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Abstract

Software product lines (SPLs) manage product variants in a systematical way and allow
stakeholders to derive variants by selecting features. Finding a desirable variant is hard,
due to the huge configuration space and usually conflicting objectives (e.g., lower cost and
higher performance). This scenario can be reduced to a multi-objective optimization prob-
lem in SPLs. We address the problem using an exact and an approximate algorithm and
compare their accuracy, time consumption, scalability and parameter setting requirements
on five case studies with increasing complexity.

Our empirical results show that (1) it is feasible to use exact techniques for small SPL
multi-objective optimization problems, and (2) approximate methods can be used for large
problems but require substantial effort to find the best parameter settings for acceptable
approximation. Finally, we discuss the tradeoff between accuracy and time consumption
when using exact and approximate techniques for SPL multi-objective optimization and
guide stakeholders to choose one or the other in practice.
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Chapter 1

Introduction

Variability is ubiquitous. Physical products, such as automobiles and mobile phones, are
produced as a set of variants, and so is the software embedded in them. Software Product
Line (SPL) engineering is gaining momentum in academia and industry to effectively man-
age product variants out of a range of configurable software assets [6]. Features, essentially
increments of functionality such as password protection for a mobile phone platform, are
used to abstract software assets for effective configuration. Features are typically incor-
porated into a feature model, which has a tree-like structure and describes choices that
stakeholders can make when configuring an SPL [18, 5]. Stakeholders are also interested
in a product’s quality attributes, such as weight, cost, and performance. An attributed
feature model is a feature model extended to describe the contribution of each feature to
each quality attribute [4].

Stakeholders select features to derive a desirable configuration (i.e., a selection of fea-
tures) that meets specific functional requirements as well as certain quality attributes.
However, finding such a desirable configuration efficiently is a hard task. Since features
are functional properties, only after creating a full configuration of such features, are the
quality attributes of the configuration known. Moreover, the configuration space of an SPL
grows exponentially with the number of features and objectives. Furthermore, when deriv-
ing a desirable configuration, we may encounter conflicting objectives, e.g., lower cost and
higher performance. Hence, engineers have to make trade-offs between these conflicting
objectives.

The above scenarios can be reduced to a multi-objective optimization problem with
constraints, i.e., minimizing or maximizing a set of quality attributes while providing cer-
tain functionalities, given the attributed feature model. We can address multi-objective
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optimization either exactly or approximately to find a set of optimal or sub-optimal so-
lutions. Exact approaches have the advantage of accuracy, but often take too long for
large-scale problems, whereas approximate methods may solve large-scale problems even
in a couple of minutes but suffer from lower accuracy with missed optimal solutions. In
order to decide whether to use exact or approximate techniques for SPL multi-objective
optimization, it is important to understand the trade-offs between the resources and time
required by exact approaches versus the risk of missing relevant and optimal solutions when
using approximate techniques.

As a representative of approximate methods, Multi-Objective Evolutionary Algorithms
(MOEAs) have been recently used to deal with SPL multi-objective optimization [29].
However, to the best of our knowledge, there has been no systematic study on the inherent
sensitivity of MOEAs to their parameter settings for SPL multi-objective optimization.
Moreover, we are unaware of any other work that applies and evaluates an exact algorithm
for SPL multi-objective optimization. Recent advances in Satisfiability Modulo Theory
(SMT) solvers present an outstanding performance improvement [7, 27], which encourages
us to use an incremental and exact algorithm, called Guided Improvement Algorithm (GIA)
[26], to investigate its feasibility for SPL multi-objective optimization.

In this thesis, we implement GIA and a popular MOEA, called Indicator-Based Evolu-
tionary Algorithm (IBEA) [40], for SPL multi-objective optimization. We systematically
compare GIA to IBEA on five case studies of SPL multi-objective optimization, in terms
of their accuracy, time consumption, scalability, and parameter tuning requirements.

In summary, we make the following contributions:

• Our empirical results based on five case studies suggest that GIA can produce all
exact optimal solutions in less than two hours for small SPL with less than 45 fea-
tures, while IBEA can produce approximate solutions with an average accuracy of
at least 42% in less than 20 minutes even for large SPL with 290 features. Thus, we
demonstrate the feasibility of exact algorithms for small-scale SPL multi-objective
optimization problems and confirm the advantages of approximate algorithms for
large-scale problems.
• We conduct a parameter sweep to systematically analyze the sensitivity of IBEA to

its parameter settings, following the guidance from Hadka & Reed [13]. Our empirical
results show that IBEA requires substantial effort to find the best parameter setting
for acceptable approximation. For our largest case study with 290 features, only 4%
out of 1000 parameter settings of IBEA can produce any valid solutions at all.
• Our empirical study helps stakeholders understand the trade-offs between accuracy

and time consumption when using exact or approximate techniques for SPL multi-
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objective optimization, and guides them to choose one or the other in practice.

1.1 Thesis Organization

Chapter 2 presents background information about attributed feature models and multi-
objective optimization. It also introduces a mobile phone product line as an illustrative
example, showing the results of applying multi-objective optimization on it.

Chapter 3 describes an exact multi-objective optimization method, the Guided Im-
provement Algorithm (GIA). We describe our implementation of it using a Satisfiability
Modulo Theory solver and how we translate the constraints implied by feature models into
propositional logic as required by the Satisfiability Modulo Theory. We illustrate how the
GIA would run on the example product line introduced in chapter 2.

Chapter 4 describes an approximate multi-objective optimization algorithm, the Indicator-
Based Evolutionary Algorithm (IBEA). It also gives an overview of parameter sampling
techniques.

Chapter 5 lists and explains the research questions we investigated. It also describes
the five subject models we used, the experimental setup and accuracy metrics to be used in
our evaluation. Chapter 6 answers the research questions based on our experiments on the
five subject models. It also discuses the different trade-offs between exact and approximate
methods for multi-objective optimization of software product lines.

Chapter 7 discusses the threats to validity of our studies and how we mitigated each
one of them. It is followed by Chapter 8 which discusses related work both in terms of
exact and approximate techniques for multi-objective optimization of software product
lines. Finally Chapter 9 highlights conclusions and discusses future work.
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Chapter 2

Preliminaries

2.1 Attributed Feature Models

Figure 2.1 presents an attributed feature model of a mobile phone platform. The model de-
fines a set of configuration constraints including mandatory (filled circle), optional (empty
circle), and alternative (arc). For example, feature Connectivity must be selected in each
valid configuration, feature PasswordProtection is optional to be selected, and only one of
the three features Bluetooth, USB, and Wifi can be selected.

Each feature is assigned a quality attribute and its value quantifies the impact the
feature has on the quality of a product variant that can be measured, such as memory
and cost. For example, in Figure 2.1, the impact of feature PasswordProtection on mem-
ory consumption is quantified as 20. We quantify and specify quality attributes by simple
aggregation functions, such as sum (e.g., CostProduct =

∑
feature∈ProductCostfeature) or mul-

tiplication, across the contributions of all features present in a given product as well as
relevant feature interactions, which may cause an additional impact on a configuration’s
quality attributes based on the combined effect of a specific set of features used together
[30]. For example if feature PasswordProtection and Wifi were both selected together then
the memory consumption could increase by an additional 30 units due to their interaction.

2.2 Multi-Objective Optimization Problem (MOOP)

Multi-objective optimization arises when optimal solutions involve trade-offs between two
or more conflicting objectives. For example, Figure 2.2 presents the objective space of the
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Connectivity

Bluetooth Wifi

Name: Memory
Value: 300

Name: Cost
Value: 50

Name: Memory
Value: 725

Name: Cost
Value: 85

Name: Memory 
Value: 500

Name: Cost
Value: 35

USB

MobilePhone

PasswordProtection Name: Cost
Value: 10

Name: Memory
Value: 20

CostProduct =
∑

feature∈Product

Costfeature (2.1)

MemoryProduct =
∑

feature∈Product

Memoryfeature (2.2)

Figure 2.1: An attributed feature model of a mobile phone platform (adapted from [4])

mobile phone platform shown in Figure 2.1, formed by the two quality attributes, memory
consumption and cost.

Stakeholders intend to minimize memory consumption as well as cost to derive an
optimal configuration. In general, there is no single solution that simultaneously optimizes
each objective, but a set of Pareto-optimal solutions, which are optimal in the sense of
Pareto dominance [32]. A solution dominates another solution when it is better in at least
one objective and not worse in all the other objectives. A Pareto-optimal solution is not
dominated by any other solution. For example, Figure 2.2 illustrates six valid configurations
of the mobile phone platform example in Figure 2.1 and their quality attributes in the
objective space. Configuration P1 has the lowest memory consumption and configuration
P2 has the lowest cost. They are not dominated by any other solutions and thus they
are Pareto-optimal solutions. The set of all Pareto-optimal solutions constitute the Pareto
front (dotted line in Figure 2.2) of optimal products.
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Chapter 3

Exact MOOP : Guided Improvement
Algorithm(GIA)

3.1 GIA Algorithm Description

The Guided Improvement Algorithm (GIA) [26] is an algorithm for exact multi-objective
optimization with discrete decision variables. Since features can be abstracted as discrete
decision variables, we use GIA for SPL multi-objective optimization.

GIA incrementally explores the objective space and finds the Pareto Front using off-
the-shelf solvers. We implement GIA using the Satisfiability Modulo Theory (SMT) solver
Z3 [7], due to its outstanding performance in the reasoning and checking of model properties
[27]. We first used an implementation of the Guided Improvement Algorithm based on the
Alloy solver as a backend, but it was too slow due to the way Alloy represented integers
by creating a propositional variable for each possible integer value [17]. Hence we decided
to implement GIA using the SMT solver Z3.

GIA works as follows: on each step a candidate solution is replaced by another solution
(the candidate solution is excluded from the search by adding a constraint) that dominates
it, if one exists. When no more dominating solutions can be found, the current candidate
solution is added to the Pareto front and the process is restarted. The pseudo-code for
GIA is listed in Algorithm 1 and will be explained in the next section by way of an example
exection.

We have used exact solutions computed by our implementation of GIA to evaluate the
accuracy of the IBEA heuristic algorithm (introduced in Chapter 4).
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Algorithm 1: Guided Improvement Algorithm
input : Constraint F ,Metric M

1 Formula notDominated ← true
2 Solution s ← SolveOne(F )
3 while s 6= ∅ do
4 while s 6= ∅ do
5 s′ ← s
6 Formula betterMetric ← buildFormula(λx .dominates(x , s ,M ))
7 s ← SolveOne(F ∧ betterMetric)

8 Formula sameMetric ← buildFormula(λx .equals(x , s ′,M ))
9 for a in SolveAll(F ∧ sameMetric) do

10 yield a

11 notDominated ← notDominated ∧ ¬buildFormula(λx .dominates(s ′, x ,M ))
12 s ← SolveOne(F ∧ notDominated)

3.2 GIA Example Run

We illustrate a run of the GIA on the mobile phone example from Figure 2.1. In Figure
3.1 we show the different solutions, or products, of the mobile phone platform, labelled as
P1 to P6 to identify them and be able to refer to each one of them.

At the start of the algorithm any solution can be chosen as the initial solution. For
example solution P6, the mobile phone with exactly features Wifi and Password Protection,
could be chosen as the starting solution (line 2). It has a cost of 95 units and memory usage
of 745 units. The formula betterMetric would then restrict the search for a solution that
dominate P6, that is it would restrict the search to those solutions that have lower values
for cost or memory and not higher on the other one, formally: (Cost ≤ 95 ∧ Memory <
745) ∨ (Cost < 95 ∧Memory ≤ 745).

On the next step (line 7) the solver would look for a better solution, and could find for
instance P4, which has a cost of 45 and memory consumption of 520 units. P4 dominates
P6 in the sense that it has lower cost and lower memory. The solver would then look for
a solution that dominates P4, that is one with (Cost ≤ 45 ∧ Memory < 520) ∨ (Cost <
45 ∧Memory ≤ 520). The only solution satisfying such constraint is P2, so the backend
solver would return such solution. P2 has a cost of 35 and memory consumption of 500.
The solver would then look for a solution dominating P2, that is one with :(Cost ≤ 35 ∧
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Memory < 500) ∨ (Cost < 35 ∧Memory ≤ 500). As no such solution exists, the backend
solver would return unsatisfiable.

The algorithm now knows that any solution with a cost of 35 and memory consumption
of 500 is Pareto optimal, and would add all solutions with such objective values (only P4 in
this case) to the Pareto front (lines 8-10). This step is necessary as there could be multiple
products (i.e., multiple combinations of features) that have the same cost and memory
values (objective values) and hence are all Pareto-optimal products.

After P4 has been found to be a Pareto optimal solution, a constraint is added to exclude
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any solution that is dominated by P4 from the next iteration (line 11). The constraint will
be: (Cost > 35 ∧ Memory ≥ 500) ∨ (Cost ≥ 35 ∧Memory > 500). Then the backend
solver would search for a solution satisfying such constraint (line 12). Only P1 and P3

satisfy such constraint and the backend solver could return any of those two. For brevity
let us assume the solver returns P1.

P1 has cost of 50 and memory consumption of 300. The algorithm would look for a
solution dominating P1, that is one with: Cost ≤ 50 ∧ Memory < 300) ∨ (Cost < 50 ∧
Memory ≤ 300). As no such solution exists, the backend solver would return unsatisfiable.
The algorithm would then look for all solutions with the same objective values as P1 and
add them and P1 to the Pareto front (lines 8-10). Only P1 has objective values of 50 and
300, so only P1 would be added to the Pareto front.

After that, a constraint eliminating all solutions dominated by P1 from the search
space would be added. The constraint will be: (Cost > 50 ∧ Memory ≥ 300) ∨ (Cost ≥
50∧Memory > 300) . As no such solution not dominated by P1 and also not dominated by
P2 exists, no such solution would be found by the solver and it would return unsatisfiable
(line 12). Hence the algorithm would terminate as no more Pareto points to be found
remain. The complete Pareto front, consisting of solutions P1 and P2, has been found
incrementally by the GIA.

3.3 Implementation

In order to implement the GIA using the SMT solver Z3 as a backend, we expressed each
feature as a boolean decision variable. We also translated the constraints from a feature
model into propositional logic, following the translation given by Benavides et al. [4]. Table
3.1 summarizes such translation. Finally we had to express the objectives in terms of the
feature variables, using the arithmetic operators (sum and/or multiply) provided by Z3. We
implemented an automatic translator from attributed feature models into Z3 specifications.

3.3.1 Attributed Feature Model Translation

We illustrate the translation of an attributed feature model into a Z3 specification, using
the mobile phone platform of Figure 2.1 as an example.

First, five boolean decision variables MobilePhone, PasswordProtection, Connectivity,
Bluetooth, USB and Wifi are created to express the presence, or not, of each feature.

10



Table 3.1: Translation of a feature model into propositional logic
Relationship Feature Model Diagram Propositional Logic Translation

Mandatory Child B

A

A ⇐⇒ B

Optional Child B

A

B ⇒ A

Exclusive Or

A

B1

B2

B3

∀i ∈ 1...N Bi ⇐⇒ (A ∧
∧
j 6=i,j∈1...N ¬Bj)

Non-Exclusive Or

A

B1

B2

B3

A ⇐⇒
∨N
i=1Bi

Requires BA A⇒ B

Excludes BA (A⇒ ¬B) ∧ (B ⇒ ¬A)

import z3

solver = z3.Solver ()

MobilePhone = z3.Bool(’MobilePhone ’)
PasswordProtection = z3.Bool(’PasswordProtection ’)
Connectivity = z3.Bool(’Connectivity ’)
Bluetooth = z3.Bool(’Bluetooth ’)
USB = z3.Bool(’USB’)
Wifi = z3.Bool(’Wifi’)

Then an implication constraint is added for all five parent-child relationships in the
mobile phone platform, such that the child feature can be present only if its parent feature

11



is also present.

solver.add(z3.Implies(PasswordProtection , MobilePhone ))
solver.add(z3.Implies(Connectivity , MobilePhone ))

solver.add(z3.Implies(Bluetooth , Connectivity ))
solver.add(z3.Implies(USB , Connectivity ))
solver.add(z3.Implies(Wifi , Connectivity ))

The alternative constraint (exclusive or) in the feature model that exactly one of Blue-
tooth, USB or Wifi must be selected when Connectivity is selected, is converted into a
propositional formula and added into the z3 specification. Each child feature from an al-
ternative constraint will be present only in case that none of its siblings are present and its
parent feature is present. For example feature Bluetooth would be present only if USB and
Wifi are not present (e.g. are set to false) and its parent feature Connectivity is present.

solver.add(Bluetooth ==And(Not(USB), Not(Wifi), Connectivity ))
solver.add(USB==And(Not(Bluetooth), Not(Wifi), Connectivity ))
solver.add(Wifi==And(Not(USB), Not(Bluetooth), Connectivity ))

Then mandatory children constraints are added to the specification: the variable rep-
resenting selection of the parent feature is set to equal the one for the mandatory child.
In the mobile phone platform Connectivity is the only mandatory children (its parent is
MobilePhone).

solver.add(MobilePhone == Connectivity)

Also a constraint is added to ensure the root feature is selected:

solver.add(MobilePhone ==True)

Feature model constraints are now complete. To incorporate attributes a variable is
created for each objective. In this mobile phone example two integer variables cost and
memory are created. Each one of these variables are then constrained to equal the sum of
the contributions of all selected features.

total_cost = z3.Int(’total_cost ’)
total_memory = z3.Int(’total_memory ’)
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solver.add(total_cost == 10*z3.If(PasswordProtection , 1, 0)
+ 50*z3.If(Bluetooth , 1, 0)
+ 35*z3.If(USB , 1, 0)
+ 85*z3.If(Wifi , 1, 0)
+ 0*z3.If(Connectivity , 1, 0)

)

solver.add(total_memory == 20*z3.If(PasswordProtection , 1, 0)
+ 300*z3.If(Bluetooth , 1, 0)
+ 500*z3.If(USB , 1, 0)
+ 725*z3.If(Wifi , 1, 0)
+ 0*z3.If(Connectivity , 1, 0)

)

The complete z3 specification, of the Mobile Phone Platform of Figure 2.1, is the
following:

import z3

solver = z3.Solver ()

MobilePhone = z3.Bool(’MobilePhone ’)
PasswordProtection = z3.Bool(’PasswordProtection ’)
Connectivity = z3.Bool(’Connectivity ’)
Bluetooth = z3.Bool(’Bluetooth ’)
USB = z3.Bool(’USB’)
Wifi = z3.Bool(’Wifi’)

solver.add(z3.Implies(PasswordProtection , MobilePhone ))
solver.add(z3.Implies(Connectivity , MobilePhone ))

solver.add(z3.Implies(Bluetooth , Connectivity ))
solver.add(z3.Implies(USB , Connectivity ))
solver.add(z3.Implies(Wifi , Connectivity ))

solver.add(Bluetooth ==And(Not(USB), Not(Wifi), Connectivity ))
solver.add(USB==And(Not(Bluetooth), Not(Wifi), Connectivity ))
solver.add(Wifi==And(Not(USB), Not(Bluetooth), Connectivity ))
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solver.add(MobilePhone == Connectivity)

solver.add(MobilePhone ==True)

total_cost = z3.Int(’total_cost ’)
total_memory = z3.Int(’total_memory ’)

solver.add(total_cost == 10*z3.If(PasswordProtection , 1, 0)
+ 50*z3.If(Bluetooth , 1, 0)
+ 35*z3.If(USB , 1, 0)
+ 85*z3.If(Wifi , 1, 0)
+ 0*z3.If(Connectivity , 1, 0)

)
solver.add(total_memory == 20*z3.If(PasswordProtection , 1, 0)

+ 300*z3.If(Bluetooth , 1, 0)
+ 500*z3.If(USB , 1, 0)
+ 725*z3.If(Wifi , 1, 0)
+ 0*z3.If(Connectivity , 1, 0)

)
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Chapter 4

Approximate MOOP

The most common way to compute approximate solutions to a multi-objective optimiza-
tion problem is to use an evolutionary algorithm. Multi-Objective Evolutionary Algorithms
(MOEAs) use the ideas of natural selection and evolution from nature to perform com-
putation [10, p. 14-35]. An evolutionary algorithm consists of: an encoding for individual
candidate solutions, a crossover and mutation mechanism, a survivor selection mechanism,
a parent selection mechanism, an initialization mechanism, and termination conditions.
Figure 4.1 shows an overview of the different parts of an Evolutionary Algorithm.

An evolutionary algorithm requires an encoding for each individual in the population.
We use a string of bits of length equal to the number of features of the product line, to
represent each possible configuration of a feature model [16, p. 70-72]. For example, for
the mobile phone platform from Figure 2.1, each configuration would be represented by a
string of six bits (as it has 6 features), with 1 meaning a feature is present and 0 meaning
it is not. Figure 4.2 shows the encoding for a configuration of the mobile phone platform.

Popula'on	
  

Parents	
  

Offspring	
  

Recombination 

Mutation 

Survivor Selection 

Parental Selection 

Termination 

Initialization 

Figure 4.1: A flowchart showing the main steps of an evolutionary algorithm (adapted
from [10, p. 17])
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Figure 4.2: Encoding a sample configuration for the Mobile Phone from Figure 2.1. This
configuration has only features MobilePhone, Connectivity and USB selected.

This bit-string encoding was also used by Sayyad et al. [29].

One of the main design decisions when using a MOEA in the SPL domain is how to
handle constraints, such as that feature x excludes feature y (or perhaps more complex
restrictions). Eiben and Smith [10, p. 205-219] describe three possible approaches:

1. Using a penalty function to de-prioritize solutions that violate constraints, e.g.,
adding a new metric of the number of constraints violated. Invalid solutions can
be removed at termination if desired.

2. Creating a repair operator to ensure every candidate solution is repaired to satisfy
constraints.

3. Modifying the combination and mutation operators so that only valid candidate
solutions are generated.

Sayyad et al. [29] use the first approach in their study of MOEAs for SPLs, and we
follow their implementation. We also filter out any non-valid solutions on termination.
This approach is easy to implement, but has the potential disadvantage of adding another
dimension where the optimization method might get stuck on a local minimum.

MOEAs often have a number of parameters that can be tuned. Hadka & Reed [13]
have found that this tuning is important.

The computational budget (b) for a MOEA can be characterized as the cost per gen-
eration (c) times the number of generations (g). The number of generations, in turn, can
be characterized by the total number of individual fitness evaluations (e) divided by the
population size (p). The cost per generation is usually linearly proportional to the size of
the population (i.e., c ∝ p). So, b ∝ c× g, which usually equals p×

(
e
p

)
= e.
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4.1 Indicator-Based Evolutionary Algorithm (IBEA)

4.1.1 Overview

The Indicator-Based Evolutionary Algorithm (IBEA) [40] was designed for multi-objective
optimization by incorporating the hypervolume concept into its survivor selection mecha-
nism. The hypervolume concept measures the size of the objective space that is dominated
by a set of solutions (an approximate pareto front). Independent studies by Hadka &
Reed [13] and by Sayyad et al. [29] have confirmed that it is one of the best evolution-
ary algorithms for multi-objective optimization, including multi-objective optimization for
SPLs.

4.1.2 Description

The hypervolume concept measures how much of of the objective space is dominated by
a set of solutions compromising an approximate pareto front. As the size of the objective
space dominated can be infinite, an auxiliary reference point W which denotes the worst
possible values each objective can take is used to truncate it. The hypervolume of a set
of solutions Q is calculated as follows [8, p. 318]. For each solution qi ∈ Q, an hypercube
vi is constructed with the reference point W and the solution qi as the diagonal corners of
the hypercube. The reference point W is the worst possible point that the objectives can
take. The overall hypervolume V is the volume of the union of all such hypercubes vi.

IBEA requires a binary quality indicator that can compare the accuracy of two approx-
imations of a Pareto front. Zitzler [40] introduces the IHD-indicator based on the concept
of hypervolume. It compares two different approximations, A and B, of a Pareto front in
terms of the hypervolume of the objective space dominated by one but not by the other
one. Hence IHD(A,B) would be equal to the hypervolume of the objective space dominated
by B but not dominated by A. Formally:

IHD(A,B) =

{
Hypervolume(B)−Hypervolume(A) if ∀b ∈ B ∃a ∈ A a � b

Hypervolume(A+B)−Hypervolume(A) else
(4.1)

In Figure 4.3 we illustrate the IHD-indicator with approximations A and B each con-
sisting of a singleton set of an individual solution.
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Figure 4.3: Illustration of the IHD-Indicator used for comparing two approximations of the
Pareto front each consisting of a single Pareto point.

IBEA assigns fitness values to each individual in the population by aggregating pairwise
comparisons of it against each of the other individuals in the population in terms of the
IHD-indicator. The formula to compute the fitness of an individual a is:

F (a) =
∑

b∈P\{a}

−e−IHD({a},{b})/κ (4.2)

The full IBEA algorithm is listed as Algorithm 2, adapted from Zitzler [40]. IBEA
starts by randomly initializing the population P to a set of individuals. It then computes
the fitness values of each individual using the IHD-indicator. In case the population size
is larger than its maximum allowed size (P > α) it filters out the individual with the
lowest fitness and updates the fitness values until the population is back to its maximum
size. Parents are then selected using standard binary tournament selection. Crossover and
mutation operators are applied to the selected parents to generate a new set of individuals
as offspring. We fix the mutation operator to be bit-flip mutation and the crossover operator
to be single-point crossover. After that the algorithm checks if the maximum number of
evaluations have been reached, and if not it iterates again (goes back to line 2 in Algorithm
2).
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Algorithm 2: Indicator-Based Evolutionary Algorithm, adapted from [40]
input : α (Population size)

N (Maximum number of evaluations)
κ (Fitness scaling factor)

output: A (Pareto front approximation)

1 Initialization: Generate an initial Population P; Set the evaluations counter m to
0.

2 Fitness Assignment: Calculate the fitness of individuals in P, for all x1 ∈ P set
F (x1) =

∑
x2∈P\{x1}−e−IHD({x1},{x2})/κ . Increment the evaluations counter m by the

size of P .
3 Survivor Selection: Iterate the following three steps until the size of population P
does not exceed α:

4 1. Choose an individual x∗ ∈ P with the smallest fitness value.
5 2. Remove x∗ from the population P .
6 3. Update the fitness value for the remaining individuals, i.e.
F (x) = F (x) + e−IHD({x∗},{x})/κ for all x ∈ P .

7 Termination: If m ≥ N or some other termination criteria, then set A to the set of
non-dominated individuals in P. Stop.

8 Parental Selection: Perform binary tournament selection with replacement on P
in order to fill the temporary mating pool P ′

9 Recombination and Mutation: Apply recombination and mutation operators to
the mating pool P ′ and add the resulting offspring to P . Go to step 2.

4.1.3 Computational Cost

IBEA differs from many MOEAs in that the cost per generation (c) is quadratic, rather
than linear, in the size of the population: i.e., c ∝ p2, rather than the usual c ∝ p.
This increase in computational cost per generation is due to computing the hypervolume
indicators [35, p. 752]. Therefore, the computational budget of IBEA is characterized by:

b ∝ c× g ∝ p2 ×
(
e

p

)
= p× e
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4.2 Parameter Sweep: Sobol Sampling

Most MOEAs have a number of adjustable parameters, such as crossover rate, mutation
rate, selection strategy, population size, etc. Hadka & Reed [13] have demonstrated that
most MOEAs, including IBEA, are sensitive to these parameter values: that is, the accu-
racy of the computed results can vary quite widely depending on the parameters. Currently
the determination of which parameter settings are likely to produce accurate results in a
given domain is determined empirically by performing a parameter sweep: a systematic
sampling of the parameter space. Parameter tuning techniques aim to find good parameter
values for a specific problem instance.

The most commonly-used parameter sweep techniques include Latin Hypercube sam-
pling [23], Stratified sampling [28, p80–82], and Sobol sampling [28, p82–89]. Figure 4.4
illustrates Latin Hypercube sampling and Sobol sampling on a two-dimensional parameter
space with 100 sample points. As can be seen visually in Figure 4.4, the Sobol technique
samples the parameter space in a more evenly distributed manner.
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Figure 4.4: Illustration of Latin Hypercube sampling (left) and Sobol sampling (right) in
a 2D space

Both Latin Hypercube sampling and Stratified sampling divide the parameter space into
segments and then randomly sample within each segment. The intention of this division
is to produce relatively even density of samples. Sobol sampling achieves this goal more
directly by explicitly minimizing the density differences across the samples. Sobol sampling
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is the preferred parameter sweep technique for sensitivity analysis [28], and is what we use
in this study.
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Chapter 5

Experimental Design

5.1 Research Questions

We performed experiments on a collection of SPL attributed feature models to evaluate
GIA and IBEA, with a focus on the following research questions:

RQ 1 : Is IBEA more accurate than simple random search?

RQ 2 : How sensitive is IBEA to its parameter settings?

RQ 3 : How fast is IBEA for acceptable accuracy?

RQ 4 : What are good parameter ranges for IBEA?

RQ 5 : How scalable is GIA?

RQ 6 : When is it preferable to use GIA or IBEA?

RQ 1 serves as a baseline to show IBEA is actually doing intelligent search. Sayyad et
al. [29] showed IBEA was more accurate than other state of the art MOEAs but they did
not compare it against random search. Its use is recommended as a minimum by Arcuri
& Briand [2] when doing research with randomized algorithms in software engineering: "a
search algorithm should always be compared against at least a random search in order to
check that success is not due to the search problem (or case study) being easy". Simple
random search generates a configuration by selecting each feature with equal probability
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from a feature model. It discards the configurations that violate any constraints imposed
by the feature models and keeps only the valid ones. Then, we calculate the hypervolume of
the generated valid configurations to evaluate the accuracy of multi-objective optimization
by simple random search.

RQ 2 is designed to investigate our hypothesis that IBEA is highly sensitive to its
parameter settings. Harman [15] claims "..., one observation that almost all those who
experiment will find, is that the results obtained are often robust to the choice of these
parameters. That is, while it is true that a great deal of progress and improvement can be
made through tuning, one may well find that all reasonable parameter choices comfortably
outperform a purely random search. Therefore, if one is the first to use a search based
approach, almost any reasonable (non extreme) choice of parameters may well support
progress from the current state of the art". Howevers, we were not convinced this was the
case when applying search-based software engineering for multi-objective optimization,
based on the findings by Hadka & Reed [13] that showed MOEAs are highly sensitive
to parameter settings. Hence we decided to investigate the sensitivity of IBEA to its
parameter settings for multi-objective optimization of software product lines.

RQ3 studies the time required to obtain acceptable approximations of the exact Pareto
front, taking into account both the time required for tuning the parameters of IBEA and
the time IBEA takes to run with these tuned parameters.

The purpose of RQ4 is to detect which parameter ranges are good for IBEA across
different software product lines. We study mutation rate, crossover rate and population
size.

RQ5 evaluates how well GIA scales in terms of time required versus increasing number
of features and objectives.

Finally RQ6 uses the answers to RQ1-RQ5 to synthesize a recommendations as to when
should GIA or IBEA be used for multi-objective optimization of software product lines,
depending on the number of features and objectives of the software product line.

5.2 Subject Models

We collected a set of attributed feature models from the recent SPL literature (Table 5.1),
plus one from another domain (Apollo). These models cover a range of sizes, from a small
one such as Berkeley DB, to large ones with hundreds of features such as Eshop, or many
objectives, such as ERS.
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#Features #CTC #Objectives
Berkeley DB [30] 12 0 4
Apollo [31] 15 3 2
ERS [11] 35 2 7
Web Portal [29, 24] 43 6 4
Eshop [29, 21] 290 19 4

Table 5.1: List of subject models. ‘CTC’=Cross-Tree Constraints. Largest numbers are
emphasized.

Berkeley DB [30] describes the price, reliability, security and footprint of a database
system. The attribute footprint was measured; the values for reliability and security were
inferred (e.g., feature diagnostic would increase reliability); and the values for price were
invented. It also contains feature interactions with respect to quality attribute price. For
example whenever feature statistics and replication are selected in the same product, then
price is increased by an additional 40 units on top of each feature’s individual contribution
to the price attribute.

Apollo [31] is a model from the engineering design literature that describes the design
decisions in the Apollo lunar mission. The quality attributes are cost and mass. This model
is technically interesting because the functions used to compute the quality attributes are
relatively complex (in the other models the functions are simple summations or in one case
multiplications), but can still be encoded into the logics supported by the backend solver
Z3. This Apollo model is used with GIA only.

ERS [11] is an Emergency Response System presented with seven quality attributes
and objectives: battery usage, response time, reliability, ramp up time, cost, deployment
time and development time. The model was built based on expert judgment and used to
explore uncertainty in the early architectural design. It included lower, upper bounds and
middle values for the contribution of each feature to the quality attributes. We used only
the middle values. The reliability attribute is computed by multiplying the reliability of
the selected features.

Web Portal [24] and Eshop [21] are feature models describing a product line for web
portals and for e-commerce web sites respectively. Sayyad et al. [29] augmented these
models with three synthetic attributes: cost, priorUsageCount, and defects. Sayyad et al.
also added an objective to maximize the number of features used. We replicated Sayyad
et al.’s version of these models, based on their description of how these attributes were
randomly generated. Cost was generated as a floating point value between 5.0 and 15.0. It
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was generated from a truncated normal distribution, with a mean value of 10.0 and standard
deviation of 5.0, and lower and upper bounds at 5.0 and 15.0. UsedBefore was a boolean
value distributed uniformly between true and false. Defects takes integer values between
0 and 10, and is generated by rounding the values from a truncated normal distribution
with mean value of 5.0, standard deviation of 5.0 and upper and lower bounds of 0 and 10.
Feature with UsedBefore=False had Defects set to zero as described in Sayyad et al. [29],
based on the intuition that no defects are yet known for features that have not been used.
PriorUsageCount was equal to the number of features that had UsedBefore attribute set to
true. So that other researchers can use the same exact values for the synthetic attributes
we generated, we list such values in Appendix A.

5.3 Experimental Setup

Both IBEA and GIA have some element of randomness in them, and so multiple runs must
be used to get good measurements. This is obvious for IBEA, since randomness is one of
the distinguishing features of genetic algorithms. For GIA it is less obvious: each step of
the GIA relies on a SAT/SMT solver, which by convention are started with a random seed.
Consequently, we ran each algorithm on each subject model multiple times.

We ran the GIA on each of the three smallest models 1000 times (Apollo, Berkeley DB,
and ERS). Web Portal was significantly larger, so we ran it only 16 times, which took 26
hours of computation. Eshop was too large to complete a single run, even after several
weeks of computation. As a reference set for Eshop we merged the results from all 25,000
runs of IBEA on it, plus also 25 runs of IBEA with the best parameter settings with 2.5M
evaluations. In order to merge the results of the different runs for Eshop, we computed
the set of non-dominated solutions across the union of all valid solutions produced by each
run.

For IBEA, we generated 1000 different parameters settings using Sobol sampling of four
parameters: crossover rate from 0 to 1, mutation rate from 0 to 1, maximum number of
evaluations considered from 10,000 to 250,000, and population size from 10 to 1000. For
each parameter setting, we ran IBEA 25 times with different random seeds on each run.

We also executed random search on each of the problems with varying numbers of
instance evaluations between 50M and 550M, increasing the step by 50M each time. We
repeated each run 25 times with different random seeds.

As discussed above (§4.1), a good rough measure of the running time budget of IBEA
is the population size times the maximum number of individual fitness evaluations.

25



We ran the GIA on a server with a six-core AMD Opteron 2.8 GHz processor and 32
GB of RAM, for which we had exclusive access. As we had to run the IBEA algorithm for
a total of 25,000 different runs, we ran it on a shared cluster (http://sharcnet.ca) of 96
machines each with a quad-core AMD Opteron 2.4 GHz processor and 32 GB of RAM. We
did not have exclusive access to this cluster, but for each run IBEA was assigned 1 core
and 4 GB of RAM. We used the same cluster for random search.

The implementation of the IBEA algorithm we used was from the JMetal framework
[9] (the same implementation used by Sayyad et al. [29]).

5.4 Accuracy Metrics

MOEAs, such as IBEA, compute approximations of the Pareto front. Since a Pareto front
is, by definition, multi-dimensional, there are a variety of metrics available to measure
Pareto front approximations [38, 8, p. 306-324]

Each metric characterizes the approximation’s accuracy differently. We use the follow-
ing two metrics: Hypervolume Ratio and Coverage.

The two sets Coverage metric, used in conjunction with the exact Pareto front, is the
number of exact Pareto points included in the approximation [39, 20]. Given an exact
Pareto front P and an approximate Pareto front A, then the Coverage of A to P is:

CoverageP (A) =
|{p ∈ P ∧ a ∈ A : a = p}|

|P |
(5.1)

Suppose the exact Pareto front has 10 points, and that the approximation contains 4 of
these points: then we would say that the Coverage is 40%. Suppose, alternatively, that
the approximation contains none of the exact Pareto solutions but contains 10 solutions
that are very close to the exact solutions: the Coverage of this approximation would be
0%, but it might score highly on the other metrics.

The Hypervolume Ratio [33, 39] is the ratio of the hypervolumes of the approximate
Pareto front and the exact Pareto front. An approximation that scored 0% on the coverage
metric but was actually quite close to the exact Pareto front would score highly on the
hypervolume ratio.

Figure 5.1 illustrates the hypervolume ratio in a two dimensional space. The hyper-
volume of the true Pareto front is shaded, whereas the hypervolume of the approximate
Pareto front is cross-hatched. The hypervolume ratio metric is the ratio of these.
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Figure 5.1: The hypervolume for an approximate Pareto front. We show the hypervolume
for an approximate Pareto front that consists of the non-dominated solutions P1, P2 and
P3. It is the union of the 2-dimensional hypercubes (e.g., rectangles) V1, V2, and V3, that
are formed between Pi and the reference point W. The reference point W represents the
worst possible value for each objective.
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Chapter 6

Empirical Results and Discussion

In this chapter we present the results of our experiments in reference to the six research
questions described in chapter 5.

6.1 Is IBEA more accurate than random search?

We compare the hypervolumes obtained by random search versus those obtained by some
of 1000 different parameterizations of IBEA. We compare the 100%, 75% and 50% best
parameterization of IBEA against random search with 550M number of evaluations. By
the X% best parameter setting we mean: the one that ranked in the X percentile across
all parameter settings in terms of average hyper volume ratio. Table 6.1 shows descriptive
statistics (mean and standard deviations) of the accuracy, measured by the hypervolume
ratio metric, and the time taken by IBEA and random search.

There is no reason to believe that the hypervolume produce by either IBEA or sim-
ple random search is distributed normally. To mitigate this issue, we perform statistical
hypothesis testing using the two-tailed Mann-Whitney U-test [37] and the Vargha-Delaney
indicator [34], according to the guidelines from Arcuri & Briand [2]. We used the non-
parametric Mann-Whitney U test to detect statistical differences between the accuracy of
IBEA and random search, and the Vargha-Delaney indicator A1,2 [34] to report standard-
ized effect sizes in such comparison. Table 6.2 shows the A1,2 indicator for such comparison.

We use the two-tailedMann-Whitney U-test to detect the statistical differences between
IBEA and simple random search on the hypervolume-based accuracy. This test measures
whether there are differences in the stochastic ranking of the values of a metric (i.e.,
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Hypervolume (%) (Mean ± Std. Dev.) Time (Mean ± Std. Dev.)
IBEA100 IBEA75 IBEA50 Random IBEA100 IBEA75 IBEA50 Random

Berkeley
DB

100±0 81±17 61±0 100±0 19.7m±2.1 4.0m±0.0 1.0m±0.1 1.0s±0.0

ERS 42±17 0.2±1 0±0 31±9 1.1h±0.1 0.7h±0.1 0.3h±0.0 7.7h±0.1
Web
Portal

92±1 34±14 4±9 72±2 18.5m±0.3 5.8m±0.1 27.9m±1.9 14.6h±0.1

Eshop 78±5 0±0 0±0 0±0 16.7m±0.5 4.3m±0.2 7.4m±0.2 6.5d±0.1

Table 6.1: Hypervolume and time consumption of IBEA using its 100%, 75%, and 50%
best parameter settings and of simple random search (s—seconds, m—minutes, h—hours,
d—days)

A100,RS A75,RS A50,RS

Berkeley
DB

0.5 0.1* 0*

ERS 0.8* 0* 0*
Web Por-
tal

1.0* 0* 0*

Eshop 1.0* 0.5 0.5

Table 6.2: Statistical analysis of the accuracy of IBEA with different parameter-settings
versus Random Search, using the Mann-Whitney U test. AIBEA,RS shows the effect sizes
and can be interpreted as an estimate of the proportion of runs in which IBEA will give a
more accurate answer than random search. All comparisons marked with asterisks showed
statistically significant results with p = 0.000001.

hypervolume) produced by two algorithms (i.e., IBEA and simple random search). Here,
the null hypothesis is that there are no differences, and the alternative hypothesis is that
such differences exist, e.g., IBEA tends to produce higher-ranked values of the metric than
simple random search.

Moreover, we use the Vargha-Delaney indicator to report standardized effect sizes of
the above testing, which measure stochastic superiority of one algorithm against the other,
that is, the probability of producing a better answer (e.g., higher hypervolume) using one
algorithm (e.g., IBEA) instead of the other (e.g., simple random search).

The values of AIBEA−100,RS in Table 6.2 show that IBEA, with its best parameters, is
much better than random search. According to AIBEA−100%,RS IBEA-100% would obtain
more accurate answers than random search 100% of the time for Eshop and Web Portal,
and 80 % of the time for ERS. The better accuracy of IBEA-100% compared to random
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search is also supported by the average hypervolumes obtained by IBEA-100% and random
search where IBEA obtains 78%, 92% and 42% of hypervolume versus 0%, 72% and 31%
for random search for the product lines Eshop, Web Portal and ERS, respectively. This
demonstrates that IBEA, with its best parameters, is much more accurate than random
search. It is also several orders of magnitude faster than random search as can be seen in
Table 6.1.

However, not all parameterizations of IBEA are more accurate than random search.
The values of AIBEA−75,RS indicate that random search is much better than IBEA-75% as
it will obtain more accurate answers than it 100% of the time for Web Portal and ERS,
and 90% of the time for Berkeley DB. Moreover the average values of the hypervolume
ratio obtained by random search also point to its superiority in terms of accuracy over
IBEA-75%. This is also supported by Figure 6.2(a) where we observe that the accuracy of
IBEA is highly sensitive to the parameter settings used.

In conclusion, IBEA can be both more and less accurate than random search depending
on the parameters used. IBEA must be used with some kind of parameter tuning technique.

6.2 How sensitive is IBEA to its parameters?

Figures 6.1(a) and 6.1(b) show box-plots of the average hypervolume ratio and average
coverage across 1000 different parameter settings for each subject model. For both ERS
and Eshop, more than 75% of all parameter settings obtain a hypervolume ratio and
coverage of zero, and more than 75% of parameter settings for Web Portal produce a
coverage of zero.

Furthermore, we ranked the 1000 parameter settings of IBEA from the worst case to
the best in terms of their obtained average hypervolume and average coverage. We show
such ranking in Figure 6.2. For all subject models except the smallest case, Berkeley DB,
IBEA produces acceptable approximations of the Pareto front only if it happens to choose a
parameter setting in a small portion of the parameter space (20%, 5% and 2% respectively)
in terms of hypervolume, and an even smaller portion of the parameter space (less than
15%, 1% and 1% respectively) in terms of coverage.

From Figures 6.1 and 6.2, we can observe that the accuracy of IBEA is highly sensitive
to its parameter settings, which is in line with the findings from [3].
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Figure 6.1: Average hypervolume ratio and coverage across 1000 different parameter
settings. Whiskers denote the best and worst parameters.

6.3 How fast is IBEA for acceptable accuracy?

With the best parameter settings, IBEA can produce acceptable approximations of the
Pareto front (> 80% hypervolume) for models with 4 or fewer objectives (Figure 6.1(a)).
These solutions might even include a number of points from the exact Pareto front (Fig-
ure 6.1(b)). But with poor parameter settings IBEA can also produce worthless solutions
(Figure 6.1). How long does it take to find and execute good parameter settings for IBEA?
This depends on the parameter tuning technique.

The worst case is to do parameter tuning by Sobol sampling (which is intended for
sensitivity analysis). How many Sobol samples do we need to take before we can expect to
find parameters that produce an accurate result? Figure 6.3 shows the best hypervolume
ratio obtained for a given number of Sobol samples, from 0 to 1000. We see that for
Berkeley DB, the smallest and simplest model, 100% hypervolume ratio is obtained after
only 10 Sobol samples. The next most complicated model, Web Portal, gets close to its best
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Figure 6.2: Average hypervolume ratio and coverage obtained by IBEA based on percentile
ranking of 1000 parameter settings
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hypervolume ratio in 50 Sobol samples. The more challenging models, ERS and Eshop,
get close to their best in 500 Sobol samples, but keep improving all the way up to 1000
Sobol samples. The time taken for this approach varies from 10 hours for Berkeley DB to
1000 hours for the more complex models (ERS and Eshop). Sobol sampling is an expensive
tuning strategy.

A slightly better tuning strategy is to perform Sobol sampling only in parameter ranges
that are known to be good for the given problem domain. Our experiments (§6.4) show
that mutation rates above 0.2 are rarely good. This cuts down the parameter space by a
factor of five, which would reduce the times down to around 2 hours for Berkeley DB and
200 hours for the more complex models.

At the other extreme, we can assume a tuning oracle that gives us the best parameter
settings. Table 6.1 shows the time taken for single runs on IBEA with different parame-
ter settings: IBEA100 is the most accurate parameter setting; IBEA75 is the first/second
quartile boundary run; and IBEA50 is the midpoint run. A tuning oracle would give us the
settings for the IBEA100 run. The IBEA100 runs have times varying from 16.7 minutes to
66 minutes (1.1h). It is interesting to note that these times do not correlate with number
of features: Eshop, with the largest number of features (290), has the fastest time. The
worst time (66 minutes) belongs to the model with the greatest number of objectives: ERS,
7 objectives.

The IBEA100 run is the single most accurate run. Are there other runs with similar
accuracy and significantly lower run times? Yes. Figure 6.4 bins the runs according to
their budget (p × e) quartile. We see that both Berkeley DB and Web Portal can get very
close to their maximum accuracy at their lowest budget ranges (less than 3 minutes). The
more complex models, ERS and Eshop, require their highest budget ranges to get their
best accuracy.

In summary, IBEA requires several minutes to achieve good accuracy for even the
smallest models. The time required appears to be more a function of the number of
objectives than the number of features.

6.4 What are good parameter ranges for IBEA?

As described above, we considered four parameters for IBEA: mutation rate, crossover
rate, population size (p), and the total number of individual fitness evaluations (e). The
strongest conclusion that can be drawn from analyzing our data is that mutation rates
over 0.2 almost always lead to poor results — which is consistent with general guidance
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Figure 6.3: Maximum hypervolume ratio (%) and time consumption produced by IBEA
using different number of Sobol samples of parameter settings.
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Figure 9: Maximum hypervolume ratio (%) and time consumption produced by IBEA using different number
of Sobol samples of parameter settings.
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clear trend about what values are better or worse: the entire
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6.3.4 What are good parameter ranges for IBEA?
As described above, we considered four parameters for

IBEA: mutation rate, crossover rate, population size (p),
and the total number of individual fitness evaluations (e).
The strongest conclusion that can be drawn from analyzing
our data is that mutation rates over 0.2 almost always lead

to poor results — which is consistent with general guidance
on MOEAs (the graph upon which we base this conclusion
is not shown here due to space considerations).

We found accurate results at all crossover rates, with no
clear trend about what values are better or worse: the entire
range of crossover rates (0–1) should be sampled.

For the smaller models we found that larger budgets pro-
duced better results (Figure 10). This monotonic relation-
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to the Pareto front.

6.3.4 What are good parameter ranges for IBEA?
As described above, we considered four parameters for

IBEA: mutation rate, crossover rate, population size (p),
and the total number of individual fitness evaluations (e).
The strongest conclusion that can be drawn from analyzing
our data is that mutation rates over 0.2 almost always lead

to poor results — which is consistent with general guidance
on MOEAs (the graph upon which we base this conclusion
is not shown here due to space considerations).

We found accurate results at all crossover rates, with no
clear trend about what values are better or worse: the entire
range of crossover rates (0–1) should be sampled.

For the smaller models we found that larger budgets pro-
duced better results (Figure 10). This monotonic relation-

on MOEAs. Figure 6.5 shows a plot of average hypervolume ratio against mutation rate
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Figure 6.4: Average Hypervolume Ratio of IBEA in different ranges of time budget.
Whiskers denote the best and the worst cases.

for the four subject models.

We found accurate results at all crossover rates, with no clear trend about what values
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(d)

Figure 6.5: Average Hypervolume Ratio Metric versus mutation rates for Berkeley DB,
ERS, WebPortal and Eshop.

are better or worse: the entire range of crossover rates (0–1) should be sampled.

For the smaller models we found that larger budgets (p × e, §4.1) produced better
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Pareto Front Time
Size (Mean ± Std. Dev.)

Berkeley DB 12 0.04s ± 6.5%
Apollo 7 1.60s ± 11.7%
ERS 356 32.24s ± 5.2%
Web Portal 890 1.65h ± 6.7%
Eshop >1 > 15d

Table 6.3: Time consumption of GIA

results (Figure 6.4). This monotonic relationship did not hold for the largest and most
constrained model: Eshop. At all budget levels, our implementation of IBEA produced
mostly illegal configurations. This result calls into question the decision to handle con-
straint violations with a penalty function. Given this design decision, which was also used
by Sayyad et al. [29], then our results show that a variety of budget levels (i.e., values of
p and e) should be sampled.

6.5 How scalable is GIA?

Table 6.3 shows the results of running GIA on the five subject models. The second column
records the size of the Pareto Front, i.e., the number of Pareto-optimal solutions. The
third column collects the mean and standard deviation of the time consumption of running
GIA 1000 times for each subject model.

From Table 5.1 and Table 6.3, we can see that GIA can find the Pareto front of an
attributed feature model with less than 45 features and up to 7 objectives in a reasonable
amount of time (at most 1.65 hours), but it fails for large models with hundreds of features
like Eshop.

For Berkeley DB, GIA runs instantly. For the other subject models, GIA may run
faster or slower than IBEA, depending on the parameter settings of IBEA.

6.6 When is it preferable to use GIA or IBEA?

GIA is better for models with fewer features (e.g., Berkeley DB, ERS) or higher numbers of
objectives (e.g., ERS). We can draw this conclusion by contrasting GIA results in Table 6.3
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with IBEA results in Table 6.1, Figure 6.3, and Figure 6.4. GIA actually runs faster than
IBEA for the smaller models.

IBEA is clearly better for Eshop, which has the most features in our study: GIA
effectively times out on this model (Table 6.3).

The only model for which the result is not immediately obvious is Web portal. GIA
computes an exact answer for Web portal in 1.65 hours (Table 6.3). If we had a tuning
oracle for IBEA we could get 92% of the hypervolume of Web portal in under 20 minutes
(Table 6.1). But we do not have a tuning oracle. The best that we know how to do now
is Sobol sampling with known good parameter ranges, and that will give us a run time of
around 20 hours for Web portal (§6.3). So, upon consideration, due to the tuning cost of
IBEA it is better to use GIA for Web portal.

We can summarize the results for these four models in the following general rule: if
GIA completes within a couple of hours then it is the better choice. Otherwise, IBEA is
required. GIA is likely to complete within a couple of hours for models with fewer than 45
features, regardless of the number of objectives. A feature of GIA is that it gives Pareto
points incrementally. From our experience, if the first Pareto point appears within a few
minutes then the entire front will be found within a few hours.
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Chapter 7

Threats to Validity

Arcuri & Briand [2] recommend running each configuration 1000 times in order to get
a good sample of the distribution of the results. We performed these 1000 runs for the
GIA on the smaller models. On the larger WebPortal model we ran the GIA only 16
times, because this already took 26 hours. Similarly, for IBEA we ran each configuration
only 25 times due to cost concerns. It is possible that more runs would have produced a
more accurate characterization of the accuracy and computing time of the algorithms. The
standard deviations of the running times that we did measure are relatively low, so we think
there would likely not be much change in our estimate of the running times. The accuracy
of IBEA was also fairly consistent in our runs, with the possible exception of ERS, where
we observed a high standard deviation. In the hypothetical case that more runs of IBEA
for each configuration of ERS would have produced a more accurate result, this would not
substantially change the answers to our research questions: IBEA was already much more
accurate than random search (§6.1); we would still conclude that IBEA is very sensitive
to its parameters (§6.2), and that GIA is a better choice for ERS than IBEA is (§6.6). If
more runs for IBEA on ERS produced more accurate results, then we might increase the
amount of time that we estimate is required for IBEA to produce an accurate result (§6.3).

We could have produced more detailed answers for research questions 2 (§6.2) and 4
(§6.4) if we had used the variance decomposition method [28] to assess both the first and
second-order effects of each parameter on IBEA. This greater level of detail would not have
changed our conclusions greatly: IBEA is sensitive to its parameters, and some form of
tuning must be done. Hadka & Reed [13] used the variance decomposition method in their
study.

Sayyad et al. [29] used generated values for the synthetic attributes in the Eshop and
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WebPortal product line models. We followed the same technique they describe to gen-
erate attribute values, but we couldn’t use the exact same attribute values as they were
not available. There is some small possibility that the values we generated are somehow
importantly different from the values that Sayyad et al. [29] generated, in which case it
might be difficult to compare some of the measurements in this paper with those in their
paper.

Our estimates of how long it takes IBEA to produce accurate results (§6.3) were done
without using a clever tuning strategy. The tuning strategy we used was Sobol sampling of
known good parameter ranges (§6.4). Perhaps a more clever tuning strategy could produce
similar results in less time. We are not aware of a significantly more clever tuning strategy,
and have made some modest efforts to look for one (e.g., [22]). A better tuning strategy
would not, however, change our conclusion about when to use GIA and when to use IBEA
(§6.6): GIA is clearly better for the problems that it can solve, and IBEA is the only choice
for the problems that GIA cannot solve.

We used the JMetal [9] implementation of IBEA, which was also used by Sayyad et
al. [29]. In reading the JMetal source code we noticed some opportunities for potential
optimizations, but we do not think that they would have had a significant impact on
running time, and even if they did it would not change our conclusion for RQ6 (§6.6).

Finally, the generality of our results is potentially limited by the generality of our subject
models. Our study has twice as many subject models as Sayyad et al. study [29], and
includes all of the models from that study. An important limitation of our subject models
is that they employ relatively simple arithmetic to evaluate the metric functions, and these
metric functions can be incorporated into the search procedure (which is what the GIA
does). This property holds for many of the multi-objective SPL models we are aware of, but
it does not hold for SPL models involving certain quality attributes that require simulation
(e.g., some models involving performance or reliability attributes) or in other disciplines.
For example, in Civil Engineering (e.g., [13]), models often involve metric functions with
large differential equations that take hours to solve and cannot be incorporated into the
search procedure. Our results do not generalize to those other domains or SPL models.
We included the Apollo [31] model from the Engineering Design literature in our study
because it employs more sophisticated metric functions than our SPL models, but less
sophisticated than many Civil Engineering models. Our main comparative result holds for
this model: the GIA is better than IBEA for small models, even with moderately more
complicated metric functions.

Our main conclusion about IBEA, that it must be used with a tuning strategy, does
not appear to be threatened by the limited generality of our subject models, and is also
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strongly supported by Hadka & Reed [13].

A broader selection of subject models, in combination with the variance decomposition
method [28], might give more precise parameter ranges for using IBEA in SPL. Our study
is currently the most precise study of IBEA parameter settings on SPL models that we are
aware of.
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Chapter 8

Related Work

We discuss related work in terms of both exact and approximate multi-objective optimiza-
tion for SPLs.

8.1 Exact MOOP for SPLs

Many exact techniques have been applied and extended for optimized feature configuration
in SPLs. Benavides et al. [4] considered resource constraints in product derivation process
and applied Constraint Satisfaction Problems (CSP) techniques to model and solve the
optimized configuration problem automatically. They implemented their approach using
the Choco constraint solver [1]. Karatas et al. [19] further introduced a mapping from
attributed feature models to constraint logic programming over finite domains, and thereby
facilitating the use of optimization operators provided by constraint logic programming
tools. However, existing exact techniques focus on single-objective optimized configuration
in SPLs. To the best of our knowledge, our work is the first that evaluates an exact
technique for multi-objective SPLs.

8.2 Approximate MOOP for SPLs

SPL configuration optimization has been proven to be an NP-hard problem [36]. To address
this problem, exact algorithms often suffer from exponential complexity, but typically there
are a number of approximate algorithms with acceptable optimality [12]. Search-Based
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Software Engineering [14] advocates the application of optimization techniques from the
operations research and heuristic (or metaheuristic) computation research communities to
software engineering. It is gaining momentum in academia and industry [14]. Following the
same idea, some optimization techniques have been used for SPL optimized configuration.

White et al. [36] provided a polynomial time approximation algorithm for selecting a
highly optimal set of features that adheres to a set of resource constraints. They pro-
posed Filtered Cartesian Flattening to transform the optimized configuration problem into
the multi-dimensional multi-choice knapsack problem, and then use a heuristic technique
to produce approximate feature configurations. Guo et al. [12] first proposed a genetic
algorithm to solve the SPL optimized configuration problem. They introduced a repair
operator that can fix a randomly-generated feature configuration to a valid one. Most
metaheuristics can be used for SPL optimized configuration. These works examined only
the single-objective case.

In previous work [25] we implemented, but did not compare against alternative tech-
niques, GIA for multi-objective SPLs using a SAT solver as the underlying backend,
through an intermediate relational solver kodkod. We noticed that the encoding of in-
tegers used by kodkod to translate integer constraints into propositional logic was creating
very large formulas and slowing down our approach. Hence, in this work we improved the
performance of GIA by re-implementing it with the Z3 Satisfiability Modulo Theory solver,
and evaluated it in comparison with the approximate method IBEA.

Sayyad et al. [29] experimented with five MOEAs for SPL multi-objective optimized
configuration. They concluded that IBEA is the one that scales better when increasing
the number of objectives. However, they did not systematically evaluate IBEA spanning
different parameter settings, nor did they compare MOEAs against random search. In
contrast, we performed Sobol sampling to evaluate the sensitivity of IBEA comprehensively.
Moreover, we compared IBEA to an exact technique and simple random search.

Esfahani et al. [11] developed the ERS case study that we used in our experiments.
They used a weighed sum of design objectives, instead of a typical multi-objective op-
timization approach, to search for the optimal design. We converted their case study
into an attributed feature model and applied both exact and approximate multi-objective
optimization algorithms.

Siegmund et al. [30] developed a methodology of quantitatively measuring and speci-
fying quality attributes of SPLs and applied it to several case studies, most of them with
either one or at most two quality attributes. We used their Berkeley DB case study.
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Chapter 9

Conclusion and Future Work

We have demonstrated that it is feasible to compute exact solutions for multi-objective
software product line models with less than 45 features. Previously exact techniques have
been applied to only single-objective SPL models (e.g., [4, 19]), and it was assumed that
approximate techniques were required for multi-objective models (e.g., Sayyad et al. [29]).
Our results confirm that larger multi-objective SPL models require approximate techniques.

We were surprised that we did not observe a case where the exact technique worked, but
where the approximate technique was significantly faster. The cost of parameter tuning
for IBEA means that for models where the GIA completes within a couple of hours it is
probably the better choice. Our results show that IBEA can compute very good answers
for models with less than 45 features, but it does so at a comparable computation cost to
the exact GIA.

Our results with IBEA are consistent with previous studies: IBEA can perform well for
SPL models (Sayyad et al. [29]); and IBEA needs parameter tuning (Hadka & Reed [13]).
We extend the results of Sayyad et al. [29] for using IBEA on multi-objective SPL models
in four ways:

(1) a mutation rate of < 0.2 is best;

(2) a wide variety of crossover rates, population sizes, and total evaluations should be
sampled;

(3) the decision to model constraint violations as an objective to be minimized should be
revisited;
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(4) IBEA struggles with models that have a high number of objectives, even with a small
number of features (e.g., ERS, with 7 objectives and 35 features).

Future work could explore a number of directions, including: improving constraint han-
dling for IBEA; improving parameter tuning for IBEA; comparing IBEA to other MOEAs
in light of various parameter tuning and constraint handling techniques (as acknowledged
by Sayyad et al. [29]); improving scalability for GIA (e.g. through a parallel version of
GIA); and hybrid GIA+IBEA algorithms.

It would be useful to compare the accuracy of IBEA using repair operators for con-
straint handling versus IBEA using an additional objective to be minimized as a way of
handling constraint violations. This is important as for the largest SPL in our study (Es-
hop with close to 300 features) only 4% of the parameterizations of IBEA found any valid
configurations at all. Moreover different constraint handling techniques might be optimal
depending on whether the SPL model is highly constrained or not.

Several ways to combine GIA and IBEA can be explored. For example GIA could be
used to improve the approximate Pareto front obtained by IBEA, by looking for configu-
rations that dominate parts of it. On the other hand a partial execution of GIA could be
used to generate an initial population for IBEA.
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Appendix A

Randomly Generated Values for
Attributes of Web Portal and Eshop
feature models

A.1 Web Portal

Feature Cost Used Before Defects
web_portal 7.640898996 T 5
add_services 7.509205377 T 6
site_stats 14.68939813 F 0

basic 6.166499394 T 8
advanced 10.41903914 T 5
site_search 9.758947026 T 6

images 8.148236815 T 5
text 13.46511175 T 6
html 10.95267856 T 4

dynamic 8.863099463 T 4
ad_server 7.749645779 T 6
reports 6.474565104 T 4
popups 11.39741596 F 0
banners 7.363245163 T 2
ban_img 13.42838449 T 4
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ban_flash 5.452286608 T 5
keyword 6.100473521 T 5

web_server 12.32222489 T 1
logging 5.653699201 F 0
db 10.30831746 T 5
file 5.901282665 F 0

protocol 11.54075937 T 7
nttp 13.68264483 T 6
ftp 13.00885383 T 6

https 10.048601 F 0
cont 9.733988067 F 0
static 11.10162173 T 3
active 12.247117 F 0
asp 8.620782055 F 0
php 10.64190533 T 3
jsp 12.95291397 T 6
cgi 12.14168195 T 5

persistence 10.47466276 F 0
xml 14.05417168 F 0

database 6.737760508 T 5
ri 5.013527623 F 0

data_storage 9.556632783 T 3
data_transfer 5.222981863 T 4
user_auth 12.23424193 T 4
performance 13.70663109 F 0

ms 11.69030892 F 0
sec 9.089787558 T 6
min 8.283453001 T 6

A.2 Eshop

Feature Cost Used Before Defects
eShop 7.640898996 TRUE 3

store_front 7.509205377 FALSE 0
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homepage 14.68939813 TRUE 5
_id_1 6.166499394 FALSE 0
_id_2 10.41903914 FALSE 0
_id_3 9.758947026 TRUE 3
_id_5 8.148236815 FALSE 0

special_offers 13.46511175 TRUE 5
_id_6 10.95267856 TRUE 5
_id_8 8.863099463 FALSE 0
_id_9 7.749645779 TRUE 6

registration 6.474565104 TRUE 8
registration_enforcement 11.39741596 FALSE 0

_id_11 7.363245163 TRUE 6
register_to_buy 13.42838449 FALSE 0

_id_12 5.452286608 TRUE 5
_id_13 6.100473521 FALSE 0
_id_14 12.32222489 TRUE 6

shipping_address 5.653699201 FALSE 0
_id_15 10.30831746 FALSE 0
_id_16 5.901282665 FALSE 0
_id_17 11.54075937 FALSE 0
_id_18 13.68264483 TRUE 6
_id_19 13.00885383 FALSE 0
_id_20 10.048601 TRUE 5
_id_21 9.733988067 FALSE 0
_id_22 11.10162173 FALSE 0
_id_23 12.247117 TRUE 7
_id_25 8.620782055 FALSE 0
_id_26 10.64190533 FALSE 0
_id_27 12.95291397 TRUE 4
_id_28 12.14168195 TRUE 7
_id_29 10.47466276 FALSE 0

preferences 14.05417168 TRUE 6
_id_31 6.737760508 FALSE 0
_id_32 5.013527623 FALSE 0
_id_33 9.556632783 FALSE 0
_id_34 5.222981863 TRUE 5
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quick_checkout_profile 12.23424193 FALSE 0
_id_35 13.70663109 FALSE 0

user_behaviour_tracking_info 11.69030892 FALSE 0
catalog 9.089787558 FALSE 0

product_information 8.283453001 FALSE 0
product_type 13.82254884 FALSE 0
eletronic_goods 13.44840831 FALSE 0
physical_goods 6.678736375 TRUE 6

services 12.67406591 TRUE 5
basic_information 11.45747072 FALSE 0

detailed_information 12.49404411 FALSE 0
warranty_information 14.1585748 FALSE 0
customer_reviews 13.06245311 TRUE 7
associated_assets 11.70111524 TRUE 6

_id_38 11.54706119 FALSE 0
_id_39 9.453300186 TRUE 7
_id_41 10.20846559 FALSE 0
_id_43 14.77407445 FALSE 0
_id_44 10.0855901 FALSE 0
_id_45 10.21091614 TRUE 3
_id_46 7.543934937 TRUE 4
_id_47 11.97887792 FALSE 0
_id_48 5.497550409 TRUE 8
_id_49 11.20808822 TRUE 5
_id_50 12.50812358 FALSE 0

product_variants 6.471631631 FALSE 0
_id_51 13.96965525 FALSE 0
size 7.448026706 FALSE 0

weight 13.51927726 TRUE 5
availability 10.50430781 FALSE 0

custom_fields 11.73915374 TRUE 4
categories 7.013436191 TRUE 5

categories_catalog 8.404022679 TRUE 5
_id_52 10.62694279 FALSE 0
_id_53 11.05043773 TRUE 5
_id_54 13.89161796 FALSE 0
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_id_55 9.591618892 TRUE 2
_id_56 12.36668486 FALSE 0
_id_58 9.48789764 TRUE 4
_id_59 13.70277993 TRUE 5
_id_60 5.458508566 TRUE 7
_id_61 6.467647716 TRUE 4

category_page 12.48283554 TRUE 3
_id_62 8.034771162 TRUE 4
_id_63 6.991322414 FALSE 0
_id_65 11.51332141 TRUE 6
_id_66 10.07835819 TRUE 8
_id_67 10.85951119 TRUE 5
_id_68 14.68298238 FALSE 0
_id_69 12.86428822 TRUE 6
_id_70 12.96948842 FALSE 0
_id_71 11.50712546 FALSE 0
_id_72 10.96714539 FALSE 0
wish_list 5.550831042 FALSE 0

wish_list_saved_after_session 7.445684603 FALSE 0
email_wish_list 11.60295167 TRUE 3

_id_73 14.06034084 FALSE 0
permissions 8.326253343 FALSE 0
_id_75 12.45600556 TRUE 5
_id_76 8.594488385 FALSE 0
_id_77 12.62468952 FALSE 0

buy_paths 10.16498957 TRUE 6
_id_78 6.529268726 FALSE 0
_id_79 8.15573229 FALSE 0
_id_80 5.725949717 FALSE 0
_id_81 6.926431469 TRUE 5
_id_82 12.59760005 TRUE 5
_id_83 6.198151931 TRUE 3
_id_84 11.74649147 FALSE 0

registered_checkout 5.326602473 TRUE 4
quick_checkout 11.02629426 TRUE 4

_id_86 11.46957524 FALSE 0
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_id_87 10.44279442 TRUE 4
shipping_options 14.52369267 TRUE 4

_id_88 7.075733586 TRUE 5
_id_89 6.373772515 TRUE 7
_id_90 13.16885452 FALSE 0
_id_91 8.95245234 FALSE 0
_id_92 9.743824553 FALSE 0
_id_93 13.71202363 TRUE 6
_id_95 8.050203855 FALSE 0
_id_96 5.767914527 TRUE 6
_id_98 9.514361895 FALSE 0
_id_99 5.497472803 FALSE 0
_id_100 11.14207215 FALSE 0
_id_101 9.948847677 TRUE 5

shipping_2 6.082961504 TRUE 5
_id_102 6.527724569 FALSE 0
_id_103 11.20320681 FALSE 0
_id_105 14.23962411 FALSE 0
_id_106 7.605837234 FALSE 0
_id_107 14.77738026 FALSE 0
_id_108 5.868448477 TRUE 5
_id_110 14.06501262 TRUE 4
_id_111 13.26452403 FALSE 0
_id_112 6.491361097 FALSE 0
_id_114 10.09771586 FALSE 0
_id_115 7.619948147 FALSE 0
_id_116 11.2844424 TRUE 4
_id_117 12.80394418 FALSE 0
_id_118 11.17713166 FALSE 0
_id_120 10.37514188 FALSE 0
_id_121 10.20307457 FALSE 0
_id_122 9.129481396 FALSE 0
_id_123 10.85470745 FALSE 0
_id_124 10.08707833 TRUE 6
_id_125 14.25352696 FALSE 0
_id_126 12.72480565 TRUE 6
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_id_127 9.390004399 FALSE 0
_id_128 10.18228839 FALSE 0
_id_129 12.33661468 TRUE 6
_id_130 13.53337458 TRUE 4
_id_132 9.783003239 TRUE 8
_id_133 13.37500628 FALSE 0
_id_134 6.257091669 TRUE 4
_id_135 14.2828757 FALSE 0
_id_136 13.48356147 FALSE 0
_id_137 11.61632838 TRUE 4
_id_138 10.70066433 FALSE 0
_id_139 7.846548015 TRUE 6
_id_141 10.50601265 TRUE 5
_id_142 14.53524242 TRUE 5
_id_143 8.27648983 FALSE 0
_id_144 14.49041989 FALSE 0

buy_paths_288_289 5.874922984 FALSE 0
buy_paths_288_289_290 7.303193782 FALSE 0
buy_paths_288_289_291 7.308405931 TRUE 7

customer_service 9.813824236 TRUE 5
_id_146 13.67139298 TRUE 5
_id_147 9.161126272 FALSE 0
_id_148 11.363851 TRUE 5
_id_149 6.180057473 FALSE 0
_id_150 5.519473766 FALSE 0
_id_152 14.45465197 TRUE 3
_id_153 9.000032433 TRUE 6
_id_154 9.563743082 FALSE 0
_id_155 9.603053342 FALSE 0
_id_156 9.603156849 FALSE 0
_id_158 6.202492137 FALSE 0
_id_159 6.422839262 TRUE 2

user_behaviour_tracking 9.003503856 TRUE 3
_id_160 10.18170376 FALSE 0

locally_visited_pages 13.70299466 TRUE 4
external_referring_pages 8.7789141 FALSE 0
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behaviour_tracked_previous_purchases 14.80397202 TRUE 6
business_management 5.235859855 FALSE 0

_id_162 10.69523188 TRUE 5
_id_163 8.343846613 TRUE 5

physical_goods_fulfillment 7.379857381 TRUE 8
warehouse_management 5.212683489 FALSE 0

shipping 13.92705447 TRUE 4
_id_166 14.31693161 FALSE 0
_id_167 5.226818865 FALSE 0
_id_168 10.74195024 FALSE 0
_id_169 14.92768997 TRUE 5
_id_171 14.6171411 FALSE 0
_id_172 12.27771866 FALSE 0
_id_173 7.728433902 TRUE 5
_id_174 8.00884347 FALSE 0
_id_175 7.470519879 TRUE 4
_id_177 14.1197523 FALSE 0
_id_178 13.16962224 FALSE 0
_id_179 7.434052405 TRUE 8
_id_180 7.660526899 TRUE 5
_id_181 6.386028029 FALSE 0

eletronic_goods_fulfillment 12.0959045 FALSE 0
_id_182 12.86065169 TRUE 4
_id_183 7.773943812 FALSE 0

services_fulfillment 7.835798718 FALSE 0
_id_184 12.5405914 FALSE 0
_id_185 5.289227421 FALSE 0
_id_186 14.570773 TRUE 5
_id_187 6.367356999 TRUE 3

customer_preferences 9.154310024 TRUE 6
_id_189 12.75135125 TRUE 4
_id_190 8.68253869 FALSE 0

targeting_criteria_previous_purchases 6.929546813 FALSE 0
_id_191 9.055213666 TRUE 5

wish_list_content 11.22372744 TRUE 7
previously_visited_pages 7.290506714 TRUE 5
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_id_192 5.79535238 FALSE 0
_id_193 9.135713507 TRUE 4
_id_194 11.10953113 FALSE 0
_id_196 12.46607151 TRUE 7
_id_197 13.44724318 TRUE 5
_id_199 6.551331393 FALSE 0
_id_200 13.31522426 TRUE 8
_id_201 5.924711845 TRUE 2
_id_203 5.518117944 TRUE 6
_id_204 10.4038325 TRUE 7
_id_205 10.57646989 TRUE 7
_id_206 5.37137689 TRUE 6
_id_207 14.31502485 TRUE 4
discounts 7.830326937 FALSE 0
_id_208 6.877300316 TRUE 6
_id_209 7.118092394 FALSE 0
_id_210 12.59257361 FALSE 0
_id_211 7.580714012 FALSE 0
_id_212 9.7123076 TRUE 3
_id_214 5.792393473 TRUE 5
_id_215 14.03710454 TRUE 6
_id_216 13.29654719 TRUE 8
_id_217 5.63126988 FALSE 0
_id_218 11.68950869 TRUE 6
_id_219 13.59755799 TRUE 6
_id_220 7.625179961 FALSE 0
_id_222 5.68796352 FALSE 0
_id_223 7.800091605 FALSE 0
_id_224 8.912673728 TRUE 6
_id_225 12.1412932 TRUE 5
_id_226 10.81284532 TRUE 6
_id_228 10.81594781 FALSE 0
_id_229 8.428147387 TRUE 1
_id_230 14.49474053 FALSE 0
_id_231 8.651026317 FALSE 0
_id_232 8.755357522 FALSE 0
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_id_233 11.85799398 FALSE 0
_id_235 12.04737272 FALSE 0
_id_236 11.15659244 FALSE 0
_id_237 9.962261314 FALSE 0

personalized_emails 9.232374202 TRUE 5
_id_238 13.86637173 FALSE 0
_id_239 9.167755017 TRUE 6
_id_240 7.98212522 FALSE 0
_id_241 10.76244707 TRUE 6
_id_242 11.69056185 FALSE 0

inventory_tracking 7.640803318 TRUE 3
_id_243 8.3123986 TRUE 8

procurement 8.632823657 TRUE 3
_id_244 10.73901371 TRUE 2
_id_245 12.20884754 FALSE 0
automatic 6.248853928 TRUE 4
_id_246 5.763206411 TRUE 5

reporting_and_analysis 8.942313675 TRUE 5
_id_247 8.350060139 FALSE 0
_id_248 8.118225697 FALSE 0
_id_249 13.87237119 TRUE 7
_id_250 6.050023565 FALSE 0

fulfillment_system 7.12461556 TRUE 7
_id_252 7.293364159 FALSE 0

procurement_system 10.14799509 TRUE 8
_id_253 5.047778792 TRUE 6
_id_254 8.78545664 FALSE 0
_id_255 12.15180823 FALSE 0
_id_256 10.80156896 FALSE 0
_id_257 12.70615066 TRUE 7
_id_258 5.910254713 TRUE 3
_id_259 7.485389165 TRUE 5
_id_260 12.74926436 TRUE 5
_id_261 5.109649705 FALSE 0
_id_262 13.43773911 FALSE 0
_id_263 11.96250562 FALSE 0
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