
A Comprehensive Study of DRAM
Controllers in Real-Time Systems

by

Danlu Guo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

c© Danlu Guo 2016



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The DRAM main memory is a critical component and a performance bottleneck of almost
all computing systems. Since the DRAM is a shared memory resource on multi-core plat-
forms, all cores contend for the memory bandwidth. Therefore, there is a keen interest in
the real-time community to design predictable DRAM controllers to provide a low memory
access latency bound to meet the strict timing requirement of real-time applications.

Due to the lack of generalization of publicly available DRAM controller models in
full-system and DRAM device simulators, researchers often design in-house simulator to
validate their designs. An extensible cycle-accurate DRAM controller simulation frame-
work is developed to simplify the process of validating new DRAM controller designs. To
prove the extensibility and reusability of the framework, ten state-of-the-art predictable
DRAM controllers are implemented in the framework with less than 200 lines of new code.

With the help of the framework, a comprehensive evaluation of state-of-the-art pre-
dictable DRAM controllers is performed analytically and experimentally to show the im-
pact of different system parameters. This extensive evaluation allows researchers to assess
the contribution of state-of-the-art DRAM controller approaches.

At last, a novel DRAM controller with request reordering technique is proposed to
provide a configurable trade-off between latency bound and bandwidth in mixed-critical
systems. Compared to the state-of-the-art DRAM controller, there is a balance point
between the two designs which depends on the locality of the task under analysis and the
DRAM device used in the system.

iii



Acknowledgements

I would like to thank my supervisor Rodolfo Pellizzoni for his dedication, encouragement
and guidance. This research and thesis would not have been accomplished without his
constant support.

I sincerely thank my committee members, Professor Hiren Patel and Professor Andrew
Morton for reviewing this thesis. I would also like to thank my collaborators Saud Wasly,
Mohamed Hassan, and Anirudh Kaushik for their valuable contribution for my research
work.

iv



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 4

2.1 DRAM Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 DRAM Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 DRAM Commands and Timing Constraints . . . . . . . . . . . . . 5

2.2 Memory Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Other Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 DRAM Controller Related Work . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 AMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 PMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 RTMem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 ORP and ROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.5 DCmc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



2.3.6 MAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.7 MEDUSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.8 ReOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.9 MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 MCsim: A Cycle-Accurate DRAM Controller Simulation Framework 18

3.1 Architectural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Configuration and Simulation Engine . . . . . . . . . . . . . . . . . . . . . 20

3.3 Detailed System Design and Interaction . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Top-Level Memory Controller . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Functional Hardware Blocks . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Validation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Comprehensive Evaluation of Real-Time Memory Controller 31

4.1 Analytical Worst-Case Memory Access Latency . . . . . . . . . . . . . . . 32

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Benchmark Execution Times . . . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Number of Requestors . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.3 Row Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.4 Data Bus Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.5 Memory Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.6 Large Request Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.7 Mixed Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Write-Read Switching . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3 Latency and Bandwidth Trade-offs . . . . . . . . . . . . . . . . . . 46

4.4.4 Analytical Bounds vs Simulation Results . . . . . . . . . . . . . . . 47

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



5 A Requests Bundling DRAM Controller for Mixed-Criticality System 48

5.1 REQBundle Controller Architecture . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Request Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.2 Command Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Timing Analysis for HRT Request . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Execution Time of A Round . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Worst Case Latency for A HRT Request . . . . . . . . . . . . . . . 60

5.3 Bandwidth Analysis for SRT requests . . . . . . . . . . . . . . . . . . . . . 63

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Analytical Request Latency Bound . . . . . . . . . . . . . . . . . . 65

5.4.2 EEMBC Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.3 HRT Requestors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.4 Mixed-Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Summary 70

References 72

APPENDICES 76

A Latency 77

B Formula 80

B.1 AMC, RTMem, PMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.2 MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.3 DCmc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.4 ORP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.5 ROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.6 ReOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



List of Tables

2.1 JEDECT DDR3 DevicesTiming Constraints . . . . . . . . . . . . . . . . . 7

2.2 Memory Controllers Summary . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Queue Structure Configuration . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Memory Controller Architecture Table . . . . . . . . . . . . . . . . . . . . 23

3.3 Simulation Time(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 MC General Equation Components (K(cond) equals 1 if cond is satisfied and 0 otherwise.) 34

4.2 EEMBC Benchmark Memory Traces. . . . . . . . . . . . . . . . . . . . . . 35

4.3 WC Latency (perREQ) Components with BI=1, BC=1 . . . . . . . . . . . 37

4.4 WC Latency (perREQ) Components with 8 REQ(Ex = 15 · K(BI = 8)) . . . . . 40

4.5 Large Request Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Mixed Critical System Configuration for Multi-Rank MCs . . . . . . . . . 44

5.1 WC Latency (perREQ) Components with REQ ≥ 8, and BI=1, BC=1 . . 66

5.2 Row Hit Ratio Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.1 Memory Controllers Summary . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



List of Figures

2.1 Architecture of Memory Controller and DRAM memory module. . . . . . . 5

2.2 DRAM Operation State Machine. . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Architecture of Memory Controller. . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Generalized Real-Time Memory Controller Architecture. . . . . . . . . . . 19

3.2 Request Queue Structure Per Resource Level . . . . . . . . . . . . . . . . . 21

3.3 Command Queue Structure Per Resource Level . . . . . . . . . . . . . . . 22

3.4 MCsim Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 MCsim Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 EEMBC Benchmark WCET with 8 64B REQs and 64bit Data Bus . . . . 36

4.2 WC Latency per Close Request of REQ0 wtih 64Bit Data Bus. . . . . . . . 37

4.3 WC Latency per Open Request of REQ0 wtih 64Bit Data Bus. . . . . . . . 38

4.4 Average Request Latency for Open Page MCs . . . . . . . . . . . . . . . . 39

4.5 Worst Case Latency per Request of REQ0 with 8 REQs. . . . . . . . . . . 40

4.6 Worst Case Latency per Request of REQ0 . . . . . . . . . . . . . . . . . . 41

4.7 WC Latency of 64B REQ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Bandwidth of 2048B REQ7 . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 WC Latency of of HRT REQ0 . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.10 Bandwidth of SRT REQ8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



5.2 Architecture of the Command Scheduler . . . . . . . . . . . . . . . . . . . 50

5.3 Start and End Time of A Round . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Execution of A Round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Worst Case Request Arrival Time . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Execution Pattern of A Round . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Minimum Read BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.8 Minimum Write BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.9 WC Read Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.10 WC Write Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.11 Execution Time of EEMBC Benchmark . . . . . . . . . . . . . . . . . . . . 67

5.12 REQ0 Worst Case Request Latency . . . . . . . . . . . . . . . . . . . . . . 67

5.13 HRT0 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.14 SRT BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Worst Case Execution Pattern in Burst Mode . . . . . . . . . . . . . . . . 77

A.2 Worst Case Execution Pattern in Non-Burst Mode . . . . . . . . . . . . . 78

x



Chapter 1

Introduction

The main memory is a critical component and one of the major performance bottlenecks
in most computer systems such as servers, desktop, mobile and embedded platforms. The
Dynamic Random Access Memory (DRAM) has been the primary choice for the main
memory due to its low latency and high capacity[30]. However, the DRAM access latency
is very long compared to the processor speed. A processor may stall hundreds of cycles
waiting for the data from the main memory. As the number of cores increases in computer
systems, multiple applications can run concurrently and contend with each other for the
available DRAM bandwidth. This inter-application interference can cause random access
delay and degrades the DRAM performance. Higher speed I/O devices and data inten-
sive applications can further stress the memory bandwidth. Therefore, modern computer
systems often require the DRAM main memory to provide both low latency and high
bandwidth.

A real-time application typically has a strong requirement on the system timing per-
formance, because it must produce the right result at the right time to prevent system
malfunctions. A real-time application can be categorized as hard real-time (HRT) and soft
real-time (SRT). HRT applications such as automotive and avionic systems often have a
strict requirement for the deadline, because missing the deadline can cause potential catas-
trophic consequences. Therefore, HRT applications require not only a low latency but also
a guaranteed latency bound for each memory access. On the other hand, SRT applications
can tolerate some missing deadlines but prefer to have some amount of memory bandwidth
in average cases. For example, in video streaming applications, if there are some missing
pixels, the quality of the video is still acceptable, however, if the speed of the streaming
is slow, then the video quality is degraded. A mixed-critical system is a platform that
contains both HRT and SRT applications.

1



To guarantee the temporal requirement of hard real-time applications, the underlying
hardware should support static analysis so that a worst case execution time can be com-
puted. Most Commercial-Off-The-Shelf (COTS) hardware platforms improve the average-
case performance by sacrificing the predictability. The complexity of some of the perfor-
mance improvement mechanisms used in COTS platforms often makes the timing analysis
complex and over-estimated.As a result, the worst-case execution time (WCET) computed
with a high-performance technique may be longer than that obtained with a simple method,
and may not satisfy the timing requirement of safety-critical tasks.

Consequently, there has been considerable interests in the real-time research community
in designing predictable DRAM memory controllers (MC) to produce a low upper bounded
DRAM access latency while delivering bandwidth performance. Due to the complexity of
DRAM access protocols, system organizations, workload characteristics and system design
objectives, the predictable MCs are varied by the internal architectures and scheduling
policies. The design of a predictable MC is further complicated by the advent of multi-
core computer architectures because the DRAM access latency of one task (core) strongly
depends on the activities of the others.

1.1 Contribution

To address the above issues and challenges in designing predictable DRAM controllers, we
provide the following contributions in this thesis:

1. We discuss a characterization of existing predictable MCs based on their key archi-
tectural features and real-time properties.

2. Since the simulation-based study is widely used for computer architecture designs,
accurately simulating the memory system is essential to provide a meaningful full-
system results. DRAM controller simulators can be used to prove the design concept
and compare the performance with other controller designs. However, we realize that
all state-of-the-art controllers are evaluated with distinct simulators. We believe the
reason is that the publicly available DRAM controller simulators have limited gener-
alization and extensibility to satisfy a new design with little effort, therefore designers
have to create simulators from scratch to meet architectural requirements of a partic-
ular scheduling policy. To improve the efficiency of evaluating new controller designs,
we propose a cycle-accurate, extensible modular simulation framework MCsim based
on the general hardware architecture.

2



3. With the help of the MCsim framework, we implement state-of-the-art predictable
DRAM controllers. For the purpose of quickly observing the impact of different
system parameters on the worst case analytical request latency, we introduce an an-
alytical performance model that enables a quantitative comparison of existing MCs.
We then carry out an extensive simulation-based evaluation using embedded bench-
marks and provide insights into the advantages and disadvantages of different con-
troller architectures. In particular, we expose the trade-offs between the latency
bound guaranteed to HRT tasks and the average memory bandwidth delivered to
SRT tasks.

4. Based on the evaluation results, we observe that MCs which take advantage of mem-
ory locality have a strong dependency on the locality analysis of a task. However,
determining the memory locality is not trivial, especially for a cache-based computer
system. The locality analysis can be measured, but the measurement can fail to ac-
count for the worst-case execution pattern. Static analysis can also be used, but may
underestimate the actual locality of the task due to the behavior of cache allocation.
A static analysis approach is proposed in [3], but it is only able to analyze memory
requests due to instruction cache miss. Rather than relying on the determination of
a precise locality analysis, we propose a new DRAM controller that does not depend
on the access pattern. Our new design provides a comparative HRT request latency
bound of MCs considering locality, as well as delivers a configurable SRT request
bandwidth. The trade-off between the latency bound and the SRT bandwidth in our
design can be easily analyzed.

1.2 Thesis Outline

The rest of this thesis is organized as follows: In Chapter 2, we discuss the background
on DRAM devices and the general architecture of DRAM controllers. We then summarize
state-of-the-art predictable MC designs. In Chapter 3, we demonstrate the extensibility
and reusability of the MCsim framework. Then, in Chapter 4, we present a comprehen-
sive evaluation of existing predictable DRAM MCs under various system parameters. In
Chapter 5, we describe the architecture and scheduling policies of REQBundle MC. We
conclude the main contributions of this thesis and future works in Chapter 6.

3



Chapter 2

Background and Related Work

We begin by providing key background details on the double data rate synchronous dy-
namic RAM (DDR SDRAM). Most recently proposed predictable MCs are designed using
JEDEC DDR3 devices. In this thesis, we focus on both DDR3 and its currently available
successor standard, DDR4 because it has similar structures and operations. We only con-
sider systems with a single memory channel, i.e., a single MC and command/data buses,
because if more than one channel is present, then each channel can be treated indepen-
dently. Optimization of static channel assignment for predictable MCs is discussed in [7].

2.1 DRAM Device

2.1.1 DRAM Organization

A DRAM chip is a 3-dimensional array of memory cells organized in banks, rows, and
columns. There are 8 (DDR3/DDR4) or 16 (DDR4) banks that can be accessed simulta-
neously but share the same command/address and data bus. Each bank is further organized
into rows and columns. There is a row-buffer in each bank, which is used to store the most
recently accessed row of memory cells temporarily. Data can only be retrieved once the
requested row is placed in the row-buffer. The row buffer makes subsequent accesses to
the same row (row locality) faster than the accesses to different rows.

A memory module, used in a typical computer system comprises either one or multiple
independent sets of DRAM chips connected to the same buses. Each memory set is also
known as a rank. Figure 2.1 shows an overview of a DRAM memory module with N ranks,

4



where each rank includes 8 DRAM chips. In this example, each chip has an 8 bits data
bus, and 8 chips are combined to form an overall data bus with width WBUS = 8 · 8 = 64
bits for the whole module. Each rank can be operated independently of other ranks, but
they all share the same address/command bus used to send memory commands from the
MC to the device, as well as the same data bus.

DRAM Channel

DRAM 
DEVICE CHIP 

6

DRAM
DEVICE CHIP

7

D
R

A
M

 R
an

k 0

Bank0

BankN

Row Buffer

ro
w

s

columns

DRAM 
DEVICE 
CHIP 0

. . . . .

8-bits 8-bitsDATA BUS 8-bits

ADDRESS/
COMMAND 

BUS

D
R

A
M

 R
an

k N

D
e

co
d

e
r

Figure 2.1: Architecture of Memory Controller and DRAM memory module.

2.1.2 DRAM Commands and Timing Constraints

The commands pertinent to memory request latency are as follows: ACTIVATE (ACT),
READ (RD), READA (RDA), WRITE (WR), WRITEA (WRA), PRECHARGE (PRE)
and REFRESH (REF). Other power related commands are out of the scope of this paper.
Each command has some timing constraints that must be satisfied before the command
can be issued to the memory device. A simplified DRAM state diagram, presented in Fig-
ure 2.2, shows the relationship and timing constraints between device states and commands.
We categorize the timing constraints into inter-bank or intra-bank delays for commands
targeting either the same or different banks. There are also general constraints applied to
commands targeting any bank. As an example, we show most relevant timing constraints
for DDR3 devices in Table 2.1, which are defined by the JEDEC standard [17] .

The ACT command is used to open (retrieve) a row in a memory bank into the row-
buffer. The row remains active for accesses until it is closed by a PRE command. PRE
is used to deactivate the open row in one bank or all the banks. It writes the data in
the row-buffer back to the storage cells; after the PRE, the bank(s) will become available
for another row activation after tRP . Once the required row is opened in the row-buffer,
after tRCD, requests to the open row can be performed by issuing CAS commands: reads
(RD) and writes (WR). Since the command bus is shared, only one command can be sent

5



to the device at a time. If a request accesses a different row in the bank, a PRE has to
be issued to close the open row. In the case of auto precharge, a PRE is automatically
performed after a RD (RDA) or WR (WRA) command. Finally, a REF command needs to
be issued periodically (tREFI) to prevent the capacitors that store the data from becoming
discharged. REF can only be issued once the device is in Idle mode for at least tRP after
all the banks are precharged. After the refresh cycles (tRFC) complete, all the banks will
be in the precharged (idle) state.

Refresh	

Idle	

REF	 (tRFC)	

ACT(tRCD)	 Bank	
Ac9vate	

Reading	

RE
AD
	

READ	(tCCD)	

Wri9ng	

WR
ITE
	

WRITE	(tCCD)	

Bank	
Precharge	

Wri9ng	
autoPRE	WRITEp	(tCCD)	

Reading	
autoPRE	

READp	(tCCD)	

(tRP)	

(tW
L	+
	tW

R)	

(tRTP)	

PRE(tRAS)	 W
RITEp	(tRTW

)	

RE
AD
p	(
tW
L+
tB
us
+tW

TR
)	

PRE(tRTP)	

PRE	(t
WL+tWR)	

Figure 2.2: DRAM Operation State Machine.

A DDR device is named in the format of DDR(generation)-(data rate)(version) such as
DDR(3)-(1600)(H). In each generation, the supported data rate varies. For example, for
DDR3 the data rate ranges from 800 to 2133 MegaTransfers(MT)/s, while for DDR4 the
rate starts from 1600 and goes up to 2400MT/s. Note that since the device operates at
double data rate (2 data transfers every clock cycle), a device with 1600MT/s is clocked
at a frequency of 800MHz. Devices operating at the same speed with lower version letter
can execute commands faster than devices with a higher version.

Based on the timing constraints in Table 2.1, we make the following three important
observations. 1) While the operation of banks can be in parallel, command and data
must still be serialized because the MC is connected to the memory module with a single
command and a single data bus. One command can be transmitted on the command bus
every clock cycle, while each data transmission (read or write) requires tBUS = 4 clock
cycles. In this thesis, we use a burst length of 8 since it is supported by both JEDEC
DDR3 and DDR4 devices. 2) Since consecutive requests targeting the same row in a

6



Table 2.1: JEDECT DDR3 DevicesTiming Constraints

JEDEC DDR3 Specification (Cycles)
Timing Constraints 800D 1066E 1333G 1600H 1866K 2133L

intra-bank constraints
tRCD: ACT to RD/WR 5 6 8 9 11 12
tRL: RD to Data 5 6 8 9 11 12
tWL: WR to Data 5 6 7 8 9 10
tRC : ACT to ACT 20 26 32 37 43 48
tRAS : ACT to PRE 15 20 24 28 32 36
tRTP : RD to PRE 4 4 5 6 7 8
tWR: WR Data to PRE 6 8 10 12 14 16
tRP : PRE to ACT 5 6 8 9 11 12

inter-bank constraints
tRRD: ACT to ACT 4 4 4 5 5 5
tFAW : 4 ACTs Window 16 20 20 24 26 27

general constraints
tRTW : RD to WR 6 6 7 7 8 8
tWTR: WR Data to RD 4 4 5 6 7 8
tCCD: RD(WR) to RD(WR) 4 4 4 4 4 4
tRTR: Rank Switch 2 2 2 2 2 2
tBus: Data to Data 4 4 4 4 4 4

given bank do not require ACT and PRE commands, they can be processed faster than
requests targeting different rows; timing constraints that are required to precharge and
reactivate the same bank (tRC , tRAS, tWR, and tRP ) are particularly long. 3) Switching
between requests of different types (read/write) incurs extra timing constraints in the form
of a read-to-write (tRTW ) and write-to-read (tWL + tBUS + tWTR) switching delays between
CAS commands. Such constraints only apply to CAS commands targeting banks in the
same rank; for CAS commands targeting banks in different ranks, there is a single, short
timing constraint (tRTR) between data transmissions, regardless of the request type.

2.2 Memory Controller Design

Based on the background on DDR DRAM module provided in Section 2.1, we now discuss
the design of DRAM memory controllers. In particular, we describe a common architectural
framework that allows us to categorize different MCs based on their key structural features.

2.2.1 Hardware Architecture

A DRAM controller is the interface to the DRAM memory module and governs access to
the DRAM device by executing memory requests as required by the timing constraints

7



of the DRAM specification. In doing so, the MC performs four essential roles: address
mapping, request arbitration, command generation, and command scheduling as shown in
Figure 2.3.

Request Queue

A
dd

re
ss

 M
ap

p
in

g

R
eq

u
es

t 
Sc

h
e

d
u

le
r

C
o

m
m

a
n

d
 G

e
n

e
ra

to
r

DRAM Memory Controller

Request Command

Request Queue

Request Queue

Request Queue

Command Queue

C
o

m
m

an
d

 S
ch

e
d

u
le

r

Command Queue

Command Queue

Command Queue

Figure 2.3: Architecture of Memory Controller.

• Memory Address Mapping: Address mapping decomposes the incoming physical
address of a request into rank, bank, row, and column bits. The address translation
determines how each request is mapped to a rank and bank. There are two main
classes of mapping policies.

1. Interleaved-Banks: each requestor can access any bank or rank in the system.
This policy provides maximum bank parallelism to each requestor but suffers
from row interference since different requestors can cause mutual interference
by closing each other’s row buffers. Hence, predictable MCs using interleaving-
banks also employ close-page policy, which ignores row locality. COTS MCs
also typically employ interleaved-banks because in the average case, the row
interference is often limited.

2. Private-Banks: each requestor is assigned its own bank or set of banks. This
assignment allows a predictable MC to take advantage of row locality since the
behavior of one requestor has no impact on the row buffer of other requestors’
banks. As a downside, the performance of a requestor executing alone is neg-
atively impacted, since the number of banks that it can access in parallel is
reduced. Sharing data among requestors also becomes more complex [43]. Fi-
nally, the number of requestors can be a concern due to the limited number of
ranks and banks. For example, a DDR3 memory supports only up to 4 ranks and
8 banks per rank, but a multi-core architecture may have 16 or more memory
requestors.

8



• Request Arbitration: While a MC only needs to schedule individual commands to
meet JEDEC timing constraints, in practice all considered MCs implement an front-
end request scheduler to determine the order in which requests are processed. We
consider three main arbitration schemes:

1. (Non-work Conserving) Time Division Multiplexing (TDM): under TDM, each
requestor is assigned one or more slots, and its requests can only be serviced
during assigned slot(s). If no request can be served during the assigned slot,
then the slot is wasted.

2. Round Robin (RR) and Work-conserving TDM: compared to non-work conserv-
ing TDM, unused slots are assigned to the next available requestor.

3. First-Ready First-Come-First-Serve (FR-FCFS): COTS MCs generally imple-
ment some variation of FR-FCFS scheduling to improve the memory bandwidth.
This scheme prioritizes requests that target an open row buffer over requests
requiring row activation; open requests are served in first-come-first-serve order.
FR-FCFS controllers always implement an open-page policy. As shown in [40],
if the MC does not impose any limit on the number of reordered requests, no
upper bound on request latency can be derived. Therefore, based on the exper-
imental evaluation, the analysis in [20] derives a latency bound assuming that
at most 12 requests within a bank can be reordered ahead of a request under
analysis.

For general purpose system, the write operations are not in the critical path, there-
fore, some MCs provide high priority for read requests and write requests can be
served when there is no read operation. Most real-time MCs treat these two type of
requests equally and providing individual latency or the maximum between the two.

• Command Generation: Based on the request type (read or write) and the state of
the memory device, the command generation module generates the actual memory
commands. The commands generated for a given request depend on the row policy
used by the MC and the number of CAS commands needed by a request which is
determined by the data size of the request and the size of each memory access. For
instance, for a WBUS = 16 bits, each operation transfers 16 bytes, thus requiring
4 accesses for a 64 bytes request; whereas for WBUS = 64 bits, only one access per
request would be needed. The commands for a request can be generated based on two
critical parameters introduced in [26]: the number of interleaved banks (BI) and the
burst count for one bank (BC). The BI determines the number of banks accessed by
a request and the BC determines the number of CAS commands generated for each
bank. The value for BI and BC depends on the request size and data bus width.

9



Predictable MCs cover the whole spectrum between close-page policy, open-page
policy, and combined hybrid approaches.

1. Open-Page: allows memory accesses to exploit row locality by keeping the row
accessed by a previous request available in the row-buffer for future accesses.
Hence, if further requests target different column cells in the same row opened in
the row-buffer, then the command generator only needs to generate the required
number of CAS commands, incurring minimum access latency. Otherwise, if the
further requests target different rows, the command generator needs to create
a sequence of PRE and ACT commands and the required CAS which results in
longer latency.

2. Close-Page: transitions the row-buffer to an idle state after every access com-
pletes by using auto-precharge READ/WRITE commands. Hence, subsequent
accesses place data into the row-buffer using an ACT command prior to per-
forming the read or write operation. The command generator only needs to
create a sequence of ACT and CAS commands. While this does not exploit
row locality, all requests incur the same access latency making them inherently
predictable. Furthermore, the latency of a request targeting a different row is
shorter under close-page policy since the pre-charge operation is carried out by
the previous request.

3. Hybrid-Page: is a combination of both open and close policy for large requests
that require multiple memory accesses (CAS commands). The CAS commands
for one request can be a sequence of a number of CAS commands to leverage
the benefit of row locality, followed by a CASp command to precharge the open
buffer.

• Command Scheduler: The command scheduler ensures that queued commands are
sent to the memory device in the proper order while honouring all timing constraints.
Apart from the page policy, we find that the biggest difference between predictable
MCs is due to the employed command scheduling policy.

1. Static: Controllers using static command scheduling schedule groups of com-
mands known as bundles. Command bundles are statically created off-line by
fixing the order and time at which each command is issued. Static analysis
ensures that the commands meet all timing constraints independently of the
exact sequence of requests serviced by the MC at run time. Static command
scheduling results in a simpler latency analysis and controller design, but can

10



only support close-page policy since the controller can not distinguish the row
state at run time.

2. Dynamic: These controller schedule commands individually. The command
arbiter must include a complex sequencer unit that tracks the timing constraints
at run time, and determines when a command can be issued. Dynamic command
scheduling allows the controller to adapt to varying request types and bank
states; hence, it is often used in conjunction with open-page policy.

Except serving the commands for a memory request, a memory controller is respon-
sible for refreshing the DRAM device. The refresh strategy is different for memory
controller with different page policy because the refresh command requires all the
banks to be precharged before it can be issued. Refresh delay is generally limited to
1% - 5% of total task memory latency [2] and can be easily incorporated in WCET
analysis, see [40] for example.

2.2.2 Other Factors

DRAM scheduling algorithm depends on not only the scheduling to the DRAM memory
system, but also the requirement of the application. Outside of the architectural alterna-
tives discusses in Section 2.2, there are a few additional key features that distinguish MCs
proposed in the literature.

First of all, in some system requests generated by different requestors can have varying
request sizes. For example, a processor generally makes a memory request in the size of a
cache line, which is 64 bytes in most modern processors. On the other hand, an I/O device
could have memory requests up to KBs. Some MCs are able to natively handle requests
of different sizes at the command scheduler level; as we will show in our evaluation, this
allows to trade-off the latency of small requests versus the bandwidth provided to large
requests. Other MCs handle only fixed-size requests, in which case large requests coming
from the system must be broken down into multiple fixed-size ones before they are passed
to the memory controller.

Requestors can be further differentiated by their criticality (temporal requirement) as
either hard real-time (HRT) or soft real-time (SRT). Latency guarantees are the require-
ment for HRTs, while for SRT, a good throughput should be provided while worst-case
timing is not crucial. In the simplest case, a MC can support mixed-criticality by sim-
ply assigning higher static priority to critical requests over non-critical ones at both the
request and command scheduling level. We believe that all predictable MCs can be mod-

11



ified to use the fixed priority scheme. However, some controllers are designed to support
mixed-criticality by using a different scheduling policy for each type of request.

Finally, as we described in the DRAM background, a memory module can be con-
structed with a number of ranks. In particular, a DDR3/DDR4 memory module can
have up to 4 ranks. However, only some controllers distinguish between requests target-
ing different ranks in the request/command arbitration. Since requests targeting different
ranks do not need to suffer the long read-to-write and write-to-read switching delays, such
controllers are able to achieve tighter latency bounds, at the cost of needing to employ a
more complex, multi-rank memory device.

2.3 DRAM Controller Related Work

The DRAM controller designs proposed in recent years can be categorized into two main
groups as high-performance and real-time. The high-performance MCs focus on inves-
tigating the commonly-deployed FR-FCFS on conventional high-performance multi-core
platforms, where the FR-FCFS aims to increase memory throughput by prioritizing row
hit requests. This behavior can lead to unfairness across different applications. For in-
stance, applications with a large number of row hit requests are given higher priority and
other applications may be largely delayed or even starved. Researchers attempt to solve
this problem by proposing novel scheduling mechanisms such as ATLAS [23], PARBS [29],
TCM [22], and most-recently BLISS [37]. The common trend amongst all these designs is
promoting application-aware memory controller scheduling. Both groups attempt to ad-
dress the shortcomings of the FR-FCFS; though, each group focuses on different aspects.

On the other hand, fairness is not an issue for real-time predictable memory controllers.
In fact, prioritization is commonly adopted by those controllers to favor critical cores for
instance. However, FR-FCFS is not a perfect match for these controllers, yet for a different
reason. Critical applications executing on real-time systems must have bounded latency.
Because of the prioritization and reordering nature of FR-FCFS, a memory latency can
only be bounded by limiting the maximum number of reordering can be performed such
as [42] and [20]. However, the bounded latency can be very high and not feasible to be
used in real-time systems.

The unpredictability of DRAM access latency is caused by the following reasons: First,
the overhead from opening and closing rows results in additional latency and reduction of
the bandwidth. Second, the data bus is bi-directional and requires a number of clock cycles
to change direction from a different type of CAS command, which increases the latency
and wasting bandwidth. Within a multicore platform, the two conditions can happen

12



repeatedly and make a memory access latency very difficult to be analyzed. Regarding
the total execution time of a task, other than the request latency, the periodic refresh
requirement of DRAM device also takes tens of clock cycles, and no data can be transferred
on the data bus. Real-time DRAM controllers are often designed to bound the worst-case
request latency by considering these effects. In this section, we summarize the state-of-
the-art predictable DRAM controllers [32, 13, 26, 15, 19, 38, 40, 25, 4, 5, 6] described in
the literature.

In general, we consider that all predictable MCs are composable. A MC is composable
if requestors cannot affect the temporal behavior of other requestors [1]. This implies that
applications running on different cores have independent temporal behaviors, which allows
for independent and incremental system development [21]. However, we notice that com-
posability is used with two different semantics in the literature, which we term analytically
and run-time composable. A MC is analytically composable if it supports an analysis
that produces a predictable upper bound on request latency that is independent of the
behavior of other requestors. A MC is run-time composable if the run-time memory
schedule for a requestor is independent of the behavior of other requestors. Run-time com-
posability implies analytical composability, but not vice-verse. All the selected designs are
analytical composable, however (non work-conserving) TDM is the only arbitration that
supports run-time composability, potentially at the cost of degrading average-case perfor-
mance. In Table 2.2, we classify each MC based on its architectural design choices (address
mapping, request arbitration, page policy and command scheduling) and additional fea-
tures (variable request size, mixed criticality, and rank support). Note: the Dirc request
scheduler passes the request on top of each request queue to the backend, and each request
queue can be scheduled in parallel.

Table 2.2: Memory Controllers Summary

AMC PMC RTMem ORP DCmc MAG MEDUSA ReOrder ROC MCMC
Req. Size N Y Y N N N N N N N

Mix-Criti.
Fix
Prio.

Req.
Sched.

N N
Fix
Prio.

Fix
Prio.

N N Ranks
Fix
Prio.

Rank N N N N N N N Y Y Y

Addr. Map. Intlv. Intlv. Intlv. Priv. Priv. Priv. Priv. Priv. Priv. Priv.

Req. Sched. RR
WC
TDM

WC
TDM

Dirc RR Dirc
Fix
Prio.

Dirc Dirc TDM

Page Policy Close Hybrid Hybrid Open Open Open Open Open Open Close
Cmd. Sched. Static Static Dyn. Dyn. Dyn. Dyn. Dyn. Dyn. Dyn. Static

13



2.3.1 AMC

AMC [32, 31] employs the simplest scheduling scheme for a predictable MC: static com-
mand scheduling with close-page policy is used to construct off-line command bundles for
read/write requests. Bank parallelism is supported by interleaving operations of the same
request over multiple banks. AMC generates one CAS with auto-precharge command for
each bank so that every access to a bank incurs an ACT followed by a CAS. The com-
mand scheduler simply issues the pending commands in First-Come-First-Serve manner.
In terms of request scheduling, AMC supports RR to provide fair arbitration among critical
requestors. Non-critical requestors are statically assigned a lower priority.

2.3.2 PMC

PMC [13] employs a static command scheduling strategy with four static command bundles
based on the minimum request size in the system. For a request size that can be completed
within one bundle, PMC uses close-page policy. However, PMC divides larger requests into
multiple bundles using open-page policy. PMC also employs an optimization framework
to generate an optimal work-conserving TDM schedule. The framework supports mixed-
criticality systems, allowing the system designer to specify requirements in terms of either
maximum latency or minimum bandwidth for individual requestors. The generated TDM
schedule comprises several slots, and requestors are mapped to slots based on an assigned
period.

2.3.3 RTMem

RTMem [26] is a memory controller back-end architecture using dynamic command schedul-
ing with interleaved-banking and a hybrid page policy. RTMem can be combined with any
front-end request scheduler; we decided to implement work-conserving TDM to better
compare against other predictable MC. RTMem accounts for variable request size by de-
coding each size into interleaved banks (BI) and a number of read/write operations per
bank (burst count BC) based on a predefined table. The BI and BC numbers are selected
off-line to minimize the request latency. Similarly to PMC, at run-time, RTMem issues
open-row READ/WRITE commands until it reaches the last burst count, where auto-
precharge commands are issued to close the open rows. Dynamic command scheduling
is used to improve average-case performance, allowing for greater bank parallelism. CAS
commands have high priority over ACT to maximize memory throughput. No request can
be scheduled if there are any ACT commands in any of the command queues.

14



2.3.4 ORP and ROC

ORP [40] is the first scheme of a predictable MC using open-page policy with dynamic
command scheduling. ORP further employs private banking to avoid row interference.
Latency bounds are derived assuming that the number of close-row and open-row requests
for a given application are known, for example based on static analysis [3]. The MC
uses a complex FIFO command arbitration to exploit maximum bank parallelism, but
still essentially guarantees RR arbitration for fixed-size critical requests. For the worst
case analysis, ORP sums up the maximum interference that each command can suffer
and plus the fixed timing constraint for one request. For example, when an open request
arrives, the CAS command first suffer timing constraint from previous operation and once it
becomes ready, it only suffers interference from other ready CAS commands. On the other
hand, when a close request arrives, the PRE, ACT and CAS needs to satisfy any timing
constraints related to it and once the command becomes ready, it suffers interference from
the same type. The WC latency is the sum of all the interference and timing constraints.
A CAS block technique is used to avoid CAS reordering in the FIFO that the first ready
CAS in the FIFO blocks other CAS regardless of any CAS can be executed early.

ROC [25] improves over ORP using multiple ranks to mitigate the tWTR and tRTW

timing constraints. As noted in Section 2.1, such timing constraints do not apply to
operations targeting different ranks. Hence, the controller implements a two-level request
arbitration scheme for critical requestors: the first level performs a RR among ranks, while
the second level performs a RR among requestors assigned to banks in the same rank.
ROC’s rank-switching mechanism can support mixed-criticality applications by mapping
critical and non-critical requestors to different ranks. FR-FCFS, can be applied for non-
critical requestors.

2.3.5 DCmc

Similar to ORP, DCmc [15] uses a dynamic command scheduler with open page policy, but
it adds extra support for mixed-criticality and bank sharing among requestors. Critical
requestors are scheduled based on RR in the same bank, while non-critical requestors
are scheduled according to FR-FCFS in the SRT banks. On the command level, HRT
command has priority over SRT command. The controller supports a flexible memory
mapping; requestors can be either assigned private banks or interleaved over shared sets
of banks. In this thesis, we use the private-bank configuration since it minimizes latency
bounds for HRT requestors.

15



2.3.6 MAG

MAG [19] is designed to support mixed criticality with private bank mapping. In DCmc,
a bank can only be assign to either HRT requestors or SRT requestors, but MAG provides
a more flexible bank assignment. It assumes a SRT requestor can share the same bank
with the HRT requestor but having lower priority during command scheduling. When a
HRT request arrives, the HRT commands can preempt any SRT command execution. The
drawback is that the extra compensate commands are required to retain the preempted
SRT commands after the HRT request is served. In this manner, the critical request will
not suffer interference from any SRT requests, but further limited the bandwidth of SRT
requestors

2.3.7 MEDUSA

MEDUSA [38] considers read access has higher priority than the write access since the
write access is not on the critical execution path. The write requests are only served if
there is no read request or the write buffer reaches high watermark. Once the write buffer
returns back to the low watermark, write requests are blocked again by read requests.
This is the first real-time memory controller design with bounded latency by considering
separate write buffer.

2.3.8 ReOrder

ReOrder [4, 5] improves over ORP by employing CAS reordering techniques to reduce
the access type switching delay. It uses dynamic command scheduler among all the three
DRAM commands: round-robin for ACT and PRE commands, and read/write command
reorder for the CAS command. The reordering scheme schedules CAS commands in suc-
cessive rounds, where all commands in the same round have the same type (read/write).
This eliminate repetitive CAS switching timing for read and write commands. If there are
multiple ranks, the controller schedules same type of CAS in one rank, and then switches
to another, in order to minimize the rank switching.

2.3.9 MCMC

MCMC [6] uses a similar rank-switching mechanism as in ROC but applies it to a simpler
scheduling scheme using static command scheduling with close-page policy. MCMC assigns

16



bank privatization for one HRT requestor with some SRT requestors, and this set of private
banks is considered as a virtual device. TDM arbitration is used to divide the time-line into
a sequence of slots alternating between ranks. Each slot is assigned to a virtual device and
the HRT memory request has priority over the SRT requests. SRT requestors share the
virtual device using round-robin arbitration. The SRT requestors receive non-predictable
memory bandwidth since the slot can always be utilized by HRTs. The slot size can
be minimized by using a sufficient number of ranks to mitigate the tWTR/tRTW timing
constraints and a adequate number of slots to defeat the intra-bank timing constraints.
As with TDM arbitration, the main drawback of this approach is that bandwidth will be
wasted at run-time if no requestor is ready during a slot.

17



Chapter 3

MCsim: A Cycle-Accurate DRAM
Controller Simulation Framework

All the predictable MCs discussed in the related work are evaluated with their own MC
simulators because the MC models used in existing full-system simulators or stand-alone
DRAM simulators are inflexible and cannot easily support the architecture requirement of
the proposed predictable scheduling policies. Available DRAM system simulators, such as
DRAMSim2 [36] and Ramulator [24], are designed to model the structure and behavior
of DRAM devices, but the underlying DRAM memory controller (MC) which processes
incoming memory requests is a relatively simplified model lacking modularity and exten-
sibility. The Gem5 full-system simulator also provides a detailed MC model [12], but it
is not cycle-accurate. Designing the simulator from scratch increases the time required to
test and validate new ideas and complicates the process of comparing different MCs.

To address such issues, we present MCsim, an extensible and cycle-accurate object-
oriented simulation framework that simplifies the process of evaluating and comparing
new MC designs. MCsim is designed based on the observation that even different MCs
employ widely varying scheduling schemes, they still process memory requests by a set of
common functions that are used to implement standard hardware blocks and processing
flow. These functions tend to contribute the majority of the code in any simulator, and
can thus be reused across designs. We prove the usability of the framework by successfully
implementing all the discussed predictable MCs [32, 13, 26, 40, 15, 25, 4, 19, 6]. MCsim
can be built on any system supporting C++11; the simulator code is available at [?]. To
the best of our knowledge, this is the first work that enables comparing the performance of
all state-of-the-art architectural solutions for predictable scheduling of DRAM operations.

18



3.1 Architectural Design

MCsim employs a modular design; Figure 3.1 illustrates the major hardware blocks imple-
mented in the framework. Similar to the diagram shown in Figure 2.3, MCsim consists of
an address translator, which maps requests to physical memory cells, a command genera-
tor which converts requests into access commands, and a request and command schedulers
which determine the order of request/command execution. Each block is constructed in-
dependently and the encapsulated data is accessed through a simple interface. In this
manner, changes to the behavior of a particular block do not impact the other blocks
in the system. The specific algorithms implemented by these blocks must be customized
based on the MC design; MCsim exploits the benefits of inheritance and polymorphism
by providing virtual function interfaces, which minimize the amount of code required to
extend the functionality of each block.

Requestor	
0	

Ad
dr
es
s	M

ap
pi
ng
	

MCsim 

Request	
Queue	0	

Re
qu

es
t	S

ch
ed

ul
er
	

Co
m
m
an
d	
Ge

ne
ra
to
r	

Co
m
m
an
d	
Sc
he

du
le
r	

Cmd 
Bus 

Data 
Bus 

Si
m
ul
a;

on
	E
ng
in
e	

DR
AM

	D
ev
ic
e	

Requestor
N-1	

Command	
Queue	0	

Request	
Queue	RQ-1	

Command	
Queue	CQ-1	

Request	

System  
Simulator 

DRAM 
Simulator 

DRAM Memory Controller Simulator 

Figure 3.1: Generalized Real-Time Memory Controller Architecture.

A MC simulator must also include queues to connect these hardware blocks and tem-
porarily store requests and commands. Rather than fixing the structure of the queues
as in most other MC simulators, MCsim provides an easy to configure, modular queue
structure. Since DRAM devices are organized in hierarchy levels (e.g., channels, ranks,
bank groups, banks), the configurable queue structure allows the designer to construct the
queues according to any DRAM level, and furthermore allocate each queue globally or for
particular requestors and request types. As a result, after implementing all aforementioned
predictable MCs, we observe that the amount of controller-specific code in the framework
is only 10%, and the largest amount of code required to implement any one controller is
200 lines of code.

19



As shown in Figure 3.1, MCsim employs a generalized interface that can be accessed by
any external system simulator to send memory requests. We tested the framework using
memory request traces generated from a full-system simulator. MCsim also employs an
abstract DRAM interface for the DRAM device model, so that the framework is not tied
to any specific memory device type. We currently connect to Ramulator as the preferred
device simulator, as it supports a wide variety of DRAM standards.

3.2 Configuration and Simulation Engine

A DRAM controller is built by a configuration file to define the structure of the queues
and the operation of each hardware block. In Listing 3.1, we show the configuration for the
ORP [40] controller which requires requestor buffers in a channel and applies ”DIRECT”
request arbitration, ”OPEN” page command generation and a specific ”ORP” command
scheduling policy.

Listing 3.1: Configuration Parameters

; Rank[0], BankGroup[1], Bank[2], SubArray[3], Row[4], Col[5]

AddressMapping=012345 // Rank:BankGroup:Bank:SubArray:Row:Col

; Queue Structure

RequestQueue=0000

WriteBuffer=0 // 0 = disable, 1 = enable

ReqPerREQ=1 // 0 = disable, 1 = enable

CommandQueue=0000

CmdPerREQ=1 // 0 = disable, 1 = enable

; Scheduler Based on Names

RequestScheduler=’DIRECT’

CommandGenerator=’OPEN’

CommandScheduler=’ORP’

The address mapping is configured based on different permutations of the DRAM device
hierarchy which allows the user to flexibly assign the mapping schemes. Each digit rep-
resents the corresponding hierarchy level and the permutation determines the order of
decoding. For example, [012345] allocates memory blocks linearly in the address space,
[034125] interleaves data across banks to take the benefit of bank parallelism, and [340125]
interleaves across ranks to increase the maximize rank switching. The permutation of the
address bits can change the performance of a task based on how the data is allocated.

20



The request and command queues are constructed based on the selected DRAM hier-
archy level. The bits value for each DRAM level is shown in Table 3.1. These schemes
are used to build the configured number of queues and search for corresponding queue for
requests and commands. It also provides a flexible hardware structure to support most of
predictable DRAM scheduling policies.

Table 3.1: Queue Structure Configuration

0000 1000 0100 0010 0001
Channel Rank BankGroup Bank SubArray

The structure of a request queue is shown in Figure 3.2. There are three separate
buffers: first, a general buffer is used to store any requests coming from requestors; second,
a set of individual buffers can be configured by reqPerQ to separate requests for different
requestors; and last, a write buffer can be enabled by writeBuffer to store write requests
from any requestors.

General	Buffer	Request	

Request Queue 

Write	Buffer	

Requestor	N	Buffer	

Requestor	M	Buffer	

ReqPerREQ	

WriteQueue	

Figure 3.2: Request Queue Structure Per Resource Level

By providing these configurations, MCsim can support request schedulers which arbi-
trate among DRAM hierarchies, requestor IDs, type of requests, or all above. For exam-
ple, some MCs [32, 13, 26, 40, 25, 6] arbitrate requests among requestors regardless of the
DRAM location of a request. Therefore, an individual buffer is created for each requestor.
On the other hand, MAG and ReOrder prefer to perform arbitration among the DRAM
bank level instead of considering the requestors make the requests. Then, a request buffer
is required for each DRAM bank. The request arbitration can also be performed on two
levels. For instance, [15] requires a request queue per bank and performs round-robin
among requestors in the each bank. There are also MCs that separate the read and write
requests into different buffers, such as [38].

The command queue shown in Figure 3.3 is similar to the request queue, which also
contains two configuration parameters. Instead of having separate buffers for read and

21



write requests, the command queue has separate command buffers for commands with
different timing requirements. The lowPriorityBuffer can store commands generated from
SRT requestors so that the command scheduler can schedule commands differently. For
example, MAG applies preemption or fixed priority to schedule commands from requestors
with a different temporal requirement.

General	Buffer	Command	

Command Queue 

Low-Priority	Buffer	

Requestor	N	Buffer	

Requestor	M	Buffer	

CmdPerREQ	

Cri=cality	

Figure 3.3: Command Queue Structure Per Resource Level

The sub-classes of RequestScheduler, CommandGenerator, and CommandSched-
uler are selected based on their names. The string name of a subclass must be defined in
the schedulerRegister.h to notify which subclass will be used according to the names. In
Listing 3.2, we demonstrate the registration of the ORP [40] MC shown in the configuration
file of Listing 3.1.

Listing 3.2: Interface Registration

#include "RequestScheduler_DIRECT.h"

#include "CommandGenerator_OPEN.h"

#include "CommandScheduler_ORP.h"

SchedulerRegister() {

reqSchdlrTable["DIRECT"] = new RequestScheduler_Direct();

cmdGenTable["OPEN"] = new CommandGenerator_Open();

cmdSchdlrTable["ORP"] = new CommandScheduler_ORP();

}

In Table 3.2, we show the architecture and policies used in the predictable controllers
discussed in Section 2.3.

Other than the configuration parameters, the MCsim is driven by a simulation engine
which has two main tasks: First, it behaves as an interconnect to connect requestors,

22



Table 3.2: Memory Controller Architecture Table

MCs ReqQ ReqSchdlr CmdGen CmdQ CmdSchdlr
AMC[32] Chan(REQ) RR Close Chan ASAP
PMC[13] Chan(REQ) WC-TDM Hybrid Chan ASAP
RTMem[26] Chan(REQ) WC-TDM Hybrid Bank RTMem
ORP[40] Chan(REQ) DIR Open Chan(REQ) ORP
DCmc[15] Bank(REQ) DIR(RR) Open Bank ORP
MAG[19] Bank DIR Open Bank MAG
ReOrder[4, 5] Bank DIR Open Bank ReOrder
MEDUSA[38] Bank(WR) MEDUSA Open Bank ORP
ROC[25] Rank(REQ) DIR Open Rank(REQ) ROC
MCMC [6] Rank(REQ) TDM Close Chan ASAP

MCsim and memory devices. Second, it is responsible for updating the global clock in the
system. The sequence of updating is shown in PseudoCode 1.

PseudoCode 1 Simulation Engine Sequence

1: for each requestor do
2: step one clock cycle to check for available request;
3: end for
4: for each channel do
5: step MCsim to manage requests, command, and data;
6: step MemoryDevice to update timing constraints and data
7: end for

3.3 Detailed System Design and Interaction

Throughout this section, we explain the detailed functionality and implementation of hard-
ware blocks as well as their interactions according to the sequence diagram of one clock
cycle in Figure 3.4 and the MCsim class diagram in Figure 3.5.

3.3.1 Top-Level Memory Controller

The top-level MemoryController is responsible for controlling the interaction between each
internal hardware block and managing the requests and data flow between external memory
requestors and memory devices. In order to differentiate the timing requirement of each

23



SimEngine MemoryControllerRequestor AddressMapping RequestScheduler CommandGenerator CommandQueueRequestQueue CommandScheduler DRAMDevice

1 : step

2 : addRequest
3 : addressMap

4 : insertReq

5 : step
6 : scheduleReq

7 : getReq
8 : isSchedulable

9 : generateCmd
10 : removeReq

11 : getCmd

12 : insertCmd

13 : scheduleCmd

14 : getCmd
15 : isIssuable

16 : checkCmd

17 : updateCmd
18 : removeCmd

19 : step

20 : step

21 : step

22 : receiveData
23 : callback

Figure 3.4: MCsim Sequence Diagram

requestor in a mixed-critical system, a requestorCriticalTable can be configured by the user
to indicate the criticality of each requestor. The table can then be used by any hardware
blocks to make scheduling decision among requests or commands based on the criticality
of the requestors.

MemoryController receives new memory requests from requestors through addRequest(ID,
Address, Type, Size, Data) and sends complete requests back to the requestors through
callback(Request) provided by the simulation engine. MemoryController is also responsible
for inserting requests and commands into their corresponding queues. Once there are avail-
able data that can be transmitted through the data bus, MemoryController communicates
with the DRAM device through receiveData(Data) and sendData(Data).

The step() interface triggers the proceeding of each of the internal hardware blocks.
According to Figure 3.4, the scheduleRequest() function of requestScheduler is first called
to select requests that can be converted into commands. All commands generated by the
CommandGenerator are en-queued into back-end command queues. At last, the sched-
uleCommand function of CommandScheduler is called to issue an available command to
the DRAM device. Because the data bus and the command bus are separated, an available
data can be sent or received in parallel with the command. In Figure 3.4, we show a write
data sent to DRAMDevice in parallel with a command.

24



MemoryDevice

+receiveCmd()
+receiveData()
«virtual»+get_Constraint()
«virtual»+checkCmd()
«virtual»+updateCmd()
+step()

CommandQueue

-requestorBuffer
-generalBuffer
-lowPriorityBuffer

CommandScheduler

#queueCmdTable

«virtual»+scheduleCmd()
#isReady()
#isIssuable()
+step()

AddressMapping

+mapAddress()

CommandGenerator

#commandBuffer

«virtual»+generateCmd()

MemoryController

-requestorCriticalTable
-requestQueues
-commandQueues

+setRequestor()
+addRequest()
-enqueueCommand()
-sendData()
-receiveData()
-callback()
+step()

RequestScheduler

#bankTable

«virtual»+scheduleReq()
«virtual»#isSchedulable()
#isRowHit()
#updateRowTable()
+step()

RequestQueue

-requestorBuffer
-generalBuffer
-writeBuffer

RefreshMachine

+refreshing()
«virtual»+refreshCmd()

RR

WC_TDM

TDM

Open Close Hybrid

DIR

Open Close

ORP

RTMem

MAG

ASAP

ReOrder

ROC

Figure 3.5: MCsim Class Diagram

3.3.2 Functional Hardware Blocks

• AddressMapping: The interface mapAddress(request) takes an incoming request and
assigns memory physical location to the request. The location of a request is deter-
mined by shifting the memory level bits in the order of the mapping scheme used in
the configuration file.

• RequestScheduler: The request scheduler is connected with both request and com-
mand queues because the arbitration may not only depend on the available requests
in a request queue, but also the condition of corresponding command queues. For
example, RTMem [26] only allows a new request to be scheduled if there is no ACT
command in any of the command queues.

There is a bankRowTable used to track the row in the row buffer of each bank and
determine if a selected request is targeting to an open or close row. It is accessed by
isRowHit(Request) before a request is sent to command generator and updated by
updateRowTable(Rank, Bank, Row) once the request is converted into commands.

There are two steps required to select a request:

25



1. scheduleRequest(): must be specified in a sub-class to make decision on how the
request can be selected.

2. isSchedulable(Req): determines if an available request can be converted into
commands based on particular rules defined in a sub-class. It also connects
with command generator to pass selected request. If not redefined specifically
in a subclass, a selected request is always schedulable and passed to command-
Generator directly.

We show the implementation of a direct request arbitration used in many predictable
MCs [40, 15, 19, 25] in PseduoCode 2. During one clock cycle, the request on top of
each request queue can be converted into commands in parallel.

PseudoCode 2 Direct Request Scheduler

1: function scheduleRequest
2: for Each requestQueue do
3: if the requestQueue is not empty then
4: Get the top request from the queue
5: if Check selected request: isSchedulable(Req, isRowHit(Req)) then
6: Update the bank row table: updateRowTable()
7: Remove Request from the queue
8: end if
9: end if

10: end for
11: end function

• CommandGenerator: The abstract class CommandGenerator has a virtual inter-
face generateCommand(Request, Open) is a passive function which is called by re-
questScheduler to decode passed-in request into a set of DRAM commands based on
the status of the row and generation pattern such as open and close-page policies.

All generated commands in the one cycle are temporally stored in a command buffer
which is later accessed by the top-level memory controller through getCommand() to
take generated commands and push into the back-end command queues. The reason
for separating the requestScheduler and commandGenerrator is for the extensibility
and reusability of individual hardware component. An open-page policy generator
can be programmed as shown in PseudoCode 3.

• CommandScheduler: The command scheduler is connected to the command queues
and the DRAM device interface. It contains a CmdReadyTable for each command

26



PseudoCode 3 Open-Page Command Generator

1: function generateCommand(Request, isOpen)
2: compute number of CAS: size = requestSize/dataBus
3: if Request is not Open then
4: generate a PRE into buffer
5: generate an ACT into buffer
6: end if
7: for each integer i in size do
8: generate a CAS into buffer
9: end for

10: end function

queue to record the minimum number of clock cycles that any commands must wait
based on the previously issued command on the same queue. The table is updated
once a command is issued to DRAM devices and the counter for each command
decremented every clock cycle if the counter is greater than zero. The command
scheduler also contain an abstract refresh machine block, which can be modified to
support any particular refresh mechanism.

To schedule a command involves the following steps:

1. scheduleCommand(): must be specified in a sub-class to make scheduling rules
on how the command can be scheduled.

2. isReady(Cmd): checks if the intra-bank timing constraints have been satisfied
in a particular queue. A command is ready if the corresponding counter in the
CmdReadyTable becomes 0. This feature is not required if a MC employs static
command scheduling since the execution order of commands is determined in a
pre-defined sequence.

3. isIssuable(Cmd): used to communicate with the MemorySystem interface to
check if a particular command can be issued to the device. This function depends
on the accuracy of the memory model provided by the user.

4. sendCommand(Cmd): behaves as the command bus interface.

We show an example of a round-robin scheduling mechanism used in ORP MC to
demonstrate the use of the provided functions. A FIFO buffer is used to store ready
command in each requestor command buffer. When there is a CAS command in
the FIFO that cannot be issued to the device, the CAS command will block all the
other CAS commands in the FIFO but not other commands. The CASBlock is used

27



to indicate if there is any blocking. The issued command is returned to top level
MemoryController to create write data for a Write CAS command.

PseudoCode 4 ORP Command Scheduler

1: function scheduleCommand
2: for each requestorBuffer in a channel commandQueue do
3: if requestorBuffer is not empty then
4: get front Cmd from the requestorBuffer
5: if isReady(Cmd) then
6: push Cmd into FIFO buffer
7: end if
8: end if
9: end for

10: CASblock = False
11: for every Cmd in the FIFO from the front of the queue do
12: if CASblock is true and Cmd is CAS then
13: continue
14: end if
15: if isIssuable(Cmd) then
16: sendCommand(Cmd)
17: break
18: else
19: if cmd is CAS then
20: CASblock = true
21: end if
22: end if
23: end for
24: return Cmd
25: end function

• MemorySystem: To support a broad range of system configurations and DRAM
standards, we design MCsim with a general interface to access DRAM information
provided by the user through three virtual functions described below.

1. get constraints(string name): the memory controller should be able to retrieve
timing constraints of a selected DRAM device from the device simulator. The
passed-in string is the standard name used in JEDEC DRAM timing constraints.

28



2. check command(Cmd): Once a command is selected based on the scheduling
rule, there is no guarantee that the command can be issued to the DRAM device
due to timing constraints from previously issued commands. This function
should return the validity of the command in current cycle.

3. receive command(Cmd): behaves as an interface of the command bus, and it
is only called by the sendCommand(Cmd) in commandScheduler when there
is a command can be issued through the command bus. Once a command is
received, the attached memory device model must update its internal state.

We demonstrate an example to connect MCsim with the DRAM class of Ramulator
in PseudoCode 5. A template of DRAM class is created based on the type of DRAM
standards used in the system. Two essential functions required in Ramulator are the
check() and update() to track the issue time of a particular command and update the
status once a command is issued.

PseudoCode 5 Ramulator DRAM Interface

1: channel = new DRAM< T > (spec, T :: Level :: Channel)
2: function get constraint(name)
3: Return channelÕspecÕspeed entry.name
4: end function
5: function check command(cmd)
6: Return channelÕcheck(cmd)
7: end function
8: function receive command(cmd)
9: channelÕupdate(cmd)

10: end function

3.4 Validation and Evaluation

To validate this behavior, we record the time-stamp for every memory commands generated
by MCsim and compare the commands pattern generated from the original MC simulator.
MCsim is validated by running DDR3-1600H devices and 8 requestors. We apply a simple
requestor model which sends requests to MCsim by reading request information from a
memory trace file. We also implement a callback function in the the simulation engine to
connect MCsim and requestors. The traces contains 10000 memory requests and mixed of
read and write requests, which would stress-test the memory controllers.

29



Based on this strategy, we have validated the simulation results for PMC, RTMem,
ORP, and ROC, which are the only ones have their implementation public available. As
we show in Section 3.1, the extra lines of code for implementing a new controller is small,
but on the downside, the generalization feature of MCsim can slow down the simulation
speed. In Table 3.3, we show the simulation time taken by the MCsim and the original
cycle accurate simulators RTMem and ORP based on 2.6GHz computer system. We do
not include PMC and ROC because PMC simulation is not cycle-accurate and ROC is
designed in VHDL which takes much longer simulation time.

Table 3.3: Simulation Time(s)

Simulator MCsim In-house Simulator
RTMem 2.7 0.7(c++)

ORP 1.1 16.53(python)

3.5 Conclusion

In this chapter, we introduce MCsim which is a fast cycle-accurate simulation framework
for current and future DRAM controller designs. We demonstrate the extensiblity and
reusability of MCsim by implementing 10 recently proposed memory controllers. We also
show the flexibility of connecting with external simulators by implementing a simple pro-
cessor model and connecting to DRAM simulator Ramulator. We hope that MCsim can
be used to speed up the DRAM controller design to meet with rapid changes in memory
systems.

30



Chapter 4

Comprehensive Evaluation of
Real-Time Memory Controller

The way the discussed MCs have been evaluated in their respective papers is widely differ-
ent in terms of selected benchmarks and evaluation assumptions such as the operation of
the frontend, the behavior of the requestors, and the pipelining through the controller. The
consequence is that it is not possible to directly compare the evaluation results of these de-
signs with each other. A designer or company wishing to adopt one of these DRAM MCs
for their real-time applications would have virtually no scientific method to judiciously
select the one that best suits the needs of their applications. Moreover, researchers pro-
ducing novel DRAM MC designs are also unable to compare against prior state-of-the-arts
effectively.

We believe that this is detrimental to future progress in the research and design of
DRAM MCs, and its adoption into mainstream hardware platforms for real-time embedded
systems. Therefore, to address this issue, we strive to create an evaluation environment
that allows the community to conduct a fair, and comprehensive comparison of current
predictable controllers. We first introduce an analytical performance model that enables
a quantitative comparison of predictable MCs based on their worst-case latency. Then we
use MCsim as a common evaluation platform to provide a fair, standardized experimental
comparison of the analyzed MCs.

31



4.1 Analytical Worst-Case Memory Access Latency

As discussed in Section 2.3, all considered predictable MCs are analytically composable.
In particular, all authors of cited papers provide an analytical method to compute a worst
case bound on the maximum latency suffered by memory requests of a task running on
a core (requestor) under analysis. This bound depends on the timing parameters of the
employed memory device, any other static system characteristics (such as the number of
requestors), and potentially the characteristics of the tasks (such as the row hit ratio), but
does not depend on the activity of the other requestors. To do so, all related work assume
a task running on a fully timing compositional core [39], such that the task can produce
only one request at a time, and it is stalled while waiting for the request to complete.
The worst-case execution time (WCET) of the task is then obtained as the computation
time of the task with zero-latency memory operations plus the computed worst-case total
latency of memory operations. Note that in general no restriction is placed on soft or
non real-time requestors, i.e., they can be out-of-order cores or DMA devices generating
multiple requests at a time.

In the rest of this section, we seek to formalize a common expression to compute
the memory latency induced by different predictable controllers. Inspired by the WCET
derivation method detailed in [40, 20], we shall use the following procedure: 1) for a
close page controller, we first compute the worst case latency LatencyReq of any request
generated by the task, assuming that the request is not interrupted by a refresh procedure.
This is because refreshes are infrequent but can stall the memory controller for a significant
amount of time; hence, including the refresh time in the latency bound would produce an
extremely pessimistic bound. Assuming that the task under analysis produces NR memory
requests, the total memory latency can then be upper bounded by NR · LatencyReq plus
the total refresh delay for the whole task, which can be tightly bounded by the procedure
in[40, 20]. 2) For an open page controller, we compute worst case latencies LatencyReq−Open

and LatencyReq−Close for any open and close request, respectively. Assuming that the task
has row hit ratio HR, we can then simply follow the same procedure used for close page
controllers by defining:

LatencyReq = LatencyReq−Open ·HR + LatencyReq−Close · (1−HR). (4.1)

Based on the discussion above, Equations 4.2 and 4.3 summarize the per-request latency
for a close page and an open page MC, respectively, where HR is the row hit ratio of the
task and REQr is either the number of requestors in the same rank as the requestor under
analysis (for controllers with rank support), or the total number of requestors in the system

32



(for controllers without rank support).

LatencyReq = BasicAccess+ Interference · (REQr − 1)
(4.2)

LatencyReq = (BasicAccess+RowAccess · (1−HR))+

(Interference+RowInter · (1−HR)) · (REQr − 1)

(4.3)

In the proposed latency equations, we factored out the terms HR and REQr to rep-
resent the fact that for all considered MCs, latency scales proportionally to REQr and
(1 − HR). The four latency components, BasicAccess, RowAccess, Interference and
RowInter, depend on the specific MC and the employed memory device, but they also
intuitively represent a specific latency source. For a close page controller, BasicAccess
represents the latency encountered by the requests itself, assuming no interference from
other requestors; note that since predictable MCs treat read and write operations in the
same way, their latency is similar and we thus simply consider the worst case among the
two. Interference instead expresses the delay caused by every other requestor on the
commands of the request under analysis. For an open page controller, BasicAccess and
Interference represent the self-latency and interference delay for an open request, while
RowAccess and RowInter represent the additional latency/interference for a close request,
respectively. We will make use of this intuitive meaning to better explain the relative per-
formance of different MCs in Section 4.3.

We tabulate the values of these four latency terms for all covered MC in Table 4.1.
Equations are derived based on the corresponding worst case latency analysis for each
MC; we refer the reader to [32, 13, 15, 40, 25, 6, 20] for detailed proofs of correctness
and tightness evaluation. MCs [19, 38] are not included because MAG does not have
an analytical expression for request latency and MEDUSA treats read and write requests
differently. For the MCs evaluated in this work, we take the highest latency among the
read and write requests as the worst case latency. We provide the detail proof of the each
MC expression in Appendix B. In particular, note that the authors of [4, 5] make a different
assumption on the arrival pattern of requests compared to this work; hence, in Appendix
A we show how to adapt the analysis. While the numeric values in Table 4.1 are specific
for a DDR3-1600H memory device, the general equations and related observations hold for
all considered memory devices. The terms BI and BC are explained in Chapter 2.2.1 as
the number of interleaved banks and number of access to the same bank. R represents the
number of ranks used in the memory module.

Finally, note that a composable analytical bound for FR-FCFS scheduling with private
bank partition has been proposed in [20]. However, we believe that such a bound is

33



Table 4.1: MC General Equation Components (K(cond) equals 1 if cond is satisfied and 0 otherwise.)

RowInter Interference BasicAccess RowAccess

AMC NA
(
15 · K(BI = 8) + 42

)
·BC

(
15 · K(BI = 8) + 42

)
NA

PMC RTMem NA

K(BC = 1) ·
(
(15 ·K(BI = 8)+

42)
)

+K(BC > 1) ·
(
(4 ·BC +

1) ·BI + 13 + 4 · K(BI = 8)
) K(BC = 1) ·

(
(15 ·K(BI = 8)+

42)
)

+K(BC 6= 1) ·
(
(4 ·BC +

1) ·BI + 13 + 4 · K(BI = 8)
) NA

DCmc 0 28 ·BC 13 ·BC 18
ORP 7 13 ·BC 19 ·BC + 6 27

ReOrder 7 + 3R 8R ·BC (8R + 25) ·BC 35 + 3R

ROC 3 ·R + 6
(
3 ·R + 12

)
·BC

(
3 ·R + 24

)
·BC + 6 3 ·R + 27

MCMC NA
Slot ·R ·BC Slot ·R ·BC + 22

Where Slot =


42/PE if(REQr ≤ 6) ∧ (R ≤ 2)

9 if(R = 2) ∧ (REQr > 6)

7 Otherwise

NA

FR-FCFS 0 224 ·BC 24 ·BC 18

generally over-pessimistic to be usable in practice since the interference component value
is much higher than the other predictable MCs as shown in Table 4.1; hence, in the
context of this paper we deem the memory controller with FR-FCFS arbitration to be
non-predictable.

When the number of requestors in each rank is the same for rank support MCs, the
expression can be rearranged to be a function of total number of requestors in the system
REQ, instead of using the requestors per rank REQr. The expression is demonstrated in
Equation 4.4.

LatencyReq = (BasicAccess+RowAccess · (1−HR)) + (Interference+RowInter · (1−HR)) · (REQ
R
− 1)

= (BasicAccess− Interference · (R− 1)

R
) + (RowAccess−RowInter · (R− 1)

R
) · (1−HR)+

(
Interference

R
+
RowInter

R
· (1−HR)) · (REQ− 1)

(4.4)
Based on Equation 4.4, we introduce four alternative terms as Interference (perREQ)
= Interference

R
and RowInter (perREQ) = RowInter

R
represent the interference from any

other requestors, and the self-latency terms BasicAccess (perREQ) = BasicAccess −
Interference · (R−1)

R
and RowAccess (perREQ) = RowAccess − RowInter · (R−1)

R
. These

terms are used in Table 4.3 and 4.4 to compare the analytical terms between MCs with
and without rank support.

34



4.2 Experimental Setup

We select the EEMBC auto benchmark suite [33] as it is representative of actual real-time
applications. Using the benchmark, we generate memory traces using MACsim archi-
tectural simulator [18]. The simulation uses a x86 CPU clocked at 1GHz with private
16KB level 1, 32KB level 2 and 128KB level 3 caches. The output of the simulation is a
memory trace containing a list of accessed memory addresses together with the memory
request type (read or write), and the arrival time of the request to the memory controller.
In Table 4.2, we present the information for memory traces with bandwidth higher than
150MB/s, which can stress the memory controller with intensive memory accesses. We
provide the computation time of each application without memory latency, the total num-
ber of requests and the open request (row hit) ratio. An essential note is related to the

Table 4.2: EEMBC Benchmark Memory Traces.

Benchmark Computation Time (ns) Number of Requests Bandwidth (MB/s) Row Hit Ratio
a2time 660615 2846 275 0.35
cache 1509308 5503 233 0.18
basefp 1051300 3336 202 0.30
irrflt 1022514 3029 189 0.33
aifirf 1035458 2765 170 0.40

tblook 1152044 2865 159 0.35

behaviour of the processor. As discussed in Section 4.1, to obtain safe WCET bounds
for hard real-time tasks, all related work assume a fully timing compositional core [39].
Therefore, we decided to run the simulations under the same assumption: in the processor
simulation, traces are first derived assuming zero memory access latency. The trace is then
fed to a MC simulator that computes the latency of each memory request. In turn, the
request latency is added to the arrival time of all successive requests in the same trace,
meaning a request can only arrive to the memory controller after the previous request from
the same requestor has been complete. This represents the fact that the execution of the
corresponding application would be delayed by an equivalent amount on a fully timing
compositional core.

We implement the discussed MC designs in MCsim so that we can guarantee that all
designs are running with same memory device, same type of traces, same request interface
and no delay through the memory controller. We configured each controller for best per-
formance; AMC, PMC, RTMem are allowed to interleave up to the maximum number of
banks per rank (8) based on the request size and the data bus width. ROC and MCMC are
configured to use up to 4 ranks. In DCmc, we assume no bank sharing is allowed between
HRT requestors. For all analyses and simulations, we use the timing constraints of DDR3-
1600H 2GB device provided in Ramulator. We did not include the impact of refresh to

35



allow a simpler comparison with the analytical per-request latency bounds, which do not
include refresh time as discussed in Section 2.3; in any case, note that the the total refresh
time is a small portion of the execution time of a task, as described in Section 2.2.

4.3 Evaluation Results

4.3.1 Benchmark Execution Times

We demonstrate the worst case execution time in Figure 4.1 for all the selected memory
intensive benchmarks. In all experiments in this section, unless otherwise specified, we
set up the system with 8 requestors (REQs), where REQ0 is considered as the requestor
under analysis and is executing one benchmark. The other REQs are executing synthetic
memory intensive trace to maximize the interference. We also assume 64 bytes requests
with a bus size WBUS = 64 bits. For controllers using multiple ranks (ReOrder, ROC and
MCMC), requestors are evenly split among ranks, leading to 4 requestors per rank with
2 ranks, and 2 requestors per rank with 4 ranks. When measuring the execution time of
the benchmark, the simulation will be stopped once all the requests in REQ0 have been
processed by the memory controller. The execution time of each benchmark is normalized
based on the analytical bound of AMC. The color bar represents simulated execution time
for the requestor (benchmark) under analysis and the T-sharp bar represents the analytical
worst case execution time.

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

a2*me	 cache	 basefp	 irrflt	 aifirf	 tblook	

N
or
m
al
iz
ed

	E
xe
cu
0o

n	
Ti
m
e	

AMC	 PMC	 RTMem	 Dcmc	 ORP	 ROC2	 ROC4	 ReOrder	 ReOrder2	 ReOrder4	 MCMC2	 MCMC4	

Figure 4.1: EEMBC Benchmark WCET with 8 64B REQs and 64bit Data Bus

To best demonstrate the performance for each MC, in the rest of the evaluation, we use
the benchmark with highest bandwidth a2time, and we plot the worst case per-request
latency LatencyReq, so that results are not dependent on the computation time of the

36



task under analysis. For the analytical case, LatencyReq is derived according to either
Equation 4.2 or 4.3, while in the case of simulations, we simply record either the maximum
latency of any request (for close page controllers) or the maximum latencies of any open
and any close request (for open page controllers), so that LatencyReq can be obtained based
on Equation 4.1.

4.3.2 Number of Requestors

In this experiment, we evaluate the impact of the number of requestors on the analytical
and simulated worst case latency per memory request of REQ0. Figure 4.2 and 4.3 shows
the latency of a close request and an open request as the number of requestors varies from
4 to 16 1.

Table 4.3: WC Latency (perREQ) Components with BI=1, BC=1

AMC/PMC/ RTMem DCmc ORP ROC 2/4 ReOrder 1/2/4 MCMC 2/4
Interference 42 28 13 9 6 8 9 7
RowInterfer NA 0 7 6 5 9 6 4 NA
BasicAccess 42 13 25 27 24 33 31 29
RowAccess NA 18 27 27 25 39 37 31 NA

16	

32	

64	

128	

256	

512	

1,024	

4	REQ	 8	REQ	 16	REQ	

Pe
rR
eq

ue
st
	L
at
en

cy
	(n

s)
	

AMC	 PMC	 RTMem	 Dcmc	 ORP	 ROC2	 ROC4	 ReOrder1	 ReOrder2	 ReOrder4	 MCMC2	 MCMC4	

Figure 4.2: WC Latency per Close Request of REQ0 wtih 64Bit Data Bus.

Furthermore, in Table 4.3 we show the analytical equation components for all MCs 2.
We make the following observations:

1Note that since ORP and DCmc assign one REQ per bank and use a single rank, for the sake of fair
comparison we assume they can access 16 banks even when using DDR3.

2Note that since the request size is 64 bytes and the data bus width is 64 bit, each request can be
served by one CAS command with a burst length of 8. Therefore, the parameter BI and BC is set to 1.

37



16	

32	

64	

128	

256	

512	

1,024	

4	REQ	 8	REQ	 16	REQ	

Pe
rR
eq

ue
st
	L
at
en

cy
	(n

s)
	

Dcmc	 ORP	 ROC2	 ROC4	 ReOrder1	 ReOrder2	 ReOrder4	

Figure 4.3: WC Latency per Open Request of REQ0 wtih 64Bit Data Bus.

1. For interleaved banks MCs (AMC, PMC, and RTMem), latency increases exactly
proportionally to the number of requestors: Interference is equal to RowInterference.
The latency components are also larger than other controllers, because these MCs im-
plement scheduling at the request level through an arbitration between requestors. In
this case, one requestor gets its turn only when other previously scheduled requestors
complete their requests. The timing constraint between two requests is bounded by
the re-activation process of the same bank, which is the longest constraint among
all others. Therefore, increasing the number of requestors has a large effect on the
latency.

2. Bank privatized MCs (DCmc, ORP, ReOrder, ROC and MCMC) are less affected by
the number of requestors because each requestor has its own bank and it only suffers
interference from other requestors on different banks. The timing constraints between
different banks are much smaller than constraints on the same bank. Dynamic com-
mand scheduling is used in DCmc, ORP, ReOrder and ROC to schedule requestors
at the command level. Increasing the number of requestors increases the latency for
each command of a request, therefore, the latency for a request also depends on the
number of commands it requires. For example, a close request in open page MCs
can suffer interference from other requestors for PRE, ACT and CAS commands.
MCMC uses fixed TDM to schedule requestors at the request level. Increasing the
number of requestors increases the number of TDM slots one requestor suffers.

3. MCs that are optimized to minimize read-to-write and write-to-read penalty (Re-
Order, ROC and MCMC) have much lower interference, especially for open requests,
compared to other controllers. For close requests, MCMC achieves significantly bet-
ter results than other controllers, since it does not suffer extra interference on PRE
and ACT commands.

38



Note that for ReOrder, the open request latency does not change with different number
of ranks, while the close request latency is reduced due to less interference on PRE and
ACT commands. Furthermore, the simulated latency in some cases increases with the
number of ranks because the rank switching delay can introduce extra latency compared
to executing a sequence of commands of the same type in a single rank system.

4.3.3 Row Locality

As we described in Section 2.2, the row hit ratio is an important property of the task
running as a requestor for MCs with open page policy. In this experiment, we evaluate the
impact of row hit ratio on the worst case latency of open page MCs ORP, DCmc, ReOrder
and ROC. In order to maintain the memory access pattern, and change the row hit ratio,
we synthetically modify the request address to achieve row hit ratio from 0% to 100%.
Instead of showing the worst latency for both close and open requests, we take the average
latency of the application as the general expression proposed in Section 4.1. As expected,
in Figure 4.4 we observe that both the analytical latency bound and the simulated latency
decrease as the row hit ratio increases. The impact of row hit ratio can be easily predicted
from the equation based on the RowAccess and RowInter components.

16	

32	

64	

128	

256	

512	

0%	 25%	 50%	 75%	 100%	

Pe
rR
eq

ue
st
	L
at
en

cy
	(n

s)
	

Dcmc	 ORP	 ROC2	 ROC4	 ReOrder	 ReOrder2	 ReOrder4	

Figure 4.4: Average Request Latency for Open Page MCs

4.3.4 Data Bus Width

In this experiment, we evaluate the request latency by varying the data bus width WBUS

from 32 to 8 bits. Using smaller data bus width, same size of request is served with
either interleaving more banks or multiple accesses to the same bank. The commands
generated by the bank privatized MCs depend on the applied page policy. For open page

39



private MCs (DCmc, ORP, ReOrder, and ROC), a PRE +ACT followed by a number of
CAS commands are generated for a close request. On the other hand, MCMC needs to
perform multiple close page operations, and each request needs multiple TDM rounds to
be completed. The analytical and simulated worst case latency per request is plotted in
Figure 4.5, while Table 4.4 shows the analytical components as a function of the number of
interleaved banks BI for interleaved MCs and number of consecutive accesses to the same
bank BC for private bank MCs; for example, with 64 bytes request size and 8 bits data
bus, interleaved banks MCs interleave through BI = 8 banks and bank privatized MCs
require BC = 8 accesses to the same bank.

Table 4.4: WC Latency (perREQ) Components with 8 REQ(Ex = 15 · K(BI = 8))

AMC/PMC/
RTMem

DCmc ORP ROC 2/4 ReOrder 1/2/4 MCMC 2/4

Interference 42 + Ex 28BC 13BC 9BC 6BC 8BC 9BC 7BC
RowInter NA 0 7 4 3 9 6 4 NA

BasicAccess 42 + Ex 13BC 19BC + 6 21BC + 6 18BC + 6 33BC 31 29
RowAccess NA 18 27 27 26 39 37 31 NA

16	

32	

64	

128	

256	

512	

1,024	

2,048	

32Bit	 16Bit	 8Bit	

Pe
rR
eq

ue
st
	L
at
en

cy
	(n

s)
	

AMC	 PMC	 RTMem	 Dcmc	 ORP	 ROC_2Rank	 ROC_4Rank	 ReOrder	 ReOrder2	 ReOrder4	 MCMC_2Rank	 MCMC_4Rank	

Figure 4.5: Worst Case Latency per Request of REQ0 with 8 REQs.

We can make the following observations:

1. The analytical bound for MCs with interleaved bank mapping is not affected by a
size of the data bus of 32 or 16 bits because the activation window for the same bank
(tRC) can cover all the timing constraints for accessing up to 4 interleaved banks. In
the case of 8 bits width, the MCs interleave over 8 banks, resulting in 36% higher
latency because of the timing constraints between the CAS commands in the last
bank of a request and the CAS command in the first bank of next request (such as
tWTR). Interleaved Banks MCs can process one request faster by taking benefit of
the bank parallelism for a request, hence leading to better access latency.

40



2. Both the analytical bound and the simulation result for MCs with private bank
increase dramatically when the data bus width gets smaller; both Interference and
BasicAccess are linear or almost linear with BC, given that each memory request is
split into multiple small accesses. However, RowInter and RowAccess are unchanged,
since the row must be opened only once per request.

4.3.5 Memory Device

The actual latency (ns) of a memory request is determined by both the memory frequency
and the timing constraints. In general, the length of timing constraints in number of clock
cycles increases when the memory device gets faster. Each timing constraint has different
impact on MCs designed with different techniques. For example, the 4-Activation window
(tFAW) has impact on interleaved banks MCs if one request needs to interleave over more
than 4 banks, and affects private bank MCs only if there are more than 4 requestors in
the system. In this experiment, we look at the impact of memory devices on both the
analytical and simulated worst case latency. We run each MC with memory devices from
DDR3-1066E to DDR3-2133L which cover a wide range of operating frequencies. We
also show the difference between devices running in same frequency but different timing
constraints such as DDR3-1600K and DDR3-1600H. Figure 4.6 represents the latency per
request for each MC, and it shows that as the frequency increases, the latency decreases
for all the MCs with private bank mapping and very small change to MCs with interleaved
bank. This is because the interleaved banks MCs are bounded by the re-activation window
to the same bank, which does not change much with the operating frequency.

16	

32	

64	

128	

256	

512	

DDR3-1066E	 DDR3-1333G	 DDR3-1600H	 DDR3-1600K	 DDR3-1866K	 DDR3-2133L	

pe
rR
eq

ue
st
	L
at
en

cy
	(n

s)
	

AMC	 PMC	 RTMem	 Dcmc	 ORP	 ROC2	 ROC4	 ReOrder	 ReOrder2	 ReOrder4	 MCMC2	 MCMC4	

Figure 4.6: Worst Case Latency per Request of REQ0

41



4.3.6 Large Request Size

In this experiment, we consider different request sizes. We configure the system to include
four requests with request size of 64 bytes (simulating a typical CPU), and four requestors
generating large requests with a size of 2048 bytes (simulating a DMA device). RTMem
and PMC are the only controllers that natively handle varying request sizes. RTMem has
a lookup table of BI and BC based on the request size, while PMC uses a different number
of scheduling slots for requestors of different types. Overall, we employ the following
configuration:

• AMC interleaves 4 banks with auto-precharge CAS commands, given that interleav-
ing can go up to 4 banks without any delay penalty, and performs multiple interleaved
accesses based on the request size;

• PMC changes the scheduling slot order for different requestor types to trade-off be-
tween latency and bandwidth;

• RTMem changes the commands pattern for large requests;

• private bank MCs (ORP, DCmc, ReOrder, ROC and MCMC) do not differentiate
the request size, and each large request is served as a sequence of multiple acccesses,
similarly to the previous experiment with small data bus width.

The configuration for AMC, RTMem and PMC is shown in Table 4.5. PMC executes
all the predefined slot sequences in the configuration and repeats the same order after
all the sequences are processed. In details, the number in each sequence is the requestor
ID and the order in the sequence is the order of requestor arbitration. In short, PMC 1
assigns one slot per requestor; PMC 2 assigns double the number of slots to small requests
compared to large requests; and PMC 4 assigns to small requests four times the number
of slots.

Table 4.5: Large Request Configuration

AMC PMC1 PMC2 PMC3 RTMem4/8 RTMem8/4
BI=4
BC=8

[0 1 2 3 4 5 6 7]
[0 1 2 3 4 5]
[0 1 2 3 6 7]

[0 1 2 3 4] [0 1 2 3 5]
[0 1 2 3 6] [0 1 2 3 7]

BI=4
BC=8

BI=8
BC=4

The worst case latency per request for REQ0 with 64 bytes request is shown in Figure 4.7
and the bandwidth of REQ 7 with 2048 bytes request is shown in Figure 4.8. For private
bank MCs, the access latency for small requests is not affected by the large requests because

42



16	

64	

256	

1,024	

64B	REQ0	

Pe
rR
eq

ue
st
	L
at
en

cy
	(n

s)
	

AMC	 PMC1	 PMC2	 PMC3	 RTMem8/4	

RTMem4/8	 Dcmc	 ORP	 ROC2	 ROC4	

ReOrder	 ReOrder2	 ReOrder4	 MCMC2	 MCMC4	

Figure 4.7: WC Latency of 64B REQ0

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

2048B	REQ7	

Ba
nd

w
id
th
	(G

B/
s)
	

AMC	 PMC1	 PMC2	 PMC3	 RTMem8/4	

RTMem4/8	 Dcmc	 ORP	 ROC2	 ROC4	

ReOrder	 ReOrder2	 ReOrder4	 MCMC2	 MCMC4	

Figure 4.8: Bandwidth of 2048B REQ7

all the requestors are executed in parallel and the interference is only caused by memory
commands instead of the requests. AMC is not affected because the slot for each requestor
is the same based on the configuration. On the other hand, the bandwidth for the large
requestor is low compared to MCs that take the request size into consideration. RTMem
can switch the command pattern for a large request. The latency for small requestor is
slightly higher when the large request is configured as [BI=4, BC=8] comparing to [BI=8
and BC=4]. However, the bandwidth is slightly increased. Based on the arbitration scheme
of PMC, the latency for small request and bandwidth for large requestor is greatly affected.
The trade of between the latency and bandwidth is very obvious.

4.3.7 Mixed Criticality

The system is configured with 8 HRT REQs as before, but on top of that, there are another
8 SRT REQs in the system. We can observe how much impact the SRT REQs can have
on the HRT REQs and the performance of SRT requestor in each MC. AMC, DCmc,
and MCMC assign priority to HRT over SRT requestors. PMC employs a predefined slot
sequence similar as PMC2 in Table 4.5, which schedules 4 SRT with 8 HRT REQs in one
rounod. ROC and ReOrder 2/4 assign different ranks to HRT and SRT REQs. However,
the analysis for ReOrder 2/4 implicitly assumes an equal number of requestors in each
rank; on the other hand, we test two different configurations for ROC, since the latency
bound depends only on the number of other HRT requestors assigned to the same rank.
Note that all open page MCs have been configured to apply FR-FCFS for SRT REQs to
maximize the bandwidth 3. ROC, ReOrder 2/4 and MCMC require specific assignments

3DCmc [15], ROC [25] and ReOrder 2/4 [5] specifically mention such policy for SRT REQs. We have
extended the request scheduler of ORP and ReOrder 1 to support the same configuration for the sake of
fair comparison. We do not apply such policy to close page MCs since it would not yield any benefit.

43



of HRT and SRT requestors to individual ranks; the employed configurations are detailed
in Table 4.6.

Table 4.6: Mixed Critical System Configuration for Multi-Rank MCs

ROC2/ReOrder2 ROC4 1/ReOrder4 ROC4 2 MCMC2 MCMC4
Rank 0 8HRT 4HRT 3HRT 4HRT+4SRT 2HRT+2SRT
Rank 1 8SRT 4HRT 3HRT 4HRT+4SRT 2HRT+2SRT
Rank 2 NA 4SRT 2HRT NA 2HRT+2SRT
Rank 3 NA 4SRT 8SRT NA 2HRT+2SRT

Results are plotted in terms of latency for HRT REQ0 in Figure 4.9 and bandwidth
for SRT REQ8 in Figure 4.10. For MCs that do not differentiate HRT and SRT REQs

16	

32	

64	

128	

256	

512	

1,024	

HRT	REQ0	

Pe
rR
eq

ue
st
	L
at
en

cy
	(n

s)
	

AMC	 PMC	 RTMem	 Dcmc	 ORP	 ROC2	 ROC4_1	

ROC4_2	 ReOrder	 ReOrder2	 ReOrder4	 MCMC2	 MCMC4	

Figure 4.9: WC Latency of of HRT REQ0

0.00	

0.20	

0.40	

0.60	

0.80	

SRT	REQ8	

Ba
nd

w
id
th
	(G

B/
s)
	

AMC	 PMC	 RTMem	 Dcmc	 ORP	 ROC2	 ROC4_1	

ROC4_2	 ReOrder	 ReOrder2	 ReOrder4	 MCMC2	 MCMC4	

Figure 4.10: Bandwidth of SRT REQ8

(RTMen, ORP and ReOrder), the latency is the same as having 16 REQs in the system.
The analytical latency of a HRT request for AMC and DCmc is increased due to the
possibility of scheduling one SRT requestor before a HRT requestor. PMC can trade off
the latency for HRT and the bandwidth for SRT by employing different slot sequence.
ROC can adjust the trade-off by allocating requestors in different ranks. In general, open
page MCs perform much better in terms of available bandwidth for SRT REQs compared
to close page MCs, since they can take advantage of row hits and requests reordering
in the average case. In particular, note that while MCMC on 2 ranks has the second
lowest analytical latency for HRT REQs, it provides almost no bandwidth to SRT REQs.
This is because the slot size for MCMC on 2 ranks is fairly large, leading to low memory
utilization.

4.4 Discussion

Based on the obtained results, we now summarize the key takeaways of the evaluation.

44



4.4.1 Memory Configuration

The characteristics of the employed memory module: data bus width, memory device
speed, and number of ranks, have a significant impact on the relative performance of the
tested MCs. Out of the three main characteristics, the data bus width seems by far the
most important. A memory device with smaller data bus can be better utilized by MCs
with interleaved banks because each request can be served by accessing a number of banks
in parallel. On the other hand, private banks MCs can have better memory access latency
when wider data bus is used, where a memory request can be served with less accesses to
the same bank. In general, private banks MCs perform better for bus width of 32 bits and
above, while interleaved banks MCs pull ahead at widths of 16 bits and below. At the
same time, it is important to recognize that bus width is the major factor in the cost of
the main memory subsystem: while doubling the data bus width or doubling the number
of ranks both requires doubling the number of DRAM chips, an enlarged data bus width
also requires adding extra physical pins to the memory controller, which can be expensive.
In addition, private banks MCs show moderate improvements in latency on faster devices,
and significant improvements in both latency and bandwidth from increasing the number
of ranks (see also Section 4.4.2). However, the impact of faster memories is negligible for
interleaved banks MCs since the bounding constraint of re-activation to the same bank is
almost constant through all devices.

In summary, based on performance alone, we believe that interleaved banks MCs are
suitable for simple microcontrollers, employing small bus width of 8 or 16 bits and slow,
single rank devices, while private banks MCs allow improved performance at higher cost
on more complex systems. However, outside of the performance/cost trade off, it is also
important to recognize that private banks MCs impose a more complex system configu-
ration: main memory must be partitioned among requestors. Note that if data must be
shared among multiple HRT requestors, such data can be allocated to a shared bank [15],
but the resulting latency bound for accesses to shared data then becomes similar to AMC
as the controller cannot avoid row conflicts.

4.4.2 Write-Read Switching

Among private banks MCs, the latency bounds for ReOrder, ROC and MCMC are generally
significant better than ORP and Dcmc: this is because the arbitration schemes used by
the former are designed to minimize the impact of the long read-to-write and write-to-read
switching delays, either by reordering CAS commands, or by switching between ranks.
Among the three MCs, MCMC shows the smallest latencies, followed by ROC / ReOrder

45



2/4 and ReOrder 1. Given that the main difference between MCMC and ROC is the page
policy (close vs open), a relevant takeaway is that based on current analysis technology,
there seems to be no advantage in employing open page policy for latency minimization:
based on Table 4.3, for open requests ROC performs slightly better than MCMC, but
it suffers a heavy penalty hit for close requests. This is because MCMC can construct
an efficient, TDM-like memory schedule that effectively pipelines the delays suffered by
the PRE, ACT and CAS commands, while the analysis for open page controllers requires
adding the interference on PRE, ACT and CAS: again looking at Table 4.3, ROC and
MCMC have the same Interference term, but ROC suffers from an additional RowInter
term which adds an extra 55-66% latency for close page accesses.

ReOrder 2/4 shows similar latency bounds to ROC, albeit ROC scales slightly better
with the number of requestors on 4 ranks (see Table 4.3). It also offers better average
bandwidth for SRT and large size requestors compared to ROC. MCMC shows poor per-
formance in terms of provided bandwidth to both SRT and large size requestors, especially
for the 2 ranks case, due to poor average memory utilization and close page policy. It
also imposes the most constraints on the system by requiring TDM arbitration: a SRT
requestor cannot be assigned to more than one slot, meaning than with 8 HRT requestors,
no SRT requestor could consume more than 1/8 of the provided throughput under any cir-
cumstance. This could be a significant issue for devices such as GPU which can typically
saturate memory bandwidth even when running alone. Finally, we need to notice that the
evaluation has been conducted using the tRTR (rank-to-rank switching) timing constraint
suggested by Ramulator, which is 2 for all devices. For memory modules with larger val-
ues of tRTR [5], the performance of both ROC and MCMC would rapidly drop, since the
Interference term for both MCs cannot be smaller than tBUS + tRTR, while ReOrder 2/4
is much less affected.

4.4.3 Latency and Bandwidth Trade-offs

When a system is characterized by different size of requests or mixed temporal criticality
requirements, a trade-off between latency and bandwidth must be considered by the de-
signer as shown in the experiments in Section 4.3.6 and 4.3.7. In general, PMC appears
more suitable for handling system with various request sizes because it can be explicitly
configured to handle the trade off. RTMem provides the best bandwidth to large requests,
but it does so at the cost of increasing latency for small requests compared to AMC by
100%. For SRT requestors, the fixed priority mechanism employed by AMC, DCmc, and
MCMC can strongly limit the bandwidth of SRT requestors depending on the workload of
the HRT requestors; in general, no guarantee can be made on minimum bandwidth offered

46



to SRT requestors. Apart from PMC, ROC and ReOrder 2/4 can also provide guaran-
teed bandwidth to SRT requestors by allocating them to dedicated ranks, at the cost of
increased latency for HRT requestors.

4.4.4 Analytical Bounds vs Simulation Results

We can make three important observations regarding the difference between the analytical
latency and the simulated worst case latency in the provided experiments: (1) they are
identical for MCs with static command scheduling and close page policy (AMC, PMC,
MCMC) because the schedule slot is calculated based on the worst timing constraints in
all situations; (2) they have slight difference for the only MC with dynamic command
scheduling and close page (RTMem) because the scheduler can differentiate the type of
commands and the location the command targets. The opportunity for the worst case
scenario to happen is highly depending on the actual memory request pattern; (3) they
have relative large difference for MCs with dynamic command scheduling and open page
policy (DCmc, ORP, ReOrder and ROC). We believe this indicates that the analyses for
these controllers are fundamentally pessimistic, especially for close page accesses. As noted
in Section 4.4.2, the analysis derives the bound by adding together the maximum delays
suffered by each command of a request, but this cannot happen in reality: if a request
suffers maximum interference on its ACT command, then it should not be able to suffer
maximum interference on its CAS command as well (see also [42] for an in-depth discussion
on the problem, but note that the presented approach cannot be directly extended to
controllers that reorder commands). Hence, we believe it is important to focus on deriving
tighter analysis for MCs with dynamic command scheduling. An approach based on model-
checking is proposed in [27] and applied to RTMem, but its high computational complexity
seems to make it inapplicable to large number of requestors and open page MCs.

4.5 Conclusion

Due to the complexity of comparing multiple DRAM predictable controllers on an even
ground, there is a significant lack of experimental evaluation. In this chapter, we attempt
to bridge such gap by both comparing state-of-the-art predictable controllers based on
key configuration parameters, and by proposing an experimental and analytical evaluation
based on memory traces generated using EEMBC benchmarks. We believe that our results
show that there is no universally better controller; rather, the choice of controller should
be guided by the desired memory configuration, analytical guarantees and application
characteristics.

47



Chapter 5

A Requests Bundling DRAM
Controller for Mixed-Criticality
System

Based on the evaluation results in Chapter 4, we can make the following conclusions:
1) A reordering technique of request access can significantly improve the latency bound
by reducing the number of access type (read/write) switching. 2) For open-page MCs,
there is a significant latency difference between a close request and an open request. 3)
Designing memory controllers for mixed-criticality systems adds additional challenges: in
such systems, a tight worst case analytical latency is required for HRT application, and at
the same time, sufficient bandwidth should be provided to SRT applications in the average
case. Fixed priority arbitration is commonly used in existing designs, where SRT requests
are given lower priority than HRT requests. It can strongly limit the memory bandwidth
available for soft real-time applications in mixed-critical systems.

Therefore, we propose a request reordering technique to target systems with mixed-
criticality. Our proposed controller REQBundle uses different techniques for HRT and SRT
applications to achieve different objectives. Close-page policy and private bank allocation
are used for HRT applications to achieve high predictability. On the other hand, open-page
policy and shared memory mapping are applied to SRT applications to get high memory
throughput. As a result, REQBundle provides a request latency for HRT request which
is slightly greater than the latency for row hit requests in the state-of-the-art open-page
private bank MC [4], and significantly lower for row miss requests, while at the same time
providing a configurable bandwidth guarantee for SRT requests.

48



5.1 REQBundle Controller Architecture

In this section, we formalize the request arbitration scheme, address mapping, page policy
and command scheduling rules of the memory controller in a way that worst case latency
can be derived for hard real-time requests, while maximizing the bandwidth available to
soft requestors. We first describe the top-level system overview of the hardware blocks
and queue structures, as shown in Figure 5.1. We assume that the memory controller can
receive memory requests simultaneously from N hard real-time requestors (HRTs) and M
soft real-time requestors (SRTs). Let B be the number of banks in a single-rank DRAM
device. N banks are used as HRT banks, such that each bank is allocated to only one HRT
requestor. This private bank scheme can effective prevent interference on a HRT bank from
other banks. The remaining B-N banks are shared by all the M SRTs with interleave bank
address mapping to take the benefit of bank-level parallelism. We employ close-page policy
for HRT banks to achieve high predictability and open-page for SRT banks to explore the
row buffer locality. Because the HRTs and SRTs are allocated in different banks, we can
guarantee that a HRT requestor can only be delayed by other requestors due to inter-bank
timing constraints, and not intra-bank constraints.

HRT		
REQ0	

Ad
dr
es
s	M

ap
pi
ng
	HRT		

REQ	N-1	

SRT		
REQ	0	

Memory Controller 

Bank	0	
RequestQ	

Bank	N-1	
RequestQ	

Re
qu

es
t	S

ch
ed

ul
er
	

Co
m
m
an
d	
Ge

ne
ra
to
r	

Co
m
m
an
d	
Sc
he

du
le
r	

Cmd 
Bus 

Data 
Bus 

Sy
st
em

	In
te
rc
on

ne
ct
	

DR
AM

	D
ev
ic
e	

SRT		
REQ	M-1	

Bank	0	
CommandQ	

Bank	N-1	
CommandQ	

Bank	B-N	
RequestQ	

Bank	B-N	
CommandQ	

Bank	B-1	
RequestQ	

Bank	B-1	
CommandQ	

Figure 5.1: System Overview

When a request arrives at the memory controller, the address mapping translates the
request address into the physical location in the DRAM device: bank, row and column.
Then the request is buffered into the corresponding bank request queues. The request
queues are connected to the request arbiter, and requests are selected based on the ar-
bitration scheme. The selected request is then converted into a sequence of commands

49



based on the page-policy applied and the generated commands are stored in the bank com-
mand queues. The command scheduler determines the command that can be issued to the
DRAM device and sends the scheduled command through the command bus. Data can be
transmitted through the data bus. Our design has two objectives: guarantee a predictable
and tight latency bound for HRT requests and provide a configurable bandwidth for SRT
requests. The detailed scheduling rules are described in the following.

5.1.1 Request Scheduler

The request scheduler performs different arbitration schemes for HRT and SRT banks. The
HRT scheduler employs FCFS for each HRT bank request queue. We say that an HRT
request at the front of its request queue is active if the data transfer of the previously
scheduled request from the same bank has been completed. Once a request becomes
active, the request scheduler passes it to the command generator. This policy enforces that
commands belonging to at most one request for each HRT bank can be present at any time
in the command queue. The SRT scheduler uses a FR-FCFS scheduling algorithm [35],
which first prioritizes row-hit requests over row-miss ones, and then older requests over
younger ones. There is no concept of active requests for the SRT banks, and multiple
requests of the same requestor can be processed simultaneously.

5.1.2 Command Scheduler

We employ two types of command scheduler: inRound scheduler and outRound scheduler.
We show the corresponding block diagram in Figure 5.2. Command execution is divided
into a sequence of rounds, which are arbitrated by the inRound scheduler, interleaved
with out-of-round time intervals, which are arbitrated by the outRound scheduler. HRT
commands are only issued during rounds, while SRT commands can be issued both during
rounds and out-of-round execution.

HRT	Bank	0	

InRound	Scheduler	

OutRound	
Scheduler	

HRT	Bank	N-1	

SRT	Bank	0	

Command Scheduler SRT	Bank	M-1	

Figure 5.2: Architecture of the Command Scheduler

50



A round can start under two circumstances: 1) one or more HRT requests become
active during out-of-round execution; this causes the command scheduler to immediately
switch control from the outRound scheduler to the inRound scheduler; 2) a round completes
and there is at least one active HRT requests; in this case the inRound scheduler retains
control. A round completes after the scheduled HRT requests within the round are served,
i.e., after all commands for those requests are sent to the DRAM device; note that based
on this definition, the last issued command within a round must be a CAS. If there is
no active HRT request after a round completes, then control is passed to the outRound
scheduler. Finally, the type of requests (read or write) that are served in a given round is
determined when the round starts. The decision follows the following scheme: if there is
any active HRT requests of a different type than the last issued CAS before the beginning
of the round, the service type switches. Otherwise, the type remains the same. In this
way, when HRT requestors produce requests of both types, consecutive rounds switches
between servicing read and write requests.

A clarifying example for the start/complete time and the round type is shown in Fig-
ure 5.3. Square boxes represent commands issued to the command bus (A for ACT, P for
PRE, C or R/W for RD and WR CAS). We also show the data being transmitted on the
data bus because the earliest time that a request can become active is at the end of the data
transfer of the previous request in the same request queue. The vertical arrow indicates
that a request of the specified type becomes active. In this example, HRT requests for
Bank0 and for Bank1 both become active at the same time during outRound execution,
causing round0 to starts immediately. Because the last issued CAS is WR and there is
an active HRT RD request from Bank0, round0 will have the type of read. During the
execution of round0, HRT requests for Bank2 and Bank3 become active. Bank2 cannot
be executed in the current round because the number of requests are determined before
any commands are issued, as we will explain in Section 5.1.2. A new round can only start
after previous round completes, therefore, once the RD CAS is sent, a new round1 starts
immediately as there are active HRT requests. As the last CAS is a RD, and there are
HRT WR requests from both Bank0 and Bank3, round1 has a type of write. Whenever the
inRound scheduler is not running, the outRound scheduler executes SRT commands until
an HRT request becomes active. We discuss the scheduling rules of the two schedulers
individually in the following.

InRound Scheduler

Since a HRT request is converted into commands using close-page policy, it always consists
of an ACT command first, followed by a CAS. When a round starts, there are three delays

51



R	

inRound outRound 

W

A	

WA	

WA	

inRound 

WR 

RD 

RD 

WR 

R0 Starts 

Bank0	

R0 Ends  
R1 Starts R1 Ends  

Bank1	

Bank2	

Bank3	

Figure 5.3: Start and End Time of A Round

that can impact the command execution of a HRT request, which are shown in Figure 5.4
as tinter−bankACT , tintra−bankACT , and tswitch

CAS . The scheduling rules for the inRound scheduler are
designed based on these three initial delays. When a round starts, tinter−bankACT is the delay
that any ACT must wait before being issued due to inter-bank constraints. For a specific
HRT bank, tintra−bankACT indicates the possible additional delay that an ACT of that bank
might need to wait due to intra-bank constraints. In Figure 5.4 we show this delay for
Bank0, and use a dotted box to represent the fact that the ACT for Bank0 is ready to be
issued after the tintra−bankACT expires. Finally, tswitch

CAS is the delay that any CAS must wait in the
round due to general constraints on CAS commands and data. The detailed computation
for the worst case length of these delay components will be detailed in Section 5.2.

tCCD 

tRCD 

tACT
inter-bank 

A	

Starts 

Bank3	

Bank2	

Bank1	

Bank0		

tSnapshot (NACT
SRT=2) 

C	

Data	 A	

SRT	ACT	 SRT	ACT	

A	

SRT	CAS	

A	 C	

C	

C	

Ends 

tACT
intra-bank 

tCAS
switch 

tCAS
SRT 

A	

Figure 5.4: Execution of A Round

52



First, when a round starts, there is no guarantee that the ACT of any active requests
can be issued due to the inter-bank ACT delay caused by any ACT issued before the
round starts. Instead of continuously monitoring incoming active requests, the inRound
scheduler determines the requests that will be scheduled in a round at tSnapshot, the time
when the tinter−bankACT delay has elapsed. At tSnapshot, the scheduler scans through the HRT
bank command queues and take a snapshot of the commands for requests that are active.
Any requests that becomes active after tSnapshot will not be served in the round regardless
of the type of the requests. In the example in Figure 5.4, active requests of Bank0 and
Bank1 initiate the round, and Bank2 has active request before the snapshot, therefore their
requests can be served in the round. Since Bank3 has active request after the snapshot,
it misses the round. During the round execution, the arbitration order for the same type
of commands of HRT requestors is based on the time at which the corresponding request
becomes active, with older requests given higher priority.

Second, when the snapshot is taken, there is still no guarantee that any HRT ACT
can be issued due to tintra−bankACT because the bank must be precharged first before a new
ACT can be issued. In this case, instead of keeping the scheduler idle for tintra−bankACT , we
issue a configurable number of ACT commands of SRT requestors. More in details, the
arbitration works as follows: we reserve the first NSRT,RD

ACT or NSRT,WR
ACT ACT commands

issued in the round for SRT requestors, depending on the type of the round (RD or WR).
These commands are scheduled as soon as possible, starting from tSnapshot, in a non-work-
conserving way: if no SRT requestor is ready at the time an ACT command could be issued,
then that ”slot” is wasted, and we schedule one less SRT ACT in this round 1. Note that
in Figure 5.4, we represent SRT ACT slots with a stretched rectangular box. After the
NSRT,RD

ACT or NSRT,WR
ACT commands, no more ACT of SRT are allowed during the current

round; instead, ACT commands of HRT requestors are scheduled as soon as possible,
while respecting the inter-bank constraints tRRD and tFAW .

Third, since the HRT commands are generated with close-page policy, the HRT CAS
can only become ready tRCD cycles after its ACT is issued. Due to the tinter−bankACT , tintra−bankACT

and NSRT
ACT ACT slots that happen before the first HRT ACT can be issued, the first HRT

CAS may become ready a significant amount of time after the round starts and the tswitch
CAS

delay may have already expired. In order to improve the memory utilization, once the
tswitch
CAS delay is satisfied, SRT CASs should be able to be issued as long as the they do not

cause extra delay to the HRT CAS. We employ as late as possible (ALAP) for HRT CAS
in a way that all the HRT CASs are pushed close together to the last HRT CAS. This
is feasible because we can easily calculate the moment when the last HRT ACT can be

1As an optimization, note that if no SRT requestor is ready, the slot could be used to schedule a ready
HRT requestor instead, but this would not change the worst case latency for HRT requests.

53



issued and the number of HRT CAS in a round is also known. In this manner, we can
calculate the latest time tSRT

CAS shown in Figure 5.4 that a SRT CAS can be issued and does
not cause delay on the last HRT CAS. The detailed calculation procedure for the tSRT

CAS is
demonstrated in Section 5.2. Before the tSRT

CAS, any ready SRT CAS in the same type of the
round has priority over HRT CAS, and after the point, no SRT CAS is issued. Note that
the time during which SRT CAS can be processed is indicated by a stretched rectangular
box in Figure 5.4.

At last, since a PRE does not have any timing constraints on other banks, it can
be issued any time when there is no ACT or CAS scheduled. The command priority in
inRound scheduler follows ACT > CAS > PRE.

OutRound Scheduler

SRT commands are issued as soon as possible (ASAP) by the outRound scheduler following
the priority scheme CAS > ACT > PRE. In order to avoid starvation for any type of
CAS commands caused by the ASAP policy, we set a threshold value for each type of
CAS command. If the number of executed CAS of a given type during the out-of-round
interval reaches the threshold and there is at least one CAS of the different type, a switch
is performed. If there is no CAS of the other type, the counter is reset.

5.2 Timing Analysis for HRT Request

In this section, we show how to derive an upper bound Lreq to the worst case latency for
a HRT memory request. As in all related work, the bound is computed from the time
at which the request becomes active, to the completion time of the corresponding data
transmission, i.e., it is the processing delay for the request, ignoring queuing delay; Lreq

can then be used to compute the worst case memory delay for a task running on a timing
compositional processor [39].

The inRound scheduler executes requests of a single type (read or write) during a
round, and then switches access type if there are active HRT requests at the end of that
round. Hence, the execution pattern leading to the worst case response time for a HRT
request under analysis can be demonstrated in Figure 5.5. The request under analysis
(Bank3 in the figure) becomes active right after the snapshot for a round of the same type
(R0). Afterwards, the inRound scheduler executes a round of the other access type (R1).
Finally, the request under analysis is served in the third round (R2). During each round,
up to NSRT,RD

ACT or NSRT,WR
ACT ACT commands of SRT requestors can be issued (ACTs in

54



the figure), plus a variable number of HRT requestors. We first show how to compute the

LReq 

Request 
Miss 

R0 Starts Snapshot 

Bank0	

ACTs	

C	

R0 Ends  
R1 Starts 

ACTs	

R1 Ends  
R2 Starts 

ACTs	

C3	

C	

D3	

A	
A	

A3	

Bank1	

Bank2	

Bank3	

Figure 5.5: Worst Case Request Arrival Time

length of each round, and then compute Lreq by summing the delay suffered by the request
under analysis in each of R0, R1 and R2. Note that for simplicity, we will describe the
analysis assuming that the inter-bank constraints tRRD for ACT commands is at least equal
to the CAS contraint tCCD + 1; this is true for most DDR3 except the slower devices 2. We
use the notation (x)+ to mean max(0, x).

5.2.1 Execution Time of A Round

We now seek to compute the length of a round, assuming that the number of HRT requests
serviced in the round is Ncurr ≤ N . The worst case execution pattern of a round is shown
in Figure 5.6, together with all relevant delay times for the analysis. As a round ends after
the execution of the last HRT CAS command, our goal is to compute the time elapsed
from the beginning of the round to the time when the last CAS is issued, plus one cycle
to account for issuing the command itself. We start with two fundamental lemmas.

Lemma 5.2.1. Assume that a sequence of n ACT commands are issued as soon as possible
within the round without suffering intra-bank constraints (with the possible exception of the
first such command). Then the maximum latency tACT (n) between the first and n-th ACT
is given by Equation 5.1:

tACT (n) = tRRD · (n− 1) + dn− 1

4
e · (tFAW − 4 · tRRD) (5.1)

2Note that if such constraint is violated, we can still apply the analysis by running the controller with
an inflated value of tRRD = tCCD + 1, and possibly inflating the four-activate window tFAW such that
tFAW ≥ 4 · tRRD.

55



tRCD 

tCCD 

tACT
first-ready 

tACT
last-ready 

tACT
issue tACT

inter-bank 

tCAS
switch 

Ends Starts Snapshot 

D3	Bank3	
Bank2	
Bank1	
Bank0	

D2	
D1	

D0	

A	

ACT	
ACT	

C	

A	

tCAS
SRT 

C	

A	
A	

A	
A	

C	
C	

C	

Figure 5.6: Execution Pattern of A Round

Proof. Since the ACT commands in the sequence execute without suffering intra-bank
constraints, we only need to consider inter-bank constraints tRRD and tFAW between them.
The tFAW constraints is applied for every 4 consecutive ACT commands, and for all DDR
devices, it holds tFAW ≥ 4 · tRRD. Since we do not know the number of ACT commands
issued before the first in the sequence, we can safely upper bound the length of the sequence
by considering a delay of tRRD between each pair of ACT commands, and an additional
delay of tFAW − 4 · tRRD between the first and second ACT command, and every 4 ACT
commands henceforth. Equation 5.1 then immediately follows.

Lemma 5.2.2. Assume that a sequence of n CAS commands are issued as soon as possible
within the round without suffering intra-bank constraints (with the possible exception of the
first such command). Then the maximum latency tCAS(n) between the first and n-th CAS
is given by Equation 5.2:

tCAS(n) = (tCCD + 1) · (n− 1) (5.2)

Proof. Since all the CAS commands executed within a round have the same type, and
commands in the sequence suffer no intra-bank constraints, the only delay between two
consecutive CAS is tCCD. Because ACT has higher priority than CAS, a CAS can ad-
ditionally suffer bus conflict delay by ACT commands. Since the inter-bank ACT delay
tRRD > tCCD, the maximum bus conflict delay is 1 cycle per CAS command. Equation 5.2
then immediately follows.

Based on Lemmas 5.2.1, 5.2.2, we will refer to such sequences of ACT and CAS com-
mands as chains of ACT/CAS. Furthermore, note that since we assumed tRRD ≥ tCCD +1,

56



the length of the ACT chain is always greater than the CAS chain. Based on such prop-
erty, the issue time for the last CAS can be bounded as the maximum of the following two
times: 1) the latency for issuing the last ACT in the round, which we denote with tissueACT

(from the snapshot), plus the ACT to CAS constraint tRCD; 2) or the time at which CAS
commands for HRT requestors can start being issued, plus the length of a CAS chain of
Ncurr commands. Essentially, when case 1) is larger, we can say that the length of the
round is dominated by the time required to issue ACT commands (ACT chain), while
when case 2) is larger, it is dominated by the length of the CAS chain. Note that based
on the discussed arbitration mechanism for CAS commands within the round, no CAS
command can be issued before tswitch

CAS time has elapsed from the beginning of the round.
Furthermore, no HRT CAS command is issued in the worst case before tSRT

CAS + tCCD + 1
time has elapsed since the snapshot; the last SRT command can be issued at tSRT

CAS, and
the term tCCD + 1 accounts for the CAS to CAS delay and bus conflict, as detailed in the
proof of Lemma 5.2.2. Putting everything together, and referring to Figure 5.6, we obtain
the length of the round tR as:

tR(Ncurr) = 1 + max(tinter−bankACT + tissueACT + tRCD, t
switch
CAS + tCAS(Ncurr),

tinter−bankACT + tSRT
CAS + tCCD + 1 + tCAS(Ncurr)).

In the rest of this section, we focus on computing upper bounds to the length of tinter−bankACT , tissueACT , t
switch
CAS .

We will then determine a value for tSRT
CAS that ensures that the SRT CAS commands can

never dominate the length of the round.

Computing tinter−bankACT

We need to compute the maximum length for tinter−bankACT , which is the interval between the
start of the round and the snapshot time. Since tinter−bankACT depends on inter-bank ACT
delay, we have to assume that an ACT command is issued as late as possible before the
start of the round. If the previous scheduler was in outRound mode, then the last ACT
could have been issued at the latest one cycle before the start of the round. Otherwise, the
last ACT could have been issued at the latest tRCD + 1 cycles before the beginning of the
round, due to the fact that a round must finish with a CAS command and there is a tRCD

constraint between ACT and CAS. Hence, the maximum length of tinter−bankACT is obtained
as:

tinter−bankACT =

{
tFAW − 3 · tRRD − 1 prev OutRound;

(tFAW − 3 · tRRD − 1− tRCD)+ prev InRound;
(5.3)

57



Computing tswitch
CAS

The worst case switching delay happens when there is a CAS issued 1 cycle before the
round starts. Considering all existing constraints yields Equation 5.4, where curr denotes
the type of the current round (read or write), and prev the type of the previous round.

tswitch
CAS =


tCCD − 1 if prevType = currType;

tRTW − 1 if prevRD, currWR;

tWL + tBus + tWTR − 1 if prevWR, currRD;

(5.4)

Computing tissueACT

We need to compute the maximum delay, from the snapshot, to the last ACT issued
within the round. To account for intra-bank constraints, we define the following two time
intervals, computed from the snapshot: tfirst−readyACT represents the time at which all intra-
bank constraints have elapsed for the first issued HRT ACT in the round, while tlast−readyACT

represents the same interval for the last issued HRT ACT in the round. On the other
hand, note that SRT ACT are issued immediately at the snapshot. Hence, tissueACT can be
bounded as the maximum of the following three times: 1) the length of an ACT chain with
NSRT

ACT +Ncurr ACT commands; 2) or tfirst−readyACT plus the length of an ACT chain with Ncurr

ACT commands; 3) or simply tlast−readyACT . In essence, case 1) captures the situation when
the maximum delay is caused by a chain starting with the SRT CAS commands; case 2)
when the chain starts with HRT CAS commands; and case 3) when the delay is bounded
by the intra-bank constraints for the last HRT ACT. We thus obtain the maximum delay:

tissueACT = max(tACT (NSRT
ACT +Ncurr), t

first−ready
ACT + tACT (Ncurr), t

last−ready
ACT ). (5.5)

It remains to compute tfirst−readyACT , tlast−readyACT . Since intra-bank constraints depend on
the time when the data of the last request of the same bank completed, we have to assume
that the data finished as late as possible. A request can only be served in a round if it
becomes active before the snapshot, which means that the previous data must complete
before the snapshot. Hence, the worst-case situation is depicted in Figure 5.6, where data
transmissions for the HRT banks that are serviced in the current round finish as late as
possible at the snapshot. Based on the existing intra-bank constraints, tlast−readyACT can then
be upper bounded as follows:

tlast−readyACT =

{
tRC − (tRCD + tRL + tBus) if prevRD;

tWR + tRP if prevWR;
(5.6)

58



Because there is only one data bus, the data transferred from different banks must be
separated by at least tBus. If we assume that all the banks scheduled in the round have
their previous data transferred in sequence as shown in Figure 5.6, then the latest moment
for the first HRT ACT becomes ready can be determined in Equation 5.7 by tracing back
the data pattern. The minimum delay between the first ACT and the snapshot is 0 because
the snapshot is taken as the earliest time any ACT can be issued.

tfirst−readyACT (Ncurr) = (tlast−readyACT − tBus · (Ncurr − 1))+ (5.7)

Execution Time of a Round

At last, we summarize the obtained worst case interval lengths to derive the execution time
of a round in Lemma 5.2.3.

Lemma 5.2.3. Let tinter−bankACT , tswitch
CAS , tissueACT be the maximum length of the corresponding

intervals, computed according to Equations 5.3, 5.4, 5.5 based on the type of the CAS and
data issued before the rounds and the condition the round starts. Furthermore, let:

tSRT
CAS(Ncurr) = tissueACT + tRCD − (tCAS(Ncurr) + tCCD + 1). (5.8)

Then the maximum execution time of a round serving Ncurr HRT requestors is given by
Equation 5.9:

tR(Ncurr) = max(tinter−bankACT + tissueACT + tRCD, tswitch
CAS + tCAS(Ncurr)) + 1. (5.9)

Proof. Based on Equations 5.8, we obtain:

tinter−bankACT + tSRT
CAS + tCCD + 1 + tCAS(Ncurr)

= tinter−bankACT + tissueACT + tRCD − (tCAS(Ncurr) + tCCD + 1) + tCCD + 1 + tCAS(Ncurr)

= tinter−bankACT + tissueACT + tRCD

(5.10)
Since tinter−bankACT + tSRT

CAS + tCCD + 1 + tCAS(Ncurr) = tinter−bankACT + tissueACT + tRCD, only two cases
out of the three in Equation 5.3 needs to be considered, thus yielding Equation 5.9.

Since the value of tSRT
CAS depends on Ncurr and the type of the previous round, we assume

that the controller maintains a value of precomputed tSRT
CAS lengths for each possible value

of Ncurr. The value of tSRT
CAS used for the current round can then be easily determined once

the snapshot is taken and the number of served HRT requests is determined.

59



5.2.2 Worst Case Latency for A HRT Request

Based on Figure 5.5, in the worst case the request under analysis is delayed by three consec-
utive HRT rounds: R0, R1, R2. We will first derive the worst case delay time DR0, DR1, DR2

suffered by the request under analysis in each round, and then sum the three delay com-
ponents to calculate the worst case latency. For each round, we maximize the number of
HRT requests that are served in that round.

Delay for R0

As shown in Figure 5.5, the worst case latency for a request happens when the request
becomes active 1 cycle after the snapshot is taken in round of same type.

Lemma 5.2.4. The maximum delay DR0 suffered by the request under analysis in R0 is
given by Equation 5.11:

DR0 = max(tissueACT + tRCD, t
switch
CAS + tCAS(N − 1))− 1, (5.11)

where tissueACT and tswitch
CAS are the maximum values in Equations 5.3, 5.4, assuming Ncurr =

N − 1 and the current round is of the same type as the request under analysis.

Proof. The maximum number of HRT requests that can be served in R0 is N − 1 because
the request under analysis cannot be served in the round; furthermore, the type of the
round must be the same as the request under analysis to produce the worst case. Since
the request under analysis arrives one cycle after the snapshot, the round delay for R0 is
thus: tR(N −1)− tinter−bankACT −1 = max(tissueACT + tRCD, t

switch
CAS + tCAS(N −1)− tinter−bankACT )−1.

To maximize the expression, we consider the maximum values of tissueACT , tswitch
CAS and the

minimum value of tinter−bankACT , which is 0, thus yielding the lemma.

Delay for R1

In order to maximize the latency, we assume that for each bank scheduled in a round
R0, a new request of the opposite type becomes active right after the data is transmitted.
Therefore, when R0 ends, R1 starts immediately and switches access type. Since a new
request becomes active only after previous data for the same bank is transmitted, we next
show that not all N − 1 interfering HRT banks can be served in R1.

60



Lemma 5.2.5. Let tinter−bankACT be computed according to Equation 5.3, assuming consecutive
rounds. Then if:

tR/WL + tBus > tinter−bankACT + 1, (5.12)

where tR/WL is either tRL for a read request or tWL for a write request, then no more than
N − 2 requests can be served in R1.

Proof. The time from a CAS command to the completion of the data is either tRL+tBus for
a read request or tWL + tBus for a write request. Therefore, if tR/WL + tBus > tinter−bankACT +1,
then the last CAS command in round R0, which is issued one cycle before the start of R1,
will not have its data complete by the snapshot of R1. Hence, the next request for that
bank cannot be served in R1.

Lemma 5.2.6. The maximum interval between the last and the next to last ACT commands
for HRT requestors in a round with Ncurr HRT requests is equal to:

∆ACT (Ncurr) = max(tlast−readyACT − (Ncurr − 1) · tRRD, tFAW − 3 · tRRD). (5.13)

where tlast−readyACT is computed according to Equation 5.6.

Proof. If ACT commands are executed in a chain, then the maximum interval between
successive ACT is trivially equal to tFAW − 3 · tRRD. Otherwise, assume that the last ACT
of an HRT in the round is delayed by tlast−readyACT . The maximum interval between the last
ACT and the next to last ACT can then be computed assuming that the first Ncurr − 1
HRT ACT commands are issued as soon as possible at the beginning of the round. Since
no more than one ACT command can be issued every tRRD cycles, the interval can be
bounded by tlast−readyACT − (Ncurr − 1) · tRRD.

Lemma 5.2.7. Let tinter−bankACT be computed according to Equation 5.3, assuming consecutive
rounds. Then if:

tR/WL + tBus −∆ACT (N − 1) > tinter−bankACT + 1, (5.14)

then no more than N − 3 requests can be served in R1.

Proof. Since ACT chains are always longer than CAS chains, the maximum interval be-
tween the last and next to last HRT CAS commands in R0 must be equal to the separation
between the corresponding ACT commands, i.e., ∆ACT (N − 1). Hence, following the same
argument as in the proof of Lemma 5.2.5, if tR/WL+ tBus−∆ACT (N−1) > tinter−bankACT +1, it
must follows that the banks that issue the last two requests in R0 cannot be served again
in R1.

61



Based on Lemmas 5.2.5, 5.2.7, the maximum number of HRT requests NR1 served in
R1 can be bounded as either N − 1, N − 2 or N − 3. Note that we do not consider any
further case, as we found that the number of HRT requests cannot be reduced further
based on the actual values of the timing constraints.

Lemma 5.2.8. The maximum delay DR1 suffered by the request under analysis in R1 is
given by Equation 5.15:

DR1 = tR(NR1), (5.15)

where tR is computed according to Equation 5.9, assuming that the current round is of the
opposite type of the request under analysis, and the previous round is of the same type.

Proof. The lemma trivially follows by noticing that the request under analysis is delayed
for the entirety of round R1, and the maximum number of HRT requests that can be served
in R1 is calculated in Lemmas 5.2.5, 5.2.7.

Delay for R2

Lemma 5.2.9. The maximum latency DR2 of the request under analysis in R2, computed
until the data of the request is completed, is given by Equation 5.16:

DR2 = tR(1) + tR/WL + tBus, (5.16)

where tR is computed according to Equation 5.9, assuming that the current round is of the
same type as the request under analysis, and the previous round is of the opposite type.

Proof. Since in the worst case the request under analysis becomes active right after the
snapshot of round R0, and since all other N−1 HRT requestors are served in R0, it follows
that when R2 starts, the request under analysis has the oldest active time in the system.
Hence, it is served first among all other HRT requests. Therefore, the issue time of the
CAS for the request under analysis is equivalent to the length of a round where there is
only one HRT request. To compute DR2, we then simply add the time from the CAS to
the completion of the data.

Latency for Request Under Analysis

Lemma 5.2.10. The worst case latency of a request is given by Equation 5.17 :

LReq = DR0 +DR1 +DR2. (5.17)

Proof. The proof follows immediately from Lemmas 5.2.4, 5.2.8, 5.2.9 and the worst case
pattern for the request under analysis.

62



5.3 Bandwidth Analysis for SRT requests

In this section, we show how to derive a bound on the minimum bandwidth that our
controller can offer to SRT requestors during a round. In our computation, we assume
that SRT requestors are backlogged with CAS commands. In practice, this might not
be possible if SRT requestors are never allowed to open a new row during a round; for
this reason, our controller allows to set a predefined number NACT,RD

SRT and NACT,WR
SRT of

guaranteed ACT slots for SRT requestors during each read/write round.

Based on our discussed mechanism, SRT are free to issue CAS command in the interval
comprised between the elapsing of the CAS switching delay CASswitch and time tSRT

CAS;
since tswitch

CAS is measured from the beginning of the round, while tSRT
CAS is measured from

the snapshot, the total length of the interval is tinter−bankACT + tSRT
CAS − tswitch

CAS . During such
interval, in the worst case one CAS is issued every tCCD +1 cycles to account for command
bus conflicts. The bandwidth available to SRT requestors in a round serving Ncurr HRT
requestors can then be represented in Equation 5.18:

BWsrt =
WBus ·BL · d

(tinter−bank
ACT +tSRT

CAS−t
switch
CAS )+

tCCD+1
e

tclk · tR(Ncurr)
(5.18)

where tclk is the clock period of the memory controller. In the equation, the numerator
represents the amount of data transferred by the SRT requestors, while tclk · tR(Ncurr) is
the duration of the round. Since we want to determine the minimum bandwidth, we need
to minimize Equation 5.18. In particular, since both tSRT

CAS and tR depend on the number
of HRT requestors Ncurr served in the current round, we compute the expression for all
possible values of Ncurr between one and N , and take the minimum. Similarly, since the
tinter−bankACT terms appears both at the numerator and in Equation 5.9 for tR, we evaluate all
possible values from 0 to the maximum in Equation 5.3.

In Figures 5.7 and 5.8, we demonstrate the minimum bandwidth guarantee for the SRT
requests in a read or write round under different DDR devices by assuming N = 8 HRT re-
questors and increasing NSRT

ACT from 0 to 4. The amount of guaranteed bandwidth increases
with NSRT

ACT , since the interval of time during which SRT can issue CAS commands becomes
larger. We observe that devices with higher frequency tend to have better bandwidth be-
cause the tRRD and tFAW constraints get larger when the speed increase, but tCCD stays
constant. This means that the execution chain of ACTs get longer while the CAS chain
remains the same. Therefore, more bandwidth is available for SRT CASs. The increase
of the NSRT,RD

ACT in the read round has less bandwidth improvement compared to a write
round because the tswitch

CAS delay is longer for read. There is no guarantee for SRT CAS in
a read round if NSRT,RD

ACT < 3, because the write-to-read switching delay is longer than the

63



0	

0.5	

1	

1.5	

2	

2.5	

3	

SRT	0	 SRT	1	 SRT	2	 SRT	3	 SRT	4	

SR
T	
Re

ad
	B
an

dw
id
th
	(G

B/
s)
	

1066E	 1333G	 1600H	 1866K	 2133L	

Figure 5.7: Minimum Read BW

0	

1	

2	

3	

4	

5	

6	

7	

SRT	0	 SRT	1	 SRT	2	 SRT	3	 SRT	4	

SR
T	
W
rit
e	
Ba

nd
w
id
th
	(B

G
/s
)	

1066E	 1333G	 1600H	 1866K	 2133L	

Figure 5.8: Minimum Write BW

execution time of NSRT,RD
ACT TDM slots. As we have shown in the timing analysis, the value

of NSRT
ACT has direct impact on the worst case latency for the HRT request. Therefore, there

is a trade-off between the HRT request latency and SRT request bandwidth. We show the
impact of the NSRT

ACT in the next section.

5.4 Evaluation

In this section, we compare our approach analytically and experimentally to the state-of-
the-art read/write command bundling memory controller (ReOrder) [4], which alternates
access pattern of reads and writes at the command level, similarly to our access round
bundle at the request level. Note that based on both the authors evaluation in [4] and our
evaluation in Chapter 4, ReOrder provides the smallest analytical worst case latency and
highest measured bandwidth among all other existing single-rank real-time MCs. In order
to obtain a fair simulation results, we implemented both MCs in MCsim.

Because there is no mixed-criticality support in the ReOrder, in order to fairly compare
the two controllers, we must provide a mechanism to handle SRT banks. There are two
common techniques used in real-time MCs:

• considering the SRT requests equivalent as the HRT requests, which can result in a
very high interference for the worst case latency depending on the number of SRT
requestors;

• HRT commands always have priority over the SRT requests, but no bandwidth can be
guaranteed to the SRTs. Both options cannot provide a fair comparison for ReOrder.

64



As a result, we design a virtual HRT (virHRT) requestor mechanism where a number of
virtual requestors are scheduled at the same level of the HRT requestors. The virtual
requestors then process requests from SRT banks. If virHRT=0, then the scheduling
becomes equivalent to the fixed-priority scheme. When increasing the value of virHRT,
a progressively higher amount of bandwidth can be guaranteed to SRT requests. When
virHRT is equal to the number of SRT banks, all requestors are treated as hard.

5.4.1 Analytical Request Latency Bound

Based on the analysis in the previous sections, the worst case latency is derived for our
proposed hardware architecture and scheduling policy. The main difference between the
two compared approaches is that ReOrder suffers two rounds of different type of CAS
commands, while our approach suffers two rounds of ACT execution sequence. In Figure 5.9
and 5.10, we demonstrate the worst case latency of a read and write request because the
latency for each type of request is derived separately. Both open (Hit) and close (Miss)
requests are shown for ReOrder. We assume that there are 8 HRT requestors and 0 SRT
requestors in the system and evaluate with DDR3 devices of different operating frequency.

0	

50	

100	

150	

200	

250	

300	

350	

400	

800D	 1066E	 1333G	 1600H	 1866K	 2133L	

W
or
st
	C
as
e	
Re

ad
	L
at
en

cy
	(n

s)
	

ReOrder_Open	 REQBundle	 ReOrder_Close	

Figure 5.9: WC Read Latency

0	

50	

100	

150	

200	

250	

300	

350	

400	

800D	 1066E	 1333G	 1600H	 1866K	 2133L	

W
or
st
	C
as
e	
W
rit
e	
La
te
nc
y	
(n
s)
	

ReOrder_Open	 REQBundle	 ReOrder_Close	

Figure 5.10: WC Write Latency

Comparing to the open-page ReOrder, our work shows a slight increase in the latency
for open request due to the close page policy, but dramatically reduces the close request
latency. The timing constraint between same type of CAS command is constant through all
DRAM devices, but the inter-bank ACT delay slightly increases when the device frequency
gets faster. An request latency balance point can be computed such that the REQBundle
has the same latency as ReOrder with a ratio hit ratio.

65



If we apply the same model used in Chapter 4, then we can show the values of the
four latency components of a read request since read has longer latency than a write in
Table 5.1. We can observe that the value of BasicAccess of the two controllers is very
similar and the the Interference (12) in REQBundle is in the middle of the Interference of
an open request (8) and Interference+RowInter of a close request (8 + 9 = 17) in ReOrder.

Table 5.1: WC Latency (perREQ) Components with REQ ≥ 8, and BI=1, BC=1

Interference RowInterfer BasicAccess RowAccess
REQBundle 12 NA 31 NA
ReOrder1 8 9 33 41

In essence, the overall memory latency for a task is lower for our approach compared
to ReOrder if the row hit ratio of the program is below the balance point. Balance points
for different DDR3 devices are shown in Table 5.2.

Table 5.2: Row Hit Ratio Table

DDR3 Device 800D 1066E 1333G 1600H 1866K 2133L
Read HR 0.83 0.83 0.8 0.75 0.65 0.55
Write HR 0.93 0.93 0.88 0.8 0.67 0.61

5.4.2 EEMBC Benchmarks

We use DDR3-1600H as the device under analysis. We demonstrate the worst case ex-
ecution time in Figure 5.11 for all the selected memory intensive benchmarks used in
Chapter 4. Color bars are used for measured worst case latencies and T-sharp bar for
analytical bounds. We normalize the worst-case and simulated execution time based on
the analytical bound of ReOrder. We can observe that the worst case execution time of
ReOrder and REQBundle is closer for the benchmarks with higher row hit ratio. RE-
QBundle shows significant lower execution time when the row hit ratio is very low such as
the cache benchmark.

5.4.3 HRT Requestors

As the number of requestors in the system has significant impact on the analytical and
simulated worst case request latency, we evaluate the impact by varying the number of

66



0.5	

0.6	

0.7	

0.8	

0.9	

1	

a2,me	 cache	 basefp	 irrflt	 aifirf	 tblook	

N
or
m
al
iz
ed

	E
xe
cu
0o

n	
Ti
m
e	

REQBuddle	 ReOrder	

Figure 5.11: Execution Time of EEMBC Benchmark

HRT requestors from 4 to 16. Since both MCs assign one requestor per bank and use a
single rank, in order to have a fair comparison, we assume that they can access up to 16
banks, as supported by DDR4, even if for DDR3 devices the actual number of banks is 8.
In order to show the impact of row hit ratio for open-page ReOrder, we evaluate with the
most intensive a2time benchmark and plot the worst case request latency averaged over
the request types for a2time using Equation 5.19.

Lavg
Req = (LRM

Req · (1−HRR) + LRH
Req ·HRR) ·RR + (LWM

Req · (1−HRW ) + LWH
Req ·HRW ) ·RW

(5.19)
In the equation, LRM

Req , LRH
Req, L

WH
Req , and LWM

Req represent worst case latency for a type of
request (R/W) with open row (H) or close row (M) access. HRR and HRW represent the
row hit ratio for read and write requests, respectively, while RR and RW are the ratio of
read and write requests of the task.

16	

32	

64	

128	

256	

512	

4	 8	 16	

W
or
st
	C
as
e	
Re

qu
es
t	L
at
en

cy
	(C

yc
le
s)
	

REQBundle	 ReOrder	

Figure 5.12: REQ0 Worst Case Request Latency

67



Results are shown in Figure 5.12. We observe that ReOrder has highest worst case
latency. ReOrder performs better when the number of requestors is low because the con-
stant delay of a request can cover the majority of the first round CAS interference. As the
number goes up, REQBundle tends to have lower latency.

5.4.4 Mixed-Criticality

In this case, the system is configured with 8 HRT REQs as before, but on top of that,
there are another 8 SRT REQs in the system. We can observe how much impact the SRT
REQs can have on the HRT request latency and the performance of SRT requestor in the
MC. We can configure the pre-defined SRT slots to provide extra bandwidth to the SRT
requests but at the same time, increase the worst case latency for the HRT requests. Based
on Figures 5.7 and 5.8, the minimum NACT

SRT value to guarantee some SRT bandwidth is
different across memory device. The threshold for the outRound scheduler is set as 10.
In this experiment, we evaluate the trade-off between worst case HRT request latency
and worst case SRT bandwidth by starting with minimum value of NACT

SRT = 0 for both
read and write rounds. We use DDR3-1600H device. We then fixed NSRT,WR

ACT = 1 and
increase the value of NSRT,RD

ACT . We set the virHRT = NSRT,RD
ACT for ReOrder. The SRT

requestors are running with synthetic memory intensive traces with a row hit ratio of 50%.
Results are shown in Figures 5.13, 5.14. The fixed-priority scheme can eliminate as much

0	

40	

80	

120	

160	

200	

0	 1	 2	 3	 4	

HR
T	
Re

qu
es
t	L
at
en

cy
	(C

yc
le
s)
	

REQBundle	 ReOrder	

Figure 5.13: HRT0 Latency

0	

1	

2	

3	

4	

5	

0	 1	 2	 3	 4	

SR
T	
Ba

nd
w
id
th
	(G

B/
s)
	

REQBundle	 ReOrder	

Figure 5.14: SRT BW

as possible interference from SRT requestors over the HRT requests. On the other hand,
the priority scheme can strongly limit the bandwidth of SRT requests because it depends
on the workload of the HRT requests. ReOrder has better bandwidth when NSRT,RD

ACT = 0
because ReOrder processes open requests faster and makes fixed-priority decisions at the
command level depending on the HRT ready commands. SRT requests are extensively

68



blocked in REQBundle because the priority decision is made at the request level regardless
of the ready time of any commands. As the value of NSRT,RD

ACT increases, REQBundle shows
a better measured SRT bandwidth than ReOrder and at the same time, provides a lower
latency bound. Note that the measured SRT bandwidth for ReOrder strongly depends
on the requests pattern on both HRT and SRT requestors; hence, we expect its provided
bandwidth to increase for requestors with higher row-hit ratio.

5.5 Conclusion

In this chapter, we propose a real-time memory controller that employs read and write
request bundling to improve the worst case request latency. We describe the memory
controller architecture and scheduling rules, and provide a detailed timing analysis for the
latency of a request, as well as the worst case execution time of a task. We compare
the approach analytically and experimentally with a state-of-the-art real-time memory
controller and show the balance point based on the row-hit ratio of a task. We also
provide a bandwidth guarantee for soft real-time applications and demonstrate the trade-
off between the performance and latency. Based on the obtained results, we conclude that
our controller tends to perform better than comparable solutions in terms of latency for
hard real-time tasks when it is difficult to guarantee a significant row hit ratio for the task
under analysis. At the same time, it also compare favourably in terms of bandwidth offered
to SRT requestors.

69



Chapter 6

Summary

Because the DRAM technology rapidly evolves with the development of new standards, to
quickly prototype DRAM controller design to meet application requirement, we propose
a general simulation framework MCsim with modular design to improve the reusability
and extensibility of DRAM controller simulator. MCsim can be easily connected to full-
system simulators and DRAM device simulators. Leveraging the benefit of the simulation
framework, we implemented all state-of-the-art predictable DRAM controllers and perform
the first comprehensive experimental and analytical evaluation of theses controllers based
on various system configurations. Based on the evaluation result, we proposed a new
predictable DRAM controller (REQBundle) that employs read and write request bundling
to provide a low request latency bound for a close request, and at the same time, deliver a
configurable bandwidth guarantee in mixed-critical systems. The design can be extended
to support multiple-rank memory modules.

Based on our study, we conclude that the following areas should be taken into consid-
eration for future memory system analysis.

1. DRAM Pipeline Execution Effect
Since the row locality is an essential factor for the system performance as the DRAM
capacity becomes larger, the open-page policy is a preferable design option to im-
prove performance but requires more careful analysis. In all the discussed open-page
MCs, the analysis for a close request is performed in the same manner: the timing
constraints between consecutive commands are added together with the maximum
interference that can be suffered by each command. This analysis is pessimistic be-
cause the worst-case execution cannot occur in the DRAM operation. As we shown
in REQBundle, the timing constraints between consecutive commands belonging to

70



the same request can potentially be hidden by the command interference from other
requestors. We believe that a careful design of request and command scheduling
policies can result in a lower close request latency bound in open-page MCs.

2. Large Memory Data Bus
In our study, we have assumed that the data bus width is equal or less than the
request size because the bus width of the DDR3/4 device is relatively small. However,
there are DRAM standards such as wideIO which provide a larger data bus width
for high throughput. A memory request becomes a portion of the data transferred
from the memory device. Currently, there has been no work in the literature takes
this scenario into account. We believe that how to effectively use the wider data bus
can be a future trend in DRAM research regarding memory performance and power
efficiency.

3. Mixed-Critical System
As the number of cores increases in a processor, mixed-critical systems should become
more common. As we discussed in this study, most single-rank MCs apply fixed-
priority for SRT applications to eliminate latency impact of SRT request from HRT
requests. However, this mechanism may not satisfy the system requirement if the
SRT applications need some bandwidth guarantee. In REQBundle MC, we show
that the penalty on HRT request latency caused by increasing SRT bandwidth is
relatively low. Therefore, we believe that in future MC designs, complex scheduling
rules should be applied to guarantee both latency and bandwidth to meet the future
system requirements.

4. Refresh Impact
In general, DRAM refresh commands are injected into the memory system once
every 64 milliseconds, and each refresh command refreshes all banks. In all the
MCs presented in this thesis, the refresh is considered as a fixed amount of time
and added to the total memory access latency. In a close-page memory system, the
impact of refresh is relatively easy to compute. However, open-page memory system
require more careful analysis regarding the refresh impact because of the closing and
re-opening of a row in each bank [41]. As the DRAM capacity continues growing,
the refresh period becomes shorter and the refresh time tends to be longer because
there are more cells to be refreshed[30]. Many innovative refresh mechanisms are also
proposed in the academia to reduce the number of refreshes and refresh time. In the
future work, an accurate analysis of refresh impact should be used in MC analysis to
represent a better estimation of the worst-case execution time of a task.

71



References

[1] Benny Akesson and Kees Goossens. Memory controllers for real-time embedded sys-
tems. Springer, 2011.

[2] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable
SDRAM memory controller. In Proceedings of the 5th IEEE/ACM international con-
ference on Hardware/software codesign and system synthesis, pages 251–256. ACM,
2007.

[3] Roman Bourgade, Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pas-
cal Sainrat. Accurate analysis of memory latencies for WCET estimation. In 16th
International Conference on Real-Time and Network Systems (RTNS 2008), 2008.

[4] Leonardo Ecco and Rolf Ernst. Improved DRAM Timing Bounds for Real-Time
DRAM Controllers with Read/Write Bundling. In Real-Time Systems Symposium
(RTSS), pages 53–64. IEEE, 2015.

[5] Leonardo Ecco, Adam Kostrzewa, and Rolf Ernst. Minimizing DRAM Rank Switching
Overhead for Improved Timing Bounds and Performance. In Euromicro Conference
on Real-Time Systems (ECRTS). IEEE, 2016.

[6] Leonardo Ecco, Sebastian Tobuschat, Selma Saidi, and Rolf Ernst. A Mixed Critical
Memory Controller Using Bank Privatization and Fixed Priority Scheduling. In Em-
bedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–10.
IEEE, 2014.

[7] Manil Dev Gomony, Benny Akesson, and Kees Goossens. Architecture and optimal
configuration of a real-time multi-channel memory controller. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2013, pages 1307–1312. IEEE,
2013.

72



[8] Manil Dev Gomony, Benny Akesson, and Kees Goossens. A real-time multichannel
memory controller and optimal mapping of memory clients to memory channels. ACM
Transactions on Embedded Computing Systems (TECS), 14(2):25, 2015.

[9] Sven Goossens, Benny Akesson, and Kees Goossens. Conservative Open-page Policy
for Mixed Time-Criticality Memory Controllers. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 525–530. EDA Consortium, 2013.

[10] Danlu Guo and Rodolfo Pellizzoni. A Comparative Study of Predictable DRAM
Controllers. 2016.

[11] Danlu Guo and Rodolfo Pellizzoni. Open-source code for DRAM controller simulation:
http://ece. uwaterloo.ca/ rpellizz/techreps/DRAMController.pdf. 2016.

[12] Andreas Hansson, Neha Agarwal, Aasheesh Kolli, Thomas Wenisch, and Aniruddha
Udipi. Simulating DRAM controllers for future system architecture exploration. In In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS),
2014.

[13] Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. A Framework for Schedul-
ing DRAM Memory Accesses for Multi-Core Mixed-time Critical Systems. In Real-
Time and Embedded Technology and Applications Symposium (RTAS), pages 307–316.
IEEE, 2015.

[14] Engin Ipek, Onur Mutlu, José F Mart́ınez, and Rich Caruana. Self-optimizing memory
controllers: A reinforcement learning approach. In Computer Architecture, 2008.
ISCA’08. 35th International Symposium on, pages 39–50. IEEE, 2008.

[15] Javier Jalle, Eduardo Quiñones, Jaume Abella, Luca Fossati, Marco Zulianello, and
Fransisco J. Cazorla. A Dual-Criticality Memory Controller (DCmc): Proposal and
Evaluation of a Space Case Study. In Real-Time Systems Symposium (RTSS), pages
207–217. IEEE, 2014.

[16] Praveen Jayachandran and Tarek Abdelzaher. Delay composition in preemptive and
non-preemptive real-time pipelines. Real-Time Systems, 40(3):290–320, 2008.

[17] DDR3 SDRAM JEDEC. JEDEC jesd79-3b, 2008.

[18] H Kim, J Lee, N Lakshminarayana, J Lim, and T Pho. Macsim: Simulator for
heterogeneous architecture, 2012.

73



[19] Hokeun Kim, David Broman, Edward A Lee, Michael Zimmer, Aviral Shrivastava, and
Junkwang Oh. A predictable and command-level priority-based DRAM controller for
mixed-criticality systems. In 21st IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 317–326. IEEE, 2015.

[20] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ra-
gunathan Rajkumar. Bounding memory interference delay in COTS-based multi-core
systems. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 145–154. IEEE, 2014.

[21] Jung-Eun Kim, Man-Ki Yoon, Richard Bradford, and Lui Sha. Integrated Modular
Avionics (IMA) Partition Scheduling with Conflit-Free I/O for Multicore Avionics
Systems. In Computer Software and Applications Conference (COMPSAC), 2014
IEEE 38th Annual, pages 321–331. IEEE, 2014.

[22] Y Kim, M Papamichael, O Mutlu, and M Harchol-Balter. Thread cluster mem-
ory scheduling: Exploiting differences in memory access behavior. In 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 65–76. IEEE, 2010.

[23] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. Atlas: A scalable
and high-performance scheduling algorithm for multiple memory controllers. In 6th
International Symposium on High-Performance Computer Architecture, pages 1–12.
IEEE, 2010.

[24] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A Fast and Extensible
DRAM Simulator. CAL, 2015.

[25] Yogen Krishnapillai, Zheng Pei Wu, and Rodolfo Pellizoni. ROC: A Rank-switching,
Open-row DRAM Controller for Time-predictable Systems. In Euromicro Conference
on Real-Time Systems (ECRTS). IEEE, 2014.

[26] Yonghui Li, Benny Akesson, and Kees Goossens. Dynamic Command Scheduling
for Real-Time Memory Controllers. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 3–14. IEEE, 2014.

[27] Yonghui Li, Benny Akesson, Kai Lampka, and Kees Goossens. Modeling and verifica-
tion of dynamic command scheduling for real-time memory controllers. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–
12. IEEE, 2016.

74



[28] Isaac Liu, Jan Reineke, and Edward A Lee. A PRET Architecture Supporting Con-
current Programs with Composable Timing Properties. In 2010 Conference Record
of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, pages
2111–2115. IEEE, 2010.

[29] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared dram systems. In ACM SIGARCH Computer
Architecture News, volume 36, pages 63–74. IEEE Computer Society, 2008.

[30] Onur Mutlu and Lavanya Subramanian. Research problems and opportunities in
memory systems. Supercomputing frontiers and innovations, 1(3):19, 2014.

[31] Marco Paolieri, Eduardo Quiñones, and Fransisco J. Cazorla. Timing effects of DDR
memory systems in hard real-time multicore architectures: Issues and solutions. Trans-
actions on Embedded Computing Systems (TECS), 2013.

[32] Marco Paolieri, Eduardo Quiñones, Fransisco J. Cazorla, and Mateo Valero. An ana-
lyzable memory controller for hard real-time CMPs. Embedded System Letters (ESL),
pages 86–90, 2009.

[33] Jason Poovey. Characterization of the EEMBC benchmark suite. North Carolina
State University, 2007.

[34] Jan Reineke, Isaac Liu, Hiren D Patel, Sungjun Kim, and Edward A Lee. PRET
DRAM Controller: Bank Privatization for Predictability and Temporal Isolation. In
Proceedings of the seventh IEEE/ACM/IFIP international conference on Hardware/-
software codesign and system synthesis, pages 99–108, 2011.

[35] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens.
Memory access scheduling. In ACM SIGARCH Computer Architecture News, vol-
ume 28, pages 128–138. ACM, 2000.

[36] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A cycle accurate
memory system simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

[37] L Subramanian, D Lee, V Seshadri, H Rastogi, and O Mutlu. Bliss: Balancing per-
formance, fairness and complexity in memory access schedyuling. IEEE Transactions
on Parallel and Distributed Systems, 2016.

[38] Prathap Kumar Valsan and Heechul Yun. MEDUSA: a predictable and high-
performance DRAM controller for multicore based embedded systems. In Cyber-
Physical Systems, Networks, and Applications (CPSNA), 2015 IEEE 3rd International
Conference on, pages 86–93. IEEE, 2015.

75



[39] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and
Christian Ferdinand. Memory hierarchies, pipelines, and buses for future architectures
in time-critical embedded systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 28(7):966, 2009.

[40] Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. Worst case analysis of DRAM
latency in multi-requestor systems. In Real-Time Systems Symposium (RTSS), pages
372–383. IEEE, 2013.

[41] Zheng Pei Wu, Rodolfo Pellizzoni, and Danlu Guo. A composable worst case latency
analysis for multi-rank dram devices under open row policy. Real-Time Systems, pages
1–47, 2017.

[42] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. Parallelism-aware mem-
ory interference delay analysis for COTS multicore systems. In 2015 27th Euromicro
Conference on Real-Time Systems, pages 184–195. IEEE, 2015.

[43] Wu ZP. Worst Case Analysis of DRAM Latency in Hard Real Time Systems. Master’s
thesis, University of Waterloo, December 2013.

76



Appendix A

Worst Case Latency of ReOrder

This appendix discussed the difference in the analysis between ReOrder(Burst) and Re-
Order(NBurst). The authors of [4] make a different assumption on the arrival time of CAS
commands compared to our work. In particular, in Lemma 1 in [4], the authors show
that the worst case latency for a RD command happens when a request is served at the
beginning of a round, and a new request arrives immediately after the data is transferred
as shown in Figure A.1. The worst case latency is then derived as follows:

R	

time 

Command  
Registers 

tRTW 

icr2	

icr1	

icr0	

cr	 R	

Previous 
RD 

executed 

W

tCCD 
W

tCCD 
W

W

W

tCCD 
W

tWR-RD 
R	

RD u.a 
executed 

Round 0 Round 1 

tCCD 
W

tCCD 
R	

RD u.a 
inserted 

tDelay = tRL + tBus R	

Figure A.1: Worst Case Execution Pattern in Burst Mode

LRD = (tRound0 − tdelay)+ + tRound1, (A.1)

where:
tRound0 = (tRTW − 1) + (N − 2) · tCCD, (A.2)

77



tRound1 = (N − 1) · tCCD + tWR−to−RD, (A.3)

tdelay = tRL + tBus. (A.4)

The tWR−to−RD refers to the delay from a WR command to RD command, equivalent as
tWL + tBus + tWTR. However, this is the worst case pattern only when requests are sent
in burst, such that one request arrives immediately after the previous one from the same
requestor. We argue that if the ready time of the RD command is not known, which is
the assumption that we make in this paper, then the worst case access pattern should be
derived according to Figure A.2, where a RD becomes ready and inserted into the command
register just after the type switching within a round. In the example, Round0 begins at

RD u.a 
interted 

R	

RD u.a 
executed 

W

R	

tCCD 

Command 
Registers 

cr 

icr0 

icr1 

icr2 

W

W

W tRTW 

W

W

W

W
tCCD 

tCCD 
W

tCCD 

tCCD 
W

WW

Round 0 Round 1 

time 

tWR-RD 
R	

Figure A.2: Worst Case Execution Pattern in Non-Burst Mode

time 0, with pending WR commands in icr0 and icr1. The current bundling-type is Read
because the previous round last issued a RD from icr2. However, once Round0 starts,
because there is no RD command in the command registers and there are pending WR in
icr0 and icr1, then the bundling type must switch to WR.The scheduler starts executing
WR commands after checking timing constraints. Once the scheduler starts waiting for
switching delay (tRTW ), cr becomes pending with a RD. Since by this time the bundling
type has been switched to WR, the RD request of cr cannot be serviced in the current
round. Scheduling Round0 is complete once all WR commands are executed. Then a new
round Round1 starts and resets the served flags without changing the bundling type, as
there are still pending WR commands in icr0, icr1 and icr2. After the WR commands are
executed, cr will finally be served after the bundling type is switched back to RD. Therefore,
the RD under analysis can be blocked twice by each competing command register. The
worst case latency for a RD is then given as follows:

LRD = tRound0 + tRound1, (A.5)

78



where:
tRound0 = (tRTW − 1) + (N − 2) · tCCD, (A.6)

tRound1 = (N − 1) · tCCD + tWR−to−RD. (A.7)

We can observe that the only difference between the two modes is that when requests
are executing in burst, the intra-bank timing constraints of a request can be substracted
from the delay in Round0. However, without such assumption, a command can become
ready at any time. Then the worst case we described in Figure A.2 can occur, leading to
a higher latency. The same assumption and latency computation can also be applied to
WR command. The remaining delay components used to derive the worst-case latency for
a request are not affected.

79



Appendix B

Worst Case Latency Expression

In this section, we demonstrate the essential steps to convert the request latency equations
proposed in the related works to the general expression model. In this thesis, we assume
that the number of requestors per rank (REQr) is in power of two, and we use DDR3-
1600H device. We use the notation K(cond) such that it equals 1 if cond is satisfied and
0 otherwise. The notation Eq represents the equation number used in the original paper.
Based on the number of requestors, we can simply bN−1

2
c = N−2

2
and dN−1

2
e = N

2
. We also

simplify upper bound equation as
⌈
a
b

⌉
≤ a

b
+ b−1

b
.

B.1 AMC, RTMem, PMC

[32, 26, 13] AMC, RTMem and PMC schedule commands for a request in the form of a
sequence of pre-defined commands, which are presented as bundles in PMC. Since AMC
is analyzed using DDR2 device and many features in DDR3 is not considered such as the
tFAW and 8 banks, we can apply the analysis of Bundle1 in PMC when a request requires
one access to each interleaved bank. RTMem applies dynamic scheduling for commands of
request and computes the worst case execution time based on the memory access pattern,
but under the worst case access pattern, any consecutive request can access a different
row in the same bank. Therefore, the latency equation is the same as the PMC. These
controllers handle large requests differently, as the described in the following: 1) As AMC
applies close-page policy with auto-precharge for every CAS command, a large request that
requires accesses to more than 8 banks will be divided into BC several small requests. Each
small request can maximally interleave over 8 banks. Therefore, every small request can
be delayed by REQr− 1 other requestors in the system. 2) PMC first interleaves through

80



8 banks, and if the request is larger than one access to each bank, another set of access to
each bank will be performed. 3) RTMem has dynamic setting for BI and BC. PMC and
RTMem issue all the commands for a large request in a sequence, then switch to schedule
another request.

Based on the bundle constructions demonstrated in PMC[13], we compute the bundle
sizes with different BI values (1,2,4,8) in Table B.1

BI 1 2 4 8
Bundle1 42 57
Bundle2 5 ·BI + 8 5 ·BI + 12
Bundle3 4 ·BI
Bundle4 4 ·BI + 4

Table B.1: Memory Controllers Summary

The latency for AMC is presented in Equation B.1 in terms of BI and BC, and we
assume that a request arrive right after the previous request has data transferred.

LAMC = Bundle1 ·REQr · (BC − 1) +Bundle1 · (REQr − 1) +Bundle1

= Bundle1 ·BC · (REQr − 1) +Bundle1 ·BC (B.1)

The latency equation can be divided into the general expression components

Interference = BasicAccess = Bundle1 ·BC = (42 + 15 · K(BI = 8)) ·BC (B.2)

The latency for PMC and RTMem can be presented as a combination of the four
bundles based on the BI and BC as shown in Equation B.3

LPMC/RTMem = REQr · (K(BC = 1) ·Bundle1
+K(BC > 1) · (Bundle2 +Bundle3 · (BC − 2) +Bundle4)

= REQr · (K(BC = 1) · (42 + 15 · K(BI = 8))

+K(BC > 1) · (4 ·BI ·BC + 5 ·BI + 12 + 4 · K(BI = 8))) (B.3)

The latency equation can be divided into the general expression components

Interference = BasicAccess = K(BC = 1) · (42 + 15 · K(BI = 8))

+K(BC > 1) · (4 ·BI ·BC + 5 ·BI + 12 + 4 · K(BI = 8))
(B.4)

81



B.2 MCMC

[6] Because MCMC is scheduled with non-work conserving TDM, the length of the slots
must cover all the intra-bank timing constraints of re-activating a same bank and the
CAS switching delay between banks in the same rank. The slot can be computed based
on the following three conditions: 1) if the reactivation of a bank can be covered by
TDM arbitration among all requestors (REQr ·R). Since private bank is applied for each
requestor, the reactivation delay is same as Bundle1(BI = 1) = 42 computed previously;
2) if the CAS switching delay on the same rank can be covered by rank switching. The long
switching delay is from write to read which can be computed as tWL + tBUS + tWTR = 18;
and 3) the maximum rank switching delay. The rank switching delay depends on the
direction of the data bus. The switching delay is tBUS + tRTR = 6 if the directions on
two ranks are the same, tRL − tWL + tBUS + tRTR = 7 if switching from read to write, and
tWL−tRL+tBUS +tRTR = 5 if switching from write to read. Since TDM arbitration is used,
the worst delay 7 must be considered. The slot length can be computed in Equation B.5

slot = max


d 42
REQr·Re Condition1;

18
R

Condition2;

7 Condition3;

(B.5)

If the request is large and divided into several small request of one memory access, then
the latency equation can be represented in Equation B.6. The first access of a large request
can miss its own slot, and the following small request does not miss the slot, and delayed
by all other requestors.

LMCMC = slot · (REQr ·R) ·BC + tRCD + tRL + tBUS

= slot ·R ·BC · (REQr − 1) + slot ·R ·BC + 22 (B.6)

The interference and basic access can be represented as:

Interference = slot ·R ·BC (B.7)

BasicAccess = slot · ((R− 1) ·BC + 1) + 22 (B.8)

(B.9)

82



B.3 DCmc

[15] According to Eq 2, 3, 4:

LCloseRD = tRP + tRCD + tRL + tBus = 31 (B.10)

LOpenRD = tRL + tBus = 13 (B.11)

According to Eq 11, 12, and 13, the delay of individual command can be computed as:

DPRE = 1 (B.12)

DCAS = max(tWL + tBus + tWTR, tRTW ) = max(18, 7) = 18 (B.13)

DACT = max(tRRD, tFAW − 3 · tRRD) = max(5, 24− 15) = 9 (B.14)

Since each requestor has its own bank, according to Eq 21 and 23, the interference can be
represented as:

LDCmc
Open = (LOpenRD + (REQr − 1) · (DPRE +DACT +DCAS)) ·BC

= 13 ·BC + 28 · (REQr − 1) ·BC (B.15)

LDCmc
Close = LCloseRD − LOpenRD + LDCmc

Open = 18 + LDCmc
Open (B.16)

Convert into the general expression:

Interference = 28 ·BC (B.17)

RowInter = 0 (B.18)

BasicAccess = 13 ·BC (B.19)

RowAccess = 18 (B.20)

83



B.4 ORP

[40] Since read request has longer latency than write, we consider the analysis for a read
request. According to Eq 3, 5 and 11:

tIP = REQr − 1 = 1 · (REQr − 1) (B.21)

tIA = (tFAW − 4 · tRRD) +

⌊
REQr − 1

4

⌋
· tFAW + ((REQr − 1)%4) · tRRD)

= tRRD · (REQr − 1) +

⌈
REQr − 1

4

⌉
· (tFAW − 4 · tRRD)

= 5 · (REQr − 1) + (
REQr − 1

4
+

3

4
)(4) = 5 · (REQr − 1) + (REQr + 2)

= 6 · (REQr − 1) + 3 (B.22)

tRead
CD =

⌊
REQr − 1

2

⌋
· (tWTR + tRTW ) +

⌈
REQr − 1

2

⌉
· (tWL + tBUS) + (tWTR + tRL + tBUS)

=
REQr − 2

2
· (13) +

REQr

2
· (12) + (19) = 12.5 · (REQr − 1) + 18.5

< 13 · (REQr − 1) + 19 (B.23)

According to Eq 1, 2, 4 and 9:

tOpen
AC = tWTR = 6 (B.24)

tClose
AC = tWR + tIP + tRP + tIA + tRCD = 7 · (REQr − 1) + 33 (B.25)

According to Eq 12:

LOpenRD = tOpen
AC + LRD ·BC = 6 + (13 · (REQr − 1) + 19) ·BC

= 13 ·BC · (REQr − 1) + 19 ·BC + 6 (B.26)

LCloseRD = (tClose
AC − tOpen

AC ) + LOpenRD

= 27 + 7 · (REQr − 1) + LOpenRD (B.27)

Convert into the general expression:

Interference = 13 ·BC (B.28)

RowInter = 7 (B.29)

BasicAccess = 19 ·BC + 6 (B.30)

RowAccess = 27 (B.31)

(B.32)

84



B.5 ROC

[25] The bus conflict delay was defined in Eq 3 as the following with tBUS = 4:

αPA(K) = K +

⌈
K

tBUS − 1

⌉
≤ K +

K

tBUS − 1
+
tBUS − 2

tBUS − 1
=

4

3
·K +

2

3
(B.33)

According to Eq 3 4, 5:

tIP = REQr ·R +

⌈
REQr ·R

3

⌉
− 1 ≤ REQr ·R +

(
REQr ·R

3
+

2

3

)
− 1

=
4R

3
(REQr − 1) +

4R− 1

3
(B.34)

tIA =

⌈
REQr − 1

4

⌉
· (tFAW − 4 · tRRD) + (REQr − 1) · tRRD +REQr ·

(
4R

3
− 1

3

)
=

(
REQr − 1

4
+

3

4

)
· (4) + (REQr − 1) · 5 +REQr ·

(
4R

3
− 1

3

)
= (1 + 5 +

4 ·R− 1

3
) · (REQr − 1) + 3 +

4 ·R− 1

3

=

(
4 ·R + 17

3

)
· (REQr − 1) +

4 ·R + 8

3
(B.35)

According to Eq 7, 8, 9, 10:

tWRD = max(R · (tBUS + tRTR), tWTR + tRL + 2 · tBUS + tRTR − 1)

= max(R · 6, 6 + 9 + 8 + 2− 1) = max(6 ·R, 24) (B.36)

Since R ≤ 4 for ROC, then 6 ·R ≤ 24, therefore, tWRD = 24.

tRWD = max(R · (tBUS + tRTR), tRTW + tWL − tRL + tBUS + tRTR − 1)

= max(R · 6, 7 + 8− 9 + 4 + 2− 1) = max(6 ·R, 11) (B.37)

Since R ≥ 2 for ROC, then it always hold that 6 ·R ≥ 11, therefore, tRWD = 6R.

tRD = max(tRL + tBUS − 1 +R · (tBUS + tRTR), tWTR + tRL + 2 · tBUS + tRTR − 1)

= max(12 +R · 6, 6 + 9 + 8 + 2− 1) = max(12 + 6 ·R, 24) (B.38)

85



Since R ≥ 2 for ROC, then it always hold that 12 + 6R ≥ 24, therefore, tRD = 12 + 6R.

tWD = tRL + tBUS − 1 +R · (tBUS + tRTR) = 12 + 6R (B.39)

According Eq 12:

tRead
CD =

⌈
REQr − 1

2

⌉
· tRWD +

⌊
REQr − 1

2

⌋
· tWRD + tRD

=
REQr

2
· 24 +

REQr − 2

2
· (6 ·R) + 12 + 6 ·R

= (3R + 12) · (REQr − 1) + 3R + 24 (B.40)

According Eq 1, 2, the delay before CAS command of open and close request is:

tOpen
AC = tWTR = 6 (B.41)

tClose
AC = tWR + tIP + tRP + tIA + tRCD

= 30 +
4R

3
(REQr − 1) +

4R− 1

3
+

(
4 ·R + 17

3

)
· (REQr − 1) +

4 ·R + 8

3

= 30 +

(
8R + 17

3

)
· (REQr − 1) +

8R + 7

3

≤ (3R + 6) · (REQr − 1) + 3R + 33 (B.42)

The read latency can be presented as the following:

LRead
Open = tOpen

AC + (tRead
CD ) ·BC

= 6 + ((3R + 12) · (REQr − 1) + 3R + 24) ·BC
= (3R + 12) ·BC · (REQr − 1) + (3R + 24) ·BC + 6 (B.43)

LRead
Close = (tClose

AC − tOpen
AC ) + LRead

Open

= (3R + 6) · (REQr − 1) + 3R + 27 + LRead
Open (B.44)

Based on the latency equation, we can break the equation into the individual terms:

Interference = (12 + 3R) ·BC (B.45)

RowInter = 3R + 6 (B.46)

BasicAccess = (3R + 24) ·BC + 6 (B.47)

RowAccess = 3R + 27 (B.48)

86



B.6 ReOrder

[5] According Table III:

tWRRD = tWL − tRL + tBUS + tRTR = 8− 9 + 4 + 2 = 5 (B.49)

tWRWR = tBUS = 4 (B.50)

tRDWR = tRL − tWL + tBUS + tRTR = 7 (B.51)

tRDRD = tBUS + tRTR = 6 (B.52)

tWR−to−RD = tWL + tBUS + tWTR = 18 (B.53)

According Eq 19-22:

DACT = tRRD · (REQr − 1) +

⌈
REQr − 1

4

⌉
(tFAW − 4 · tRRD) + (R− 1)REQr

= 5 · (REQr − 1) + (REQr + 2) +REQr · (R− 1)

= (5 +R) · (REQr − 1) +R + 2 (B.54)

LACT = DACT +

⌈
LACT

tCCD

⌉
≤ DACT +

LACT

4
+

3

4

LACT ≤ 4

3
·DACT + 1

=
4

3
· (5 +R) · (REQr − 1) +

4R

3
+

11

3
(B.55)

According Eq 23, 24:

DPRE = (REQr − 1) + (R− 1) ·REQr = R · (REQr − 1) + (R− 1) (B.56)

LPRE = DPRE +

⌈
LPRE

tCCD

⌉
≤ DPRE +

LPRE

4
+

3

4

LPRE ≤ 4

3
·DPRE + 1 =

4R

3
· (REQr − 1) +

4R

3
− 1

3
(B.57)

Considering the non-burst mode demonstrated in Appendix ??, the command can arrive
1 cycle after the switching to different type round and suffer 2(REQr-1) write commands

87



from other requestors. According Eq 2-7:

LRD = switchi + ccdsi + switchi+1 + ccdsi+1 − 1

= max(tRDRD · (R− 1) + tRDWR, tRTW ) + (R− 1) · tWRWR +R · tCCD · (REQr − 2)+

max(tWRWR · (R− 1) + tWRRD,WTR) + (R− 1) · tRDRD

+ (R− 1) · tCCD · (REQr − 2) + tCCD · (REQr − 1)− 1

= 6 · (R− 1) + 7 + 4 · (R− 1) + 4R · (REQr − 2)+

18 + 6 · (R− 1) + 4(R− 1) · (REQr − 2) + 4 · (REQr − 1)− 1

= 8R · (REQr − 1) + 8R + 12 (B.58)

Since 1 ≤ R ≤ 4, max(tRDRD ·(R−1)+tRDWR, tRTW ) = max(6·(R−1)+7, 7) = 6·(R−1)+7
and max(tWRWR ·(R−1)+ tWRRD,WTR) = max(4(R−1), 18) = 18. The equation applies
for 1, 2 and 4 ranks.

According Table V of request latency:

DClose = tWR + tRP + tRCD + LPRE + LACT

= 30 +
4

3
· (5 +R) · (REQr − 1) +

4R

3
+

11

3
+

4R

3
· (REQr − 1) +

4R

3
− 1

3
≤ (7 + 3R) · (REQr − 1) + (3R + 33) (B.59)

We combine the equations to show the worst case latency for a read request:

LOpenR = (LRD + tRL + tBUS) ·BC
= 8R ·BC(REQr − 1) + (8R + 25) ·BC (B.60)

LCloseR = DClose + LOpenR

= (7 + 3R) · (REQr − 1) + (3R + 33) + LOpenR

(B.61)

Convert into the general expression

Interference = 8R ·BC (B.62)

RowInter = 7 + 3R (B.63)

BasicAccess = (8R + 25) ·BC (B.64)

RowAccess = 33 + 3R (B.65)

88


	List of Tables
	List of Figures
	Introduction
	Contribution
	Thesis Outline

	Background and Related Work
	DRAM Device
	DRAM Organization
	DRAM Commands and Timing Constraints

	Memory Controller Design
	Hardware Architecture
	Other Factors

	DRAM Controller Related Work
	AMC
	PMC
	RTMem
	ORP and ROC
	DCmc
	MAG
	MEDUSA
	ReOrder
	MCMC


	MCsim: A Cycle-Accurate DRAM Controller Simulation Framework
	Architectural Design
	Configuration and Simulation Engine
	Detailed System Design and Interaction
	Top-Level Memory Controller
	Functional Hardware Blocks

	Validation and Evaluation
	Conclusion

	Comprehensive Evaluation of Real-Time Memory Controller
	Analytical Worst-Case Memory Access Latency
	Experimental Setup
	Evaluation Results
	Benchmark Execution Times
	Number of Requestors
	Row Locality
	Data Bus Width
	Memory Device
	Large Request Size
	Mixed Criticality

	Discussion
	Memory Configuration
	Write-Read Switching
	Latency and Bandwidth Trade-offs
	Analytical Bounds vs Simulation Results

	Conclusion

	A Requests Bundling DRAM Controller for Mixed-Criticality System
	REQBundle Controller Architecture
	Request Scheduler
	Command Scheduler

	Timing Analysis for HRT Request
	Execution Time of A Round
	Worst Case Latency for A HRT Request

	Bandwidth Analysis for SRT requests
	Evaluation
	Analytical Request Latency Bound
	EEMBC Benchmarks
	HRT Requestors
	Mixed-Criticality

	Conclusion

	Summary
	References
	APPENDICES
	Latency
	Formula
	AMC, RTMem, PMC
	MCMC
	DCmc
	ORP
	ROC
	ReOrder


