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Abstract

Surface pasting is an interactive hierarchical modelling technique used to construct surfaces

with varying levels of local detail. The concept is similar to that of the physical process of

modelling with clay, where features are placed on to a base surface and attached by a smooth join

obtained by adjusting the feature. Cylindrical surface pasting extends this modelling paradigm

by allowing for two base surfaces to be joined smoothly via a blending cylinder, as in attaching a

clay head to the body using a neck.

Unfortunately, computer-based pasting involves approximations that can cause cracks to ap-

pear in the composite surface. In particular this occurs when the pasted feature boundary does not

lie exactly over the user-specified pasting region on the base surface. Determining pasted locations

for the feature boundary control points that give a close to exact join is non-trivial, especially

in the case of cylinders as their control points can not be defined to lie on their closed curve

boundary. I propose and compare six simple methods for positioning a feature cylinder’s control

points such that the join boundary discontinuities are minimized. The methods considered are all

algorithmically simple alternatives having low computational costs. While the results demonstrate

an order of magnitude quality improvement for some methods on a convex-only curved base, as

the complexity of the base surface increases, all the methods show similar performance. Although

unexpected, it turns out that a simple mapping of the control points directly onto the pasting

closed curve given on the base surface offers a reasonable cylindrical boundary pasting technique.
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Chapter 1

Introduction

Constructing smooth surfaces with multiple levels of control and adjustability that can be modified

or animated at interactive rates remains an area open for further research. Hierarchical modelling

offers a conceptual basis for generating surfaces with varying levels of detail, thereby encouraging

interactive editting at any level. A hierarchical model of a human-like character may start with

a torso at the base level, progressively building up to include all body parts such as the limbs

and further the fingers or toes. The design suggests that a movement to the character’s torso will

translate to the rest of the body parts, while finger motion can be local. Rather than having to

recompute the entire character for display, this hierarchical structure enables recomputations to

be performed only on the affected components making it suitable for computer animation. An

additional advantage is that each level of detail becomes reusable for other models.

Several hierarchical modelling techniques exist including hierarchical B-splines [8], displace-

ment mapping [7], and surface pasting [1]. In this thesis I choose to work further with surface

pasting due to its advantages over the other known methods, i.e., lower computational costs,

lower storage requirements, easy repositioning, and flexibility of non-parametric alignments. Sur-

face pasting was developed by Barghiel, Bartels and Forsey to mimic the physical process of

modelling with clay. It allows local detail to be added to a tensor product B-spline surface called

the base, by pasting a second tensor product surface, the feature, on to it in a manner that does

1



CHAPTER 1. INTRODUCTION 2

not increase the overall complexity of the original surfaces. A tensor product B-spline surface is

represented as a set of control points. The pasting process involves mapping the feature control

points onto the base; in particular, the feature’s boundary control points are placed directly on

the base in an attempt to create a gap-free join. Features may be pasted hierarchically and may

be scaled or moved arbitrarily over their base surfaces, yet the composite surface can be evaluated

using relatively low computational resources. These properties facilitate interactive prototyping

and previewing of computer-generated surface models, making surface pasting highly suitable for

integration into modelling software. However, because surface pasting is an approximation tech-

nique, the resulting surfaces often have unacceptably large discontinuities at the feature-to-base

joins. The costs associated with traditional refinement using knot insertion are typically too high

to allow interactive modelling. Promising alternatives for improving the surface quality while

retaining the overall benefits of pasting have been given by applying approximation methods such

as quasi-interpolation or least-squares fittings when determining the paste.

Recognizing the value of surface pasting, Mann and Yeung extended the scope of pasting to

model surfaces that include tensor product cylinders, calling it cylindrical surface pasting [12].

Joining the previous character’s head to its shoulders using a cylindrical neck instead of a patch

allows for significantly improved shape control and a more clay-like equivalence. To paste the

boundary of a feature cylinder onto the surface of a base the approximations used in standard

pasting are directly applied to the feature control points. However, a fundamental construction

difference between the closed curve boundary of a tensor product cylinder and the linear boundary

of a tensor product patch leads us to believe that this direct application is likely to be inappropri-

ate. In this thesis, I propose and examine five alternative simple and low-cost cylindrical pasting

techniques that attempt to account for the feature cylinder’s structural difference. Although my

new methods appear to offer an order of magnitude improvement in the paste quality of a cylinder

on a simple base surface, as the complexity of the base increases the improvement becomes al-

most insignificant. It turns out that applying the original surface pasting technique to cylindrical

pasting is in general as good as any of my methods, a result that was intuitively unexpected.



Chapter 2

Background

The geometric modelling of complex curves and surfaces is typically achieved using polynomial

representations such as Bézier and B-spline curves. B-splines are preferred due to their flexibility,

compact representation, and adjustable levels of internal continuity. The surface pasting modelling

technique we are concerned with in this thesis uses tensor product B-spline surfaces as its building

blocks. This chapter begins with an overview of B-splines, drawing upon it to explain concepts

relevant to surface pasting. A summary of existing standard and cylindrical pasting techniques

follow, forming the ground work for this thesis.

2.1 B-splines

This section establishes basic notation while introducing terms, relations, and details used through-

out the rest of this thesis. A more thorough discussion on the material presented here is provided

by Farin [6].

A degree m B-spline curve C(u) with L polynomial segments, is mathematically represented

as the sum of its control points {Pi}L+m−1
i=0 weighted by their corresponding basis functions

{Nm
i }L+m−1

i=0 , i.e.,

C(u) =
L+m−1∑

i=0

PiN
m
i (u).

3



CHAPTER 2. BACKGROUND 4

u0

u1

u2

P0

P1

u3 u4 u7

C(u)

P5

u6u5

γ0 γ4 γ5

Figure 2.1: A Cubic B-spline with L = 3

C(u) is defined over a sequence of non-decreasing domain values known as the knot sequence

u0, . . . , uL+2m−2, with at most m consecutive knots coinciding (Figure 2.1). The basis functions

are accordingly determined as the set of L + m linearly independent piecewise polynomials over

the linear function space given by the special knot interval [um−1, uL+m−1]. To compute these

degree m basis functions a numerically stable recurrence relation is available; the two extra end

knots required, u−1 and uL+2m−1, may be assigned any arbitrary value as they do not influence

the result:

N0
i (u) =

 1 if ui−1 ≤ u < ui

0 otherwise

Nm
i (u) =

u− ui−1

ui+m−1 − ui−1
Nm−1

i (u) +
ui+m − u

ui+m − ui
Nm−1

i+1 (u).

Each Nm
i (u) is non-zero over [ui−1, ui+m], and attains its maximum when evaluated at γi =

1
m (ui + ui+1 + · · · + ui+m−1) for i = 0, . . . , L + m − 1. The value γi, is called the ith Greville

abscissa of C, and is such that Pi maximally influences the curve at C(γi).



CHAPTER 2. BACKGROUND 5
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u
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Figure 2.2: Knot Insertion into a Cubic B-spline Polygon – the new knot is u

2.1.1 Knot Insertion

In general, knot insertion is a basic polygon manipulation technique producing one piecewise

linear function from another. Applying it to a B-spline polygon facilitates curve refinement.

To understand knot insertion in the context of B-splines, we begin with a degree m B-spline

curve having a maximum of L polynomial segments and defined over a non-decreasing knot se-

quence u0, . . . , uL+2m−2. A set of corresponding Greville abscissae can then be computed as the

successive m-tuple averages of these knots. Given ordinates Pi (known as de Boor ordinates or

control vertices) over the Greville abscissae, allows us to define the vertices of B-spline polygon

B as the set of points {(γi, Pi)}L+m−1
i=0 .

Knot insertion inserts a real number u ∈ [um−1, . . . , uL+m−1] into the B-spline’s domain knot

sequence. The result is a new set of Greville abscissae γu
i , and correspondingly evaluated ordinates

Pu
i = B(γu

i ). The points (γu
i , Pu

i ) describe the refined B-spline polygon Bu, which contains one

additional vertex compared to B, as seen in Figure 2.2. Specifically the refined B-spline curve is

given by the knot sequence u0, . . . , uI , u, uI+1, . . . , uL+2m−2 for n − 1 ≤ I < L + m − 1, and the
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new control vertices Pu
i , which are computed using the knot insertion formula:

Pu
i =

ui+m−1 − u

ui+m−1 − ui−1
Pi−1 +

u− ui−1

ui+m−1 − ui−1
Pi,

i = I−n+2, . . . , I +1. To facilitate ease of representation and refinement evaluation, an alternate

method known as blossoming [14] is often used to express the B-spline curve and its control points.

2.1.2 Knot Multiplicity

Knot multiplicity is the frequency of occurrence of a knot value in a knot vector. A B-spline

curve over the domain knot interval [um−1, . . . , uL+m−1] has L domain intervals, and thus L

curve segments when all domain knots have multiplicity one. In this case, each segment shares

m control points with its neighbours and the B-spline curve is Cm−1 continuous. However, if a

domain knot is repeated, the number of domain intervals drop by one and the segment at the

repeated knot shares one less control point with its neighbours. As a result the continuity at this

knot reduces by one. In general, if a knot value ui has multiplicity k, then a degree m B-spline

curve is Cm−k at ui; this also holds for adjacent B-splines whose support contains ui. A knot

with multiplicity equal to the degree of its B-spline curve is said to have full multiplicity, and the

curve is only guaranteed to be C0 continuous at the associated point. If two adjacent knots have

full multiplicity, then the B-spline control points for the curve over that interval are in fact Bézier

control points. Consequently, when all the knots have full multiplicity, the B-spline is a piecewise

Bézier curve having the Bernstein polynomials as the blending functions.

2.1.3 Curve Evaluation

One popular method for evaluating B-spline curves is known as the de Boor algorithm. It says

that to evaluate an m-degree B-spline curve at a parameter value u, we need to insert u into

the associated knot sequence until it has full multiplicity m. The resulting point position is

the desired function value. In the case that u is already an element of the knot sequence, with

multiplicity r, only m − r additional insertions are required; typically r = 0. Formally, for



CHAPTER 2. BACKGROUND 7

u ∈ [uI , uI+1) ⊂ [um−1, uL+m−1], k = 1, . . . ,m− r, and i = I −m + k + 1, . . . , I − r + 1,

P
u(k)
i =

ui+m−k − u

ui+m−k − ui−1
P

u(k−1)
i−1 +

u− ui−1

ui+m−k − ui−1
P

u(k−1)
i ,

which gives, C(u) = P
u(n−r)
I−r+1 .

The de Boor method also facilitates evaluation of curve derivatives. Repeated knot insertion

is stopped one level short at u having multiplicity m − 1, leaving two control points that share

the knot value u, P
u(m−1)
I and P

u(m−1)
I+1 . The derivative of C at u is then given as

C ′(u) =
m

uI+1 − uI
(Pu(m−1)

I+1 − P
u(m−1)
I ).

2.1.4 Continuity

Two curves meet with Ck continuity at parameter value t if they agree in both position as well

as in k derivatives at t. When establishing continuity, the two B-spline curves to be joined are

often defined to have full end knot multiplicity. This places the beginning and end points of the

curves at their first and last control points respectively, making it easier to set continuity. As

an example, we state the C0 and C1 join conditions for two B-spline curves – m-degree C(u)

described by knots u0, . . . , uM+m−1 and n-degree D(v) described by knots v0, . . . , vN+n−1, each

having full end knot multiplicity (illustrated in Figure 2.3). A C0 join requires that the end point

of C is also the start point of D. This can be achieved by setting PM = Q0. A C1 join occurs

when the curves meet with C0 continuity and the first derivative at the end of C is equivalent to

the first derivative at the beginning of D, here, m
uM−uM−1

(PM − PM−1) = n
v1−v0

(Q1 −Q0).

2.1.5 Closed Curves

A closed Bézier curve results when the two ends of a curve are joined by setting the first and last

control points to be the same. A closed B-spline curve is obtained by establishing full continuity,

Cm−1, between the two ends. For this, the last m control points of the curve need to be identical to

the first m control points, and the corresponding knot spacings must also be equal. Given a cubic
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PM−2

PM−1

Q2

D(v)

C(u)

n
v1−v0

Q1

PM = Q0

m
uM−uM−1

Figure 2.3: B-spline Curves Joined with C1 Continuity

B-spline represented by the knot vector {u0, u1, . . . , uM+2} and control points {P0, P1, . . . , PM},

forming a closed B-spline curve involves satisfying the following set of constraints:

PM−2 = P0,

PM−1 = P1,

PM = P2,

uM+1 − uM+2 = u3 − u4,

uM − uM+1 = u2 − u3,

uM−1 − uM = u1 − u2,

uM−2 − uM−1 = u0 − u1.

Any modifications to the curve through knot insertion or otherwise, must be performed in a

manner that maintains this closure relationship.

The valid domain knot interval over which a closed B-spline curve can be evaluated differs from

its open curve analogue due to its cyclic construction. In an open B-spline curve, if the end knots

are not of full multiplicity, some of the Greville points will not lie within the curve’s valid range.

To facilitate evaluation, the Greville points must either be clamped to the valid range or the end

knots must be constructed to have full multiplicity. In the case of a closed B-spline curve we have
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other options because the Greville points lying outside the valid interval get wrapped around.

Closed curve evaluation can be performed either by swapping P0 with PM−2, or by starting at

the second control vertex and evaluating over the interval from P1 to PM−1.

2.2 Tensor Product Surfaces

Tensor product surfaces are the result of extending curves to represent surfaces. A tensor product

B-spline surface, S, is defined over a two-dimensional domain by a three-dimensional polygonal

mesh of control points Pi,j and their associated patch basis functions (Figure 2.4). The patch basis

functions are obtained by taking the product of the two defining B-splines, Nm(u) and Nn(v),

given in the u and v parametric domain directions respectively. Mathematically, we have

S(u, v) =
M∑
i=0

N∑
j=0

Pi,jN
m
i (u)Nn

j (v)

=
M∑
i=0


N∑

j=0

Pi,jN
m
i (u)

 Nn
j (v)

=
N∑

j=0

{
M∑
i=0

Pi,jN
n
i (v)

}
Nm

j (u)

=
M∑
i=0

N∑
j=0

Pi,jNi,j(u, v),

where Ni,j(u, v) = Nm
i (u)Nn

j (v).

Evaluation of a tensor product surface involves performing repeated curve evaluation in one

parametric direction and then the other. Essentially, we can apply the de Boor algorithm to

all B-spline curves along the u (or v) direction to get control points describing a curve in v (or

u), and then apply the de Boor algorithm to this curve to get the desired point on the surface.

To simultaneously obtain the surface partials in both directions at the same point, a slightly

modified algorithm given by Mann and DeRose [11] is used. The above evaluations are stopped

one level short in both directions to produce a unit bicubic surface. Then, evaluating once in

either direction, say u, gives the two control points describing the partial derivative ∂~v along the
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P0,0

P3,0

S(u, v)

P3,3

P0,3

Figure 2.4: A Bicubic Tensor Product Patch with its defining control net

other parametric direction.

Continuity conditions for tensor product surfaces are based upon the continuity of the com-

prising B-spline curves. Joining these surfaces with a desired level of continuity requires extending

rows or columns of control points such that the extension forms B-spline curves that satisfy the

same level of continuity. It follows that for two surfaces to meet with C1 continuity, the first

two layers of control points along the join boundary of both surfaces must be colinear, and each

cross-layer must form a curve that is C1 continuous.

2.2.1 Tensor Product Cylinders

A tensor product cylinder (Figure 2.5) is a tensor product B-spline surface with its rectilinear

domain defined to form a cylinder that has closed curve constraints placed on each of its circular

layers. In my constructions and descriptions, the axis of the cylinder is along the u parametric

direction, while each closed curve layer of control points is defined with respect to v.

2.3 Surface Pasting

Modelling frequently involves adding local detail to surfaces. The traditional method used for

shape control of a tensor product B-spline surface is knot insertion. Unfortunately, this method
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Figure 2.5: A Bicubic Tensor Product Cylinder – left: cylinder surface and its defining control
net; right: 2D cylinder domain

adds significant surface complexity by creating extra subpatches across the entire width/breadth

of the surface, instead of offering only the local refinement desired. Alternatives have included the

use of hierarchical B-splines [8], wavelets [16], displacement maps [7] and surface pasting. Surface

pasting offers some notable advantages over the other methods, including lower computational

costs, minimal increase in storage requirements, flexibility of non-parametric alignments, easy

repositioning, and reuse of surface details.

Introduced by Bartels and Forsey [3], surface pasting forms the foundation for the work in

this thesis. The technique is a generalization of hierarchical B-splines, developed to combine the

flexibility of displacement mapping with the speed of evaluation enjoyed by hierarchical B-splines.

It involves adding detail to a region of one tensor product B-spline surface (designated as the

base) by attaching a second tensor product surface (called the feature) to it. The base surface

can be either a simple surface or a composite formed by previous pasting operations. The pasting

procedure essentially adjusts the feature control points such that the boundary of the pasted

feature lies on or near the base surface. The resulting feature is modified to reflect the topology

of its underlying base, while still retaining characteristics of its original unpasted form; the base

itself remains unchanged.
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The surface pasting process makes use of two concepts – diffuse coordinate spaces and Greville

displacement surface representations. The following subsections explain these concepts, building

upon them to provide a detailed description of standard surface pasting [1, 2] as well as its

cylindrical pasting [12, 13] extension.

2.3.1 Diffuse Coordinate Space

In a diffuse coordinate space, each control point Pi,j is associated with a local coordinate frame

Fi,j . This provides an alternate way of expressing each feature control point as the frame origin

Oi,j , plus a displacement vector ~di,j given along local coordinate directions {~xi,j , ~yi,j , ~zi,j}, i.e.,

Pi,j = Oi,j + ~di,j .

In surface pasting, the selection of the origin and displacement vectors for each control point

affects the quality and behaviour of the pasted surface. To determine these values, a Greville

displacement representation of the surface is used.

2.3.2 Greville Displacement

Greville displacement involves embedding the domain of a surface into its range space by mapping

each domain point (u, v) to (u, v, 0). Applying Greville displacement to a tensor product B-spline

surface enables us to associate a local coordinate frame with each surface control point.

Tensor product construction ensures that each control point Pi,j has an associated domain

point at which it maximally influences the surface. This domain point is referred to as the

Greville point γi,j = (γi, γj), where γi is the ith Greville abscissa in the u parametric direction

and γj is the jth Greville abscissa in the v direction. Embedding the Greville point into the

range to give Γi,j = (γi,j , 0), provides a point of origin for Pi,j ’s local coordinate frame. Then,

the displacement vector from Γi,j to Pi,j forms the corresponding Greville displacement ~di,j =

Pi,j − Γi, j. Consequently, a diffuse representation of a tensor product B-spline surface can be
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formulated as

S(u, v) =
M∑
i=0

N∑
j=0

(Γi,j + ~di,j)Ni,j(u, v).

Now, we define each Pi,j ’s local coordinate frame Fi,j = {~xi,j , ~yi,j , ~zi,j ,Γi,j}, where the basis

vectors ~xi,j , ~yi,j are the u and v parametric directions of the embedded domain respectively, and

~zi,j = (0, 0, 1). This allows us to express the Greville displacements relative to their corresponding

local frames as

~di,j = dx
i,j~xi,j + dy

i,j~yi,j + dz
i,j~zi,j ,

where dx
i,j , dy

i,j , and dz
i,j are the scalar components of ~di,j .

2.3.3 Standard Pasting

Surface pasting generates a hierarchical tensor product B-spline surface by pasting a feature onto

a base surface. Each surface involved is defined over its own domain. As mentioned earlier, the

process maps feature control points onto the base in an attempt to join the feature smoothly to

the base. The resulting transformed feature takes on characteristics of the base onto which it has

been pasted, while simultaneously continuing to reflect its original unpasted form. To achieve

this, the feature control points are represented using Greville displacements relative to the feature

domain space. These points are then associated with corresponding base domain points. Finally,

each feature control point is positioned within the base range space using appropriate continuity

criteria.

More specifially, standard surface pasting [1, 2] is used to paste the boundary of a non-closed

feature surface onto the surface of a base. The details are presented below and illustrated in

Figure 2.6.

We begin with a feature surface F defined by control points {Pi,j | i = 0, . . . ,M, j = 0, . . . , N},

and a base surface B. Having constructed a Greville displacement representation of F (as de-

scribed in §2.3.2), the first step of the pasting process involves mapping the feature domain into

the base domain using an invertible transformation T . T determines the relative size and place-

ment of the feature surface with respect to the base, and is typically defined by the user. Under
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Base Surface, B(u, v) over Base Domain

Feature Surface, F (u, v) over Feature Domain

Composite Surface

Pi,j = (γi, γj, 0) + ~di,j

P ′
i,j = B(γ ′

i,j) + ~d′i,j
F

F
i,j

F
B
i,j

B(γ′
i,j)

(γ′
i, γ

′
j)

pasting

Figure 2.6: Standard Surface Pasting
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T , each Greville point γi,j is mapped to T (γi,j) = T (γi, γj) = (γ′i, γ
′
j) = γ′i,j . The corresponding

local coordinate frame FF
i,j = {~xi,j , ~yi,j , ~zi,j ,Γi,j} is transformed as well – the origin is mapped

to Γ′i,j = (γ′i, γ
′
j , 0) and the frame basis is mapped to (~x′i,j , ~y

′
i,j , ~z

′
i,j), where ~x′i,j and ~y′i,j are the

parametric directions of the embedded feature domain. As we are performing a two dimensional

domain-to-domain mapping, we set ~z′i,j = (0, 0, 1).

The next step is to create a base domain displacement representation of each feature control

point. This is achieved by expressing each displacement ~di,j in terms of a local base coordinate

frame FB
i,j = (B(γ′i, γ

′
j), ~x

′′
i,j , ~y

′′
i,j , ~z

′′
i,j). Here, the origin is computed by evaluating the base at the

transformed Greville point, and the frame basis is contructed to reflect curvature at this point

using base surface directional derivatives at the origin. Therefore,

~x′′i,j =
∂

∂~x′i,j
B(γ′i,j),

~y′′i,j =
∂

∂~y′i,j
B(γ′i,j), and

~z′′i,j = ~x′′i,j × ~y′′i,j .

To position each feature control point on the base, its displacement vector is recomputed relative

FB
i,j as ~d′i,j = dx

i,j~x
′′
i,j + dy

i,j~y
′′
i,j + dz

i,j~z
′′
i,j .

The pasted control point locations can now be determined using point-vector addition, giving

the pasted feature F pasted as

F pasted(u, v) =
M∑
i=0

N∑
j=0

P ′
i,jNi,j(u, v)

=
M∑
i=0

N∑
j=0

(B(γ′i,j) + ~d′i,j)Ni,j(u, v).

It is important to note that surface pasting is only an approximation technique. Rather than

mapping every point on the feature surface, only a small number of sample sites, the feature

Greville points, are mapped. If the feature surface is described by too few control points or a

coarse knot structure relative to the base, noticable gaps at the join boundary may appear in
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the composite surface. In general, there is no guaranteed continuity between feature and base

surfaces.

In the case of standard surface pasting, C0 continuity is approximated by defining the embed-

ded feature domain in a manner that ensures all feature boundary control points coincide with

their respective Greville points. Thus, ~di,j and ~d′i,j must both equal zero for all i = 0,M and

j = 0, N , forcing the boundary control points to lie within the feature domain plane. As a result,

the pasted feature boundary control points lie directly on the base surface. Provided the base has

low curvature relative to the spacing between these points, a near C0 join is achieved. This idea

can be extended to approximate C1 continuity as well, which requires that the cross-boundary

derivatives of the feature be the same as base surface partials at corresponding locations under

the pasted feature boundary.

Originally, standard surface pasting established a C1 approximation by setting both the first

and second boundary layers of feature control points to their corresponding Greville points, posi-

tioning both layers on the base surface. The vector difference between neighbouring base surface

points of the two layers was deemed a reasonable estimate of the base’s corresponding partial

derivatives, assuming low curvature over the paste region. Cylindrical pasting, described in §2.3.4,

introduced the idea of mapping the second layer of feature control points as displacements rela-

tive to the local coordinate frame of the associated first layer Greville point. The advantage of

this approach is that it produces a surface with quadratic first derivative convergence, while with

original pasting there was no possibility of such convergence. These ideas can also be extended

to approximate higher levels of surface join continuity.

A standard method to improve the boundary approximations, thereby improving join con-

tinuity, is knot insertion. Inserting knots into the unpasted feature followed by repasting, pro-

gressively refines the approximation to within any desired tolerance. Unfortunately, the increase

in storage and evaluation costs are rather significant, prompting an exploration of alternative

ways to minimize the pasting discontinuities. The goal of such work has been to find better

settings for the continuity affecting boundary layers of feature control points, while maintaining

flexibility and keeping costs low. Notable improvements have been offered by techniques using
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quasi-interpolation [4, 5] and least squares fitting [9, 10].

2.3.4 Cylindrical Pasting

Cylindrical surface pasting [12, 13] evolved due to the expected benefits of applying the surface

pasting concept to a wider variety of modelling situations. It can be described as a technique that

integrates parametric trimline-based blending to extend surface pasting [17]. Standard pasting

only allows for the pasting of one open surface atop another. Cylindrical pasting offers a method

for connecting two base surfaces using a cylinder to join them smoothly. The feature surface used

must always be a tensor product cylinder having a representation given in §2.2.1. Essentially, two

types of cylindrical pastes can occur – pasting of the cylinder’s end onto a base tensor product

surface, or pasting end-to-end onto another cylinder. This thesis is concerned only with the former

case, and the reader is referred to [12, 13] for further details on cylinder-to-cylinder pastes.

As with standard surface pasting, the feature control points are mapped relative to the base

surface to produce a pasted feature surface that lies at the desired location. The difference is in

the domain mapping and control point displacements used.

To paste one end of a tensor product cylinder C onto a base surface B (Figure 2.7), the

corresponding edge of the feature domain is mapped to a circle in the base domain. Each cylinder

control point along this paste edge, {P0,j}N−3
j=0 , is located at its corresponding Greville point γ0,j

in the embedded feature domain. This position is in turn associated with a point tj = (uB
j , vB

j )

on the base domain circle, thereby mapping the boundary L0 layer of cylinder control points onto

the base surface. The tjs selected are spaced evenly over the domain circle. The resulting pasted

cylinder boundary lies close to, but not directly on, the base surface. This is taken to be an

adequate approximation of C0 continuity between feature and base. As with standard pasting,

knot insertion can be used to improve this approximation.

To establish an approximate C1 join, the next layer (L1) of cylinder control points needs to be

mapped onto the base as well. Effectively, we want to map the differences of the first two layers

of control points, P1,j − P0,j , to cross-boundary derivatives of the base surface. This is achieved

by constructing a coordinate frame F0,j at each L0 control point, with P0,j as the origin. The
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Base Domain
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j , v

B
j )

Feature Cylinder C(u, v)

P0,j

F0,j
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L1 control

points
L0 control

Base Surface B(u, v)

pasted feature boundary
pasted L0 control points

pasted L1 control points

P ′
0,j = B(uB

j , v
B
j )

Figure 2.7: Cylindrical Pasting
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basis vectors are the two unit derivative vectors in the corresponding u and v feature domain

parametric directions and their cross-product. The first two coordinate directions are tangent to

the unpasted feature and are mapped to the embedded base domain – the basis vector along v

maps to be tangent to the base domain paste circle, while the basis vector along u maps to be

perpendicular to the circle and inward pointing. This frame is then mapped onto the base surface

giving F ′
0,j . Each L1 control point {P1,j}N−3

j=0 can be expressed as a displacement relative F0,j .

These displacements are accordingly used to weight the elements of F ′
0,j to get the location of

P ′
1,j .

Now, although the cylindrical pasting process, i.e., mapping of the cylinder boundary onto the

base, is complete, only the first two layers of pasted control points have been determined. While

in standard pasting all feature control points have a well-defined placement relative to the base,

in cylindrical pasting only the first two rows of cylinder control points involved in establishing

continuity with the base have a clear association. The remaining control points must be mapped

using other techniques such as spline interpolation, the details of which are not relevant to the

work in this thesis.



Chapter 3

Towards Improving Cylindrical

Pasting

3.1 Motivation and Goals

The many advantages of surface pasting over existing alternative methods make it a valuable

interactive surface modelling technique. At the same time, the approximations used in this tech-

nique result in a design whereby a pasted feature is not guaranteed to meet its base surface with

any order of continuity at the join boundary. In particular, undesirable gaps between surfaces

appear when the pasted feature has a coarse knot structure or when the base has a high curvature.

Feature refinement using knot insertion can partially alleviate this C0 discontinuity by generat-

ing a set of control vertices that lie closer to and more accurately represent the actual surface

boundary. Unfortunately, the resulting increase in feature control points needing to be mapped

onto the base, directly translates to a higher boundary evaluation cost and additional storage

requirements. Alternatives to minimize these discontinuities, while retaining the overall benefits

of surface pasting, have been previously explored. Specifically, the methods used have been quasi-

interpolation [4, 5], least squares approximation [9, 10], and Greville point interpolation [15].

However, these implementations suffer from high evaluation costs and/or significant algorithmic

20
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image of original curve greville points

control points placed at a zero greville displacement

control points describing the original curve

original curve given by filled control points

shifted curve given by hashed control points

Cylindrical PastingPatch Pasting

v

u

Figure 3.1: Approximations using zero Greville displacements – it is possible to define a patch
with zero Greville displacement of edge control points, whereas in the case of a cylinder this
approximation changes the defined curve

complexities. In this thesis, I develop and examine computationally simple and cheap algorithms,

requiring little additional cost beyond surface evaluation to improve continuity, thereby keep-

ing more in tune with the original spirit of surface pasting as a low-cost, rapid prototyping and

previewing method [2].

The studies in this thesis are done in the context of cylindrical pasting. Standard patch pasting

assumes that the feature’s boundary control points have zero displacement vectors with respect

to their corresponding Greville points. This is a reasonable in the context of patch pasting as the

control points describe a linear curve. Original cylindrical pasting by Mann and Yeung [12, 13]

applied this same concept to the C0 layer of a feature cylinder. However, while zero displacement

control points reproduce the linear boundary of a standard patch, placing the control points on
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the boundary of a closed curve does not reproduce the closed curve (Figure 3.1). Therefore, in this

thesis I explore more true, yet simple and low-cost, C0 closed curve approximating alternatives

for cylindrical pasting. As there is presently no clearly established, widely acceptable, standard

method for cylindrical pasting, it is hoped that the results from my experimentation will yield

a suitable standard that could later be carried over to and examined for a more generic patch

pasting as well.

The cylindrical pasting methods proposed and examined here focus only upon improving the

approximation of the boundary continuity (i.e., C0 continuity) between the pasted feature cylinder

and its underlying base surface. The newer techniques attempt to place the pasted cylinder control

vertices more intelligently than a direct application of standard pasting, hoping to improve the

resulting trim curve approximation and reduce composite surface discontinuities without needing

to resort to feature refinement. In a more generic sense, the work attempts to find a low-cost

method of using a given closed B-spline curve to approximate a different given closed curve with

minimal reproduction error. The implications of these techniques with respect to the improved

accuracy of cross-boundary derivative evaluations used for establishing C1 continuity are not

studied here. However, my results may provide some insight on potential directions for their

improvement as well.

3.2 Basics

Pasting one edge of a cylinder onto a base surface is accomplished via a domain space mapping,

as detailed in §2.3.4. I have experimented with variations on ways to perform this mapping. In

particular, four algorithmically simple and computationally inexpensive alternatives along with

two minor variations of these methods are explored and compared in this thesis.

The method discussions assume that a given m× n tensor product feature cylinder C(u, v) =∑M
i=0

∑N
j=0 Pi,jNi,j(u, v) is being pasted onto the surface of a tensor product base B(u, v) along

the cylinder paste edge L0 : u = u0. The resulting pasted feature boundary is constructed

as an approximation to a curve on the base surface called the trim curve. This trim curve
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is given by a user-defined circular paste curve within the base domain. A polynomial paste

curve could be used instead, however, starting with a circular representation provides reasonable

paste-quality comparisons while allowing for simpler implementations. If a particular method

appears promising, its behaviour for non-circular paste curves can be assessed by adjusting the

implementations for center-and-radius circles described below to alternatively work with B-spline

curves within the same base domain (Appendix A).

3.3 Greville Paste

The Greville Paste method is similar in concept to the technique described in the original work

on cylindrical pasting. It assumes that the cylinder’s boundary control points lie on the cylinder’s

surface boundary curve itself, clamping the Greville displacement vectors to zero. This approxi-

mation allows for a simplistic paste involving mapping of the boundary Greville points onto the

base surface, followed by placement of corresponding control points at these mapped locations.

The process is best understood in the context of Figure 3.2.

To perform a Greville Paste, the feature cylinder’s L0 surface Greville points {C(γ0,j)}N−3
j=0 ,

are first embedded into the base domain. This is achieved by a simple placement of the γ0,js

onto paste points tj given on the paste curve within the 2D uv-plane of the base domain. Specif-

ically, these paste points are determined in proportion to the v-interval of the cylinder’s domain.

Choosing a circular paste curve for experimentation purposes makes the selection of paste points

straightforward. γ0,0 is mapped to t0, which is chosen relative to the centre of the paste curve

circle at an angle of zero degrees to the u-parametric direction of the base domain. This gives the

embedded Greville point γ′0,0 located at t0. Computing θ = 2π/(γ0,N−2 − γ0,0), the remaining

N − 3 γ′0,j = tj points are similarly set at angles θj = (γ0,j − γ0,0) × θ. Initial paste points, re-

ferred to as the set {tj}N−3
j=0 , are generated in this manner for all the cylindrical pasting methods

presented in this thesis.

A de Boor surface evaluation of the base at each embedded Greville point γ′0,j , gives the

mapped location of the cylinder’s pasted L0 surface Greville points lying on the base surface as
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= C(γ0,N−2)

Base Domain
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pasted feature boundary

P ′0,j = B(γ ′0,j)
pasted L0 control points
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Base Surface B(u, v)

paste curve

γ′0,j = tj

Figure 3.2: Greville Paste
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{B(γ′0,j)}
N−3
j=0 . Finally the L0 feature control points are set to lie at the pasted Greville points

with a zero displacement. The result is a set of pasted control points P ′
0,j = B(γ′0,j), which

together describe the pasted cylinder boundary.

The cylinder P ′
0,j generated by the Greville Paste method always lie on the base surface as

well as on the trim curve. However, the resulting pasted cylinder’s closed curve boundary will

always lie completely inside the convex hull given by these points. Consequently, gaps between

the pasted feature boundary and trim curve are inevitable with this method. Further, pasting

over any non-planar region is sure to reveal gaps between the base surface and pasted cylinder

edge.

Although this cylindrical pasting C0 continuity approximation seems less than acceptable, the

Greville Paste method provides useful error and cost bounds, making it suitable as a comparative

base case method. In particular, one can expect its application to yield

1. a comparative evaluation cost metric – the only computation involved in determining the

pasted feature produced by a Greville Paste is one surface evaluation for each boundary

control vertex

2. a maximum acceptable error bound – alternate methods should offer a reduction in error to

offset their higher expected computational costs

3. a well-defined convergence – upon infinite refinement, the pasted control vertices will in fact

define the trim curve.

3.4 Control Point Paste

Control Point Paste is the first of three new cylindrical pasting techniques I have devised, with the

goal being to position the pasted cylinder edge on top of the base surface trim curve as accurately

as possible by mapping a truer representation of the feature cylinder.

When computing a paste, the Control Point Paste method attempts to account for the non-

zero Greville displacement between the cylinder control points and their corresponding surface

Greville points. Specifically, the embedded location of each cylinder control point within the base
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domain is determined as the sum of associated embedded Greville points and transformed Greville

displacement vectors. The implementation specifics, illustrated in Figure 3.3, are detailed below.

Given the tensor product feature cylinder C, the first step of a Control Point Paste is to

determine the L0 Greville displacement vectors. For each control point P0,j , the displacement

vector ~dj is computed with respect to a unique local coordinate frame Fj constructed such that,

• FO
j , the origin of Fj , is at its corresponding surface Greville point, and is obtained by

evaluating the feature surface at the associated Greville abscissa: FO
j = C(γ0,j)

• F̂ x
j is given by a unit normal in the direction of the difference vector between the surface

Greville point and the centre of the cylinder’s L0 edge; the boundary curve’s centre, Cc, is

simply determined using Ceva’s Theorem [18] by taking the evenly weighted barycentre of

the polygon vertices given by the surface Greville points: F̂ x
j = FOj −Cc

|FO
j
−Cc|

• F̂ y
j is given by the normalized tangent to the cylinder’s boundary curve at the chosen origin,

and is along the v-parametric direction; this is also the directional derivative obtained by a

de Boor evaluation of the L0 curve

• F̂ z
j is given by a unit vector perpendicular to both F̂ x

j and F̂ y
j .

The coordinates of each control point in relation to this local frame give the xyz components of

the Greville displacements. By construction, the tensor product cylinders used in this thesis are

such that the control points within each u-layer are coplanar, therefore the dz
j s will be zero.

The initial paste points tj on the paste curve given in the base domain are determined as

they were for the Greville Paste method. As the paste curve represents the ideal pasted cylinder

boundary, these initial points can be seen as locations where the L0 surface Greville points would

lie. Using the Greville displacements, it is then possible to compute the relative control point paste

locations within the base domain space. In particular, F̂ x
j is mapped to ŝx

j , the out direction at tj

given by the 2D difference vector between tj and the circular paste curve’s centre point. F̂ y
j maps

to ŝy
j along the tangent to the paste curve at tj . To account for the space change, a scale factor

α, equal to the ratio of paste curve to cylinder curve radii is used. Applying the proportional

displacement gives the paste points pj within the base domain. De Boor evaluations at the pjs
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Figure 3.3: Control Point Paste
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produce the set of pasted control points describing the Control Point pasted cylinder boundary,

P ′
0,j = B(pj).

Applying a 3D displacement within a 2D domain space results in pasted control points that

lie on the base surface; however the resulting pasted cylinder edge is unlikely to lie on the base

unless the paste region is planar. A potential way to avoid errors introduced by the 3D-in-2D

computations is to account for the feature’s L0 Greville displacements in the 3D base range space

instead. This alternative is explored using the next method.

3.5 Directional Displacement Paste

Directional Displacement Paste attempts to reduce C0 gaps by computing the pasted control

point locations in the base range space rather than in the base domain space. Representative

points on the desired trim curve, i.e., paste curve paste points mapped into the base range space,

are used to determine the placements. The relative positioning is computed using feature L0

Greville displacements in a manner that retains defining characteristics of the feature cylinder,

while simultaneously establishing a direct relationship to the trim curve on the base surface. The

details, in context of Figure 3.4, follow.

Evaluating the base surface at points tj generates a set of points t′j lying on the trim curve.

The trim curve is a mapping of the paste curve into the base range space. Ideally, the pasted

cylinder boundary will be placed exactly on top of this trim curve. This in turn suggests that the

pasted cylinder edge should be constructed such that all the trim points t′j lie on it. By definition,

surface Greville points lie on the surface they describe. Therefore, Directional Displacement maps

the L0 surface Greville points onto the base surface trim points. The pasted L0 cylinder control

points are then computed by placing them relative to these pasted Greville point locations. The

displacements are determined by the cylinder’s L0 Greville displacement vectors ~dj , which are

mapped through the base domain onto the base surface.

The computation of Greville displacements is as described for Control Point Paste (§3.4) giving,

~dj = aF̂ x
j + bF̂ y

j + cF̂ z
j , where c = 0.
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Mapping each displacement ~dj involves first determining the pre-image of its components within

the base domain space. The directional associations are F̂ x
j along the out vector at tj , and F̂ y

j

along the tangent to the paste curve at tj . The space change scale factor α, as given in §3.4, is

used to adjust the transformed vector length.

Next, relating the embedded displacement ~sj = α(aŝx
j + bŝy

j ) = k~u + l~v to its image on the

base surface is achieved using the base surface directional derivatives at the image of correspond-

ing cylinder Greville points t′j . A Mann-DeRose base surface evaluation at tj gives the partial

derivatives along the uv base domain directions, in addition to giving t′j . The base uv-components

of aŝx
j and bŝy

j , i.e., k and l are used to weight these uv-directional vectors respectively, giving a

Greville displacement k∂~u + l∂~v = αa∂ŝx
j + αb∂ŝy

j within the base range space. A point-vector

addition of transformed feature-to-base space L0 Greville points and Greville displacements, gives

the Directional Displacement pasted cylinder boundary control points.

A potentially useful modification to Directional Displacement Paste came about from observing

the performance of the above described method on initial test data. Over a hump-like paste region,

the high surface curvature at the trim points displaced the control points in a manner that pushed

the pasted feature boundary well below the base surface trim curve. As a result, I decided to

examine the pasting behaviour when a simple form of average surface curvature over the paste

region is used instead of local curvature displacements for this method.

To incorporate an average surface curvature, a mapping of the paste curve centre point onto

the base, and computation of base surface directional derivatives at it, are performed using a

Mann-DeRose evaluation. The pasted boundary control point locations are then determined by

applying the corresponding Greville displacement vector components along the centre point’s uv-

directional vectors. The local directional derivatives at each t′j no longer need to be computed.

Preliminary tests demonstrated that this modified method merits further examination, although

it is expected that when pasting over a region of surface inflection the averaging benefits will

break down and higher errors than those produced by the local alternative will result. For the

remainder of this thesis, the original technique is referred to as Local Directional Displacement

Paste, and the modified method is termed Average Directional Displacement Paste.
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3.6 Relative Displacement Paste

Relative Displacement Paste is motivated by Directional Displacement Paste. It too attempts to

compute the L0 pasted cylinder control points by accounting for the Greville displacements in the

base range space as opposed to the base domain space. The difference is in how the displacement

frame is constructed at each mapped cylinder Greville point on the base. Directional Displacement

determines a mapping of each original Greville displacement frame Fj into the 2D base domain

space, and applies the Greville displacements ~dj relative this sj frame (Figure 3.4). However,

as the shape of the cylinder’s L0 boundary curve distorts with pasting, the relationship of the

pasting displacement frame directions to the feature boundary points end up changing as well.

Relative Displacement Paste instead determines the pasting displacement frames such that the

original Fj relationships to the feature boundary are maintained. It seems worth exploring whether

maintaining the displacement relationship between cylinder surface Greville points and control

points in this manner will produce a better approximation to the desired trim curve.

Method details are described below in relation to Figure 3.5. For all j = {0, . . . , N − 3}, Fj ,

~dj , γ′0,j = tj , and B(γ′0,j) = t′j are computed exactly as for Directional Displacement Paste (§3.5).

The pasting displacement frame Sj at each t′j is constructed such that,

• Ŝx
j is the unit difference vector between t′j and the new barycentre of pasted Greville points

• Ŝy
j is the normalized tangent to the trim curve at t′j , given by the difference of slopes between

t′j and its two neighbouring pasted Greville points.

The local frame directions F̂ x
j and F̂ y

j are now mapped to Ŝx
j and Ŝy

j respectively. The Greville

displacement components a and b determined using ~dj = aF̂ x
j + bF̂ y

j + 0F̂ z
j , are applied to the

two new Sj frame directions to give a similar control point placement relative t′j . A change of

space scale factor β is applied to the displacement vector to account for the transformation from

feature surface space to base surface space. β is computed as the ratio of the average distance

between original L0 surface Greville points and their barycentre to the average distance between

pasted surface Greville points and their barycentre.

Two variations of Relative Displacement Paste are examined in this thesis. They differ in the
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computation of the pasting out vector ~Sx
j for each pasted Greville point. The Average Relative

Displacement method uses the barycentre of all {t′j}
N−3
j=0 , whereas the Local Relative Displacement

method uses a local barycentre given by t′j and its two neighbouring pasted Greville points to

determine the direction. The idea being that when the curvature of a base surface has more noti-

cable variations over the paste region boundary, locally affected ~Sx
j s may offer a better placement

of the control points.

3.7 Computational Analysis

One of my primary considerations in the construction of C0 cylindrical pasting algorithms de-

scribed in this chapter was to keep computational costs and complexities low, while still attempting

to reduce boundary gaps at the surface joins. Surface pasting is expected to offer interactive mod-

elling, therefore, the adoption of a particular cylindrical pasting method requires that it not be

noticably more expensive than applying traditional pasting to cylinders. This section compares

the costs of pasting a m × n feature cylinder C(u, v) =
∑M

i=0

∑N
j=0 Pi,jNi,j(u, v) onto a base

surface using each method.

The most significant computational cost in surface pasting is the number of base surface

evaluations that need to be performed to position the feature’s pasted control points. One sur-

face position evaluation per L0 cylinder control point is the minimum C0 requirement for any

cylindrical pasting method. An approximation improvement technique such as knot insertion

rapidly becomes unacceptable as it doubles the number of control points at each level of re-

finement, thereby increasing evaluation costs exponentially. I have attempted to find ways to

improve pasted boundary approximations of the trim curve for relatively small increases in cost.

To keep the relative costs in perspective, a de Boor position-only surface evaluation for a bicubic

tensor product surface requires 30 affine combinations, a Mann-DeRose position-with-derivatives

evaluation takes 37 affine combinations, and a vector difference of a pair of points is one affine

combination.

Greville Paste is essentially a direct application of standard surface pasting to cylindrical
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features and requires only the bare minimum computation – one base surface evaluation for each

L0 cylinder control point, for a total of N − 3 position-only evaluations.

All the other methods I have explored account for the non-zero Greville displacement between

surface Greville points and corresponding control points. Determining this displacement involves

setting up of a local coordinate frame at each feature surface Greville point. This requires a

position plus derivative de Boor curve evaluation of the cylinder boundary to obtain each origin

surface Greville point and the tangent direction at it. A vector difference of two points within

the plane of surface Greville points and control points gives the other non-zero displacement

frame direction. To offer a cost comparison, for a degree m × 3 tensor product feature cylinder,

computing the Greville displacement takes 9 affine combinations per control point. Finally, given

a mapped cylinder Greville point location, the vector sum of the two displacement components

is used to place the control point. For the remainder of this computational analysis section I will

refer to this set of costs as the displacement evaluation cost.

A Control Point Paste takes one displacement evaluation in addition to one position-only base

surface evaluation for each of the N−3 control points being pasted. The cost of a Local Directional

Displacement Paste is somewhat higher, as a position-with-derivatives surface evaluation must be

performed for each control point along with a displacement evaluation. Comparatively, an Average

Directional Displacement Paste requires one additional base surface evaluation at the feature

boundary’s barycentre point, however, the directional derivatives only need to be computed at

this one point as opposed to all the L0 control points. As for the Relative Displacement Pastes,

both types require the basic position-only surface evaluation, a displacement evaluation, as well as

the determination of a new pasting displacement frame for each cylinder boundary control point.

Establishing the pasting displacement frame consisting of tangent and out direction vectors at

each pasted Greville point takes 3 additional affine combinations. Local Relative Displacement

uses one further vector difference calculation per control point to determine its change of space

scaling factor.

The evaluation cost per control point increases slightly for all cases when the paste curve

within the base domain is given as a closed B-spline curve, rather than a circle with centre and
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Method Affine combinations
per control point

Greville Paste 30
Control Point Paste 40
Local Directional Displacement 47
Average Directional Displacement 40+ 37

N−3 ,N ≥ 9
Local Relative Displacement 44
Average Relative Displacement 43

Table 3.1: Costs of pasting a m× 3 cylinder onto a bicubic patch

radius. Determining the paste point then involves a de Boor paste curve evaluation, a small

increase in cost since the curve is likely to be cubic. This additional computation becomes a

part of the minimum evaluation cost per control point. The special cylindrical pasting methods

requiring displacement calculations within the base domain space end up using two further affine

combinations to obtain the tangent and out vectors at the paste point for this polynomial paste

curve.

A comparative summary of the costs per control point, as assessed above, is given in Table 3.1;

the values specified are for a cylindrical paste onto a circular paste curve. Essentially, the cost of

pasting a control point using any of the methods tested in this thesis is at most half as expensive

as doubling the number of control points using knot insertion to improve the pasted join accuracy.

3.8 Error Bounds

To provide a bound on how fast the error in C0 continuity is expected to converge with feature

cylinder refinement, I shall use the concept of linear reproduction. Given a polynomial function F

and its approximation P , a Taylor series expansion gives the error as
∑∞

i=0
F (i)(ξ)−P (i)(ξ)

i! hi. An

interpolation method is said to have linear precision if F (ξ) = P (ξ) and F ′(ξ) = P ′(ξ). In this case,

the first two terms of the Taylor series cancel, leaving an error of
∑∞

i=2
F (i)(ξ)−P (i)(ξ)

i! hi = O(h2),

where h is the distance between samples. Standard surface pasting is expected to have this

property, as was verified empirically by Conrad [4].

To theoretically determine whether the above properties hold for the cylindrical pasting meth-
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ods in this thesis requires two presuppositions. Firstly, from Taylor series analysis, if a curve

is approximated using a function that has linear precision, then second order convergence is ex-

pected if certain conditions hold. Likewise, if a surface approximation has linear reproduction,

we again obtain second order convergence. Now, say we have a closed curve C that lies on a

surface, and C is approximated by a closed curve F where F reproduces C when the surface

is a linear surface. Based upon the individual curve and surface approximation behaviours, I

conjecture that the method generating F as an approximation to C will have second order error

convergence. However, I am unaware of a theorem giving this result. Secondly, cylindrical past-

ing is an approximation method while the Taylor series result is only established for interpolation

methods. However, over sufficiently small sampling intervals h, a curve approximation can be

taken to be an interpolation between the two sample points. This allows us to apply linear repro-

duction properties to cylindrical pasting methods producing a pasted feature boundary curve as

an approximation to the base surface trim curve.

Conceptually, linear reproduction in the context of surface pasting would suggest that the

pasted curve on a planar base is the exact image of the domain curve representing it. Here,

the domain curve is obtained by mapping the feature boundary into the base domain, and the

image of its associated domain control points on the base describe the pasted boundary. One

possible way to ascertain whether this property holds for each of the cylindrical boundary pasting

schemes presented in this thesis is to show that the pasted cylinder’s boundary is identical to its

trim curve for a linear base surface. The comparison requires that the cylinder boundary and

trim curve have the same representation in terms of degree and knot vector, as well as that both

curves are parametrically aligned. The analyses make use of an affine geometry result that says, if

we have a B-spline curve and corresponding control points, their affine map reproduces the same

curve, i.e., B(
∑

PiNi(u)) =
∑

B(Pi)Ni(u).

Greville Paste: This scheme places the boundary control points on the paste curve, not at

control point locations describing the paste curve. Therefore, the boundary points are

mapped to positions that will be different from the trim points. Consequently, Greville

Paste can not be said to have linear reproduction.
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Control Point Paste: Under the preconditions of common representation and alignment of

boundary and trim curves, evaluation of boundary control point locations within the base

domain by taking the paste curve as the boundary curve gives us the paste curve control

points themselves. Therefore, both the pasted boundary and the trim curve are represented

by the same set of base domain control points. These can be mapped affinely to produce

the same curve, and are affected only by a common scale factor when placed onto the base

surface. This indicates that Control Point Paste should indeed have linear reproduction.

Directional Displacement Paste: Examining the linear case of this method using the ~s frame

partials rather than the uv partials of Figure 3.4, we have

B(
∑

(ti + ~si)Ni(t)) =
∑

(B(ti)Ni(t) + B(~si)Ni(t)).

This essentially says that each pasted boundary control point obtained by adding the cor-

responding base surface Greville displacement to its base trim point, is identical to the base

surface point given by applying the displacement and locating the control point within the

base domain. This equality means that this method satisfies linearity. This argument holds

for both Average and Local Directional Displacement Pastes as on a planar base the direc-

tional derivatives, along which the ~si components are applied, are the same at every point

on the surface.

Relative Displacement Paste: Under a linear paste, if the feature boundary Greville displace-

ments and control points were to be mapped into the base domain, they would coincide with

the paste curve control points, as seen for a Control Point Paste. If the Greville displacement

relationship is maintained by the pasted feature boundary, linear reproduction is expected to

hold. An Average Relative Displacement Paste determines the displacement out vector along

the barycentre of pasted Greville points to the corresponding pasted Greville point (also a

trim point). The barycentre used is identical to the base surface point associated with the

paste curve centre used in the base domain displacement construction: B(
∑

(ti)

N−3 ) =
∑

B(ti)

N−3 .

The out and tangent direction displacements are therefore the same as would be obtained
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by mapping the feature through the base domain; this also means that the pasted boundary

control points and trim curve control points match up. In the case of a Local Relative

Displacement Paste, the linear reproducibility is not as clear. The displacement out vector

on the base is determined locally, and even on a planar base it will only be in the direction

along the trim curve centre to trim point when the pasted Greville points are equi-spaced. In

general, this means that Local Relative Displacement is not necessarily expected to satisfy

linearity, whereas Average Relative Displacement should do so.

My actual method implementations do not require identical cylinder boundary and paste curve

representations as have been assumed in my linear reproduction assessments above. Identical

representations place limitations on the flexibility of trim curve control, and create a dependency

of paste improvement upon paste curve refinement. My alternative selection of a simple circular

paste curve allows for a more generic performance evaluation of each method. Consequently,

however, my approach will reduce C0 discontinuities with slightly worse than the expected O(h2)

convergence upon progressive cylinder refinement.



Chapter 4

Results

This chapter discusses the results of pasting surfaces using each of the cylindrical pasting tech-

niques developed in this thesis – Greville, Control Point, Directional Displacement, and Relative

Displacement pastes. For each method, I present numerical as well as visual paste data to facili-

tate in quality comparisons of the pasted boundaries and their relative improvements upon knot

insertion.

In particular, the empirical error between the pasted feature boundary and the trim curve

offers an important comparison metric for evaluation of the feature-on-base boundary quality.

The error analysis presented provides a maximum position difference between the two curves as

well as a progressive refinement ratio of these differences describing the rate of error convergence.

I evaluate the results of applying each cylindrical pasting scheme to a simple cylinder when

pasting onto three different base surfaces of increasing complexity – a planar base, a simple curved

base, and a base with an inflection. All the surfaces used were bicubic since bicubic surfaces are

most common in computer modelling and animation. As described in the previous section, each

paste places the L0 boundary of a cylindrical feature onto a tensor product base patch, over a

join described by a base domain paste curve. For my testing I primarily use circular paste curves,

therefore, the feature experimented with was also chosen to have a close-to-circular L0 boundary.

If desired, the pasting methods presented can easily be adapted to non-circular paste curves

39
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(Appendix A). Further, the feature cylinder was constructed with its defining control points

describing each u-layer in the counter-clockwise direction as viewed from above. Correspondingly,

the paste points within the base domain were also selected counter-clockwise, starting at the

zero angle position on the paste circle, in a manner that maintains the relative placement ratios

between control points. Alignment during a paste places the first cylinder boundary control point

at the zero paste location, and all other positionings follow.

C0 continuity sampling information was generated by sampling the pasted feature boundary

at 10 different positions for each non-overlapping domain interval in the v-parametric direction.

These points are compared against samples on the base trim curve given by points associated

with the same v-parameter values in the cylinder domain. With each level of feature refinement,

the number of samples taken doubles.

For each test case studied, relevant pre-paste data and corresponding pasting results are given

in tabular format. The associated snapshots visually demonstrate zero refinement pastes for

the same data sets. The control points listed describe the curve or surface with respect to the

associated surface’s model space. End knots are omitted in the knot vectors, and the trim region

is defined by the centre and radius of a paste circle in the base domain.

Figure 4.1 and Table 4.1 show the results of pasting the boundary curve of a bicubic cylinder

onto a planar bicubic base patch. As expected, the pasted boundary is identical for all methods

except Greville Paste. Although a zero linear error is theoretically expected for all but Greville

Paste, the non-zero error arises due to different paste curve and feature boundary representations

chosen for control flexibility, as described in §3.8. In these cases, the numerical errors computed

offer an estimate of the resulting loss in accuracy. To assert the linear reproducibility and accuracy

of my methods, I have included Table 4.2 which performs the same planar paste over a paste curve

having representation identical to the feature boundary. As expected, the errors are now seen to

be close to zero. The small deviations result both due to floating point computation inaccuracies

as well as due to representation differences between the cylinder boundary and paste curve after

refinement.

Figure 4.2 and Table 4.3 give the results of pasting the boundary of the same feature cylinder
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Base Patch:
knot vector:
u: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000}
v: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000}

control points:
(-3.0, -3.0, 0.0) (-3.0, -1.0, 0.0) (-3.0, 1.0, 0.0) (-3.0, 3.0, 0.0),
(-1.0, -3.0, 0.0) (-1.0, -1.0, 0.0) (-1.0, 1.0, 0.0) (-1.0, 3.0, 0.0),
(1.0, -3.0, 0.0) (1.0, -1.0, 0.0) (1.0, 1.0, 0.0) (1.0, 3.0, 0.0),
(3.0, -3.0, 0.0) (3.0, -1.0, 0.0) (3.0, 1.0, 0.0) (3.0, 3.0, 0.0)

Trim Curve relative base domain:
centre: (2.328, 2.540)
radius: 0.144

Feature Cylinder L0:
v-knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}
control points:
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000),
(-2.000, 0.000, 0.000), (-1.000, -1.732, 0.000), (1.000, -1.732, 0.000),
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000)

Greville Control Point Local Directional ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.048868 na 0.001171 na 0.001171 na
1 0.012891 3.79 0.000365 3.21 0.000365 3.21
2 0.003268 3.94 0.000125 2.91 0.000125 2.91
3 0.000820 3.98 0.000017 7.27 0.000017 7.27
4 0.000205 3.99 0.000002 10.10 0.000002 10.10
5 0.000052 3.98 0.000000 4.44 0.000000 4.44

Average Directional ~d Local Relative ~d Average Relative ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.001171 na 0.001171 na 0.001171 na
1 0.000365 3.21 0.000365 3.21 0.000365 3.21
2 0.000125 2.91 0.000125 2.91 0.000125 2.91
3 0.000017 7.27 0.000017 7.27 0.000017 7.27
4 0.000002 10.10 0.000002 10.10 0.000002 10.10
5 0.000000 4.44 0.000000 4.44 0.000000 4.44

Table 4.1: Experimental Errors – Pasting onto Circular Paste Curve on a Planar Base
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(a) Greville Paste (b) Control Point Paste

(c) Local Directional ~d Paste (d) Average Directional ~d Paste

(e) Local Relative ~d Paste (f) Average Relative ~d Paste

Figure 4.1: Pasting onto a Planar Base
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Trim Curve relative base domain:
knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}

control points:
(2.500, 2.619), (2.440, 2.722), (2.321, 2.722), (2.262, 2.619), (2.321, 2.516),
(2.440, 2.516), (2.500, 2.619), (2.440, 2.722), (2.321, 2.722)

Greville Control Point Local Directional ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.033069 na 0.000001 na 0.000001 na
1 0.009094 3.64 0.000019 0.04 0.000019 0.04
2 0.002377 3.83 0.000018 1.06 0.000018 1.06
3 0.000607 3.91 0.000008 2.19 0.000008 2.19
4 0.000153 3.96 0.000002 4.16 0.000002 4.16
5 0.000039 3.98 0.000000 4.31 0.000000 4.31

Average Directional ~d Local Relative ~d Average Relative ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.000001 na 0.000001 na 0.000001 na
1 0.000019 0.04 0.000000 9.67 0.000000 9.67
2 0.000018 1.06 0.000044 0.00 0.000018 0.00
3 0.000008 2.19 0.000020 2.23 0.000008 2.23
4 0.000002 4.16 0.000005 4.21 0.000002 4.20
5 0.000000 4.31 0.000001 4.34 0.000000 4.34

Table 4.2: Experimental Errors – Pasting onto a Polynomial Paste Curve onto the Planar Base
of Table 4.1; initial paste curve representation is identical to that of the feature boundary
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onto a convex-only curved bicubic base. For this test case it was ensured that the base surface

did not have any regions of negative Gaussian curvature. The results demonstrate that Average

Directional Displacement Paste and both Relative Displacement Paste methods perform a mag-

nitude better than Greville Paste when pasting onto a convex base. Further, the results support

the quadratic error convergence of all the methods.

The final test case pastes the boundary of the same feature cylinder onto a curved bicubic

base in a region of negative Gaussian curvature. Pasting is performed for two different trim

curves, each containing the region of negative Gaussian curvature, but in different locations. The

results are given in Table 4.4 (Figure 4.3) and Table 4.5 respectively. The Relative Displacement

Paste methods appear to perform an order of magnitude better when the feature knot structure

is approximately as coarse as that of the base. However, even one level of cylinder refinement

improves Greville Paste to a level comparable to that achieved by the Relative Displacement

techniques. In fact, the minor error reductions offered by the alternatives to Greville Paste are

clearly offset by their extra computational costs. This suggests that as the complexity of the base

surface increases, the C0 pasting results obtained using Greville Paste are comparable to all my

other simple cylindrical pasting approaches.
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Base Patch:
knot vector:
u: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000}
v: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000}

control points:
(-3.0, -3.0, -3.0) (-3.0, -1.0, -3.0) (-3.0, 1.0, -3.0) (-3.0, 3.0, -3.0),
(-1.0, -3.0, -3.0) (-1.0, -1.0, 3.0) (-1.0, 1.0, 3.0) (-1.0, 3.0, -3.0),
(1.0, -3.0, -3.0) (1.0, -1.0, 3.0) (1.0, 1.0, 3.0) (1.0, 3.0, -3.0),
(3.0, -3.0, -3.0) (3.0, -1.0, -3.0) (3.0, 1.0, -3.0) (3.0, 3.0, -3.0)

Trim Curve relative base domain:
centre: (2.381, 2.619)
radius: 0.119

Feature Cylinder L0:
v-knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}
control points:
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000),
(-2.000, 0.000, 0.000), (-1.000, -1.732, 0.000), (1.000, -1.732, 0.000),
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000),

Greville Control Point Local Directional ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.044802 na 0.018398 na 0.016778 na
1 0.011866 3.78 0.004594 4.00 0.004500 3.73
2 0.003005 3.95 0.001186 3.87 0.001180 3.81
3 0.000755 3.98 0.000280 4.24 0.000279 4.23
4 0.000189 3.99 0.000067 4.15 0.000067 4.15
5 0.000047 3.98 0.000017 4.00 0.000017 4.00

Average Directional ~d Local Relative ~d Average Relative ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.001132 na 0.002182 na 0.002189 na
1 0.001201 0.94 0.001216 1.79 0.001208 1.81
2 0.000369 3.25 0.000396 3.07 0.000394 3.07
3 0.000073 5.05 0.000079 5.03 0.000077 5.14
4 0.000019 3.78 0.000019 4.06 0.000019 3.98
5 0.000005 3.89 0.000005 3.89 0.000005 3.89

Table 4.3: Experimental Errors – Pasting onto a Convex Base
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(a) Greville Paste (b) Control Point Paste

(c) Local Directional ~d Paste (d) Average Directional ~d Paste

(e) Local Relative ~d Paste (f) Average Relative ~d Paste

Figure 4.2: Pasting onto a Convex Base
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Base Patch:
knot vector:
u: {0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000}
v: {0.000, 0.000, 0.000, 2.000, 2.000, 2.000}

control points:
(-3.0, 0.0, 2.0) (-3.0, 0.0, 0.0) (-3.0, 0.0, -2.0) (-3.0, 0.0, -4.0),
(-2.0, 2.0, 2.0) (-2.0, 2.0, 0.0) (-2.0, 2.0, -2.0) (-2.0, 2.0, -4.0),
(-1.0, 3.0, 2.0) (-1.0, 3.0, 0.0) (-1.0, 3.0, -2.0) (-1.0, 3.0, -4.0),
(0.0, 2.0, 2.0) (0.0, 2.0, 0.0) (0.0, 2.0, -2.0) (0.0, 2.0, -4.0),
(1.0, 1.0, 2.0) (1.0, 1.0, 0.0) (1.0, 1.0, -2.0) (1.0, 1.0, -4.0),
(2.0, -1.0, 2.0) (2.0, -1.0, 0.0) (2.0, -1.0, -2.0) (2.0, -1.0, -4.0),
(3.0, 1.0, 2.0) (3.0, 1.0, 0.0) (3.0, 1.0, -2.0) (3.0, 1.0, -4.0)

Trim Curve relative base domain:
centre: (1.381, 1.238)
radius: 0.238

Feature Cylinder L0:
v-knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}
control points:
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000),
(-2.000, 0.000, 0.000), (-1.000, -1.732, 0.000), (1.000, -1.732, 0.000),
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000)

Greville Control Point Local Directional ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.185416 na 0.067727 na 0.131738 na
1 0.049609 3.74 0.023591 2.87 0.037600 3.50
2 0.012585 3.94 0.006567 3.59 0.009219 4.08
3 0.003157 3.99 0.001600 4.10 0.002005 4.60
4 0.000790 4.00 0.000359 4.46 0.000473 4.23
5 0.000198 4.00 0.000089 4.05 0.000114 4.15

Average Directional ~d Local Relative ~d Average Relative ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.123581 na 0.037246 na 0.039474 na
1 0.035348 3.50 0.014900 2.50 0.018923 2.09
2 0.008783 4.02 0.005125 2.91 0.004766 3.97
3 0.001984 4.43 0.001332 3.85 0.001232 3.87
4 0.000471 4.21 0.000299 4.45 0.000276 4.47
5 0.000113 4.18 0.000073 4.10 0.000067 4.10

Table 4.4: Experimental Errors – Pasting onto a Convex-Concave Base
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(a) Greville Paste (b) Control Point Paste

(c) Local Directional ~d Paste (d) Average Directional ~d Paste

(e) Local Relative ~d Paste (f) Average Relative ~d Paste

Figure 4.3: Pasting onto a Convex-Concave Base
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Base Patch:
knot vector:
u: {0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000}
v: {0.000, 0.000, 0.000, 2.000, 2.000, 2.000}

control points:
(-3.0, 0.0, 2.0) (-3.0, 0.0, 0.0) (-3.0, 0.0, -2.0) (-3.0, 0.0, -4.0),
(-2.0, 2.0, 2.0) (-2.0, 2.0, 0.0) (-2.0, 2.0, -2.0) (-2.0, 2.0, -4.0),
(-1.0, 3.0, 2.0) (-1.0, 3.0, 0.0) (-1.0, 3.0, -2.0) (-1.0, 3.0, -4.0),
(0.0, 2.0, 2.0) (0.0, 2.0, 0.0) (0.0, 2.0, -2.0) (0.0, 2.0, -4.0),
(1.0, 1.0, 2.0) (1.0, 1.0, 0.0) (1.0, 1.0, -2.0) (1.0, 1.0, -4.0),
(2.0, -1.0, 2.0) (2.0, -1.0, 0.0) (2.0, -1.0, -2.0) (2.0, -1.0, -4.0),
(3.0, 1.0, 2.0) (3.0, 1.0, 0.0) (3.0, 1.0, -2.0) (3.0, 1.0, -4.0)

Trim Curve relative base domain:
centre: (1.190, 1.238)
radius: 0.190

Feature Cylinder L0:
v-knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}
control points:
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000),
(-2.000, 0.000, 0.000), (-1.000, -1.732, 0.000), (1.000, -1.732, 0.000),
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000)

Greville Control Point Local Directional ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.142164 na 0.015252 na 0.092543 na
1 0.037176 3.82 0.014131 1.08 0.025969 3.56
2 0.009377 3.96 0.003657 3.86 0.005259 4.94
3 0.002349 3.99 0.000948 3.86 0.001154 4.56
4 0.000587 4.00 0.000224 4.23 0.000268 4.31
5 0.000147 4.00 0.000054 4.13 0.000063 4.22

Average Directional ~d Local Relative ~d Average Relative ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.092532 na 0.012229 na 0.013122 na
1 0.025417 3.64 0.013825 0.88 0.013630 0.96
2 0.005137 4.95 0.004080 3.39 0.004091 3.33
3 0.001150 4.47 0.001022 3.99 0.000962 4.25
4 0.000269 4.27 0.000242 4.23 0.000224 4.29
5 0.000064 4.22 0.000058 4.15 0.000055 4.05

Table 4.5: Experimental Errors – Another Paste onto the Convex-Concave Base of Table 4.4
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Conclusions

5.1 Summary

Surface pasting has come to be recognized as a flexible modelling technique for interactively

constructing composite surfaces with regions of local detail. It has even been incorporated into

commercially available 3D animation and special effects software packages such as Houdini. The

benefits of using surface pasting to construct tensor product patch models encouraged work to-

wards extending the pasting paradigm to include closed-curve blending surfaces. In particular,

surface pasting was extended to include tensor product cylinders. However, like patch pasting,

cylindrical pasting suffers from a lack of continuity between the pasted feature cylinder and the

base. While low-cost alternatives to improve the continuity in patch pasting have been previously

explored [4, 9], studies dedicated to efficiently reducing gaps arising at the site of a cylindrical

paste have not yet been performed. A fundamental difference between feature cylinders and fea-

ture patches suggests that a separate examination is necessary – the closed curve boundary of a

cylinder can not be reproduced using zero displacement control points, whereas such a setting,

used in standard pasting, works fine for reproducing the linear boundaries of a patch. My work

in this thesis was done with the intent of developing an alternative pasting technique appropriate

for pasting cylindrical boundaries. To maintain the prototyping nature of pasting, the cylindrical
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methods proposed were designed to have low computational costs, i.e., with a paste costing not

much more than one base surface evaluation per cylinder boundary control point. Further, hoping

to establish a suitable cylindrical pasting standard, all the methods explored were algorithmically

simple.

Specifically, I examined six types of control point placements for describing the pasted cylinder

boundary – Greville Paste, Control Point Paste, Local Domain Displacement Paste, Average Do-

main Displacement Paste, Local Relative Displacement Paste, and Average Relative Displacement

Paste. Greville Paste is essentially a direct application of standard patch pasting to cylindrical

pasting, and its results provide a base metric for evaluation of my methods.

Greville Paste seems intuitively inadequate for pasting cylinders because its placement of

pasted control points onto the desired join boundary can never reproduce the corresponding

closed curve. Based upon the concepts used to construct the methods, it was expected that Local

Domain Displacement Paste would result in the most accurate C0 paste for any base surface

irrespective of its complexity. This expectation was because Local Domain Displacement performs

pasting placements using the actual feature control point Greville displacements within the 3D

base surface space, accounting for both the shape of the original cylinder boundary as well as the

base surface’s curvature.

Instead, an empirical analysis of the error between the pasted cylinder boundaries and the

desired trim curve indicates that the less-intuitive Relative Displacement Paste methods most

consistently produce the best quality join. In the case of a simple convex curved base, a whole

order of magnitude improvement is offered over Greville Paste. However, as the complexity of

the base surface increases and the pasted boundary is no longer mapped to coplanar points, the

relative improvement drops rapidly. It comes as a surprise that, in general, Greville Paste does

as well as any of my other cylindrical boundary pasting methods. My results further confirm

that the best possible error convergence offered by the methods explored is quadratic in all cases.

Therefore, the original standard pasting technique is a reasonable standard not only for patches,

but also for cylinders!
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5.2 Future Work

This thesis focused on establishing a simple and low-cost cylindrical pasting standard. However,

there are still a number of techniques remaining to be assessed in the context of cylindrical pasting.

It is recommended that another study be performed to compare the results of cylindrical pasting

using methods such as quasi-interpolation, least-squares fitting, and Greville point interpolation.

Although the initial computation costs are expected to be notably high for these methods, this may

be acceptably and effectively compensated for by low re-evaluation costs when pasting over the

same region. An additional concern with these methods can be their algorithmic complexity. For

example, applying quasi-interpolation to determine the pasted cylinder’s boundary control points

will require a number of computational tricks to keep the evaluation costs reasonable. Further,

a least-squares fitting will require experimentation with different boundary sampling patterns to

see which ones give the best closed curve approximation.

A study of cylindrical pasting cross-boundary derivatives also needs to be performed. Mann

and Yeung [12] suggest an alternative to the standard surface pasting technique that appears to

reduce the C1 discontinuity between a base surface and feature cylinder. However, no formal

assessment of the error differences has been performed so far. A more exhaustive examination of

low-cost ways to improve the C1 join should simultaneously be considered.



Appendix A

Polynomial Paste Curves

Polynomial paste curves can be used to describe non-circular pasting boundaries within the base

domain. If trim curves are later selected directly on the base surface, polynomial paste curves

will provide better control as opposed to fitting a circle to the corresponding domain curve. Here

I show that all my cylindrical pasting methods can easily be adjusted to work with B-spline paste

curves.

The difference is essentially in the determination of the paste points and corresponding 2D

displacement frames in the base domain. While circle properties were used for a circular paste

curve, B-spline curve evaluations are used for a polynomial paste curve. By generating the B-

spline paste curve to have the same curve representation (degree and knot vector) as the unrefined

feature cylinder’s unpasted boundary, paste points (tj in Chapter 3) can be obtained as curve

points lying at the same Greville abscissae as the cylinder Greville points being associated with

them. A vector from the barycentre of paste points to a specific paste point gives the displacement

frame out direction, and the tangent is obtained by a curve derivative evaluation. The remaining

mappings and computations are the same as described in Chapter 3.

Some experimental tests were run using this alternative paste curve form for data similar to

that given in Chapter 4; the results are included as tables in this appendix. As expected, the

relative quality of a paste using each cylindrical pasting method was approximately the same
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as obtained when pasting onto circular domain curves, confirming that Greville Paste remains a

reasonable cylindrical pasting standard.
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Base Patch:
knot vector:
u: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000}
v: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000}

control points:
(-3.0, -3.0, -3.0) (-3.0, -1.0, -3.0) (-3.0, 1.0, -3.0) (-3.0, 3.0, -3.0),
(-1.0, -3.0, -3.0) (-1.0, -1.0, 3.0) (-1.0, 1.0, 3.0) (-1.0, 3.0, -3.0),
(1.0, -3.0, -3.0) (1.0, -1.0, 3.0) (1.0, 1.0, 3.0) (1.0, 3.0, -3.0),
(3.0, -3.0, -3.0) (3.0, -1.0, -3.0) (3.0, 1.0, -3.0) (3.0, 3.0, -3.0)

Trim Curve relative base domain:
knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}
control points:
(2.500, 2.619), (2.440, 2.722), (2.321, 2.722), (2.262, 2.619), (2.321, 2.516),
(2.440, 2.516), (2.500, 2.619), (2.440, 2.722), (2.321, 2.722)

Feature Cylinder L0:
v-knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}
control points:
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000),
(-2.000, 0.000, 0.000), (-1.000, -1.732, 0.000), (1.000, -1.732, 0.000),
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000)

Greville Control Point Local Directional ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.036708 na 0.012748 na 0.011647 na
1 0.010015 3.67 0.003123 4.08 0.003061 3.80
2 0.002626 3.81 0.000790 3.95 0.000786 3.90
3 0.000672 3.91 0.000199 3.97 0.000199 3.95
4 0.000170 3.95 0.000050 4.02 0.000050 4.01
5 0.000043 3.98 0.000012 4.02 0.000012 4.02

Average Directional ~d Local Relative ~d Average Relative ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.000562 na 0.001212 na 0.001219 na
1 0.000949 0.59 0.000918 1.32 0.000922 1.32
2 0.000304 3.12 0.000316 2.90 0.000315 2.93
3 0.000075 4.07 0.000084 3.76 0.000075 4.18
4 0.000018 4.14 0.000021 4.08 0.000018 4.17
5 0.000004 4.05 0.000005 4.08 0.000004 4.06

Table A.1: Experimental Errors – Pasting onto a Polynomial Paste Curve on a Convex Base
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Base Patch:
knot vector:
u: {0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000}
v: {0.000, 0.000, 0.000, 2.000, 2.000, 2.000}

control points:
(-3.0, 0.0, 2.0) (-3.0, 0.0, 0.0) (-3.0, 0.0, -2.0) (-3.0, 0.0, -4.0),
(-2.0, 2.0, 2.0) (-2.0, 2.0, 0.0) (-2.0, 2.0, -2.0) (-2.0, 2.0, -4.0),
(-1.0, 3.0, 2.0) (-1.0, 3.0, 0.0) (-1.0, 3.0, -2.0) (-1.0, 3.0, -4.0),
(0.0, 2.0, 2.0) (0.0, 2.0, 0.0) (0.0, 2.0, -2.0) (0.0, 2.0, -4.0),
(1.0, 1.0, 2.0) (1.0, 1.0, 0.0) (1.0, 1.0, -2.0) (1.0, 1.0, -4.0),
(2.0, -1.0, 2.0) (2.0, -1.0, 0.0) (2.0, -1.0, -2.0) (2.0, -1.0, -4.0),
(3.0, 1.0, 2.0) (3.0, 1.0, 0.0) (3.0, 1.0, -2.0) (3.0, 1.0, -4.0)

Trim Curve relative base domain:
knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}
control points:
(1.619, 1.238), (1.500, 1.444), (1.262, 1.444), (1.143, 1.238), (1.262, 1.032),
(1.500, 1.032), (1.619, 1.238), (1.500, 1.444), (1.262, 1.444)

Feature Cylinder L0:
v-knots: {0.000, 1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000, 8.000, 9.000, 10.000}
control points:
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000),
(-2.000, 0.000, 0.000), (-1.000, -1.732, 0.000), (1.000, -1.732, 0.000),
(2.000, 0.000, 0.000), (1.000, 1.732, 0.000), (-1.000, 1.732, 0.000)

Greville Control Point Local Directional ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.154260 na 0.046186 na 0.107669 na
1 0.042607 3.62 0.013152 3.51 0.022611 4.76
2 0.011133 3.83 0.004414 2.98 0.005415 4.18
3 0.002843 3.92 0.001112 3.97 0.001372 3.95
4 0.000718 3.96 0.000272 4.08 0.000339 4.04
5 0.000181 3.98 0.000067 4.05 0.000085 4.01

Average Directional ~d Local Relative ~d Average Relative ~d
Refinement Max Ratio Max Ratio Max Ratio

0 0.103268 na 0.029652 na 0.029929 na
1 0.021579 4.79 0.010365 2.86 0.008764 3.41
2 0.005218 4.14 0.003817 2.72 0.003369 2.60
3 0.001357 3.84 0.000939 4.06 0.000865 3.90
4 0.000336 4.04 0.000221 4.25 0.000208 4.15
5 0.000084 4.00 0.000054 4.10 0.000051 4.07

Table A.2: Experimental Errors – Pasting onto a Polynomial Paste Curve on a Convex-Concave
Base
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