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Abstract

Clustering, which is partitioning data into groups of similar objects, has a wide range of
applications. In many cases unstructured data makes up a significant part of the input. Attempting
to cluster such part of the data, which can be referred to as noise, can disturb the clustering on the
remaining domain points. Despite the practical need for a framework of clustering that allows a
portion of the data to remain unclustered, little research has been done so far in that direction.
In this thesis, we take a step towards addressing the issue of clustering in the presence of noise
in two parts. First, we develop a platform for clustering that has a cluster devoted to the “noise”
points. Second, we examine the problem of “robustness” of clustering algorithms to the addition
of noise.

In the first part, we develop a formal framework for clustering that has a designated noise
cluster. We formalize intuitively desirable input-output properties of clustering algorithms that
have a noise cluster. We review some previously known algorithms, introduce new algorithms
for this setting, and examine them with respect to the introduced properties.

In the second part, we address the problem of robustness of clustering algorithms to the
addition of unstructured data. We propose a simple and efficient method to turn any centroid-
based clustering algorithm into a noise robust one that has a noise cluster. We discuss several
rigorous measures of robustness and prove performance guarantees for our method with respect
to these measures under the assumption that the noise-free data satisfies some niceness properties
and the noise satisfies some mildness properties. We also prove that more straightforward ways
of adding robustness to clustering algorithms fail to achieve the above mentioned guarantees.
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Chapter 1

Introduction

Clustering, partitioning the data into groups of similar objects, has many applications in image
analysis, information retrieval, market research, and city planning. It is often the case that data
sets that one wishes to cluster contain, in addition to groups of similar objects, a significant subset
that is unstructured. For example,

• Consider an image processing task with the goal of finding objects in a given image. Pixels
in an image represent distinct objects that are placed on an unstructured background set.
A suitable clustering method should find objects (represented by clusters) and discard the
background set along with other noise points and outliers.

• Consider the use of clustering in market research for the purpose of finding target groups.
Marketing strategies, usually, target significantly large groups of people with similar traits.
A good clustering of the data should contain clusters that represent such large groups and
ignore the rest of the data. The output of appropriate clustering methods should not be
affected by the presence of a few small outlying groups of customers.

• Consider clustering traffic data for the purpose of city planning. Part of this data
contains distinguished patterns of traffic, for instance the rush-hour commute to and from
the business district, but a significant portion of this data is made from unstructured points,
for example local traffic between residential areas. While significant patterns of traffic are
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important to city planning at large, for the most part, less structured data does not have the
same effect.

Partitioning the whole data when there is a significant amount of noise can result in
meaningless clusters. However, most common clustering algorithms produce a partition of the
input set, regardless. Despite the practical need for a framework of clustering that addresses
issues that arise in clustering in the presence of noise, little research has been done so far in that
direction. In this thesis, we take a step towards addressing the issue of clustering in the presence
of noise in two parts. In chapter 2, we develop a platform for clustering that has a cluster devoted
to the “noise” points, such that the points in this cluster are not required to be similar. In chapter
3, we examine the problem of “robustness” of clustering algorithms to the addition of noise in
the input data.

In the first part, we develop a formal framework for clustering with a cluster devoted to
noise, called the “noise cluster”. We define intuitive and desirable input-output properties of
clustering algorithms that have a noise cluster. These properties address the richness of the
range of the algorithms, their invariance properties with respect to various changes in data, and
their computational feasibility compared to that of clustering algorithms without a noise cluster.
We generalize some previously known algorithms that have a natural notion of a noise cluster.
Moreover, we introduce two efficient algorithms that have a noise cluster. We examine these
algorithms with respect to our properties.

In the second part, we address the issue of “robustness” of clustering algorithms to the
addition of unstructured points. We introduce multiple rigorous measures of noise robustness.
We propose a simple and efficient method to transform any centroid-based clustering algorithm
to a noise-robust one that has a noise cluster. The degree of noise-robustness that is achieved
by this transformation depends on a parameter that can be tuned based on users’ needs. We
prove performance guarantees for our method with respect to the robustness measures under
the assumption that the noise-free data satisfies some niceness properties and the noise satisfies
some mildness properties. We also prove that more straightforward ways adding robustness to
clustering algorithms have inherent limitations and do not enjoy the same mentioned guarantees.
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Chapter 2

Clustering with a Noise Cluster

2.1 Introduction

This chapter is devoted to developing a framework for clustering that allows a portion of the data
to remain unclustered. The first contribution of this chapter is the introduction of a formalism
for clustering that has a designated noise cluster. The points that belong to the noise cluster are
not required to be similar. This formalism allows us to discuss desirable behaviour of clustering
algorithms that produce a partial clustering of the data. The second contribution of this chapter
is the introduction of properties that examine the input-output behaviour of clustering algorithms
that possess a noise cluster. These properties address the richness of the range of potential clus-
tering algorithms, their invariance with respect to various changes in the original data set, and
their computational feasibility compared to that of clustering algorithms without a noise cluster.

Another contribution of this chapter is the introduction of clustering algorithms that have a
noise cluster. We generalize two previously known clustering algorithms, trimmed algorithms
by Cuesta-Albertos et al. [6] and DBScan by Ester et al. [11], which have a natural notion of a
noise cluster. Moreover, we introduce two efficient clustering algorithms with a noise cluster.
We prove that one of these algorithms is equivalent to a generalized non-fuzzy variation of an
algorithm introduced by Dave [8]. Finally, we analyze these algorithms with respect to our
properties. This analysis can be used to distinguish among different clustering algorithms that
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have a noise cluster. It can also guide the selection of clustering algorithms based on properties
that one expects from specific clustering applications.

This chapter is organized as follows. In section 2.2, we provide a summary of related work.
Section 2.3 introduces notations and definitions that are used in the rest of this chapter. Section
2.4 formalizes some intuitive and desirable properties of clustering algorithms that have a noise
cluster and examines our algorithms with respect to them.

2.2 Related Work

Our approach for developing a theoretical framework for clustering with a noise cluster is related
to two main research directions: First, developing a general theory for clustering (without a noise
cluster). Second, developing algorithms that have a designated noise cluster.

Several directions have been taken in developing a theory of clustering without consider-
ing a noise cluster, e.g. [3, 17, 19, 22]. Puzicha et al. [22] investigate the class of clustering
algorithms that arises from using a specific type of objective function. Jardine et al. [17] show
that Single-Linkage is the only function that is consistent with a set of defined clustering
axioms, while, Kleinberg [19] shows that no clustering algorithm satisfies a set of three intuitive
axioms. Our approach is similar to the work of Ackerman et al. [3], which develops a property-
based classification of clustering paradigms (without a noise cluster). That is, instead of
using a set of “axioms” to define what should be called a clustering with a noise cluster, we
introduce properties that explain the behaviour of clustering algorithms that have a noise cluster.
The satisfaction of these properties can vary between different clustering paradigms and may be
used to categorize clustering algorithms.

Several clustering methods that have a noise cluster have been suggested in the past [6, 8,
11]. Dave [8] introduces the concept of a “noise cluster” in a fuzzy centroid-based setting by
defining a noise-prototype that is equidistant from all the domain points. Cuesta-Albertos et al.
[6] proposes the use of trimming: searching for a subset of the input data of a predetermined
size whose removal leads to the maximum improvement of the clustering quality (or objective
function). A “density-based” approach for clustering noisy data is introduced by Ester et al.
[11]. It assigns points from the sparse regions of the domain to the noise cluster. In this work,
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we generalize the above algorithms, introduce two new algorithms, and show that one of them is
equivalent to a non-fuzzy variation of Dave’s algorithm. Moreover, we examine the input-output
properties of these algorithms with respect to a set of intuitive properties.

Discussing the details of previous work requires the definition of few notations, hence, it is
delayed to the relevant sections.

2.3 Preliminaries

In this section we develop notions and definitions that are used in the remainder of this
chapter. In many applications, there is a natural notion of weighted input, where every data
point is associated with a real valued weight. The weight of a point, which is a measure of its
significance, plays an important role in deciding how it should be clustered. For example, in
the field of market research, different customers carry different levels of importance. We might
prefer to target customers with higher income or loyalty. This can be easily done in the weighted
setting by assigning weights that correspond to the significance of the individuals. In another
example, consider the problem of placing fire stations such that most regions of a city can be
accessed quickly. Providing quick firefighting service to certain sites may be more important
than to others. In the weighted setting, we can easily prioritize certain landmarks over others by
assigning higher weights to them. In this chapter, we use a setting for clustering weighted data
that was introduced by Ackerman et al. [1].

2.3.1 Background

For a finite set X and integer k ≥ 1, a k-clustering with a noise cluster of X is an ordered pair
({C1, . . . , Ck},Φ), such that {C1, . . . , Ck,Φ} is a partition of X . The set Φ represents the noise
cluster and C = {C1, . . . , Ck} represents the set of (traditional) clusters. A general clustering
with a noise cluster of X is a k-clustering with a noise cluster of X for an arbitrary 1 ≤ k < |X |.

Let d denote a distance function over X that is non-negative, symmetric and for all x ∈ X ,
d(x, x) = 0. For any α > 0 and distance function d1, the distance function d2 = αd1 is defined
such that for all x, y ∈ X , d2(x, y) = αd1(x, y). Let w be a positive weight function defined over
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X . For any α > 0 and a weight function w1, the weight function w2 = αw1 is defined such that
for all x ∈ X , w2(x) = αw1(x). With a slight abuse of notation, we denote the total weight of a
set X by w(X ) =

∑
x∈X

w(x).

A k-clustering algorithm with a noise cluster is a computable function A that takes as input
a set X , a distance function d, a (possibly constant) weight function w, and returns a k-clustering
with a noise cluster of X . Similarly, a general clustering algorithm with a noise cluster is a
function A that takes as input a set X , a distance function d, a weight function w, and returns a
general clustering with a noise cluster ofX . We useA(X , d, w) = (C,Φ), to refer to the resulting
clustering.

In the remainder of this chapter, whenever it is clear from the context, we use clustering
to refer to a clustering with a noise cluster, and clustering algorithm to refer to a clustering
algorithm with a noise cluster.

2.3.2 Clustering Algorithms

In this section, we introduce several algorithms for clustering weighted input. An important
aspect of our formulation is that these algorithms return the same clustering in the weighted
setting as they would produce in a setting that, instead of using weights, includes multiple copies
of a point. Given a data set X with distance d, elements x, y ∈ X are considered duplicates if
d(x, y) = 0 and for all z ∈ X , d(x, z) = d(y, z). To transform unweighted input to weighted
input we remove the duplicate points and associate every remaining point with a weight equal
to the number of its copies in the original data. In the same way, zero weight for a point can be
represented by removing the point from the domain set. For this reason, we simply restrict our
attention to positive weight functions, though not necessarily integral ones.

Throughout this chapter, let g : R+ → R+ be any continuous, increasing, and unbounded
function. A function f : R+ → R+ is homogeneous with degree p ≥ 1 if for any x ∈ R+ and
α ≥ 0, f(αx) = αpf(x). In the remainder of this chapter, we say that g is homogeneous, if it is
in addition to being continuous, increasing, and unbounded (the standard requirements) is also
homogeneous. Note that many common functions satisfy these properties, e.g. g(x) = x2.

Consider an input set X , drawn from a given space E, along with distance d and weights w.
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The (k, g)-centroid clustering algorithm (without a noise cluster) is a clustering algorithm that
minimizes the function

Λg
d,w({C1, . . . , Ck}) = min

µ1,...,µk∈E

∑

i∈[k]

∑

x∈Ci

w(x) · g(d(x, µi))

We refer to µi as the center of cluster Ci and we define µ(x) = arg minµi∈{µ1,...,µk} d(x, µi). With
a slight abuse of notation we can also define the (k, g)-centroid algorithm as the algorithm that
chooses centers µ1, . . . , µk that minimize

Λg
X ,d,w(µ1, . . . , µk) =

∑

x∈X

w(x) · g(d(y, µ(x)))

In the remainder of this section, we introduce four clustering algorithms that have a noise
cluster, three of which are based on the (k, g)-centroid clustering algorithm, and one is a general
clustering algorithm.

Definition 2.1 ((k, g)-δ-truncated). The (k, g)-δ-truncated algorithm is a k-clustering algorithm
that defines d′(x, y) = min{d(x, y), δ}, minimizes the objective function

Λg
X ,d′,w(µ1, . . . , µk)

and returns ({C1, . . . , Ck},Φ), such that for j ∈ [k], Cj = {x ∈ X | j = arg mini d(x, µi) and
d(x, µj) ≤ δ} and Φ = {x ∈ X | mini d(x, µi) > δ}.

Dave [8] defines the noise prototype by introducing a point that is equidistant from all points
in E. The clustering is then obtained by performing a fuzzy (k + 1)-means algorithm with one
center fixed as the noise prototype. In the next definition, we provide a generalization of the non-
fuzzy variation of Dave’s algorithm for any centroid-based algorithm. Furthermore, we show
that the class of algorithms produced in such way is equivalent to the class of (k, g)-δ-truncated
algorithms.

Definition 2.2 ((k, g)-δ-centroid). Let µ∗ be defined such that for all y ∈ E, d(y, µ∗) = δ. The
(k, g)-δ-centroid algorithm minimizes the objective function

Λg
X ,d,w(µ1, . . . , µk, µ

∗)

and returns ({C1, . . . , Ck}, Ck+1), such that if we define µk+1 = µ∗, then for j ∈ [k + 1],
Cj = {x ∈ X | j = arg mini d(x, µi)}.
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Theorem 2.1. Clustering (C,Φ) is an optimal (k, g)-δ-centroid clustering of X if and only if
(C,Φ) is an optimal (k, g)-δ-truncated clustering of X .

Proof. Let µ∗ = µk+1 be defined as the noise prototype (equidistant from all points in E) and
for all x, y ∈ E, d′(x, y) = min{δ, d(x, y)}. We show that a (k, g)-δ-centroid clustering with
centers µ1, . . . , µk, µ

∗ and a (k, g)-δ-truncated clustering with centers µ1, . . . , µk have the same
objective value.

Λg
X ,d′,w,E(µ1, . . . , µk) =

∑

x∈X

w(x)g

(
min
i∈[k]
{min{δ, d(x, µi)}}

)

=
∑

x∈X

w(x)g

(
min
i∈[k]
{min{d(x, µk+1), d(x, µi)}}

)

=
∑

x∈X

w(x)g

(
min
i∈[k+1]

d(x, µi)

)

= Λg
X ,d,w,E∪{µ∗}(µ1, . . . , µk, µ

∗)

Moreover, µ1, . . . , µk, µ
∗ induce the same (k, g)-δ-centroid clustering as the (k, g)-δ-truncated

clustering induced by µ1, . . . , µk. Therefore, (C,Φ) is an optimal (k, g)-δ-centroid clustering if
and only if it is an optimal (k, g)-δ-truncated clustering.

Note that for an optimal (k, g)-δ-centroid clustering, (C,Φ), the cost of this solution is equal
to the cost of the optimal (k, g)-centroid clustering of C added with a constant cost of g(δ) for
each point in Φ. With a slight abuse of notation and using Theorem 2.1, we use the following
notation to refer to the cost of (k, g)-δ-truncated clustering (C,Φ).

Λg
d′,w(C,Φ) = Λg

d,w(C) + w(Φ)g(δ) (2.1)

In the next algorithm, we use a “naive” approach for determining the noise using a centroid-
based clustering algorithm. The following algorithm first finds a (k, g)-centroid clustering of the
data, and then declares any point farther than δ from its corresponding cluster center to be noise.

Definition 2.3 ((k, g)-δ-naive-truncated). The (k, g)-δ-naive-truncated algorithm is a k-
clustering algorithm that minimizes the objective function Λg

X ,d,w(µ1, . . . , µk) and returns the k-
clustering ({C1, . . . , Ck},Φ), such that for all j ∈ [k], Cj = {x ∈ X | j = arg mini d(x, µi) and
d(x, µj) ≤ δ} and Φ = {x ∈ X | mini d(x, µi) > δ}.
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Cuesta-Albertos et al. [6] suggest a trimming procedure for clustering noisy data. This
approach searches for a subset of the input data (of a predetermined size) whose removal leads to
the maximum improvement of the value of the objective function. Here, we define this category
of algorithms in the weighted setting.

Definition 2.4 ((k, g)-η-trimmed). The (k, g)-η-trimmed algorithm is a k-clustering algorithm
that minimizes the objective function

min
X ′⊆X :w(X ′)≥(1−η)w(X )

min
µ1,...,µk

Λg
X ′,d,w(µ1, . . . , µk)

and returns ({C1, . . . , Ck},Φ), such that for all j ∈ [k], Cj = {x ∈ X ′| j = arg mini d(x, µi)}
and Φ = X \ X ′.

In the (k, g)-η-trimmed algorithm, parameter η bounds the size of the noise cluster. On the
other hand, in the (k, g)-δ-truncated algorithm, parameter δ determines the radius of a clusters,
and consequently, affects the size of the noise cluster. The following theorem implies that if the
size of the noise clusters in the (k, g)-η-trimmed and (k, g)-δ-truncated optimal clusterings are
the same, then they are equivalent.

Theorem 2.2. For any X , d, and w, letA be the (k, g)-δ-truncated algorithm andA(X , d, w) =

(C,Φ). For η = w(Φ)
w(X )

, let A′ be the (k, g)-η-trimmed algorithm. Then, A′(X , d, w) = (C,Φ).

Proof. Let A′(X , d, w) = (C ′,Φ′) such that w(Φ′) ≤ ηw(X ).

Λg
d,w(C) = Λg

d′,w(C,Φ)− w(Φ)g(δ)

≤ Λg
d′,w(C ′,Φ′)− ηw(X )g(δ)

≤ Λd,w(C ′) + w(Φ′)g(δ)− ηw(X )g(δ)

≤ Λd,w(C ′)

Moreover, w(Φ) ≤ ηw(X ), therefore, A′(X , d, w) = (C,Φ).

Ester et al. [11] suggest using a density-based clustering for noisy data. Their algorithm,
called DBScan, clusters data points that are close to dense regions of the input, and declares
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any point that is not clustered as noise. Here, we define a variation of DBScan for clustering
weighted data.

The ε-neighbourhood of a point x ∈ X is denoted by Nε(x) = {y ∈ X | d(x, y) ≤ ε}. A
point x is density-reachable from a point y with respect to ε and minPts if there is a chain
of points y = p0, . . . , pn = x, such that for all i ∈ [n], pi ∈ Nε(pi−1), and for all i < n,
w(Nε(pi)) ≥ minPts. Two points x, y ∈ X are density-connected with respect to ε andminPts
if there is a point z ∈ X , such x and y are density-reachable from z with respect to ε andminPts.

Definition 2.5 ((ε,minPts)-DBScan). The (ε,minPts)-DBScan algorithm is a general clus-
tering algorithm that takes X , d, and w, and returns ({C1, . . . , Ck},Φ), such that for every x, if
w(Nε(x)) ≥ minPts, then there exists Cj , such that x ∈ Cj . Furthermore, for all Ci

1. w(Ci) ≥ minPts

2. for all x ∈ Ci, if y is density-reachable from x, then y ∈ Ci.

3. for all x, y ∈ Ci, x and y are density-connected.

and Φ = X \
⋃
i∈[k]

Ci.

Note that a clustering algorithm can have multiple ideal outcomes. Therefore, A(X , d, w) =

(C,Φ) is used to indicated that (C,Φ) is one possible outcome ofA(X , d, w), not necessarily the
only one.

2.4 Properties of Clustering Algorithms with a Noise Cluster

The problem of clustering with a designated noise cluster is developed around an intuitive goal
of capturing all the noise from the input within the noise cluster, while partitioning the rest of
the data into representative clusters. However, an important question to ask is, what is a noise
cluster? Different clustering applications employ very different clustering algorithms and there
is no single clustering algorithm that is suitable for all applications. Consequently, what should
be found in a noise cluster varies based on clustering needs and applications. Therefore, it is
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(k, g)-δ-truncated X × X X X X X X × X

(k, g)-δ-naive-truncated X × × × × × 1 ×1 X × X

(k, g)-η-trimmed X X1 × × × X X X X ×
(ε,minPts)-DBScan × × × X X X X X X X

Table 2.1: Illustrating the properties that are satisfied by some common clustering algorithms.

unlikely that an axiomatic platform would be universally appropriate for defining what a noise
cluster and a clustering algorithm with such a cluster should be. Instead, we formalize some
intuitively desirable input-output properties of clustering algorithms that have a noise cluster,
and compare our algorithms with respect to these properties. This comparison, on one hand,
distinguishes between different clustering algorithms that have a noise cluster, on the other hand,
can guide the selection of clustering algorithms based on properties that are desired in specific
clustering applications.

In this section, we propose properties that examine different aspects of clustering algorithms
that have a noise cluster, including, their response to changes in the original data (see Sections
2.4.1, 2.4.2, and 2.4.3), richness of their clustering range (see Section 2.4.4) and their efficiency
(see Section 2.4.5). We examine the algorithms with respect to these properties (see Table 2.1).
Statements and proofs of positive results are included in Section 2.4.6, while the negative results
are demonstrated by counter examples after introducing each property.

1g is homogeneous
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(a) Original Data

b b
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2δ

(b) Change in the distance

Figure 2.1: (k, g)-δ-truncated and (k, g)-δ-naive-truncated are not distance scalable

2.4.1 Properties Pertaining to Scaling the Input

In this section, we introduce properties that address an invariance in the output of clustering
algorithms when there is a change in the scale of distance or weight measurements. Uniform
scaling of the distance or weight functions does not change the relative positions or significance
of the input points. Therefore, it may be desirable that the outcome of an algorithm would remain
invariant when such changes are applied to the data.

Definition 2.6 (Weight-Scalability). A clustering algorithm A satisfies weight-scalability if for
any X , d, w, and α > 0, A(X , d, αw) = A(X , d, w).

Definition 2.7 (Distance-Scalability). A clustering algorithm A satisfies distance-scalability, if
for any X , d, w, and α > 0, A(X , αd, w) = A(X , d, w).

These scalability properties can be viewed as stating that the clustering algorithms should
not have a built-in unit of weight or distance. Therefore, algorithms that use parameters to
specify a scale do not satisfy these properties. For example, the (k, g)-δ-truncated and (k, g)-δ-
naive-truncated algorithms use δ to determine the distance beyond which a point is considered
an outlier, hence, they do not satisfy distance-scalability. Similarly, (ε,minPts)-DBScan uses ε
andminPts as measures of distance and weight, to determine dense regions of the data, hence, it
does not satisfy distance-scalability or weight-scalability. The following example demonstrates
the lack of scalability in the (k, g)-δ-truncated and (k, g)-δ-naive-truncated algorithm.

Example 1. For k = 1, let A represent the (k, g)-δ-truncated or (k, g)-δ-naive-truncated
algorithm. Let X = {x, y}, such that d(x, y) = δ and w(x) > w(y) (as shown in Figure
2.1a), then A(X , d, w) = ({{x, y}}, ∅). For α = 2, let µ represent the center of {x, y} using

12
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ǫ ǫ
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(b) Scaling the weight function (c) Scaling the distance function

Figure 2.2: (ε,minPts)-DBScan does not satisfy weight-scalability, cluster-weight-scalability,
or distance-scalability. The clusters are shown by dotted circles and the noise cluster includes
any point that does not belong to a cluster.

distance measure αd. Since w(x) > w(y) and g is an increasing function, d(x, µ) < d(y, µ),
hence d(y, µ) > δ. Therefore, A(X , αd, w) = ({{x}}, {y}) (see Figure 2.1b). Hence, the
(k, g)-δ-truncated and (k, g)-δ-naive-truncated algorithms do not satisfy distance-scalability.

Using k well-separated copies of the above structure, we can generalize Example 1 to hold
for any number of clusters, k ≥ 1. We now show the lack of scalability in (ε,minPts)-DBScan.

Example 2. For any ε andminPts, letA be (ε,minPts)-DBScan algorithm. LetX = {x1, . . . ,

x6} such that w(x1) = w(x6) = minPts, for 2 ≤ i ≤ 5, w(xi) = minPts/4, and for i ≤ 5,
d(xi, xi+1) = ε. As shown in Figure 2.2a, A(X , d, w) = ({{x1, x2, x3}{x4, x5, x6}}, ∅). For any
α > 2 and i ≤ 6, αw(Nε(xi)) > minPts, so all the points are in one cluster, i.e.A(X , d, αw) =

({{x1, . . . , x6}}, ∅) (see Figure 2.2b). Therefore, (ε,minPts)-DBScan does not satisfy weight-
scalability. Similarly, for any α > 1, α(d(xi, xi+1)) > ε, hence, w(Nε(xi)) < minPts, for
2 ≤ i ≤ 5. Therefore, A(X , αd, w) = ({{x1}, {x6}}, {x2, . . . , x5}) (see Figure 2.2c) and
(ε,minPts)-DBScan does not satisfy distance-scalability.

On the other hand, Theorem 2.3, 2.4, and 2.5, respectively, show that the (k, g)-δ-truncated,
(k, g)-δ-naive-truncated, and (k, g)-η-trimmed algorithms satisfy weight-scalability. Further-
more, Theorem 2.6 shows that the (k, g)-η-trimmed algorithm satisfies distance-scalability when
g is a homogeneous function.
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2.4.2 Properties Pertaining to the Significance of the Noise

In this section, we introduce properties that address an invariance in the output of clustering
algorithms when there is a decrease in the intensity of the noise. Decreasing the weight of the
points in the noise cluster, removing the noise points, or increasing the weight of the clustered
data decreases the relative intensity of the noise. Therefore, it may be desirable that the outcome
of a clustering algorithm with a noise cluster would remain invariant when such changes are
applied to the data.

Definition 2.8 (Noise-Weight-Scalability). Let A be any clustering algorithm and for any X ,
d, and w1, let A(X , d, w1) = (C,Φ). A satisfies noise-weight-scalability if for all 0 < α ≤ 1

and w2, such that w2(x) = αw1(x) for x ∈ Φ and w2(x) = w1(x) otherwise, A(X , d, w2) =

A(X , d, w1).

Definition 2.9 (Cluster-Weight-Scalability). Let A be any clustering algorithm and for any X ,
d, and w1, let A(X , d, w1) = (C,Φ). A satisfies cluster-weight-scalability if for all α ≥ 1

and w2, such that w2(x) = w1(x) for x ∈ Φ and w2(x) = αw1(x) otherwise, A(X , d, w2) =

A(X , d, w1).

In a clustering algorithm that does not have a built-in unit of weight, scaling down the weight
of a noise cluster by α has the same effect as scaling up the weight of the clustered data by 1

α
.

Therefore, in such a clustering algorithm, noise-weight-scalability and cluster-weight-scalability
are equivalent. The relation between these properties is shown in the following Lemma.

Lemma 2.1. A weight-scalable clustering algorithmA satisfies cluster-weight-scalability if and
only if it satisfies noise-weight-scalability.

Proof. AssumeA satisfies weight-scalability, cluster-weight-scalability, and forX , d, andw1, let
A(X , d, w1) = (C1,Φ1). For any α ≤ 1, let w2 = αw1 and A(X , d, w2) = (C2,Φ2). Since A
satisfies weight-scalability, (C2,Φ2) = (C1,Φ1). Let w3(x) = w2(x) for x ∈ Φ2 and w3(x) =
1
α
w2(x) otherwise, and let A(X , d, w3) = (C3,Φ3). Since, A satisfies cluster-weight-scalability,

(C3,Φ3) = (C2,Φ2) = (C1,Φ1). Hence, for w3(x) = αw1(x) for x ∈ Φ, and w3(x) = w1(x)

otherwise, A(X , d, w3) = (C1,Φ1). Therefore, A satisfies noise-weight-scalability.

14



−2 −1 0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2

3

4

5

X

Y

 

 

Cluster 1

Cluster 2

Noise

Cluster Prototypes

(a) Original Clustering

−2 −1 0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2

3

4

5

X

Y

 

 

Cluster 1

Cluster 2

Cluster Prototypes

(b) Clustering after removing the noise.

Figure 2.3: An example demonstrating noise-removal-invariance of (k, g)-δ-truncated

Assume A satisfies weight-scalability, noise-weight-scalability, and A(X , d, w1) = (C1,Φ1).
For any α ≥ 1, let w2 = αw1 and A(X , d, w2) = (C2,Φ2). Since A satisfies weight-scalability,
(C2,Φ2) = (C1,Φ1). Let w3(x) = 1

α
w2(x) for x ∈ Φ2 and w3(x) = w2(x) otherwise. Since A

satisfies noise-weight-scalability, (C3,Φ3) = (C2,Φ2) = (C1,Φ1). Hence, for w3(x) = w1(x)

for x ∈ Φ1, and w3(x) = αw1(x) otherwise, A(X , d, w3) = (C1,Φ1). Therefore, A satisfies
cluster-weight-scalability.

Definition 2.10 (Noise-Removal-Invariance). Let A be any clustering algorithm and for any X ,
d, and w, let A(X , d, w) = (C,Φ). A satisfies noise-removal-invariance if A(X \ Φ, d, w) =

(C, ∅).

Removing points from a set has the same effect as reducing their weights to zero. Therefore,
noise-removal-invariance can be viewed as an extreme case of noise-weight-removal.

Theorem 2.7 shows that the (k, g)-δ-truncated algorithm satisfies cluster-weight-scalability
and noise-weight-scalability. Theorem 2.8 shows that the (k, g)-δ-truncated algorithm possesses
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Figure 2.4: (k, g)-δ-naive-truncated does not satify noise-removal-invariance

a much stronger property than noise-removal-invariance: Removing any subset of the noise clus-
ter does not change the clustering on the rest of the data. Therefore, Corollary 2.1 shows that
the (k, g)-δ-truncated algorithm satisfies noise-removal-invariance. On the other hand, the fol-
lowing examples show that the (k, g)-δ-naive-truncated algorithm does not satisfy noise-weight-
scalability, cluster-weight-scalability, or noise-removal-invariance, when g is homogeneous.

Example 3. For any δ and any homogeneous function g, let A be the (1, g)-δ-naive-truncated
algorithm. Let E = {x, p, y, z}, x = 0, p = δ, y = 2δ, z = 3δ, and distance measure d be the
absolute value of the difference between the elements of E. Let r be the degree of homogeneity
of g, i.e. g(αx) = αrg(x). Let X = {x, y, z} and w(x) = 2r and w(y) = w(z) = 1 (see Figure
2.4). Then the cost of different clusterings are as follows:

w(x)g(δ) + w(y)g(δ) + w(z)g(2δ) < w(x)g(2δ) + g(δ)

Λg
X ,d,w(p) < Λg

X ,d,w(y)

w(x)g(δ) + w(y)g(δ) + w(z)g(2δ) < w(y)g(2δ) + w(z)g(3δ)

Λg
X ,d,w(p) < Λg

X ,d,w(x)

Therefore, A(X , d, w) = ({{x, y}}, {z}). Let α < 1
3r−2r

, and w′(z) = αw(z), w′(x) = w(x),
and w′(y) = w(y). However,

w′(x)g(δ) + w′(y)g(δ) + w′(z)g(2δ) > w′(y)g(2δ) + w′(z)g(3δ)

Λg
X ,d,w′(p) > Λg

X ,d,w′(x)

Therefore, A(X , d, w′) = ({{x}}, {y, z}). Hence A does not satisfy noise-weight-scalability. A
satisfies weight-scalability, using Lemma 2.1, A does not satisfy cluster-weight-scalability.
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Example 4. Let X , d, and w be defined as in Example 3. Then, A(X , d, w) = ({{x, y}}, {z}).
However,

2rg(δ) < 2rg(δ) + g(δ)

w(y)g(2δ) < w(x)g(δ) + w(y)g(δ)

Λg
X\{z},d,w(x) < Λg

X\{z},d,w(p)

So, A(X \ {z}, d, w) = ({{x}}, {y}). Hence, A does not satisfy noise-removal-invariance.

Using k well-separated copies of the above structures, we can generalize Examples 3 and 4
to hold for any k clusters, for k ≥ 1.

Similarly, the (k, g)-η-trimmed algorithm does not satisfy cluster-weight-scalability,
noise-weight-scalability, or noise-removal-invariance. The (k, g)-η-trimmed algorithm finds a
clustering of a fixed signal-to-noise ratio. However, removing the noise points from a clustering
changes this ratio, as a result, it changes the clustering. The next examples display the lack of
cluster-weight-scalability, noise-weight-scalability and noise-removal-invariance in the (k, g)-η-
trimmed algorithm for any η > 0.

Example 5. For any g, η > 0 and an arbitrary 0 < α ≤ 1, let A be the (1, g)-η-trimmed
clustering. Let X = E be any set of 1

η(1−η)+αη2−αη unique points in R2 and let d be the Euclidean
distance between them. For any x ∈ X , let w(x) = 1 and w(X ) = 1

η(1−η)+αη2−αη . Assume that
A(X , d, w) = ({X ′},X \ X ′). Let w′(x) = w(x) for x ∈ X ′, and w′(x) = αw(x) otherwise.
For every x ∈ X ′,

w′(x) + w′(X \ X ′)
w′(X )

≤ w(x) + αηw(X )

(1− η)w(X ) + αηw(X )
≤ η

Therefore, there exists x ∈ X ′, such that A(X , d, w) = ({X ′ \ {x}}, {x} ∪ X \ X ′). Hence A
does not satisfy noise-weight-scalability. Since, A satisfies weight-scalability, using Lemma 2.1,
A does not satisfy cluster-weight-scalability.

Example 6. Let X , d, w, be as in Example 5, |X | = 1
η(1−η)

, and A(X , d, w) = ({X ′},X \ X ′).
Then for every x ∈ X ′,

w(x)

w(X ′)
≤ w(x)

(1− η)w(X )
≤ η
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Therefore, there exists x ∈ X ′ that would be clustered as noise in A(X ′, d, w). Hence A does
not satisfy noise-removal-invariance.

Using k well-separated copies of the above structures, we can generalize Examples 5 and 6
to hold for any number of clusters, k ≥ 1.

Corollaries 2.2 and 2.3 respectively show that (ε,minPts)-DBScan satisfies noise-weight-
scalability and noise-removal-invariance. On the other hand, Example 2 shows that for any ε and
minPts, (ε,minPts)-DBScan does not satisfy cluster-weight-scalability.

2.4.3 Properties Pertaining to the Distance of the Noise

In this section, we introduce properties that address an invariance in the output of clustering
algorithms when the noise points are scattered in the space. Noise is often a structure-less set of
data points. Moving the noise points farther from each other and the clustered data reduces the
significance of any existing patterns in the noise cluster, hence, it decreases the effect of the noise
points on the clustering. Therefore, it may be desirable that the outcome of a clustering algorithm
with a noise cluster would remain invariant when such changes are applied to the noise.

Definition 2.11 (Noise-Scatter-Invariance). Let A be any clustering algorithm and for any X
in space E, d1, and w, let A(X , d1, w) = (C,Φ). A satisfies noise-scatter-invariance if for
any d2, such that d2(x, y) = d1(x, y) for x, y ∈ E \ Φ, and d2(x, y) ≥ d1(x, y) otherwise,
A(X , d2, w) = A(X , d1, w).

Noise-scatter-invariance considers a setting where the distance between any two non-noise
points remain the same, but other distance measurements can be increased in any manner. While
(k, g)-δ-truncated, (k, g)-η-trimmed, and (ε,minPts)-DBScan satisfy noise-scatter-invariance
(see Theorems 2.10, 2.11, and 2.12, respectively), noise-scatter-invariance has some counter-
intuitive consequences. For example, if the noise cluster is moved farther from the clustered
data, while the distance between the noise points remain unchanged, the noise points will be
well-separated from the clustered data and perhaps should be considered as a proper cluster (see
Figure 2.5). To avoid this situation, we define a weaker property, noise-dispersion-invariance,
which suggests that the outcome of clustering algorithms should remain unchanged when the
distance measure involving every noise point is scaled uniformly.
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Figure 2.5: Noise-scatter-invariance is not a suitable criteria for evaluating clustering algorithms
that have a noise cluster. The dotted circles demonstrate the clusters and the noise cluster is made
of points that do not belong to any clusters.

Definition 2.12 (Noise-Dispersion-Invariance). Let A be any clustering algorithm and for any
X in space E, d1, and w, let A(X , d1, w) = (C,Φ). A satisfies noise-dispersion-invariance if
for any α ≥ 1 and d2, such that d2(x, y) = d1(x, y) for x, y ∈ E \ Φ, and d2(x, y) = αd1(x, y)

otherwise, A(X , d2, w) = A(X , d1, w).

Since noise-dispersion-invariance is implied by noise-scatter-invariance, (k, g)-δ-truncated,
(k, g)-η-trimmed, and (ε,minPts)-DBScan satisfy noise-dispersion-invariance. On the other
hand, the (k, g)-δ-naive-truncated algorithm does not satisfy noise-dispersion-invariance. The
centers of the optimal (k, g)-δ-naive-truncated clustering are calculated before the noise points
are identified. Therefore, the position of noise points affects the structure of the clustering. The
following example displays the lack of noise-dispersion-invariance for any (k, g)-δ-truncated
algorithm, when g is homogeneous. Note that many of the commonly used function are
homogeneous, e.g. g(x) = x and g(x) = x2.

Example 7. For any δ and any homogeneous function g, let A be the (1, g)-δ-naive-truncated
algorithm. Let E = {x, p, q, y}, x = 0, p = δ, q = 2δ, y = 3δ, and distance measure d be the
absolute value of the difference between the elements of E. Let r be the degree of homogeneity
of g. Let X = {x, y} and let 3r − 2r > w(x)

w(y)
.

w(x)g(δ) + w(y)g(2δ) < w(x)g(2δ) + w(y)g(δ)

Λg
X ,d1,w(p) < Λg

X ,d1,w(q)
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Figure 2.6: An example demonstrating noise-scatter-invariance of (k, g)-δ-truncated
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w(x)g(δ) + w(y)g(2δ) < w(y)g(3δ)

Λg
X ,d1,w(p) < Λg

X ,d1,w(x)

Therefore, A(X , d1, w) = ({{x}}, {y}). Let α > r

√
w(x)
w(y)

. Then

w(x)g(δ) + w(y)g(α · 2δ) > w(x)g(2δ) + w(y)g(α · δ)
Λg
X ,d2,w(p) > Λg

X ,d2,w(q)

w(y)g(α · 3δ) > w(x)g(2δ) + w(y)g(α · δ)
Λg
X ,d2,w(x) > Λg

X ,d2,w(q)

Therefore,A(X , d2, w) = ({{}}, {x, y}). HenceA does not satisfy noise-dispersion-invariance.

Using k well-separated copies of the above structure, we can generalize Example 7 to hold
for any number of clusters, k ≥ 1.

2.4.4 Properties Pertaining to the Range of an Algorithm

In this section, we propose properties that examine the richness of the range of clustering
algorithms. Let A be a clustering algorithm that ignores its input and returns a constant
clustering. Then A satisfies all the scalability and invariance properties discussed
in the previous sections. However, the range of A is not rich enough to represent the structure
of any data set. To avoid this problem, we expect the range of a desirable clustering algorithm
to include clusterings where each point is clustered as noise and as part of a (traditional) cluster.
We introduce two properties, cluster-richness and noise-richness. In the former, given X and d,
for any point x∗, we examine the existence of a weight function that results in x∗ being clustered.
In the latter, we examine the existence of a weight function that leads to x∗ being assigned to the
noise cluster.

Definition 2.13 (Cluster-Richness). A clustering algorithmA satisfies cluster-richness if for any
X and d, and any x ∈ X , there exists a weight function w, such that 0 < w(x) < w(X ) and if
A(X , d, w) = (C,Φ), then x ∈

⋃
C.
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Theorems 2.13, 2.14, 2.15, and 2.16, show that all the clustering algorithms used in this work
satisfy cluster-richness.

Definition 2.14 (Noise-Richness). A clustering algorithmA satisfies noise-richness if for any X
and d, and any x ∈ X , there exists a weight function w, such that 0 < w(x) < w(X ) and if
A(X , d, w) = (C,Φ), then x ∈ Φ.

Theorems 2.17 and 2.18 show that the (k, g)-η-trimmed and (ε,minPts)-DBScan algorithms
satisfy noise-richness. On the other hand, the (k, g)-δ-truncated and (k, g)-δ-naive-truncated
algorithms do not satisfy noise-richness. This is due to the fact that in these algorithms the
distance between noise points and potential cluster centers is bounded below by δ. Therefore, in
a space where all points are close to potential cluster centers, the (k, g)-δ-truncated and (k, g)-
δ-naive-truncated algorithms can not find any noise. Example 8 demonstrates this lack of noise-
richness in the (k, g)-δ-truncated and (k, g)-δ-naive-truncated algorithms.

Example 8. For any k, g, and δ, let A be the (k, g)-δ-truncated or (k, g)-δ-naive-truncated
algorithm. Let X and d be such that diam(X ) < δ. Since, the center of any cluster is within
its convex hull, for any center of the optimal clustering, µ, and for any x ∈ X , d(µ, x) ≤
diam(X ) < δ. Hence, x is not noise. Therefore, A does not satisfy noise-richness.

2.4.5 Computational Feasibility of Clustering Algorithms

An important aspect of a clustering algorithm with a noise cluster is its computational feasibility
for clustering large amount of data. However, even in the setting of clustering without a noise
cluster, many objective-based clustering costs are NP-hard to optimize, e.g. k-means [7]. We
are interested in drawing a comparison between the clustering algorithms with a noise cluster
and comparing their efficiency to that of clustering algorithms without a noise cluster. Hence,
examining their absolute computational complexity does not provide an informative comparison.
Here, we examine the efficiency of clustering algorithms assuming we have access to an oracle
that computes a (k, g)-centroid clustering.

Given X , d, and w, the (k, g)-δ-truncated algorithm optimizes the value of Λg
X ,d′,w. This is

equivalent to optimizing the (k, g)-centroid objective function for input X , d′, and w, where
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d′(x, y) = min{δ, d(x, y)}. Similarly, the (k, g)-δ-naive-truncated algorithm for X , d, and
w makes a single call to the (k, g)-centroid oracle with input X , d, and w, and then removes
points that are farther than δ from their corresponding centers. Therefore, the (k, g)-δ-truncated
and (k, g)-δ-naive-truncated algorithms each make a single call to the (k, g)-centroid oracle, so
they are as efficient as our oracle. On the other hand, the (k, g)-η-trimmed algorithm optimizes
the (k, g)-centroid cost over all X ′ ⊆ X , such that w(X ) ≥ (1 − η)w(X ′). The brute-force
approach for minimizing this objective function makes one call for each such X ′, making a
total of O(|X |(1−η)|X |) calls to our oracle. We are not aware of any algorithm that optimizes
this objective function using a number of calls to our oracle that is polynomial with respect to
|X |. Therefore, we consider (k, g)-η-trimmed to be computationally infeasible compared to our
oracle.

DBScan is not an objective-based algorithm, therefore, we can not use the above efficiency
model. In settings where region queries (for example computing an ε-neighbourhood) are done
quickly, (ε,minPts)-DBScan is efficient. Moreover, experiments on real and synthetic data have
demonstrated the efficiency of (ε,minPts)-DBScan for clustering large amount of data [11].

2.4.6 Proofs of Results Pertaining to the Properties

Lemma 2.2. For any X , distance measure d, and weight function w, α > 0, and µ1, . . . , µk,

Λg
X ,d,αw(µ1, . . . , µk) = αΛg

X ,d,w(µ1, . . . , µk)

Proof. Using the definition of Λg
X ,d,αw(µ1, . . . , µk),

Λg
X ,d,αw(µ1, . . . , µk) =

∑

x∈X

αw(x) min
i∈[k]
{g(d(x, µi))}

= α
∑

x∈X

w(x) min
i∈[k]
{g(d(x, µi))}

= αΛg
X ,d,w(µ1, . . . , µk)

Theorem 2.3. For any k, function g, and δ, the (k, g)-δ-truncated algorithm satisfies weight-
scalability.
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Proof. Let A be the (k, g)-δ-truncated algorithm and A(X , d, αw) = (C,Φ). Let µ∗1, . . . , µ
∗
k be

the centers of (C,Φ). For any µ′1, . . . , µ
′
k, we have

Λg
X ,d,αw(µ∗1, . . . , µ

∗
k) = αΛg

X ,d′,w(µ∗1, . . . , µ
∗
k) (2.2)

≤ αΛg
X ,d′,w(µ′1, . . . , µ

′
k)

≤ Λg
X ,d′,αw(µ′1, . . . , µ

′
k) (2.3)

where, Equation 2.2 and 2.3 hold using Lemma 2.2 with distance function d′. So,A(X , d, αw) =

(C,Φ). Therefore, A satisfies weight-scalability.

Theorem 2.4. For any k, function g, and δ, the (k, g)-δ-naive-truncated algorithm satisfies
weight-scalability.

Proof. Let A be the (k, g)-δ-naive-truncated algorithm, and A(X , d, αw) = (C,Φ) with centers
µ∗1, . . . , µ

∗
k. For any µ′1, . . . , µ

′
k, we have

Λg
X ,d,αw(µ∗1, . . . , µ

∗
k) = αΛg

X ,d,w(µ∗1, . . . , µ
∗
k)

≤ αΛg
X ,d,w(µ′1, . . . , µ

′
k)

≤ Λg
X ,d,αw(µ′1, . . . , µ

′
k)

Hence, A(X , d, αw) = (C,Φ). Therefore, A satisfies weight-scalability.

Theorem 2.5. For any k, objective function g, and η ≤ 1, the (k, g)-η-trimmed algorithm satis-
fies weight-scalability.

Proof. Let A be the (k, g)-η-trimmed algorithm. For any X and w1, let X ∗ ⊆ X and µ∗1, . . . , µ
∗
k

be defined by the optimal clustering of A(X , d, w1) = (C,Φ). In other words,

(X ∗, (µ∗1, . . . , µ∗k) : argmin
X ′⊆X :w1(X ′)≥(1−η)w1(X )

µ1,...,µk∈E

Λg
X ′,d,w1

(µ1, . . . , µk)

For any α > 0, let w2 = αw1. For any X ′ ⊆ X , if w2(X ′) ≥ (1 − η)w2(X ), then w1(X ′) ≥
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(1− η)w1(X ). Hence, for any X ′ ⊆ X , such that w2(X ′) ≥ (1− η)w2(X ), and any µ′1, . . . , µ
′
k.

Λg
X ∗,d,w2

(µ∗1, . . . , µ
∗
k) = αΛg

X ∗,d,w1
(µ∗1, . . . , µ

∗
k)

≤ αΛg
X ′,d,w1

(µ′1, . . . , µ
′
k)

≤ αΛg

X ′,d, 1
α
w2

(µ′1, . . . , µ
′
k)

≤ Λg
X ′,d,w2

(µ′1, . . . , µ
′
k)

Therefore, A(X , d, w2) = (C,Φ). So A satisfies weight-scalability.

Theorem 2.6. For any k, homogeneous function g, and η ≤ 1, the (k, g)-η-trimmed algorithm
satisfies distance-scalability.

Proof. Let p be the degree of the homogeneous function g, i.e. g(αx) = apg(x). Let A be the
(k, g)-η-trimmed algorithm. For anyX , d, andw, letX ∗ ⊆ X and µ∗1, . . . , µ

∗
k be the centers of the

optimal clustering of A(X , d, w) = (C,Φ). For any X ′ ⊆ X , such that w(X ′) ≥ (1 − η)w(X ),
any µ′1, . . . , µ

′
k, and α > 0,

Λg
X ∗,αd,w(µ∗1, . . . , µ

∗
k) =

∑

x∈X

w(x) min
i∈[k]
{g(αd(x, µ∗i ))}

= αp
∑

x∈X

w(x) min
i∈[k]
{g(d(x, µ∗i ))}

= αp
∑

x∈X

w(x) min
i∈[k]
{g(d(x, µ′i))}

≤
∑

x∈X

w(x) min
i∈[k]
{g(αd(x, µ′i))}

≤ Λg
X ,αd,w(µ′1, . . . , µ

′
k)

Therefore, A(X , αd, w) = (C,Φ). So A satisfies distance-scalability.

Theorem 2.7. For any k, function g, and δ, the (k, g)-δ-truncated algorithm satisfies cluster-
weight-scalability and noise-weight-scalability.

Proof. Let A be the (k, g)-δ-truncated algorithm. For any X , d, and w1, let A(X , d, w1) =

(C,Φ). For any 0 < α ≤ 1, let w2(x) = αw1(x) if x ∈ Φ, and w2(x) = w1(x), otherwise. For
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any clustering (C ′,Φ′), let µ′(x) be the closest center of C to x.

Λg
d′,w2

(C ′,Φ′) =
∑

x∈X\Φ

w2(x)g(d′(x, µ′(x))) +
∑

x∈Φ

w2(x)g(d′(x, µ′(x)))

=
∑

x∈X\Φ

w1(x)g(d′(x, µ′(x))) +
∑

x∈Φ

αw1(x)g(d′(x, µ′(x)))

+ Λg
d′,w2

(C,Φ)− Λg
d′,w1

(C, ∅)− αw1(Φ)g(δ) (2.4)

=
∑

x∈X\Φ

w1(x)g(d′(x, µ′(x)))− Λg
d′,w2

(C, ∅)

+ α

(∑

x∈Φ

w1(x)g(d′(x, µ′(x)))− w1(Φ)g(δ)

)
(2.5)

+ Λg
d′,w2

(C,Φ)

≥
∑

x∈X\Φ

w1(x)g(d′(x, µ′(x)))− Λg
d′,w1

(C, ∅)

+
∑

x∈Φ

w1(x)g(d′(x, µ′(x)))− w1(Φ)g(δ) + Λg
d′,w2

(C,Φ)

≥

(∑

x∈X

w1(x)g(d′(x, µ′(x)))− Λg
d′,w1

(C,Φ)

)
+ Λg

d′,w2
(C,Φ) (2.6)

≥Λg
d′,w2

(C,Φ) (2.7)

Where Equation 2.4 holds from the definition of Λg
d′,w2

(see Equation 2.1). Since, d′(x, y) ≤ δ

for all x, y ∈ X , the bracketed value in Equation 2.5 is non-positive, therefore, the inequality
is obtained through division by 0 < α ≤ 1. Equation 2.6 holds by the optimality of (C,Φ)

for A(X , d, w1). Equation 2.7 shows that A(X , d, w2) = (C,Φ). Therefore, A satisfies noise-
weight-scalability. Since A satisfies weight-scalability (see Theorem 2.3), Lemma 2.1 shows
that A also satisfies cluster-weight-scalability.

Theorem 2.8. For any k, function g, and δ, let A be the (k, g)-δ-truncated algorithm and
A(X , d, w) = (C,Φ). For any Φ̄ ⊆ Φ, A(X \ Φ̄, d, w) = (C,Φ \ Φ̄).
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Proof. Assume on the contrary thatA(X\Φ̄, d, w) = (C ′,Φ′) and Λg
d′,w(C ′,Φ′) < Λg

d′,w(C,Φ\Φ̄).

Λg
d′,w(C ′,Φ′ ∪ Φ̄) = Λg

d′,w(C ′,Φ′) + g(δ)w(Φ̄)

< Λg
d′,w(C,Φ \ Φ̄) + g(δ)w(Φ̄)

< Λg
d′,w(C,Φ)

This forms a contradiction. Therefore, A(X \ Φ̄, d, w) = (C,Φ \ Φ̄).

Corollary 2.1. For any k, function g, and δ, the (k, g)-δ-truncated algorithm satisfies noise-
removal-invariance.

Proof. Directly from Theorem 2.8 for Φ̄ = Φ.

Theorem 2.9. For any ε and minPts, let A be (ε,minPts)-DBScan and for any X , d, and w1,
let A(X , d, w1) = (C,Φ). For any 0 ≤ α ≤ 1 and w2, such that w2(x) = αw1(x) if x ∈ Φ,
and w2(x) = w1(x), otherwise, and for any x, y ∈ X , x is density-reachable from y in X with
weights w1 if and only if it is density-reachable from y in X with weights w2.

Proof. Assume x is density-reachable from y inX with weightsw1 with respect to ε andminPts.
There is a path y = p0, p1, . . . , pn = x, such that for all i < n, w1(Nε(pi)) ≥ minPts and for
all i > 0, pi ∈ Nε(pi−1). For any pi such that w1(Nε(pi)) ≥ minPts, Nε(pi) ⊆

⋃
C, so for

all q ∈ Nε(pi), w2(q) = w1(q). So, for all i > 0, w2(Nε(pi)) ≥ minPts. Therefore, x is
density-reachable from y in X with weights w2 with respect to ε and minPts.

For all x ∈ X , w2(x) ≤ w1(x), therefore, w2(Nε(x)) ≤ w1(Nε(x)). Assume x is density-
reachable from y in X with weights w2 with respect to ε and minPts. There is a path y =

p0, p1, . . . , pn = x, such that for all i < n, w1(Nε(pi)) ≥ w2(Nε(pi)) ≥ minPts and for all
i > 0, pi ∈ Nε(pi−1). Therefore, x is density-reachable from y in X with weights w1 with
respect to ε and minPts.

Corollary 2.2. For any ε and minPts, (ε,minPts)-DBScan satisfies noise-weight-scalability.

Proof. For any X , d, and w1, let A(X , d, w1) = (C,Φ). For any α ≤ 1 and w2, such that
w2(x) = αw1(x) if x ∈ Φ, and w2(x) = w1(x) otherwise, by Theorem 2.9, for any x, y ∈ X ,
x is density-reachable from y in X and w1 if and only if it is density-reachable from y in X and
w2. Therefore, A(X , d, w1) = A(X , d, w2).
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Corollary 2.3. For any ε and minPts, (ε,minPts)-DBScan satisfies noise-removal-invariance.

Proof. Similar to Corollary 2.2 with α = 0.

Lemma 2.3. For any k, function g, set X , distance functions d1 and d2, and weight function w,
such that for all x, y ∈ X , d1(x, y) ≤ d2(x, y), and any µ1, . . . , µk,

Λg
X ,d1,w(µ1, . . . , µk) ≤ Λg

X ,d2,w(µ1, . . . , µk)

Proof. Using the definition of Λg
X ,d1,w(µ1, . . . , µk),

Λg
X ,d1,w(µ1, . . . , µk) =

∑

x∈X

w(x) min
i∈[k]

g(d1(x, µi))

≤
∑

x∈X

w(x) min
i∈[k]

g(d2(x, µi))

≤ Λg
X ,d2,w(µ1, . . . , µk)

Theorem 2.10. For any k, function g, and δ, the (k, g)-δ-truncated algorithm satisfies noise-
scatter-invariance.

Proof. Let A be the (k, g)-truncated algorithm and for X ⊆ E, d1, and w, let A(X , d1, w) =

(C,Φ) with centers µ∗1, . . . , µ
∗
k. Let d2 be such that d2(x, y) = d1(x, y) if x, y ∈ E \ Φ, and

d2(x, y) ≥ d1(x, y) otherwise. For any µ′1, . . . , µ
′
k,

Λg
X ,d′2,w

(µ∗1, . . . , µ
∗
k) =

∑

x 6∈Φ

w(x) min
i∈[k]

g(d′2(x, µ∗i )) + w(Φ)g(δ)

=
∑

x 6∈Φ

w(x) min
i∈[k]

g(d′1(x, µ∗i )) + w(Φ)g(δ)

≤ Λg
X ,d′1,w

(µ′1, . . . , µ
′
k)

≤ Λg
X ,d′2,w

(µ′1, . . . , µ
′
k)

Where the last inequality holds by Lemma 2.3. Hence, A(X , d2, w) = (C,Φ). Therefore, A
satisfies noise-scatter-invariance.
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Theorem 2.11. For any k, function g, and η ≤ 1, the (k, g)-η-trimmed algorithm satisfies noise-
scatter-invariance.

Proof. Let A be the (k, g)-η-trimmed algorithm. For any X ⊆ E, w, and d, let X ∗ ⊆ X and
µ∗1, . . . , µ

∗
k be defined by the optimal clustering of A(X , d1, w) = (C,Φ). In other words,

(X ∗, (µ∗1, . . . , µ∗k)) = argmin
X ′⊆X :w1(X ′)≥(1−η)w1(X )

µ1,...,µk∈E

Λg
X ′,d,w1

(µ1, . . . , µk)

Let d2 be such that d2(x, y) = d1(x, y) if x, y ∈ X ∗, and d2(x, y) ≥ d1(x, y) otherwise. For any
µ′1, . . . , µ

′
k and X ′, such that w(X ′) ≥ (1− η)w(X ),

Λg
X ∗,d2,w(µ∗1, . . . , µ

∗
k) =

∑

x∈X ∗
w(x) min

i∈[k]
g(d2(x, µ∗i ))

=
∑

x∈X ∗
w(x) min

i∈[k]
g(d1(x, µ∗i ))

≤ Λg
X ∗,d1,w(µ∗1, . . . , µ

∗
k)

≤ Λg
X ′,d1,w(µ′1, . . . , µ

′
k)

≤ Λg
X ′,d2,w(µ′1, . . . , µ

′
k)

Where the last inequality holds by Lemma 2.3. Hence, A(X , d2, w) = (C,Φ). Therefore, A
satisfies noise-scatter-invariance.

Theorem 2.12. For any ε and minPts, (ε,minPts)-DBScan satisfies noise-scatter-invariance.

Proof. Let A be (ε,minPts)-DBScan and A(X , d1, w) = (C,Φ). Let d2 be any function such
that d2(x, y) ≥ d1(x, y) for x, y ∈ Φ, and d2(x, y) = d1(x, y), otherwise. We will show that for
any x, y ∈ X , x is density-reachable from y in X , d1, and w, if and only if it is density-reachable
from y in X , d2, and w.

Let N1
ε (x) and N2

ε (x) denote the ε-neighbourhood of x in (X , d1, w) and (X , d2, w),
respectively. Assume x is density-reachable from y in (X , d1, w) with respect to ε and minPts.
There is a path y = p0, p1, . . . , pn = x, such that for all i < n, w(N1

ε (pi)) ≥ minPts and for all
i > 0, pi ∈ N2

ε (pi−1). For any pi such that w(N1
ε (pi)) ≥ minPts, N1

ε (pi) ⊆
⋃
C, hence, for all
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i > 0, w(N2
ε (pi)) = w(N1

ε (pi)) ≥ minPts. Therefore, x is density-reachable from y using d2

with respect to ε and minPts.

For all x ∈ X , d2(x, y) ≥ d1(x, y), therefore, N2
ε (x) ⊆ N1

ε (x). Assume x is density-
reachable from y in X , d2, and w with respect to ε and minPts. There is a path y = p0, p1, . . . ,

pn = x, such that for all i < n, w(N1
ε (pi)) ≥ w(N2

ε (pi)) ≥ minPts and for all i > 0,
pi ∈ N2

ε (pi−1) ⊆ N1
ε (pi−1). Therefore, x is density-reachable from y in X , d and w with respect

to ε and minPts.

Since for any x, y ∈ X the density-reachability does not change, the clustering stays the
same. Therefore, A satisfies noise-scatter-invariance.

Theorem 2.13. For any k > 1, function g, and δ, the (k, g)-δ-truncated algorithm satisfies
cluster-richness.

Proof. For any k, function g, and δ, let A be the (k, g)-δ-truncated algorithm. Choose an arbi-
trary ε < 1

2
, and for a given x∗ ∈ X and d, choose w such that w(x∗) = 1

2
+ ε and for x 6= x∗,

w(x) = 1/2−ε
|X|−1

. Let A(X , d, w) = (C,Φ) and let (C ′,Φ′) be any clustering with one center on x∗.
Assume on the contrary that x∗ ∈ Φ.

Λg
X ,d′,w(C,Φ) ≥ w(x∗)g(δ) > w(X \ {x∗})g(δ) ≥ Λg

X ,d′,w(C ′,Φ′)

Contradiction, hence, x∗ ∈
⋃
C and A satisfies cluster-richness.

Theorem 2.14. For any k, function g, and δ, the (k, g)-δ-naive-truncated algorithm satisfies
cluster-richness.

Proof. For any k, function g, and δ, let A be the (k, g)-δ-naive-truncated algorithm. For a given
x∗ ∈ X and d, choose w such that w(x∗) =

∑
x 6=x∗ g(d(x,x∗))

g(δ)
+ 1, and w(x) = 1, for x 6= x∗. Let

A(X , d, w) = (C,Φ) and let (C ′,Φ′) be any clustering with one center on x∗. Assume on the
contrary that x∗ ∈ Φ.

Λg
d,w(C,Φ) ≥ w(x∗)g(δ)

>
∑

x 6=x∗
g(d(x, x∗))

> Λg
X ,d,w(x∗, µ2, . . . , µk)

> Λg
d,w(C ′,Φ′)
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Contradiction, hence, x∗ ∈
⋃
C and A satisfies cluster-richness.

Theorem 2.15. For any k, function g, and η < 1, the (k, g)-η-trimmed algorithm satisfies
cluster-richness.

Proof. For any k, function g, and η, let A be the (k, g)-η-trimmed algorithm. Given x∗ ∈ X ,
choose w such that w(x∗) = η(|X |−1)

1−η + 1 and w(x) = 1 for x 6= x∗. Since w(x∗) > ηw(X ), x∗

can not be clustered as noise. Therefore, A satisfies cluster-richness.

Theorem 2.16. For any ε and minPts, (ε,minPts)-DBScan satisfies cluster-richness.

Proof. For any ε and minPts, let A be (ε,minPts)-DBScan. Given x∗ ∈ X , choose w such
that w(x∗) = minPts. Since w(Nε(x

∗)) ≥ minPts, x∗ is clustered. Therefore, A satisfies
cluster-richness.

Theorem 2.17. For any k, function g, and η > 0, the (k, g)-η-trimmed algorithm satisfies noise-
richness.

Proof. For any k, g, and η < 1, let A be the (k, g)-η-trimmed algorithm. Given x∗ ∈ X and
distance d, if |X | > 2, then choose an arbitrary ε < η and choose w such that w(x∗) = η − ε,
w(x′) = 1 − η for an arbitrary x′ ∈ X , and w(x) = ε

|X |−2
otherwise. If |X | = 2, let w(x∗) = η

and w(x′) = 1−η. Note that such x′ exists because 1 ≤ k < |X |. Then Λg
{x′},d,w(x′, . . . , µk) = 0

and w({x′}) ≥ (1− η)w(X ). Hence x∗ is clustered as noise and A satisfies noise-richness.

Theorem 2.18. For any ε and minPts > 0, (ε,minPts)-DBScan satisfies noise-richness.

Proof. For any ε and minPts > 0, let A be (ε,minPts)-DBScan. For any x ∈ X , let w(x) =
minPts
|X |+1

. Since w(X ) < minPts, w(Nε(x)) < minPts for all x ∈ X . Hence, A(X , d, w) =

({},X ). Therefore, A satisfies noise-richness.

2.5 Conclusions

In this chapter we developed a formalism for clustering that has a designated noise cluster. We
proposed properties that evaluate the input-output behaviour of clustering algorithms that have
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a noise cluster. These properties addressed the richness of the range of clustering algorithms,
their invariance with respect to various changes in the original data set, and their computational
feasibility compared to that of clustering algorithms without a noise cluster.

We presented four clustering algorithms with a noise cluster. We extended and generalized
the definition of trimmed algorithms, introduced by Cuesta-Albertos et al. [6], and DBScan,
introduced by Ester et al. [11]. Furthermore, we introduced two new algorithms, (k, g)-δ-
truncated and (k, g)-δ-naive-truncated, and showed that the former is equivalent to a generalized
non-fuzzy variation of an algorithm introduced by Dave [8].

We examined the above mentioned algorithms with respect to our proposed properties. Our
analysis showed that (k, g)-δ-truncated and (ε,minPts)-DBScan, on top of being efficient,
possess the most number of desirable properties. On the other hand, the (k, g)-η-trimmed
algorithm not only lacks many desirable properties, but is also not efficient. We also observed
that the set of desirable properties satisfied by (k, g)-δ-naive-truncated is a strict subset of those
satisfied by (k, g)-δ-truncated.
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Chapter 3

Adding Robustness to Centroid-Based
Algorithms

3.1 Introduction

Presence of significant amount of unstructured data tends to disrupt clustering algorithms and
make it difficult to detect the cluster structure of the remaining domain points. This problem
is commonly referred to as the issue of noise robustness. The first question in this context is
whether there are useful clustering algorithms that are noise robust. Short reflection reveals that
the noise robustness of an algorithm is closely related to its sensitivity to the input data. As an
extreme example, it is easy to achieve noise robustness by ignoring the input data and always
returning a fixed output. For clustering algorithms, Ackerman et al. [4] provide some formal
trade-offs between these two desired properties. Roughly stated, their results (for example, their
Theorem 4.3) show that no algorithm can be both noise robust and responsive to cluster structure
in the data (in the language of Ackerman et al. [4] these properties are called robustness to
oligarchies and separability-detecting). However, those results consider applying an algorithm
with a fixed number-of-clusters parameter. This chapter addresses the possibility of overcoming
those pessimistic results by allowing clustering algorithms to add to the set of clusters they output
one or more clusters, serving as “noise collectors”.
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An important aspect of clustering, which distinguishes it from major other learning tasks,
like classification prediction, is the wide variability of input-output behavior among common
clustering algorithms. In fact, clustering can be viewed as an umbrella term for a wide range of
different sub-tasks. Different clustering applications employ very different clustering algorithms
and there is no single clustering algorithm that is suitable for all clustering applications. Conse-
quently, solutions to fundamental clustering challenges, like the trade-off between sensitivity to
the input and noise-robustness, should be modular in the sense of being applicable to a variety
of clustering algorithms. In this chapter, we propose such a modular solution. We consider a
method to transform any centroid-based clustering algorithm to a noise-robust one without sac-
rificing much of its ability to detect clear cluster structures. The degree of noise-robustness that
such transformations achieve depends on a parameter that can be tuned by the user, depending
upon the level and properties of the noise expected in the input data. We refer to the methods
that add robustness to clustering algorithms as “robustifying methods”.

Another critical feature of clustering algorithms is their computational complexity. Cluster-
ing is often applied to very large data sets and, therefore, the scalability of proposed clustering
tools is a crucial factor. Regrettably, some natural solutions to the noise-robustness challenge
are inherently computationally inefficient. This is the case, for example, with the Trimmed-k-
means paradigm [6, 13] (as discussed in Chapter 2) that proposes to find the “least structured” η
fraction of an input data set and discard it before applying a clustering algorithms (see Section
3.2 for more details). In contrast, our proposed paradigm employs a simple and efficiently imple-
mentable transformation of the input data, after which users can apply their favourite clustering
algorithm. As mentioned above, the degree of noise-robustness achieved by this procedure is
determined by a user-tunable parameter.

Yet another contribution of this chapter is the introduction of rigorous measures of noise-
robustness. We consider three aspects of noise robustness for centroid-based clustering algo-
rithms; the degree by which noise can affect the location of the centers of the clusters (or the
archetypal cluster representatives), the effect of noise on the cost of the clustering solution (or,
the value of the clustering objective function) and the similarity between the clustering of the
un-noised data, to its clustering in the presence of the noise. More concretely, we consider a
scenario in which the input data set X consists of two parts, the original input I and an added
noise set X \ I (the identity of which is not known to the clustering algorithm), and two clus-
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tering algorithms, the original one, A, and its “robustified” transformation Rp(A) (where p is a
noise-level parameter set by the user). We compare the clusteringA(I), to the clustering induced
on I when the algorithm Rp(A) is applied to X , in terms of the three aspects mentioned above.

Our results consider to what extent clusterability of I and mildness properties of X \ I (in
terms of the size and/or diameter of this set, relative to that of I) affect the above mentioned
similarity measures between the clusterings A(I) and Rp(A)(X ) restricted to I. We compare
the behavior, in that respect, of our proposed robustifying paradigm with the behavior of the
simple transformation in which Rp(A) is the original algorithm A with an increased number
of output clusters. We prove that our proposed paradigm has indeed better noise-robustness
performance (with respect to those measures).

This chapter is organized as follows. In section 3.2, we provide a summary of related work.
Section 3.3 introduces notations and definitions that are used in the rest of this chapter. Section
3.4 introduces two clustering paradigms and discusses how they relate to existing algorithms.
In section 3.5, we define new measures of robustness and examine some previous measures of
robustness and results pertaining to them. In section 3.6, we prove guaranteed robustness for
our paradigm and show that more straightforward robustifying paradigms do not enjoy the same
guarantees.

3.2 Related Work

Previous work on the robustness of clustering methods have focused on two directions. First,
developing measures of robustness and examining the performance of traditional clustering
algorithms based on those measures. Secondly, developing clustering algorithms that are robust
to noise and outliers.

Various measures of robustness have been developed for examining the robustness character-
istics of clustering algorithms to noise [10, 14, 15]. These measures have been used to demon-
strate the lack of robustness of some traditional algorithms, when the number of clusters is fixed
[4, 15]. That is, they consider the scenario in which a clustering algorithm is used with the same
number-of-clusters parameter for both the clean input and the input after the addition of noisy
points. We believe that a noise-handling version of the algorithm may be allowed to allocate
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more clusters (so as to accommodate the added noisy data points) and introduce (and analyze)
noise-robustness measures that allow such flexibility. In fact, we show that using that added flexi-
bility of our proposed noise robustifying paradigm, we can overcome some of the limitations that
are shown to be inevitable as long as one does not allow extra noise-accommodating clusters.

Several methods have been suggested for clustering a potentially noisy data set [6, 9, 11].
One interesting work is the development of the concept of a “noise cluster” in a fuzzy setting
by Dave [8, 9], which we have discussed extensively in Chapter 2. In this work, we introduce
a novel paradigm for “robustifying” any centroid-based clustering algorithm. We show that our
paradigm generalizes a non-fuzzy variation of the algorithm introduced by Dave [8]. In addition,
we prove noise robustness guarantees for our proposed paradigm that were not proven in any of
the earlier works we are aware of.

Some of the earlier work on noise-robustness of clustering algorithms propose the use of
trimming. That is, searching for a subset of the input data of size determined by a pre-chosen
fraction of the input size whose removal leads to the maximum improvement of the clustering
quality (or objective function) [6, 13, 12]. However, these methods are approximately optimized
by efficient heuristics that have no performance guarantees. In this work, we avoid this issue
by developing a paradigm that is of comparable computational complexity to the centroid-based
clustering algorithms, upon which they are based.

Discussing the details of previous work requires the definition of few notations, hence, it is
delayed to the relevant sections.

3.3 Preliminaries

In this section, we develop notions of clustering for unweighted input. Our definitions and results
can be extended to the weighted setting (as presented in Chapter 2). However, using weighted
input provides little benefit for our examination of robustness at the cost of unnecessarily com-
plicating our approach. Therefore, we restrict our work to clustering unweighted data and reprise
some definitions from the past chapter in the unweighted setting.

For a set X and integer k ≥ 1, a k-clustering of X is a partition C = {C1, . . . , Ck} of X
into k disjoint sets. For a clustering C of X and points x, y ∈ X , we say x ∼C y, if x and y
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are in the same cluster, otherwise x 6∼C y. For sets X and I such that I ⊆ X , and a clustering
C = {C1, . . . , Ck} of X , we denote the restriction of C to I by C|I = {C1 ∩ I, . . . , Ck ∩ I}.

For two clusterings C and C ′ of the set X , we define the distance between them as ∆(C,C ′),
the fraction of pairs of domain points which are in the same cluster under C but in different clus-
ters under C ′ or vice-versa. Equivalently, ∆(C,C ′) = 1− iR(C, C ′), where iR is the Rand index
as defined by Rand [23]. The following theorem shows that ∆ satisfies the triangle inequality.

Theorem 3.1. For any clusterings C1, C2, and C3 of X , ∆(C1, C3) ≤ ∆(C1, C2) + ∆(C2, C3)

Proof. Using the terminology of [20], let Ndisagree(C1, C2) represent the number of {x, y} pairs
that are clustered differently in C1 and C2 i.e. x ∼C1 y and x 6∼C2 y, or x 6∼C1 y and x ∼C2 y.
Let x, y ∈ X be such that x ∼C1 y and x 6∼C3 y. Then the pair {x, y} contributes to the value of
Ndisagree(C1, C3). There are two cases:

1. x ∼C2 y: {x, y} contributes to Ndisagree(C2, C3).

2. x 6∼C2 y: {x, y} contributes to Ndisagree(C1, C2).

Similarly, if x 6∼C1 y and x ∼C3 y, then {x, y} contributes to one of Ndisagree(C1, C2) or
Ndisagree(C2, C3). Therefore, Ndisagree(C1, C3) ≤ Ndisagree(C1, C2) +Ndisagree(C2, C3).

∆(C1, C3) =
Ndisagree(C1, C3)(X

2

)

≤ Ndisagree(C1, C2)(X
2

) +
Ndisagree(C2, C3)(X

2

)

≤ ∆(C1, C2) + ∆(C2, C3)

Let d be a symmetric distance function defined over X with d(x, x) = 0, satisfying the tri-
angle inequality (unless otherwise stated). The diameter of X , indicated by diam(X ), is defined
as the maximum distance between two elements of X . For a clustering C = {C1, . . . , Ck},
the diameter of C is defined as maxCi∈C diam(Ci). The radius of X is shown by rad(X ) =
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minc∈X maxx∈X d(c, x). Clustering C is σ-separable for σ ≥ 1, if minx 6∼Cy d(x, y) > σ ·
maxx∼Cy d(x, y). Clustering C is (ρ1, ρ2)-balanced if for all i ∈ [k], ρ1|X | ≤ |Ci| ≤ ρ2|X |.
We use ρ-balanced to refer to a clustering that is (0, ρ)-balanced.

A clustering algorithm is a function A that takes as input X and d and returns a clustering
C of X . An objective function is a function that takes as input a clustering and outputs a non-
negative cost associated with it. An objective-based clustering algorithm is an algorithm that
produces a clustering that minimizes a specified objective function.

Consider an input set X drawn from a given space E with distance function d. Throughout
this chapter, let g : R+ → R+ be any continuous, increasing, and unbounded function. The
(k, g)-centroid algorithm is an objective-based clustering algorithm with objective function

Λg
E,d({C1, . . . , Ck}) = min

µ1,...,µk∈E

∑

i∈[k]

∑

x∈Ci

g(d(x, µi))

We refer to µi as the center of cluster Ci and we define µ(x) = arg minµi∈{µ1,...,µk} d(x, µi). With
a slight abuse of notation we can also define the (k, g)-centroid algorithm as the algorithm that
chooses centers µ1, . . . , µk that minimize

Λg
X ,E,d(µ1, . . . , µk) =

∑

x∈X

g(d(x, µ(x)))

We remove X and E from the notation whenever they are clear from the context. Two of the
commonly used (k, g)-centroid algorithms are k-median and k-means, which are obtained by
setting g(x) = x and g(x) = x2, respectively.

3.4 Robustifying Centroid-Based Algorithms

We define parameterized robustifying paradigms that transform any clustering algorithm to an
algorithm that is more robust to noise to the extent determined by a predefined parameter.
Parameters play an important role in defining the limit to which an algorithm should be
robustified. Unsuitable values of these parameters can result in algorithms that are not responsive
to the structure of the data or are extremely unrobust to the addition of noise. In this section, we
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define two robustifying paradigms, one of which is equivalent to a generalization of an existing
algorithm, and discuss the choice of parameters.

3.4.1 Parameterized Robustifying Paradigms

A robustifying parameter, p, denotes the degree to which an algorithm should be robustified
to noise; For example, the number of extra clusters that can be used or a notion of distance
beyond which a point is considered an outlier. A robustifying paradigm, Rp(·), is a function that
takes a clustering algorithmA and returns a robustified clustering algorithm Rp(A) based on the
robustifying parameter p. We refer to A as the ground clustering algorithm of Rp(A).

Since noise, unstructured data, and outlying structures are heterogeneous with respect to the
existing data, outliers and noise groups can be considered as separate clusters. Therefore, some
statisticians simply recommend increasing the number of clusters when dealing with noisy data
[12]. The next paradigm captures robustification as used in this practice.

Definition 3.1 (p-Increased Paradigm). The p-Increased Paradigm is a robustifying paradigm,
RIp(·), that takes as input a (k, g)-centroid algorithm and returns a (k+p, g)-centroid algorithm.

The next paradigm is parameterized by the distance after which a point should be considered
an outlier. To define this paradigm, we first introduce a class of algorithms. Given a space E and
distance function d, the δ-truncated distance function corresponding to d is the function d′ such
that d′(x, y) = min{δ, d(x, y)} for x, y ∈ E. The (k, g)-δ-truncated algorithm is an objective
based algorithm that, given X ⊆ E, first optimizes the function Λg

X ,d′(µ
′
1, . . . , µ

′
k). For j ∈ [k],

let C ′j = {x ∈ X |j = arg mini d(x, µ′i) and d(x, µ′j) < δ} and C ′k+1 = {x ∈ X |min d(x, µ′i) ≥
δ}. Then the (k, g)-δ-truncated algorithm returns the (k + 1)-clustering C ′ = {C ′1, . . . , C ′k+1}.
We refer to µ′i as the center of C ′i for i ≤ k. With a slight abuse of notation, we define µ′(x) =

mini∈[k] d(x, µ′i).

Definition 3.2 (δ-Truncated Paradigm). The δ-Truncated Paradigm is a robustifying paradigm,
RTδ(·), that takes as input a (k, g)-centroid algorithm and returns a (k, g)-δ-truncated algo-
rithm.
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In the next definition, we provide a generalization of the non-fuzzy variation of Dave’s
algorithm [8] for any centroid-based algorithm.

Definition 3.3. Let µ∗ be defined such that for all y ∈ E, d(y, µ∗) = δ. The generalized (k, g)-
δ-centroid algorithm is an objective-based algorithm with the following objective function

Λg
X ,E∪{µ∗},d(µ1, . . . , µk, µ

∗)

We refer to (k, g)-δ-centroid as δ-k-median and δ-k-means when g(x) = x and g(x) = x2,
respectively. As shown in Theorem 2.1, the class of algorithms produced by the δ-Truncated
paradigm is equivalent to the class of (k, g)-δ-centroid algorithms. Therefore, the cost of a
{C1, . . . , Ck, Ck+1} clustering, where Ck+1 is the cluster associated with the noise prototype µ∗,
is indicated by

Λg
d′({C1, . . . , Ck, Ck+1}) = Λg

d({C1, . . . Ck}) + |Ck+1| · g(δ) (3.1)

3.4.2 Effects of Parameters

In this section we discuss the choice of robustifying parameters for the δ-Truncated and p-
Increased paradigms.

In the δ-truncated paradigm, parameter δ quantifies a measure of distance beyond which
a point is considered an outlier (or a distance above which the measurements are considered
unreliable). As shown in Equation 3.1, g(δ) plays the role of a constant penalty for any point
that is not clustered using the ground clustering. This penalty affects the size and structure of the
noise cluster. Figure 3.1 demonstrates the performance of Rt

δ(A) for two extreme values of δ.
The value of δ = ∞ imposes an infinitely large penalty for any unclustered point, resulting in a
(k, g)-centroid algorithm that does not enjoy the robustness the δ-Truncated paradigm can offer
(see Figure 3.1a). On the other hand, δ = 0 imposes no penalty for leaving a point unclustered,
resulting in an algorithm that clusters every point as noise (see Figure 3.1b). It is clear that neither
of these parameters result in an appropriate clustering of the given data. Figure 3.2 demonstrates
the clustering resulted by using an appropriate parameter.

The range of appropriate values of δ depends on statistical parameters that are determined by
the structure of the data sets. Dave [8] proposes an iterative scheme to set the value of δ based

40



−5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

X

Y

 

 

Cluster 1

Cluster 2

Cluster Prototypes

(a) (k, g)-δ-truncated for δ =∞
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(b) (k, g)-δ-truncated for δ = 0

Figure 3.1: Effects of parameters on (k, g)-δ-truncated for k = 2 and g(x) = x2
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on the average inter-cluster distance at each iteration of the Lloyd algorithm. The generalization
of this method for an arbitrary function g is as follows:

δ = g−1

(
λ

∑
y∈X g(d(y, µ(y)))

|X |k

)

where λ is a multiplier that can be determined using other statistical measures. In our work, we
avoid computing several statistical measures for each data set by specifying a range of appropri-
ate parameters for our results.

For the p-Increased paradigm, a good choice for the total number of clusters (k + p) can
be estimated using several methods [21, 24]. Large values of p result in clusterings where
individual points form their own clusters. These clustering algorithms overfit and do not
produce a clustering that is representative of the underlying structure of the data. On the other
hand, p = 0 results in algorithms that do not take advantage of the potential robustness of the
p-Increased paradigm and simply return the (k, g)-centroid clustering. In section 3.6, we show
some inherent limitations of p-Increased paradigm for a large ranges of p.

3.5 Measures of Robustness

In this section, we introduce a general approach for defining measures of robustness to noise.
We discuss the suitability of this approach and define three rigorous measures of robustness.
We review existing measures of robustness and their implications and discuss the possibility of
overcoming previous negative results in our approach.

In the following, A denotes any clustering algorithm, Rp(·) denotes a robustifying paradigm
with parameter p, and (X , d) denotes some domain space with a distance measure. Given I ⊆ X
and a centroid-based clustering, A(I), we use A′(X ) to denote the clustering of X by Rp(A),
and for any x ∈ X , we use µ(x) to denote the center of the A(I) cluster to which x belongs,
and we use µ′(x) to denote the center of the A′(X ) cluster to which x belongs. I is said to be
robust to X \ I with respect to the Rp(A) algorithm if certain properties of A(I) are preserved
in A′(X ).
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Figure 3.2: A good choice of parameter δ = 2.0, for δ-k-means on this input data.
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Definition 3.4 (α-distance-robust). A subset I ⊆ X is α-distance-robust (to X \ I) with respect
to A′ if for all y ∈ I,

d(y, µ′(y)) ≤ d(y, µ(y)) + α

α-distance-robustness measures how much the position of the cluster prototypes are affected
by the noisy data. Large changes in the position of the cluster centers leads to large changes in
the structure of the clustering. Roughly speaking, I ⊆ X is clustered similarly in A′(X ) and
A(I) if I is α-distance-robust to X \ I with respect to A′ for small values of α.

Definition 3.5 (β-cost-robust). Given an objective (cost) function cost, I ⊆ X is β-cost-robust
(to X \ I) with respect to A′ for cost, if there exists C∗1 , . . . , C

∗
j ∈ A′(X ), such that

• |
⋃j
i=1C

∗
i | ≤ |X \ I|

• cost(A′(X ) \
⋃j
i=1C

∗
i ) ≤ cost(A(I)) + β

β-cost-robustness measures the degree to which cost of a clustering is affected by the pres-
ence of noise when we allow a few clusters with a few points to act as “garbage collectors”,
i.e. have no effect on the cost. In the extreme case, if A′(X ) = A(I) ∪ {X \ I}, then I is
0-cost-robust to A′.

Definition 3.6 (γ-robust). I ⊆ X is γ-robust (to X \ I) with respect to algorithm A′, if

∆(A′(X )|I,A(I)) ≤ γ

γ-robustness measures the degree to which noise affects the structure of a clustering. For
example, I is 0-robust with respect to A′, if the clustering of points in I is not changed after
adding noise, i.e. for all x, y ∈ I, x ∼A(I) y, if and only if x ∼A′(X ) y.

Lemma 3.1. For any I ⊆ X , I is 0-robust to A′ if and only if for every non-empty C ′j ∈ A′(X )

there is a unique non-empty Ci ∈ A(I) such that Ci ⊆ C ′j .

Proof. If ∆(A′(X )|I,A(I)) = 0, then for every x, y ∈ I, x ∼A′(X ) y if and only if x ∼A(I) y.
So, for every C ′j ∈ A(X ) there is a unique Ci ∈ A(I), such that Ci ⊆ C ′j . Conversely, if for
every C ′j ∈ A′(X ), there is a unique Ci ∈ A(I) such that Ci ⊆ C ′j , then for every x, y ∈ X and
any Ci ∈ A(I), x ∼Ci y if and only if x ∼C′j y. So, ∆(A′(X )|I,A(I)) = 0.
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Lemma 3.2. Given a (k, g)-centroid algorithm A and parameter δ, let A′ = Rt
δ(A). For any

I ⊆ X , such that for all y ∈ I, d(y, µ′(y)) ≤ δ, I is g(δ)|X \ I|-cost-robust to X \ I with
respect to Rt

δ(A) for the Λg
d (cost) function.

Proof. If d(y, µ′(y)) ≤ δ, then y is not in the noise cluster. Therefore, there is a cluster C∗ ∈ C,
such that C∗ ⊆ X \ I, and for any C ′ 6= C∗,

Λg
d(C

′) ≤ Λg
d(C

′ ∩ I) + |C ′ \ I| · g(δ)

Therefore, I is g(δ)|X \I|-cost-robust to |X \I| with respect to Rδ(A) for the Λg
d cost function.

Comparison with Previous Work

In previous work, robustness to the addition of noisy data has been measured mainly by com-
paring the output of an algorithm with a fixed number of clusters before and after adding noise
and outliers. One of the examples of these results is the work of Ackerman et al. [4], which
shows that algorithms that are responsive to the structure of the data are not noise-robust. More
precisely, let k-clustering algorithm A be σ-separability-detecting for σ ≥ 1 with respect to k,
if for all I, if there exists an σ-separable k-clustering C of I, then A(I) = C. Ackerman et.al.
show that for any σ-separability-detecting algorithm and any ρ, there is a ρ-balanced σ-separable
set I that is not robust to an oligarchy set of size as small as k. These pessimistic results only
hold when the number of clusters are fixed. By using robustness measures that accommodate a
change in the number of clusters, we allow the possibility of overcoming these negative results

3.6 Results

In this section, we compare to what extent the well-clusterability of I and mildness properties of
X \I affect the robustness with respect to the p-Increased and δ-Truncated paradigms. We derive
upper bounds on the robustness (lower bounds on the unrobustness) of the p-Increased paradigm
and provide guaranteed lower bounds on robustness (upper bounds on the unrobustness) of
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Figure 3.3: Structure of a data set that is not robust w.r.t RIp(A).

the δ-Truncated paradigm. Through this comparison, we show that p-Increased algorithms are
inherently less robust than δ-Truncated algorithms.

3.6.1 Robustness fails for the p-Increased Paradigm

In this subsection, we prove inherent limitations of the p-Increased paradigm, which allows a
centroid-based algorithm to use extra clusters. More specifically, Theorems 3.2, 3.3 and 3.4
show that for any desired level of robustness and signal-to-noise ratio, there exists I ⊆ X with
the desired signal-to-noise ratio and a well-clusterable underlying pattern, but it is not robust to
X \ I with respect to the Increase-p paradigm as long as p < |X \ I|.

Theorem 3.2. Let A be the k-means algorithm. For any r > 0, any desired level of robustness
α > 0, and any signal-to-noise ratio λ > 0, there exists X and I ⊆ X , such that |I|

|X\I| ≥ λ,
rad(I) = r and I can be covered with k balls, each of radius 0, but for any p < |X \ I|, I is
neither α-distance-robust nor g(α)(|I| − |X \ I|)-cost-robust to X \ I with respect to RIp(A)

for cost function Λg
d, where g(x) = x2.

Proof. Let d1 = (α+ 2r)( λ
λ+1
|X |+ 1) and d2 = 2(d1 + 2r) + 1. For i ∈ [k], let Bi denote a set

with radius 0, such that |Bi| ≥ λ
k(λ+1)

|X |. LetB1, . . . , Bk be evenly placed on a line of length 2r.

For, i ∈
[
b |X |
λ+1
c
]
, let oi be a point on the line that connects B1, . . . , Bk, such that d(o1, B1) = d1

and d(oi, oi+1) = d2 (see Figure 3.3). Let I =
⋃
i∈[k] Bi and X = I ∪ {o1, . . . , o|X |/(λ+1)}. Note

that X and I are chosen such that |I|
|X\I| ≥ λ.

Let A′ = RIp(A), A′(X ) = {C1, . . . , Ck+p}, µi denote the center of Ci, and µ(x) denote
the closest center to x. Assume (in the hope of finding a contradiction) that for all i ∈ [k + p],
Ci ⊆ I or Ci ⊆ X \ I. Without loss of generality let C1 ⊆ I, then d(o1, µ1) ≤ d1 + 2r.
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Moreover, for any Ci ⊆ X \ I, such that |Ci| ≥ 2, if oj is the left-most or the right-most point
of Ci, d(oj, µi) ≥ d2/2 > d(o1, µ1). Without loss of generality, assume o1 ∈ C2. There are two
cases:

1. C2 = {o1, oj, . . . }: Then the cost of clustering C ′ = {C1 ∪ {o1}, C2 \ {o1}, . . . , Cp+k} is
lower than the cost of C.

2. C2 = {o1}: Let C3 ⊆ X \I be any cluster of size at least 2, and let oi be its left-most point
(such a cluster exists since p < |X \I|). The cost of clustering C ′ = {C1∪{o1}, {oi}, C3 \
{oi}, . . . , Cp+k} is lower than the cost of C.

Hence, C is not an optimal clustering. Therefore, for any optimal RIp(A) clustering, there exists
a cluster Ci such that {oj, y} ⊆ Ci for some y ∈ I. Then, d(y, µi) ≥ d1

|I|+1
> α + 2r. Hence, I

is not α-distance-robust to X \ I with respect to RIp(A).

Since, there exists y ∈ I, such that d(y, µ(y)) > α + 2r, for all y′ ∈ I, d(y′, µ(y′)) > α, so
I is not g(α)(|I| − |X \ I|)-cost-robust to X \ I with respect to RIp(A).

Theorem 3.3. Let A be the k-means algorithm. For any r > 0 and any signal-to-noise ratio
λ > 0, there exists X and I ⊆ X , such that |I|

|X\I| ≥ λ, I has radius r and can be covered with
k balls of radius 0, but for any p < |X \ I|, I is not (1 − 1

k
)-robust to X \ I with respect to

RIp(A).

Proof. We repeat the construction from Theorem 3.2 and Figure 3.3 with d1 = 4r( λ
λ+1
|X | + 1)

and d2 = 2(d1 + 2r) + 1. Note that clusters in any centroid-based clustering are convex. For
any y ∈ I, d(y, µ(y′)) > 2r, hence, the center of the cluster containing any Bi is to the right of
I (see figure 3.3). Therefore, B1, . . . , Bk are all in one cluster of Ri

p(A)(X ). Each Bi forms a
unique cluster in A(I). Therefore,

∆(A(I),A′(X )|I) ≥ 1−
∑

i∈[k]

(|Bi|
2

)
(|I|

2

)

≥ 1−
k
( |I|
k
2

)
(|I|

2

)

≥ 1− 1

k
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I is not (1− 1
k
)-robust to X \ I with respect to Ri

p(A).

Theorem 3.4. Let A be the k-means clustering algorithm. For any desired level of robustness
α > 0 and any signal-to-noise ratio λ > 0, there exists X and I ⊆ X , such that |I|

|X\I| ≥ λ and
I has radius 0, but for any p < |X \ I| − k, I is not α-distance-robust or g(α)(|I| − |X \ I|)-
cost-robust to X \ I with respect to RIp(A) for cost function Λg

d, where g(x) = x2.

Proof. The proof is similar to the proof of Theorem 3.2 with r = 0.

Corollaries 3.1 and 3.2 demonstrate the limitations of p-Increased algorithms even when the
the space is bounded. In these corollaries, the degree of robustness (or lack thereof) is restricted
by a function of the values that indicate the clusterability of I and the size of the noise cluster.

Corollary 3.1. LetA be the k-means algorithm. For any λ, k and ν, such that ν < 1
k
, there exists

I ⊆ X , such that |I|
|X\I| ≥ λ, X has diameter 1, I can be covered by k clusters of radius zero

whose centers are at least ν away from each other, but for any p < |X \I| and any α ≤ 1−kν
2|X |(|I|+1)

,
I is not α-distance-robust or (1− 1

k
)-robust, or (α−νk)2(|I|−|X \I|)-cost-robust with respect

to RIp(A) for cost function Λg
d, where g(x) = x2.

Corollary 3.2. Let A be the k-means algorithm. For any λ > 0, there exists I ⊆ X , such that
|I|
|X\I| ≥ λ, X has diameter 1, I has radius 0, but for any p < |X \I|−k and any α ≤ 1

2(|I|+1)|X | ,
I is not α-distance-robust or α2(|I|−|X \I|)-cost-robust with respect toRi

p(A) for cost function
Λg
d, where g(x) = x2.

3.6.2 Robustness of the δ-Truncated paradigm

In this section, we show guaranteed robustness results for the δ-Truncated paradigm. We prove
robustness, distance-robustness, and cost-robustness based on several types of underlying struc-
tures of I and mildness properties of X \ I:

The Radius of the Ball Covering I

The following results guarantee distance-robustness and cost-robustness for the δ-Truncated
paradigm. Theorem 3.4 derives values of δ that render I robust to X \ I with respect to a
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δ-Truncated algorithm, based on the radius of I and the signal-to-noise ratio of X , i.e. |I|
|X\I| .

Corollary 3.3 demonstrates the implications of Theorem 3.5 on the robust variants of two com-
mon clustering algorithms, k-means and k-median.

Theorem 3.5. For all k and g, let A be the (k, g)-centroid algorithm. For all I ⊆ X , such
that I has radius r and for any δ ∈

[
4r, g−1( |I|

|X\I|(g(2r)− g(r)))
)

, I is 4r-distance-robust and
g(δ)|X \ I|-cost-robust to X \ I with respect to Rt

δ(A).

Proof. Let A′ = RTδ(A) and let A′(X ) = C ′. For all x ∈ X , let µ′(x) denote the closest center
of C ′ to x. Assume on the contrary that there exists y ∈ I such that d(y, µ′(y)) > 4r, then for
any y′ ∈ I, d(y′, µ′(y′)) > 2r. Therefore, Λg

d′(C ′) ≥ |I| · g(2r). For any clustering C ′′ that has
a center at the center of the r-ball that covers I, Λg

d′(C ′′) ≤ |I| · g(r) + |X \ I| · g(δ). By the
choice of δ, Λg

d′(C ′′) < Λg
d′(C ′), so C ′ is not optimal. Hence, I is 4r-distance-robust to X \I with

respect to RTδ(A). Using Lemma 3.2, I is also g(δ)|X \ I|-cost-robust to X \ I with respect to
RTδ(A) for cost function Λg

d.

Corollary 3.3. For all I ⊆ X , such that I has radius r, and for any δ ∈
[
4r, r

√
3 |I|
|X\I|

)
, I

is 4r-distance robust and δ2|X \ I|-cost-robust to δ-k-means for the k-means cost. Similarly,
for δ ∈

[
4r, r |I|

|X\I|

)
, I is 4r-distance robust and δ|X \ I|-cost-robust to δ-k-median for the

k-median cost.

The Underlying Structure of I

The following results guarantee robustness, distance-robustness and cost-robustness for the δ-
Truncated paradigm. Lemmas 3.3 and 3.4 examine the output of the (k, g)-centroid and (k, g)-
δ-truncated algorithms when I has a well-clusterable underling pattern. Theorem 3.6 derives
values of δ that render I robust to X \ I with respect to a δ-Truncated algorithm based on the
signal-to-noise ratio of X and the separability and balancedness of the underlying pattern of I.

Lemma 3.3. For all k and g, let A be the (k, g)-centroid algorithm. For any I, such that
there exists B that is a (ρ1, ρ2)-balanced set of k balls of radius r with centers at least ν >

4r + 2g−1(ρ1+ρ2
ρ1

g(r)) apart and B covers I, then A(I) = B.
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Proof. Let B = {B1, . . . , Bk} and for i ∈ [k] let bi represent the center of Bi and Di repre-
sent a ball of radius ν

2
− r centered at bi. Let A(X ) = C with centers µ1, . . . , µk. Let D1 =

{Di|Di does not cover any µj} and D2 = {Di|Di covers more than one µj}. Since D1, . . . , Dk

are pairwise disjoint, |D1| ≥ |D2|. Assume in search of a contradiction that D1 6= ∅. For any
Di ∈ D1, for all y ∈ Di, d(y, µ(y)) ≥ ν

2
− 2r. Consider the following set of µ′′1, . . . , µ

′′
k: If Dj

includes exactly one center, µi, then let µ′′j = µi, otherwise µ′′j = bj .

Λg
I,d(µ

′′
1, . . . , µ

′′
k) ≤ Λg

I,d(µ1, . . . , µk) +
∑

Di∈D1

∑

y∈Bi

[g(d(y, µ′′(y)))− g(d(y, µ(y)))]

+
∑

Di∈D2

∑

y∈Bi

[g(d(y, µ′′(y)))− g(d(y, µ(y)))]

≤ Λg
I,d(µ1, . . . , µk) +

∑

Di∈D1

|Bi|
(
g(r)− g(

ν

2
− 2r)

)
+
∑

Di∈D2

|Bi|g(r)

≤ Λg
I,d(µ1, . . . , µk) + ρ1|D1||I|

(
g(r)− g(

ν

2
− 2r)

)
+ ρ2|D2||I|g(r)

≤ Λg
I,d(µ1, . . . , µk) + |D1||I|

(
(ρ1 + ρ2)g(r)− ρ1g(

ν

2
− 2r)

)

< Λg
I,d(µ1, . . . , µk)

This forms a contradiction, so without loss of generality every Di covers a center µi. For i 6= j

and for all y ∈ Bi, d(y, µi) ≤ ν
2
< d(y, µj). Therefore, A(I) = B.

Lemma 3.4. For all k and g, let A be the (k, g)-centroid algorithm. For any I ⊆ X ,
such that there exists B that is a (ρ1, ρ2)-balanced set of k balls, each of radius r,
and centers that are at least ν > 4r + 2g−1(ρ1+ρ2

ρ1
g(r)) apart, and B covers I, for any

δ ∈
[
ν
2
, g−1

(
|I|
|X\I|(ρ1g(ν

2
− 2r)− (ρ1 + ρ2)g(r))

))
, if A′ = Rt

δ(A),

• A′(X )|I = {B1, . . . , Bk, ∅}

• For all y ∈ I, d(y, µ′(y)) ≤ min{ν/2, g−1
(
g(ν

2
− 2r)− ρ2

ρ1
g(r)

)
+ 2r}.

Proof. We use a similar approach as in Lemma 3.3. Let B = {B1, . . . , Bk} and for i ∈ [k] let bi
represent the center of Bi and Di represent a ball of radius ν

2
− r centered at bi. Let A′(X ) = C ′

with centers, µ′1, . . . , µ
′
k that minimize Λg

d′ . Let D1 = {Di|Di does not cover any µ′j} and D2 =

{Di|Di covers more than one µ′j}. SinceD1, . . . , Dk are pairwise disjoint, |D1| ≥ |D2|. Assume
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in search of a contradiction that D1 6= ∅. For any Di ∈ D1, for all y ∈ Di, d(y, µ′(y)) ≥ ν
2
− 2r.

Consider the following set of µ′′1, . . . , µ
′′
k: If Dj includes exactly one center, µ′i, then let µ′′j = µ′i,

otherwise µ′′j = bj .

ΛgX ,d′(µ
′′
1, . . . , µ

′′
k)≤ΛgX ,d′(µ

′
1, . . . , µ

′
k) +

∑

Di∈D1

∑

y∈Bi

[g(d′(y, µ′′(y)))− g(d′(y, µ′(y)))]

+
∑

Di∈D2

∑

y∈Bi

[g(d′(y, µ′′(y)))− g(d′(y, µ′(y)))] +
∑

y∈X\I

g(d′(y, µ′′(y)))

≤ΛgX ,d′(µ
′
1, . . . , µ

′
k) + |D1||I|ρ1

(
g(r)− g(

ν

2
− 2r)

)
+ |D2||I|ρ2g(r) + |X \ I|g(δ)

≤ΛgX ,d′(µ
′
1, . . . , µ

′
k) + |D1||I|

(
(ρ1 + ρ2)g(r)− ρ1g(

ν

2
− 2r)

)
+ |X \ I|g(δ)

<ΛgX ,d′(µ
′
1, . . . , µ

′
k)

This forms a contradiction, so without loss of generality let every Di cover a center µ′i. For i 6= j

and for all y ∈ Bi, d(y, µ′i) ≤ ν
2
< d(y, µ′j). Therefore, A′(X )|I = {B1, . . . , Bk, ∅}.

For every C ′i ∈ C ′, |Bi| · miny∈Bi g(d(y, µ′i)) ≤ |Bi|g(r) + |Ci \ I|g(δ). Therefore, there
exists y ∈ Bi, such that

g(d(y, µ′i)) ≤ g(r) +
|X \ I|
|Bi|

g(δ)

≤ g(r) +
|I|
|Bi|

(
ρ1g(

ν

2
− 2r)− (ρ1 + ρ2)g(r)

)

≤ g(
ν

2
− 2r)− ρ2

ρ1

g(r)

Hence, for all y ∈ I, d(y, µ′(y)) ≤ min{ν/2, g−1
(
g(ν

2
− 2r)− ρ2

ρ1
g(r)

)
+ 2r}.

The next theorem guarantees robustness for the δ-Truncated paradigm based on a measure
of clusterability of I. As an example, one of the implications of this theorem is as follows: For
any I ⊆ X , I is 0-robust, 4r-distance robust, and δ|X \ I|-cost-robust to X \ I with respect to
δ-k-median for the k-median cost function, if I can be covered by a ( 1

2k
, 3

2k
)-balanced collection

of k balls of radius r whose centers are atleast 14r apart and δ ∈ [7r, |I|r
2k|X\I|).

Theorem 3.6. For all k and g, let A be the (k, g)-centroid algorithm. For any I ⊆ X , such that
I can be covered by a (ρ1, ρ2)-balanced set of k balls of radius r whose centers at least ν >
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4r+ 2g−1(ρ1+ρ2
ρ1

g(r)) apart, and for any δ ∈
[
ν
2
, g−1

(
|I|
|X\I|(ρ1g(ν

2
− 2r)− (ρ1 + ρ2)g(r))

))
, I

is

• g(δ)|X \ I|-cost-robust to X \ I with respect to Rt
δ(A) for cost function Λg

d.

• 0-robust to X \ I with respect to Rt
δ(A).

• min{ν/2, g−1(g(ν/2− 2r)− ρ2
ρ1
g(r)) + 2r}-distance-robust with respect to Rt

δ(A).

Proof. Lemma 3.4 shows that for every y ∈ I, d(y, µ′(y)) ≤ δ. Using Lemma 3.2, I is
g(δ)|X \ I|-cost-robust to X \ I with respect to Rt

δ(A) for cost function Λg
d.

Let B1, . . . , Bk, be the described set of balls that cover I. Lemma 3.4 and Lemma 3.3 show
that A′(X )|I = {B1, . . . , Bk, ∅} and A(I) = {B1, . . . , Bk}. Therefore, I is 0-robust to X \ I
with respect to Rt

δ(A).

Lemma 3.4 shows that for any y ∈ I, d(y, µ′(y)) ≤ min{ν/2, g−1
(
g(ν

2
− 2r)− ρ2

ρ1
g(r)

)
+

2r}. Therefore, I is d(y, µ′(y)) ≤ min{ν/2, g−1
(
g(ν

2
− 2r)− ρ2

ρ1
g(r)

)
+ 2r}-distance-robust

to X \ I with respect to Rt
δ(A)

The Underlying Structure of I and Convexity of g

The following results guarantee a level of robustness for the δ-Truncated paradigm based the
value of δ, the internal structure of I, and the signal-to-noise ratio of X . Lemmas 3.7 and 3.8
examine the output of the (k, g)-centroid and (k, g)-δ-Truncated algorithms when g is convex
and I has a σ-separable, ρ-balanced underlying clustering of diameter s. Theorem 3.7 proves a
lower-bound on the robustness (an upper-bound on the value of γ-robustness) of I to X \ I with
respect to (k, g)-δ-Truncated algorithms when g is convex and I has the mentioned underlying
clustering.

In this section, we assume that function g in addition to being continuous, increasing, and
unbounded (which are the standard requirement) is also convex. We call such functions, simply,
as convex. The following lemma shows an important property of these functions that helps us
with bounding the cost of a clustering.

52



Lemma 3.5. For any x, y ∈ X , a metric distance function d, and a convex function g,

g(d(x, c)) + g(d(y, c)) ≥ 2g

(
d(x, y)

2

)

Proof. In the following, the first inequality holds by the convexity of g and the second inequality
holds by the fact that g is increasing and d satisfies the triangle inequality.

g(d(x, c)) + g(d(y, c)) ≥ 2g

(
d(x, c) + d(y, c)

2

)
≥ 2g

(
d(x, y)

2

)

Lemma 3.6. [4, Lemma 5.3] Let C1 and C2 be two clusterings of Y , where C1 is ρ-balanced and
has k clusters. If ∆(C1, C2) ≥ γ, then the number of disjoint pairs {x, y} ⊆ Y such that x 6∼C1 y
and x ∼C2 y is at least 1

2
(γ − kρ2)|Y|.

Lemma 3.7. For any k and convex function g, letA be the (k, g)-centroid algorithm. Let I have
an σ-separable, ρ-balanced clustering of diameter s, namely B. Then,

∆(A(I),B) ≤ g(s)

g(σs/2)
+ kρ2

Proof. Let A(I) = C with centers µ1, . . . , µk. Let ∆(B, C) = γ and assume, in search of a
contradiction, that γ > g(s)

g(σs/2)
+ kρ2. For any {x, y} ∈ I such that x 6∼B y but x ∼C y,

using Lemma 3.5, g(d(x, µi)) + g(d(y, µi)) ≥ 2g(σs
2

). Lemma 3.6, shows that there are at least
1
2
(γ − kρ2)|I| many such disjoint pairs. Therefore,

Λg
d(C) ≥

1

2
(γ − kρ2)|I|2g(σs/2)

> g(s)|I|
> Λg

d(B)

This forms a contradiction. Therefore, ∆(A(I),B) ≤ g(s)
g(σs/2)

+ kρ2.

Lemma 3.8. For any k and convex function g, let A be the (k, g)-centroid algorithm. For all
I ⊆ X that has a σ-separable, ρ-balanced k-clustering of diameter s, namely B and any δ > σs

2
,

if A′ is Rt
δ(A),

∆(B,A′(X )|I) ≤
|X\I|
|I| g(δ) + g(s)

g(σs/2)
+ kρ2
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Proof. Let A′(X ) = C ′ with centers µ′1, . . . , µ
′
k. Let ∆(B, C ′) = γ and assume on the contrary

that γ >
|X\I|
|I| g(δ)+g(s)

g(σs/2)
+kρ2. Using Lemma 3.5, for any {x, y} ∈ I such that x 6∼B y but x ∼C′ y,

g(d′(x, µ′i)) + g(d′(y, µ′i)) ≥ min{2g(δ), 2g(σs
2

)} ≥ 2g(σs
2

). Lemma 3.6 shows that there are at
least 1

2
(γ − kρ2)|I| many such disjoint pairs. Therefore,

Λg
d′(C) ≥ g(

σs

2
)(γ − kρ2)|I|

> g(
σs

2
)

|X\I|
|I| g(δ) + g(s)

g(σs/2)
|I|

> g(s)|I|+ |X \ I|g(δ)

> Λg
d′(B ∪ {X \ I})

Contradiction. Therefore, ∆(B,A′(X )|I) ≤
|X\I|
|I| g(δ)+g(s)

g(σs/2)
+ kρ2.

Theorem 3.7. For any k and convex function g, let A be the (k, g)-centroid algorithm. For all
I ⊆ X that has an σ-separable, ρ-balanced clustering of diameter s, and for any δ > σs/2, I
is γ-robust to X \ I with respect to Rt

δ(A), for

γ ≤

(
|X\I|
|I| + 1

)
g(δ) + 2g(s)

g(σs/2)
+ 2kρ2

Proof. Let B be the σ-separable, ρ-balanced, k-clustering of diameter s that covers I, and let

γ′ =
|X\I|
|I| g(δ)+g(s)

g(σs/2)
+ kρ2, and γ′′ = g(δ)+g(s)

g(σs/2)
+ kρ2. Lemmas 3.7 and 3.8 respectively show

that ∆(B,A(I)) ≤ γ′ and ∆(B,A′(X )|I) ≤ γ′′. Using Theorem 3.1, ∆(A(I),A′(X )|I) ≤
γ′ + γ′′ ≤ γ.

3.6.3 Robustness of δ-Truncated vs. p-Increased

Here, we will further demonstrate the limitations of p-Increased algorithms for clustering noisy
data compared to the strengths of δ-Truncated algorithms.

Example 9. Let A denote the k-means algorithm. According to Corollary 3.2, there exists a set
X and I ⊆ X , such that X has diameter 1, |X | = n, |I| = 0.9n , I has radius 0, but for any
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p < 0.1n− k, I is not 5/n2-distance robust to X \I with respect to RIp(A). Since I has radius
0, we can cover it by a ball of any radius. Let us choose a ball of radius 1/4n2. According to
Corollary 3.3, for δ ∈ [ 1

n2 ,
3
√

3
4n2 ), I is 1/n2-distance-robust to X \ I with respect to RTδ(A).

3.7 Conclusions

In this chapter, we examined the problem of robustness of clustering algorithms to the addition of
unstructured data points (that we termed “noise”). We proposed to transform any given centroid-
based clustering algorithm to an efficient “noise-robust” one that has an additional cluster used
as a “garbage collector”. We introduced rigorous notions of robustness that capture different
aspects of robustness that may be desirable for such algorithms. We proved that our algorithmic
paradigm indeed guarantees desirable noise robustness, and showed that the simple strategy of
just applying the ground clustering algorithms with extra clusters (to accommodate such noisy
data) does not enjoy similar performance.
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Chapter 4

Concluding Remarks

In this thesis, we discussed the issue of clustering in the presence of noise in two parts. In the
first part, we developed a framework for clustering with a noise cluster. In the second part, we
examined the robustness of clustering algorithms with respect to the addition of the unstructured
data.

In the first part, we developed a formalism for clustering with a noise cluster. We introduced
some input-output properties of clustering algorithms that have a noise cluster. Our properties
addressed intuitive and desirable behaviour of clustering algorithms that have a noise cluster
with respect to changes in the input, their computational complexity, and the richness of their
clustering range. We generalized two existing algorithms with a noise cluster, (k, g)-η-trimmed
and (ε,minPts)-DBScan, and introduced two new algorithms with a noise cluster, (k, g)-δ-
truncated and (k, g)-δ-naive-truncated. We examined these algorithms with respect to the men-
tioned properties. Our analysis showed that (k, g)-δ-truncated and (ε,minPts)-DBScan, on top
of being efficient, possess most desirable properties. On the other hand, the (k, g)-η-trimmed
algorithm not only lacks many desirable properties, but also is not efficient compared to the
(k, g)-centroid algorithm. We also observed that the set of desirable properties satisfied by (k, g)-
δ-naive-truncated is a strict subset of those satisfied by (k, g)-δ-truncated.

In the second part, we addressed the problem of noise robustness of clustering algorithms to
the addition of unstructured data. We defined three rigorous measures of robustness. We also
introduced the δ-Truncated robustifying paradigm that transforms any centroid-based algorithm
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to a noise-robust one that has a noise cluster. We proved guaranteed robustness, with respect to
all three measures of robustness, for the δ-Truncated paradigm when the un-noised data satisfies
some niceness properties and the noise satisfies some mildness properties. On the other hand,
we showed that the p-Increased robustifying paradigm, which allows centroid-based clustering
algorithms to use a few more clusters, does not enjoy similar robustness guarantees.
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