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Abstract

In this work we formalize a new natural objective (or cost) function for bi-
clustering - Monochromatic bi-clustering. Our objective function is suitable for
detecting meaningful homogenous clusters based on categorical valued input ma-
trices. Such problems have arisen recently in systems biology where researchers
have inferred functional classifications of biological agents based on their pair-
wise interactions. We analyze the computational complexity of the resulting
optimization problems. We show that finding optimal solutions is NP-hard
and complement this result by introducing a polynomial time approximation
algorithm for this bi-clustering task. This is the first positive approximation
guarantee for bi-clustering algorithms. We also show that bi-clustering with our
objective function can be viewed as a generalization of correlation clustering.
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Chapter 1

Introduction

1.1 Background

Common clustering tasks take as input a data set and a similarity (or distance)

function over the domain, with the aim of finding a partition of the data into

groups of mutually similar elements. Bi-clustering is a variant of this general

task, in which the input data comes from two domain sets, and instead of

having a distance function over elements, the input contains some relation over

the cartesian product of these sets. The Bi-clustering task is usually to partition

each of the sets, such that the subsets from one domain, exhibit similar behavior

across the subsets of the other domain.

Definition 1.1.1. Given a matrix M of m rows and n columns, the bi-clustering

task is to find subsets of the rows which exhibit similar behavior across subsets

of the columns, or vice versa.

Cheng and Church, [3], were the first to introduce bi-clustering for the purpose

of gene expression analysis. Gene expression profiling has been established as a

standard technique for measuring the activity (the expression) of thousands of
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genes at once, under different biological conditions, to create a global picture

of the cellular function. Microarrays or DNA chips, allow the measurement of

mRNA levels simultaneously for thousands of genes. The set of measured gene

expression levels under one condition are called the profile of that condition.

A gene expression matrix, is a set of gene expression profiles , with rows cor-

responding to genes and columns corresponding to conditions. It is believed

that the same activation patterns can be common to groups of genes across a

collection of experimental conditions. This means that subsets of genes will be

coexpressed under certain experimental conditions, but may behave almost in-

dependently under other conditions. Discovering such local expression patterns,

the subsets of genes and conditions, may be the key to uncover many genetic

pathways that are not apparent otherwise. Mathematically formulated, this is

a bi-clustering task as applied to gene expression matrices.

E-commerce and online content distribution have greatly evolved during the

last decade due to the world wide increase in internet and web based activities.

Consumers are often required to identify content of interest from a potentially

overwhelming set of choices. For example, online movie rentals, online book

shopping, online audio broadcasting etc. Recommender systems have emerged

as an important response to this so-called information overload problem. The

goal of these systems is to give users an intelligent and proactive information

service by making concrete product or service recommendations that are sym-

pathetic to the learned preferences and needs of the customer.

One of the most dominant recommendation strategies is called Collaborative

Filtering (CF). CF is motivated by the observation that people often look to

their friends for recommendations. It relies on the availability of user profiles

that capture the past rating histories of users. Recommendations are generated
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for a target user by drawing on the rating histories of a set of suitable recommen-

dation partners. These partners are generally chosen because they share similar

or highly correlated rating histories with the target user. The CF task can be

expressed as a bi-clustering problem with rows corresponding to users, columns

to items, and the matrix entries describing a user-item preference, which is typ-

ically a score on some scale. Grouping the users and items into subsets which

exhibit similar behavior can be used to predict missing user-item preferences

as well as the behavior of new users or preferences regarding new products. A

bi-clustering solution for collaborative filtering was suggested in [7] and in [5].

Bi-clustering, or co-clustering as it is sometimes referred to in the literature, is

far from being a new framework. Bi-clustering algorithms have been applied

to various fields, such as systems biology, information retrieval, text categoriza-

tion and data mining. While bi-clustering tasks share the same general goal,

namely, finding homogeneous patterns in a given data matrix, they vary in the

mathematical formulation of the homogeneity, or similarity notion. The mathe-

matical formulation of a bi-clustering task is usually given by the cost function

it is aiming to optimize. The cost function conveys the similarity notion which

the specific bi-clustering is trying to recover. Under a specific cost function, a

score is assigned to each possible partition of the matrix, and the task becomes

an optimization problem of finding the lowest (highest) cost partition. Natu-

rally, there exist a host of bi-clustering algorithms, yet, in many cases there is

little by way of a formal definition of the bi-clustering tasks. There is even less

bi-clustering related work presenting an analysis of the complexity of the task.

While some NP-hardness results exist for some formulations of bi-clustering, we

are not aware of any positive approximation guarantees.
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One active line of research is the development of bi-clustering algorithms with-

out an explicit cost function. For example, the Coupled Two-Way Clustering

(CTWC) introduced in [8], defines a generic scheme for transforming a one di-

mensional clustering algorithm into a bi-clustering algorithm. The ”SAMBA”

algorithm [16] uses probabilistic modeling of the data and graph theoretic tech-

niques to identify subsets of genes that jointly respond across a subset of condi-

tions. Spectral bi-clustering which employs linear algebraic techniques to iden-

tify meaningful structures, is another example of a class of cost function-less

bi-clustering techniques. Such a technique was introduced in [13] and was ap-

plied to bi-clustering of a microarray data.

The first definition of bi-clustering as an optimization problem over some well

defined objective function was introduced by Hartigan [12]. Hartigan consid-

ers real valued matrices and proposes several objective functions, including the

sum of block’s variances(in the blocks induced by the clusterings of rows and

columns). Hartigan also proposes a heuristic for finding low-cost bi-clustering,

however, with no performance guarantees either in terms of the quality of the

optimization or in terms of its computational complexity.

Cheng and Church, in [3], introduced bi-clustering for the purpose of gene ex-

pression analysis. They formally define a cost function called the low mean

squared residue, which can be viewed as a variant of Hartigan’s minimum

variance cost where the row and column averages of each entry are taken

into account as follows: The residue of an element aij in the block AIJ is,

rı = (aı − aI − aıJ + aIJ) where aI, aıJ and aIJ are the row and column

and block means. The mean squared residue of a block AIJ , denoted as H is,

H(I, J) = 1
|I||J|

∑
ı∈I,∈J(rı)2. The motivation behind this cost function is that
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a ”good” block should have a constant expression level plus possibly additive

row and column specific effects. After removing row, column and block aver-

ages, the residual should be as small as possible. Cheng and Church propose an

iterative search algorithm and as such converge to a local minima.

Other notable objective functions used in bioinformatics include the loss in

mutual information of Dhillon, Mallela, and Modha [6], the square residue of

Cho, Dhillon, Guan, and Sra [11]. In all of these papers, neither optimization

quality guarantees nor computational complexity bounds are proved.

1.2 Monochromatic Bi-clustering

We formalize a new bi-clustering cost function, which we call monochromatic

bi-clustering. Given an input matrix over some fixed finite domain of values we

wish to partition the rows and the columns of the matrix such that the resulting

matrix blocks are as homogeneous as possible.

The monochromatic cost of a partition of a given matrix, is the sum over the

partition induced blocks, of the number of entries that are different than the

majority in their block.

Formally, Given an input matrix M , the monochromatic cost of partitions PR =

(R1, . . . , Rk) of the matrix rows and PC = (C1, . . . , C`) of the matrix columns

is the following sum

∑

1≤s≤k, 1≤t≤`

φ(Rs × Ct)

|M | where for a matrix block B,

φ(B) = min(|{(ı, ) : (ı, ) ∈ B , M(ı, ) = 0}|, |{(i, j) : (ı, ) ∈ B , M(ı, ) = 1}|)

namely, the number of B’s entries that are not equal to the majority value in B.

In the case of a tie, we arbitrarily declare one of the tied most frequent labels
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as the majority label.

For the most part in this thesis we focus on binary matrices, however, our results

can be easily extended to matrices over multiple values.

1.2.1 Motivation

The motivation for our formulation comes from applications of bi-clustering

in systems biology. Recent research into various domains of systems biology

addresses the analysis of networks of interactions. In studying networks of

metabolic yeast genes Segre, DeLuna, Church and Kishony [4] have found that

gene pairs can be grouped into “functional modules” that interact with each

other “monochromatically”. That is, the question of whether a pair of genes in-

teract by buffering or aggravating each others individual effects is almost purely

determined by their group (or module) memberships. Similarly, Yeh, Tscumi

and Kishony [14] investigated multidrug effects by analyzing the network of pair-

wise interactions between antibiotics that effect the growth rate of Escherichia

coli. They found that the drugs could be separated into classes such that antibi-

otics from two classes interacted either synergistically or antagonistically, based

purely on the classes to which they belonged. It turns out that these classes

correspond to the cellular functions effected by the drugs. These studies suggest

that clustering of biological agents based on their pairwise interactions can be

applied to discover the functional classifications of these agents.

1.2.2 Correlation Clustering Relation

While some of the bi-clustering problems model situations in which the input

objects come from disparate domains (like movies and viewers or text docu-

ments and words), one can also consider a symmetric variant of the bi-clustering

paradigm. This version models the case where the input matrix records pair-
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wise relations among the elements of a single set. In the symmetric problem,

the input matrix is a square symmetric matrix, and the output partitions of

the rows and columns are required to be identical. The results of this research

apply to both versions of the problem, however, for the sake of concreteness,

our presentation is mostly in terms of the non-symmetric version.

It is interesting that a version of a clustering problem, as opposed to bi-clustering,

correlation clustering as defined by Bansal,Blum and Chawla, [2], can be viewed

as a special case of symmetric monochromatic bi-clustering. Correlation cluster-

ing is concerned with clustering sets that have a redundant version of a similarity

relation over them. The similarity takes only one of two values ”similar” or ”dis-

similar”. Formally, the input to correlation clustering is a complete graph with

binary labeled edges, {−1, +1}. The clustering goal is to find a partition of

the graph vertices into groups (clusters) such that there are as few as possible

−1 edges inside clusters and as few as possible +1 edges between vertices in

different clusters. Giotis and Guruswami [9], analyze the correlation clustering

with a fixed number of clusters version of the problem, in which the number

of clusters is predetermined as part of the input. By viewing the input to the

symmetric monochromatic bi-clustering task as a complete graph with labeled

edges, one can readily model the correlation clustering with a fixed number of

clusters (see section 1.3 for details). Note that our bi-clustering task is strictly

more general. The correlation clustering checks only for the configuration that

has one value along the matrix diagonal blocks and another value off the diag-

onal. For example, the systems biology applications do not conform to such a

restriction.

One should note that while in correlation clustering the problem is meaningful
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even when the number of clusters is not predetermined, the determination of

the numbers of row and column clusters in our problem is inevitable, since oth-

erwise the trivial singleton partition always achieves an optimal zero-cost.

1.2.3 The Contribution of This Research

Apart from introducing the monochromatic bi-clustering problem, we focus on

analyzing the complexity of the resulting optimization task. We prove that on

the one hand finding an optimal solution to monochromatic bi-clustering is NP-

hard, on the other hand however, we present an approximation algorithm with

performance guarantees. Namely, we introduce an algorithm for finding a close

to optimal bi-clustering and prove that it is a polytime approximation scheme

for the monochromatic bi-clustering task.

In spite of the existence of a wide variety of bi-clustering algorithms, there exists

very little theoretical analysis of bi-clustering problems. In particular, we are

not aware of any previous positive approximation guarantees for a bi-clustering

algorithm.

Our approximation results, though stated with respect to binary matrices, can

easily be extended to matrices over multiple values. This results in an increase in

computational complexity which is exponential in the number of values (though

this number is typically small), yet still polynomial in the size of the input ma-

trix. The extension can be applied to problems where the domain consists of

multiple categorical values.

The remainder of this thesis is organized as follows. After establishing some
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notations and basic definitions in 1.3, we show that the monochromatic bi-

clustering solution is NP-Hard in 2 and present an approximation algorithm for

the monochromatic bi-clustering problem in 3. In section 4 we present addi-

tional research directions which were explored relating to the monochromatic

bi-clustering task. Section 5 presents our conclusions.
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1.3 Preliminaries

Let M ∈ {0, 1}m×n denote a binary input matrix and let R and C denote

M ’s rows and columns respectively. Let a = (ı, ) denote a single entry in the

matrix. We denote by k and ` the number of rows and columns clusters. Let

PR, PC denote partitions of the rows and columns of M PR = (R1, . . . , Rk) and

PC = (C1, . . . , C`) (i.e. R =
⋃

Rı and for ı 6= , Rı∩R = ∅ and similarly for C).

We use P = (PR, PC) to denote a partition for M into the k × ` sub-matrices,

{Rs × Ct : s ≤ k, t ≤ `}.

Definition 1.3.1. (Monochromatic cost) Given an input matrix M and a parti-

tion P = (PR, PC), the Monochromatic cost of the partition reflects the amount

of non-homogeneity of the entries in the sub matrices,

MonD(M, P ) =

∑

(s,t):s≤k,t≤`

φ(Rs × Ct)

|M | for a matrix block B,

φ(B) = min(|{(ı, ) : (ı, ) ∈ B , M(ı, ) = 0}|, |{(i, j) : (ı, ) ∈ B , M(ı, ) = 1}|)

namely, the number of B’s entries that are not equal to the majority value in

B. The superscript D denotes Disagreement.

Definition 1.3.2. Given an input matrix M and a partition P = (PR, PC),

the Monochromatic agreement of the partition is

MonA(M, P ) = 1−MonD(M, P )

In the maximization version of the problem we seek a partition of the input

matrix which maximizes the Monochromatic agreement.

Claim 1.3.3. For every matrix M , there exists a partition P ,

such that MonA(M, P ) ≥ 1
2
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Proof. this is true since the cost of the partition that leaves all of the matrix’s

rows in the same cluster and all of the matrix’s columns in the same cluster is

equal to

φ(M) =
min(|{(ı, ) : Mı, = 0}|, |{(i, j) : Mı, = 1}|)

|M | ≥ 1
2
.

Definition 1.3.4. a label matrix is a k × ` binary matrix, L ∈ {0, 1}k×`.

We use label matrices to represent the majority values of the entries in the

k × ` blocks induced by a matrix partition. Such a matrix can be viewed as a

compressed representation of the original matrix.

Definition 1.3.5. Given a partition, P = (PR, PC), of an input matrix M ,

and a label matrix L, the L-monochromatic cost of the partition is the sum

over all pair {(ı, ) : ı ≤ `,  ≤ k} of φL(Rı × C), where φL(Rı × C) for a

matrix block, Rı × C, is the number of entries in the block whose values differ

from Lı,. We will use L-cost and L-monochromatic cost interchangeably.

The L-monochromatic cost of a partition is the sum over blocks induced by the

partition, of the number of the block’s entries which are different from the label

of the block (instead of the majority value of the entries in the block).

Definition 1.3.6. Given a set of rows R and a set of columns C we say that

R ∼ C if |R| = |C| and there is a bijection h : R → C such that ∀r ∈ R,

r = h(r)T . Namely, viewed as sets of vectors, R and C are identical.

A feasible solution for a bi-clustering problem, where the input matrix consists

of pairwise relations between the elements of a single set, must have an identical

partition of the rows and columns. Both are in fact clusterings of the same set.

Definition 1.3.6 is used to formulate this requirement.
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Definition 1.3.7. Given a square matrix M , a k × k bi-clustering of M ,

((R1, . . . , Rk), (C1, . . . , Ck)) is symmetric if there exist a permutation π of the

set of indices, {1, . . . , k}, such that ∀i Ri ∼ Cπ(i).

Definition 1.3.8. Given a matrix M , a k×k bi-clustering of M , ((R1, . . . , Rk), (C1, . . . , Ck))

is diagonal if, for all i ≤ k, the majority value of the entries in the block Ri×Ci

is 1 where the majority in each off-diagonal block is 0.

A label matrix representing a diagonal monochromatic solution has 1 along the

diagonal and 0 in the off diagonal entries.

Definition 1.3.9. The correlation clustering problem in a graph notation

is given a complete graph on n nodes with each edge labeled either + (similar)

or − (dissimilar), find a partitioning of the vertices into clusters that agrees

as much as possible with the edge labels. The minimization version, aims to

minimize the number of disagreements, namely the number of − edges within

clusters plus the number of + edges between clusters.

Definition 1.3.10. The correlation clustering problem in a matrix nota-

tion is to find, for a binary symmetric matrix S ∈ {0, 1}n×n and an integer

k ∈ N , a symmetric partition of S into k clusters, which minimizes the L-

monochromatic cost, where L is a label matrix with 1 in the diagonal entries

and 0 in the off diagonal entries.

Claim 1.3.11. Definitions 1.3.9 and 1.3.10 are equivalent formulations of the

same optimization problem.
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Chapter 2

Hardness result

In this chapter we show that finding an optimal solution for the monochromatic

bi-clustering problem is NP-hard. We first show its hardness for k=`=2. We

do so by showing that the correlation clustering problem for 2 clusters reduces

to the 2 × 2-monochromatic bi-clustering problem. The hardness of this prob-

lem was shown by Giotis and Guruswami in [9]. We then show the hardness of

k× `-monochromatic bi-clustering for larger values of k and ` by reducing it to

the 2× 2 case.

Given an input Co, to the correlation clustering problem, we translate it to an in-

put matrix M = G(Co) such that the optimal 2×2-monochromatic bi-clustering

solution for M is diagonal, symmetric, and induces an optimal solution for Co.

2.1 Construction of M = G(Co)

In order to force a diagonal solution, we build G(Co) by padding Co with an ex-

tra 2N rows and 2N columns, for N = 4n, where n denotes the number of rows

(and columns) in Co. G(Co) consists of 9 blocks, {Bı,}1≤ı,≤3. The central
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block, B2,2 is the input matrix Co. The 4 corner blocks, B1,1, B1,3, B3,1 B3,3

will be square blocks of size N ×N each. The remaining four blocks will there-

fore have size n×N each.

As for the entries of this matrix, M , all entries in B1,1 and B3,3 will have value

1. The entries of the central block, B2,2 will stay as they are in Co, and all the

other entries (in the remaining 6 blocks) assume value 0. We use R(Bı,∗), ı ≤ 3

to denote the set of matrix rows in the ı’s row block (on all column blocks),

similarly we use C(B∗,),  ≤ 3 to denote the set of matrix columns in the ’s

column block, as shown in Figure 2.1. We claim that, having picked large enough

N , an optimal 2×2-monochromatic clustering of M , denoted as PR = (R1, R2)

and PC = (C1, C2), must have a diagonal structure. Namely, the bi-clusters

C1×R1 and C2×R2 assume a majority value 1, while the other two bi-clusters

have majority value of 0.

Figure 2.1: The reduction mapping M = G(Co)

2.2 Reduction Proof

Theorem 2.2.1. The optimal 2 × 2-monochromatic bi-clustering solution for

M is diagonal, symmetric, and induces an optimal solution for Co.
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Lemma 2.2.2. There exists a 2 × 2 bi-clustering of M that has error at most

n2 + 2nN .

Proof. Consider the partition defined by C1 = (c1, ...cn/2+N ). That is, without

changing the order of either the rows or columns of M , we cut both the rows and

the columns half way through M . It is not hard to see that for this partition the

majority label for C1 ×R1 and for C2 ×R2 is 1, and the majority label for the

other two blocks is 0. Furthermore, the four corner blocks, B1,1, B1,3, B3,1, B3,3

are perfectly labeled, so all the minority labeled entries belong to the non-corner

Bı,’s, and they contain just n2 + 4nN entries. The cost is furthered reduced

to n2 + 2nN since the non-corner blocks, have a value ’0’ and therefor are not

errors in the blocks with majority value ’0’. It is easy to verify that exactly half

of their 4nN entries will be placed in these blocks.

Lemma 2.2.3. If N ≥ 4n, any optimal 2 × 2-monochromatic bi-clustering

solution for M , denoted by OPT(M), is diagonal.

Proof. It is not hard to see that any non-diagonal solution (that is, a solution

that has two adjacent blocks of the partition assume the same majority value, is

bound to have all the entries in one of the four corner Bı,’s misclassified (that is,

their label does not agree with the majority label of their block). Consequently,

any non-diagonal labeling of a solution 2 × 2 bi-clustering has, inevitably, at

least N2 ≥ n2 + 2nN errors, and therefore is not optimal.

Lemma 2.2.4. For a symmetric matrix S if a minimal

monochromatic-cost 2×2 bi-clustering solution of S, OPT (S), is diagonal, then

it is a symmetric bi-clustering.

Proof. Assume the contrary, namely that OPT (S) is not symmetric. Then there

exist at least one row and column pair which is placed in different clusters. We

denote this pair (r, c). Note that because S is symmetric we can consider the
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rows and columns as pairs (r = cT ). Denote the partitions P=(PR,PC) where

PR = R1,R2 and PC = C1 ,C2. WLOG let us assume that the permutation

which agrees the most with the rows and columns pairs, matches R1 to C1 and

R2 to C2. Assume that r ∈ R1 and c ∈ C2.

In order to prove the lemma, we compare the number of entries of the row vec-

tor r, that are different from their block’s majority value in the partition P ,

with the number of entries of the column vector c, that are different from their

block’s majority. This comparison leads to the conclusion that either r or c has

a better placement. By moving either r to R2 or c to C1 we can reduce the

monochromatic cost of the partition P and therefore P is not optimal.

We can divide the clusters R1,R2 and C1,C2 into two sets. Pairs on which the

partition agrees will be in one set, and its compliment will be in the other set.

Denote those sets by R1a, R1d and R2a, R2d and for the columns C1a, C1d and

C2a, C2d. Note that the following observations hold

1. R1a ∼ C1a and R2a ∼ C2a

2. R1d ∼ C2d and R2d ∼ C1d

3. r ∈ R1d and c ∈ C2d

Figure 2.2 illustrates the above partition.

Since the partition P is a diagonal the majorities in the induced sub matrices

are as follows
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Figure 2.2: The symmetric matrix rows and columns partition.

We denote by {r ⋂
C}, where r is a row vector and C is a set of columns, the

entries of r which intersect with the columns in C. We define {c ⋂
R} in a

similar manner. We call entries which are similar to the majority in their block

”successes”, we call them ”mistakes” otherwise.

The entries of r, can be divided into four groups according to their intersection

with the four columns subsets we defined earlier, we get {r ⋂
C1a} , {r ⋂

C1d}
,{r ⋂

C2a} and {r ⋂
C2d}. In the same manner we can divide the entries of c

into {c ⋂
R1a} ,{c ⋂

R1d}, {c
⋂

R2a} and {c ⋂
R2d}. Recall that r and c are

essentially the same vector, and that r ∈ R1 and c ∈ C2. We perform an analysis

of the L-cost derived by the above subsets in the partition P :

1. The subsets {r ⋂
C1a} = {c ⋂

R1a} consists of the same entries values,

because R1a ∼ C1a. However, {r ⋂
C1a} reside in the block R1×C1 where

the majority of the entries is ’1’ while {c ⋂
R1a} reside in R1 × C2 where

the majority of the entries is ’0’. This means that for these subsets the

number of ”mistakes” derived by one is exactly the number of ”successes”

derived by the other and vice versa.

2. The subsets {r ⋂
C2d} = {c ⋂

R1d} have the same entries values, both
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{r ⋂
C2d} and {c ⋂

R1d} reside in the block R1×C2 where the majority is

’0’. This means that these subsets exhibit the same number of ”mistakes”

and ”successes” in P .

3. The subsets {r ⋂
C1d} = {c ⋂

R2d} have the same entries values, {r ⋂
C1d}

reside in the block R1×C1 where the majority value is ’1’ , {c ⋂
R2d} re-

side in R2 × C2 where the majority value is ’1’ as well. This implies that

these subsets exhibit the same number of ”mistakes” and ”successes” in

P .

4. The subsets {r ⋂
C2a} = {c ⋂

R2a} have the same entries values, {r ⋂
C2a}

reside in the block R1 × C2 where the majority is ’0’ while {c ⋂
R2a} re-

side in R2 × C2 where the majority value is ’1’. Like in 1, the number of

”mistakes” derived by one is equal to the number of ”successes” derived

by the other and vice versa.

From the above comparison it is clear that either c or r has a better ”score” of

”mistakes” vs. ”successes” in its current placement. We can then move the less

successful one to the other cluster and thus achieve a reduction in the overall

cost. This is a contradiction because we assumed that the solution is optimal.

Lemma 2.2.5. For N ≥ 4n any optimal 2 × 2 bi-clustering for M partitions

the rows in M such that the newly added row sets R(B1,∗) and R(B3,∗) reside

in different row clusters and similarly C(B∗,1) and C(B∗,3) reside in different

column clusters.

Proof. By Lemma 2.2.3 any such optimal solution is diagonal. WLOG we con-

sider the case that the blocks along the diagonal have majority value 1. The

partition that places R(B1,∗) and R(B3,∗) in different clusters and C(B∗,1) and

C(B∗,3) in different clusters, yields a perfect zero error cost for every entry in
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each of the blocks B1,1,B1,3,B3,1 and B3,3 (with respect to the diagonal solu-

tion we consider). For each of the rows and columns in R(B1,∗), R(B3,∗) and

C(B∗,1), C(B∗,3) the cost in this partition is at most n, whereas in any different

placement, each displaced row or column incurs a cost of at least N .

Lemma 2.2.6. Any optimal solution, P = (PC , PR) for M induces a feasible

solution for the correlation clustering problem on the matrix Co.

Proof. Consider the partition of the rows (or columns) of Co induced by P

(that is, the restriction of P to the sub-matrix, Co). This is a symmetric

solution for Co since Co is a diagonal block in M and, by Lemma 2.2.4, P is

a symmetric solution for M . In the correlation clustering setup the rows and

columns represents the same objects. As a result any feasible solution for the

correlation clustering problem must be symmetric (see definition 1.3.7). We have

shown in Lemma 2.2.4 that an optimal bi-clustering solution for a symmetric

matrix is symmetric. Since M is symmetric the partition of Co induced by P ,

an optimal bi-clustering solution, is symmetric and therefore a feasible solution

for the correlation clustering problem for Co.

Lemma 2.2.7. For any solution, P = (PC , PR) for M , if its cost is no more

than n2 + 2nN then its cost is exactly 2nN + CostP (Co), where CostP (Co) is

the correlation clustering cost of the partitioning that P induces on Co.

Proof. By Lemma 2.2.5, every such solution makes no errors on the 4 corner

blocks (B1,1, B1,3, B3,1, B3,3) and exactly 2nN errors on the other blocks except

the central block, Co (namely the blocks B1,2, B2,1, B3,2, B2,3). This is easy to

verify.

Lemma 2.2.8. Given any correlation clustering solution, Q for Co (for k = 2),

there exist a solution P for the matrix M whose monochromaticity cost on M

is 2nN + CostQ(Co).
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Proof. Just extend Q to a solution for M by placing the additional blocks Bi,j

as described above.

Corollary 2.2.9. An optimal (= minimal cost) 2 × 2- monochromatic bi-

clustering for M induces an optimal correlation clustering solution for the input

matrix, Co.

2.2.1 Hardness For All Values

Lemma 2.2.10. The k×` monochromatic bi-clustering problem is NP hard for

all values k ≥ 2, ` ≥ 2.

Proof. The proof is by induction on k and `. Given an input Co for the k × `

bi-clustering problem, we pad it up to a matrix J in such a way that an optimal

(k + 1)× ` optimal bi-clustering for J induces an optimal k × ` bi-clustering of

Co.

In the matrix padding we make use of another entry value s, which is not

in 0,1. For the induction step with respect to the rows, we add 2n new rows,

where n is the number of rows in the original matrix. The new entries all assume

the value s. As a result, the matrix size is tripled and its majority is now s.

Consequently, under any partition, at least one block would have a majority

value s. Finally, note that it follows that any optimal partition must place all

of the new rows in that block and all original rows in different blocks (otherwise

they will be considered errors). This partition uses one row cluster for the new

rows, leaving k and ` partitions to be made on the original matrix.
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Chapter 3

Approximation Algorithm

3.1 Approximation Algorithm For The Monochro-

matic Bi-clustering

In this section we present a polynomial time approximation scheme (PTAS)

for solving the monochromatic bi-clustering problem for every fixed k and `.

Namely, given any accuracy parameter, ε, for every input matrix, the algorithm

runs in polynomial time and outputs a bi-clustering whose agreement score is

within ε of the best possible bi-clustering for that matrix.

Theorem 3.1.1. There exists an algorithm for the monochromatic bi-clustering

problem, which given an input matrix M and an accuracy parameter ε, runs in

time 2
c

ε2 , for some constant c and outputs a partition P of M , such that

MonA(M,P ) ≥ OPT − 4ε with high probability.
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A pseudo-code of the algorithm is displayed in Algorithm1.

Algorithm 1 Monochromatic bi-clustering

1: Input: matrix M , label matrix L, ε, δ

2: Initialize t = 1
2ε2 log kl

δε .

3: Choose uniformly at random t rows from R r1...rt,

and t columns from C c1...ct

4: for each Partition R1...Rk of r1...rt and each Partition C1...Cl of c1...ct do

5: /* Compute the induced row and column partitions */

6: for each of the rows r ∈ R and columns c ∈ C do

7: compute rowBlock = min
1≤i≤k

ϕS(r, PC , L, ı)

8: compute columnBlock = min
1≤i≤l

ϕS(c, PR, L, ı)

9: put r in rowBlock, put c in columnBlock

10: end for

11: compute the monochromatic L-cost of the partition

12: end for

13: Return the partition with the minimal cost
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3.1.1 Further Notation

We use lower case letters to denote entries of a matrix, a stands for an entry

M(ı, ) of a matrix M . R(a) = Rı denotes the row block to which the entry

a belongs, similarly C(a) = C denotes a column block. We use S to denote

a sample, where S is a set of indices (can be used to denote either rows or the

columns indices), we use t to denote the sample size therefor t = |S| . We use

PR = R1..Rk and PC = C1..C` to denote sample partition of the rows and

columns respectively. Note that R(a) is defined only when ı ∈ S and similarly

C(a) is defined only for  ∈ S. We define the following two functions,

ErrR(a, L, PR, ı) =





1, M(a) 6= L(PR(a), ı)

0, else

ϕS(c,Rq, L, ı) =
1
t

∑

a∈c×S

ErrR(a, L, PR, ı)

The above function ϕS returns for a given column c the cost of placing it in

the i’th column block, based on a sample of its entries (sample of the rows)

and with respect to the Label matrix L. We define ϕS for the rows in a similar

manner. Finally, we denote by OPT the optimal solution for the monochromatic

problem.

3.1.2 Algorithm Overview

The algorithm uses ideas from the PTAS for Max k-CUT by Goldreich et al.

in [10]. The input for our algorithm is a matrix M ∈ 0, 1m×n, ε and δ. The

algorithm outputs a partition PR = (R1, . . . , Rk) and PC = (C1, . . . , C`) of the

rows and columns of M .
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A basic step in the run of the algorithm, is a computation of a partition of the

matrix with respect to a specific label matrix. This step is repeated for every

possible label (up to isomorphism of label matrices) that the monochromatic

solution can assume. Each such run yields a partition whose L-cost is close to

optimal for the tested label. The partition with the minimal cost over the runs

is returned.

After a label matrix has been fixed, the matrix partition, is done in the following

manner. The algorithm chooses randomly a sample of the rows and a sample

of the columns. Then the algorithm goes over all of the possible partitions of

the sample into clusters (k clusters for the rows and ` clusters for the columns).

For each partition of the sample of the rows, the partition of the entire set of

the matrix columns is computed and for each partition of the sample of the

columns, the partition of the entire set of the matrix rows is computed. The

monochromatic cost of the partition of the rows and columns is then computed

and the partition with the lowest cost is returned as the lowest partition for this

label matrix.

We will show that given a partitioned sample of the rows and a label matrix,

there is only one optimal partition of the matrix’s columns, and vice versa and

that this partition can be found in polynomial time.

The sample size of the rows and the columns depends on ε - the approximation

accuracy one is aiming for (but is independent of the input size). The sample

allows us to consider the set of all partitioning of the samples rather than con-

sidering all possible partitions of M .

We will show that taking a sample size of O( 1
ε ) suffices to approximate OPT(M)

within an additive factor of 4ε with high probability. The basic step of our al-
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gorithm, therefore, performs exp(O( 1
ε )) operations.

The following claims form the rationale underlying our algorithm. The claims

are stated with respect to the rows and any fixed label matrix L, but hold just

the same for the columns.

1. Given any partition of the rows, we can find the optimal columns partition

with respect to the L-cost (and the given row partition) in polynomial

time. For each column, the number of mistakes it incurs in each potential

column block (entries which are different than the label given by L) can

be counted, for every column block placement (there are ` possible column

blocks).

2. For any fixed partition of the rows, if we draw a large enough sample of

the rows, then for most columns, their L-cost with respect to the partition

of the sample of the rows, is close to their true L-cost w.r.t. the partition

of the entire set of rows.

3. Given a sample SR of the rows, and a partition PR of this sample, we

say that a partition, PC , of the columns of M is induced by PR and L,

if PC is an optimal column partition with respect to that partition of the

sample rows and to the label matrix L.

4. Given a sample SR or rows, we say that a partition, PC , of the columns

of M is induced by SR, L, if there exist a partition, PR, of SR (into k

subsets) such that PC is an optimal column partition with respect to that

partition of the sample rows and the label matrix, L.

5. If one picks large enough samples of the rows and the columns, then the

set of all the partitions of M induced by these samples, approximates the
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set of all possible partitions of M . In particular, with high probability,

one of these sample-induced partitions will have an L-cost that is close to

the best possible L-cost of M .

3.1.3 Algorithm analysis

Theorem 3.1.2. On input M , L, ε, δ, with probability at least 1 - δ the al-

gorithm outputs k, ` partition of M such that the L-cost of the partition is not

larger than OPT+ 4ε.

Proof. We first consider the partition of the columns.

Let WR
1 ...WR

k denote the partition of M in OPT. We say that the sample

r1...rt ⊂ R is good with respect to WR
1 ...WR

k if there exists a partition R1...Rk

of r1...rt such that, for all columns x ∈ C, except for at most ε|C| columns, the

following holds:

Equation 3.1.3. For all j ≤ `, |ϕS(x,R1...Rk, L, )− ϕc(x,WR
1 ...WR

k , )| ≤ ε

Given a good sample r1...rt and a good partition R1...Rk, we know that for all

but a fraction of ε of the columns in C 3.1.3 holds, therefore,

1. Assume that x ∈ C satisfies 3.1.3. Placing x in a greedy manner with

respect to R1...Rk and the labeling matrix L, which is what the algorithm

does, yields a cost increase compared to the optimal which is bounded by

mε. Where ε is the entry error percentage (see definition of ϕS) and m is

the number of entries in x. Since the total number of columns is n, the

cost increase in this case compared to the optimal solution is bounded by

mnε.

2. Assume that x ∈ C is a column which does not satisfy 3.1.3. The number

of entries disagreeing with the majority in this column is bounded by m,

which is the size of the column. Assuming that r1...rt is a good sample
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and that R1...Rk is a ”good” partition of it the number of such columns

is bounded by nε. This implies a cost increase compared to the optimal

solution, of mnε

3. Altogether the number of errors for the above columns partition is mnε

+ mnε = 2mnε

The same analysis can be applied for the partition of the rows assuming we

have a good columns sample and a good partition of this sample. Therefore the

overall increase compared to the optimal solution is 4mnε.

Since we defined the monochromatic cost as a fraction of the number of mistakes

made by the partition divided by the size of the matrix (mn), we can conclude

that the algorithm yields a solution which is at most OPT+4ε.

Now it suffices to show the following.

Lemma 3.1.4. With probability at least 1 - δ over the random sampling, the

columns and rows, c1...ct and r1...rt, picked by the algorithm are good w.r.t the

partitions in the optimal solution.

Proof. We inspect the rows sample r1...rt which was chosen uniformly in R, let

R1...Rk be the optimal partition of the sample w.r.t the partition of the rows

in the optimal solution W r
1 ...W r

k , so that

Rı = W r
ı

⋂ {r1...rt} ∀ 1 ≤ ı ≤ k

We can focus our analysis on the closest to optimal partition of the sample.

Since our algorithm goes over all possible partitions of the sample, this parti-

tion will be considered by the algorithm.

We consider a column x ∈ C, and a partition of the rows PR, for each row

rı ∈ S in the sample 1 ≤ ı ≤ t and for each column block (column cluster)
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1 ≤  ≤ ` we define a random 1/0 variable, ξı
 ,

ξı
 =





1 if M(rı, x) 6= L(PR(rı), )

0 otherwise.

The partition of the rows sample PR, assigns a row cluster for each row in

the sample, PR(rı) is the index of the row cluster assigned to rı. The index 

1 ≤  ≤ `, is an index of a column cluster, a candidate to place the column x

in. Therefore L(PR(rı), ) is the entry in the label matrix L that corresponds

to the majority of the block RP R(rı) × C and the random variable ξı
 gets 1 if

the entry M(rı, x) is different from this label, meaning that this entry will be

counted as a ”mistake”.

By definition, for a column cluster , adding ξı
 over the entire rows sample

yields:
t∑

i=1

ξi
 = t ϕS(x, R1...Rk, )

This essentially is the approximated cost of placing the column x in the 

column cluster, which is how we defined ϕS .

The probability that ξı
 = 1 is equal to the number of entries of the column

x under the optimal partition W r
1 ...W r

k which are different than the block’s

label, if we choose to place x in the ’s column block. Recall that this prob-

ability (we divide it by m, the number of entries in x), is as defined before

ϕS(x,W r
1 ...W r

k , L, ).

Applying the Chernoff additive bound we get,

Prr1...rt [|ϕS(x,R1...Rk, L, )− ϕS(x, W r
1 ...W r

k , L, )| > ε] < exp(−2ε2t)

By Markov’s inequality (taking t = 1
2ε2 log k

δε ), for each column block , 1 ≤  ≤ `
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with probability 1− δ
` over the choice of r1...rt, for all but ε|C| of the columns

equation 3.1.3 holds.

Therefore with probability of 1− δ, the sample r1...rt is good as required.

The same analysis can be applied for the partition of the rows.

Theorem 3.1.5. For every every k, ` there exists is a polynomial time approxi-

mation scheme for the k×` Monochromatic bi-clustering maximization problem.

Proof. According to claim 1.3.3 there is always a trivial solution to the monochro-

matic bi-clustering problem whose agreement is at least |M |/2. Therefore an

additive ε/2 approximation translates into a relative (1− ε)OPT bound on the

agreement of the solution. The theorem follows from 3.1.1.
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Chapter 4

Additional Research

Directions

4.1 The Regularity Lemma

The Regularity Lemma of Szemerdi is a very well known result in extremal

graph theory. It was introduced by Szemerdi in 1975 as an auxiliary lemma in

the proof of what is now known as Szemerdi’s theorem. The lemma asserts that

every dense graph can be partitioned into a constant number of regular pairs

and a few leftover edges. Therefore each such graph can be well approximated

by the union of a constant number of random like bi-partite graphs.

In its original proof, Szemerdi demonstrated the existence of a regular partition,

but he did not provide a constructive proof to obtain such a partition. Later,

Alon et al.[1] developed the first algorithm to create a regular partition of an

arbitrary graph. They showed that a regular partition can be found in polyno-

mial time complexity. Other polynomial-time algorithms for finding a regular
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partition have been found since.

The Regularity Lemma has many applications in extremal graph theory, addi-

tive combinatorics, and computer science including computer vision and pattern

recognition. The Regularity Lemma can be used as a general framework to prove

certain approximate qualitative properties of arbitrary graphs. According to the

lemma, it suffices to prove the desired statement for the finite set of regular pairs

that approximate arbitrary graphs up to a certain level of accuracy. Once the

dimensionality of the problem has been reduced to a finite, much smaller size,

computer based search techniques can be used to solve the problem. Unfor-

tunately, due to the fact that the number of the regular pairs given by the

Regularity Lemma grow extremely fast, this approach is often impractical.

In order to formally describe the Regularity Lemma, we need several technical

definitions, which follow the definitions in [1]

Let G = (V,E) denote a graph, and let A,B denote two disjoint subsets of V , let

e(A,B) denote the number of edges of G with an end-point in A and an end-point

in B. Define the density of the edges between A and B by d(A,B) = e(A,B)
|A||B| .

Definition 4.1.1. For ε > 0, the pair (A,B) is called ε-regular if for every

X ⊂ A and Y ⊂ B for which X ≥ ε|A| and Y ≥ ε|B|, the inequality:

|d(A,B)− d(X, Y )| < ε holds.

A partition of V into pairwise disjoint classes C0, C1, ..., Ck is said to be equitable

if all the classes Ci (1 ≤ i ≤ k) have the same cardinality. The exceptional set

C0 (which may be empty) has only a technical purpose: it makes it possible

that all other classes have exactly the same number of vertices. An equitable

partition C0, C1, ..., Ck with C0 being the exceptional set, is called ε-regular if
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|C0| < ε|V | and all but at most εk2 of the pairs (Ci, Cj) are ε-regular.

Theorem 4.1.2 (Szemerdis Regularity Lemma [15]). For every ε and every

positive integer t there is an integer T = T (ε, t) such that every graph with

n > T vertices has an ε-regular partition into k + 1 classes, where 1 ≤ k ≤ T .

4.1.1 The Regularity Lemma and monochromatic bi-clustering

The symmetric case of the monochromatic bi-clustering problem can be ex-

pressed as a graph problem. The input matrix can be viewed as an adjacency

matrix of a graph with the rows and columns corresponding to two identical

sets of the graph vertices and the entries with the value ’1’ represent an edge

while the entries with the value ’0’ represent a missing edge.

Consider the following graph problem: Given a graph G = (V, E), find a parti-

tion of the graph vertices into k disjoint subsets C1, ..., Ck such that the edge

density between every pair of subsets (Ci, Cj) is either close to one, or close to

zero. Formulated as an optimization problem, we want to find a partition that

minimizes the number of non-edges between pairs of subsets (Ci, Cj) which

have an edge density closer to one, plus the number of edges between pairs of

subsets having an edge density closer to zero.

Note that this graph optimization problem is equivalent to the symmetric case

of the monochromatic bi-clustering.

This observation gives rise to the idea of applying the Regularity Lemma to

monochromatic bi-clustering, formulated as a graph optimization problem. The

partition guaranteed by the Regularity Lemma can be used to approximate the

optimal partition of the matrix with respect to the monochromatic cost function.

The intuition behind this idea, is that having the matrix partitioned into regular

disjoint subsets is desirable in the monochromatic bi-clustering context. This is
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due to the fact that every ε-regular pair, (Ci, Cj), derived by the lemma, must

have a similar density between any subsets of its vertices. According to defini-

tion 4.1.1, for every X ⊂ Ci and Y ⊂ Cj , such that X ≥ ε|Ci| and Y ≥ ε|Cj |,
the density difference is bounded |d(Ci, Cj) − d(X,Y )| < ε. This implies that

the density of (Ci, Cj), d(Ci, Cj) must be either very high (close to one) or very

low (close to zero). In any other case, we can choose the vertex subsets X and

Y , such that the edge density between them, d(X,Y ) is either very high or very

low, thus deviating from d(Ci, Cj), and violating the regularity property.

The Regularity Lemma is stated with respect to regular graphs, but holds just

the same for bi-partite graphs. This means that if we can use the Regularity

Lemma to approximate monochromatic bi-clustering, the result will hold for the

general case as well as the symmetric case.

Although this line of research seems like it could lead to an approximation

scheme for the bi-clustering problem, in reality, the Regularity Lemma’s pre-

conditions, as well as very large bounds on the number of the regular pairs

guaranteed by the lemma, make this approach impractical. For example, in the

algorithm suggested by Alon et al. in [1], the lower bound on the number of

vertices n, a graph should have in order to comply with the Regularity Lemma

is given by the following calculation;

For any t ∈ N>0 and every ε > 0, let b be the least positive integer such that

4b > 600( ε4

16 )−5 , b > t

Let f be the integer valued function defined inductively as,

f(0) = b , f(i + 1) = f(i)4f(i)

and take

T = f(d10( ε4

16 )−5e) and N = max{T42T , 32T
ε5 }.
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For any graph G = (V, E), having |V | = n ≥ N , a regular partition into k + 1

classes is guaranteed, where t ≤ k ≤ T . To get an intuition on how large these

bounds are, take for example ε = 0.25, T will then be f(d10( (0.25)4

16 )−5e) ≈
f(1020). We don’t need to determine b explicitly to see that f(i) À i, thus

T À 1020 and we also know that N À T .

Other algorithms have been suggested for finding a regular partition of a given

graph, but their bounds on the number of vertices and the number of regular

pairs, are pretty much along the same lines of [1].

In conclusion, although it seems like the Regularity Lemma has high correlation

with the kind of structure we seek to uncover in monochromatic bi-clustering,

it is an impractical approach. The typical size of bi-clustering problems is far

less than the number required for the Regularity Lemma to hold. Also, usually

the desirable partition of the matrix is into a much smaller number of clusters

than the one guaranteed by the existing implementations of the lemma.
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Chapter 5

Conclusions

5.1 Conclusions and directions for further re-

search

In this work we formalized a specific bi-clustering task, monochromatic bi-

clustering, that models problems of deducing group structure of vertices of a

bi-partite graph, who’s edges capture a pair-wise relation between the vertices.

Such problems arise recently in systems biology in the study of epistasis networks

where the application of a bi-clustering paradigm seems to lead to biologically

meaningful data classification.

The main technical contribution of our work is the analysis of the computa-

tional complexity of the resulting optimization problem. We provide a polyno-

mial time approximation scheme with arbitrarily good quality of approximation

guarantees. We also show that finding the optimal monochromatic bi-clustering

is NP-hard. Such understanding of the computational complexity of optimiza-

tion is very rare in the domain of bi-clustering algorithms in general, and in

particular for biologically relevant bi-clustering.
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In spite of having achieved a polynomial time approximation scheme, we are

well aware that from a practical point of view there is still quite a way to go

before one has an algorithm that is fast enough to handle large data sets under

realistic time constrains. We believe that with the growing realization of the

relevance of bi-clustering tasks, further algorithmic research will follow and lead

to the rigorous formalization of other relevant bi-clustering problems, and in the

development of faster practical algorithms for such tasks.

Other interesting directions of future research include the investigation of

sample-based bi-clustering and the intriguing issue of the relationship between

the structure of the network of objects and other sources of similarity between

objects.
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