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Abstract

Manual software testing is laborious and prone to human error. Yet, it is the most
popular method for quality assurance. Automating the test-case generation promises bet-
ter effectiveness, especially for exposing “deep” corner-case bugs. Symbolic execution is
an automated technique for program analysis that has recently become practical due to
advances in constraint solvers. It stands out as an automated testing technique that has no
false positives, it eventually enumerates all feasible program executions, and can prioritize
executions of interest. However, “path explosion”, the fact that the number of program
executions is typically at least exponential in the size of the program, hinders the adoption
of symbolic execution in the real world, where program commonly reaches millions of lines
of code.

In this thesis, we present a method for generating test-cases using symbolic execution
which reach a given potentially buggy “target” statement. Such a potentially buggy pro-
gram statement can be found by static program analysis or from crash-reports given by
users and serve as input to our technique. The test-case generated by our technique serves
as a proof of the bug. Generating crashes at the target statement have many applications
including re-producing crashes, checking warnings generated by static program analysis
tools, or analysis of source code patches in code review process.

By constantly steering the symbolic execution along the branches that are most likely
to lead to the target program statement and pruning the search space that are unlikely to
reach the target, we were able to detect deep bugs in real programs. To tackle exponential
growth of program paths, we propose a new scheme to manage program execution paths
without exhausting memory. Experiments on real-life programs demonstrate that our tool
WatSym, built on selective symbolic execution engine S2E, can generate crashing inputs
in feasible time and order of magnitude better than symbolic approaches (as embodied by
S2E) failed.
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Chapter 1

Introduction

In this chapter, we describe the problem being addressed in this thesis and present a very
brief overview of our contributions.

1.1 Motivation

A crucial aspect of software development is ensuring that the program behaves as the
requirement. Anything that makes the program to deviate from its intended behavior is
known as software bug/defect. Although not all software bugs are expensive, some bugs
are simply benign, some software bugs are fatal enough to crash spacecrafts in air [1],
make nuclear centrifuges spin out of control [66], or recall hundred thousands of faulty cars
resulting in billions of dollars in damages [3]. Worse, security-critical bugs are arguably
the most expensive bugs, tend to be hard to detect, harder to protect against, and up to
100 times more expensive after the software is deployed [10].

With the exception of a few safety-critical industries, such as avionics, automotive, or
medical equipment, most of the software industry today relies on testing for its quality
assurance. Testing a program consists of exercising multiple different paths by manually
providing each input for each program path and checking whether “programs do the right
thing.” In other words, testing is a way to produce partial evidence of correctness for only
the test-cases in regression test-suite, and thus increase confidence in the tested software.
Test suites provide inadequate coverage of all the inputs a program could handle. For
example, the test-suite of the Chromium browser contains about one hundred thousand
tests [22]. This suite is thoroughly comprehensive by industry standards, yet it represents
only a small fraction of all possible inputs the browser may receive.



Test suites also tend to be tedious to write and maintain. Statistics show that, on
average, developers spend as much as half of their time doing testing [72].

Automatic testing allows developers and users to analyze programs for bugs and poten-
tial vulnerabilities. Variants of both black-box and white-box automated testing techniques
work on the same goal: identify as many real bugs as possible with minimal amount of
input from user. Each detected bug is usually accompanied by evidence, i.e., a test case,
an input that forces the program to exhibit the unexpected behavior. Test cases eliminate
false positives, ensure reproducibility, and provide the developer with concrete and action-
able information about the underlying problem. Even if no bugs are identified, exercised
test cases serve as a regression test suite, a standard software engineering practice that
tries to detect new bugs introduced by future changes in program as early as possible [72].

One simple way to automatically find bugs is to perform random testing, popularly
known as fuzzing [15], which is a program testing technique that runs the program on
randomly generated (often randomly mutating already valid input) inputs. Fuzzers typi-
cally try extreme values, such as 0 and the native maximum integer. This form of testing
is called “black-box” in general, because the input generation does not take into account
the structure of the program under test. Although new fuzzers take program structure
into account the structure of the program under test. Despite their conceptual simplicity,
fuzzers are effective at discovering bugs [90] (albeit shallow) and are currently the state of
the practice in automated testing. However, plain random fuzzers are ineffective at dis-
covering corner-case bugs; bugs that manifest only under particular inputs in the program
which can only exposed via systematically analyzing the program. Moreover, the vast ma-
jority of the generated inputs are therefore redundant because they force the program to
execute already covered code.

Formal verification [17] is a semi-automated technique to prove program-correctness
that needs developer written formal program specification. sel.4 [63] is such a recent
effort of formally verifying an operating system kernel. Although formal verification can
guarantee certain programs to be bug-free, switching to a formal development model is
not feasible for most of the programs because of very high requirement of both resources
and development time. Despite recent advancements, which have brought down the cost of
building formally-proven software, it still takes on the order of person-years to develop a few
thousand lines of verified code. This rate is currently unsustainable for most commodity
software. Therefore, formal verification is not viable outside safety-critical or mission-
critical systems.

Another automated way to detect bugs in program is using static program analysis [51].
Static program analysis analyze the programs without actually executing the programs;



instead, static analysis tools work on a simplified abstract version of the programs. The
abstraction of the program that static program analysis works on allows itself to scale to
large programs. But static analysis tools tend to generate lot of warnings and significant
percentage of generated warnings are not severe enough to be fixed. Static program analysis
tools are not used widely because of large amount of non-actionable warnings [30] [60]. Tt
is often prohibitively expensive to manually check/fix all the warnings generated by static
program analysis tools. The goal of this thesis is to provide a technique that will automate
the process of checking security-critical bugs from warnings generated by static program
analysis tools.

An increasingly popular program analysis technique is symbolic execution [33] [59]
[62]. Unlike manual or random testing, symbolic execution systematically explores the
program by analyzing one program path at a time and then checks for potential bugs in
that path. For every analyzed program path, symbolic execution checks whether under
which all possible executions of the path are safe or doest not violate the specification of
the program by generating a condition (logical formula) that asserts program safety for
all possible executions. If the formula is falsifiable, specification can be violated and a
counterexample (a witness/proof of specification violation), i.e., a test-case is generated.
Having a test-case to reproduce a bug not only ensures the existence of bug, but also
gives programmers great help for debugging it. Over the past decade, numerous symbolic
execution tools have appeared showing the effectiveness of the technique in a vast number
of areas. Unlike formal verification, symbolic execution can provide partial path-based
verification (ensures certain types of errors will not occur in verified program paths). KLEE
[39], S2E [11] are some of the most popular symbolic execution engines.

Albeit a well-researched and very useful technique, symbolic execution still faces two
significant scalability challenges.

The first challenge, originates from the path-based nature of the technique: number
of program paths grows exponentially with number of conditional branch statements in
real-world programs known as “path/state explosion”! poses a significant challenge for
analyzing large programs, where the number of paths is typically very large. Path explosion
is a well studied problem that persists throughout modern symbolic execution engines [39]

[42] [44] [57].

The second challenge is reasoning about feasibility of program paths. A program path
is feasible if there exists at least one input that can drive execution to that path. In
other words, if logical formula that represents the program path is satisfiable then the

Depending on the context, “path” “execution state” may be used interchangeably, an execution state
corresponds to a program sub-path explored so far.



path is feasible; otherwise, it is infeasible. Unfortunately, checking whether a formula is
satisfiable is a hard problem, the complexity of solving formulas depend on the domain
of logic. Although modern constraint solvers can solve most of the generated formulas
very quickly [32], some formulas can still be the bottleneck. To mitigate the high solving
times, the symbolic execution community has invested a lot time and effort in developing
countermeasures, such as caches [39], and simplifications [57], which mitigate the problem
but do not solve it in the general case.

One simple way to check whether a warning generated by a static analysis tool is an
actual bug is to synthesize an input that will execute potentially buggy program statement?
with the values needed to reveal the bug pointed out by the warning. Since symbolic
execution can automatically explore different program paths and generate concrete input
for that path. Symbolic execution can be used to explore feasible program paths that
execute the target instruction and check whether there is any execution on that path
that can violate program specification; if such an execution is found, symbolic execution
generates a test-case as a proof of violation. The presence of bugs can be verified by
running the generated test-case independently.

This thesis focuses on checking the warnings generated by static analysis tools using
symbolic execution. More specifically, we describe an heuristic search strategy, usually
known as targeted search, to find the execution (i.e., the test-case) that can violate pro-
gram specification at the site pointed out by static program analysis tools. We also describe
heuristics to mitigate path/state explosion problem of symbolic execution. The problem
of finding feasible paths to target has been addressed by previous research, however, few
techniques cope with real-world binaries since they mostly work on intermediate represen-
tation. Program binaries present challenges for program analysis techniques due to their
lack of high-level semantic information lost in compilation process. Recovering such infor-
mation dynamically is often infeasible. But analyzing binaries is important, because often
developers do not have source code for third-party libraries. Therefore, whole program dy-
namic analysis only feasible on the program binary. Moreover, focusing on binaries provide
us the ability to different types of programs including operating system kernels [71].

Formally the problem statement can be stated as follows:

“Given a potentially vulnerable instruction in a program binary, synthesize an execution
(concrete input that will execute the instruction with specific values needed) to exploit that
vulnerability.”

2We use the terms program instruction and program statement indistinguishably.



1.2 Contribution

By combining static binary analysis with targeted symbolic exploration, this thesis makes
the following contributions:

e We propose a targeted search strategy, a best-first (“best” program path that can
execute the target with the lowest amount of effort at that instance, described in
detail in section 2.2.6) search strategy tailored for security bugs to find an execu-
tion (input values) that exercises target instruction with the values needed to reveal
the bug. Our proposed distance estimation heuristic introduces the concept of “tar-
get loops”, and “target function” in targeted search in addition to branch distance
heuristic [38]. We also introduce the concept of “bypassing the target” to detect
whether any execution has bypassed the target instruction instead of executing the
target. We propose a very precise heuristic to detect “bypassing the target” based
on intra-procedural control-flow graph of the target function.

e To mitigate “path explosion” [11], we propose a technique for pruning program paths
that can not reach the target instruction during targeted symbolic exploration. Our
technique uses the notion of critical edge in control-flow graph for a target instruction
and detects critical edges [91] in the control-flow graph of the program binary. Based
on the detected critical edges, we prune the paths that do not follow the critical
edges, i.e., can not reach the target instruction. We also propose another path
pruning technique tailored specifically for security bugs to mitigate the path explosion
problem caused by loops.

e In addition to “path explosion” problem, online symbolic execution engines also suffer
from “memory explosion” [12] problem because of exponential growth of number of
program paths, i.e., execution states. We propose a new execution state management
scheme to address memory explosion problem of online symbolic execution engines
for targeted exploration. To keep memory usage limited, we propose a technique that
“suspends” execution states that are not nearer than other execution states to the
target at that instance. Suspended execution states can be resumed later if all the
active execution states are done processing.

e We implement our proposed targeted search technique, heuristics for tackling path,
and memory explosion in a tool called WatSym, a targeted symbolic execution tool
based on S2E [14] an hypervisor built on top of QEMU [20], an open-source hypervi-
sor, and KLEE [39], an open-source symbolic execution engine. WatSym is capable



of executing the whole operating system symbolically. By implementing on top of
S2E, WatSym can execute vast majority of programs without the source code and
analyze them in real environment (e.g., real shared libraries and operating system)
instead of model of the environment (simplified and verification-friendly emulation
of real environment). We also evaluate WatSym on three real world bugs includ-
ing a security vulnerability and show that WatSym outperforms traditional symbolic
execution tools.

1.3 Thesis Outline

The rest of the thesis presents in detail the design, implementation, and evaluation of our
proposed targeted search strategy implemented in tool WatSym.

Chapter 2 provides more background on widely used primitives in program analysis,
symbolic execution, different search strategies used in symbolic execution, and common
problems in symbolic execution including the line reachability problem.

Chapter 3 surveys the work related to our contributions and positions our contributions
with respect to existing related work.

Chapter 4 presents the new concepts we have introduced, and our contributions. It
presents our targeted search heuristic, heuristics for tackling path explosion caused by
loops, and new execution state management scheme for tackling memory explosion.

Chapter 5 describes implementation details of our tool WatSym, and S2E [14].

Chapter 6 provides experimental evaluation of WatSym and S2E [14] on finding real-
world bugs.

Chapter 7 describes theoretical, and practical hardness of the problem we are addressing
and future direction of research.

Chapter 8 ends the thesis with conclusions.



Chapter 2

Background

In this chapter, we provide background for topics discussed in this thesis and provide
definitions for concepts relevant to this thesis.

2.1 Program Analysis

To make targeted search efficient, we use both static and dynamic program analysis to steer
the execution to the target and trim down the search space. In this section we provide
useful definitions related to program analysis.

Definition 2.1.1. Basic Block: A basic block is a maximal set of contiguous program in-
structions with only one entrance instruction and only one exit instruction (not necessarily
a jump instruction). Whenever the first /entrance instruction in a basic block is executed,
the rest of the instructions are executed exactly once, in order provided that the execution
does not hault for errorneous conditions.

Definition 2.1.2. Program Execution Path: A program execution path is the sequence of
instructions that are executed during program execution. If there exists at least one input
that can force the program to execute a particular program execution path, that path is
known as feasible program path. If no such input exists for a particular program path,
that program path is known as an infeasible program path.

Definition 2.1.3. Control-Flow Graph: A control-flow graph (CFG) is a directed graph
representation of a program. The nodes of a CFG represent the program’s basic blocks



while directed edges represent jumps from basic blocks (i.e., control-flow). The CFG repre-
sentation is essential for many static analysis such as reachability and dominator analysis,
and program optimization.

Definition 2.1.4. Branch Distance: Branch distance is the number of conditional branch
instructions in the shortest path from one basic block to another basic block in the con-
trol flow graph. Branch distance is usually calculated in weighted CFG where each edge
for conditional branch is assigned weight one and other edges for unconditional branch
instructions are assigned weight zero.

Definition 2.1.5. Call Graph: A call graph is a directed graph that captures the calling
relationship between procedures of a program. Each node corresponds to a procedure and
each edge (p; , p2) indicates that procedure p; may call procedure ps. The root nodes
of call graph represent program entry points or procedures; usually executables have one
entry point and shared libraries have multiple entry points. Call graphs, similar to CFGs,
can not be entirely extracted by static analysis because of memory /register indirect jumps
(e.g., function pointers in C/C++ programs).

1 if (input < 100)
2 £(0);

3

4 if (input > 100)
5 if (input > 200)
6 f (input)
7
8
9

void f(int x) {
if (x == 999)
10 abort ()
11 3}

Figure 2.1: Source code snippet and associated inter-procedural control-flow graph with
return edges omitted. Each basic block is labeled with the line number it corresponds to

[69].

Definition 2.1.6. Inter-procedural Control-Flow Graph: An inter-procedural control-flow
graph (iCFG) is a combination of a program’s call graph and the control-flow graph of each



procedure.! Specifically, each call graph node is replaced with the CFG corresponding to
its associated procedure, all edges pointing to it are redirected to the procedure’s entry
basic block and all edges pointing out of it are assigned to the procedure’s basic blocks
which contain the actual function calls. Figure 2.1 shows a simple code snippet and its
associated CFG.

2.2 Symbolic Execution

Symbolic execution [62] is a program analysis technique that enables reasoning about
program correctness in the domain of logic. Informally, we can view symbolic execution as
a way of executing programs that contain symbolic values. A symbolic value is defined by
the symbol and the set of concrete values (an instance of the value type) it can range over.
For instance, we can define a to be a symbol for a 32-bit integer variable that can range
over any value from the set of all 32-bit integers (such a set can be viewed as the type of
the symbol).

There are two variants of symbolic execution: (1) Static Symbolic Execution, and (2)
Dynamic (Path-based) Symbolic Execution.

2.2.1 Static Symbolic Execution

Static symbolic execution is a program verification technique that translates the whole
program into logical formulas, where the formulas represent the desired program property
over any program path. Static symbolic execution verifies specific properties of the program
under certain assumptions (e.g., number of loop iterations is bounded). In other words,
it is sound and complete under certain assumptions with respect to the specific program
properties. Potential property violations in program are encoded as logical assertions that
will falsify the formula if that property is violated.

Static symbolic execution is doomed to perform poorly whenever precise static transfor-
mation to logical formula is not possible. Unfortunately, this is frequent in practice due to
complex program statements (pointer manipulations etc.) and calls to operating-system
and library functions that are hard or impossible to reason about statically with good
enough precision. Moreover, the generated logical formulas are very hard for underlying

'In this thesis, we use the term CFG to refer to inter-procedural CFG for the sake of simplicity; when
we need to refer to intra-procedural CFG, we will explicitly mention it.



constraint solver because the logical formula that represents all program execution paths
is many times larger than the formula that only represents only a specific program path.
Because of this, static symbolic execution is not widely used in practice. Calysto [27] and
Saturn [10] are static symbolic execution tools.

2.2.2 Dynamic Symbolic Execution

Dynamic symbolic execution is a way of interpreting programs that have symbolic values.?
First, the analysis performed on the program is symbolic; instead of operating on concrete
inputs (e.g., instances of the value type), program inputs are substituted by symbols (vari-
ables) that represent all possible inputs. Second, the analysis is an execution; program
instructions are evaluated in the forward direction, similar to an interpreter, program val-
ues are computed as a function of the symbolic input values, and a symbolic execution
context mapping from each variable to a symbolic expression expressed in terms of the
symbolic input values is maintained throughout execution. For each path, symbolic exe-
cution builds up a logical formula that represents the condition under which the program
will execute the exact same program path. The logical formula is expressed in terms of
the symbolic input variables and is called the path predicate or path constraints.

A symbolic execution state is defined by: (1) the path predicate, and (2) current
symbolic execution context. Each execution state represents a feasible program execution
path®. A symbolic execution state allows us to check specific properties on that program
path. For example, checking the validity of assertions (e.g., does this assertion always
hold for this program path? In other words, is there any input value that will drive the
execution to this path and also violates this assertion?), and thus reason about correctness.
Dynamic symbolic execution can be viewed as partial path-based verification. For large
programs where full verification is infeasible, partial path-based verification is particularly
useful.

A program can be treated as a collection of feasible program execution paths. For
example, a program consists of one conditional statement “if (x>0)then ... else ...
” can be viewed as a collection of two feasible paths: one that satisfies the branch condition
x>0 and another that satisfies the branch condition x<=0. To execute both of these paths,

2In this thesis, we use the term symbolic execution to refer to path-based dynamic symbolic execution;
when we need to refer to static symbolic execution, we will explicitly mention it. Some authors [56] have
used the term dynamic symbolic execution synonymous with concolic testing. However, we disagree with
that definition and in this thesis, dynamic symbolic execution and concolic testing are different.

3Depending on the context, the two terms may be used interchangeably [11]. An “execution state”
corresponds to a program path to be explored.

10



void autoShiftGear (unsigned &rpm,
unsigned &gear) rpm € [0, +00) cooreeer Path constraints

rpm > 2500

rpm € (2500, o) rpm e [0,2500]

{
if (rpm > 2500) ({
gear = gear + 1;
0.5;

rpm = rpm * S
} else if (rpm < 1000) { rpm < 1000 .
= - l; :
f;;r: rgfiaf iy rpm € [0, 1000) rpm € [1000, 2500]

Figure 2.2: Symbolic execution creates an execution tree with path constraints [13].

it is not necessary to try all possible values of x, but rather just one value greater than 0
and one value less than 0.

A symbolic execution engine explores this set of paths into a symbolic execution tree,
in which each possible execution corresponds to a feasible program path from the root
of the tree to a leaf corresponding to a terminal execution state. To do so, (at least
one) symbolic inputs have to be provided to the program, i.e., instead of setting an input
variable x to a concrete value (e.g. x=0), it is viewed as a set A of all possible values
x could take. Then, any time a branch instruction (with predicate p) accesses at least
one value that is depends (directly or indirectly) on symbolic value, x, execution is split
into two different executions ExecutionState_i and ExecutionState_j, two copies of the
program’s current execution state are created, and ExecutionState_i’s path constraints
record that the variables accessed by the branch instruction must be constrained to make
p true, while ExecutionState_j’s path constraints record the negation of the constraints
so that p must be false. This is known as ”forking” of execution states. In fig. 2.2, rpm
is marked as symbolic, i.e., it can hold any value allowed by a 32-bit unsigned integer.
When execution reaches the first branch, execution forks into two different executions,
one of them proceeds with rpm > 2500 as a constraint added to the path constraints,
the other with rpm < 2500. The process repeats recursively: ExecutionState_i may
further fork into ExecutionState_i_i and ExecutionState_j_j , and so on. A node s
in the tree represents an execution state (that includes both symbolic and concrete state)
of the program, and an edge ExecutionState_i — ExecutionState_j indicates that
ExecutionState_j is ExecutionState_i’s successor on any execution path satisfying the
constraints in ExecutionState_j.

Symbolic execution relies on a constraint solver to decide which program paths are

11



feasible and to compute concrete input values that can be used as test cases. In the example
of fig. 2.2, when execution reaches the first branch statement, the symbolic execution engine
queries the constraint solver whether both program paths are feasible. For this, the engine
sends queries rpm > 2500 and its negation to the solver under the current path constraints
rpm € [0, +00). The solver replies that given the constraints, both queries are satisfiable,
i.e., both paths are feasible. When the second branch is reached, the solver checks that
rpm < 1000 is feasible under the constraints rpm € [0, 4+00) A rpm < 2500. This process
goes on until all the feasible program paths are explored.

If constraint solver finds path constraints for a program path, hence an execution state,
is unsatisfiable, the engine refrains from creating a new state for that infeasible path.
Finally, when the execution states terminate (e.g., the program exited successfully, crashed,
or terminated forcefully), the solver can compute the range of concrete values for the given
symbolic inputs that will exercise the respective program paths. The generated concrete
input, i.e., test-case, can be useful to reproduce bugs, such as crashes or assertion failures.

Current implementations of symbolic execution can be broadly divided into two cate-
gories:

e Offline Symbolic Execution

e Online Symbolic Execution

2.2.3 Offline Symbolic Execution

Offline symbolic execution only explores one program path at a time. Program source
code or binaries are instrumented to maintain shadow symbolic state of the concrete state.
The program under test is executed with a concrete input, the instructions program also
maintains a shadow symbolic state for the path exercised by the concrete input. After
the end of concrete execution, symbolic path constraints from previous are modified by
negating one of the constraints at a branch point to take the not-taken branch. A new
test-case is generated by solving the modified formula provided that the new formula is
satisfiable. This process is known as “flipping the branch” which means selecting a branch-
point and flip the constraint associated with the taken branch in previous run to generate
a new test-case that will take the not-taken branch. Test-cases for new program paths
are generated offline, hence the name offline symbolic execution engine. This approach is
known as concolic (concrete+symbolic) testing [70], a juxtaposition of both concrete and
symbolic execution as the program is mainly executed in concrete mode but also a shadow
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symbolic state is maintained for the respective path dictated by the given concrete input.
The initial input needed for offline symbolic execution is known as seed input. Offline
symbolic execution engines are CUTE [77], DART [56], and Sage [57].

The main benefit of offline symbolic execution is the simplicity of implementation and
low resource requirement. Offline engines only follow the program path dictated by the
given concrete input, thus, do not have to fork new execution states or switch between
different execution states in run-time.

The main disadvantage with offline symbolic execution is inefficiency. For every ex-
plored program path, we need to first re-execute a (potentially) very large number of
instructions until we reach a branch instruction where new program path is forked, and
then begin to explore new instructions. This is because many program paths share common
program sub-paths. Although the cost of concrete execution of instructions is negligible in
practice, the cost of symbolic execution of instructions is often prohibitive.

Concolic execution is faster than symbolic execution of single program path since it does
not have to fork new execution states and check feasibility of new program paths. However,
we rarely analyze only one program path; for analyzing multiple program paths, symbolic
evaluation of same instructions (instructions in common sub-path prefix in different pro-
grams paths) for each program path results in redundant work, and inefficiency. Further,
offline symbolic execution needs a concrete test case/seed input to begin the analysis.

2.2.4 Online Symbolic Execution

Online symbolic execution checks programs by systematically enumerating program paths
in single run. At every symbolic conditional branch, the engine checks the feasibility of
path following each branch target and “forks” a new execution state to explore each feasible
branch target. Online engines fork new execution states that follow new feasible program
paths, maintain different execution states, and switch between different execution states
in similar way to an operating system maintaining different processes of same program
and switching bet‘ween those processes. Because of the forking of execution states, online
engines can explore multiple program paths without having to execute same instructions
multiple times. Another advantage of online symbolic execution is it can execute the
program without any concrete input since it can find feasible program paths by itself.
KLEE [39], S2E [11], and Mayhem [12] are online symbolic execution engines.

Online symbolic execution engines can analyze a specific set of instructions into two
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Figure 2.3: Inputs, paths, execution states and their connections [25].

different modes: (1) multi-path?, and (2) single path mode. In single path mode, online
engines do not fork new execution states for feasible program paths as opposed to multi-
path where execution states fork new execution states for each feasible symbolic branch.
Single path mode is important to focus the analysis on program paths of interest (by not
forking new execution states in the environment) and to mitigate the exponential growth
of program paths known as path explosion problem. Online engines can switch back and
forth from single path to multi-path mode for each execution state.

Concrete vs Symbolic Execution. Not all variables in program hold symbolic values
even if the program is given all symbolic inputs. During execution if it is determined that
an instruction will not access any symbolic data, the instruction can safely be evaluated
concretely; this is known as concrete execution. Concrete execution of an instruction is as
fast as normal execution of an instruction.

4In this thesis, for the sake of simplicity, we use term “symbolic exploration” synonymous with online
symbolic execution in multi-path mode.
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To reduce the overhead of symbolic evaluation of instructions, many online engines use
lightweight data-flow analysis [51] to determine whether or not an instruction will access
symbolic data. Online engines mix concrete and symbolic execution of instructions based
on the type of data (symbolic or concrete) an instruction will access; this is known as
“mixed execution.”

2.2.5 Path Explosion

Every conditional branching instruction in the program potentially doubles the number of
program paths/execution states that need to be explored. In the presence of unbounded
loops, the number of program paths becomes unbounded. This phenomenon of exponential
growth of the number of paths is known as the “path explosion” problem [39].

Moreover, path explosion also causes memory explosion for online symbolic execution
engines. In multi-path mode, online symbolic execution engines fork a new execution state
for each feasible path, exponential growth in path also means exponential growth in number
of execution states which results in memory explosion. Moreover, the symbolic domain of
the execution state itself grows linearly with the number of executed instructions by that
state. Although many execution states have common data among them due to common
sub-path and it is possible to share common data among execution states, it is often not
adequate to tackle exponential growth of memory requirement.

2.2.6 Search Heuristics for Symbolic Exploration

For non-trivial programs, it is infeasible in practice to explore all program paths even
if the number of feasible program paths is bounded. Therefore, only a fragment of the
feasible program paths can be explored. In other words, only a limited number of states
can be explored among a huge number of execution states; which one should be explored
next? This is a scheduling problem and is known in the literature as the path selection or
execution state prioritization problem. A search strategy of an online symbolic execution
engine dictates which state to execute from the current set of execution states.

Different programs behave differently and identifying which states need to be explored
for an arbitrary program is hard. Nevertheless, finding well-tuned heuristics that work well
for specific domains is an active area of research.

We categorize strategies into two main categories: coverage optimized search and tar-
geted search.
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Coverage-optimized search Symbolic execution is typically used for test case genera-
tion. Generating test cases that achieve higher code coverage gives the analyst higher
confidence about the correctness of the tested software. Coverage optimized search
strategies prioritize the execution states that are more likely to explore uncovered
program regions; hence they try to improve code coverage of the program. KLEE [39]
was the first symbolic execution engine that demonstrated high code coverage can
be achieved on a diverse set of utilities written in C. KLEE employed a number of
coverage optimized search heuristics to select states. Almost all the available online
engines [39] [12] [44] [57] [83] have built-in coverage-optimized search.

Targeted search The targeted search problem is given a program statement, find an
input that drives program execution to that statement. This problem is known as the
program-statement reachability problem. Automatically finding a feasible program
path, i.e., an input that will execute a specific program statement is in general an
undecidable problem.

Targeted search strategies prioritize the execution states that are more likely to ex-
ecute specific program statement and use both static and dynamic program analysis
to trim down the search space that would otherwise be too large to explore in a
naive approach. Targeted search strategies are particularly useful for checking static
analysis warnings [58], reproducing crashes [73] [91], finding root cause of a crash
[92], and fault localization [21].

Path selection/state prioritization algorithms are based on heuristics. The hard na-
ture of path based program analysis (undecidability, exponential growth and so on) makes
behavior of these algorithms on arbitrary programs unpredictable. However, it is possi-
ble a domain-specific fine-tuned heuristic can be useful, practical, and efficient on many
programs.
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Chapter 3

Related Work

In this chapter, we briefly describe the existing symbolic execution based program analysis
techniques and works related to our contribution. We start with a brief overview of the
symbolic execution engines that made the technique applicable to real-world software and
also state of the art symbolic engines.

Dynamic symbolic execution [62] as program analysis technique has been popularized by
Concolic Unit Testing Engine (CUTE) [77], Directed Automated Random Testing (DART)
[50], and EXE [10]. Later KLEE [39], Sage [57], Mayhem [12], and S2E [11] have made

symbolic execution based program analysis practically usable. There are numerous prior
approaches for symbolic execution based on program source code, intermediate representa-
tion, or program executable binary. We provide brief overview on related work of targeted
symbolic execution.

3.1 Targeted Search

Burnim et al. [38] first introduced CFG-directed search which used branch distance as
coverage-optimized search strategy where the execution states that are nearest to any un-
covered program region are prioritized. Although CFG-directed search has been proposed
for improving program coverage, it needs to compute all-pair-shortest-paths between basic
blocks in the program which is prohibitively expensive. CFG-directed search and its vari-
ants are used extensively as targeted search strategy since computation of single source
shortest path is cheap.
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Execution Synthesis Debugging (ESD) [91] is a debugging tool that reproduces crashes
(crashing inputs and thread interleaving) of concurrent programs. ESD finds current in-
struction of each thread at the time of the crash from the core-dump, determines cause
of crash and tries to synthesize an input, and a thread interleaving that will reproduce
the crash. ESD uses minimal proximity heuristic (i.e., number of instructions) from the
currently executing instruction to the instruction at the time of the crash in the shortest
path if the target function in its call stack. ESD does not detect when an execution state
has bypassed the target and still has the target function in its call stack. In that case, ESD
becomes slower because ESD continues processing of a state that has already bypassed the
target.

Hercules [73] is another crash-reproducing tool based on S2E. The targeted search
strategy of Hercules tries to find the reason why some program paths that go through
target are infeasible from unsatisfiable core or UNSAT core of the path constraints. The
unsatisfiable core of a formula is minimal subset of clauses that are unsatisfiable; in other
words, an UNSAT core is one of the reasons why a formula is not satisfiable because there
can be more than one UNSAT core. Since every clause in the formula is associated with a
taken branch so far, Hercules identifies a minimal subset of taken branches that make the
program path infeasible. It then flips the last taken branch in the subset, i.e., satisfying
the reason of unsatisfiability to find a feasible path to the target instruction.

Babic et al. [28] used the shortest path on the Visibly Push-down Automata (VPA) [29]
graph as a distance estimation heuristic for targeted search strategy. Paths enumerated
from a context-insensitive CFG do not maintain the restriction of well-matched function
calls and returns. If paths do not maintain the restriction of well-matched function calls and
returns, a callee function can return to other function than the calling function because
it is allowed in context-insensitive CFG. The authors have also introduced loop-pattern
heuristic which tries to find a pattern of taken branches inside loops to find loop-induced
overflows.

Dowser [58] finds buffer overrun in programs using targeted search to verify the warnings
generated by its own developed static analysis. Similar to works of Babic et al. [25], Dowser
assigns each branch in the loop a score based on the probability that the branch will lead
to a new way of doing complex pointer arithmetic. The idea is that complex pointer
arithmetics are hard to reason about for developers and are more susceptible to causing
buffer overrun. For example, a pointer arithmetic that has multiplication is more complex
than a pointer arithmetic that has only addition. Dowser also ranks the generated warnings
by the complexity of surrounding code regions of the warnings. For example, a pointer
arithmetic inside a loop is more complex than a pointer arithmetic outside of loop. Because
complex code regions are hard reason about and also lead to complex pointer arithmetic.
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Katch [71] introduced patch-testing technique using targeted symbolic exploration to
test program statements modified by patches. Katch uses existing regression test suite to
find the closest test case to use as seed input for symbolic exploration and uses a variant
of CFG directed search that "flips branch’ iteratively to get closer to the target.

Requiring Target Instruction Exercising Input. Many targeted search heuristics [55]
[70] [71] [73] [31] need a test-case/feasible program path that exercises the target instruc-
tion. Existing target exercising test-case is used as seed input for symbolic exploration.
Seed inputs provide symbolic context for symbolic exploration, an initialization point in the
search space, takes symbolic exploration closer to the target, and provides symbolic explo-
ration with invaluable sub-path prefix. A sub-path prefix is the sub-path from a program
entry point that is shared by two different program paths. With the symbolic context, a
feasible sub-path prefix to the target, and other information gained from dynamic analysis
(e.g., relevant input bytes to the target) make synthesizing an input significantly easier al-
beit still a hard problem. The requirement of a target instruction exercising test-case limits
the applicability of targeted search tools. Very few programs have a regression test-suite
with more than 80% code coverage.

Detecting Paths that Bypass Target Instruction. Detecting whether an execution
state has bypassed the target is very important for targeted exploration. Because if a state
has bypassed the target, continuing the execution of that state can be counter-productive.
To our best knowledge, only Zero Effort Software Testing Infrastructure (ZESTI) [70]
addresses the issue of target bypassing. ZESTI estimates maximal number of instructions
or basic blocks need to be executed to reach the target. ZESTI stops exploration of a path
if the target has not been executed after execution of the estimated number of instructions
and a new execution path is selected. This is known as depth-bounded symbolic execution
as the depth of the symbolic execution tree is bounded. Depth-bounded symbolic execution
of ZESTT does not detect whether the state has bypassed the target or not; ZESTI assumes
it has either bypassed the target or drifted away from the target if the execution did not
reach the target after executing estimated number of instructions.

Run-time Information. Crash-reproducing tools [73] [91] uses the core-dump of the
crash which provides rich run-time information (e.g., the function call stack at the time
of the crash, value of the variables, the value of the pointer in the case of a segmentation
fault) that can be used during reproducing crashes.

Escaping Local Minima in Search Space. Targeted search strategy implemented in
offline symbolic execution engines [56] [71] [77] are vulnerable to local minima in search
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space. Search process can get trapped in local minima and often can not escape local
minima without introducing randomization in the search process.

Semantically Rich Static Analysis. Many targeted search tools [58] [70] [71] [91]
work on the assumption on the availability of program source code. Program source code
provides rich semantic information for the program. Rich semantic information makes
static analysis more precise and more structural information can be utilized during run-time
of symbolic exploration. Static analysis on program binary is a very hard problem (both
in theory, and practice) because almost all high-level semantic information is discarded
during compilation process of binary generation. Although static binary analysis is very
active area of research [31] [79], recent tools working on binary are far more imprecise than
tools working on source code.

Backward Targeted Search. Mao et al. [08] introduced Call-Chain-Backward Symbolic
Ezxecution as a guiding technique for directed backward symbolic execution, which starts
from the target program instruction and works backward until it finds a feasible path from
an entry point of the program to the target instruction. The authors have also introduced
a mixed backward-forward search strategy based on both forward search to the target and
backward search from the target to a program entry point. Although the authors have
found that mixed backward-forward search strategy is often faster than simple forward or
backward search strategy in relatively simple programs, applying such backward search in
real environment is highly complex and its benefit yet to be seen.

3.2 Path Pruning

Control-Flow Graph Based Path Pruning. Brumley et al. [35] prunes program paths
by computing chop of CFG. Chop of CFG only contains the relevant sub-graph (strongly
connected component that contains the target) to the target. Therefore, any program path
in CFG that exits the chop can be pruned [73]. Chop provides very strong path pruning
condition where pruned paths are guaranteed not to reach the target provided that the
extracted CFG is complete. Because of this strong guarantee, chopping is often ineffective
because for large real-world program, often chop removes very few or no basic blocks in
the program. Hence, very few program paths can be pruned by chopping and often the
target search itself manage to keep the search focused to chopped region without explicitly
chopping the CFG.

ESD uses critical edge concept to introduce sub-goals concept in targeted search. Criti-
cal edges are the control-flow edges that must be taken to reach the target and sub-goals are
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the program statements that have to be reached before reaching the target. ESD detects
critical edges for the target/goal block and uses reaching definition to find the sub-goal
basic blocks that will ensure the execution will take critical edges in future. Exercising
sub-goal blocks ensures that the execution will follow the critical edges.

Data-Flow Based Path Pruning. Katch [71] uses CFG pruning also referred to as
path pruning technique based on data-flow analysis on the program. Katch tries to detect
program branches which if taken by the execution, will not reach the target block. Katch
prunes those control-flow edges in CFG which defers symbolic execution to take those
branches. Pruned branches are detected based on the weakest pre-condition for the target
block. Weakest pre-condition is an essential but not sufficient condition that an execution
has to satisfy to reach the target. Hence, any program paths that do not satisfy weakest
pre-condition can be pruned.

Data-flow based pruning is only possible when high level semantic information about
program is available which is unavailable in program binary. Although it is possible to
apply data-flow analysis on binary, in practice, the lack of high level information makes
the analysis too imprecise to use.

Program Structure Based Path Pruning. Hercules [73] extracts Module Dependency
Graph (MDG) of the program (modules are shared libraries and executable binaries) and
use this information to prune program paths that do not lead to crashing module. Es-
sentially Hercules uses chopping on MDG to prune program paths. Hercules also uses
chopping on CFG to prune program paths.

Pruning Error Program Paths. Document Aided Symbolic Execution (DASE) [87] first
introduced the concept of using documentation of a program or specification of program
input to assist symbolic exploration. DASE extracts constraints for valid input by mining
the program documentation and input specification and later uses the input constraints to
detect error paths (paths that are followed by execution if invalid input is provided) in the
program. By pruning the error program paths, DASE helps the search strategy to focus
on deep program states and execute uncovered lines of code. Similar idea can be applied
to targeted search strategies to detect whether the target can only executed by following
some error program paths or vice-versa. In such case, the search strategy can only focus
on error program paths.

Any path pruning technique based on program CFG is unsound, i.e., a feasible path
that will reach the target can get pruned because of incompleteness of CFG.
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3.3 Tackling Path Explosion by Loops in Symbolic
Exploration

Loops in the programs are notoriously known for causing path explosion and unbounded
loops cause unbounded number of program paths. Moreover, loops cause “memory ex-
plosion” for online execution engines and make the search space for targeted exploration
unbounded. Despite the cost of loops, many online symbolic execution engines are loop
oblivious [39] [44]. In other words, they do not employ any specific heuristic to tackle the
explosion caused by loops.

Most of the techniques for handling loops fall into three categories: (1) bounded itera-
tion, (2) search-guiding heuristics, and (3) loop summarization [35].

Bounded Iteration. Bounded iteration, the most commonly used technique, unrolls loops
bounded number of times in run-time. In other words, number of iterations of a loop is
kept bounded in run-time. It is especially useful for coverage-optimized search strategy
where repeated execution of loops does not increase code coverage. Bounded iteration for
loops has also been applied in targeted search [73]. Although bounded iteration is useful
in coverage-optimized search strategy, some program behaviors are only observed when
loops are executed repeatedly. This is especially true for security vulnerabilities like buffer
overflow and integer overflow. Bounded loop iteration can make revealing loop induced
vulnerabilities impossible.

Loop Summarization. Loop summarization summarizes a loop into a set of logical
formulas which abstracts every iteration of loops. Therefore, the engine do not get stuck
in executing loops. Although summarization addresses the path explosion problem, but
it requires finding loop invariants and loop induction variables which for many loops are
not feasible. Also, queries generated by loop summarization are often hard for underlying
constraint solvers.

Search-guiding Heuristics. Search-guiding heuristics attempt to guide symbolic ex-
ploration to focus on program paths in loops that are more likely to execute the target
instruction. Babic et al. [28] have focused on finding a pattern of branches in loop(s) that
are essential to cause an overflow. Dowser [58] focuses on finding loop induced buffer over-
runs. It takes a feasible program path to target instruction. Dowser executes that path and
ranks each branch in loops according to the probability of leading to interesting pointer
manipulation and hence the buffer overrun. Although Dowser’s approach is interesting, its
branch ranking heuristic needs a feasible path as an input which limits its applicability.
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Although both [28] [58] present loop-aware targeted heuristic that focus on branch
prioritization in loops, none of them focus on mitigating path explosion, hence, memory
explosion for online execution engines caused by loops.

3.4 Use of Regression Test Suite

Search Based Software Testing. Using existing regression test cases to generate new
test cases have been explored in Search Based Software Testing (SBST). In SBST [51] [39],
meta-heuristics based search algorithms (e.g., simulated annealing, tabu search, genetic
algorithms) are used to generate new test cases. Branch distance is also used in SBST as
a metric in search space for estimating distance between two program instructions where
the search process tries to find a solution in search space with minimal cost e.g., branch
distance.

Extracting Program Structure. Regression test suite is also used extensively in sym-
bolic execution based testing to extract structure and information of the program. One
very common use of regression test suite is resolving memory /register-indirect jumps in
the program to recover as many edges in the CFG as possible [28] [71] [73].

Seed Input for Targeted Exploration. Katch [71] uses regression test cases to find
seed input for future symbolic exploration.

Dowser [71] also uses regression test-suite to rank which conditional branches in loops
may lead to “interesting” pointer manipulation/array accesses because Dowser is only
focused loop based vulnerabilities. Later Dowser uses this information to guide the targeted
search.

ZESTT [70] uses existing regression test suite to find sensitive instructions in the pro-
gram paths executed by regression test suite. ZESTI later tries to execute the sensitive
instructions through another program path. The assumption of ZESTI is that program
paths exercised by regression test suite may not reveal bug in sensitive instructions, but
another program path may expose the bugs.

Finding Relevant Input Bytes. Regression test suite has also been used to find relevant
input bytes to the target [53] [58] [73] [31]. Only relevant input bytes are marked as symbolic
in targeted exploration to make it more efficient because less amount of symbolic data in
program allows more concrete execution.
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3.5 Memory Management

In addition to path explosion, online symbolic execution engines suffer from memory explo-
sion problem. Because online engines forks a new execution state for each feasible symbolic
branch target. Usually number of forked execution states grow exponentially with the num-
ber of executed symbolic branches. Exponential growth of execution states quickly strains
system memory which is known as memory explosion. Offline symbolic execution engines
do not suffer from memory explosion problem because they execute only one execution
state.

To our best knowledge, only KLEE [39] and Mayhem [12] engines are memory usage
aware. KLEE terminates execution states randomly when memory usage reaches the mem-
ory limit. Although it helps to mitigate memory explosion and useful in coverage-optimized
search strategy, terminating states in random manner in targeted search can be fatal - an
execution that is about to execute target instruction can be terminated randomly.

Mayhem introduces the concept of hybrid symbolic execution that combines both on-
line and offline symbolic execution in the same program analysis session. Mayhem begins
symbolic exploration in multi-path mode. When the memory usage reaches memory limit,
Mayhem selects an execution state to checkpoint, i.e., persist the state to disk and con-
tinues executing the remaining execution states in memory. When Mayhem finishes all
execution states in memory, it selects one of the execution states persisted in disk based on
some heuristics and resumes online symbolic execution. In this manner, Mayhem never ter-
minates a state per se, it just suspends execution states to disk and later resumes execution
of the suspended states from disk.

3.6 Other

Researchers have also used software model checkers to solve the program statement reach-
ability problem by specifying the target instruction as the target program state in the
model. Since program lines can be guarded by conditionals that check arbitrary properties
of the current program state, this problem is equivalent to the very general problem of
finding a path that causes the program to enter a particular state. Similar to targeted
search in symbolic execution, directed model checking [18] focuses on scheduling heuristics
to quickly discover the target state. Several heuristics have been based on minimizing the
number of transitions from the current program state to the target state in the model
defined by a finite-state automata [50] or Buchi automata [19].
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Chapter 4

Targeted Search

In this chapter, we will present an overview of targeted search strategy of WatSym, how
WatSym mitigates “path explosion”, and a new execution state life-cycle scheme to miti-
gate “memory explosion” problem of online symbolic execution engines.

4.1 Overview

Automatically finding a feasible program path, i.e., an input that will execute a specific
program instruction is in general an undecidable problem. Even though the theoretical
limitation, it is possible that a well-tuned, domain specific heuristic can synthesize a con-
crete input that will execute a target instruction with the values needed to reveal a bug in
reasonable time.

Symbolic execution suffers from the notorious “path explosion” problem [39]. WatSym
incorporates a number of techniques to cope with the large number of execution states
(each execution state represent a feasible program path/sub-path) that get forked during
symbolic execution. The foremost of these techniques is the use of a distance estimation
heuristic to guide symbolic execution to those paths that are most likely to reach the target.
WatSym introduces the concept of “target loop”, and “target function” in targeted search.
Using “target loop”, “target function”, and context-sensitive CFG, WatSym estimates
the effort needed to execute the target from currently executing basic block. Using this
estimate, the exploration of paths is steered toward choices that are more likely to execute
the target, thus enabling WatSym to find a suitable path considerably faster than mere
symbolic execution.
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To mitigate “path explosion”, WatSym introduces two different heuristics for termi-
nating execution states that are less likely to execute the target. To mitigate “memory
explosion” in targeted exploration, WatSym has introduced a new execution state man-
agement scheme.

WatSym’s targeted search can be divided into three phases:

1. The static binary analysis phase
2. Regression test suite execution phase

3. Targeted symbolic exploration phase

In the first phase, WatSym uses static analysis on program binary to extract program
structure e.g., control-flow graph (CFG), functions, and basic blocks in loops. In the
second phase, WatSym executes the regression test suite of the target program to find the
seed input for targeted exploration. Many online symbolic execution engines are capable
of accepting concrete values (in other words, a test-case) for respective symbolic input
values; the concrete values are known as seed input. Seed input is important because
it determined the starting point in the search space for the search strategy. In targeted
exploration phase, WatSym tries to find a feasible program path, i.e., an input that goes
through the target instruction using targeted search heuristics.

4.2 Targeted Search

In this section, we describe first how we extract CFG in section 4.2.1, select seed input for
symbolic execution in section 4.2.2, and finally the targeted search heuristic in section 4.2.3.
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1 int main(char** argv, int argc) {
2

3 if (0) {

4 target _function (argce);
5}

6 else {

7

8}

9 return 0;

10 }

11

12 void f(int*x arge) {

13 for ( int i=0; i<10; i++) {
14 if (xarge < 10) {

15 *argc—++;

17 else {

19 }
20 )
21 }

23 void target_function(int argc) {
25 f(&arge);

27 if (arge > 10) {

28 int a[10];

29 for ( int i=argc; i <= (argc+10); i++) {
30

31 it (arge > 15) {

32 al[i—argec] = arge; // target program statement
33 }

34

35 }

36

37 else {

38

39 )

40

41 )

Listing 4.1: A running example to demonstrate our technique. Line 32 is the target
statement because of potential buffer overrun.
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Figure 4.1: Control-Flow
Graph of the running ex-
ample in code 4.1. Each
node represents a basic
block, each basic block is
named that is suffixed with
the source line number
where the block starts e.g.
the target block is B_32

Basic blocks with bold
borders represent domina-
tor basic blocks of target
block. Critical edges are
represented by bold edges.



4.2.1 Control-Flow Graph Extraction, Repair, and Distance Es-
timation

For targeted search, WatSym uses inter-procedural control-flow graph (CFG) for estimating
distance. Therefore, it is essential to have complete inter-procedural CFG of the program
binary. But extracting CFG of a program by static analysis is undecidable because of
register or memory-indirect jumps in program binaries.

Program paths enumerated from context-insensitive CFG can be not well-formed. A
well-formed program path has the restriction that the callee function has to return to its
caller function. But in context-insensitive CFG a callee function can return to another
function that is not necessarily its caller function [28]. Attempting to follow an infeasible
path that can be detected infeasible through static analysis is counter-productive.

To circumvent this problem, WatSym extracts 1-context sensitive CFG as opposed
to context insensitive CFG. One of the benefits of context sensitive CFG is the paths on
context sensitive CFG is well-formed (matches function calls and returns) up-to the given k
context sensitivity level. WatSym extracts 1-context sensitive CFG where it is guaranteed
that the callee function will return to its caller function. WatSym can also extract CFG
with context sensitivity level higher than one, but extracting CFG with higher context
sensitivity level is highly expensive and in our experiences we have found 1-context sensitive
CFG is to be good enough. Incomplete CFG makes the distance estimation heuristics
more imprecise and even can make reaching a target instruction impossible as the search
heuristics may keep looking at wrong region of search space.

WatSym also repairs the extracted CFG using dynamic analysis during regression test-
suite. During regression test-suite execution and symbolic exploration, WatSym monitors
the control-flow edges followed by the program and recovers the missing edges in CFG if
execution(s) follows any missing control-flow edge.

Distance Estimation. In targeted search phase, WatSym needs to prioritizely execute
the states that are more likely to execute the target instruction. WatSym estimates the
effort needed for each execution state to execute the target (if the execution state is able
to execute). To estimate the distance between an execution state (currently executing
instruction) to target instruction, WatSym needs a distance estimation heuristic that will
ideally find the distance of a feasible program path from current instruction to target.

WatSym uses a variation of CFG /branch distance [35] as distance estimation heuristics.
The vanilla branch distance is the shortest path on the weighted CFG where conditional
branches are assigned weight one and unconditional branches are assigned weight zero.
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Intuitively, the effort for finding a feasible path to target instruction is choosing the right
branch.

Impreciseness of the distance estimation heuristics will only make the targeted search
slower but will not affect its correctness.

4.2.2 Seed Input Selection

In the second phase, WatSym selects the seed input from existing regression test cases to
current target instruction for targeted symbolic exploration. The benefit of using regression
test suite is that test cases often exercise interesting program regions e.g., a region which is
bug-prone or a region that is semantically important. Bug-prone program regions usually
cause more warnings to be generated by static analysis tools. Using regression test case as
seed input can help WatSym to find a feasible path closer to the target instruction.

Using seed input has its own benefit. Seed inputs are particularly beneficial for testing
programs that process highly structured input (e.g., compilers, program interpreters). Pro-
grams that take highly structured inputs impose challenges because of not only the path
explosion due to large number of input parsing branches [$7], but also executions often get
trapped in the input parsing program regions [55] [87]. Therefore, symbolic exploration
has to get pass through input parsing regions to execute deep interesting program states.
A valid input that can pass through the input parsing regions helps targeted exploration to
escape input parsing regions and mitigate path explosion caused by input parsing program
regions.

After executing the regression tests, WatSym chooses the nearest regression test case
as the seed input for targeted symbolic exploration. The nearest test case is the test case
for which one of the forked feasible execution states is the nearest to the target instruction
among all the forked execution states by all the test cases. In the next section, we describe
WatSym'’s distance estimation heuristics.

4.2.3 Targeted Search

We define terms target loop and target function as:

Definition 4.2.1. Target Function: The function that contains the target instruction is

called target function.
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Definition 4.2.2. Target Loop: The loop(s) that contain the target instruction is called
target loop(s). If the target instruction is inside nested loops then all the outer loops are

regarded as target loops.

WatSym uses online targeted forward symbolic exploration to search for a feasible path
that reaches the target. Therefore, at any instance, WatSym usually maintains more than
one execution state. To select an execution state to process, WatSym uses a heuristic to
estimate how long it would take each execution state to reach the target, and then processes
the execution state that would take least amount of effort to reach the target according
to the heuristic. To estimate distance, in other words, effort needed to reach the target,
of an execution state, WatSym categorizes execution states and deploys different distance
estimation heuristics for different categories. The overall estimation of effort needed has
to be as precise as possible and should require low overhead computation.

WatSym categorizes execution states into three categories:

1. Execution states that are currently executing inside target loops (if there is any)
2. Execution states that have the target function stack frame in its call stack

3. Execution states that do not have the target function stack frame its call stack

Selecting States That Have Reached The Target Loop(s). If there is any execution
state that is executing inside target loop(s), WatSym executes that state until the execution
leaves the target loop(s). Loop induced vulnerabilities can only be detected when the
loop(s) is executed more than certain number of times. Therefore, WatSym executes that
execution state until it reveals the vulnerability or the execution state has left the target
loop(s).

In our example, loop in line 29 is our target loop. The vulnerability inside the loop
at line 32 can only be revealed if the target loop is executed enough times. WatSym will
find this vulnerability because once an execution state reaches the target loop, it will keep
executing the state until that state exits the target loop. CFG-directed search [38] may
reach the target statement, but without the concept of target loop, it will fail to reveal the
actual bug because it will execute the target first time but will not find any vulnerability
in that line.

Selecting States That Have Reached The Target Function.
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Figure 4.2: Two execution states that have target function in their call stacks. WatSym

selects the execution state on right which has target function in the lowest call depth.

In our example, if the execution is currently at line 24, the branches in the loop at
line 13, conditional branch at line 14 in function £ will be included in branch distance
computation. But this is imprecise because no matter what branches taken inside f,
execution will always return back to the target function. Therefore, the execution states
that have reached the target function but currently executing in other functions should be
prioritized instead of their respective branch distance. Because no matter which branches
are taken in functions that are called subsequently from the target function, we will return
back to the target function. This is based on the assumption that the called function will
always return to its caller function with the exception of program exiting functions like
abort and asynchronous programs.

If there is no execution state that is executing inside target loop(s), WatSym selects
from the states that have target function in call stack if there is any. The idea is that to
execute the target the targeted exploration has to reach the function first. Intuitively, we
should give higher priority to the states that have already reached the target function than
the states that are yet to reach the target function. Therefore, if an execution state has
target function in its call stack, then currently executing function may return to its caller
and so on to return back to the target function.

If there are more than one such state that have target function in call stack, WatSym
selects the state that has the target function in the lowest depth in call stack (shown in
fig. 4.2), i.e., the number of functions to return to return back to the target function. The
heuristic estimates number of instructions has to be executed before returning to the target
function in a very cheap manner. In case of multiple stack frames of target function in call
stack, WatSym measures distance by the frame that is found in the lowest depth. In our
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example, if we have two execution states that have target_function in their call stacks,
one is executing inside the target function and another is executing inside the f£. In such
case, WatSym will prioritize the state that is currently executing inside target_function
because it needs minimum number of returns to back at target_function which is zero in
this case. More precise but potentially more expensive heuristics can be used to estimate
number of instructions [91] for returning to target function.

The idea of prioritizing the execution states that have target function in their call stack
is inspired by ESD [91] heuristic. Although WatSym uses a simpler heuristic to choose
from the states that have target function in their call stacks. WatSym also introduces the
concept of target loop which is very important for finding security-sensitive bugs.

Detecting Execution States That Have Bypassed The Target Basic Block. There
is one caveat to selecting from execution states containing target function stack frame in
call stack. An execution state may have bypassed the target instruction but the target
function can be still in the call stack.

1

2 if (arge > 10) {

3 int a[10];

4 for ( int i=argc; i <= (argc+10); i++) {
5

6 if (arge > 15) {

7 a[i—argc] = argc;

8 }

9

10 }

11 }

12 else {

13 // currently executing statement
14 }

15

Listing 4.2: The execution is currently inside target function and the execution has

bypassed the target function.
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For instance, in our running example, the target is inside true branch, but the execution
has gone through the false branch, i.e., bypassed the target in CFG by taking an alternative
branch (shown in code 4.2). In such case, the targeted search prioritizes a state that has
already bypassed the target instruction. To detect such states, WatSym follows similar
idea of chopped CFG. Chop of intra-procedural CFG contains the sub-graph of CFG where
each node can reach (in graph theoretic terms) the target node. To compute chop, an
edge is added from target basic block B_32 to the function entry block B_26 and strongly
connected component (SCC) of target function CFG is computed. The SCC that contains
the target block is the chop. If a node that is outside the chop, execution can not reach
the target node in current invocation of target function, but execution can reach the target
block in future invocations. For example, B_37 and B_40 are outside the chop, so if an
execution reaches one of these blocks, it will never reach the target in current invocation of
the function. If WatSym detects that a state is executing inside such basic block, WatSym
declared that state has bypassed the target instruction and suspends that execution state.

Proximity Based Search. If there are no execution states that have target function in
call stack, WatSym uses proximity based search. The goal of the proximity based search [35]
is using statically extracted program structure to guide the dynamic search to find a feasible
path to target. WatSym selects the nearest execution state according to branch distance
heuristic. The distance of an execution state is estimated as the shortest distance from
execution state’s currently executed basic block to the target basic block in the program’s
inter-procedural CFG. It is a greedy heuristics, always selects the execution state with
minimal distance to the target. Intuitively, the effort of targeted exploration lies in an
execution state following the “right” branch to target. Therefore, WatSym computes this
distance in terms of the number of conditional branch instructions between current block
and target block. All the conditional branches are assigned weight one and non-conditional
branches (including function calls and returns) are assigned weight zero.

Local Minima in Search Space. One major concern in heuristics driven search algo-
rithms is that the search can be trapped inside a local minima in search space. Local
minima is dangerous for search processes that can not backtrack because without back-
tracking escaping local minima is very hard. Targeted search in offline symbolic execution
engine [71] is vulnerable to local minima since the search process can not readily backtrack
and the search process has to be restarted.

Targeted search in multi-path symbolic execution are not prone to this phenomenon
because the search heuristics can always backtrack and selects another execution state to
proceed provided that such an execution state is available. If one of the execution states
is trapped in a local minima, WatSym can always backtrack to higher up in the symbolic
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execution tree and select another execution state. Hence, the targeted search of WatSym
avoids the danger of getting trapped in local minima.

4.2.4 Finding the Least Useful Execution States

WatSym introduces two different heuristics described in section 4.3.1 and section 4.3.2 for
terminating states to tackle path and memory explosion. Unfortunately, these heuristics
are often not adequate enough to tackle exponential growth of forked execution states
which very quickly overwhelms memory. Because when the memory limit is reached, often
times terminating suspended states is not enough to limit memory usage. In such case,
WatSym has to terminate least useful active execution states at that instance to limit
memory usage. Currently WatSym assumes the execution states that are the most distant
at that instance as the least useful execution states. WatSym terminate the most distant
states to limit memory usage. This is a greedy heuristic and together with targeted search
heuristic which itself is another greedy heuristic, the juxtaposition of these two greedy
heuristics can result in sub-optimal performance.

4.3 Tackling Path Explosion in Targeted Search

Offline symbolic execution engines usually have very low resource requirement because
they only work on single execution state of a program. But they have the cost of executing
same instructions multiple times redundantly. To avoid this redundant executions of same
instructions, online symbolic execution engine forks a new execution state at each symbolic
branch if the both branches are feasible. But forking new execution states also strain the
memory quickly, causing the system thrashing because all the execution states are kept in
memory. Because of thrashing, the number of explored paths decreases dramatically with
the increasing memory usage and in the worst case, online symbolic execution executes
slower than its counterpart offline symbolic execution shown in fig. 4.3 [12].

To mitigate memory explosion, state-of-the-art online engines use optimizations like
copy-on-write, shares common data between execution states. Nonetheless, due to expo-
nential growth of number of execution states, eventually all online execution engines will
reach the memory limit. Memory usage can be reduced by terminating execution states.
However, terminating execution states has to be done very carefully. Otherwise a state
that executes the target, can be forcefully terminated.
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Figure 4.3: Number of path explored vs. memory use [12]

To keep the targeted search efficient, WatSym has to make a trade-off between memory
usage and number of execution states at any instance. To keep memory usage in check,
WatSym should carefully terminate execution states that are less likely to execute the
target instruction. It also has to maintain a healthy population of execution states so that
even if the nearest state right now does not lead to a feasible program path to the target
instruction, there are other execution states that WatSym can process to find a feasible
path.

In the following subsections, first we describe how WatSym tackles path explosion
problem caused by loops in section 4.3.1, and then how WatSym finds execution states
that are unlikely to execute the target in section 4.3.2, finally we describe WatSym’s new
execution state management scheme in section 4.4.

4.3.1 Tackling Path Explosion Caused by Loops

Natural loops (e.g., for, while constructs) are notoriously known for causing path explosion
in symbolic exploration. Loops induce path explosion in two ways:
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1. Symbolic loop conditions fork new execution state in each iteration of the loop

2. Symbolic branch conditions inside loops fork new execution states (if both branches
are feasible) in each iteration of the loop

Loop condition branches have two edges in the CFG: exit edge that exits the loop, and
back edge that re-iterates the loop. If an execution state is forked over a loop condition,
WatSym suspends the execution state that exits the loop, i.e., WatSym only keeps the
execution states that iterate the loops to the fullest. This is very unlike to coverage-
optimized search where loops are iterated as few times as possible and execution states
that exit the loops early (akin to bounded iteration) are favored over execution states
that keep iterating the loops. Although this idea may seem counter-intuitive at first, it is
important for finding loop induced vulnerabilities.

Many buffer and integer overflows are directly or indirectly induced by loops, so it
is essential to iterate the loops to the fullest to detect loop induced bugs. Also, in our
experience, if the loop exiting execution states are favored over loop iterating states, exiting
states tend to generate test-cases are mostly rejected by the program as invalid input. One
of the reasons behind program rejecting test-cases generated by bounded iteration is that
often inputs are provided as an array (e.g., command line parameters are essentially array
of arrays of characters) and program needs to process each element of the input array in
a loop. Early loop exiting execution states indicate that only some elements of the input
array have been processed and other elements are not processed which in turn generates
invalid test cases [53].

In our example, each time the target loop is iterated, two different execution states are
forked at the loop condition at B_34. In such case, WatSym only keeps the state that follows
the back edge B_34 — B_28 because it will re-execute the loop and terminates the states
that follow loop exit edge B_34 — B_40. This helps WatSym to mitigate path explosion
caused by loops and only keep the states that are more likely to reveal the vulnerability.

For execution states that have been forked on same symbolic branches inside loops,
WatSym only keeps one execution state and terminates other execution states. At any
point of targeted exploration, if WatSym finds more than one execution state such that
their last followed conditional edges are same, WatSym only keeps the oldest execution
state and terminates other states. WatSym measures age of an execution state by the
number of executed program basic blocks. The key observation behind this idea is that
two different execution states that have been forked along same conditional branch in
loops tend to behave same way in the future e.g., they have same branch distance to target
instruction. Therefore, WatSym keeps the execution state that has executed maximum

37



number of basic blocks because it is more likely to satisfy overflow condition than the
other states.

In our example, each time the target loop is iterated, two different execution states are
forked at the conditional branch at line 31. The target loop can be executed maximum
eleven times. For instance, an execution at iteration 11 of the target loop, is forked at
line 31: one at true branch of line 31 named ExecutionState_31_true_11 and another
at false branch at line 31 named ExecutionState_31_false_11. Right after forking,
WatSym examines the current states at that instance, it has found one more execution
state that has been forked at true branch of line 31 named ExecutionState_31_true_9
in loop iteration number 9 and another one that has been forked at false branch named
ExecutionState_31_false_10 in loop iteration number 10. In such case, WatSym termi-
nates ExecutionState_31_true_9 and keeps ExecutionState_31_true_11 because it has
executed more basic blocks than ExecutionState_31_true_9 and more likely to satisfy
overflow condition.

We have also experimented with bounded iteration of loops, but it appeared unwieldy
because programs parse inputs in loops. Bounded unrolling of input parsing loops often
leads the program to reject the input as invalid because some of the bytes of input have
not been parsed because of bounded iteration.

4.3.2 Terminating Execution States That Can Not Reach Target

In the worst case, number of program paths that reach a program instruction is unbounded.
But many program paths are guaranteed not to reach the target instruction. Exploring
these program paths is not only inefficient, but also leads to path explosion because these
program paths forks new executes states. To keep the search focused on the target, WatSym
has to identify the program paths that do not reach target instruction and terminate
execution states that follow those program paths during targeted exploration as early as
possible.

Definition 4.3.1. Critical Edge: A critical edge is a branch (an edge in CFG) in the
program that must be followed to reach a target instruction. Conditional branches have
more than one outgoing edge in the CFG for each branch targets. If from input entry

points to target instruction, only one of the outgoing edges of a conditional branch can

be part of the path to target, then that edge is a critical edge. Any execution state that
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does not follow the critical edges can be terminated since the execution will never reach the
target instruction. Finding critical edges is undecidable because the soundness of detecting

critical edge depends on the completeness of the CFG.

Definition 4.3.2. Dominator Node: A dominator node d dominates a node n in a directed
graph if every path from entry nodes to n must go through d. A dominator node d is a
strict dominator if d is dominator node of n and d, and n are not same node. Similar
to critical edges finding dominator nodes in CFG is undecidable because the soundness of

detecting dominator node depends on the completeness of the CFG.

Dominator basic blocks of target block are important because by definition any program
path from any program entry point to target instruction has to go through dominator blocks
of target block. Before reaching the target block, an execution has to go through all target
block’s dominator blocks. Therefore, any control-flow edge that has to be taken to reach
the dominator blocks is also a part of any feasible path from program entry point to the
target. Edges essential to be followed to reach the dominator blocks of target block are
also essential to be followed to reach the target block and hence they are critical edges of
target block.

WatSym finds critical edges in manner similar to backward program slicing [34]. Start-
ing from each block of the target block, and its dominator blocks as source block, at each
step, the algorithm finds the predecessor block of current block, ensures only one of the
edges from the predecessor block can reach the target block and mark that edge as critical
edge. As soon as a block with multiple predecessors is found, marking of critical edges
stops there for that respective source block and the algorithm proceeds with another basic
block as its source.

WatSym improves the critical edge detection technique of ESD by including the domi-
nator basic blocks of the target block as the source of backward slicing [341] and WatSym
finds more critical edges than ESD. Unlike ESD, WatSym utilizes critical edge concept to
prune program path/terminate states that do not follow critical edges and hence do not
reach the target block. A more effective but potentially expensive algorithm can find more
critical edges.

For example, ESD will only consider target block as the source and it will find B_28
— B_30 and B_30 — B_32 critical edges. WatSym finds B_2, B_4, B_26, B_28, and B_30
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Figure 4.5: State diagram of an execution state in WatSym.

basic blocks that dominator blocks of the target block. WatSym finds critical edges B_2
— B_4 and B_26 — B_28 in addition to the edges found by ESD.

The soundness of dominator analysis itself depends on completeness of the CFG. Since
the extracted CFG is incomplete, critical edge analysis is unsound. Therefore, terminating
states that do not follow the critical edges introduces incompleteness (makes reaching target
instruction infeasible). Moreover, in presence of cycles in CFG, an execution can execute
the target instruction by following a back edge of a cycle and then follow the critical edge
to target instruction.

4.4 Lazy Termination of Execution States

Online execution engines (e.g. KLEE [39], DASE [387], and S2E [11]) terminate execution
states eagerly, i.e., as soon as an execution state is marked for termination, that state is
removed from memory. Terminating states in coverage-optimized search do very negligible
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harm to its goal, i.e., improving coverage. But terminating execution states can be fatal
in targeted search because an execution state that can execute the target can be forcefully
terminated. Forcefully terminating states in targeted search is a necessary evil that must
be done when it is absolutely essential, i.e., when memory limit is reached.

To address this issue, we introduce lazy state termination and a new execution state
management scheme (depicted in fig. 4.5) in WatSym. As the name suggests, lazy state ter-
mination terminates states lazily, i.e., execution states are terminated only when memory
usage reaches the limit, but other heuristics are kept under the illusion that the execution
state is indeed removed from memory. When an execution state is marked for termina-
tion by state termination heuristics, instead of terminating the state right away, WatSym
suspends that state. A suspended state is removed from active execution states so that
the suspended state never gets scheduled by the search heuristics. However, a suspended
state is not removed from memory immediately. When memory limit is reached, WatSym
heuristically calculates minimum number (size of an execution state can not be precisely
measured because execution states share memories in S2E without very expensive book-
keeping) of execution states has to be terminated. WatSym finds least useful suspended
execution states at that instance and terminates them. When a state is terminated, under-
lying engine S2E does not immediately remove that state from memory. Instead, the state
is marked as “zombie” and kept in memory for a while to let other parts of the system to
clean up resources and wrap up analysis of the zombie state. Eventually the zombie states
are removed from memory periodically by S2E engine.

If WatSym reaches memory limit and there is no more suspended state to be terminated,
WatSym requests list of execution states that are least useful at that instance from currently
deployed search strategy. Upon receiving the list of states, WatSym directly terminates
those states directly to keep memory usage in check. When the targeted search strategy is
requested for the least useful execution states, the targeted search heuristic finds the least
useful states described in section 4.2.4 and returns them to S2E engine to terminate them.

Many times a state termination heuristics is too aggressive that too many execution
states are terminated prematurely. In such case, the targeted search is done processing
all active execution states without executing the target because too many execution states
are forcefully terminated. If WatSym has finished processing all active execution states
without executing the target, WatSym resumes the suspended execution states so that the
targeted exploration can make progress.

Similar to WatSym, Mayhem [12] also suspends execution states to disk when memory
limit is reached and after finishing the active execution states, Mayhem resumes suspended
execution states from disk. Similar to Mayhem, WatSym can also use snapshot feature
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available in S2E to persist the suspended states to disk and resume later from disk. To
our best knowledge there is no existing work in targeted exploration that resumes the
suspended states.

All the complexities of managing execution states is kept hidden from the search strat-
egy, the path pruning/state terminating heuristics. The heuristics have access to only the
active execution states; therefore, when an execution state is removed from active execu-
tion states, to the heuristics, that execution state is “removed” from memory. And when
an execution state is resumed from suspended state, the search strategy sees the resumed
states as newly added execution states. This enables WatSym’s lazy state termination
policy can be applied to any search or path pruning strategy without any modification for
new state life-cycle.
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Chapter 5

Implementation

WatSym is built upon the selective symbolic execution technique implemented in S2E [11].
S2E is based on QEMU [20], an open source hypervisor and KLEE [39], symbolic execution
engine for LLVM IR.

The WatSym is consist of around: modified 200 LOC in S2E core engine, modified 300
LOC in core S2E plugins, 9.3 kLOC code for WatSym plugins, 1.3 kLOC python script,
700 LOC pre-processing C++ code, 400 LOC post-processing C++ code.

In addition WatSym provides tools for extracting control-flow graph from binary using
open source binary analysis framework angr [79], for repairing CFG using existing regres-
sion test-suite, and post processing tools for extracting generated test cases generated by
symbolic execution including crashing inputs.

5.1 Selective Symbolic Execution (S2E)

To mitigate path explosion caused by uninteresting program regions (e.g., environment),
Chupounov et al. has proposed selective symbolic execution [11]. Selective symbolic ex-
ecution is based on the key observation that often only some program paths or regions
we are interested to analyze. For example, an user may want to exhaustively explore all
paths through a program, but may not want to explore the program paths forked inside the
environment (shared libraries and operating system). This means that, selective symbolic
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Figure 5.1: Components of WatSym

execution should explore only the program under test in multi-path mode, but whenever
the execution leaves the program into some other parts of the system, such as a library,
selective symbolic execution should switch from multi-path mode to single-path (shown
in fig. 5.2). Selective symbolic execution is named because the online symbolic execution
engine selectively execute only some program regions (including the environment itself) in
multi-path mode and rest program regions either in single path or concrete mode.

Selective symbolic execution has been implemented in a program analysis platform
named S2E. S2E is an hypervisor based on QEMU [20] which uses KLEE [39] for symbolic
execution back-end. By combining selective symbolic execution with OS level virtualiza-
tion, S2E keeps the abstraction of whole system symbolic execution without actually exe-
cuting whole system symbolically. Also, by allowing concrete execution in the environment,
program can be explored without explicitly modeling the environment. Combination of OS
level virtualization, executing in real environment, selective symbolic execution gives S2E
to analyze real-world system programs e.g., Windows [64], Linux, BSD [71] device drivers.
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The S2E system diagram is shown in fig. 5.3.

S2E executes only marked program regions (usually the program under test) in multi-
path symbolic mode, other program regions and the environment (usually the shared li-
braries, OS etc.) in single-path symbolic/concrete mode. To maintain the consistency of
an execution, when the execution leaves a symbolic program region to a concrete program
region, S2E concretizes the symbolic memories accessed in concrete regions by adding con-
cretization constraints to the current path constraints. Concretizing symbolic memories
enables more concrete execution in future but limits the ability to explore more program

analysis
interface

user-defined
analyzers

S2E stock
analyzers

paths since an execution can not be forked on a concrete conditional branch.
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Even when concrete input for a program path is not available, S2E finds a concrete input
by solving current path constraints and uses concrete input to maintain concrete program
state in addition to symbolic program state for that path. The benefit is by maintaining
concrete state S2E can very efficiently switch to concrete domain from symbolic domain.

5.2 WatSym Implementation

In this section we briefly describe various implementation details of WatSym.

5.2.1 CFG Extraction, Repair and Critical Edge Detection

For extracting CFG from binary, we use binary analysis framework angr [79] which is
based on Balakrishnan’s work [29] on static analysis of program binary. Recovering CFG
through static analysis is undecidable. Kinder et al. [(1] explain the “chicken-and-egg”
nature of the problem of inferring the control-flow of binaries statically: data-flow analysis
is required to infer the control-flow information, and control-flow analysis is required to
infer the data-flow information. Although open source binary analysis frameworks [34] [79]
can extract CFG from binaries, but in many cases they fail to extract CFG from binaries in
reasonable accuracy (too many missing control-flow edges or unable to disassemble basic
blocks). Moreover, our evaluation environment is x86 architecture, is a CISC architec-
ture. Distinguishing CISC machine instructions from data through static analysis is an
undecidable problem [76].

WatSym also provides a S2E plugin that can repair extracted CFG using existing
regression test suite. If any test case exercises any missing control-flow edge in the CFG,
WatSym can repair that CFG. WatSym pre-computes the branch distance to the target
block for every basic block in the binary.

angr uses NetworkX [19] as graph library. WatSym uses dominator analysis available
in NetworkX to detect critical edges, natural loops, chopping. WatSym also provides
tools that can detect errors in extracted CFG e.g., overlapping basic blocks, overlapping
functions. WatSym also implements a state termination algorithm similar to chopping [35].
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5.2.2 Extension of S2E Core

We modify S2E to provide an option to users to limit memory usage; we modified S2E
core engine to add a new event onMemoryLimitReached. S2E engine measures memory
usage each time a new execution state is forked and when the user given memory limit is
reached, the engine fires onMemoryLimitReached event. S2E core engine checks whether
any plugin has registered for onMemoryLimitReached event. If such a plugin is found, S2E
core requests the registered plugin(s) for execution states to terminate. If no such plugin is
found, S2E terminates execution states randomly similar to KLEE [39]. Providing interface
for specifying which states to be terminated to plugins is important because it is useful to
strategies like targeted search where randomly terminating states can be fatal.

By default S2E directly adds concretization constraints to the path constraints. We
have modified S2E core to provide API to plugins so that plugins can specify whether
concretization constraints should be added to path constraints or ignored. Ignored con-
cretization constraints are stored so that they can be accessed anytime and re-added to path
constraints if necessary. We also provide an event which is triggered when a concretization
constraint is ignored to notify the plugins.

5.2.3 Plugins

The S2E platform offers a plugin interface for writing custom path analyzers and searchers.
S2E plugins can be divided into two key types: the path selection plugins also known as
searcher plugins, are used to guide the exploration of program paths, and the analysis
plugins also known as analyzers, are used to collect information (e.g., instruction, branch
coverage) on program paths or check properties of program paths (e.g., assertion violations,
null pointer dereferences, invalid memory accesses). The benefit of plugin infrastructure
is modularity and easier development of plugins. The plugin architecture of S2E is built
based on event publish-subscribe pattern. S2E core engine publishes events and other core
and custom plugins subscribe to the published events. Plugins themselves can also publish
events for other plugins to subscribe. For example, S2E FunctionMonitor plugin publishes
events onFunctionCall, and onFunctionReturn and WatSym’s plugin StackTracker sub-
scribe to those events to keep track of target program call stack of each execution state.
In addition to modularity, plugins (e.g., FunctionMonitor) can abstract the machine ar-
chitecture (x86, ARM) specific complexities to other plugins. We develop WatSym using
S2E plugin infrastructure to maintain future S2E versions compatibility with exception of
modification of core S2E engine and core S2E plugins.
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5.2.4 Bug Checkers

To detect occurrence of any overflow in the program, WatSym utilizes run-time error de-
tectors in guest operating system. Run-time error detectors have access to higher level
information than symbolic engine does. WatSym can work with any run-time error detec-
tor. In this work, we use AddressSanitizer [73], a run-time invalid memory access detector
available on both recent versions of GCC and LLVM compiler infrastructure. AddressSani-
tizer can detect wide range of invalid memory access bugs including use after free (dangling
pointer dereference), heap buffer overflow, stack buffer overflow, global buffer overflow, use
after return.

We compile programs with -fsanitize=address compilation flags to detect invalid
memory accesses and -fsanitize=undefined to detect integer overflows. Both GCC and
Clang supports these compilation flags. We configure the run-time AddressSanitizer library
such that if an invalid memory access occurs the program aborts immediately. The shared
library that prepares the program for symbolic execution sends this information to S2E
engine and subsequently to WatSym plugins.
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Chapter 6

Evaluation

In this chapter, we describe the evaluation methodology and result of evaluating WatSym
on three real world bugs including a real-world security vulnerability.

6.1 Experimental Setup

Host Machine. We have conducted our experiments on Ubuntu 14.04 64-bit OS on a
machine with Intel Core i7-4710HQ @ 2.50GHz CPU and 16 GB RAM.

Guest Machine. S2E and hence WatSym is a hypervisor which allows users to analyze
a program or the whole system in real-life environment. Therefore, the programs need to
be analyzed in a guest virtual machine run by S2E. The operating system in guest virtual
machine is Debian 8.2 [13] 32-bit OS and is allocate 128 MB RAM.

We limit available RAM to 8 GB to both S2E and WatSym using Linux control groups
[17]. S2E is built from S2E public Github repository ! from revision
e4da04762747df14762edbbea36dcabc7ab638a64.

https://github.com/dslab-epfl/s2e
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6.2 Evaluated Bugs

We evaluate WatSym on three different invalid memory access bugs from programs: date
8.21, tac 6.10, mkdir 6.10 in Coreutils [4]. For each program we provide a symbolic input
specification tailored for each bug, then use WatSym to automatically synthesize inputs
that trigger invalid memory access in the programs.

CVE-2014-9471.

1 bool

2 parse_datetime (struct timespec *result, char const *p,

3 struct timespec const xnow)
4

)

6 for (s = tzbase; *s; s++, tzsize++)

7

8 else if (xs ==""")

9 {

10

11 /* Free tz0, in case this is the 2nd or subsequent time through. */
12 free (tz0);

13

Listing 6.1: Double free pointer vulnerability in CVE-2014-9471 [10].

Double free pointer vulnerability occurs in CVE-2014-9471 [10] which affects several
programs in Coreutils including date, and touch. The bug occurs when the specified time-
zone has more than pair of double quotes ("") e.g., date -d ’TZ="America/Los_Angeles

" 100:00 + 1 hour"’. During parsing, when the second/closing double quote is encoun-

tered, memory is freed by free (tz0) statement and subsequent double quotes force al-
ready freed memory to free again. A remote attacker can exploit this vulnerability to
execute arbitrary code by careful crafted the payload.
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mkdir 6.10 Crash?.

1 if (scontext && setfscreatecon (scontext) < 0)

2 error (EXIT_FAILURE, errno,

3 (" failed_to_set_default_file_creation_context._to_%s"),
4 quote (optarg));

)

6 static size_t

7 quotearg_buffer_restyled (char xbuffer, size_t buffersize,

8 char const xarg, size_t argsize,

9 enum quoting_style quoting_style,

10 struct quoting_options const *0)

1 {

12

13 for (i = 0; ! (argsize == SIZE_MAX ? argli] == "\0' : i == argsize); i++) {
14

Listing 6.2: Loop induced invalid memory access bug.

mkdir can create directories in the file-system in different SELinux security contexts.
This crash happens when a SELinux security context that does not exist in the system is
provided to mkdir e.g., mkdir -Z non-existent-context directory_name. When mkdir
finds the system does not have any SELinux context with such name, the program prepares
an error message by calling quote (optarg); and subsequent invalid memory access occurs
in quotearg buffer restyled because optarg or arg in the target function is not set yet.

?http://lists.gnu.org/archive/html/bug-coreutils/2008-03/msg00189.html
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tac 6.10 Crash?®.

1 static bool

2 tac_seekable (int input_fd, const char xfile)

3 4

5 struct re_registers regs;

7 for ()
8 {

10 if (range ==1

11 || ((ret = re_search (&compiled_separator, G_buffer,
12 i, i — 1, range, &regs))

13 == —1))

14

15 else

16 {

17 match_start = G_buffer + regs.start[0];

18

Listing 6.3: Loop induced invalid memory access bug.

tac ('cat’ spelled backwards) is a program in Coreutils that prints the content of file in
reverse order. When provided an input tac -r filel file2 ..., memory access viola-
tion occurs in tac_seekable function that separates the content of file(s) by user provided
separator instead of default separator (newlines). "-r" flag forces the program to treat the
separator string as Reglx pattern. Memory access violation occurs in regs when the pro-

3http://lists.gnu.org/archive/html/bug-coreutils/2008-05/msg00018.html
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gram tries to separate content by user provided RegEx pattern. The error occurs because
the code assumes regs->num_regs is initialized when it is not. When tac makes multiple
re_search calls with the registers on the stack, re_search overwrites regs in stack with
which in turn lead to invalid memory access in subsequent iterations of the target loop.
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Program | Target Statement Error Type S2E | WatSym
date 8.21 | parse-datetime.y:1307 | double free pointer >8 h 5s
tac 6.10 tac.c:278 invalid memory access | 586 s 17 s

mkdir 6.10 quotearg.c:248 invalid memory access | N/A 4 8s

Table 6.1: Evaluation: Time taken to reveal bugs by both WatSym and S2E on well-known
bugs.

Table 6.1 shows the time needed by WatSym and S2E to reveal the bug. Both CVE-
2014-9471, and tac 6.10 bugs are loop induced crashes i.e., the crash happens when the
target statement is executed multiple times in loop(s). While other targeted search may
be able to find a feasible path to the target, but the memory access violation can only be
revealed when the target loop is iterated more than once. WatSym’s concept of target loop
described in section 4.2.3 to find loop induced vulnerabilities, keep iterating the target loop
to the fullest even if WatSym has found a feasible path to the target and did not find a
memory access violation in the first try. Without the concept of target loop, other targeted
search heuristics may have found a feasible path to the target, but would immediately
abandon exploring the path further because memory access violation is not found in the
target site in the feasible path so far and begin exploring other paths.

6.2.1 Critical Edges

Program | Dominator Blocks | Critical Edges (ESD) | Critical Edges (WatSym)

date 1 1 1
tac 21 1 7
mkdir 19 1 1

Table 6.2: Evaluation: Detected critical edges by WatSym and ESD.

4Crashed with assertion violation error after 162 s [12]
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In table 6.2, we compare the number of critical edges detected by both ESD and Wat-
Sym. By incorporating dominator blocks of target basic blocks WatSym finds more critical
edges than ESD. Critical edges help WatSym to prune the search space where finding a
feasible program paths to target is very unlikely.

6.3 Other Experiments

We have tried with several known vulnerabilities [6] [7] [3] [9] [12], and check warnings
generated by static analysis tool Cppcheck [5], a static C/C++ source code analysis tool;
unfortunately as detailed in section 7.1, control-flow graphs we have extracted from respec-
tive binaries were not precise enough to conduct evaluation.
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Chapter 7

Limitations and Future Work

In this chapter, we summarize both theoretical and practical limitations of WatSym and
present several future directions in which WatSym’s heuristics including the targeted search
heuristic can be improved.

7.1 Limitations

Undecidability of Finding a Feasible Path. Finding a feasible program path that
executes a specific instruction is an undecidable problem - solving this problem means
solving the halting problem. In programs, unbounded loops make the potential search
space infinite. Because of unbounded loops, finding a feasible path is an undecidable
problem. Therefore, WatSym may not always be able to reveal a bug.

Theoretical Hardness of Constraint Solving. Symbolic execution has inherent the-
oretical limitations because of solving complex constraints. Complexity of solving con-
straints depends on the domain of logic where the constraints are expressed. In bit-vector
theory the complexity of solving generated constraints is NP-Complete or harder than NP-
Complete. Even though the theoretical hardness of constraint solving recent advancement
of constraint solvers has made usage of symbolic execution practically feasible. Regard-
less of theoretical hardness, modern constraint solvers can solve most of the constraints
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generated by symbolic execution in reasonable amount of time [57] [32]. But some con-
straints generated by symbolic execution can not be solved in reasonable time [32]. In
such cases, online symbolic execution engines set a time-out for underlying solver, if the
constraints can not be solved before time-out, the execution engines treat the respective
path as infeasible and stop processing that execution state. If path constraints generated
from program paths that reach the target are hard for underlying solver, WatSym may fail
to find a feasible program path.

One such case is path constraints generated by cryptographic hash functions. If there
is a target is guarded by hash_SHA2(m)= 0xf8eb56eadb8db9a condition, it is very likely
that WatSym will not be able to find a feasible program path. Because to do so would
amount to breaking a cryptographic hash function.

WatSym, based on S2E [11], does not support symbolic evaluation of floating point
instructions. Hence, WatSym may fail to find a feasible program path on any program
with floating point computation.

Undecidability of Static Disassembly. Although many problems are theoretically
hard, practical instances of these problems can be solved in efficient manner e.g., satisfi-
ability, graph isomorphism problem. But the theoretical undecidability of differentiating
between data and instructions in CISC instructions through static analysis is found widely
in practice. We have experimented with several vulnerabilities [7] [8] [9] [0] [12], where
static disassembly did not match the run-time disassembly, i.e., the static disassembly is
incorrect. Because of this, we have failed to evaluate WatSym on these vulnerabilities.

Run-time disassembly shown in fig. 7.2, we can see that the crashing instruction starts
at address 0x80e658b [%|. But static disassembly shown in fig. 7.1, we can see there is no
instruction that starts at 0x80e658b. This happens because the run-time disassembly is
different from static disassembly of the binary. The static binary analysis framework angr
[79] we have used also failed to extract CFG precise enough for targeted search.

Because of undecidability of static disassembly of CISC instructions, we have seen
binaries where extracting CFG, even disassembling the target basic block, through static
analysis is infeasible. Due to this limitation, we have failed to evaluate WatSym on many
binaries.

Requirement of Symbolic Input Specification. Another inherent limitation of tar-
geted search in general applicability is that targeted search needs a symbolic input specifi-
cation tailored for the target. Symbolic input specification is the number of symbolic input
values (because it is also possible to provide concrete input values), types (command line
arguments, standard input, file, environment variables, network packets etc.) of symbolic
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80e65b4 :
88e65b7:
88e65b9:
88e65bc:
80e65bT:
80e65cl:
80e65c4:

80eb5ch:

80e65cCa: : ﬂeﬁﬁdz <bfd section from shdr+@x3c2c>
80e65ca: 4 24 %eax, (%esp)

80e65cd: e8 3e 2f f6 ff 2 8849510 < asan report load4@plt=
80e65d2: 45 dc -Bx24 (%ebp X

80e65d5: a4 00 ee oo 1%

80e65db: 2 8C 0O 00 80 €3 BxB8c(% dki

Figure 7.1: Static disassembly by objdump tool of crashing program region in strings

program for CVE-2014-8485 [].

AddressSanitizer can not provide additional info.
Bx80e658b in bfd section from shdr /home/riyad/dev-src/test-targets/binutils-2.23/bfd/elf.c:1953
B8xBla5lea in bfd elf3z 0b1ecT _p /home/riyad/dev-src/test-targets/binutils-2.23/bfd/elfcode.h:808
0x80668be in bfd check format matches /home/riyad/dev-src/test-targets/binutils-2.23/bfd/format.c:215
0x80662d1 in bfd check format /home/riyad/dev-src/test-t s/binutils-2.23/bfd/format.c:95

4 ©x804a736 in strings object file / e/riya ." f argets/binutils-2.23/binutils/strings.c:376
0x804a935 in strings file /home/riyad/ /binutils-2.23/binutils/strings.c:419
8x8084a384 in main #home#rlyad#deu src/t g sfblnuflls 2.23/binutils/strings.c:286
exf5fd4a82 in  libc start main L#llb#l386 llnux gnu/libc.so.6+0x19a82)
©x8049bc® in start (/home/riyad/dev-src/test-targets/binutils-2.23/binutils/strings+08x8649bc@)
SUHHAR\ AddressSanitizer: SEGV /home/riyad/dev-src/test-targets/binutils-2.23/bfd/elf.c:1953 bfd section from shdr
==12205== ABORTING

Figure 7.2: Run-time disassembly by objdump tool of crashing program region in strings

program for CVE-2014-8485 [3].

input values. In other words, symbolic input specification consists of how the symbolic
input value is given (command line arguments, stdin etc.) to the program and the size of
each symbolic input. Coverage-optimized search strategies use a general symbolic input
specification to evaluate general applicability of coverage-optimized search for programs.
But this general applicability criteria does not apply to targeted search, because targeted
search needs a symbolic input specification tailored for the target. Automatically inferring
symbolic input specification itself is a hard problem. It is possible to devise a technique that
can infer specification for domain specific programs, but this problem still not addressed
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yet in existing research.

1 int xptr = malloc(10xsizeof(int));
if (ptr == NULL) {

[\)

3 target program statement
4}
Listing 7.1: Target program statement (line 3) can only be executed if the environment

fails to allocate memory in the run-time.

MergePoint [20] tested 33,248 binaries available in Debian package repositories. A single
input specification has been used for MergePoint experiments: 3 symbolic arguments up
to 10, 2, and 2 bytes respectively, and symbolic files/stdin up to 24 bytes. MergePoint
encountered at least one symbolic branch in 23,731 binaries, i.e., MergePoint did not
encounter any symbolic branch for the rest of the binaries. This demonstrates the inherent
limitation applicability of general symbolic input specification in targeted search.

Some target statements can only be executed under very special scenarios. For instance,
some program regions can only be executed when there is an error in the environment (e.g.,
the environment fails to allocate memory). For these cases, fault has to be injected [14] in
environment to deterministically find a path to the target. In code 7.1, the target program
statement can only be executed if the environment fails to allocate memory, in such case
not only the environment malloc has to be modeled, but the model also has to have fault
injection capability. But in other cases where fault injection is not needed to find an
execution, fault injection will lead to path explosion.

Symbolic input specification in targeted search determines whether the bug can be
revealed at all or not. Wrong symbolic input specification makes the targeted exploration
unsuccessful irrelevant of the targeted search heuristic. For instance, CVE-2014-9471 [10]
exploit can only be revealed if there are at least two symbolic input values with size of at
least 2 and 5 bytes respectively are provided e.g. date -d ’TZ="America/Los_Angeles

" "00:00 + 1 hour"’. The vulnerable statement can only be executed if -d flag and
TZ=..... data are provided to the program. Therefore, if only one symbolic input is
provided, the targeted search can only find either the flag or the data, but not both. Any

symbolic input specification with less then two symbolic input values and less than their
respective size will make the targeted search unsuccessful. Because the target program
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statement can only be executed if a command line flag is provided with the input data.
Like any other targeted search tool, WatSym needs a symbolic input specification that will
not make targeted search unsuccessful.

Finding Relevant Input Bytes to the Target Instruction. If a program receives
input from input file/network packet, usually not all bytes are relevant to finding a feasible
program path to the target. Marking all bytes of an input file/network packet symbolic
causes path explosion and often prohibitively expensive because usually large amount of
input bytes are provided via file/network packet. Therefore, marking only the input bytes
relevant to the target symbolic is very important for efficient symbolic execution. Many
targeted search tools [73] [0%] need a test-case that executes target instruction to find
relevant input bytes to the target using dynamic taint analysis [53].

Finding input bytes relevant to the target without using dynamic taint analysis has not
been addressed in research yet. Though, it is possible to find relevant input bytes using
static backward taint/data-flow analysis [51] on the program binary, but static backward
data-flow analysis on binary is a very hard problem. We have tried existing binary anal-
ysis frameworks angr [34], BAP [79], but none of them yield backward data-flow analysis
precise enough to use in WatSym. Therefore, WatSym will face path explosion for pro-
grams that take large amount of input bytes. It is possible to use dynamic taint analysis
with existing target instruction executing input to find relevant input bytes and WatSym
provides an option to mark only the relevant input bytes symbolic. But requirement of a
target instruction exercising test-case limits the general applicability of WatSym.

7.2 Future Work

Execution State Merging in Targeted Symbolic Execution. One related technique
to mitigate path explosion is known as state merging [20] [31] [37] [65]. State merging is
based on the observation that many program paths only differ in few branches taken so
far and will explore the same instructions in future. Instead of exploring similar execution
states separately, it is often beneficial to merge and explore these execution states simul-
taneously. State merging introduces disjunctions in path constraints which makes queries
harder to solve for constraint solvers. In state merging, the execution engine has to make
the trade-off between exploring more simple program paths and exploring fewer complex
program paths. Usually states are merged based on some merging conditions when more
than one execution states reach same program point following different program paths.
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State merging technique has been used for improving code coverage [26] [05]. In the fu-
ture, we want to investigate state merging for targeted search by merging two almost
identical execution states where both are believed to nearest to the target instruction.

String Constraint Solver. String functions (e.g., strlen, strcpy, strcat) are notori-
ously known for worsening path explosion. String functions are very important because

large number of vulnerabilities involve string data. Currently S2E [11], KLEE [39] and
hence WatSym models strings as arrays of fixed length bit-vectors. New generation of
constraint solvers S3 [85], Z3-str [93] treat string as native primitive and can solve string

constraints. By modeling strings in program as native primitive and modeling string func-
tions by using function summaries using string constraints for string solvers can mitigate
path explosion problem caused by string functions.
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Chapter 8

Conclusion

Symbolic execution is an automated test generation technique that stands out for its sound-
ness, and flexibility of path-based partial verification. This thesis explored finding security-
critical bugs such as control-flow hijacks using targeted symbolic execution.

In this thesis, we present a targeted search strategy to check warnings generated by
static program analysis tools using symbolic exploration. To detect the execution states
that have bypassed the target instruction, we propose a technique to find the basic blocks
that an execution state will reach if it bypasses the target based on reachability analysis
on intra-procedural control-flow graph of the target function. To mitigate path explosion
and keep the search focused on the target instruction, we propose two different execution
state termination heuristics. In addition to path explosion, memory explosion is another
problem for online symbolic execution engines; we propose a new execution state life-cycle
scheme for targeted search to maintain a balanced trade-off between memory usage and
healthy population of execution states.

We have built WatSym based on S2E [11] which gives us the ability to analyze large
variants of programs including system programs (e.g., Linux kernel) in real environment.
We have evaluated WatSym to show that WatSym can find real bugs in program despite
all practical and theoretical limitation described in section 7.1.

Although we have implemented and evaluated WatSym as a static analysis generated
warning checking tool, WatSym can be easily adapted into other contexts. It can be used
as patch testing technique integrated into code review process where WatSym can drive
the execution to the program regions modified by the patch. It can also be used as crash
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reproducing technique; WatSym can find the crashing instruction from core-dump of the
crash and use the targeted search to find a path that will reproduce the crash. WatSym
can also be used as triaging tool for warnings generated by static analysis. If the targeted
search strategy of WatSym can not find a feasible program path to the target, that means
the vulnerability will be hard to exploit by an attacker.
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