
Complexity Analysis of Tunable
Static Inference for Generic

Universe Types

by

Nahid Juma

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c©Nahid Juma 2015

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This work studies the computational complexity of a tunable static type inference
problem which was introduced in prior research [1]. The problem was assumed to be
inherently difficult, without evidence, and a SAT solver was used to obtain a solution.
In this thesis, we analyze the complexity of the inference problem. We prove that it is
indeed highly unlikely that the problem can be solved efficiently. We also prove that
the problem cannot be approximated efficiently to within a certain factor. We discuss
the computational complexity of three restricted but useful versions of the problem,
showing that whilst one of them can be solved in polynomial time, the other two are still
inherently difficult. We discuss our efforts and the roadblocks we faced while attempting
to conduct experiments to gain further insight into the properties which distinguish
between hard and easy instances of the problem.

iv

Acknowledgements

I am thankful to my parents and to Shaneabbas for always being supportive of my
aspirations. I will forever be grateful for my son, Mahdi, who is a constant source of joy
in my life.

I would like to thank my supervisors, Professor Mahesh Tripunitara and Professor
Werner Dietl, for guiding and sharing their valuable insights with me throughout this
research.

v

Table of Contents

List of Figures ix

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statements . 3

1.3 Related Work . 3

1.4 Outline . 4

2 Background on Computational Complexity 7

3 Background on Tunable Type Inference for GUT 11

3.1 Generic Universe Types . 11

3.2 Tunable Static Inference Approach . 13

3.3 Constraint Generation . 18

3.4 Implementation and Evaluation . 24

4 Complexity Analysis 27

4.1 Type Inference for GUT is NP-Complete 27

vii

4.2 Hardness of Approximation . 35

4.3 Complexity of Restricted Versions of the Problem 36

4.4 A Discussion on Identifying the Sources of Complexity 38

5 Conclusions and Future Work 41

References 43

viii

List of Figures

3.1 Example Program, a figure taken from [1]. 12

3.2 Ownership Modifier Type Hierarchy, a figure taken from [1]. 12

3.3 Overview of the inference approach. 14

3.4 Example program with constraint variable locations numbered. 15

3.5 Mandatory constraints generated for example program. 15

3.6 The encoding for each of the five kinds of constraints, a figure taken from
[1]. 17

3.7 Syntax of the programming language, a figure taken from [1]. 19

3.8 Constraint generation rules, a figure taken from [1]. 20

3.9 Helper functions and judgements, a figure taken from [1]. 22

3.10 Size and timing results, a figure taken from [1]. 25

ix

Chapter 1

Introduction

Software is increasingly complex. Programming languages such as Java, with which
software is created, provide the notion of a ‘type’ so programmers are able to classify
data, and enforce associated rules on how data may flow when the software runs. Typing
is useful to analyse, and sometimes guarantee, properties - for example, whether every
state that the software reaches is safe.

It is recognized widely that the type system that comes built-in with languages such
as Java is inadequate. While it does help us prevent some errors, many others escape
it - for example, errors caused by multiple references to the same object. To promote
error-free code, several languages support pluggable type systems. These are optional
type systems designed to detect specific errors which may otherwise be overlooked.

An example is the Generic Universe Type (GUT) system [2], an ownership-based type
system which is integrated into the tool suite of the Java Modelling Language. Such a
system organizes the objects in a program in a hierarchical structure where some objects
own others, and enforces the rule that objects can be modified only by their owner and
peers. While this helps to prevent several errors, a major drawback of this system is
that it requires a significant amount of code annotation. Having to manually annotate
code is a burden for the programmer. It is therefore preferable to have algorithms that
automatically infer the annotations.

In ownership type systems, there is no single most general typing, rather a program
may have multiple valid typings. The desired typing is the one which describes the
ownership topology preferred by the programmer. In order for the inference to reflect
the programmer’s intentions, prior work [1] has proposed the idea of ‘tuning’ the type
inference for GUT. In addition to the source code, the inference tool is given optional

1

ownership assignments with weights. The inference problem is to find the assignment
of types to objects that satisfies all the constraints imposed by the type system and
yields the maximum weight. In [1], this problem is implicitly assumed to be inherently
difficult. The approach adopted to solve it is to reduce it to a boolean satisfiability
problem and then employ a partial weighted Max-SAT solver. In this thesis, we present
a detailed analysis of the problem’s computational complexity.

1.1 Motivation

In computer science, and related fields, when attempting to solve a computational
problem, a natural and fundamental question to pose is: how hard is the problem? The
answer to this question helps to decide what an appropriate solution approach to the
problem is. This question was not addressed in [1] and in this thesis we attempt to fill
this gap.

We undertook this work because we felt that identifying which computational complexity
class the tunable type inference problem falls under would prove useful in several ways.
If the problem was found to be tractable, we would be able to construct a polynomial
time algorithm to solve every possible instance of it. In this case, the algorithm would
then be evaluated against the performance of the SAT solver approach. Since static
inference occurs at compile time, from the programmer’s standpoint, efficient inference
algorithms are preferred. Furthermore, such a polynomial time algorithm could then
potentially be used to efficiently solve the tunable type inference problem for other type
systems that are similar to the GUT system.

If, on the other hand, the problem was found to be intractable, this result would also be
useful. Firstly, it would provide a formal justification for the solution approach taken in
[1]. Secondly, it would confirm the existence of hard instances for which the inference
tool may take exponential time to solve. This insight is crucial in order to be able to
give any kind of guarantee about the tool’s performance. In this case, we would then
explore the sources of intractability and investigate the possibility of mitigating them.
We would also try to identify the characteristics of hard instances of the problem and
explain why all the benchmarks used in [1] appear to be tractable instances.

In summary, this research will advance knowledge in software, particularly in the context
of type systems. Efficient inference can potentially reduce compilation time. This will
encourage programmers to adopt ownership type systems which in turn will result in
increased reliability of software. In addition the insight gained can be extended to other
inference problems of a similar nature.

2

1.2 Problem Statements

We formally pose the questions that this thesis attempts to answer as follows:

Is the tunable type inference problem for GUT tractable? That is, does
there exist a polynomial-time algorithm which solves it?

If it is intractable and cannot be solved efficiently exactly, can it at least be
approximated efficiently?

Are there any restricted versions of the problem which are useful and
tractable?

What are some of the sources of intractability? Why is it that all the
benchmarks used in [1] appear to be tractable? What does a hard instance
look like?

1.3 Related Work

The computational complexity of various other type inference problems has been sub-
jected to prior research. Flanagan et al. [4] proved that the inference problem for a
race condition checking type system, rccjava, is NP-complete. They then used this
result to motivate their approach to solving the inference problem by a reduction to
propositional satisfiability.

Elder et al. [5] proved that it is unlikely that a polynomial time algorithm exists
to solve the dynamic heap type inference problem. This is the problem of inferring
program-defined types for each allocated storage location in the heap, and identifying
“untypable” blocks which reveal heap corruption or type safety violations.

Aldrich et al. [6] introduced AliasJava, an annotation system for Java that makes alias
patterns explicit in the source code, and give an algorithm for automatically inferring
the alias annotations. Their system involves equality, component and instantiation
constraints. The type system we deal with involves different constraints such as viewpoint
adaptation and subtyping.

3

Chin et al. [7] propose CLARITY for the inference of user-defined qualifiers for C
programs based on user-defined rules, which can also be inferred given user-defined
invariants. CLARITY uses a graph-based propagation algorithm to infer several type
qualifiers, including pos and neg for integers, nonnull for pointers, and tainted and
untainted for strings. These type qualifiers are not context-sensitive. We focus on a
type inference for Java which is context-sensitive i.e. ownership-based.

A work that is closely related to ours is that of Huang et al. [8]. They devise a polynomial
time algorithm to solve type inference for the Universe Type system, and therefore
implicitly prove that the problem is in P. Universe Types is an ownership type system
closely related to Generic Universe Types; the former is not able to handle generics
whilst the latter is. Our work is different from [8] in two ways. Firstly, in order to handle
generics GUT allows equality constraints in which both sides are constraint variables. It
can be verified that the Set Based Solution they propose is able to handle this additional
kind of constraint. Secondly, we are interested in a type inference which is tunable, that
is, guided by the programmer’s preferences, whereas the solution proposed in [8] can
only infer the deepest ownership structure.

To our knowledge, there has been no prior work that has analysed the computational
complexity of tunable static inference for an ownership type system such as GUT.

1.4 Outline

The remainder of this work is organized as follows.

In Chapter 2 we briefly explain the computational complexity concepts used in this
thesis.

In Chapter 3 we provide a background on the Generic Universe Type system. We explain
the tunable inference problem for GUT as well as the approach taken in [1] to solve it.
We also summarize their implementation experience. The majority of the contents of
this chapter has been borrowed and reworded from [1]. However, what [1] refers to as a
‘boolean encoding’, we formally present as a reduction from a GUT tunable inference
instance to a partial weighted Max-SAT instance and we prove the soundness of this
reduction.

In Chapter 4, we present our computational complexity analysis. We prove that the
tunable type inference (TTI) problem for the GUT system is NP-complete. In other
words, that it is highly unlikely that there exists a polynomial time algorithm which solves

4

the problem exactly. We then establish an inapproxamability result which proves that
the problem is also difficult to approximate to within a certain factor. The complexity
of three restricted but practical versions of the problem are discussed. We discuss our
thoughts on how to identify the sources of complexity and the structural properties
which differentiate between hard and easy instances of the problem.

Finally, in Chapter 5, we summarize the conclusions of this research and discuss the
opportunities for future work.

5

Chapter 2

Background on Computational
Complexity

A computational problem is a general question to be answered, usually possessing several
parameters, whose values are left unspecified. A problem is described by giving a general
description of all its parameters and a statement of what properties the answer, or
solution, is required to satisfy. An instance of the problem is obtained by specifying
particular values for all the problem parameters. As an example, consider the tunable
type inference problem which is the focus of this thesis. This is a computational
optimization problem. The parameters of this problem are a compilable program, P ,
which can be partially annotated with types, and a set of optional, weighted constraints
B. A solution is the assignment to the constraint variables which makes the program type
check and which achieves the maximum possible weight from the breakable constraints.
If there is no assignment which makes the program type check then the output should
be ‘no solution’ or similar.

An algorithm is a step-by-step procedure for solving a problem. Without any loss of
generality, an algorithm can be considered to be a computer program written in a precise
computer language. An algorithm is said to solve a problem if it can be applied to any
instance of the problem and is guaranteed to produce the solution for that instance.
There could be multiple algorithms which solve a problem, but in general, we are
interested in the most efficient one. In its broadest sense, the notion of efficiency, refers
to all the various computing resources needed to execute an algorithm. However, time
requirements are often the most dominant factor, and by the ‘most efficient algorithm’
one normally means the fastest one.

The description of a problem instance that we provide as input to the computer can be

7

viewed as a single finite string of symbols chosen from a finite input alphabet. Although
there are many ways to map instances to strings, for simplicity and without any loss of
generality, let us assume that each problem has a fixed encoding scheme, which maps
its instances into strings describing them. The input length of an instance of a problem
is used as a formal measure of the size of the instance, and is defined to be the number
of symbols, n, in the description of the instance obtained from the problem’s encoding
scheme. It is reasonable to expect that the relative difficulty of problem instances
vary roughly with their sizes. Hence the time requirements of an algorithm can be
conveniently represented in terms of n. The time complexity function of an algorithm
expresses its time requirements by giving, for each possible input length, the largest
amount of time needed by the algorithm to solve a problem instance of that size.

The computational complexity of a problem refers to the inherent difficulty of the problem.
A problem is inherently difficult if it requires an exponential amount of time to be solved,
irrespective of the algorithm which is used to solve it. Problems are classified based
on their inherent difficulty with certain relationships existing between classes. One of
the central objects of study in computational complexity theory are decision problems
because they are easier to analyze than the other types of problems such as optimization,
counting and search problems. In a decision problem, given an input instance, the
output is a yes/no answer which verifies if the input satisfies a certain property. For
example, a suitable decision version of the tunable type inference optimization problem
is as follows:

TTI = {〈P,B, k〉 : ∃ an assignment to the constraint variables of program P that makes
P type check and achieves a weight of at least k from the breakable constraints B}

In the above, k, is a positive integer. If a TTI instance x satisfies the above property we
say that x is a ‘yes’ instance and that x ∈ TTI. Conversely, if x does not satisfy the
property, we say that x is a ‘no’ instance and that x /∈ TTI. It turns out that if one can
solve this decision version of the tunable type inference problem, then one can solve the
optimization version with only a polynomial amount of extra overhead. In other words,
the optimization version is no harder than the decision version of the problem. To see
this, assume we have an algorithm to solve the TTI decision problem. Given the TTI
optimization problem, we can use this algorithm in conjunction with a binary search
to find the optimal assignment. A binary search is highly efficient with a worst case
running time of O(log(n)).

We now define the complexity classes which are of interest to us. A decision problem
is said to be in class P if it can be solved in polynomial time. That is, there exists an
algorithm to solve it, whose time complexity function is O(p(n)) for some polynomial
function p. Such a problem is efficiently solvable. A decision problem is said to be

8

in class NP if given a suitable certificate, the ‘yes’ instances of the problem can be
verified in polynomial time. It follows that P ∈ NP since if a problem can be solved in
polynomial time, we can ignore the certificate and solve the problem to verify a ‘yes’
instance. Whether or not P = NP is an open question. It is generally conjectured that
P 6= NP. In order to define the other two classes of interest, we must introduce the
notion of a reduction. Let A and B be two decision problems. We say that A reduces
to B, denoted A ≤ B, if there is a polynomial time computable function f such that
x ∈ A if and only if f(x) ∈ B. Two immediate observations are:

1. If A ≤ B and B ∈ P , then also A ∈ P (conversely, if A ≤ B, and A /∈ P then also
B /∈ P)

2. If A ≤ B and B ≤ C, then also A ≤ C.

A decision problem is said to be in class NP-hard if every problem in NP can be
reduced to it. That is, a problem is in NP-hard if it is at least as hard as the hardest
problems in NP. A decision problem is said to be in class NP-complete if it is both in
NP and in NP-hard. A well known NP-complete problem is the boolean satisfiability
problem, or SAT, in which the input instance is a boolean formula and the output is an
assignment to the boolean variables which makes the formula evaluate to true, if such
an assignment exists. It is highly unlikely that a problem that is NP-complete has an
efficient solution. That is, they are inherently difficult. In the unlikely event that an
efficient solution is found for any NP-complete problem, it would imply that efficient
solutions to all NP-complete problems exist, and that P = NP. Since all NP-complete
problems are mutually reducible to each other, computer scientists have focused on
writing good solvers for SAT which can then potentially be used to solve all other
NP-complete problems. Of course, even the fastest SAT solvers are still exponential on
their worst-case inputs.

For ease of analysis, in our complexity analysis, we focus on the decision version of the
tunable type inference problem.

9

Chapter 3

Background on Tunable Type
Inference for GUT

In this chapter we describe the Generic Universe Type system. We explain the tunable
type inference approach taken in [1], and we summarize and comment on their implemen-
tation experience. The majority of the contents of this chapter has been reworded from
[1]. In this thesis however, we formalize their ‘encoding’ from tunable type inference to
partial weighted Max-SAT as a reduction and prove that the reduction is sound.

3.1 Generic Universe Types

In GUT programmers are able to organize the objects in the heap in a hierarchical
ownership topology. Each object is owned by at most one other object, its owner. The
ownership relation is acyclic, resulting in a topology consisting of a forest of ownership
trees, where objects without owners are roots. The set of objects sharing an owner is
called a context. Modifications across context boundaries are restricted: an object can
only be modified by its owner or by other objects within the same context as itself.

Ownership Modifiers A programmer describes the ownership topology by annotating
each reference type in the source code with one of three possible ownership modifiers.
An ownership modifier is an annotation given to the reference type which expresses its
ownership relation to the current receiver object this. The three modifiers composing
the surface syntax are:

11

Figure 3.1. Example Program, a figure taken
from [1].

Figure 3.2. Ownership Modifier Type Hier-
archy, a figure taken from [1].

• peer conveys that the referenced object is in the same context as the current object
this. For example, in Figure 2.1, a Person p has the same owner as p.spouse.

• rep conveys that the referenced object is owned by the current object this. For
example, in Figure 2.1, a Person p is the owner of p.savings.

• any gives no static information about the relationship between the two objects.

In addition, GUT uses two internal ownership modifiers, which do not appear as
explicit annotations in the source code:

• lost conveys that although there exists a relationship between the two objects,
it is not expressible by the modifiers peer and rep. For example, in Figure 2.1,
spouse.savings is a nephew of this. GUT cannot express this relationship so it
assigns spouse.savings a modifier of lost.

• self is used exclusively for the current receiver object this.

Fig. 3.2 shows the type hierarchy. A self annotated type is a subtype of the corre-
sponding peer type because since self denotes the this object, it is obviously a peer
of this. peer and rep annotated types are subtypes of the corresponding type with a
lost modifier because the latter conveys less ownership information. An any annotated
type is a supertype of all other versions.

Generic Types, Viewpoint Adaptation and Encapsulation The example in
Fig. 3.1 shows how the ownership modifiers are used with generic types. The field
friends has type rep List<peer Person>. This conveys that the List object is
owned by the Person object containing the field, whereas the elements stored in the list
are peers of that Person object. We observe here that the ownership modifier <peer

12

Person> is interpreted with respect to the Person object containing the field, and not
the object of the generic type.

For a compound expression, the overall modifier is determined by combining the modifiers
of the components. For example, consider a field access tony.spouse where tony is of
type rep Person. We first traverse over a rep modifier and then a peer modifier. The
overall modifier is the result of adapting tony’s spouse modifier from the viewpoint of
tony, to the viewpoint of this. This yields rep because the resulting object, tony’s
spouse, has the same owner as tony, which is this.

Sometimes, viewpoint adaptation results in a loss of static ownership information. For
example, consider the compound expression spouse.savings. First, we traverse over a
peer field and then a rep field, so the resulting object has a specific relationship to the
receiver object this but the relationship cannot be expressed in the type system. To
express this loss of information, GUT uses the modifier lost. Two different expressions
of lost type might represent different unknown relations, hence it would be illegal to
assign an object of lost type to another. GUT therefore prohibits the left-hand side of
assignments from having a lost type. This is the reason why GUT introduces a lost

type rather than reusing any since it would be too restrictive to disallow any on the
left-hand side of assignments.

Viewpoint adaptation can be formulated as a function . which takes two ownership
modifiers and yields the adapted modifier. (1) peer . peer = peer; (2) rep . peer =
rep; (3) u . any = any, (4) self . u = u; and (5) for all other combinations, the result
is lost. Besides field accesses, viewpoint adaptation is also applicable to parameter
passing, result passing, and type variable bound checks.

In GUT, the programmer has the option of enforcing an encapsulation scheme called
owner-as-modifier. In this scheme, an object can be referenced by any other object, but
can only be modified by a reference chain which passes through its owner. This permits
owners to control state changes of their owned objects and thus maintain invariants.

3.2 Tunable Static Inference Approach

An unannotated Java program is legally-typed because the default modifier is peer.
However, this default typing is usually undesirable because it describes a flat ownership
structure which imposes no restrictions nor provides any guarantees about the program’s
behaviour. On the other hand, manually annotating the source code is a burden for the
programmer. Therefore inference is needed to automatically produce annotations which

13

Figure 3.3. Overview of the inference approach.

describe ownership structures reflecting the programmer’s design intentions.

Fig. 3.3 overviews the tunable type inference process. There are four primary steps:
generating constraint variables, creating type constraints over these variables, obtaining
breakable constraints if any, and solving the constraints to infer a typing.

Constraint Variables For each position in the source code where a concrete modifier
may occur, a constraint variable α is introduced which represents the modifier for
that position. The goal of the inference is to assign one of the modifiers peer, rep,
or any to each of these constraint variables. Constraint variables are also generated
for each expression which gives rise to viewpoint adaptation; these will be assigned
from the modifiers peer, rep, any, or lost. Fig. 3.4 shows an example input program
with constraint variable locations numbered. α1 to α9 correspond to locations where
ownership modifiers may explicitly appear in the source code. α10 is the result of a
viewpoint adaptation. It represents the result of adapting the declared upperbound of
the type variable of class List, which is assumed to be any Object, from the viewpoint
of patients to this. Hence α10 = α2 . any, which trivially evaluates to any.

Mandatory Constraints The inference then traverses the program’s Abstract Syntax
Tree and generates constraints over the constraint variables. Each programming construct

14

Figure 3.4. Example program with con-
straint variable locations numbered.

Figure 3.5. Mandatory constraints generated
for example program.

gives rise to a set of constraints over the constraint variables within it. These mandatory
constraints which correspond one-to-one to the type rules of GUT must be satisfied by
a typing in order for it to be deemed legal.

There are five kinds of constraints. In the following expressions u can be either a concrete
modifier or a constraint variable, whereas α represents a constraint variable.

Subtype (u1 <: u2): A subtype constraint ensures that u1 will be assigned an ownership
modifier that is a subtype of the ownership modifier assigned to u2. Subtype
constraints are used for assignments and for pseudo-assignments (parameter passing,
result passing, type variable bound checks).

Adaptation (u1 . u2 = α3): An adaptation constraint enforces that the viewpoint
adaptation of variable u2 from the viewpoint expressed by u1 results in α3.

Equality (u1 = u2): An equality constraint dictates that two modifiers are the same.

15

They are used to handle method overriding and type argument subtyping, which
are both invariant.

Inequality (u1 6= u2): An inequality constraint ensures that two modifiers are not
equal. For example, the type system forbids the lost modifier on the left-hand
side of an assignment. The type system also forbids the any modifier for the
receiver of field updates, if the owner-as-modifier discipline is enforced.

Comparable (u1 <:> u2): A comparable constraint expresses that two ownership
modifiers are not incompatible, that is, one could be a subtype of the other.
Comparable constraints are used for casts.

Fig. 3.5 shows the mandatory constraints which are generated for the example input
program in Fig. 3.4. A detailed explanation of how GUT type constraints are generated
from different program constructs is deferred to the next section.

Breakable Constraints For a given set of type constraints, there may be multiple
satisfying assignments. For a completely unannotated program, one of these assignments
includes the trivial one that assigns peer to all variables. As mentioned previously,
this gives rise to a flat ownership structure which is typically not desired. There are
many factors which influence the ownership structure desired by the programmer. A
deeper structure provides better encapsulation so it is generally preferable but it restricts
sharing. On the other hand, the types used in method signatures influence which clients
may call the method, so it is typically preferable for method parameters to have the
less restrictive any modifier. To reflect these and other kinds of design considerations,
preferences for a constraint variable’s assignment can be expressed by adding a breakable,
weighted equality constraint for it. An example of a predefined heuristic which prefers
solutions which deep ownership structures and generally applicable methods is as follows:

• For field types, the weight for α = rep is 80.

• For parameter types, the weight for α = any is 150.

• For return types, the weight for α = rep is 30.

• For class and method type variable bounds, the weight for α = any is 200.

Such a heuristic may be adapted by a user either globally or for individual variables.
The programmer is free to have as many distinct weights as is required to express his
preferences. There is also no upperbound on the value that a weight can take.

16

Constraint Encoding

α1 <: α2
(βany1 ⇒ βany2) ∧ (βpeer2 ⇒ βpeer1) ∧
(βrep

2 ⇒ βrep
1) ∧ (βlost1 ⇒ (βlost2 ∨ βany2))

α1 B α2 = α3

(βpeer1 ∧ βpeer2 ⇒ βpeer3) ∧ (βrep
1 ∧ β

peer
2 ⇒ βrep

3) ∧
(βany2 ⇒ βany3) ∧ (βlost2 ⇒ βlost3) ∧ (βany1 ∧ ¬βany2 ⇒ βlost3) ∧
(βlost1 ∧ ¬βany2 ⇒ βlost3) ∧ (βrep

2 ⇒ βlost3)

α1 = α2
(βpeer1 ⇒ βpeer2) ∧ (βrep

1 ⇒ βrep
2) ∧

(βlost1 ⇒ βlost2) ∧ (βany1 ⇒ βany2)

α1 6= α2
(βpeer1 ⇒ ¬βpeer2) ∧ (βrep

1 ⇒ ¬βrep
2) ∧

(βlost1 ⇒ ¬βlost2) ∧ (βany1 ⇒ ¬βany2)
α1 <:> α2 (βpeer1 ⇒ ¬βrep

2) ∧ (βrep
1 ⇒ ¬βpeer2)

Figure 3.6. The encoding for each of the five kinds of constraints, a figure taken from [1].

Reduction to Partial Weighted Max-SAT In the final step, the constraint system
is reduced to a partial weighted Max-SAT instance and a partial weighted Max-SAT
solver is used to find a solution. The reduction is as follows:

1. For each constraint variable αi in the inference domain, create four boolean
variables, βpeer

i , βrep
i , βany

i , and β lost
i and generate the following hard clauses to

ensure that exactly one of these four boolean variables is assigned true.

(βpeer ∨ βrep ∨ βany ∨ βlost) ∧ ¬(βpeer ∧ βrep) ∧ ¬(βpeer ∧ βany) ∧
¬(βpeer ∧ βlost) ∧ ¬(βrep ∧ βany) ∧ ¬(βrep ∧ βlost) ∧ ¬(βlost ∧ βany)

Note that for every variable that will be explicitly inserted into the program, lost
is forbidden and the encoding of the variable is accordingly simplified.

2. For each mandatory constraint, generate hard clauses according to Fig. 3.6.

3. For each weighted, breakable constraint, generate single literal soft clauses having
the same weight. For example, αi = peer with a weight of 80, translates to βpeer

i

with a weight of 80.

Since each of the steps in the above reduction can be performed in linear time, it is
a polynomial time reduction. To show that the above reduction from tunable type
inference (TTI) to partial weighted Max-SAT is sound, we have to show that an instance

17

of the former has a solution if and only if the corresponding instance of the latter has a
solution.

Assume X is a satisfiable TTI instance and we have the optimal assignment. We can
construct the optimal assignment for the corresponding SAT instance as follows: for
each i, set the βi’s according to the modifier assigned to αi, for example, if αi = rep,
then set βrepi = 1, βpeeri = 0, βanyi = 0 and βlosti = 0. Since the TTI assignment satisfied
all the mandatory type constraints, the corresponding SAT assignment will also satisfy
all the mandatory SAT clauses. Furthermore, since there is a direct mapping from
each breakable TTI constraint to the corresponding breakable SAT constraint, it is
also observed that if the TTI assignment yields the optimum weight, then so does the
corresponding SAT assignment.

Assume Y is a satisfiable instance of partial weighted Max-SAT and we have the
optimal assignment. We can construct the optimal assignment for the corresponding
TTI instance as follows: for each i, set αi according to the assignment of the βi’s, for
example, if βrepi = 1 set αi = rep. Since the SAT assignment satisfied all the mandatory
SAT clauses, the corresponding TTI assignment will satisfy all the mandatory type
constraints. Furthermore, since there is a direct mapping from each breakable SAT
constraint to the corresponding breakable TTI constraint, it is also observed that if
the SAT assignment yields the optimum weight, then so does the corresponding TTI
assignment.

Therefore, the above reduction from tunable type inference to partial weighted Max-SAT
is correct.

3.3 Constraint Generation

In this section we will outline the rules with which the mandatory GUT type constraints
are generated from source code.

Programming Language Fig. 3.7 outlines the syntax of the programming language
and the naming conventions [17]. A denotes a sequence of A elements. P denotes
a program, and is a sequence of class declarations. P is available in all judgements.
Cls denotes a class declaration, naming the class and its superclass, along with their
type parameters and type arguments, respectively, and consists of field and method
declarations. fd denotes a field declaration and is composed of a type and an identifier.
md denotes a method declaration and consists of the method purity, method type

18

P ::= Cls

Cls ::= class Cid〈TP〉 extends C〈T 〉 { fd md } C ::= Cid | Object
TP ::= X extends N fd ::= T f ;

md ::= p 〈TP〉 Tr m(T pid) { e } p ::= pure | impure
e ::= null | x | new N() | e.f | e0.f :=e1 | T ::= N | X

e0.〈T 〉m(e) | (N) e N ::= u C〈T 〉
u ::= α | peer | rep | any | lost | self x ::= pid | this

pid parameter identifier f field identifier
m method identifier Cid class identifier
α constraint variable identifier X type variable identifier

Figure 3.7. Syntax of the programming language, a figure taken from [1].

parameters if any, return type, method name, formal parameter declarations, and a
method body. e denotes an expression and can be the null literal, a method parameter
access, object creation, field read, field update, method call or a cast.

T denotes a type and is either a non-variable type N or a type variable X. A non-
variable type N consists of an ownership modifier u and a possibly-parametrized class
C. Ownership modifiers u include the concrete modifiers peer, rep, any, lost, and
self, as well as the constraint variables, α. α, lost or self are not part of the surface
syntax. The omission of modifiers is permitted; constraint variables are generated for
all omitted modifiers.

Constraint Generation The rules of constraint generation are summarized in Fig. 3.8.
These rules make use of helper judgements and functions that lift constraints from single
modifiers to types; these are defined in Fig. 3.9. We first discuss the main rules and
then move on to the helper functions. Since GUT type inference is applicable only for
compilable Java programs, the rules in Fig. 3.8 do not encode all Java type rules but
rather only give constraints for the additional GUT checks needed.

Γ denotes an environment which maps type variables of the enclosing class and method
to their upper bounds and variables to their types. The notations Γ(X) and Γ(x)
are used to look-up the upper bound of a type variable and the type of a variable,
respectively. The helper function env defines the environment necessary for checking
class and method declarations.

The constraints for a class, field, method parameter and method declaration, arise from

19

Figure 3.8. Constraint generation rules, a figure taken from [1].

20

the constraints of their components. The well-formed type (OK) helper judgement
helps to ensure the well-formedness of types. Note that the environment for a method
declaration is extended with the method type variables and the method parameters.
In the case of function overriding, if the current method is overriding a method in a
superclass, it is necessary for the parameter and return types to be consistent. This
requirement is reflected by the constraint set, Σ2, which consists of equality constraints
between the types in the current method signature and a directly overridden method
signature.

There are eight judgements for expressions. For an object creation expression, the main
ownership modifier cannot be lost or any, rather peer or rep must be inferred in order
to give the new object a specific location in the ownership topology. Helper functions
fType and mType (to be discussed below) yield the field type, and method signature
respectively, after viewpoint adaptation, and additional constraints that encode the
necessary adaptations of modifiers. As mentioned earlier, in order to ensure soundness
lost has to be forbidden from the left-hand side of assignments. For this reason, the
adapted field type, the adapted method parameter types, and the method type variable
bounds are forbidden from being lost. These constraints ensure that modifications are
only allowed if the ownership is statically known. When the option of owner-as-modifier
is enforced, the rules for field updates and for impure methods give rise to additional
constraints: the main modifier of the receiver expression cannot be lost or any.

The Γ ` N <:> T0 : Σc clause of the cast rule requires explanation. A cast is a type
loophole that indicates that the program’s behaviour is beyond the reasoning capabilities
of the type system. A program which contains a cast may fail the runtime check.
Generic Universe Types also supports casts: downcasts which specialize ownership
information (these are casts from any to peer or rep) and require runtime checks. The
GUT inference is never permitted to insert a new cast into the program as this would
defeat the purpose of static ownership type checking. However, for existing casts, it is
permitted to choose arbitrary ownership modifiers and therefore an existing cast might
fail at runtime either because of the base language check or because of the ownership
check. For example, if the inferred modifiers of variables x and o are peer and any

respectively, then the constraint for the expression x = (Person) o infers peer as the
modifier for the cast in order to make the assignment type-correct. An alternative would
be for the static inference to choose modifiers in such a way so as to guarantee that the
runtime ownership check at each cast is passed. This can be accomplished by changing
“<:>” to “=”. Subsumption of the expression type could then still be used to cast to a
supertype, which is guaranteed to succeed.

21

Figure 3.9. Helper functions and judgements, a figure taken from [1].

22

Helper Functions We now discuss the helper judgements and function in Fig. 3.9
which support the main judgements in Fig. 3.8. The rules show how constraints are
lifted from single modifiers to types.

Function om returns the ownership modifier of a non-variable type. Function bounds

returns the upper bound types of type parameter declarations. A compact notation is
used to compare one ownership modifier against a set of modifiers and to ensure that a
modifier does not appear in a type. Function env defines the environment based on the
program’s class and method declarations.

Each judgement can also be used on a sequences of elements by applying the judgement
to each individual element and then combining results. For simplicity this is not shown
in Fig. 3.9.

Viewpoint adaptation can be lifted from single modifiers to types using two judgements.
One adapts a type from an ownership modifier and the other adapts a type from the
viewpoint of a non-variable type. A type is adapted from the viewpoint of an owernship
modifier to this giving an adapted type and a constraint set. There are two cases: (1)
No constraint is generated to adapt type variables X as they do not need to be adapted,
(2) The constraints to adapt a non-variable type u′ C〈T 〉 from viewpoint u consist of
the constraint for combining u with the main modifier u′. The result is captured in a
fresh constraint variable α. The type arguments are then recursively adapted. A type is
adapted from the viewpoint of a non-variable type to this, by first adapting the type
using the main modifier u and then substituting the type arguments T for the type
variables X. Function typeVars gives the type variables defined by a class. The notation
T [T/X] is used to substitute type arguments T for occurrences of type variables X in
T .

The subtyping judgement determines the set of constraints which must hold in order
for two types to be subtypes. Of the five rules in this judgement, the second one is the
most interesting. It derives a subtyping relationship from a subclassing relationship by
adapting the type arguments from the superclass to the particular subtype instantiation.
The subclassing relationship v is the reflexive and transitive closure of the extends

relationship of the classes; it is defined over instantiated classes C〈T 〉, as defined in
GUT [3].

Fig. 3.9 does not show lifted versions of equality and comparable constraints. The former
is lifted to types by simple recursion. The latter is applied to two non-variable types by
first going to a common superclass and then generating a comparable constraint for the
two main modifiers and equality constraints for the type arguments.

The well-formed type (OK) judgement decides when a type T is well-formed in an

23

environment Γ giving the constraints Σ. The well-formedness of environments is not
shown in Fig. 3.9; they are just the well-formedness for all involved types.

Finally, we discuss the overloaded helper functions fType, mType, and typeBounds which
are defined as follows. Function fType(C, f) yields the declared field type of field f in
class C or a superclass of C. It yields only a type, but no constraints.

The overloaded function fType(N, f) (taking a non-variable type rather than a class
as first argument) determines the type of field f adapted from viewpoint N to this.
It results in an adapted field type and constraints on the constraint variables of the
viewpoint and the constraint variables for the declared type.

Function mType(C, m) yields the declared method signature of method m in class C or
a superclass of C. The overloaded function mType (N, m, T) determines the method
signature of method m adapted from viewpoint N to this and substituting method
type arguments for their type variables. It results in an adapted method signature and
constraints on the constraint variables of the viewpoint and the constraint variables for
the declared parameter, return, and type variable bound types, respectively.

Function typeBounds(u C〈T 〉) yields the upper bounds of the type variables of class C
adapted from the non-variable type u C〈T 〉 to this and a set of constraints.

3.4 Implementation and Evaluation

In this section we summarize the implementation and experience of [1]. They im-
plemented static inference on top of the Checker Framework [14], a pluggable type
checking framework built on top of the JSR 308 branch of the OpenJDK compiler. The
implementation consists of approximately 4400 non-comment, non-blank lines of Scala
code. The tool is modular and only generates constraints for the part of the program
that is supplied as input. For the remainder of the program, in particular for the JDK
libraries, the tool uses the default modifier peer.

They tested the inference on four real-word, open source tools developed by external
developers. The four benchmarks are: (1) OpenJDK’s implementation of the zip and
gzip compression algorithms, taken from OpenJDK 7 build 138, (2) javad, a Java class
file disassembler, (3) JDepend, a quality metrics tool, and (4) Classycle, a Java class
dependency analyzer. For each benchmark, two solutions were inferred, with and without
the owner-as-modifier option.

24

Benchmark SLOC Constraint Size CNF Size Timing (seconds)
vars constraints vars clauses topol. encap.

topol. encap. topol. encap. gen solve gen solve
1. zip 2611 455 2411 2949 4656 13639 14063 4.5 1.1 4.5 1.1
2. javad 1846 364 2571 3113 4988 14989 15333 3.5 1.0 3.6 1.0
3. jdepend 2460 824 4868 6024 9752 28110 29176 5.1 1.4 5.8 1.5
4. classycle 4658 1548 8726 10242 17756 53062 54380 6.0 1.8 6.2 2.0

Figure 3.10. Size and timing results, a figure taken from [1].

Fig. 3.10 shows a summary of the size and timing information of these experiments.
SLOC denotes the number of non-blank, non-comment lines. The constraint size columns
give the number of constraint variables and constraints in the program. The CNF size
gives the number of boolean variables and clauses in the SAT encoding. Finally, the
timing columns give the time for generating (gen) and solving (solve) the constraints.
Each of the runs were executed three times and the median was reported. The number
of constraints and clauses and the timing is further sub-divided into whether annotations
for only the topology or also for enforcing the encapsulation discipline should be inferred.
This choice does not affect the number of constraint variables or boolean variables.

To evaluate the correctness of the tool, the inferred annotations were inserted into the
source code and the GUT type checker was run on the program. For all cases, the type
checker verified correctness.

To evaluate the usefulness of inferred annotations, the inference results were manually
examined. This examination seemed to indicate that the inference accurately reflected
the ownership properties of the original programs [1].

To evaluate the scalability of the tool, the tool was applied to JabRef, a bibliography
management tool consisting of around 74000 SLOC. The inference generated 24402
variables and 248858 constraints, which were then encoded into 521152 boolean variables
and 1606319 CNF clauses. Generation of the constraint system took a total of 41 seconds
and solving the system took a total of 66 seconds, of which 42 seconds were spend in the
SAT solver. The software used to insert the annotations back in the code was unable to
handle such a large amount of annotations and crashed, so the GUT checker could not
be used to verify the results.

Our Comments Based on our empirical experience with SAT solvers, the timing
results in Figure 2.6 suggests to us that the tool ran efficiently on these four benchmarks.

25

In other words, these particular benchmarks seem to be easy instances for the inference.
Some natural questions which then arise and which the next chapter attempts to answer
are: Are all instances of the inference easy? If yes, is there a more efficient way of
solving the inference? If not, what is an example of a hard instance?

26

Chapter 4

Complexity Analysis

This chapter presents our contributions. We first show that the decision version of the
tunable type inference (TTI) problem for GUT is NP-complete. We then prove that
the problem is also difficult to approximate to within a certain factor. Three restricted
but practical versions of the problem are examined and their complexity discussed. We
report our efforts to explore the possible sources of complexity and to gain further
insight into the characteristics of a hard instance of the TTI problem.

4.1 Type Inference for GUT is NP-Complete

The tunable type inference problem for GUT is inherently difficult. The approach we
take to prove this is as follows: We first define a new problem, Monotone-2-SAT-Max,
and prove that it is NP-complete. We then reduce Monotone-2-SAT-Max to TTI,
thereby proving that the latter is NP-complete too. Before proceeding, it is worth
mentioning the following properties of the TTI problem which can be easily overlooked
but have to be considered when devising the proof.

• While every compilable program P gives rise to a set of mandatory type constraints,
not every set of mandatory constraints can be mapped to a valid program. For
example, from the constraint generation rules outlined in Sec. 3.3, it can be
seen that any rule which gives rise to the constraint α 6= any also gives rise to
the constraint α 6= lost. Hence we can conclude that any set of mandatory
constraints which includes the former but not the latter cannot be mapped to
any valid program. For this reason it is appropriate to define an instance of the

27

TTI problem to be < P,B, k > where P is a valid program from which the set
of mandatory constraints can be extracted, B is the set of breakable, weighted
constraints provided by the user and k is a positive integer representing the desired
lower-bound on the weight achieved.

• The set of breakable, weighted constraints B is limited to equality constraints in
which constraint variables are equal to fixed modifiers. For example, α = any is a
valid breakable constraint but αi 6= αj is not.

• The set B is provided by the user and reflects the user’s programming intentions.
Since the modifier lost is not a part of the surface syntax, we do not expect the
user to prefer it for any constraint variables. In other words, none of the breakable
constraints will involve a lost modifier.

• The constraint variables which result from viewpoint adaptations are implicit
and do not represent any actual annotations to the source code so we do not
expect the user to specify preferences for them. In other words, the constraint
variables arising from viewpoint adaptations will not be involved in any breakable
constraints.

• From the constraint generation rules, it can be seen that any inequality mandatory
constraint must involve a constraint variable and a fixed modifier. For example,
α 6= lost is a possible inequality constraint but αi 6= αj is not.

Monotone-2-SAT-Max We introduce a new problem called Monotone-2-SAT-Max
and define it as follows.

Definition 4.1. Monotone-2-SAT-Max = {< σ,m, t >: ∃ an assignment that satisfies
σ and achieves a weight of at least t under the mapping m} where

σ is a boolean formula in 2-CNF-SAT format with these additional conditions: (1)
both literals in each disjunction must be positive (hence the word monotone), (2)
they must be distinct. Examples of disjunctions which are not permitted are x∨−y
and x ∨ x.

28

m is a mapping of the assignment of variables in σ to a positive integer weight e.g.
x = 0 has a weight of 10 and x = 1 has a weight of 5. If an assignment has not
been given an explicit weight, the default weight of 0 is assumed. This mapping is
additive, so for example if x1 = 1 has a weight of 10 and x2 = 1 has a weight of
20, then the total weight achieved by setting both variables to true is 30.

t is a non-negative integer denoting the desired lower bound on the weight to be
achieved

Theorem 4.1. Monotone-2-SAT-Max is NP-complete.

Proof. Monotone-2-SAT-Max is in NP; a suitable certificate is a satisfying assignment
to the boolean variables in σ. The size of the certificate is equal to the number of boolean
variables and it can be used to verify a ‘yes’ instance in linear time. Monotone-2-SAT-
Max is NP-hard. This can be proved by a reduction from a well-known NP-complete
problem called CLIQUE. A clique is a subset of vertices of an undirected graph such that
there exits an edge between every pair of vertices in the subset. The decision version of
the CLIQUE problem is defined as follows:

Definition 4.2. CLIQUE = {〈G = 〈V,E〉 , d〉 : G is a graph with vertices V and edges
E, d ≥ 2 is an integer, and ∃ a subset V ′ ⊆ V such that |V ′| ≥ d and for every pair of
vertices (u, v) ∈ V ′

, there exists an edge 〈u, v〉 ∈ E}

The following steps describe the operation of the function f which maps a CLIQUE
instance to a Monotone-2-SAT-Max instance.

1. Create a dummy boolean variable z.

2. For every vertex v ∈ V create a boolean variable xv and form the clause xv ∨ z.

3. For every edge (u, v) 6∈ E form the clause xu ∨ xv.

4. σ is the conjunction of all the clauses formed in steps 2 and 3.

5. The mapping m is: xi = 0 has a weight of 1, for 1 ≤ i ≤ |V |. All remaining
assignments have a weight of 0.

6. t = d

29

To show that the above conversion can be done in polynomial time, we have to show
this for step 3. It is obvious that the other steps can be performed in either constant or
linear time. Consider step 3. In a graph G = (V,E), the maximum possible number
of edges there can be is

(
V
2

)
, which is O(|V |2). To scan the list E to check whether an

edge exists within it or not takes at most O(|E|) time. So step 3 can be performed in
time O(|V |2|E|) which is polynomial in the size of the input. Hence the function f is
polynomial time computable. xi = 1 in the SAT domain implies that the vertex i is not
in the clique and xi = 0 in the SAT domain implies that the vertex i is in the clique.
To complete the proof of the reduction, we must now prove that 〈G, d〉 ∈ CLIQUE
⇐⇒ f(〈G, d〉) ∈ Monotone-2-SAT-Max or equivalently, the following two claims:

Claim 4.1. If the CLIQUE instance is a ‘yes’ instance then the corresponding Monotone-
2-SAT-Max instance is a ‘yes’ instance.

Proof. Assume that the CLIQUE instance is a ‘yes’ instance i.e. the graph G = (V,E)
has a clique of size at least d, and we know the vertices of one such clique V ′. We can
construct a valid assignment to σ in the following way: for every vertex v ∈ V ′ set
xv = 0, else set xv = 1. Set z = 1. Since the clique has at least d members, at least d
of the xv’s will be set to 0. Hence the weight achieved by this assignment will be at
least t = d. We must now show that the assignment satisfies the boolean formula. It is
obvious that this assignment will satisfy all the clauses formed in step 1 of the reduction.
Now consider the clauses formed in step 2. They are of the kind xv∨xu where (u, v) 6∈ E.
By the definition of a clique, at least one of the two vertices u and v will not be present
in the set V ′ and hence at least one of xv and xu will be set to 1, thereby satisfying all
the clauses formed in step 2 of the reduction. Hence this assignment satisfies σ and
achieves the desired weight so the Monotone-2-SAT-Max instance is a ‘yes’ instance.

Claim 4.2. If the Monotone-2-SAT-Max instance is a ‘yes’ instance then the corre-
sponding CLIQUE instance is a ‘yes’ instance.

Proof. We prove the above claim by proving the contrapositive. That is, we will
show that 〈G, d〉 /∈ CLIQUE =⇒ f(〈G, d〉) /∈ Monotone-2-SAT-Max. Assume that
〈G, d〉 /∈ CLIQUE. That is, every possible subset V ′ ∈ V such that |V ′| = d, has at
least one pair of vertices (u, v) such that 〈u, v〉 /∈ E. In the corresponding Monotone-2-
SAT-Max instance, in order to achieve a weight of t, where t = d, we require that at
least d of the x boolean variables are set to 0. However for every subset of size d of the
x boolean variables in σ, there exists at least one pair of variables, (xu, xv), in the set,

30

such that σ contains the disjunction xv ∨xu. This disjunction will not evaluate to true if
both variables are set to 0. Hence the Monotone-2-SAT-Max instance is a ‘no’ instance.

This concludes the proof that the reduction from CLIQUE to Monotone-2-SAT-Max is
correct.

Reduction of Monotone-2-SAT-Max to TTI Recall the definition of the TTI
problem:

TTI = {〈P,B, k〉 : ∃ an assignment to the constraint variables of program P that makes
P type check and achieves a weight of at least k from the breakable constraints B}

Theorem 4.2. TTI is NP-complete.

Proof. TTI is in NP; a suitable certificate is a satisfying assignment to the constraint
variables. The size of this certificate is linear with respect to the number of constraint
variables. We can verify that the assignment makes the program type check and that
it achieves a weight of at least k from the breakable constraints in linear time. TTI is
in NP-hard. We prove this by a reduction from Monotone-2-SAT-Max. The following
steps describe the operation of the function h which maps a Monotone-2-SAT-Max
instance to a TTI instance.

1. Index the boolean variables in σ with the variable i, where 1 ≤ i ≤ n, and n is
the number of variables in σ.

2. For every disjunction xi ∨ xj in σ, ensure that i > j. To achieve this, you can
reorder the two literals in each disjunction if necessary. Since disjunctions are
commutative, the reordering will not have any effective change on σ.

3. Start constructing the program P by creating a class C1 as follows:

class C1
{

any Object field_a;

any Object field_b;

}

31

4. For 1 ≤ i ≤ n, create the following classes in P

class Ci+1 extends Ci
{

α
′
i Ci fieldi;

void helperi+1 (any Object parameter_a, any Object parameter_b)

{

αi Ci obi = new αtempi Ci();

obi.field_b = parameter_b;

fieldi = obi;

fieldi.field_a = parameter_a;

}

}

5. For every disjunction xi ∨ xj in σ, where i > j, add the following expression in
the helper function helperi+1 in class Ci+1.

any Ci ob_tempj = (rep Ci) obi.fieldj;

The above snippet of code is the reason why it is necessary to set up a linked chain
of classes. For the object obi to have access to the field fieldj where j can be
any integer such that i > j the class Ci needs to inherit all the classes Cm where
1 ≤ m < i.

6. Use the mapping m of the SAT instance to add the following breakable constraints
to B

xi = 1, weight wi =⇒ αi = rep, weight wi

xi = 0, weight w
′
i =⇒ αi = peer, weight w

′
i

7. k = t

8. The desired instance of TTI is 〈P,B, k〉

Assuming the owner-as-modifier discipline is enforced, the generated program P gives
rise to the following mandatory constraints for each i:

• αi Ci obi = new αtempi Ci();

αtempi 6= lost

αtempi 6= any

32

αtempi <: αi

αi 6= lost

• obi.field_b = parameter_b;

fieldi = obi;

fieldi.field_a = parameter_a;

αi <: α
′
i

αi 6= any

αi 6= lost

α
′
i 6= any

α
′
i 6= lost

• any Ci ob_tempj = (rep Ci) obi.fieldj;

αi . α
′
j = zij

zij <:> rep

zij is a constraint variable representing the result of the viewpoint adaptation. The
comparable constraint is required to prevent zij from being assigned the modifier
peer.

Each step of the above reduction can be performed in linear time with respect to the
size of the input instance of Monotone-2-SAT-Max so the reduction can be done in
polynomial time. In order to prove that the reduction is correct, we must now prove
that y ∈ Monotone-2-SAT-Max ⇐⇒ h(y) ∈ TTI or equivalently, the following two
claims:

Claim 4.3. If the TTI instance is a ‘yes’ instance then the corresponding Monotone-2-
SAT-Max instance is a ‘yes’ instance.

Proof. Assume the TTI instance is a ‘yes’ instance and we have the satisfying assignment.
We can construct an assignment for the corresponding Monotone-2-SAT-Max instance
as follows: For each i, where 1 ≤ i ≤ n, if αi = rep in the TTI domain, then set xi = 1
in the SAT domain and if αi = peer in the TTI domain then set xi = 0 in the SAT
domain. From the mandatory constraints αi 6= any and αi 6= lost, we know that every
αi can only take on values of either rep or peer and hence every boolean variable will
be assigned either 1 or 0. Since the TTI assignment achieved a weight of at least k and
the set of breakable constraints B corresponds directly to the mapping m, it follows

33

that the SAT assignment will also achieve a weight of k = t. It now remains to show
that the assignment is a satisfying one. Consider the following mandatory constraints in
the TTI domain:

α
′
i 6= any

α
′
i 6= lost

αi <: α
′
i

zij <:> rep

αi . α
′
j = zij

The first three constraints above mean that for every i, αi = α
′
i. Since for every j, α

′
j

can never be assigned the modifier any, zij will never be any. Furthermore, zij cannot
be peer as this would violate the mandatory constraint zij <:> rep. Therefore zij can
only be assigned lost or rep. Hence for the viewpoint constraint to hold, the only
combinations allowed for (αi, α

′
j) or equivalently for (αi, αj) are (rep, rep), (rep, peer)

or (peer, rep). From this we see that at least one of αi or αj will be assigned rep

which in turn means at least one of xi and xj will be assigned 1 in the SAT domain and
the disjunction will be satisfied. Since this argument holds for every disjunction, the
assignment satisfies σ. Hence the Monotone-2-Sat-Max is a ‘yes’ instance.

Claim 4.4. If the Monotone-2-SAT-Max instance is a ‘yes’ instance then the corre-
sponding TTI instance is a ‘yes’ instance.

Proof. Let us assume that the Monotone 2-SAT-Max instance is a ‘yes’ instance and we
know the satisfying assignment. We can construct an assignment for the corresponding
TTI instance as follows: For every i, if xi = 1 in the SAT domain, set αi = rep in the
TTI domain, and if xi = 0 in the SAT domain, set αi = peer in the TTI domain. For
every i, set αtempi = αi. For every i, set α

′
i = αi. For every z variable set it equal to the

result of the viewpoint constraint i.e. set zij = αi . α
′
j. One can trivially observe that

the above assignment will satisfy all the mandatory constraints of the TTI instance.

Furthermore, since the SAT assignment achieved a weight of at least t under the mapping
m, and the breakable constraint set B corresponds directly to m, the TTI assignment
will also achieve a weight of at least t = k. Hence the corresponding TTI instance is a
‘yes’ instance.

34

This concludes the proof that the reduction from Monotone-2-SAT-Max to TTI is
correct.

We note here that the program P reduced to in the reduction is one which will compile
for certain but in some cases may not execute at run time. This however does not affect
our proof because we are dealing with static inference; our inference tool should be able
to infer annotations for any program which compiles without error. To see why P may
not execute, consider the line of code:

any C_i ob_temp_j = (rep C_i) ob_i.field_j;

If both αi and α
′
j are inferred to be rep then the viewpoint constraint evaluates to

lost. lost is comparable to rep and will pass the type check at compile time. However,
when trying to cast it to a rep object at run-time, an error will occur. If however,
αi is inferred to be rep and α

′
j to be peer, then both the compile time and run time

ownership checks will be passed.

4.2 Hardness of Approximation

A standard approach to mitigate the intractability of NP-hard problems is to look
for efficient algorithms that find approximate solutions, i.e. approximation algorithms.
Approximation algorithms are algorithms to find a solution that is guaranteed to be
within some factor of the optimum. However, an approximation algorithm cannot be
defined for those instances that have no solution. Therefore, we confine ourselves to
those instances of TTI that have at least a solution. We establish an inapproximation
result for TTI, thereby showing that it is hard to approximate TTI efficiently. We first
give the definition of a gap-preserving reduction as this will be used to establish the
result.

Definition 4.3. Let Π and Π′ be two maximization problems and ρ, ρ′ > 1. A gap
preserving reduction with parameters (c, ρ), (c′, ρ′) from Π to Π′ is a polynomial time
algorithm f . For each instance I of Π, f produces an instance I ′ = f(I) of Π′.
The optima of I and I ′, say OPT (I) and OPT (I ′) respectively, satisfy the following
properties:

1. OPT (I) ≥ c =⇒ OPT (I ′) ≥ c′

2. OPT (I) ≤ c/ρ =⇒ OPT (I ′) ≤ c′/ρ′

35

Theorem 4.3. Unless P = NP, the problem of approximating TTI within a factor of
nε, for any ε > 0 is in NP-hard, where n is the number of constraint variables.

Proof. Our starting point is the well established result that for any ε > 0, CLIQUE is
NP-hard to approximate within a factor of n1−ε, where n is the number of vertices in
the graph [10].

The reduction from CLIQUE to Monotone-2-SAT-Max presented in the previous section
is such that the optimum value for the CLIQUE instance is exactly the optimum value
for the Monotone-2-SAT-Max instance. The reduction from Monotone-2-SAT-Max to
TTI also preserves the optimum value. The overall reduction from CLIQUE to TTI
is therefore a gap preserving reduction. For every c, ρ > 0, the reduction satisfies the
parameters (c, ρ), (c, ρ). It follows that TTI is also NP-hard to approximate within a
factor of n1−ε, for any ε > 0, where n is the number of constraint variables.

4.3 Complexity of Restricted Versions of the Prob-

lem

So far we have shown that the general TTI problem is NP-complete and also that it
cannot be approximated efficiently to within a factor of nε, for some ε > 0. We now
examine the complexity of three restricted, but practical cases, of the TTI problem.

Case 1: No breakable constraints In this restricted case, B = ∅. The user
can indicate preferences for certain typings by partially annotating the program with
ownership modifiers. The inference is not guided by weighted heuristics. This restricted
version can be efficiently solved and is therefore in P. If the program is unannotated,
it is trivial to obtain a solution: set all constraint variables to peer. If the program
is partially annotated, the Set Based Solution proposed for Universe Types [8] can be
used to obtain a valid inference. We concluded this by first making the observation
that the only kind of constraint in GUT which is not found in Universe Types is an
equality constraint in which both operands are constraint variables. Such a constraint
is used to handle generics. It can trivially be verified that the Set Based Solution can
handle such a constraint. We also note that the Set Based Solution only works for the
ranking which gives a deep ownership structure. For constraint variables which represent
explicit annotations in the code this ranking is: any > rep > peer i.e. any is preferred

36

over rep which is preferred over peer. For constraint variables which represent results
of viewpoint adaptations, this ranking is: any > lost > rep > peer. For a detailed
description of the Set Based Solution the reader is referred to [8]. The same algorithm
is also used in [9] to solve the inference for a reference immutability type system they
propose.

Case 2: Constant number of distinct weights In this restricted case, the inference
can be guided by heuristics, either built-in or provided by the user, but these must be
weighted with a constant number, z, of distinct weights. In other words, the weights
must be chosen from a set {w1, w2,, wz}. This case is practical since we can select
the constant to be large enough to allow sufficient expressiveness. This problem is still
NP-complete. To prove this, we first show that Monotone-2-SAT-Max with a constant
number of distinct weights is NP-complete. Consider the reduction from CLIQUE to
Monotone-2-SAT-Max described in Sec. 4.1. The reduction reduces instances of CLIQUE
to instances of Monotone-2-SAT-Max in which only one distinct weight (besides the
weight of 0) is used to weigh breakable constraints i.e. z = 1. Hence, Monotone-2-SAT-
Max with a single distinct weight is NP-complete. Since the case where z = 1 is a
subcase of all the other cases where z > 1, we can conclude that Monotone-2-SAT-Max
with a constant number of distinct weights is NP-complete. Consider the reduction of
Monotone-2-SAT-Max to TTI described in Sec. 4.1. The same reduction can be used to
reduce instances of Monotone-2-SAT-Max with a constant number of distinct weights,
to TTI with a constant number of distinct weights. Hence the latter is NP-complete.

Case 3: At most one breakable constraint per constraint variable In this
restricted case, the inference can be guided by heuristics, but for each constraint variable
at most one modifier can be given a non-zero weight. This case is practical since typically
a user will not weigh each of the four possibilities of each constraint variable. Doing
so would be tedious and time consuming. Instead, the user usually specifies general
preferences for the different types of variables. For example, a user may prefer that
field types are assigned rep, parameter types are assigned any etc. The restriction
here is that the user cannot specify any second or third preferences for any constraint
variable. This version of the problem is still NP-complete. To prove this, we first show
that Monotone-2-SAT-Max in which for each boolean variable, at most one assignment,
either true or false, can be given a non-zero weight, is NP-complete. Consider the
reduction from CLIQUE to Monotone-2-SAT-Max described in Sec. 4.1. The reduction
reduces instances of CLIQUE to instances of Monotone-2-SAT-Max in which at most
one assignment for each boolean variable is non-zero weighted. Hence, Monotone-2-SAT-
Max, in which at most one assignment per boolean variable is weighted, is NP-complete.
The reduction from Monotone-2-SAT-Max to TTI described in Sec. 4.1 can be used to

37

reduce this version of Monotone-2-SAT-Max to TTI in which each constraint variable is
involved in at most one breakable constraint. Hence this restricted version of TTI is
also NP-complete.

4.4 A Discussion on Identifying the Sources of Com-

plexity

Having proved that the TTI problem for GUT is NP-hard, a natural question which
follows is what are some of the sources of the problem’s intractability? In this section we
discuss some of our ideas on how to gain this insight. We also describe the roadblocks
we are encountering to accomplish them at this point in time.

We first make the interesting observation that TTI in the absence of any breakable
constraints is in P. This was proved in Sec. 4.3. Hence the breakable constraints, that
is, the weighting, is a necessary contributing factor to the hardness of the problem. In
other words, every hard TTI problem must be one involving weights. However, every
weighted TTI problem is not hard, as is proved by the seemingly ‘easy’ benchmarks
used in [1].

Another observation is that in the reduction from TTI to Monotone-2-SAT-Max, outlined
in Sec. 4.1, the resulting program is one that has a very distinct structure. All of the
classes in it form a chain of inheritance, and for each disjunction in the Monotone-2-SAT-
Max formula, there is a cast in the corresponding class in the program. This structure
does not seem to be one that is typically found in practical programs.

From such observations, the following questions among others arise: Besides weighting,
do certain structural properties of a program, for example, depth of inheritance, also
contribute to the problem’s hardness? If yes, do these properties frequently occur in
practical programs? If we restrict the kinds of input instances allowed, can we then
devise a polynomial-time algorithm for the inference?

One idea to gain further insight into the complexity of TTI is to draw an analogy from
SAT. In [15] and [16], various features of random SAT instances which influence their
empirical hardness are identified and classified into groups. We can apply the same
idea to the TTI problem by trying to relate these SAT features to features in TTI. For
example, Group 1 in [15] relates to the problem’s size and includes features such as the
number of variables, number of clauses, ratio of clauses to variables, reciprocal of this
ratio etc. Similarly, the most natural way to define a TTI instance’s size seems to be by
the number of constraint variables and constraints. As another example, Group 2 in

38

[15] consists of features related to the Variable-Clause Graph of the instance. This is a
graph which has a node for every variable and clause and an edge between a variable
node and a clause node if the variable occurs within the clause. We conjecture that in
the TTI domain, the parallel of the Variable-Clause Graph is a Constraint Variable -
Constraint Graph, which has a node for every constraint variable and constraint and
an edge between a variable and constraint if the variable is involved in the constraint.
In a similar fashion, many of the features identified for SAT in [15] which also seem
relevant for TTI, can be related to some relationship between constraint variables and
constraints (mandatory and breakable).

In order to verify if these TTI features have an influence on empirical hardness we
require samples of random easy and hard TTI instances. Initially we felt that a possible
approach to generate easy and hard TTI instances is as follows: Reduce randomly
generated easy and hard SAT instances to TTI instances. We expect the resulting TTI
instances to be respectively easy and hard too. A CNF-SAT instance can be reduced to
TTI by going through the following chain of reductions:

CNF-SAT < 3-SAT < CLIQUE < Monotone-2-SAT-Max < TTI

Reductions from CNF-SAT to 3-SAT and from 3-SAT to CLIQUE can be found in [11].
The remaining reductions were described in Sec. 4.1. A problem with this approach is
that it is doubtful whether the resulting TTI instances are really random since, owing
to our reduction in Sec. 4.1, they all have the same kind of program structure, that is, a
chain of inheritance and strange casts.

Besides being unable to generate random hard TTI instances, there are two other
obstacles which we faced. The first one is that the GUT inference tool is currently not
in fully working condition. In 2011, the tool was implemented on top of the Checker
Framework, a pluggable type checking framework built on top of the JSR 308 branch
of the OpenJDK compiler [1]. The Checker Framework provides an abstraction of a
basic type checker. As a result, building the inference tool on top of it significantly
simplified the implementation of many language features. Since then however, the
Checker Framework has gone through many changes and the inference tool has not been
updated to reflect these.

Hoping to bypass the tool, we reduced the TTI instances directly to partial weighted
Max-SAT instances using the reduction outlined in Sec. 3.2. We then ran a partial
weighted Max-SAT solver, SAT4J, on them in order to confirm if they remained easy
and hard respectively in the TTI domain. We found that for many easy SAT instances,
the resulting TTI instances when reduced to partial weighted Max-SAT could not be
solved efficiently with SAT4J. This implies that either (1) The instance is an easy

39

TTI instance but too complicated for SAT4J, or (2) The instance is an inherently
difficult TTI instance. From performance evaluations conducted on different partial
weighted Max-SAT solvers, we find that SAT4J is among those that performs poorly:
there are more than a handful of solvers which perform significantly better than it [13].
Unfortunately, the more efficient SAT solvers are currently not publicly available for use.

40

Chapter 5

Conclusions and Future Work

In this thesis, we analyzed the computational complexity of the Tunable Type Inference
(TTI) problem for Generic Universe Types, an ownership-based type system. This is
the problem of assigning ownership modifiers to constraint variables, ensuring that the
assignment satisfies all mandatory type constraints and achieves the maximum possible
weight from among breakable, preference constraints.

We proved that the corresponding decision version of the TTI problem is NP-complete.
The proof went as follows: We first introduced a new problem called Monotone-2-SAT-
Max, proved that the new problem is NP-complete by a reduction from CLIQUE,
and then reduced the new problem to TTI thereby proving that the latter is also
NP-complete.

Using a gap-preserving reduction, we then proved that not only is the TTI problem hard
to solve exactly, it is also hard to approximate to within a certain factor. To do this, we
made use of the fact that in the reductions from CLIQUE to Monotone-2-SAT-Max and
from Monotone-2-SAT-Max to TTI, the optimal values are preserved.

Three restricted but practical versions of TTI were then analyzed. In the first version,
preferences could only be expressed by partial annotations to the source code, and there
were no breakable constraints. This case was found to be in P with a possible solution
being the Set Based Solution proposed in [8]. In the second version, only a constant
number of distinct weights could be used to express preferences. This case was found
to be in NP-complete. In fact, we showed that even if only 1 distinct weight is used
(besides the default weight of 0), the problem is still in NP-complete. In the third
version, each variable could be involved in at most one breakable constraint. This case
was also found to be in NP-complete.

41

Although we presented some ideas on identifying the sources of complexity of TTI, we
were unable to draw any final conclusions about it. Whether or not program structure
influences the empirical hardness of TTI is still an open question.

Our reduction from Monotone-2-SAT-Max to TTI makes use of the comparable constraint.
However this kind of constraint is used only for casts. There is an alternative to dealing
with casts: the static inference can choose modifiers in such a way as to guarantee that
the runtime check at each cast succeeds. This is accomplished by changing “<:>” to
“=” [1]. An interesting question is whether TTI remains NP-complete if this alternative
approach is adopted.

Furthermore, it would be interesting to know if the problem’s complexity changes if
the owner-as-modifier option is forbidden, since our reduction did make use of this
encapsulation scheme.

As a first step to answering these questions, we propose having the inference tool updated
and working. We also propose that the inference tool either makes use of a partial
weighted Max-SAT solver which is more efficient than the SAT4J solver it currently
uses, or that other solution approaches, for example integer programming, are explored.

42

References

[1] W. Dietl, M. D. Ernst and P. Müller, Tunable Static Inference for Generic Universe
Types, European Conference on Object-Oriented Programming (ECOOP), July 2011,
Best Paper Award.

[2] W. Dietl, S. Drossopoulou, and P. Müller, Generic Universe Types, European
Conference on Object-Oriented Programming (ECOOP), July 2007, pp. 28-53.

[3] W. Dietl, Universe Types: Topology, Encapsulation, Genericity, and Tools, PhD
thesis, Department of Computer Science, ETH Zurich, 2009.

[4] C. Flanagan and S. N. Freund, Type Inference Against Races, Science of Computer
Programming, Vol 64, Issue 1, January 2007, pp. 140-165.

[5] M. Elder and B. Liblit, Heap Typability Is NP-Complete, 2007.

[6] J. Aldrich, V. Kostadinov, and C. Chambers, Alias Annotations for Program Un-
derstanding, Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA), 2002, pp 311-330.

[7] B. Chin, S. Markstrum, T. Millstein, and J. Palsberg, Inference of User-defined
Type-qualifier Rules, European Symposium on Programming (ESOP), Vol 3924, pp.
264-278, 2006.

[8] W. Huang, W. Dietl, A. Milanova, and M. D. Ernst, Inference and Checking of Object
Ownership, European Conference on Object-Oriented Programming (ECOOP), June
2012.

[9] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst, ReIm & ReImInfer: Checking and
inference of reference immutability and method purity, Object-Oriented Programming,
Systems, Languages & Applications, October 2012.

[10] J. Hastad, Clique is Hard to Approximate within n1−ε, Foundations of Computer
Science, 1996.

43

[11] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, Third
Ed, 2009, Ch. 34.

[12] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre, A simple model to generate
hard satisfiable instances, Proceedings of the 19th International Joint Conference on
Artifical Intelligence, 2005.

[13] Max-SAT 2014, http://www.maxsat.udl.cat/14/results/index.html, 9th Max-SAT
Evaluation Results.

[14] M. Papi, M. Ali, T. Correa Jr., J. Perkins and M. D. Ernst, Practical Pluggable
Types for Java, ISSTA, pp. 201-212, 2008.

[15] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham, Un-
derstanding Random SAT: Beyond the Clauses-to-Variables Ratio, Proceedings of
Principles and Practice of Constraint Programming, 2004.

[16] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, SATzilla: Portfoliobased
Algorithm Selection for SAT, Journal of Artificial Intelligence Research, 2008.

[17] A. Igarashi , B. C. Pierce and P. Wadler, Featherweight Java: A Minimal Core
Calculus for Java and GJ, ACM Transactions on Programming Languages and
Systems, 1999.

44

	List of Figures
	Introduction
	Motivation
	Problem Statements
	Related Work
	Outline

	Background on Computational Complexity
	Background on Tunable Type Inference for GUT
	Generic Universe Types
	Tunable Static Inference Approach
	Constraint Generation
	Implementation and Evaluation

	Complexity Analysis
	Type Inference for GUT is NP-Complete
	Hardness of Approximation
	Complexity of Restricted Versions of the Problem
	A Discussion on Identifying the Sources of Complexity

	Conclusions and Future Work
	References

