combination of the other columns. The following lemma
formalizes this statement.

Lemma 3.3.7 ([26]). Let r be the residual described earlier with Jacobian J . Suppose that
lcoefft lcoeff∂ h is a fixed non-zero constant. If gcrd(f ∗, g∗) = 1, then all non-zero columns
of J are linearly independent.

Proof. Let ~eν ∈ R1×ν be a unit vector whose last component is 1. We write

~eν(0, . . . , 0,h)T = lcoefft lcoeff∂ h 6= 0.
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We shall prove the equivalent statement that the matrix

(
J
~eν

)
=

CRM−D(h)T 0 CLD(f ∗)
0 CRN−D(h)T CLD(g∗)

~eν

 ∈ R(η+1)×ν

has full rank.

It follows that there exists q1, q2, p ∈ R[t][∂;′ ] such that their combined coefficient vector
satisfies (

J
~eν

) q1
T

q2
T

−pT

 =

0
0
0

 .

Expressing this as multiplication over R[t][∂;′ ], we have that

f ∗p = q1h,

g∗p = q2h.

We conclude that gcrd(f ∗p, g∗p) = p, as gcrd(f ∗, g∗) = 1. If p = 0, then we are done (as
R[t][∂;′ ] is a domain). We suppose that p 6= 0. It follows that lclm(f ∗p, g∗p) = lclm(f ∗, g∗)
and so we must have that lclm(q1h, q2h) = lclm(q1, q2), hence lclm(q1, q2) = lclm(f ∗, g∗).
There exist σ, τ, σ̂, τ̂ ∈ R[t][∂;′ ] such that σf ∗ = τg∗ = σ̂q1 = τ̂ q2. Since R[t][∂;′ ] is a
domain, we have σf ∗p = σ̂q1h which implies p = αh for α ∈ R. Since p = αh we must
have that αf ∗ = q1 and αg∗ = q2. Now,

~eν(0, . . . , 0,h)T = lcoefft lcoeff∂ h 6= 0.

On the other hand,
~eν(0, . . . , 0, αh)T = 0.

This occurs if and only if α = 0. But in this case p = 0 as well, so q1
T

q2
T

−pT

 =

0
0
0

 .

It follows that the only vector in the null space is the zero vector, hence

(
J
~eν

)
has full rank.

Since any subset of linearly independent vectors is also linearly independent, we have that
when lcoefft lcoeff∂ h is a fixed non-zero constant that J has rank ν − 1.
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Note that from the proof we see that if lcoefft lcoeff∂ h were not fixed, then the vector
(f∗,g∗,h)T forms a basis for the nullspace of J . Intuitively, if we did not fix lcoefft lcoeff∂
in advance, then there would be infinitely many tuples of (h, f ∗, g∗) with the same degree
structure over R[t] that minimized Φ, since for any α 6= 0 we have

‖f − f ∗h‖2
2 + ‖g − g∗h‖2

2 = ‖f − (αf ∗)(α−1h)‖2
2 + ‖g − (αg∗)(α−1h)‖2

2.

In other words, we need to normalize h in advance to obtain a unique solution.

Corollary 3.3.8. Let r be the residual defined earlier in this section with lcoefft lcoeff∂ h
a non-zero constant. If r = 0, then the Hessian matrix ∇2Φ(h, f ∗, g∗) is positive definite.

Proof. Let J be the Jacobian of r. J has full rank rank, so JTJ has full rank and is
positive semidefinite. If r = 0, at the global minimum we have that 2JTJ = ∇2Φ, and
∇2Φ(h, f ∗, g∗) is positive definite.

When there is no residual, the Hessian ∇2Φ(h, f ∗, g∗) is positive definite. It follows
that if f and g are perturbed by a sufficiently small amount, then ∇2Φ remains locally
positive definite, and Newton iteration will converge to the (local) global minimum with
an initial guess that is sufficiently close.

We are able to obtain a condition number for a structured perturbation through the
Jacobian of the residuals. Since J has full rank, the smallest singular value σν−1 of
J(r(h, f ∗, g∗)) is strictly positive. If we consider structured perturbations, then we are
able to show that the approximate GCRD problem is (locally) well-posed.

In the next results, we make use of the fact that for any f ∈ R[t][∂;′ ], we have that
‖f‖2 = ‖f‖2.

Lemma 3.3.9 ([26]). Let f, g, h, f ∗, g∗ ∈ R[t][∂;′ ] be such that Φ(h, f ∗, g∗) < ε for some

ε > 0, with lcoefft lcoeff∂ h a fixed non-zero constant. Suppose f̂ , ĝ, ĥ, f̂ ∗ĝ∗ ∈ R[t][∂;′ ]
possess the same degree structures as f, g, h, f ∗ and g∗ and that

Φ̂(ĥ, f̂ ∗, ĝ∗) = ‖f̂ − f̂ ∗ĥ‖2
2 + ‖ĝ − ĝ∗ĥ‖2

2 < ε.

Then,∥∥∥(h− ĥ, f ∗ − f̂ ∗, g∗ − ĝ∗)
∥∥∥2

2
≤ 1

σ2
ν−1

(
2ε+

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
+ higher order terms.
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Proof. Let J = J(r(h, f ∗, g∗)) be the Jacobian of the residuals from earlier in this section.
We have that

(f∗h− f̂∗ĥ,g∗h− ĝ∗ĥ)T ≈ J(h− ĥ, f∗ − f̂∗,g − ĝ∗)T .

Ignoring high order terms gives∥∥∥(f∗h− f̂∗ĥ,g∗h− ĝ∗ĥ)T
∥∥∥2

2
≈
∥∥∥J(h− ĥ, f∗ − f̂∗,g∗ − ĝ∗)T

∥∥∥2

2

≥ σ2
ν−1

∥∥∥(h− ĥ, f∗ − f̂∗,g∗ − ĝ∗)
∥∥∥2

2
.

A straightforward application of the triangle inequality gives∥∥∥(h− ĥ, f ∗ − f̂ ∗, g∗ − ĝ∗)
∥∥∥2

2
≤ 1

σ2
ν−1

∥∥∥(f ∗h− f̂ ∗ĥ, g∗h− ĝ∗ĥ)
∥∥∥2

2

≤ 1

σ2
ν−1

(
Φ(h, f ∗, g∗) + Φ̂(ĥ, f̂ ∗, ĝ∗) +

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
≤ 1

σ2
ν−1

(
2ε+

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
+ higher order terms.

Corollary 3.3.10. Suppose that hopt, f
∗
opt, g

∗
opt ∈ R[t][∂;′ ] are a locally unique global mini-

mum of Φ in some neighborhood around h, f ∗ and g∗. If

Φ(h, f ∗, g∗) < ε and Φ(hopt, f
∗
opt, g

∗
opt) < ε

for ε > 0 then,∥∥(h− hopt, f ∗ − f ∗opt, g∗ − g∗opt)
∥∥2

2
≤ 2ε

σ2
ν−1

+ higher order terms.

If we compute different approximate GCRD pairs of f and g (using different optimiza-
tion techniques or initial guesses), then we are able to bound the size of the perturbations
of f ∗, g∗ and h based on how near they are. Furthermore, this corollary allows us to certify
an upper bound on the distance between our computed approximate GCRD tuple and the
actual global minimum.

We have now shown that locally, the approximate GCRD problem is well-posed. we
have shown that a solution exists, the solution is (locally) unique, and that structured
perturbations in the input are bounded in terms of the output. Furthermore, around this
minimum we have that ∇2Φ is positive definite. As a consequence, Newton iteration will
converge quadratically.
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Chapter 4

Implementation of Approximate
GCRD

This chapter discusses the particulars and implementation of the algorithms in this thesis.
The algorithms are described in a Maple-like pseudo code, with Matlab style matrix in-
dexing. All of the algorithms have been implemented in the Maple programming language.
For convenience, the notation and assumptions introduced at the start of Chapter 3 will
hold, unless otherwise stated. Additionally, we will assume that content can be removed
numerically, as computed quantities are typically not primitive.

The presentation and theoretical analysis of the algorithms is presented in a bottom-
up manner, reflecting their dependencies. Asymptotic upper bounds on the number of
floating point operations required are provided. Furthermore, we discuss if the output of
the algorithm can be certified in some manner, when applicable.

We demonstrate the robustness of our algorithms in practice. Specific examples are
provided to thoroughly demonstrate the steps of the algorithms. We investigate interesting
families of input. In particular, we investigate exact inputs with an exact GCRD, and
perturbed differential polynomials with varying errors and noise introduced. The test
cases of differential polynomials of interest to us have

• low degree in t and high degree in ∂ (unbalanced in ∂),

• high degree in t and low degree in ∂ (unbalanced in t), and

• proportional degrees in t and ∂ (balanced degrees).
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4.1 Algorithms for Approximate GCRD

We provide an algorithmic description of the algorithms introduced in Section 3.1. The
algorithms of Section 3.1.3 are required to compute an exact GCRD numerically. These
algorithms compute the rank of the differential Sylvester matrix and a least squares solution
to a polynomial linear system, corresponding to the Bézout coefficients. We describe
the algorithm for finding nearby differential polynomials introduced in Section 3.2, whose
(inflated) differential Sylvester matrix is nearly singular [9]. Using the least squares numeric
GCRD algorithm, we can compute an approximate GCRD candidate from the nearly
singular differential Sylvester matrix.

This approximate GCRD candidate will be used in a post-refinement Newton iteration.
The initial guess for the co-factors are computed using a least squares division. Our initial
guess is the tuple (hinit, f

∗
init, g

∗
init) ∈ R[t][∂;′ ] × R(t)[∂;′ ]2. We describe how to perform

Newton iteration when the coefficients of the co-factors are polynomial, then we generalize
this to co-factors with rational function coefficients.

Numerical Computation of a GCRD

Before we can compute a GCRD numerically, the rank of the differential Sylvester matrix
needs to be determined. Our numeric rank algorithm is an adaptation of the rank algorithm
used by Corless, Gianni, Trager and Watt [5]. There are

(M +N)(µ+ d+ 1)− (M +N)(µ+ 1) = (M +N)d = µ/2

trivial singular values, and µ/2 < µ+ d + 1, the column block size. These trivial singular
values need to be accounted for when annihilating small singular values. In the full rank
case, we should not underestimate the rank of S by inferring from Ŝ, as there are strictly
fewer trivial singular values than the column block size.

Algorithm 1 computes a reasonable guess for the degree in ∂ of an approximate GCRD.
This algorithm is not certified to produce the degree of an approximate GCRD in general.
However, this does not appear to be a problem in most of our experiments. When gcrd(f, g)
is non-trivial (no errors present in the input coefficients), we compute the degree of the
GCRD of f and g. In the exact setting, we can now formulate a linear algebra problem
over R[t] to compute a GCRD. We present two solutions to this problem. Algorithm 2
solves this problem using linear algebra over R(t). Algorithm 3 linearizes the problem over
R and computes a least squares solution.
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Algorithm 1 : Deflated Rank

Input:
• An inflated differential Sylvester matrix Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1);
• A search radius εrank > 0 for comparing singular values.

Output:
• The the numeric rank % of the (non-inflated) differential Sylvester matrix S.

1: Compute the singular values σ1, σ2, . . . , σ(M+N)(µ+d+1) of Ŝ in descending order.

2: Find the maximum k such that σk > ε

√
(M+N)(2µ+d+2)

µ+d+1
and σk+1 < ε.

3: if σk > ε for all k then Ŝ has full rank.
4: If there is no significant change (there is no maximum k) between σk and σk+1 for all
k, as determined by step 2 then return failure.

5: Set % =
⌈

k
µ+d+1

⌉
, the scaled rank of S.

In the implementation of Algorithm 2, we take special care to ensure that lcoefft lcoeff∂ h
does not vanish when h is normalized. If lcoefft lcoeff∂ h vanishes, then this could be an
indication that the input is ill conditioned or content removal failed. In either case, it is
possible that this instance of the approximate GCRD problem will not have an attainable
global minimum in accordance with Theorem 3.3.3.

We can avoid the need for content removal if we introduce weights on the coefficients of
h and seek a total least squares solution. Penalizing coefficients that correspond to higher
degrees ensures that the solution of minimal norm is the primitive solution.
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Algorithm 2 : NumericGCRD

Input:
• f, g ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = 1;
• A search radius εrank > 0.

Output:
• h = gcrd(f, g) ∈ R[t][∂;′ ] with deg∂h ≥ 1,
• or an indication that f and g are co-prime within search radius εrank.

1: M ← deg∂f , N ← deg∂g, d← max{degt f, degt g}, µ← 2(M +N)d.
2: S ← S(f, g) ∈ R[t](M+N)×(M+N).
3: Form the inflated differential Sylvester matrix
Ŝ = Ŝ(f, g) ∈ R(M+N)(µ+1)×(M+N)(µ+d+1) of S.

4: Compute the numerical rank % of S using Algorithm 1 on Ŝ with search radius εrank.
5: If % > 0, then set deg∂h = D = M + N − %. Otherwise indicate that f and g are

co-prime with respect to εrank and return.
6: Solve for w ∈ R[t][∂;′ ]1×(M+N) from

wS = (∗, ∗, . . . , ∗︸ ︷︷ ︸
D+1 entries

, 0, . . . , 0),

ensuring that ‖ lcoefft((wS)[D + 1])‖2 � 0.
7: Set (h0, h1, . . . , hD, 0, . . . , 0) = wS.
8: return cont(h)−1h.

Nearby Differential Polynomials with GCRD Algorithm

We use the method of Giesbrecht and Haraldson [9] to compute nearby differential poly-

nomials with a GCRD. We recover nearby differential polynomials f̃ and g̃ whose corre-
sponding differential Sylvester matrix is almost singular , i.e. it is reasonably close to a
singular matrix with respect to ‖ · ‖F . The output polynomials f̃ and g̃ are by no means
certified to have an exact GCRD, or be close to a global minimum of the approximate
GCRD problem. However, they are a suitable starting point for iterative post-refinement
methods, such as Newton’s method.

The matrix Ŝ is highly structured, as it is composed of block Toeplitz matrices. When
we consider the matrix Ŝ + ∆Ŝ, the nearest inflated differential Sylvester matrix of pre-
scribed rank deficiency, we have considerable flexibility in how we recover the coefficients
of f̃ and g̃. The matrix Ŝ + ∆Ŝ is probably not an inflated differential Sylvester ma-
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Algorithm 3 : NumericGCRD via LS

Input:
• f, g ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = 1;
• εrank > 0 used to compute the degree of the GCRD.

Output:
• h ∈ R[t][∂;′ ] that is primitive with a fixed leading coefficient such that ‖wS(f, g)−h‖2

2

is minimized.
1: M ← deg∂f , N ← deg∂g, d← max{degt f, degt g}, µ← 2(M +N)d.
2: Compute D using Algorithm 1 with εrank.
3: δ ← (µ+ d, . . . , µ+ d︸ ︷︷ ︸

D+1

, 0, . . . 0) (or another valid initial guess).

4: Compute a least squares solution of h from ‖wS(f, g) − h‖2 with δ(h) = δ and
lcoefft lcoeff∂ h = 1.

5: δ ← δ(cont(h)−1h).
6: Compute a new least squares solution of h from ‖wS(f, g) − h‖2 with δ(h) = δ and

lcoefft lcoeff∂ h = 1.
7: return h.

trix, however according to Lemma 3.2.2, it is reasonably close to one. We recall that
the mapping Γ : R[t] → R(µ+1)×(µ+d+1) generates the (non-square) Toeplitz blocks of Ŝ.

To recover the coefficients of f̃ and g̃, we look at possible definitions for the mapping
Γ−1 : R(µ+1)×(µ+d+1) → R[t]. We apply this mapping on the appropriate blocks of Ŝ + ∆Ŝ.

More formally, we use Γ−1 to find f̃ , g̃ ∈ R[t][∂;′ ] such that Ŝ(f̃ , g̃) ≈ Ŝ(f, g) + ∆Ŝ(f, g).

One implementation of Γ−1 is to use a single row from the blocks corresponding to
the coefficients of f̃ and g̃. We also consider weighted averages of each row block. In
the weighted averages, we apply Γ−1 on rows 1 through µ + 1 of Ŝ + ∆Ŝ to compute the
coefficients of f̃ . Likewise, we apply Γ−1 on rows N(µ+ 1) + 1 through (N + 1)(µ+ 1) to
compute the coefficients of g̃. In our implementation, we weight each row equally, leading
to a uniformly weighted block average to compute f̃ and g̃. In both instances, we require
that the partial orderings satisfy δ(f̃) ≤ δ(f) and δ(g̃) ≤ δ(g). There is further redundancy
in the coefficients in other rows, but we choose not formulate another possible mapping of
Γ−1 to exploit this.

Regardless of our choice of Γ−1, this method of recovering f̃ and g̃ can lead to a
differential Sylvester matrix that does not have the desired numeric rank, as determined
by Algorithm 1. The perturbation ∆Ŝ is unstructured while Γ(f̃i) and Γ(g̃j) are (highly

structured) Toeplitz matrices. Consequently, some non-zero terms of ∆Ŝ are ignored.
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Algorithm 4 : Deflated Perturbation

Input:
• f, g ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = 1;

• Perturbed inflated differential Sylvester matrix Ŝ + ∆Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1);
• Γ−1 : R(µ+1)×(µ+d+1) → R[t].

Output:
• f̃ , g̃ ∈ R[t][∂;′ ] where δ(f̃) ≤ δ(f) and δ(g̃) ≤ δ(g).

1: M ← deg∂f , N ← deg∂g, d← max{degt f, degt g}, µ← 2(M+N)d and N ← µ+d+1.
2: for 0 ≤ i ≤ deg∂f do
3: [I, J ]← [1 : µ+ 1][(i+ 1) + (i− 1)N(µ+ d+ 1) : (i+ 1)N(µ+ d+ 1)]

4: f̃i ← Γ−1
(

(Ŝ + ∆Ŝ)[I, J ]
)

5: end for
6: for 0 ≤ i ≤ deg∂g do
7: [I, J ]← [N(µ+1)+1 : (N+1)(µ+1)][(i+1)+(i−1)M(µ+d+1) : (i+1)M(µ+d+1)]

8: g̃i ← Γ−1
(

(Ŝ + ∆Ŝ)[I, J ])
)

9: end for
10: return f̃ and g̃.

Numeric Right Division

Numeric right division without remainder between two differential polynomials is a rational
function linear algebra problem. The (approximate) quotient is a solution to a triangular
linear system, in a least squares sense. The solution to this system may not be in (approx-
imate) lowest terms. We use approximate GCD and real linear least squares to resolve
this.

In the special case when lcoeff∂ h = 1, the output of this algorithm is also in lowest
terms. Even if the co-factors in lowest terms have polynomial coefficients, small round-
off errors prevent this algorithm from obtaining them. Performing division of computed
polynomial approximate GCDs does not typically produce a least squares solution. The
division will perturb the coefficients of the co-factor. Instead, we use real linear least
squares once we know the degree structure of the coefficients of f ∗. The next algorithm,
Algorithm 7 computes f ∗ ∈ R(t)[∂;′ ] in lowest terms such that ‖f − f ∗h‖2 is minimized.
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Algorithm 5 : Nearby Differential Polynomials with GCRD

Input:
• f, g ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = 1;
• A search radius εrank > 0, used to validate the degree of h.

Output:
• f̃ , g̃ ∈ R[t][∂;′ ] where δ(f̃) ≤ δ(f), (δ(g̃) ≤ δ(g) and h ≈ gcrd(f̃ , f̃) ∈ R[t][∂;′ ] with

deg∂h ≥ 1, or ;
• An indication that f and g are co-prime within search radius εrank.

1: M ← deg∂f , N ← deg∂g, d← max{degt f, degt g} and µ← 2(M +N)d.
2: S ← S(f, g) ∈ R[t](M+N)×(M+N).

3: Ŝ ← Ŝ(f, g) ∈ R(M+N)(µ+1)×(M+N)(µ+d+1).

4: Compute the SVD of Ŝ, where Ŝ = PΣQ with P,Σ and Q as discussed in Section 3.2.
5: Compute the numerical rank % of S using Algorithm 1 on Ŝ with search radius εrank.
6: If % > 0 set the last %(µ + d + 1) singular values to 0 and compute Σ as discussed in

Section 3.2. Otherwise indicate that f and g are co-prime with respect to εrank.
7: Compute Ŝ + ∆Ŝ = PΣQ.
8: Compute f̃ and g̃ from Ŝ + ∆Ŝ using Algorithm 4.
9: Compute h = NumericGCRD(f̃ , g̃) using Algorithm 3, with εrank used to validate the

degree of h using Algorithm 1.
10: return f̃ , g̃ and h.

GCRD via Optimization: Newton’s Method

Using Algorithm 5, we can compute an initial guess for an approximate GCRD, hinit. We
can perform right division without remainder numerically to compute initial guesses for
the co-factors, f ∗init and g∗init. We now have enough information to set up a post-refinement
Newton iteration, to hopefully compute an approximate GCRD. When the co-factors have
polynomial coefficients, the products f ∗h and g∗h are always polynomial. This makes
Newton iteration a very straightforward procedure, as the objective function

Φ(h, f ∗, g∗) = ‖f − f ∗h‖2
2 + ‖g − g∗h‖2

2

is easily computed. However, when the co-factors have rational function coefficients, the
quantities f ∗h and g∗h usually have rational function coefficients due to round-off error.
The rational function coefficients typically arise due to round-off errors. Using Corol-
lary 3.1.4, we can clear fractions and compute the least squares solution of an equivalent
associate problem.
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Algorithm 6 : Numeric Right Division

Input:
• f, h ∈ R[t][∂;′ ] with ‖f‖ = ‖h‖ = 1.

Output:
• f ∗ ∈ R(t)[∂;′ ] satisfying f = f ∗h.
1: M ← deg∂f , D ← deg∂h.
2: Form the matrix M(h) from Lemma 3.1.3.
3: Solve

(fD, fD+1, . . . , fM) = (f ∗0 , f
∗
1 , . . . , f

∗
M−D)M(h)

by backwards substitution for the coefficients of f ∗.
4: for 0 ≤ i ≤M −D do
5: f ∗i ← Approximate f ∗i in rational function least terms
6: end for
7: return f ∗.

Algorithm 7 : Numeric Right Division via LS

Input:
• f, h ∈ R[t][∂;′ ] with ‖f‖ = ‖h‖ = 1.

Output:
• f ∗ ∈ R(t)[∂;′ ] in lowest terms satisfying f = f ∗h.
1: M ← deg∂f , D ← deg∂h.
2: Form the matrix M(h) from Lemma 3.1.3.
3: Use Algorithm 6 to compute the degrees in t of the numerators and denominators of

the coefficients belonging to f ∗.
4: Solve

(fD, fD+1, . . . , fM) = (f ∗0 , f
∗
1 , . . . , f

∗
M−D)M(h)

by linear least squares for the coefficients of f ∗.
5: return f ∗.

The normalization we impose, that lcoefft lcoeff∂ h is fixed, ensures the solution is (lo-
cally) unique, in accordance with Corollary 3.3.8. We note that this normalization can
be changed. However one must ensure that the normalization vector is not orthogonal to
(f∗,g∗,h). We now generalize the Newton iteration for the instance when the co-factors
have rational function coefficients.

In the implementation we clear fractions. Without loss of generality, we restrict our
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Algorithm 8 : Newton Iteration

Input:
• f, g, hinit ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = ‖hinit‖ = 1;
• k ∈ N, the number of iterations.

Output:
• f ∗, g∗ ∈ R[t][∂;′ ] and h ∈ R[t][∂;′ ] such that Φ(f ∗h, g∗h) is locally minimized and
• δ(f ∗h) ≤ δ(f) and δ(g∗h) ≤ δ(g).
1: M ← deg∂f , N ← deg∂g and D ← deg∂hinit.
2: Compute initial guesses of f ∗ and g∗ using Algorithm 7.
3: lcoefft lcoeff∂ h← lcoefft lcoeff∂ hinit.
4: x0 ← (f∗init,g

∗
init,hinit)

T .
5: for 1 ≤ i ≤ k do
6: Solve ∇2Φ(xi) · xi+1 = ∇2Φ(xi) · xi −∇Φ(xi) for xi+1.
7: end for
8: return f ∗, g∗ and h computed from xk.

Algorithm 9 : Modified Newton Iteration

Input:
• f, g, hinit ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = ‖hinit‖ = 1;
• k ∈ N, the number of iterations.

Output:
• f ∗, g∗ ∈ R(t)[∂;′ ] and h ∈ R[t][∂;′ ] such that Φ(f ∗h, g∗h) is locally minimized and
• δ(f ∗h) ≤ δ(f) and δ(g∗h) ≤ δ(g).
1: M ← deg∂f , N ← deg∂g and D ← deg∂hinit.
2: Compute initial guesses of f ∗ and g∗ using Algorithm 7.
3: lcoefft lcoeff∂ h← lcoefft lcoeff∂ hinit.
4: f ← f ∗−1f, g ← g∗−1g, f

∗ ← hM−D+1
D f ∗ and g∗ ← hN−D+1

D .
5: x0 ← (f∗init,g

∗
init,hinit)

T .
6: for 1 ≤ i ≤ k do
7: Solve ∇2Φ(xi+1) · xi = ∇2Φ(xi) · xi −∇Φ(xi) for xi+1.
8: end for
9: f ∗ ← 1

f∗−1
f ∗ and g∗ ← 1

g∗−1
g∗.

10: return f ∗, g∗ and h computed from xk.

discussion on how to clear fractions for the term f ∗ ∈ R(t)[∂;′ ]. Clearing fractions is
not entirely straightforward. We know that hM−D+1

D is a common denominator of the
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coefficients of f ∗, however using f ∗−1 = hM−D+1
D is not efficient. In practice we choose f ∗−1

that satisfies degt f
∗
−1 = degt f

∗
init−1, that is we use degree of our initial guess. The function

‖f ∗−1(f −f ∗h)‖2
2 is still quartic. The problem encountered with this method is that f ∗ may

no longer be in lowest terms if f ∗−1 is chosen poorly. Using a different common denominator
we can resolve this.

Recall that we can write

f ∗ =
∑

0≤i≤M−D

f ∗i
f ∗−1i

∂i, for f ∗i , f
∗
−1i
∈ R[t].

We can use
f ∗−1 =

∏
0≤i≤M−D

f ∗−1i
for f ∗−1i

=
∑

0≤j≤degt f
∗
−1i

f ∗−1i,j
tj

as a common denominator for the coefficients of f ∗. This choice of f ∗−1 preserves the
structure of each coefficient of f ∗, ensuring that f ∗ will be in lowest terms. There are
two concerns that warrant further discussion. The first concern is that there are more
variables needed, resulting in a larger Hessian matrix. The other concern is that the term
‖f ∗−1(f − f ∗h)‖2

2 is not necessarily quartic. As a multivariate polynomial, the total degree
depends on deg f ∗−1, which can be quite large. Specifically, when degt hD > 1, we have

deg

( ∏
0≤i≤M−D

f ∗−1i

)
= O(degt h

M−D+1
D ).

4.2 Performance Analysis

In this section we address the computational complexity in terms of the number of floating
point operations or flops . Where applicable, we discuss the numerical stability of the
algorithms and whether or not their output can be certified. The algorithms are analyzed
in the order they were presented in the previous section.

Analysis of Algorithm 1 Deflated Rank

The number of flops Algorithm 1 requires is dominated by the cost of performing the SVD
on Ŝ. The SVD requires O((M +N)3(µ+ d+ 1)3) = O((M +N)6d3) flops, using standard
arithmetic.
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Analysis of Algorithm 2 Numeric GCRD

The number of flops Algorithm 2 requires is ultimately bounded by the cost of computing
the rank of S using Algorithm 1. The cost of Algorithm 1 is O((M+N)6d3) flops. The cost
of computing a GCRD given the degree in ∂ is O((M + N)3) operations over R(t) which
corresponds to O((M + N)3d2) flops. The cost of the approximate GCD and division
to remove content depends on the specific method used, but is usually negligible when
compared to the rank computation.

This algorithm is not numerically stable for large degree inputs in t and ∂. Performing
linear algebra over R(t) leads to considerable degree growth in t, and removing (approxi-
mate) content with a division further perturbs the coefficients of the GCRD. The output
of this algorithm is not certified to be correct in most instances.

Analysis of Algorithm 3 Numeric GCRD via LS

There are (M+N)(µ+d+1) equations and (M+N)(µ+1)+(D+1)(µ+d+1) = O((M+
N)2d) unknowns. The cost of computing the least squares solution is O((M+N)6d3) flops.
The cost of inferring the content by looking at singular values of the (generalized) Sylvester
matrix is bounded by O((D)3(µ + d + 1)3) = O((M + N)6d3) flops. The total number of
flops required for this algorithm is O((M +N)6d3).

This algorithm relies on solving a real linear least squares problem. As such, this
algorithm is numerically stable, provided that the underlying least squares problem is rea-
sonably conditioned, and solved in a reasonable way. One such method of solving the
least squares problem is the SVD and arising pseudo-inverse. As linear least squares is an
instance of positive semidefinite quadratic minimization, we are able to certify the correct-
ness of the answer obtained, provided that the underlying approximate GCD algorithm
computes the degree of the content correctly.

Analysis of Algorithm 4 Deflated Perturbation

The number of flops Algorithm 4 requires is is O((M + N)2d2), assuming that Γ−1 uses
the weighted block average. The mean minimizes the sum of squares, so this is not a bad
approximation to the nearest structured matrix. However it is not certified to provide
meaningful output.
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Analysis of Algorithm 5 Nearby With GCRD

The number of flops Algorithm 5 requires is is dominated by the cost of computing the
singular values of Ŝ, which is O((M +N)6d3) flops.

This algorithm is exactly the same as Algorithm 2 when Ŝ has the desired rank defi-
ciency. In the event that the input is approximate, the quality of our answer depends on
the largest singular value of Ŝ that we annihilate. Lemma 3.2.2 provides an upper bound
on how much we perturb Ŝ to obtain the desired singular matrix. This algorithm is not
certified to provide meaningful output, but if used in conjunction with Algorithm 3, the
output can be certified as a least squares approximation to the solution of the Bézout
coefficients.

Analysis of Algorithm 6 Numeric Right Division

The number of flops Algorithm 6 requires depends on the method used to solve the lin-
ear system. The particular system is highly structured so we can solve it by backwards
substitution directly, which costs O((M − D)2) operations over R(t). This corresponds
to O((M − D)2d2) flops. An upper bound on the degree required for approximate GCD
computations is degt h

M−D+1
D . The total cost of each approximate GCD computation is

O((degt h
M−D+1
D )3) flops. There are at most M −D + 1 approximate GCD computations

performed, so the total cost of the algorithm is

max{O((M −D)2(max{d, degt h})2), O((degt h
M−D+1
D )3)}

flops.

If approximate GCD is not used, then the output of this algorithm is certified to
be a least squares solution, but not a total least squares solution. If we assume that
lcoefft lcoeff∂ h = 1 and ‖h‖ is not arbitrarily large, then the backwards substitution is well
conditioned. The approximate GCD computations and following divisions can perturb
the coefficients, so the algorithm can be unstable for poorly conditioned inputs. This is
especially problematic when lcoeff∂ h is poorly conditioned.

Analysis of Algorithm 7 Numeric Right Division via LS

If f ∗ has polynomial coefficients, then degt f
∗ ≤ degt f ≤ d as f and h have polynomial

coefficients as well. If f ∗ has rational function coefficients, we know that hM−D+1
D is a
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common denominator of f ∗, so we need at most (M − D + 1)(2 degt h
M−D+1
D + d + 1)

unknowns. Clearing fractions, there are (M −D + 1)(degt h
M−D+1
D + d + 1) equations, as

we ignore equations corresponding to f0, . . . , fD−1 (assuming we use M(h)). The cost of
solving this linear least squares problem is O((M −D)3(degt h

M−D+1
D + d)3) flops.

The output of this algorithm is certified as a linear least squares solution. Like the
previous algorithm, Algorithm 6, the conditioning of this algorithm is strongly related to
the conditioning of hD.

Analysis of Algorithms 8 and 9 (Modified) Newton Iteration

We transform the problem of computing a GCRD to that of optimizing Φ : R[t][∂;′ ] ×
R(t)[∂;′ ]2 → R. Using Corollary 3.1.4, we can assume without loss of generality that
f ∗ and g∗ have polynomial coefficients. The dominating cost of the Newton iteration is
solving a linear system to get the next value which requires O(ν3) operations, where ν is
the number of variables needed to represent the coefficients of h, f ∗ and g∗.

Newton iteration can fail for many reasons, however our Newton iteration usually fails
because:

1. ∇2Φ is positive semidefinite at a point in the iteration; the stationary point is a
saddle point;

2. The initial guess is poorly chosen and ∇2Φ is indefinite at a point.

In the event that Newton iteration fails we can perform a Gauss-Newton iteration instead.
Despite Gauss-Newton iteration having linear convergence, JTJ is positive definite, so sad-
dle points are no longer a problem. Furthermore, tools such as the Cholesky decomposition
are applicable in computing the next step in the iteration. According to Corollary 3.3.8, if
the residual is sufficiently small then Newton iteration will converge to a global minimum.

4.3 Examples and Experimental Results

This section contains some examples of our implementation. The (inflated) differential
Sylvester matrix is ill-conditioned for large degree inputs in t and ∂. We restrict ourselves
to modest examples with minimal coefficient growth.
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Example 4.3.1 (No Noise, many factors).

f =.00769∂5 + (.00035t2 + .05386t− .05386)∂4

+(.00140t3 + .06820t2 − .16928t+ .17313)∂3

+(−.09513t3 + .22559t2 + .16928t− .33472)∂2

+(.18607t3 − .65720t2 − .04617t+ .32702)∂

+(−.09234t3 + .36305t2 − .00769t− .11927).

g =(.01001t− .01001)∂5 + (.04019t2 − .07007t+ .03003)∂4

+(.00063t3 − .01048t2 + .15014t− .11010)∂3

+(.27901t3 − .32921t2 − .09008t+ .17016)∂2

+(−.55990t3 + .52909t2 − .04004t− .08007)∂

+(.28026t3 − .22959t2 + .04004t).

We compute initial guesses (removing content numerically where appropriate)

hguess =.09285∂3 + (.37139t− .27854)∂2 + (−.74278t+ .27854)∂ + (.37139t− .09285),

f ∗guess =.08287∂2 + (.00377t2 + .24862t− .33150)∂+

(−2.05844× 10−10t3 − .24862t2 + .91162t− .04144),

g∗guess =(.10780t− .10780)∂2 + (.00168t2 + 8.67540× 10−9t− 2.71283× 10−9)∂

+(2.35115× 10−8t3 + .75463t2 − .43122t+ 6.78976× 10−8).

The quality of this initial guess is

‖f − f ∗guesshguess‖2
2 + ‖g − g∗guesshguess‖2

2 = 4.04506× 10−14.

The condition number for the Hessian matrix valuated at our initial guess is 18354.38336
and our smallest eigenvalue is .00314. Since ∇2Φ is locally positive definite, we know that
we will converge to a unique (local) minimum. The minimum we converge to is 2.33030×
10−20.

The exact GCRD in this example is h = (∂ + 4t− 1)(∂ − 1)(∂ − 1).

Example 4.3.2 (Noise). In this example we introduced normalized noise of size 10−5 to f
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and g.

f =.00583∂5

+(−9.45614× 10−7t3 + .00027t2 + .03498t− .03498)∂4

+(−8.26797× 10−7t5 + .04743t3 + .01113t2 − .05247t+ .07287)∂3

+(−9.08565× 10−8t5 + .13885t4 − .21623t3 + .30950t2 − .17781t− .05247)∂2

+(−.18655t5 − .02226t4 − .20166t3 − .41974t2 + .33812t− .10202)∂

+(.18655t5 − .30315t4 + .43935t3 − .22868t2 − .13117t+ .15740).

g =(.00780t− .00779)∂5

+(9.10928× 10−7t5 + 6.83196× 10−7t3 + .02351t2 − .07018t+ .02729)∂4

+(5.94796× 10−8t4 + .02376t3 − .07822t2 + .12086t− .06238)∂3

+.16326t4 + .04654t3 − .27267t2 + .12476t+ .03898)∂2

+(−.21833t5 − .10868t4 − .05617t3 + .63939t2 − .38597t+ .14036)∂

+(.21833t5 − .27291t4 − .01462t3 − .09418t2 + .24952t− .12086).

We compute initial guesses (removing content numerically where appropriate)

hguess =.11192∂3 + (.33514t− .22357)∂2

+(−.44667t2 − .22358t− .11327)∂ + .44754t2 − .55869t+ .22453,

f ∗guess =(5.97992× 10−8t5 − .00001t4 + .05212− 8.67362× 10−18t2 + 5.20417× 10−18t)∂2

+(−.0001t5 − .00002t4 − .00001t3 + .00238t2 + .15646t− .20842)∂

+(.00003t5 −+.41663t3 − .15629t2 + .57193t− .02463),

g∗guess =(−2.10091× 10−8t5 +−6.93889× 10−18t3 − 1.73472× 10−17t2 + .06967t− .06963)∂2

+(.00002t4 + .00001t3 + .00146t2 − .27937t+ .10474)∂

+(−.00004t5 + .00002t4 + .48596t3 + .00189t2 − .27763t− .00158).

The quality of this initial guess is

‖f − f ∗guesshguess‖2
2 + ‖g − g∗guesshguess‖2

2 = .00003.

The condition number for the Hessian matrix valuated at our initial guess is 21971.20356
and our smallest eigenvalue is .00818. Since ∇2Φ is locally positive definite, we know that
we will converge to a unique (local) minimum. The minimum we converge to is 1.06759×
10−10, which is roughly the amount of noise we added.
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Example 4.3.3 (GCRD via LS). In this example we added a noise factor of 10−4 to f
and g. Performing Linear Algebra over R(t) produced completely unacceptable answers, so
we used a Least Squares algorithm to compute an approximate GCRD.

f =(.11329t6 + .23414t5 + .12840t4 + .00755t3 + .00005)∂3

+(.00001t6 + .23414t5 + .59667t4 + .02269t3 − .04528t2 − .02266t+ 3.67436× 10−7)∂2

+(−.11329t6 + .33231t5 − .43054t4 − .00754t3 − .00003t2 − .06798t+ .00003)∂

(−.00001t6 − .23414t5 + .34741t4 + .01510t3 − .06799t2 + .09064t+ .00004).

g =(.01938t4 − .03876t3 − .07752t2 + .03876t+ .05819)∂3

+(.13567t4 + .23252t3 − .07750t2 − .34879t+ .29066)∂2

+(−.01938t4 + .13563t3 + .03873t2 + .25195t− .23257)∂

+(−.13562t4 + .44570t3 − .56198t2 − .03874t+ .17439).

Using a Least Squares variant of our Numeric GCRD algorithm, we are able to compute
(without removing content)

hguess =(t2 + 1.94162t+ .93768)∂2 + 2.87182∂

+(−.94502t2 + 2.84696t− 3.82712),

f ∗guess =(.00712t6 − .01655t5 + .71917t4 + .05630t3 − .00048t2 − .00199t+ .00155)∂

+(−.00061t6 − .01248t5 + .02319t4 + .04309t3 − .02430t2 − .12387t− .00820),

g∗guess =(.00041t4 − .00715t3 + .13885t2 − .50330t+ .36942)∂

+(.00381t4 − .01139t3 + .86465t2 − .48856t+ .00231).

The quality of this initial guess is

‖f − f ∗guesshguess‖2
2 + ‖g − g∗guesshguess‖2

2 = .00328.

The condition number for the Hessian matrix valuated at our initial guess is 148.62547 and
our smallest eigenvalue is .04615. Since ∇2Φ is locally positive definite, we know that we
will converge to a unique (local) minimum. The minimum we converge to is 9.53931×10−9.

General Examples

We provide results that demonstrate the robustness of our algorithms. We consider differ-
ential polynomials whose degrees in t and ∂ are balanced and unbalanced. The coefficients
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of the inputs were generated using the Maple routine randpoly(). The inputs f and g
were normalized so that ‖f‖ = ‖g‖ = 1. We introduced normalized noise to the coefficients
of f and g, so that the relative error is size of the perturbation. Precisely, if f + ∆f and
g + ∆g are perturbed from f and g by the quantities ∆f and ∆g, then the relative error
in the coefficients of f and g is given by ‖∆f‖2 = ‖∆g‖2.

We recall that the Newton iteration optimizes ‖f−f̃‖2
2+‖g−g̃‖2

2, which is the sum of the
squares of the errors. The initial error and error from post-refinement are expressed as the
sum of square errors accordingly. In all of the examples when there were no perturbations
in the coefficients of f and g, our numeric GCRD algorithm and post-refinement procedures
were able to compute an exact GCRD to machine precision. When perturbations imposing
a relative error of 10−8 in the coefficients of f and g were introduced, we were able to
compute a solution to the approximate GCRD problem in every example.

Introducing perturbations imposing a relative error of order 10−4 and 10−2 into the
coefficients of f and g prevented computation of an approximate GCRD in some examples.
Instead, we provide examples of the largest perturbation in the coefficients of f and g that
we were able to compute an approximate GCRD.

Balanced Degrees in t and ∂

The following results of experiments were conducted on differential polynomials whose
degrees in t and ∂ were proportional, or balanced.

Example Input (∂, t) GCRD (∂, t) Noise Initial Error Newton Error
1 (2,2) (1,1) 1e-2 2.63579e-3 9.37365e-5
2 (2,2) (1,1) 1e-2 6.98136e-4 8.96068e-5
3 (3,2) (2,1) 1e-2 1.69968e-2 1.26257e-4
4 (3,4) (2,2) 1e-2 3.8269e-3 1.04271e-4
5 (4,4) (3,2) 1e-2 3.15314e-1 FAIL
5 (4,4) (3,2) 1e-4 9.29336e-7 8.97294e-9

Unbalanced Degrees in ∂

The following results of experiments were conducted on differential polynomials whose
degrees in ∂ were relatively larger than their degree in t.
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Example Input (∂, t) GCRD (∂, t) Noise Initial Error Newton Error
1 (2,2) (1,1) 1e-2 1.13109e-3 2.90713-e5
2 (3,2) (2,1) 1e-2 6.72179e-4 1.13998e-4
3 (4,2) (3,1) 1e-2 3.00365e-4 1.04038e-4
4 (5,2) (4,1) 1e-2 9.01982e-4 1.23557e-4
5 (6,2) (5,1) 1e-2 6.61552e-3 FAIL
5 (6,2) (5,1) 1e-4 2.74084e-4 1.12566 e-8

Unbalanced Degrees in t

The following results of experiments were conducted on differential polynomials whose
degrees in t were relatively larger than their degree in ∂.

Example Input (∂, t) GCRD (∂, t) Noise Initial Error Newton Error
1 (2,3) (1,2) 1e-2 1.27092e-2 1.43153e-4
2 (2,6) (1,4) 1e-2 5.04286e-1 FAIL
2 (2,6) (1,4) 1e-4 7.78993e-4 1.31180e-8
3 (2,8) (1,6) 1e-4 6.9361e-2 FAIL
3 (2,8) (1,6) 1e-8 3.92268e-10 1.15653e-16
4 (2,11) (1,8) 1e-8 6.20749e-10 1.26549e-16
5 (2,13) (1,10) 1e-8 2.23588e-10 1.03136e-16
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Chapter 5

Conclusion

In this thesis we have formally presented our approach to the approximate GCRD problem.
We have seen that, under reasonable assumptions the approximate GCRD problem is well
posed. In particular, we show that Newton iteration will converge to an optimal solution
if the residual is sufficiently small. Furthermore, the results of this thesis are a foundation
that can be generalized to other non-commutative polynomials in a Euclidean domain. We
believe that this work and related problems can also be approached from a structured low-
rank approximation [13, 24]. In particular, most the results of this thesis can be adapted
to Ore polynomials, whose coefficient field is R[t]. This is true in general, as we use
resultant-like and convolution-like matrices to linearize most operations. A particular
example amenable to our results is the shift operator, commonly associated with linear
difference equations.

The results of this thesis have many rich applications in working with approximate
differential polynomials. Computation of an approximate GCRD enables computation of
a corresponding approximate LCLM, by solving a linear least squares problem. The tools
developed for approximate GCRD provide an initial approach to approximate factoriza-
tion of differential polynomials. Furthermore, we believe that these results can be easily
extended to computing the approximate GCRD of many differential polynomials, through
the use of a generalized differential Sylvester matrix.

Although we do not have certification results on the degree of an approximate GCRD,
we can obtain a reasonable guess by enumerating over the degrees of all possible approxi-
mate GCRDs, similar to the Structured Total Least Norm approach adopted for multivari-
ate polynomial approximate GCD [14]. A possible direction of research for certification,
would be to look at the differential subresultant sequence and the singular values of their
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inflated block matrices [7].
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