
Clustering Dependencies over
Relational Tables

by

Yuchen Gao

A thesis
presented to the University Of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
In

Computer Science

Waterloo, Ontario, Canada, 2015
c©Yuchen Gao 2015

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

ii

Abstract

Integrity constraints have proven to be valuable in the database field. Not
only can they help schema design (functional dependencies, FDs [1][2]),
they can also be used in query optimization (ordering dependencies, ODs
[4][5][8][9]), or data cleaning (conditional functional dependencies, CFDs [12]
and denial constraints, DCs [14]). In this thesis, however, we will introduce
a new type of integrity constraint, called a clustering dependency (CD).

Similar to ordering dependencies which rely on the database operation
ORDER BY, clustering dependencies focus on studying the operation
GROUP BY. Furthermore, we claim that clustering dependencies are use-
ful not only in query optimization as most integrity constraints do, but also
useful in data visualization, data analysis and MapReduce.

In this thesis, we first introduce some examples of clustering dependen-
cies in a real-life dataset. We then formally define clustering dependencies
and elaborate on our motivation. We will also look into the reasoning system
for clustering dependencies including the implication problem, consistency
problem and influence rules for clustering dependencies. After that, we will
propose two algorithms for clustering dependencies, first a checking algo-
rithm that is able to check if a given dependency is valid in a table within
O(N ∗M) time, with N being the number of rows and M being the size of
potentially aggregated attributes, a.k.a, the size of the right-hand-side at-
tributes. Secondly, we propose a mining algorithm that is able to discover
all potential clustering dependencies occurring in a table. Finally, we will
use both synthetic and real-life data to test the performance of our mining
algorithm.

iii

Acknowledgements

First and foremost, I would like to give my most sincere gratitude to my
supervisor, Prof. Grant Weddell. He granted me the idea of this thesis in
the first place, and provided a lot of advice and guidance. I would also like to
thank Prof. David Toman, he took part in our discussion a lot and provide us
with some fantastic ideas. I wouldn’t have accomplished this Master’s thesis
without their help. I really learned a lot from them and have improved a lot.

Besides, I would like to thank the thesis committee members: Prof.
Tamer Ozsu and Prof. Richard Trefler, for their kindness in reading my
thesis and giving me advice.

In addition, I would like to thank my friends, Xu Chu and Jian Li,
for discussing problem in thesis with me and sharing insights on different
research projects all the time.

Last but no least, I would like to thank my parents, who always loved
and supported me all these years.

iv

Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Overview . 1
1.2 Definitions . 10
1.3 Comparison to Other Dependencies 12

2 Reasoning with Clustering Dependencies 15
2.1 Overview and Preliminaries 15
2.2 Decision Problem . 15
2.3 Inference Rules . 19

3 Checking and Mining Algorithms for Clustering Dependen-
cies 25
3.1 Clustering Dependency Validity Checking Algorithm 25

3.1.1 Problem Definition . 25
3.1.2 Introduction of the Algorithm 26
3.1.3 Correctness Proof . 29

3.2 Clustering Dependency Mining Algorithm 35
3.2.1 Problem Definition . 36
3.2.2 Algorithm Introduction 36
3.2.3 Algorithm Implementation 38
3.2.4 Main Algorithm . 41

4 Experiments 46
4.1 Testing on Synthetic Data . 46

v

4.1.1 Preliminaries . 46
4.1.2 Data Generation . 47
4.1.3 General Test . 48
4.1.4 Scalability Test . 49
4.1.5 Test of Effectiveness of Different Dependencies 49

4.2 Testing on Real Data . 50

5 Conclusion and Future Work 53
5.1 Conclusion . 53
5.2 Future Work . 54

Bibliography 55

vi

Chapter 1

Introduction

1.1 Overview

The “group by" operations in SQL are crucial in formulating aggregate
queries over intermediate results. In particular, such operations ensure inter-
mediate results are ordered in ways that ensure the computation of aggregate
functions can be accomplished in linear time.

In this thesis, we introduce a new class of dependencies, called clustering
dependencies (CDs), that encapsulate the necessary properties of intermedi-
ate results that ensure linear scans suffice to compute aggregate functions.

To illustrate CDs, consider an intermediate result consisting of a set of
tuples that provide bindings for the following attributes: Row ID, Order
ID, Order Date, Ship Date, Ship Mode, Customer ID, Customer
Name, Segment, Country, City, State, Postal Code, Region, Prod-
uct ID, Category, Sub-Category, Product Name, Sales, Quantity,
Discount and Profit. This intermediate result comes from a table that
contains orders information obtained from Superstore.

The following presents examples of CDs over this set of tuples (formal
definitions will be given in the next section):

1. A CD of the form

Record ID 7→ {Order ID}

will hold over the set of tuples iff any list of the same tuples that is
ordered non-descending by Record ID has the property that the list is
clustered by values of Order ID, that is, has the property that no pair
of tuples in the list having the same value for Order ID will have an
intervening tuple in the list with a different value of Order ID.

1

Figure 1.1: Dependency: Record ID 7→ {Order ID}

2

It is intuitive that: first, if all the records are added sequentially, then
Record ID would represent a timestamp for each record. Records
with the same Order ID would be grouped together because items
within one order won’t be separated. Second, the same Order ID will
not be reused in the future, otherwise the logs would be corrupted. As
a result, the table is guaranteed to be grouped by Order ID. That
part of the table is shown in Figure 1.1.

2. A CD of the form
Postal Code 7→ {State}.

will hold over the set of tuples iff any list of the same tuples that is
ordered non-descending by Postal Code has the property that the list
is clustered by values of State.

Although the fact that the table would be grouped by State when it
is ordered by Postal Code is not obvious, it totally makes sense. If
two places have similar postal codes, then it is very likely that they
are in the same state. Moreover, it is very likely that postal codes are
allocated sequentially to each state. An example is shown in Figure 1.2,
we can see that postal codes within range [01040, 02740] are allocated
to the state Massachusetts, meaning that any postal code in this range
must not belong to any state other than Massachusetts. Also, there
won’t be any other postal codes from range other than [01040, 02740]
that belongs to Massachusetts.

3. A CD of the form

Product ID 7→ {Category, Sub-Category}.

will hold over the set of tuples iff any list of the same tuples that is
ordered non-descending by Product ID has the property that the list
is clustered by values of Category and Sub-Category.

If we look at the content of these attribute in the table as shown in
Figure 1.3, we can see that Product ID is generated using first three
letters of Category and Sub-Category. Considering the way this
string (Product ID) is sorted: we first sort it by Category abbre-
viation (like “FUR") and then by Sub-Category abbreviation (like
“TA"). Thus once the table is sorted on Product ID, it would also
be sorted and of course, clustered on Category and Sub-Category.

3

Figure 1.2: Dependency: Postal Code 7→ {State}

4

Figure 1.3: Dependency: Product ID 7→ {Category, Sub-Category}

From the three examples above, we can see that clustering dependencies
are everywhere in our daily lives and these dependencies can show interesting
facts and provide insights about the data we study.

We believe Clustering Dependencies would be useful in the following four
applications:

1. Query optimization. Integrity constraints are very helpful when it
comes to query optimization. Given a query, we will typically have
many potential plans from which an optimizer might choose so as to
provide the correct result. However, the speed of these plans can vary
enormously. Integrity constraints can be applied over these plans to
improve the running speed of the query.

As an integrity constraint, clustering dependencies can be used to op-
timize queries that contains GROUP BY operations. If a clustering
dependency is already implied in the intermediate query processing
steps, then the necessity of the GROUP BY operation can be elimi-
nated.

Consider the following SQL query for the previous example:

5

SELECT COUNT(Postcal Code)

FROM TABLE T

GROUP BY State

Normally what the query processor would do is to conduct a GROUP
BY operation on table T , get the total number of postal codes for each
state, and return the result. However, if the table is sorted on Postal
Code already and we know clustering dependency: Postal Code 7→
{State} is valid, it would be no longer necessary for the query processor
to conduct that GROUP BY operation.

2. Data visualization. We are living in a world where data is grow
exponentially. But not every data owner has a comprehensive under-
standing of the data they own. Data visualization, on the other hand,
can help people see and understand their data by providing visual ren-
dering of the them. It has become more and more important in different
fields, in particular, the business intelligence (BI) field. Visualizations
help people see things that were not obvious to them before. Even
when data volumes are very large, patterns can be spotted quickly and
easily. Visualizations convey information in a universal manner and
make it simple to share ideas with others. One of the most important
benefits of visualization is that it allows us access to huge amounts of
data in ways that would not be otherwise possible. There are thou-
sands of examples of visualizations of big data, from fun and beautiful
to current and historic, to financial and political. The knowledge en-
compassed in these various data sets would be nearly inaccessible to
the casual, or even moderately interested viewer, if it was not visual-
ized. But a good visualization gives us access to that knowledge, and
does it quickly and effectively. [20]

We use a commercial data visualization tool called Tableau [18] to
demonstrate how data visualization works: most of the time, we can
drag attributes to the “Rows" and “Column" section and the software
will automatically generate a visual presentation of the data. For ex-
ample, if we want to check our order table to see how many distinct
orders there are for cities in different states. We will drag State and
City to the row and Sum of Order ID to the column, and get a visu-
alized figure of the result, or even a graph rendered on a real map of
the United States, as shown in Figure 1.4.

We can see that the way data visualization works is greatly related to
the operationGROUP BY. We also found out that the speed of these

6

Figure 1.4: Data Visualization Example.

data visualization tools is often unsatisfactory, especially when the size
of grouped by attributes is larger than 2. If we can get this operation
accelerated, it would be very beneficial for data visualization.

Moreover, from the previous examples, we can observe that these de-
pendencies not only improve the performance of the GROUP BY op-
eration, but can also provide great insights into the data organization
and the underlying semantics. This is also very helpful in data visu-
alization because once we understand the semantics of the data, we
can first load the data with much smarter strategies (the so-called
smart-loading) and secondly, generate much more visual and beautiful
rendering of the data.

3. Data analysis. Data analysis is strongly related to data visualiza-
tion and is specially important and useful in the business intelligence
field. The way it works is, we generate a visual representation of the
data, analyze it and get the insights, and then answer questions our
customers might ask about these data. Hence, once we discover the
underlying semantics with clustering dependencies, we can get better
much understanding of the data and thus make much better analysis
and predictions.

4. MapReduce. MapReduce is a programming model and an associated
implementation for processing and generating large data sets with a

7

parallel, distributed algorithm on a cluster [21][22]. It has become ex-
tremely popular in the recent decade. MapReduce works with three
core phases: Map, Shuffle and Reduce. In the map phase, each
worker (machine) will take a piece of input data and generate a key-
value pair (k, v). These pairs would then be Shuffled to different
processors according to k. Finally the reducer would process all the
information associated with each k value and produce the output. An
example in shown below in Figure 1.5 [23]: the input are sent to the
mappers whose output are then combined and shuffled. In the shuf-
fling and sorting stage, key-value pairs with same keys are aggregated
together, which is exactly a GROUP BY operation. As a result, if
we could discover the underlying clustering dependency that makes the
keys aggregated, then we just need to a simple sort instead of all the
MapReduce operations, which is much cheaper.

In this thesis, we will explore clustering dependencies from different aspects.
Our major contributions are:

1. We introduced the decision problem for clustering dependencies. We
did not develop a comprehensive sound and complete reasoning system.
But as long as we focus more on the algorithm and application level,
we believe discovering influence rules will be able help us greatly in
our preceding algorithms and experiments. In addition, we also study
the relation between clustering dependencies and functional/ordering
dependencies. We discovered that FDs and ODs are very useful in
helping us generate more useful inference rules. We presented the
inference rules we discovered as well their proof.

2. We proposed a checking algorithm for clustering dependencies to check
the validity of a given CD candidate. We presented the algorithm and
showed that it can run with O(NM) in time complexity in the worst
case where N is the number of rows andM is the number of attributes
on the RHS of the that CD candidate.

3. We proposed a mining algorithm for clustering dependencies. We can
use this mining algorithm to discover all the potential clustering de-
pendencies. We also showed that our inference rules would turn out to
be very helpful in the pruning process.

4. We used two types of data: synthetic data and real-life data to test
the performance of our mining algorithm. Synthetic data were used

8

Figure 1.5: An example on MapReduce.

9

to test the performance of the mining algorithm from different as-
pects. We also used real-life data from SourceForge Research Data
Archive (SRDA), a Repository of FLOSS Research Data to test the
performance of our mining algorithm. The SourceForge.net web site
is database driven and the supporting database includes historic and
status statistics on over 320,000 projects, over 850,000 developers’ ac-
tivities, and over 3.4 million registered users’ activities at the project
management web site [15][16][17][18]. Finally we tested with the or-
ders table referred in Chapter 1 and showed the strength of our mining
algorithm.

1.2 Definitions

We have seen several intuitions of clustering dependencies from the last sec-
tion. They can be represented with formal clustering dependencies as follows:

• Record ID 7→ {Order ID}.

• Postal Code 7→ {State}.

• Product ID 7→ {Category, Sub-Category}.

Definition 1.1. Clustering Dependencies (CDs)
Let R be a relation and r be one of its instances which contains a set of

tuples: t1, t2, ..., tn, let A,B1, B2, ..., Bm be the attributes in R and let ti.A
represent the value of attribute A in tuple ti, we say r satisfies Clustering
Dependency A7→{B1, B2, ..., Bm}, iff the following first-order-logic (FOL)
expression holds:
∀tx, ty, tz · (r(tx) ∧ r(ty) ∧ r(tz) ∧

tx.A 6 ty.A ∧ ty.A 6 tz.A ∧∧m
j=1 tx.Bj = tz.Bj

⇒∧m
j=1 tx.Bj = ty.Bj)

That is, for every three tuples in a relation set that is ordered by attribute
A. If the first tuple has the exact same RHS values (B1, B2, ..., Bm) as the
third tuple, then every tuple in between (as well as the first and third tuple)
should all have the same RHS values.

Recall from the last chapter that our clustering dependencies hold when-
ever the table is sorted by some attributes (the left-hand-side, LHS), then

10

it is guaranteed that the table is grouped by a list of attributes (the right-
hand-side, RHS).

Not only can the LHS attribute A could be any one of the attributes in
R, but we also claim it could be a self-defined attribute, possibly combined
with several different attributes in R. We can say that we have a attribute
set {year, month, day} from R, {1990, 09, 11}, for example. We could
let our LHS be a brand-new attribute named date that is composed with
the values year , month and day of each tuple, and sort the table by this
new attribute, a.k.a, 1990-09-11 .

It might not be obvious why we are using an order by relationship on
the LHS. Yes, we could let the LHS be a set of aggregated attributes as well
just as the RHS. However, we claim that using order by on the LHS is much
more useful. More importantly, according to our definition, when a set of
attributes is sorted, they will be automatically aggregated as well. Moreover,
with the ordering formation, we can discover a lot of more interesting depen-
dencies. For instance, in our order table example in Chapter 1, the first two
dependencies are about sorting by Record ID and Postal Code, respectively.
If we just group either Record ID or Postal Code, then we will not be able
to find out those two interesting dependencies.

Another potential concern might be that we only have one attribute on
the LHS, despite the fact we can just merge multiple attributes into one and
sort the table on that combined attribute. Theoretically, we could have mul-
tiple attributes on the LHS, and sort by these attributes, sequentially. There
are two reasons for not doing this. First, consider a clustering dependency:

Record ID 7→ {Order ID}.

This dependency holds with one attributes on the LHS. However we can
actually add any other attributes to the LHS as secondary key, tertiary key,
etc, and it won’t change the validity of the dependency, because as long as
the table is still sorted on Record ID as the prime key, it must always be
grouped by Order ID.

Second, if we have multiple attributes on the LHS, it is very likely we
will have to conduct more study on ordering dependencies in our framework
which is not the focus of our thesis. We believe that would make our problem
much more difficult to handle. We also claim that, for ordering dependen-
cies, as the number of attributes grows, they would become less and less
interesting and useful to us. So we will try to avoid that situation.

To make our definition more rigorous and precise, our clustering con-
straint applies on set of tuples rather than list of tuples. That means, the

11

Figure 1.6: An violation of clustering dependency.

tuples are interchangeable as long as their LHS attribute is of the same value.
For example, consider the following tables in Figure 1.6. Although it is a
true fact the table IS sorted by attribute A and grouped by attribute B. It,
however, does not satisfy the clustering constraint A 7→ {B}. Because we
can exchange the first and the third row in the table, breaking the GROUP
BY feature whilst still keeping the table sorted by A.

1.3 Comparison to Other Dependencies

Integrity constraints (ICs) have become more and more important nowadays
when there is need to restrict the data values stored in a relational database
with a series of constraints or rules to make the data accurate and consis-
tent. Data integrity is the opposite of data corruption, which is a form of
data loss. The overall intent of any data integrity technique is the same:
ensure data is recorded exactly as intended (such as a database correctly
rejecting mutually exclusive possibilities,) and upon later retrieval, ensure
the data is the same as it was when it was originally recorded. In short,
data integrity aims to prevent unintentional changes to information. Data
integrity is not to be confused with data security, the discipline of protecting
data from unauthorized parties. [19] There are a lot of integrity constraints
that are already developed and well-known, like key constraints, function de-
pendencies (FDs) [1][2] and conditional clustering constraints (CFDs) [12],
ordering dependencies (ODs) [4][5][8][9], denial constraints (DCs) [14] and
so on.

Definition 1.2. Functional Dependencies (FDs)[1][2]
A functional dependency states that the value of a specific attribute is

uniquely determined by the values of a set of attributes. FD is a common

12

form of constraints in database system. Formally, when we are given a re-
lation schema R and a relation r on R. A functional dependency X → A,
where X ⊆ R and A ∈ R, will indicate that for any pair of tuples t, u ∈ r, if
t[x] = u[x] for all x ∈ X then t[A] = u[A].

The inference axioms of functional dependencies, Armstrong’s axioms,
developed by William W. Armstrong on his 1974 paper [10], can be used to
infer all functional dependencies in a relational database. The axioms are
sound in generating only functional dependencies in the closure of a set of
functional dependencies (denoted as F+) when applied to that set (denoted
as F). They are also complete in that repeated application of these rules
will generate all functional dependencies in the closure F+.

Different approaches are introduced to deal with the mining problem of
functional dependencies[2][3][6][7]. The mining methodologies can be divided
into schema-driven and instance-driven approaches. TANE is a representa-
tive for the schema-driven approach [7]. It adopts a level-wise candidate gen-
eration and pruning strategy and relies on a linear algorithm for checking the
validity of FDs. TANE is sensitive to the size of the schema. FASTFD is an
instance-driven approach [6], which first computes agree-sets from data, then
adopts a heuristic-driven depth-first search algorithm to search for covers of
agree-sets. FASTFD is sensitive to the size of the instance. Both algorithms
were extended in [11] for discovering CFDs [12].

Definition 1.3. Ordering Dependencies (ODs)[8][9]
An ordering dependency states that the ordering of a specific set of tu-

ples are determined by another set of tuples. Given a relation schema R, an
ordering dependency on a instance r on R is represented as M N , where
M and N are both sets of marked attributes, M = {Aopi1

1 , A
opi2
2 , ..., A

opim
m }

and N = {Bopj1
1 , B

opj2
2 , ..., B

opin
n }, where A1, A2, ..., Am and B1, B2, ..., Bn

are attributes from R and op can be =, <,6, > or >. To better demonstrate
this definition we need to define the operation u[M]v for any two tuples
u and v. We say u[M]v is satisfied iff u[Ai](opi)v[Ai] is satisfied for every
component {Aopi

i } inM . With that, we can say an instance I satisfies order-
ing dependencyM N iff for any two tuples u and v, u[M]v implies u[N]v.

Recent papers [4][5] have come up with a variation of ordering dependen-
cies, where they use lists of attributes on both LHS and RHS rather than
using sets of marked attributes. In their definition, given a relation schema
R, an ordering dependency is in the form ofX Y , whereX and Y are both

13

list of attributes on a relation schema R. We let |X| = m and |Y | = n and we
will say that an ordering dependency X Y holds if, when the relation r is
ordered by x1, x2, ..., xm ∈ X, it would also be ordered by y1, y2, ..., yn ∈ Y .
In the following chapter however, we will use the first version of ordering
dependency, since it would suit with our clustering dependencies better for
future use.

Ordering dependencies deal with the problem of how a set of lexico-
graphically ordered attributes are related to the ordering another set of lex-
icographically ordered attributes. For example if the tuples are ordered by
the attributes year, month, then they must also be ordered by attributes
year,quarter,month as well. With ordering dependencies implied, when queries
are processed, the query optimizer can rewrite the them to achieve better per-
formance. In this case we don’t have to sort the tuples by quarter any more
as long as the ordering dependency [year, quarter,month] [year,month]
is implied by the relation.

The axioms of ordering dependencies has been well-studied [4][9]. While
ODs can be obtained through consultation with experts, it is an expensive
process and requires expertise in the constraint language at hand as well as
familiarity with the current data, thus warranting the necessity of automatic
mining algorithms. However, the mining algorithm for ODs is highly non-
trivial. Any list of attributes can serve as LHS and RHS of an OD. Thus the
space to be explored for ODs discovery is m!×m!. Since OD focus on list of
tuples rather than set of tuples and it has to deal with multiple attributes on
both LHS and RHS, because an OD with multiple attributes on either side
cannot be equivalently decomposed into smaller ODs. There have not been
any efficient algorithm for OD mining yet. Even if there is, as the number of
the attributes grows on both LHS and RHS, that dependency might become
less and less interesting or helpful.

CFD discovery problem is also studied in [12], which not only is able to
discover exact CFDs but also outputs approximate CFDs and dirty values for
approximate CFDs, and in [13], which focuses on generating a near-optimal
tableaux assuming an embedded FD is provided.

Denial constraints (DCs) significantly generalize FDs and CFDs. The
complex form of DCs makes discovering them much harder. Chu et al.
proposes an instance driven algorithm called FASTDC to discover DCs [14],
which is quadratic w.r.t. the number of tuples due to the inherent complexity
of checking if a DC is valid on a database instance. Two extensions, i.e., A-
FASTDC, and C-FASTDC, are proposed by the same authors in order to
discover DCs from dirty data, and in order to discover DCs with frequent
constraints.

14

Chapter 2

Reasoning with Clustering
Dependencies

2.1 Overview and Preliminaries

In this chapter, we consider the decision problem and inference system w.r.t
our clustering dependencies. The decision problem, which contains two sub-
problems, the implication problem and consistency problem, is one of the
basic problems in database field when it comes to integrity constraints. They
can be very helpful to prune redundant dependencies and to test the valida-
tion of new dependencies and thus without doubt could greatly benefit our
clustering dependency mining process.

In the following sections, we first show that the complexity of clustering
dependency decision problem is at least co-NP-complete. Then we will in-
troduce and prove the inference rules we have discovered, some of which are
developed with the help of functional dependencies and ordering dependen-
cies.

2.2 Decision Problem

In database theory, the decision problem is one of the most classical problems
to study. There are two basic decision problems in clustering dependencies
for us to study. The implication problem and the consistency problem, both
defined below:

Definition 2.1. The implication problem for clustering dependencies is
the question whether a specific clustering dependency d0 be implied by a fi-

15

nite set of dependencies D which may contain clustering dependencies (CDs),
ordering dependencies (ODs), and functional dependencies (FDs).

Definition 2.2. The consistency problem for clustering dependencies is
the question whether a non-trivial model exist, given a finite set of depen-
dencies D which may contain clustering dependencies (CDs), ordering de-
pendencies (ODs), and functional dependencies (FDs).

We need to clarify that the consistency problem is the dual of implication
problem. We will say that a set of dependencies D is inconsistent if and only
if D implies a dependency of the form:

∀t · [r(t)⇒ C]

where C is any unsatisfiable constraint [24].
So we will just study the implication problem instead. As mentioned be-

fore, the set of dependencies D could contain clustering dependencies (FDs),
ordering dependencies (ODs) or functional dependencies (FDs). Recall the
FOL definitions for each of them. In the following content, for all the FOL
formulas, we will use r to represent an instance of any relational table. We
use ti to denote the tuples in the table and capitalized letters to denote
attributes within the table.

Clustering Dependency: A 7→ {B1, B2, ..., Bm}
∀t1, t2, t3·
(r(t1) ∧ r(t2) ∧ r(t3) ∧ t1.A 6 t2.A ∧ t2.A 6 t3.A ∧∧m

j=1 t1.Bj = t3.Bj

⇒∧m
j=1 t1.Bj = t2.Bj)

Ordering Dependency: {Aop1
1 , Aop2

2 , ..., Aopn
n } {Bop}, where

opi ∈ {=, <,6, >,>}

∀t1, t2·
(r(t1) ∧ r(t2) ∧

∧n
j=1 t1.Aj opj t2.Aj

⇒

16

t1.B op t2.B)

Functional Dependency: {A1, A2, ..., An} → B
∀t1, t2·
(r(t1) ∧ r(t2) ∧

∧n
j=1 t1.Aj = t2.Aj

⇒
t1.B = t2.B)

Here we can see that FDs are special cases of ODs, hence in the following
content, we will only consider ODs and CDs instead.

A study about constraint-generation dependencies [24] suggests that the
implication problem for these dependencies can be linearly reduced to the
validity of a universally quantified formula. The way to do this is:

First, we eliminate the quantification over tuples, which is refer as sym-
metrization in [24].

Take the simplest case of a functional dependency, A → B for example,
whose logic can be written as:

∀tx, ty · (r(tx) ∧ r(ty) ∧ tx.A = ty.A ⇒ tx.B = ty.B)

According to [24], this dependency over r = {tx, ty} is equivalent to the
constraint formula:

cf2(d) : [tx.A = ty.A⇒ tx.B = ty.B] ∧ [ty.A = tx.A⇒ ty.B = tx.B]

[tx.A = tx.A⇒ tx.B = tx.B] ∧ [ty.A = ty.A⇒ ty.B = ty.B]

We can apply similar symmetrization process onto ordering dependencies
and clustering dependencies as well. Such that the implication problem can
be written as:

(∀tx1)...(∀tx3)[cf2(OD1) ∧ ... ∧ cf2(ODn)∧
cf3(CD1) ∧ ... ∧ cf3(CDm)⇒ cf3(CD0)]

Here n and m are numbers of known ordering dependencies (ODs) and clus-
tering dependencies (CDs). CD0 is the clustering dependency to be implied.

We can further replace the quantification over tuples with a quantifica-
tion over elements of the domain:

17

(∀∗)[cf2(OD1) ∧ ... ∧ cf2(ODn)∧
cf3(CD1) ∧ ... ∧ cf3(CDm)⇒ cf3(CD0)] (∗)

where (∀∗) quantifies all free variables in (∗). The implication problem of
clustering dependencies can be linearly reduced to the validity of a univer-
sally quantified formula (∗).

Now, take another look at our set of [cf2]s for ordering dependencies
and [cf3]s for clustering dependencies, all the constraints are of the form:
(tx.A op ty.A), where op ∈ {=, 6=, <,6}. Notice that we didn’t include >
and > since they can be replaced with < and 6. Thus (∗) can be rewritten
accordingly.

First we define:

ζ ::= tx.A op ty.A
| ζ1 ∧ ζ2
| ζ1 ⇒ ζ2
| ¬ζ

where op ∈ {=, 6=, <,6}. Then we can rewrite our implication problem as:

(∀∗)[ζ |= CD0]

With the constraint that ζ involves at most 3 domain variables. The paper
[24] presented a theorem that states the following:

Proposition 2.3. The implication problem for clausal constraint-generating
k-dependencies is:

1. in PTIME for dependencies with one atomic {=, 6=, <,6}-constraint

2. co-NP-complete for dependencies with two or more atomic {=, 6=}-
constraints.

3. co-NP-complete for dependencies with two or more atomic {<,6}-
constraints.

However, none of the cases above suits our case because we have dependen-
cies with two or more atomic {=, 6=, <,6}-constraint. However, for the two
remaining cases, they follow the fact that checking the satisfiability of a con-
junction of equality and order constraints can be done in polynomial time.

18

These observations implies that the complexity of the implication problem for
clustering dependencies is co-NP hard, which is unbearable. Consequently,
there is a need to develop some inference rules to facilitate the implication
and inference process, which could finally improve the performance of the
mining algorithm that we will discuss in the next chapter.

2.3 Inference Rules

As claimed Chapter 1, functional dependencies are subsumed by ordering
dependencies (The version within Definition 1.3). That is, for a functional
dependency: {A,B} → C, we could rewrite it into {A=, B=} {C=}. How-
ever, in this thesis, we are still considering them as two different dependen-
cies. We claim that this has two benefits. First, a functional dependency is
more straightforward. Second, functional dependencies are strongly related
to clustering dependencies in a different way than ordering dependencies.

Inference rules can greatly help us to prone the search space. Accord-
ing to our study, however, it turned out that inference rules for clustering
dependencies alone is not that comprehensive. However, we have been able
to discover that, with the help of functional dependencies and ordering de-
pendencies, we will find some additional rules that can help address our CD
mining problem.

Once again, in the rest of this section, we will use r to represent an
instance of any relational table. We use ti to denote the tuples in the table
and capitalized letters to denote attributes within the table.

We will shown these rules below:

Theorem 2.4. (Empty cluster): For any attribute A, A 7→ {}.

Proof: It is a empty clustering dependency and it holds trivially. �

Theorem 2.5. (Reflexivity): For any attribute A, A 7→ {A}.

Proof: If the table is ordered by A, then it will be automatically clustered
by A as well. �

Theorem 2.6. (Union): Given two clustering dependencies A 7→ S and
A 7→ T where S and T are sets of attributes, the clustering dependency

19

A 7→ S ∪ T will hold. Written as:

A 7→ S, A 7→ T

A 7→ S ∪ T

Proof: Let S = {B1, B2, ..., Bm}, T = {C1, C2, ..., Cn}.
Now that we have both A 7→ S and A 7→ T being valid, then by definition
we will have:
∀tx, ty, tz · ((tx.A 6 ty.A 6 tz.A ∧

∧m
j=1 tx.Bj = tz.Bj)

⇒∧m
j=1 tx.Bj = ty.Bj)

and
∀tx, ty, tz · ((tx.A 6 ty.A 6 tz.A ∧

∧m
j=1 tx.Cj = tz.Cj)

⇒∧m
j=1 tx.Cj = ty.Cj)

Putting them together, we got:
∀tx, ty, tz · ((tx.A 6 ty.A 6 tz.A ∧∧m

j=1 tx.Bj = ty.Bj ∧
∧m

j=1 tx.Cj = tz.Cj)
⇒∧m
j=1 tx.Bj = ty.Bj ∧

∧m
j=1 tx.Cj = ty.Cj)

which is equivalent to the definition of clustering dependency A 7→ S∪T .
�

Theorem 2.7. (Expansion with FD) Given a clustering dependency A 7→
{B1, B2, ..., Bm} and an functional dependency S → C, where S ⊆ {B1, B2, ..., Bm},
we can infer the dependency A 7→ {B1, B2, ..., Bm, C}. We can also write it
as the form:

A 7→ {B1, B2, ..., Bm}, S → C

A 7→ {B1, B2, ..., Bm, C}

Proof: First note that we did not specify that m > 1 and S 6= ∅.
If m = 0 or m 6= 0 and S = ∅, we will get A 7→ {} and {} → C,

with the former being a empty clustering dependency, and the latter being
a functional dependency that says all the tuples have the same C value. If
that is true, then we would know C is clustered as well.

For m > 1 and S 6= ∅, A 7→ {B1, B2, ..., Bm} gives us:

∀tx, ty, tz · ((tx.A 6 ty.A 6 tz.A ∧
∧m

j=1 tx.Bj = tz.Bj)

20

⇒∧m
j=1 tx.Bj = ty.Bj)

Now, assume A 7→ {B1, B2, ..., Bm, C} does not hold, then by definition there
is at least one triple of tuples tx, ty, tz (where tx, ty, tz are all in the relation
r) that violates the rules, written as:

∃tx, ty, tz · (tx.A 6 ty.A 6 tz.A
∧

∧m
j=1 tx.Bj = tz.Bj

∧ tx.C = tz.C (∗)
∧ ¬(

∧m
j=1 tx.Bj = ty.Bj) ∨ ¬(tx.C = ty.C))

Now consider (∗), since A 7→ {B1, B2, ..., Bm} then from the above defi-
nition the left part of (∗) will always be false since (

∧m
j=1 tx.Bj = ty.Bj)

will always be true. Now that (
∧m

j=1 tx.Bj = ty.Bj) is true, according to
the functional dependency S → C, we can know that tx.C = ty.C is true
as well. As a result, (∗) will be false which means clustering dependency
A 7→ {B1, B2, ..., Bm, C} will always hold. �

Theorem 2.8. (OD implication) Clustering dependency can be inferred
from a set of ordering dependencies, as introduced in Section 1.3. Primi-
tively, given two ordering dependencies: {A<} {B6} and {A=} {B=},
we can get clustering dependency A 7→ B, written as:

{A<} {B6}, {A=} {B=}
A 7→ {B}

Proof: Assume A 7→ {B} does not hold. Should that happen, by definition
we will have at least one triple of tuples tx, ty, tz (where tx, ty, tz are all in
the relation r) that violates the rules, written as:

∃tx, ty, tz · (tx.A 6 ty.A 6 tz.A
∧ tx.B = tz.B
∧ tx.B 6= ty.B)

Let us divide the scenarios into four cases:
(1) tx.A = ty.A = tz.A (2) tx.A < ty.A < tz.A (3) tx.A < ty.A = tz.A

and (4) tx.A = ty.A < tz.A.
We analyze the four cases individually below:

21

Case 1: tx.A = ty.A = tz.A, according to the ordering dependency {A=}
{B=}, tx.B should be equal to ty.B.

Case 2: tx.A < ty.A < tz.A, according to the ordering dependency {A<}
{B6}, we will know that tx.B 6 ty.B 6 tz.B. If the violation occurs,
then tx.B will be equal to tz.B, which means tx.B = ty.B = tz.B.
Hence the violation would not occur.

Case 3: tx.A < ty.A = tz.A, according to the given ordering dependencies,
we can get tx.B 6 ty.B = tz.B. If the violation occurs which indicates
tx.B = tz.B, we will know that tx.B = ty.B = tz.B. Hence the
violation would not occur.

Case 4: tx.A = ty.A < tz.A, according to the given ordering dependencies,
we can get tx.B = ty.B 6 tz.B. If the violation occurs which indicates
tx.B = tz.B, we will know that tx.B = ty.B = tz.B. Hence the
violation would not occur.

Hence in general, the violation would not occur, meaning A 7→ {B} will
always hold. �

Theorem 2.7 also implies the following inference rules as special cases:

{A<} {B<}, {A=} {B=}
A 7→ {B}

{A<} {B=}, {A=} {B=}
A 7→ {B}

Theorem 2.9. (Expansion with OD) Given a clustering dependency A 7→
{B1, B2, ..., Bm} and two ordering dependencies {A<} {C6}, {A=}
{C=}, we can get the dependency A 7→ {B1, B2, ..., Bm, C} being true. We
can also write it as the form of:

A 7→ {B1, B2, ..., Bm}, {A<} {C6}, {A=} {C=}
A 7→ {B1, B2, ..., Bm, C}

Proof: Follows immediately from Theorem 2.5 and Theorem 2.7. �

Theorem 2.10. Given an ordering dependency {A<} 7→ {B<
1 }, and a bunch

of functional dependencies A → B1, A → B2, ... , A → Bm, we will have

22

clustering dependency as A 7→ {B1, B2, ..., Bm}. As for:

{A<} 7→ {B<
1 }, A→ B1, A→ B2, ..., A→ Bm

A 7→ {B1, B2, ..., Bm}

Proof: Assume A 7→ {B1, B2, ..., Bm} does not hold, then by definition there
is at least one triple of tuples that violates the rules, written as:

∃tx, ty, tz · (tx.A 6 ty.A 6 tz.A
∧

∧m
j=1 tx.Bj = tz.Bj

∧ ¬(
∧m

j=1 tx.Bj = ty.Bj)

According to functional dependency A → B1 and ordering dependency
{A<} 7→ {B<

1 }, we will know that

1. When A is sorted, B1 will be sorted as well.

2. All the tuples with the same A value should have the same B1 value.
Likewise, all the tuples with the same B1 value should have the same
A value.

Now, for a violation t triple (tx, ty, tz), we must a have
∧m

j=1 tx.Bj = tz.Bj ,
and thus we will know tx.B1 = tz.B1. According to (2), we can get tx.A =
tz.A, furthermore, tx.A = ty.A = tz.A.

At this point, With tx.A = ty.A and all the remaining functional depen-
dencies A → B2, A → B3, ..., A → Bm. We will know that (

∧m
j=1 tx.Bj =

ty.Bj). Should that be true, the violation would never occur. Thus the orig-
inal clustering constraint will hold. �

To summarize, we have discovered 7 inference rules for clustering depen-
dencies, shown in Table 2.1 .

23

Type Inference Rule

Empty Cluster A 7→ {}

Reflexivity A 7→ {A}

Union
A 7→ S, A 7→ T

A 7→ S ∪ T

Expansion with FD
A 7→ {B1, B2, ..., Bm}, S → C

A 7→ {B1, B2, ..., Bm, C}

OD implication
{A<} {B6}, {A=} {B=}

A 7→ {B}

Expansion with OD
A 7→ {B1, B2, ..., Bm}, {A<} {C6}, {A=} {C=}

A 7→ {B1, B2, ..., Bm, C}

Combination
{A<} 7→ {B<

1 }, A→ B1, A→ B2, ..., A→ Bm

A 7→ {B1, B2, ..., Bm}

Table 2.1: Influence rules for clustering dependencies.

24

Chapter 3

Checking and Mining
Algorithms for Clustering
Dependencies

3.1 Clustering Dependency Validity Checking Al-
gorithm

3.1.1 Problem Definition

In this chapter, we will introduce clustering dependency validity checking
algorithm.

Given a relational instance r, we use ti to represent the tuples in r and
upper-case letters A,B1, B2, ..., Bk to represent attributes in r. Now given
a potential clustering dependency on that instance, we want to determine
whether A 7→{B1, B2, ..., Bm} holds in r.

Recall the FOL representation of clustering dependencies presented in
Definition 1.2:

∀tx, ty, tz · (r(tx) ∧ r(ty) ∧ r(tz) ∧ (tx.A 6 ty.A) ∧ (ty.A 6 tz.A)

∧(
m∧
i=1

tx.Bi = tz.Bi)⇒ (

m∧
i=1

tx.Bi = ty.Bi))

a brute-force checking algorithm is quite obvious: we could enumerate every
order triplet of tuple in the form of t1, t2, t3 and verify if they satisfy the
above FOL expression. If every triple satisfies the expression, we will say
that this clustering dependency holds.

25

The correctness of this algorithm is obvious because if no violation oc-
curs during the algorithm then we can assure that all the tuples satisfy the
definition of CD and thus that potential CD must be valid. However, the
brutal-force algorithm would take O(N3) time to enumerate all the triples
and yet another O(m) time for to compare each attribute, making the time
complexity for that would raising to O(N3m) where N is the number of
tuples in instance r, and m is the number of attributes on the RHS. We can
see that as N grows, the time cost of this algorithm would be huge.

In the following content, we will present an algorithm that gives us the
time complexity of O(Nm), where N is the number of tuples and m is the
size of RHS attributes of the clustering dependency to be verified.

3.1.2 Introduction of the Algorithm

Let us first consider the case where there is only one LHS attribute. We
assume all the clustering dependencies to check are of the form:

A7→{B1, B2, ..., Bm}.

In the following content, we will denote our instance with t, and use ti to
represent each tuple in the instance.

Before we introduce the algorithm. We will define another important
and practical concept: “Interesting" Clustering Dependencies.

Definition 3.1. Interesting Clustering Dependency
Let A7→{B1, B2, ..., Bm} be a clustering dependency. We say this clus-

tering dependency is interesting if either of the following two cases holds:

1. B1, B2, ..., Bm are not keys, and their values are not identical on every
row.

2. Both A and B1, B2, ..., Bm are sorted keys.

Consider the first case, the reason we add this constraint is, as the number
of attributes m grows, the value combination of B1, B2, ..., Bm will be more
likely to be different from each other, and eventually could become key of
the table. Although by definition they are still valid clustering dependencies,
they can provide us with no useful information and are not worth studying.
Hence we should consider them as “uninteresting" clustering dependencies.

26

Also, if the RHS values of a CD are identical, that CD will hold trivially
but we are not interested in that case.

The only exception for that is the second case, when the LHS is also
a key and both sides are sorted. This would a special case of an ordering
dependency. Hence, we could consider them “interesting" as well.

That being said, before our checking algorithm, it is necessary to check
whether this CD candidate is interesting. The checking for attributes that
contain identical values can be done when the table is read. The process of
checking RHS for keys will be done prior to the checking algorithm for that
CD candidate.

The details of the algorithm is shown below:

Preprocessing:

1. After reading in a table, found out the attributes that have only one
identical value, and remove this attribute from the input.

2. For each RHS candidate, check if this RHS forms a key. If it does and
the LHS is not, we will not proceed with this CD candidate.

Input for the checking algorithm:

• a table T with N rows and M columns, that contains the tuples
{t1, t2, ..., tN}

• one LHS attribute, marked as A

• a set of RHS attributes, marked as B1, B2, ..., Bm, where m 6M

Main algorithm:
During the main part of the algorithm, we do a linear scan of all the

tuples. Our algorithm terminates as soon as a violation is found. If the
algorithm performed a scan of all tuples without finding a violation, we
could consider this potential clustering dependency as valid. Our algorithm
ensures that, when it reaches tuple ti, then all the tuples before that, i.e., t1
to ti−1, will satisfy that clustering dependency. Consequently, when we are
at ti, our job is to verify that adding this tuple will not cause any violation.

To help explaining the algorithm we first introduce some variables and
definitions that are used in the algorithm.

27

• LHS-cluster An LHS-cluster will represent a group of tuples with
the same LHS value. Since for the rest of the algorithm the tuples are
considered to be sorted by the LHS attribute, tuples with the same LHS
value must belong to the same (and that only) LHS-cluster. Moreover,
when we say “current LHS-cluster", we mean the group of tuples that
has the same A value as tuple ti−1 (since we will be verifying ti at that
moment), and of course, these tuples must be adjacent to one another.

• RHS-value A RHS-value indicates the value combination of all
the RHS attributes in that clustering dependency candidate, a.k.a,
B1, B2, ..., Bm. We would say that two tuples have the same RHS-
value iff these two tuples have the same Bi for every i ∈ {1, 2, ..,m}.

• currentClusterMustIdentical currentClusterMustIdentical is a
boolean variable that could loosely be translated into “the tuples in the
current LHS-cluster must have identical RHS-value". If this variable
is true, any new tuple that comes into the current LHS-cluster with a
different RHS-value is considered as a violation. This variable is used
to check for violation when current tuple ti is in same LHS-cluster as
ti−1.

• currentClusterIdentical currentClusterIdentical is another boolean
variable that could be translated into “the tuples in the previous LHS-
cluster have identical RHS-value". This variable is used to check for
violation when current tuple ti is in different LHS-cluster as ti−1.

Definition 3.2. Valid Tuple/Row
Let A 7→{B1, B2, ..., Bm} be a CD candidate. Our algorithm will perform a
linear scan from the first tuple to the last tuple. In this process, we say a
tuple ti is valid (i indicates the sequential number of that tuple) iff

1. Tuples t1, t2, ..., ti−1 are valid.

2. Within an instance composed with tuples {t1, t2, ..., ti},
A7→{B1, B2, ..., Bm} holds.

Intuitively, we say a tuple is valid if adding this tuple will not compromise
the given CD.

The main logic of the algorithm is shown in Algorithm 1. We first check
if RHS is a key and sort the table by the LHS attribute A. We choose to use
a hash table data structure to save all the RHS-value combinations. We will
use this to check whether that RHS-value has appeared in previous tuples.

28

The time complexity for each insert and search operation in a hash table
is amortized O(1). Consequently, the total time complexity for CD
checking algorithm would be O(Nm), since we need O(N) time to go
through all the tuples and yet another O(m) time to check all the attributes
on the RHS of each tuple in the worst case.

For each row, we will check its validity based on four cases.

1. Different LHS-cluster, RHS-value doesn’t exist.

The RHS-value of current tuple ti is not stored in the hash table and
is not in the same LHS-cluster as ti−1.

2. Same LHS-cluster, RHS-value doesn’t exist.

The RHS-value of current tuple ti is not stored in the hash table and
is in the same LHS-cluster as ti−1.

3. Different LHS-cluster, RHS-value exists.

The RHS-value of current tuple ti is already stored in hash table and
is not in the same LHS-cluster as ti−1.

4. Same LHS-cluster, RHS-value exists.

The RHS-value of current tuple ti is already stored in hash table and
is in the same LHS-cluster as ti−1.

If any violation occurs, the algorithm will terminate. We will discuss the
outcomes for each case in the next section. Finally, if the algorithm scanned
all the tuple without finding a violation, we would consider this CD candidate
as a valid CD.

3.1.3 Correctness Proof

As introduced in the last section, the four situations would cover every case
for each tuple. Hence every incoming tuple must fall into one of the four
categories. In the algorithm, we will conduct 4 different types of condition
check, one for each case, respectively, to determine if ti is violation. The
outcome for each situation and the corresponding proof are shown below:

Case 1: Different LHS-cluster, RHS-value doesn’t exist. In this
case, ti would always be valid.

Consider the FOL for CD:

∀tx, ty, tz · (r(tx) ∧ r(ty) ∧ r(tz) ∧ (tx.A 6 ty.A) ∧ (ty.A 6 tz.A) ∧
(
∧m

j=1 tx.Bj = tz.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

29

Data: input table and a potential dependency A7→{B1, B2, ..., Bm},
number of rows N, number of columns M

Result: True or False(whether the above dependency holds)
if (RHS is key) return false; // uninteresting CD
if (N==1) return true; // if only one tuple
sortTuplesBy(table, A); // sort the tuples by LHS attribute
HashInsert(r1.B1..m); // add the first tuple into hash table
currentClusterIdentical = true;
currentClusterMustIdentical = false;
for i← 2 to l do

if HashTableFind(ri.B1..m)==false AND ri.A 6= ri−1.A then
// CASE 1:
currentClusterIdentical=true;
currentClusterMustIdentical=false;
HashTableInsert(ri.B1..m);
continue ; // passes

else if HashTableFind(ri.B1..m)==false AND ri.A = ri−1.A then
// CASE 2:
if currentClusterMustIdentical == false then

currentClusterIdentical = false;
HashTableInsert(ri.B1..m);
continue ; // passes

else if HashTableFind(ri.B1..m)==true AND ri.A 6= ri−1.A then
// CASE 3:
if currentClusterIdentical==true AND ri.B1..m = ri−1.B1..m

then
currentClusterMustIdentical = true;
currentClusterIdentical = true;
continue ; // passes

else if HashTableFind(ri.B1..m)==true AND ri.A = ri−1.A then
// CASE 4:
if currentClusterIdentical==true AND ri.B1..m = ri−1.B1..m

then
currentClusterMustIdentical = true;
currentClusterIdentical = true;
continue ; // passes

// If we got here, an violation occurred
return false;

end
Algorithm 1: CD checking algorithm

30

When we are at ti, all the previous tuples satisfy the clustering depen-
dency. That is, for all x, y, z < i, the above formula must hold. To
prove adding ti will not break anything, we could replace one of the
variables with ti. Since ti has different LHS-value and RHS-value from
any previous tuples, we will have to prove the following:

∀tx, ty, ti · (r(tx) ∧ r(ty) ∧ r(ti) ∧ (tx.A 6 ty.A) ∧ (ty.A < ti.A) ∧
(
∧m

j=1 tx.Bj = ti.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

The LHS of the this FOL expression could never be true. Thus in case
1, ti could never be a violation. �

Case 2: Same LHS-cluster, RHS-value doesn’t exist. In this case,
ti would be valid iff “currentClusterMustIdentical" is false.

“⇒ ” :

Since ti is in the same LHS-cluster with ti−1, and that it has a new
RHS-value, there must be at least two different RHS-values in the
current LHS-cluster. Hence “currentClusterMustIdentical" could not
be true.

“⇐ ” :

Since ti has different RHS-value from all the previous tuples, it will not
effect the previous tuples with different LHS-value, because its RHS-
value could not equal to any one of those. Hence we only need to
investigate the tuples in the current LHS-cluster. We can see that for
any three tuples tx, ty in this LHS-cluster, ti would be valid if we have:

∀tx, ty, ti · (r(tx) ∧ r(ty) ∧ r(ti) ∧ (tx.A 6 ty.A) ∧ (ty.A 6 ti.A) ∧
(
∧m

j=1 tx.Bj = ti.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

Since tx, ty and ti are all in the same LHS-cluster, they should have
the same LHS value:A. Hence we can rewrite the formula as:

∀tx, ty, ti · (r(tx) ∧ r(ty) ∧ r(ti) ∧ (tx.A = ty.A) ∧ (ty.A = ti.A) ∧
(
∧m

j=1 tx.Bj = ti.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

Now that “currentClusterMustIdentical" is false, (
∧m

j=1 tx.Bj = ti.Bj)
would never be true. It makes the LHS of this FOL false, and the
whole FOL expression true. Thus ti would be valid. �

Case 3: Different LHS-cluster, RHS-value exists. In this case, ti
would be valid iff (1) “currentClusterIdentical" is true and
(2)ti has same RHS-value as ti−1.

31

Figure 3.1: Violation: tuple tj

“⇒ ” :

Now that we have a tuple ti whose RHS-value has occurred before,
and it is in a different LHS-cluster as ti−1 and all the previous tuples.
Consider any tuple that has the same RHS-value as ti, say tk, then we
can know the following two facts are true:

i) For any tj where k 6 j 6 i, it should have the same RHS-value as
tk.

ii) For any tj that are in the same LHS-cluster as tk, it should have
the same RHS-value as tk.

Fact i) can be easily seen. Since ti and tk have the same RHS-value, any
tuple between them should also have the same RHS-value. Otherwise
the RHS attributes would not be clustered. For example, in Figure
2.1, tj does not have the same RHS-value as tk and thus will corrupt
the CD regulation.

Fact ii) states that any tuple in the same LHS-cluster as tk should
also have the same RHS-value as tk. This indicates that if there is
any tuple in any cluster that has the same RHS-value as ti, that LHS-
cluster should have identical RHS-value. If we look at Figure 2.2, tk
and tj are in the same LHS-cluster but have different RHS-values. Now
if we swap tj and tk, tj would be sitting between ti and tk with different
RHS-value, which is a violation of CD.

32

Figure 3.2: Violation: tuple tj

From the 2 facts above we can conclude that the LHS-cluster before
ti must have identical RHS-value, and “currentClusterIdentical" would
then true. Also, since the RHS-value already exists, then there must
be at least one tuple that has the same RHS-value as ti, and since
those tuples must be adjacent, we can know that ti−1 must have the
same RHS-value as ti.

“⇐ ” :

Again, consider the FOL expression:

∀tx, ty, ti · (r(tx) ∧ r(ty) ∧ r(ti) ∧ (tx.A 6 ty.A) ∧ (ty.A < ti.A) ∧
(
∧m

j=1 tx.Bj = ti.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

First consider the cases where tx is in the same LHS-cluster as ti−1,
we will have:

∀tx, ty, ti · (r(tx) ∧ r(ty) ∧ r(ti) ∧ (tx.A = ty.A) ∧ (ty.A < ti.A) ∧
(
∧m

j=1 tx.Bj = ti.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

Since “currentClusterIdentical" is true and ti has same RHS-value as
ti−1, it indicates that ti has the same RHS-value as every tuple in the
previous LHS-cluster. Hence the expression holds.

On the other hand, if ti is not in the same LHS-cluster as ti−1. Since
“currentClusterIdentical" is true and ti has same RHS-value as ti−1,
we would know that all the previous LHS-cluster as well as ti share
one common RHS-value. In the expression:

∀tx, ty, ti · (r(tx) ∧ r(ty) ∧ r(ti) ∧ (tx.A 6 ty.A) ∧ (ty.A < ti.A) ∧
(
∧m

j=1 tx.Bj = ti.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

33

For the LHS to be true, tx should have the same RHS-value as ti. Also,
we already know that tuples until ti−1 are all valid, which indicates
that tx and its LHS-cluster also share that common RHS-value with
ti and the previous LHS-cluster. Thus the formula must be true. �

Case 4: Same LHS-cluster, RHS-value exists. In this case, ti is
valid iff (1) “currentClusterIdentical" is true and (2)ti has
same RHS-value as ti−1.

“⇒ ” :

Using proof by contradiction, assume the statement is false, then either
(1) or (2) would be false.

Consider (1) when the existed RHS-value belongs to a tuple in the
current LHS-cluster. Let that tuple be tj . Since (1) is false, there
would be at least one tuple that has different RHS-value as ti, say tk.
We could see that this violates the definition of clustering dependencies,
because we can swap the order of the tuples, make tk sit between ti
and tj and thus make a violation.

If the existed RHS-value belongs to a tuple in a LHS-cluster other than
the current one, say tj . Since (1) is false, there would be at least one
tuple that has different RHS-value as ti, say tk. Again, we can swap
the order of the tuples and make tk lay between ti and tj , which would
cause a violation of CD.

Consider (2), ti has a RHS-value different than ti−1. We could know
that there exists one tuple tk whose RHS-value equals to ti, and that
could not be ti−1. Hence no matter where it is, there would be no
valid CD within the table because ti−1 sits in-between ti and tk. An
example is shown in Figure 3.3.

“⇐ ” :

Consider the FOL expression for a CD:

∀tx, ty, tz · (r(tx) ∧ r(ty) ∧ r(tz) ∧ (tx.A 6 ty.A) ∧ (ty.A 6 tz.A) ∧
(
∧m

j=1 tx.Bj = tz.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

Assume that ty lies in the same LHS-cluster of ti, then we need to
prove:

∀tx, ty, ti · (r(tx) ∧ r(ty) ∧ r(ti) ∧ (tx.A 6 ty.A) ∧ (ty.A = ti.A) ∧
(
∧m

j=1 tx.Bj = ti.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj)).

34

Figure 3.3: A violation of CD

Since “currentClusterIdentical" is true, ty and ti must have the same
RHS-value. If the LHS of the FOL expression is false, the FOL ex-
pression itself would then be true. Otherwise, if the LHS of the FOL
expression is true, it would indicate that tx has same RHS-value as
ti. From that we can know ti, ty and ti have the same RHS-value, in
which case the RHS of the FOL expression would be true.

On the other hand, if ty is not in the previous LHS-cluster of ti, for
the LHS of the FOL expression to be true, tuples between tx and ti
(inclusive) must share common RHS-value. In this case, tx and its
corresponding LHS-cluster must also share that common RHS-value.
The expression:

∀tx, ty, tz · (r(tx) ∧ r(ty) ∧ r(tz) ∧ (tx.A = ty.A) ∧ (ty.A = tz.A) ∧
(
∧m

j=1 tx.Bj = tz.Bj)⇒ (
∧m

j=1 tx.Bj = ty.Bj))

would hold trivially since tx, ty and tz will then share common
RHS-value. �

3.2 Clustering Dependency Mining Algorithm

In this section, we will study the mining problem for clustering dependencies.
Given a table or a set of dataset, we would like to know if there are any
underlying interesting clustering dependencies that could let us understand
our data and make better use of them.

However as the size of the table grows, and in particular, when the
number of columns grows, the time cost of the mining algorithm could be a

35

big issue for us. Thus we will have to find ways to optimize our algorithm
and prune the search space. We will talk about it in the following content.

3.2.1 Problem Definition

Given a relation instance r ∈ R , where R = {R0, R1, ..., Rk}, a set of tuples,
our CD mining algorithm is aiming to find out every clustering dependency
within R. These dependencies will be of the form Ri → S, where S =
{Rj1 , Rj2 , ..., Rjl}, and 1 6 l 6 k + 1.

We have two more specifications to make:

• First, to simply the problem, we will assume the LHS attribute of the
mining algorithm is known beforehand in the following content. We do
this because whichever attribute we use as the LHS, it will not make
any difference to the algorithm.

• Second, for the LHS attribute Ri, Ri /∈ S, simply because Ri → {Ri}
is trivial.

3.2.2 Algorithm Introduction

As claimed before, our problem is to find all the possible clustering depen-
dencies in the form of R0 → S within the S lattice, suppose S={A,B,C,D},
then our lattice will look like this in Figure 3.4:

As claimed before, we will consider that the LHS attribute is already
known to the algorithm. We will let it be R.

Definition 3.3. ANode in the Lattice does not mean the set of attributes
represented in the lattice cell, it refers to the corresponding clustering de-
pendency whose RHS equals the set of attributes in that cell.

Definition 3.4. Validity of Node
The validity of a node indicates whether the clustering dependency repre-
sented by that node is valid.

As an intuition, consider one of the inference rules: the union rule:

A 7→ {B1, B2, ..., Bm}, A 7→ C

A 7→ {B1, B2, ..., Bm, C}

This inference rule can be used two ways in CD mining algorithm:

36

Figure 3.4: An example of the complete lattice with S={A,B,C,D}.

• The first thing is that if both A 7→ {B1, B2, ..., Bm} and A 7→ C are
true, we will know that A 7→ {B1, B2, ..., Bm, C} is true as well.

• Another way to look at this is, if A 7→ {B1, B2, ..., Bm, C} is false, and
one of the premises, say, A 7→ {B1, B2, ..., Bm} is true, then the other
premise must be false.

With that being said, once we acquire the validity of some nodes in the
lattice, we will be able to discover all of the clustering dependencies in the
lattice. The mining process can be done in two ways: a top-down approach
and a bottom-up approach. Of course we could apply these two methods at
the same time in our algorithm.

In an ideal world, with all the inference rules we know, we would be able
to discover all of the clustering dependencies. But that is hardly the case
most of the time. We are very likely to be stuck at some node where there
is no more inference rules to help us go forward. Should this happen, we
will need to use the checking algorithm we proposed in the last chapter to
verify the clustering dependencies whose validity cannot be deduced solely
from inference rules.

The way we use checking algorithm within mining algorithm is, we will
first explore CDs with inference rules, until at some point no more depen-
dencies can be inferred. At that moment, we will use the checking algorithm
to check the validity of a CD, for the mining algorithm to proceed.

37

In the next section, we will see in detail how inference rules can be used
to mine clustering dependencies.

3.2.3 Algorithm Implementation

Before we introduce the main part of the algorithm, there is another clarifi-
cation we need to make.

Since we are only concerned with the mining algorithm for clustering
dependencies, we will consider that all the ordering dependencies and
functional dependencies are already known to the algorithm. That
is, they are considered to be part of the input to the mining algorithm. We
will first discover all the FDs and ODs and feed the result to the CD mining
algorithm. To this end, we need to following definition:

Definition 3.5. An Influence Edge is an directed edge between two nodes
in the lattice. There will be an influence edge from node N1 to node N2 iff
the validity of N2 can be inferred by N1 and existing FDs/ODs.

Now we will see how we will use different types of inference rules to
optimize the CD mining algorithm.

Case 1. Consider the OD implication rule:

{A<} {B6}, {A=} {B=}
A 7→ {B}

We can directly obtain some clustering dependencies from ordering
dependencies, using Theorem 2.7:

This theorem can be easily applied in the algorithm. We only need
to go through every OD and see if any CD that can be inferred from
them.

Case 2. Consider the union rule in Theorem 2.5 with an example shown
below:

A 7→ {B}, A 7→ {C,D}
A 7→ {B,C,D}

As introduced earlier, this inference rule can be used from both direc-
tions:

38

Figure 3.5: Validate new clustering dependency with union rule (top-down).

For the top-down approach, assume we have already identified that
both A 7→ {B} and A 7→ {C,D} are true. Based on Theorem 2.5, we
can know that A 7→ {B,C,D} must hold, as shown in Figure 3.5.

In this situation, once we identified a valid clustering dependency (say,
A 7→ {B}), we will visted all the other unchecked nodes in the lattice
that are disjoint with attributes in current RHS, and mark their union
({B,C,D}) as a valid node. We could then get a new valid CD: A 7→
{B,C,D}.
As for the bottom-up approach, if we know that A 7→ {B,C,D} is
false, and A 7→ {B} is valid, we can know that A 7→ {C,D} must be
false.

That is, once we have identified some invalid clustering dependency
R0 7→ S, we can check for all the dependencies whose RHS is subset
of the RHS of current dependency R0 7→ S1. For example in our case,
the RHS of A 7→ {B} is a subset of the RHS of A 7→ {B,C,D}. Once
we find this, we can mark R0 7→ S2 as invalid clustering dependency
where S2 = S − S1 (in our case, A 7→ {C,D}), as shown in Figure 3.6.

Case 3. Consider the expanding rules with FD/OD with an example shown
below:

R 7→ {B}, B → C,D

R 7→ {B,C,D}

39

Figure 3.6: Invalidate new clustering dependency with union rule (bottom-
up).

Figure 3.7: Validate new clustering dependency with FD/OD (top-down).

As claimed at the beginning of the section, we would assume that the
FDs and ODs are already known. We can then account for them as
base knowledge and represent them as Inference Edges in the lattice.

For example, if we know a clustering dependency R 7→ {B} and a
functional dependency B → C,D (which is a combination of B → C
and B → D):

Based on Theorem 2.6, we will assume that clustering dependency
R 7→ {B,C,D} holds. In this case, B → C,D will act as an Inference
Edges that connects nodes B and BCD. It is not an edge in the
original lattice, as we can see in Figure 3.7.

Likewise, there are two different situations we need to consider here,

40

Figure 3.8: Invalidate new clustering dependency with FD/OD (bottom-up).

which corresponds to two different types of edges, one pointing down-
wards in the lattice, as we just saw, and the other pointing upwards.

In the first situation, we have one valid clustering dependency and one
given FD/OD. We will be able to validate a new clustering dependency
from them. In the algorithm, when we are at a valid node in the lattice,
if there is an influence edge representing FD/OD pointing down, then
we can just mark the node on the other side of the edge as valid.

The other situation is as follows: we are an invalid clustering depen-
dency and a related FD/OD. Based on Theorem 2.6, we can know that
one of the premises must be wrong in this case, and since that given
FD/OD must be correct, the clustering dependency premise should be
wrong. In this case, we will draw an influence edge pointing up from
the invalid node to the node representing that CD premise.

For example, if we know that R 7→ {B,C,D} is an invalid CD, and
we know an FD B → CD. Then following the inference edge, we can
deduce that the clustering dependency R 7→ {B} is invalid as well, as
shown in Figure 3.8.

3.2.4 Main Algorithm

As introduced before, we will use both top-down and bottom-up search
strategies to find out all the CDs. We will first check the validity (with
our checking algorithm introduced in Section 3.1) of the second level of the
lattice which contains all the single attribute and the last level which con-
tains a set of all the attributes as RHS. We use these nodes because they can

41

Figure 3.9: An example of lattice

provide us with some good starting points for either top-down or bottom-up
mining. Also checking the validity of these nodes would not cause much over-
head. Once we got the validity of these nodes, we will use them as starting
points and explore the whole lattice to mine CDs.

Ideally, with these starting points and the inference rules we can validate
all the nodes in the lattice. However, most of cases we cannot find out the
validity of every single node in the lattice with only inference rules. So
whenever our algorithm cannot proceed, we need to use the check algorithm
to check an unchecked node so that the mining process could proceed.

Another problem in this situation is, when we are no longer able to find
CDs with inference rules, which node shall we choose to verify? In our
algorithm we will use a greedy strategy and always find the node that could
benefit the algorithm most. That is, the nodes with most outgoing inference
edges.

42

Data: The input table T, all the functional/ordering dependencies, a
chosen LHS attribute R

Result: All the clustering dependencies on T with LHS being R
Initialization;
Construct the lattice;
Use existing ordering dependencies to discover new clustering
dependencies;
For each functional/ordering dependency, add an Inference Edge into
the lattice graph;
Verify the nodes on the second level and last level of the lattice;
// S is the set that save recently validated nodes in the

last step
newValidate = {Validity of nodes in the 2nd row and the last row};
// largestDeg is a priority queue (maximum heap) that saves

the nodes and uses degree as the keys
Generate largestDeg based on the degree of each nodes;
repeat

// First, expand with the newly validated nodes
while newValidate6= ∅ do

randomly choose a node p from newValidate;
if p is a valid node then

S = {valid nodes found via pruning rule 1 and 3};
newValidate = newValidate + S;

end
else if p is an invalid node then

S = {invalid nodes found via pruning rule 2 and 4};
newValidate = newValidate + S;

end
end
// No more inference rules can help, choose a node
q = largestDeg.front();;
while q is already verified do

largestDeg.pop();
q = largestDeg.front();

end
verify node p;
mark node p as valid/invalid;
apply according pruning rules on p;
newValidate = newValidate + { new validated nodes via p};

until largestDeg = ∅;
Algorithm 2: CD mining algorithm.

43

Our mining algorithm takes place on a lattice composed with a set of
attributes except for the selected LHS attribute. The goal is to find out the
validity of every node in the lattice and record them. An example with the
attribute set being {A,B,C,D} is shown in Figure 3.9. We can see from the
figure that at this stage of the algorithm we have found out the validity of 7
nodes.

To better demonstrate our algorithm, we will introduce the following
concepts:

Definition 3.6. An Inference Graph contains all the unverified nodes in
the lattice and the relations between them. It is created when the algorithm
starts.

Definition 3.7. Vertices of Inference Graph Every node in the lattice
is splitted into two counterparts. One indicates the node being valid (de-
noted with (True)), the other indicates the node being invalid (denoted with
(True)). Both nodes will be placed into the inference graph as vertices.

Definition 3.8. AKnowledge Pool of the algorithm contains the following
three items:

1. All the FDs passed as inputs to the algorithm.

2. All the ODs passed as inputs to the algorithm.

3. Every verified nodes in the lattice and their status.

Definition 3.9. Edges of Inference Graph: Given two nodes N1 and N2

in inference graph, there will be an edge pointing from N1 to N2 iff we can
infer N2 from N1 and the information in knowledge pool.

The main part of the algorithm in shown in Algorithm 2. The steps are:

1. We will use our CD checking algorithm to check the second and last
level of the lattice. We will then add the validity of these nodes into
our knowledge pool. For example, if our S = {A,B,C,D}, we will
verify A,B,C,D and ABCD first.

2. We will build our inference graph based on the knowledge pool. An
example of inference graph is shown in Figure 3.10. Take node BC in
the lattice for example, we will split it into two vertices: BC(True) and
BC(False) and put them into our inference graph.

44

Figure 3.10: An example of an inference graph.

3. We will choose the node that has the most outgoing edges and use CD
checking algorithm to verify its validity. After that, we will get the
validity of this node and all the nodes it connects to (either directly
or indirectly). We will add this information into our knowledge pool
as well. Whenever we get the validity of a node, we will remove its
counterpart from the inference graph. For example in Figure 3.10,
as long as we have verified that A(True) is true. We will add all the
nodes it connects to (AB(True), BC(True), B(T), BCD(False)) into our
knowledge pool and will consider A(False) to be wrong and remove the
node as well as the related edges from the inference graph.

4. If the inference graph is empty (which means we have verified or in-
ferred every node in the lattice), terminate the algorithm and return
the knowledge pool. Otherwise, go back to (3).

45

Chapter 4

Experiments

In this chapter, we conduct a series of experiments that test the performance
of the algorithms we proposed. Since the complexity for checking algorithm
is pretty straightforward and based on the fact we already proved its cor-
rectness, it would be unnecessary to test the CD checking algorithm here
individually. Also, they can be tested within the mining algorithm.

For the CD mining algorithm, we will propose two ways to test it. First,
we will generate some arbitrarily data manually according to input argu-
ments. We uses them to test the performance of our algorithm w.r.t. dif-
ferent type of data. Second, we will use real-life datasets to test the perfor-
mance of our CD mining algorithm, especially the pruning strength. We will
first use the SourceForge Research Data Archive (SRDA), a Repository of
FLOSS Research Data. We will also use a real-life table that contains order
information from Superstore, as introduced in Chapter 1.

4.1 Testing on Synthetic Data

4.1.1 Preliminaries

Before we start testing our algorithm with real-life data, we first test our
algorithm using synthetic data we generated. We use synthetic data first
because we want to fully test the performance of our algorithm from every
different aspects.

We will take the following 5 parameters into account when we generate
the data: N, M, FD_count, OD_count, CD_count.

• N represents the number of rows (tuples) in the table. This number
could be sufficiently large as supported by memory.

46

• M represents the number of columns (attributes) in the table. This
number would usually be rather small because it could make the time
complexity of the algorithm grow exponentially. Our program could
support M being as large as the word length of the machine (64, most
of the cases), although that could take a lot of time and thus make the
testing part much harder. As a result, in our experiment we usually
make M no larger than 20.

• FD_count indicates the number of functional dependencies (FDs) we
plant into our table to help the mining process. We do this because
naturally if the values in the table are randomly generated, it is very
unlikely that we could discover FDs from the table, unless we deliber-
ately plant some in. Here we only consider FDs with one LHS attribute
for simplicity. These FDs are of the form: A → B, where A and B
could be any attribute in the table.

• OD_count the number of ordering dependencies (CDs) we plant into
our table to help the mining process for the same reason above.. Like-
wise, we are only considering ODs with one attribute on both LHS and
RHS for simplicity. These ODs are of the form: {A<} {B6} (could
also be {A<} {B=} or {A<} {B<}, varies when we are actually
generating data) and {A=} {B=}, where A , B can be any attribute
from the table.

• CD_count represents the number of clustering dependencies (CDs)
we are plant into the table. They are of the form A 7→ {B1, B2, ..., Bk},
k 6 m, A and Bi (1 6 i 6 k) are all attributes from the table. We
add this parameter to make sure there would be at least CD_count
clustering dependencies in the table. This parameter can be used to
test how number of CDs could affect the mining process. Notice that
CD_count doesn’t necessarily mean that we only have that many
clustering dependencies in the table. In fact, we could always find
more than that, especially when we have several FDs/ODs are planted
ahead. Finally, unlike the FDs and ODs we planted, these pre-made
CDs are not unknown to the mining algorithm beforehand.

4.1.2 Data Generation

The following shows how we generate the synthetic data:
First we will just fill this N ∗M table with random numbers. The tricky

part is, we don’t want it to be “too random". Otherwise, as the number of

47

Figure 4.1: General performance test

columns grows, we can have enormous number of clustering dependencies,
because every row tend be unique from each other, which makes them keys
of the table. As a result, the table would be clustered on each individual set
of attributes, these dependencies are considered neither interesting or useful
to us. Thus when we generate data for each row, it would be identical to
some previous row by a slight chance.

After that, we will generate all the FDs/ODs/CDs as required and plant
them into the table. The affected attributes are randomly chosen. When we
generate these dependencies, we need to coordinate between them and make
sure there would be no conflicts or potential corruption.

Recall the time complexity of our checking algorithm is O(MN) in the
worst case for a single CD candidate. The whole search space(potential
number of CDs) with a given LHS is 2M , where N is the number of rows and
M is the number of attributes. With a given LHS attribute, an naive mining
algorithm that checks every potential CD could have O(MN2M) as worst-
case time complexity. We will use this naive algorithm in the experiments
as comparison to our mining algorithm to show the pruning strength of the
algorithm.

4.1.3 General Test

First, we will generally test the performance of our algorithm to test the
strength of our pruning. The result in shown in Figure 4.1.

As we can see here, the performance of our algorithm can and will be
greatly improved when given some existing dependencies. The more existing
dependencies we have, the more time we could save. Generally, we can
improve the performance by ∼100% to ∼1000%.

48

Figure 4.2: Scalability test w.r.t. number of rows.

Figure 4.3: Scalability test w.r.t number of columns.

4.1.4 Scalability Test

Now we will test the scalability of our algorithm, first w.r.t. the number of
rows N. The result in shown in Figure 4.2.

As we can see here, the time cost grows linearly according to the number
of rows. We can see that our algorithm exhibits good scalability on number
of rows.

Second, we will test the scalability of our algorithm w.r.t. the number
of columns. The result in shown in Figure 4.3.

As we can see here, the time grows exponentially as the number of
columns grows. Specifically, the time cost doubles when the number of
columns is incremented by 1 as expected. As the time complexity is strongly
related to the size of the lattice which grows exponentially w.r.t. the number
of attributes.

4.1.5 Test of Effectiveness of Different Dependencies

We also test how planting different types of dependencies could affect the
performance of the algorithm. We experiment with varies combination of
the number of each dependency, with the results shown in Figure 4.4.

The first thing we find out in the results is that even though adding

49

Figure 4.4: Test on effectiveness of different dependencies.

functional dependencies could already benefit the performance of the algo-
rithm, adding ordering dependencies acts even better. This is reasonable
since ordering dependencies could imply functional dependencies. Moreover,
they are specialized so that the LHS are exactly the LHS of the clustering
dependencies we want to discover. Another thing to see is that planting in
nothing but clustering dependencies almost does no help to our algorithm.
This is also acceptable because first unlike functional/ordering dependencies,
pre-defined clustering dependencies are not known to our program before-
hand. Perhaps another reason is that the union rules themselves are not
quite effective in pruning.

4.2 Testing on Real Data

In this section, we will experiment with two sets of real-life data. First, we
will test with the SourceForge Research Data Archive (SRDA) data. The
data made available from this FLOSS research data archive, is derived from
and NSF funded project, entitled “Understanding Open Source Software De-
velopment". This research project seeks to understand the free/open source
software (F/OSS) phenomenon and to predict the pattern of growth exhib-
ited by F/OSS projects over time. [15][16][17]

In the pre-processing step, we will first use FD/OD mining algorithms to
discover all such dependencies and pass them to our CD mining algorithm.
We already have fairly efficient algorithms for function dependency mining
like [12]. But there is no valid algorithm to discover ordering dependencies.
However, consider this is just pre-processing and our data size is not very
large, we are able to endure the time cost and implement a naive algorithm
to find out all the ODs.

We specifically look at the following 6 tables: doc_data, forum,
people_job_inventory, artifact_group_list, artifact, artifact_file.

50

Figure 4.5: Test on SRDA dataset

The results are shown in Figure 4.5.
Within these datasets, there are not a lot of ODs we can make use of,

and most of the FDs are true because the first column in the primary key.
Those FDs are generally not helpful to us.

As we can see, most of the time, our mining algorithm can prune the
search space just fine, especially with the help of ordering dependencies.
However the performance overall in not quite satisfying. The reason is that
there are not many clustering dependencies in these tables and the pruning
strategy was used less than expected. Regardless, our mining algorithm can
still improve the performance by at least 20% even without the help of any
additional FDs or ODs.

As a second set of real-life data, we perform tests using the orders infor-
mation table from Superstore introduced in Chapter 1.

Recall that the table has 21 attributes: Row ID, Order ID, Order
Date, Ship Date, Ship Mode, Customer ID, Customer Name, Seg-
ment, Country, City, State, Postal Code, Region, Product ID,
Category, Sub-Category, Product Name, Sales, Quantity, Discount
and Profit. Plus it has 9993 records. A table with such size could make the
time complexity of mining algorithm unbearable. Thus we need to conduct
some pre-processing to reduce the search space.

First, if we study the semantic of these attributes, we will be able rule out
some attributes that has no potential involvement with clustering dependen-
cies. Namely, Product Name, Sales, Quantity, Discount, Profit and
Country (Since nearly all of them are from United States). That
provide us with 15 attributes left.

Second, instead of testing on 15 columns directly, we will test on the first
8 columns, then on 12 columns and finally on 15 columns. Besides, we also
distinguish the case where LHS being (Row) ID from others. We do this
because most FDs are involved with that attribute. Thus we can show how
we can greatly reduce the search space with the help of existing FDs. For

51

Figure 4.6: Test on Order table

the LHS being other attributes, we just show the result of the average cost
since their performance is quite similar. The results are shown in Figure 4.6.

As we can see here, since most of the FDs are involved with the attribute
(Row) ID. Based on the fact that there are a great number of CDs with
(Row) ID on the LHS, the search space would be greatly pruned. When
we include the all 15 attributes, we can save as much as 92.925% of the time
compared to the naive algorithm. We can assure that by definition, all of
these CDs are interesting. On the other hand, clustering dependencies with
other LHS do not have as good performance. For example, with other 14
attributes being the LHS, the number of valid CDs sums up to only 521.
Accordingly, pruning for them would be much weaker.

52

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we first introduced clustering dependencies (CDs) and demon-
strated with examples how it is useful in different fields including query
optimization, data visualization, data analysis, MapReduce, etc. After that,
we gave the formal definition to clustering dependencies. We also discussed
relation of CDs to functional dependencies (FDs) and ordering dependencies
(ODs).

We then discussed reasoning for clustering dependencies. We declared
that although it is difficult to come up with a sound and complete system, we
will still be able to discover a lot of inference rules that turned out to be very
useful in the CD mining algorithm. We then exhibited some inference rules
with the help of functional dependencies (FDs) and ordering dependencies
(ODs).

After that, we introduced two algorithms, a checking algorithm that can
check the validity of a given CD. It has a O(MN) time complexity in the
worst case. This algorithm runs by checking RHS attributes of every tu-
ple in the given CD and returns when a violation occurs. We also defined
uninteresting clustering dependencies to rule out the CDs that, for exam-
ple, have keys on the RHS. The second algorithm we proposed is a mining
algorithm that can discover all the CDs within a given table. The mining
algorithm works with the help of inference rules and the checking algorithm.
We showed that we can make good use of the inference rules to prune the
search space.

Finally, we tested the performance of our mining algorithm with both
synthetic and real-life datasets. With synthetic data, we observed that the

53

time cost of the algorithm followed our experimental analysis. We have also
experimentally demonstrated that our algorithm is highly scalable. Cohering
the real-life datasets, we showed that not only can we greatly prune the search
space, especially with the help of FDs and ODs, but we can also discover a
lot of interesting CDs from real-life datasets.

5.2 Future Work

We propose the following as overviews of potential future work:

1. We will consider more expressive and comprehensive LHS form instead
of just one single attribute. We have actually considered using multiple
attributes on the LHS, but this complicates the development of CD.
We also believe that having a set of LHS attributes ORDER BY is
much better than having the LHS attributes GROUP BY, simply
because the former would be subsumed by the latter. However, using
multiple attributes on the LHS would make the LHS become an OD,
in which case we have to make extra effort to deal with OD’s reasoning
system and mining algorithm. Unfortunately, although the reasoning
system for ODs have already been established quite well lately, there
haven’t been any well-known efficient OD mining algorithm yet. Even
if there is, the question of whether ODs with a lot of attributes on
both sides would be interesting or worth studying at all could be highly
questionable.

2. We will try to relax the logics in our definition in the hope that it
could bring us more interesting types of CDs. We will put CDs in this
category as Almost GROUP BY. There are two reasons for this.
First, the data might contain noise (wrong records), and those few
tuples could ruin the whole CD integrity. Secondly, when the size of
the data is really large, we might need to do some filtering upon it, in
which case we only need the data to be approximately aggregated.

3. We will try to further discover more inference rules and try to build up
a more comprehensive and sophisticated reasoning system, although it
would be much harder than it appears to be. The ultimate goal would
be a discovery of a complete set of inference rules for CD reasoning.

4. We will try to improve the performance of our mining algorithm. We
believe the key is to prunes the CD candidates with very large RHS.

54

It could be the case that when the size of RHS attributes, or the sin-
gularity of the RHS attribute value combinations reaches a certain
threshold, we will no longer be interested in them. Also if the RHS
contains some specific features, we will consider any further RHS con-
taining those attributes uninteresting directly. Besides, we could also
consider developing different strategies for different types of input data.

55

Bibliography

[1] Bitton, Dina, Jeffrey Millman, and Solveig Torgersen. “A feasibility and
performance study of dependency inference [database design].” Data En-
gineering, 1989. Proceedings. Fifth International Conference on. IEEE,
1989.

[2] Mannila, Heikki, and Kari-Jouko RÃďihÃď. “Algorithms for inferring
functional dependencies from relations.” Data Knowledge Engineering 12.1
(1994): 83-99.

[3] Huhtala, YkÃď, et al. “TANE: An efficient algorithm for discovering
functional and approximate dependencies.” The computer journal 42.2
(1999): 100-111.

[4] Szlichta, Jaroslaw, Parke Godfrey, and Jarek Gryz. “Fundamentals of or-
dering dependencies." Proceedings of the VLDB Endowment 5.11 (2012):
1220-1231.

[5] Szlichta, Jaroslaw, et al. “Expressiveness and complexity of ordering de-
pendencies.” Proceedings of the VLDB Endowment 6.14 (2013): 1858-
1869.

[6] Wyss, Catharine, Chris Giannella, and Edward Robertson. “Fastfds: A
heuristic-driven, depth-first algorithm for mining functional dependencies
from relation instances extended abstract.” Data Warehousing and Knowl-
edge Discovery. Springer Berlin Heidelberg, 2001. 101-110.

[7] Huhtala, YkÃď, et al. “TANE: An efficient algorithm for discovering
functional and approximate dependencies.” The computer journal 42.2
(1999): 100-111.

[8] Dong, Jirun, and Richard Hull. “Applying approximate ordering depen-
dency to reduce indexing space." Proceedings of the 1982 ACM SIGMOD
international conference on Management of data. ACM, 1982.

56

[9] Ginsburg, Seymour, and Richard Hull. “Order dependency in the rela-
tional model." Theoretical computer science 26.1 (1983): 149-195.

[10] Armstrong, William Ward. “Dependency Structures of Data Base Rela-
tionships." IFIP congress. Vol. 74. 1974.

[11] Fan, Wenfei, et al. “Discovering conditional functional dependencies."
Knowledge and Data Engineering, IEEE Transactions on 23.5 (2011): 683-
698.

[12] Chiang, Fei, and RenÃľe J. Miller. “Discovering data quality rules."
Proceedings of the VLDB Endowment 1.1 (2008): 1166-1177.

[13] Golab, Lukasz, et al. “On generating near-optimal tableaux for condi-
tional functional dependencies." Proceedings of the VLDB Endowment
1.1 (2008): 376-390.

[14] Chu, Xu, Ihab F. Ilyas, and Paolo Papotti. “Discovering Denial Con-
straints." Proceedings of the VLDB Endowment 6.13 (2013).

[15] Matthew Van Antwerp and Greg Madey, “Advances in the SourceForge
Research Data Archive (SRDA)", The 4th International Conference on
Open Source Systems, IFIP 2.13 - (WoPDaSD 2008), Milan, Italy, Septem-
ber 2008. (paper) (slides) (BibTeX citation)

[16] Yongqin Gao, Matthew Van Antwerp, Scott Christley and Greg Madey,
“A Research Collaboratory for Open Source Software Research", In the
Proceedings of the 29th International Conference on Software Enginering
+ Workshops (ICSE-ICSE Workshops 2007), International Workshop on
Emerging Trends in FLOSS Research and Development (FLOSS 2007),
Minneapolis, MN, May 2007. (paper)

[17] Greg Madey, ed., The SourceForge Research Data Archive (SRDA).
University of Notre Dame. May 2014 http://srda.cse.nd.edu/

[18] Business Intelligence and Analytics | Tableau Software,
http://www.tableau.com/

[19] e-Study Guide for: Integrated Business Projects by Anthony A. Olin-
zock, ISBN 9780538731096

[20] Steele, Julie, and Noah Iliinsky. “Beautiful visualization: looking at data
through the eyes of experts." O’Reilly Media, Inc., 2010.

57

[21] Dean, Jeffrey, and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters." Communications of the ACM 51.1 (2008): 107-
113.

[22] “Google spotlights data center inner workings", Tech news blog - CNET
News.com.

[23] Big Data Infrastructure, CS 489/698 (Winter 2016), University of Wa-
terloo. http://lintool.github.io/bigdata-2016w/.

[24] Baudinet, Marianne, Jan Chomicki, and Pierre Wolper. “Constraint-
generating dependencies." Database Theory - ICDT’95. Springer Berlin
Heidelberg, 1995. 322-337.

58

