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Abstract 

The purpose of this study was to determine the chemical and/or biological factors that cause 

2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT) and nitrobenzene (NB) to 

transform to their respective aromatic amines in the Borden aquifer, and to investigate the 

biodegradation of 2,4-diaminotoluene (2,4-DAT) and 2,6-diaminoluene (2,6-DAT) under 

aerobic conditions.  In situ microcosms (ISM) and laboratory microcosm experiments were 

used in the investigation. In addition, a sequential treatment system was tested in which 

columns containing granular iron were followed by either an anaerobic or aerobic soil 

column. Both 2,4- and 2,6-DNT were used to determine if competitive effects exist between 

the two. 

 

The ISM isolates a volume of the aquifer material and allows for in situ solute loading and 

sampling in order to characterize chemical or biological reactions. Four ISMs were installed 

below the water table at CFB Borden. Each ISM was injected with 10 mg/L of either 2,4-

DNT, 2,6-DNT, NB, or 2,4-DNT + 2,6-DNT, in two repetitions. In all cases, chloride was 

also injected as a conservative tracer to monitor for dilution. The results indicated 

transformation of nitroaromatics via nitro-reduction to their intermediate products, mainly as 

2,4-DAT, 2,6-DAT, and aniline. Within 20 days, a loss of up to 92% of 2,4-DNT was 

observed with the formation of 2,4-DAT. Minor amounts of 2-amino-4-nitrotoluene (2-A-4-

NT) and 4-amino-2-nitrotoluene (4-A-2-NT) were also observed. Similarly, up to a 96% loss 

of 2,6-DNT was seen after 29 days, with degradation products including 2-amino-6-

nitrotoluene (2-A-6-NT) and 2,6-DAT. When 2,4- and 2,6-DNT were present in 

combination, 99% loss of both compounds at similar rates was observed over 20 days 

following the injections, with degradation products including aminonitrotoluenes and 

diaminotoluenes. Finally, when nitrobenzene was injected, degradation of up to 99% was 

observed by day 29, with the formation of aniline as the primary product.  
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To determine the cause of the nitro-reduction, laboratory microcosm experiments were 

conducted using soil from within the chamber of the ISM’s. Duplicate microcosms were 

prepared with Borden groundwater and spiked with 2,4- and 2,6-DNT in an anaerobic 

glovebox. Microcosms were incubated and sampled periodically for approximately 3 months. 

Several different conditions, including: groundwater and soil, autoclaved groundwater and 

soil, soil taken at ground surface and groundwater, and autoclaved silica sand and 

groundwater were created for microcosm experiments to determine whether abiotic or biotic 

factors caused the reduction of 2,4- and 2,6-DNT. Microcosms which duplicated field 

conditions in the laboratory had average half-lives of 4.2 days and 5.1 days for 2,4- and 2,6-

DNT, respectively, compared to the field result with average half-lives between 3.9 days 

(2,4-DNT) and 3.5 days (2,6-DNT). Subsequently, a nutrient medium was added to each 

repetition. The behaviour of DNT degradation did not change significantly, suggesting 

minimal involvement of biological processes. Furthermore soil analysis showed relatively 

high concentrations of extractable iron and the presence of magnetite, which are species 

capable of reducing nitroaromatics. Therefore, it is concluded that nitro-reduction in Borden 

soil is likely a result of abiotic surface mediated processes. 

 

The competitive behaviour of 2,4- and 2,6-DNT was studied in a sequential treatment system 

which consisted of an anaerobic iron column, followed by either an anaerobic or aerobic soil 

column. Results showed the same rate of transformation from 2,4- and 2,6-DNT within the 

iron column, with 100% conversion to 2,4- and 2,6-DAT, respectively. Within the anaerobic 

and aerobic soil columns, the DATs were highly persistent. When a nutrient solution was 

added only to the aerobic soil column with DNTs as the initial compounds, results showed a 

reduction of 2,4-DNT of 17%, with an increase in 2,6-DNT of 22%. The increase in 2,6-DNT 

may have been a result of differing influent concentrations at earlier pore volumes. When 

stock solutions in the aerobic column were altered to only include DATs, a reduction of 2,4- 

and 2,6-DAT was observed at 17% and 18%, respectively. It would appear that an acclimated 

bacterial community able to transform DNT and DAT was present in the aerobic Borden 
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sand column. Degradation of 2,4- and 2,6-DAT was dependant on the degree of nutrients 

supplied to indigenous bacterial communities under aerobic conditions.  

 



 

  vi

Acknowledgements 

I would like to extend my deepest gratitude to Dr. Robert Gillham for accepting me as a 

masters student under his supervision, seeing potential and reading my manuscript during my 

final days at the University of Waterloo. I would also like to thank Dr. Gui Lai for guiding 

me through my project and answering many questions throughout the way as well as reading 

my manuscript. Thanks to Dr. Jim Barker and Dr. Barbara Butler for reading my manuscript 

and agreeing to be part of my committee.  

 

Without the help and support of many people at the University of Waterloo I never would 

have been able to complete my thesis. Much gratitude is given to Wayne Noble for all his 

instruction of laboratory methods, repairing the HPLC on numerous occasions and answering 

many questions along the way. I would also like to extend my gratitude to Richard Elgood, 

Matt Lindsay, and Marianne Vandergriendt for allowing me to use their laboratory 

equipment during my experiments. Many thanks to Bob Ingleton and Paul Johnston for 

helping me install and remove my ISMs. Huge thanks to Steve Berg, Tom Finlay, and Li 

Zhuang for occasionally sampling, and assisting in the removal of the ISMs. Special thanks 

to Li Zhuang, my officemate, for listening and helping me over the past couple of years when 

I was frustrated, or confused. 

 

Most importantly, deepest thanks are given to my family and friends, for supporting me 

throughout this journey. Thanks mom, dad and Karl for always believing in me and always 

being interested and intrigued in what I am doing with water. Lastly, I cannot thank Jeff 

Douglas enough for his unending love and support throughout both my undergraduate and 

graduate degrees. 

 



 

  vii

I gratefully acknowledge financial support provided by the NSERC/ETI/DuPont Industrial 

Research Chair held by Dr. R.W. Gillham. I also had the privilege of receiving a Graduate 

Scholarship and Graduate Student Bursaries. 

 



 

  viii

 

 

 

 

 

 

 

 

 

 

 

To my parents, for always encouraging and believing in me 



 

  ix

Table of Contents 
TChapter 1 IntroductionT .......................................................................................................................... 1 

T1.1 BackgroundT .................................................................................................................................. 1 
T1.1.1 NitroaromaticsT ...................................................................................................................... 1 
T1.1.2 Behaviour of Nitrobenzene and 2,4- & 2,6-Dinitrotoluene in the subsurfaceT ...................... 2 
T1.1.3 Remediation of NitroaromaticsT ............................................................................................. 5 

T1.2 ObjectivesT................................................................................................................................... 10 
TChapter 2 MethodsT............................................................................................................................... 11 

T2.1 In situ Microcosm TestsT ............................................................................................................. 11 
T2.1.1 Site DescriptionT................................................................................................................... 11 
T2.1.2 In situ Microcosm descriptionT............................................................................................. 11 
T2.1.3 ISM ProceduresT................................................................................................................... 12 
T2.1.4 Removal and Recovery of ISMs and Aquifer MaterialT........................................................ 15 

T2.2 Laboratory MicrocosmsT ............................................................................................................. 15 
T2.2.1 MaterialsT ............................................................................................................................. 15 
T2.2.2 ProceduresT .......................................................................................................................... 16 

T2.3 Sequential Treatment of 2,4-DNT & 2,6-DNTT ........................................................................... 17 
T2.3.1 Column Design and Source SolutionT .................................................................................. 17 
T2.3.2 OperationT ............................................................................................................................ 19 

T2.4 Analytical MethodsT .................................................................................................................... 21 
TChapter 3 Results and DiscussionT ....................................................................................................... 24 

T3.1 Geochemical Environment at CFB BordenT................................................................................ 24 
T3.2 ISM ExperimentsT ........................................................................................................................ 26 
T3.3 Laboratory MicrocosmsT ............................................................................................................. 31 
T3.4 Sequential Treatment of 2,4-DNT and 2,6-DNTT ........................................................................ 34 

TChapter 4 ConclusionsT......................................................................................................................... 39 
TChapter 5 RecommendationsT ............................................................................................................... 41 

  
 
 
 



 

  x

List of Figures  
TFigure 1: Map view of Gate 3, in the ‘Barker Barn’ at CFB Borden, OntarioT ..................... 43 

TFigure 3: Location of previous contaminant wells (CW) and in situ microcosms (ISMs)T ..... 45 

TFigure 4: Representation of withdrawl and injection of contaminants into ISMsT ................. 46 

TFigure 5: Setup of sequential treatment system during Phase IT............................................. 47 

TFigure 6: Representation of Phase II, nutrient addition to soil columnsT ............................... 48 

TFigure 7: a) Average water levels over CW1, CW2, CW3, CW4  b)Average  pH readings 

over                                                           ISM 1, ISM 2, ISM 3, and 

ISM4………………………………….……………….T49 

TFigure 8: Results from ISM experiments: a) Test 1, ISM1, b) Test 2, ISM 1T ......................... 50 

TFigure 9: Results from ISM experiment: a) Test 1, ISM 2, b) Test 2, ISM 2T.......................... 51 

TFigure 10: Results from ISM experiments: a) Test 1, ISM 3 b) Test 2, ISM 3T ....................... 52 

TFigure 11: Results from ISM experiments: a) Test 1, ISM 4 b) Test 2, ISM 4T ....................... 53 

TFigure 12: Results from ISM experiments: a) Test 3, ISM 3 b) Test 3, ISM 4T ....................... 54 

TFigure 13: Microcosm results in the anaerobic glove-box: a) Micro 1 (groundwater and 

soil), b) Micro 2 (autoclaved  groundwater and soil)T.......................................... 55 

TFigure 14: Microcosm results in anaerobic glove-box: a) Micro 3 (soil from ground surface) 

b) Micro 4 (control)T ............................................................................................. 56 

TFigure 15: Sequential treatment systems,  NHB4 PB

+
P and DO concentrations at selected pore 

volumes a) anaerobic treatment, b) aerobic treatmentT........................................ 57 

TFigure 16: Results of pH and Eh in the anaerobic sequential treatment system: a) Iron 

column, b) Soil ColumnT ....................................................................................... 58 

TFigure 17: Results of 2,4- and 2,6-DNT in the anaerobic sequential treatment at pore volume 

23.7: a) Iron column b) anaerobic soil columnT ................................................... 59 

TFigure 18: Soil column results of the addition of nutrient solution to the anaerobic sequential 

treatment system at pore volume 25.9T ................................................................. 60 

TFigure 19:Results of pH and Eh in the aerobic sequential treatment: a) Iron column, b) Soil 

ColumnT................................................................................................................. 61 



 

  xi

TFigure 20: Results of 2,4- and 2,6-DNT in the aerobic sequential treatment at a pore volume 

of 21.9: a) Iron Column b) Soil ColumnT .............................................................. 62 

TFigure 21: Soil column results of the addition of nutrient solution to the aerobic sequential 

treatment system: a) 18.4 pore volumes b) 27.4 pore volumesT............................ 63 

 



 

  xii

List of Tables 
TTable 1: Results of background water samples at CFB Borden (June 10, 2006)T .................. 25 

TTable 2: Summary of alkalinity and DO results in ISMsT........................................................ 26 

TTable 3: Summary of kinetic rate constants for ISM experimentsT.......................................... 30 

TTable 4: Summary of kinetic rate constants for Micro 1 and Micro 2T ................................... 32 

 



 

  xiii

List of Appendices 
TAppendix A – Recipe for MBH solutionT ................................................................................. 65 

TAppendix B - Operating Schedule of Sequential Treatment ColumnsT.................................... 66 

TAppendix C - Summary of phase I results before adding nutrients in anaerobic treatmentT .. 67 

TAppendix D - Summary of anaerobic treatment results following the addition of nutrientsT.. 68 

TAppendix E - Summary of aerobic treatment results prior to adding nutrientsT ..................... 69 

TAppendix F -  Summary of aerobic treatment results following the addition of nutrientsT ..... 70 

 



 1 

Chapter 1 Introduction 

1.1 Background 

1.1.1 Nitroaromatics 

Nitroaromatic compounds are widely used around the world. In this study the compounds of 

interest are nitrobenzene (NB) and dinitrotoluenes (DNT). Primary uses of nitrobenzene are 

in the manufacture of aniline, lubricating oils, dyes, and synthetic rubber. Dinitrotoluenes are 

predominantly used as intermediates in the production of explosives, polyurethanes and 

smokeless gun powder. In 2000, 2 billion pounds of NB were produced, and in 1999, 2.3 

billion pounds of DNTs were produced in the United States [Nishino et al., 2000a]. 

Dinitrotoluenes are formed by the sequential nitration of toluene where 2,4- and 2,6-DNT 

form in a ratio of 4:1 [Smets and  Mueller, 2001; Sponza and  Atalay, 2003]. Nitroaromatic 

compounds have moderate to low water solubilities at 25P

o
PC, 2090 mg/L for nitrobenzene 

[USEPA, 1995], 166 mg/L and 145 mg/L for 2,4-DNT and 2,6-DNT, respectively [OECD 

Screening Information DataSet, 2005]. NB and DNTs are not known to readily sorb to 

organic material in soil, though the degree of sorption is believed to be directly related to the 

amount of clay materials present [OECD Screening Information DataSet, 2005].  Therefore, 

they are known to be ubiquitous in the environment. 

 

During the last decade attention has been drawn to NB and DNT in remediation of 

contaminated sites due to the potential for adverse human health effects. NB has serious 

chronic health effects causing methemoglobinemia, as well as adverse effects on 

reproductive systems [USEPA, 1995]. DNT has been associated with anemia, disorders of the 

central nervous system, heart disease, cyanosis, leucopenia, liver necrosis amongst other 

health concerns [USEPA, 2006]. These nitroaromatic compounds are toxic and mutagenic to 

many life forms, and therefore of environmental concern [Razo-Flores et al., 1999]. DNT 

and nitrobenzene are listed as priority pollutants by the USEPA [USEPA, 2005]. 
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1.1.2 Behaviour of Nitrobenzene and 2,4- & 2,6-Dinitrotoluene in the subsurface 

Both nitrobenzene and dinitrotoluenes are highly persistent in the subsurface environment 

and in some areas have been present for upwards of 50 years [Darrach et al., 1998]. The 

majority of contaminated sites contain several nitroaromatics in one area as a result of 

previous TNT manufacturing plants and demilitarizing activities [Bradley et al., 1997; 

Lendenmann and Spain, 1998; Rodgers and  Bunce, 2001]. The persistence of nitroaromatics 

in the subsurface is a result of the electron withdrawing nitro groups that are resistant to 

electrophilic attack by oxygenases and hydrolysis [Boopathy and  Kulpa, 1993; Dickel et al., 

1993; Hailgley and  Spain, 1991; Razo-Flores et al., 1999; Rodgers and  Bunce, 2001]. 

Chemical reduction of both NB and DNTs are potentially possible as a result of the net 

positive charge on the nitrogen atom of the nitro groups. Final reduction products of NB and 

DNTs are however, dependent on the reductants present in the subsurface [Vanderloop et al., 

1999].  

 

The products of NB and DNT reduction are primarily their respective aromatic amines. The 

most commonly identified product for NB reduction is aniline, although nitrosobenzene and 

phenylhydroxylamine may accumulate as incomplete reduction products from biodegradation 

[Peres et al., 1998]. Biodegradation products of DNT include diaminotoluene (DAT) and 

aminonitrotoluenes [Bradley et al., 1995; Hughes et al., 1999; Johnson and Spain, 2003; Liu 

et al., 1984]. Hydroxylaminotoluenes are biodegradation intermediates but are often not 

identified because of their highly unstable nature [Hughes et al., 1999]. The products 

resulting from incomplete mineralization of NB and DNTs, i.e. aniline and DATs, are 

considered harmful to humans and the environment. In humans aniline has been found to 

increase metheglobin and decrease hemoglobin as well as damage the spleen through chronic 

exposure [USEPA, 1994]. DATs are classified as probable carcinogens to humans and 

wildlife.  
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Reduction of NB and DNT by both biological and abiotic means, have been documented 

under a variety of conditions. Microbial strains able to degrade NB, 2,4-DNT or 2,6-DNT 

have only been isolated at contaminated industrial waste sites, which at some point had 

received NB or DNT [Nishino et al., 2000a]. Furthermore, most studies where 

biodegradation of DNT and NB have been shown to occur involved the introduction of 

indigenous microbial strains in soil slurries or sludges, or primary substrates were added. 

Many researchers suggest that the availability of nutrient sources to bacteria present in the 

subsurface has an important role in the biodegradation of NB, 2,4- and 2,6-DNT [Fortner et 

al., 2003; Lendenmann and  Spain, 1998; Nishino et al., 2000b; Peres et al., 1998; Smets and  

Mueller, 2001; Zhang et al., 2000]. Microbes that reduce both NB and DNT isomers under 

aerobic conditions do so by using nitrogen and carbon in the nitroaromatics as energy 

sources, i.e. NB and DNTs are used as primary substrates [Johnson and Spain, 2003; Nishino 

et al., 2000; Spanggord et al., 1991]. In contrast, under anaerobic conditions these 

compounds are degraded through co-metabolic processes which require excess of carbon or 

other electron source for anaerobic biotransformation of nitroaromatics to occur [Cao et al., 

2004; Lui et al., 1984; Razo-Flores et al., 1999; Berchtold et al., 1995]  

 

NB has been found to biodegrade under anaerobic [Cao et al., 2004; Hailgley and  Spain, 

1991; Majumder and  Gupta, 2003] and aerobic [Hallas and  Alexander, 1983; Johnson and  

Spain, 2003; Peres et al., 1998] conditions. However aerobic or anaerobic biodegradation of 

NB is highly uncommon at most contaminated sites. Degradation products of both NB and 

DNT, including DATs and aniline are less degradable under anaerobic conditions [Hallas 

and  Alexander, 1983].  One study found that reduction of NB to aniline occurred in an iron-

reducing column by surface-bound iron species originating from microbial oxidation of 

organic matter by iron-reducing bacteria [Heijman et al., 1995]. Abiotic reduction of NB to 

aniline has also been documented in the presence of smectite and other phyllosilicates, with 

the reduction being dependant on concentrations of the electron acceptor (NB) and accessible 

Fe(II) [Yan and  Bailey, 2001]. Similar results were observed in the presence of Fe(II) at the 

surface of Fe(III) (hydr)oxides [Hofstetter et al., 1999]. NB transformation has also been 
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found to occur under methanogenic and FeP

3+
Preducing conditions in an anaerobic landfill 

leachate plume, with the use of in situ microcosms and laboratory microcosm experiments. 

The reduction was believed to be caused by abiotic transformation, though reductants for this 

study were not identified [Nielsen et al., 1995].  

 

Both biodegradation and abiotic reduction of DNTs have been observed. Biodegradation of 

DNTs has been identified under aerobic [Bradley et al., 1994; Bradley et al., 1994; 

Christopher et al., 2000; Freedman et al., 1996; Lendenmann and  Spain, 1998; Smets and  

Mueller, 2001; Spanggord et al., 1991; Zhang et al., 2000], and anaerobic conditions [Dutta 

et al., 2003; Hallas and  Alexander, 1983; Hughes et al., 1999; Razo-Flores et al., 1999; 

Smets and  Mueller, 2001],  including methanogenic [Berchtold et al., 1995] sulfate-reducing 

[Boopathy and  Kulpa, 1993], nitrate-reducing [Noguera and  Freedman, 1996] and iron-

reducing [Hiejman et al., 1995] conditions. 2,4-DNT was also found to be transformed to 

aminonitrotoluenes and diaminotoluene (DAT) using either methanol, acetic acid or 

hydrogen as a primary substrate [Cheng et al., 1996; Cheng et al., 1997]. When DNT is 

present in the subsurface for ‘long’ periods of time, oxidative microbial populations may 

result in the degradation of DNT, though it is very uncommon [Nishino et al., 1999]. It is 

more common that microbial strains are added to soil slurry reactors that completely degrade 

2,4- and 2,6-DNT, rather than occurring in nature [Nishino et al., 2000a].  Common 

reduction products are aminonitrotoluenes and diaminotoluenes (DATs) [Bradley et al., 

1994; Nishino et al., 2000b]. In most situations DNT is relatively persistent under anaerobic 

environments. When either 2,4- or 2,6-DNT are present in high concentrations, the isomer at 

the highest concentration will inhibit the biodegradation of the other [Nishino et al., 2000b]. 

Surface mediated abiotic reduction of DNTs has been sparsely documented. One study 

concluded that in the presence of high concentrations of sulfide, abiotic transformation of 

2,4-DNT occurred to form 2-A-4-NT and 4-A-2-NT, resulting in a ratio of 2:1 of 2-A-4-NT: 

4-A-2-NT [Cheng et al., 1996]. To my knowledge abiotic reduction of 2,6-DNT has not been 

cited in the literature, although it is expected to behave in a similar manner as 2,4-DNT. The 

reduced sulfur and iron species are the most important reductants for abiotic degradation of 
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nitroaromatic compound in the subsurface [Hofstetter et al., 1999], particularly in the 

presence of electron transfer mediators, such as organic matter.  

Behaviour of Aromatic Amines in Groundwater 

DATs [Berchtold et al., ] and aniline [De et al., 1994; Lyons et al., 1984] are known to 

degrade under aerobic conditions through acclimated microbes present in the subsurface 

[Krumholz et al., 1997; Pesce and  Wunderlin, 1997; Vanderloop et al., 1999]. 

Mineralization of DAT under anaerobic conditions has also been found to occur under 

sulfate- and nitrate-reducing conditions [Krumholz et al., 1997; Noguera and Freedman, 

1997; Razo-Flores et al., 1999]. Aniline has been shown to degrade under anaerobic [Schnell 

and   Schink, 1991], methanogenic [De et al., 1994], sulfate-reducing conditions [Schnell and 

Schink, 1991] and denitrifying conditions [De et al., 1994; Khang et al., 2000]. Furthermore 

binding of aromatic amines to humic substances in soil has been observed in aerobic 

environments [Eriksson et al., 2004; Li and Lee, 1999]. Although degradation of aniline and 

DATs has been reported to occur under anaerobic conditions, their transformation in 

oxidative environments occurs much faster and is thus more favorable [Bell et al., 2003]. 

Therefore, remediation strategies which completely mineralize aromatic amines usually rely 

on aerobic conditions. 

1.1.3 Remediation of Nitroaromatics 

Many treatment strategies for nitroaromatics in groundwater have been explored over the 

past decade. Perhaps the most common means of treatment is through adsorption by granular 

activated carbon (GAC) [Nishino et al., 2000a; Rajagopal and Kapoor, 2001]. Though 

activated carbon is widely used, it is quite expensive and the adsorbed nitroaromatics must be 

disposed of appropriately. Another successful remediation strategy for nitrobenzene is air 

stripping, though this contributed to pollution of air and is an odor nuisance [Dickel et al., 

1993]. Degradation of NB has also occurred in bioreactors or activated sludges, though these 

have primarily been in laboratory-scale experiments [Cao et al., 2004; Dickel et al., 1993; 

Majumder and Gupta, 2003]. Dinitrotoluene on the other hand, can be removed by using 
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above ground treatments using steam flushing, co-solvent extraction and chemical oxidation, 

as well as UV radiation [Gupta and Bhaskaran, 2004]. Another study found, through a 

column experiment, that bioventing using hydrogen as an electron donor was successful in 

completely removing 2,4-DNT [Shah et al., 2001]. Furthermore iron has shown to reduce NB 

and 2,4-DNT [Bell et al., 2003; Kim, 2006]. Most remediation technologies, which remove 

DNT and NB, including iron PRBs, often result in aromatic amines as end products.   

Reduction of Nitroaromatics by Granular Iron 

Degradation of several organic compounds, including nitroaromatics, has been shown to 

occur through reduction by granular iron. Catalyzed metallic iron powder was first shown to 

reduce chlorinated organic compounds from aqueous solutions in wastewater by Sweeny and 

Fisher (1972). Gillham and O’Hannesin (1994) used this concept to study the ability of 

granular iron to degrade 14 halogenated aliphatics in aqueous solution. Subsequently, they 

developed the iron PRB technology for in situ treatment of a wide variety of compounds as a 

means of groundwater remediation  [ETI, 2007]. The widespread use of iron permeable 

reactive barriers (PRB) to reduce groundwater contaminants is related to its effectiveness, 

availability of the material and relatively low cost. Furthermore, reduction reactions by iron 

occur faster than most biological or other abiotic processes. 

 

Iron is an effective reductant. In the absence of oxygen, it reacts with water and produces HB2B 

and OHP

-
P, thus causing an increase in pH and a decrease in Eh. In the case of nitroaromatics, 

nitro groups of NB and 2,4- DNT are reduced to amino groups, forming end products of 

aniline [Agrawal and  Tratnyek, 1996; Agrawal, 1995; Bell et al., 2003; Devlin et al., 2004; 

Mantha et al., 2001] and 2,4-DAT [Kim, 2006; Oh et al., 2002], respectively. Reactions for 

the reduction of NB to aniline are shown in the following reaction sequence, where aniline is 

formed through nitrosobenzene and hydroxylamine. The overall reaction is shown in 

equation (4) [Agrawal and  Tratnyek, 1996; Devlin et al., 2004; Mantha et al., 2001]. 
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CB6BHB5BNOB2B + FeP

0
P + 2HP

+
P -> CB6BHB5BNO + Fe P

2+ 
P + HB2BO   (1) 

CB6BHB5BNO + FeP

0
P + 2HP

+
P -> CB6BHB5BNHOH + FeP

2+
P    (2) 

CB6BHB5BNHOH + FeP

0
P + 2HP

+
PB B-> CB6BHB5BNHB2 B+ FeP

2+
P + HB2BO   (3) 

CB6BHB5BNOB2B + 3FeP

0
P + 6HP

+
P -> CB6BHB5BNHB2B + 3FeP

2+
P + 2HB2BO   (4)  

 

Similarly, 2,4-DNT was found to be reduced through 2-amino-4-nitrotoluene and 4-amino-2-

nitrotoluene to form 2,4-DAT [Oh et al., 2002]. To my knowledge there is no published 

literature showing the reduced species of 2,6-DNT in the presence of granular iron, though it 

is assumed, based on its similar chemical structure, that the reduction will proceed via 2-

amino-6-nitrotoluene (2-A-6-NT), to a final product of 2,6-DAT. Competition between 2,4- 

and 2,6-DNT has been observed in biodegradation studies [Nishino et al., 2000a], though 

studies of the competitive effects of 2,4- and 2,6-DNT in the presence of granular iron have 

yet to be undertaken. 

 

Following degradation of NB and DNT by iron, amino products have been found to weakly 

sorb to the iron surface [Agrawal and  Tratnyek, 1996; Bell et al., 2003; Oh et al., 2002], 

with the degree of sorption being dependent on pH [Mantha et al., 2001]. They also adsorb to 

the organic matter in aquifers thus limiting the mobility in groundwater under anaerobic 

conditions [Eriksson et al., 2004].  Because of the highly toxic nature and low mobility of 

aromatic amines including aniline [USEPA, 1994] and both 2,4- and 2,6-DAT [Rodgers and  

Bunce, 2001], these compounds must be degraded to achieve an effective remediation 

strategy. 
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Sequential Treatment of Nitrobenzene and Dinitrotoluenes 

It is clear that degradation of nitroaromatic compounds occurs more readily in anaerobic 

environments, though aromatic amines often result as the persistent products from anaerobic 

treatment of NB and DNT. The resulting aromatic amines are often degraded in oxidative 

environments by acclimated microbial populations present at contaminated sites. Thus, 

sequential treatment of NB and DNT is desirable when designing remediation strategies.    

 

Sequential treatment ending in complete mineralization of nitroaromatic compounds has 

recently been demonstrated in several studies [Bell et al., 2003; Kim, 2006; Mantha et al., 

2001; Zang et al., 2001]. One study showed complete mineralization of nitroaromatics using 

a sequential treatment system where an anaerobic biofilm supported on GAC in a fluidized 

bed reactor reduced the nitroaromatics to amines, followed by an aerobic activated sludge to 

completely mineralize the resulting amines [Maloney et al., 1998]. Another study used a 

sequential treatment system which included an anaerobic portion using glucose, and mixtures 

of solvents acting as a cosubstrate, reducing NB to aniline, followed by an aerobic activated 

sewage sludge for complete mineralization of aniline [Dickel et al., 1993].  

 

More recently, some researchers have focused on sequential treatment of NB and 2,4-DNT 

using granular iron, followed by aerobic biodegradation in an oxidized zone [Bell et al., 

2003; Kim, 2006; Mantha et al., 2001].  Degradation of dissolved NB [Bell et al., 2003] and 

2,4-DNT [Kim, 2006] have been successfully demonstrated in the laboratory using an 

anaerobic granular iron column, followed by an oxygen diffusion column for the addition of 

oxygen, and finally an aerobic soil column. The experiment involving treatment of 2,4-DNT 

[Kim, 2006] showed that in the granular iron zone, 2,4-DNT was reduced to 2,4-DAT with 

surface normalized first order kinetic rate constants ranging from 2.22 x 10P

-5
P L/mP

2
P/min to 

1.05 x 10P

-4
P L/mP

2
P/min. The resulting DAT was mineralized in the subsequent soil column. A 

higher DAT degradation rate was observed in the soil column that contained soil from a DNT 

contaminated site with a high fBocB. Approximately 12% of the initial 2,4-DAT was 
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mineralized to P

14
PCOB2 Bwithin the first 5 cm of the column where oxygen concentration was 

high. Similar results are given in Bell et al (2003) where reduction of NB to aniline and 

complete removal of aniline across the soil column was observed, although mineralization of 

aniline was not confirmed.  

 

Following the laboratory experiments of Bell et al. (2003) and Kim (2006), a pilot-scale 

sequential treatment system for NB and 2,4-DNT was conducted in an anaerobic zone of the 

aquifer at Canadian Forces Base (CFB) Borden [Robinson, 2006]. The sequential treatment 

system included an iron permeable reactive barrier (PRB) (50% iron and 50% sand), 

followed by an oxygen addition zone 17 m down gradient of the iron zone (Figure 1). 

Following the injection of NB and 2,4-DNT, concentrations of aniline and 2,4-DAT were 

detected after 4 and 2 days, respectively, with the transformations occurring 4.5 m up 

gradient of the iron PRB. The results were unexpected in that they suggested transformation 

of the compounds in the natural Borden aquifer material. However, using Borden aquifer 

material and groundwater, Bell et al. (2003) found that nitrobenzene was persistent in the 

microcosm experiments. Results from the aerobic zone of the sequential treatment system 

showed decreases in 2,4-DAT and aniline concentrations by 46% and 52%, respectively. The 

declines in Robinsons study were believed to be a consequence of aerobic biodegradation, 

which is in agreement with the results of microcosm studies of Bell et al. (2003) who 

reported rapid degradation of aniline under aerobic conditions. Following the unexpected 

results from the field, laboratory microcosm tests were conducted in an attempt to determine 

whether biological or surface mediated abiotic processes caused the reduction of NB and 2,4-

DNT. The results from the laboratory study did not reproduce field observations (Robinson, 

2006). 
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1.2 Objectives 

The goals of this research were to identify the reducing properties causing the transformation 

of selected nitroaromatics including NB, 2,4-DNT and 2,6-DNT, in the Borden aquifer and to 

evaluate whether competitive effects exist between 2,4- and 2,6-DNT. Specific research 

objectives were: 

• To confirm the reduction of NB and 2,4-DNT observed in the absence of iron in 

the field test of Robinson (2006) 

• To determine the causes of 2,4 DNT, 2,6-DNT and NB transformation in the 

Borden aquifer (biotic or abiotic) 

• To determine factors controlling DAT degradation  

• To explore the competitive effects of degradation of 2,4-DNT and 2,6-DNT when 

present in combination 

 

To address these objectives, several experimental approaches were used: 

• in situ microcosms were used to determine degradation rates of NB, 2,4-DNT, 2,6-

DNT, aniline, 2,4-DAT, and 2,6-DAT in the field 

• Laboratory microcosm tests were used to further assist in delineating the biotic and 

abiotic processes involved in 2,4-DNT and 2,6-DNT transformation 

• A sequential treatment system was used to evaluate the kinetics of degradation of 

2,4-DNT and 2,6-DNT in combination and to assess the ability of indigenous 

microorganisms to degrade 2,4 DAT and 2,6-DAT under anaerobic and aerobic 

conditions  
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Chapter 2  Methods 

2.1 In situ Microcosm Tests 

2.1.1 Site Description 

The site selected for this study was located at CFB Borden, Ontario. The aquifer is 

glaciolacustrine in origin and is relatively homogeneous, consisting primarily of fine sand 

with a minor silt fraction. Discontinuous bedding of silty sand exists in fine layers throughout 

the thickness of the aquifer, as well as an occasional peat layer. The composition of the sand 

includes primarily quartz and feldspar, though carbonates, amphiboles and magnetite are also 

present [Mackay et al., 1986]. Porosity of the Borden aquifer is around 0.35 [MacFarlane et 

al., 1983]. The aquitard is located approximately 3.5 meters below ground surface [Brown et 

al., 1997]. 

 

The in situ microcosm experiment was conducted within an enclosed section of the aquifer, 

in “gate 3” as shown in Figure 1. The “gates” are sections of the aquifer surrounded on three 

sides by sealable-joint sheet piling. The gates are oriented in such a way that groundwater 

enters the gates at the open end. The installation of the steel sheet piling is described in detail 

by Katic (1999). The water table elevation varies seasonally to a maximum depth of 1.6 

meters below ground surface in 2006. Gate 3 was selected for this study as a result of the 

previous experiment in 2005, where transformation of NB and 2,4-DNT occurred upgradient 

of the iron PRB [Robinson, 2006]. The only other study involving the injection of organics in 

gate 3 was in 1999, in which tetrachloroethene, tetrachloromethane and toluene were injected 

to study the effectiveness of a sequential treatment system that included an anaerobic nutrient 

injection wall followed by an oxygen addition zone [Devlin et al., 2004].  

2.1.2 In situ Microcosm description 

The in situ microcosm (ISM) was introduced by Gillham et al. (1990a, 1990b) as a means of 

conducting small-scale microcosm tests in the field, thus minimizing the physical and 
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geochemical disturbances normally caused during the setup and operation of laboratory 

experiments. 

 

The device was initially used for the in situ measurement of transformation rates of benzene 

and nitrate. Other studies have used the ISM for bioremediation experiments [Mandelbaum et 

al., 1997], or monitoring of biodegradation rates [Acton and Barker, 1992; Bjerg et al., 

1999]. Kinetics of sorption [Bjerg et al., 1996] and degradation rate constants have also been 

determined using ISMs [Nielson et al., 1996].  

 

The ISMs used for this study consist of a cylindrical test chamber which holds approximately 

3 liters of aquifer material (chamber has an ID of 6.5cm, length of 91.5cm), and is open at the 

bottom. A stainless steel screen is located at the top of the test chamber which allows for the 

extraction and reinjection of groundwater.  A sampling spike, 10 cm in length and screened 

over the bottom (1 cm) protrudes from the center of the ‘main’ screen. The main screen is 

attached to 6.5 mm stainless steel tubing, and the sampling spike is attached to 3.2 mm 

Teflon® tubing, both of which, when installed, reach to ground surface. A schematic of the 

ISM is presented in Figure 2. The main screen and tubing are used to purge groundwater 

from the ISM. Contaminants or other amendments are added at ground surface and the water 

is reinjected back into the ISM test chamber. 3.2 mm Teflon® tubing in this particular 

experiment was used for sampling over time for organics, Eh, pH, anions and a tracer 

(chloride). 

2.1.3 ISM Procedures 

Four ISMs were installed down gradient from the contaminant injection wells used by 

Robinson (2006). The location of each ISM (1, 2, 3, 4) is shown in Figure 1 & Figure 3. A 

borehole was hand augured to the water table. A casing was installed and the ISM (which 

was attached to drill rods) was lowered into the casing. A vibratory hammer was attached to 

the drill rods which gradually advanced the ISM and casing, while water was jetted into the 

casing surrounding the ISM to loosen the surrounding aquifer material. This process 

continued until the ISM reached the desired depth of two meters (at the main screen), and the 
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test chamber was filled with aquifer material from the saturated zone. A depth of two meters 

at the main screen was necessary to ensure that the sampling spike would be below the water 

table during seasonally low water table depths. Once the installation was completed the 

casing was removed but the drill rods were left attached to the ISM to aid in its removal at 

the end of the experiment. Following the installation, the ISMs were developed by drawing 

water from the sampling spike and the main screen as well as re-injecting water back into the 

test chamber; this was done repeatedly until the withdrawn water contained little or no 

sediment. 

 

Teflon® tubing (6.4 mm) connected to the main screen passed through the drill rods to 

ground surface where a low-speed peristaltic pump purged groundwater from the main 

screen. 2.5 L of groundwater was purged, approximately three times the pore volume of the 

test chamber, into a glass bottle. NB2(g)B was then bubbled through the withdrawn groundwater 

to remove any oxygen that may have been added during the purging process (Figure 4). 

Nitroaromatics were then injected into the groundwater withdrawn from each ISM. In all 

tests, once groundwater was amended with the selected nitroaromatics, a low speed 

peristaltic pump was used to re-inject the purged and spiked groundwater back into the 

respective ISMs through the stainless steel tubing connected to the main screen. During 

injection the 3.2 mm tubing was clamped off to prevent spiked groundwater from coming 

back up to the surface via the sampling spike. Between injections, the glass bottles were 

rinsed three times with DI water to avoid cross contamination.  

 

The ISMs were amended with nitroaromatics for three separate experiments. Compounds 

used were 2,4-DNT (97%), 2,6-DNT (98%), 2,4-DAT (98%), 2,6-DAT(97%), NB (99%), 

and aniline (99.5+%), obtained from Aldrich Chemical Company Inc. (Milwaukee, WI). 

Stock solutions prepared in pure methanol were used for each injection. Stock concentrations 

were 61525 mg/L of 2,4-DNT, 64913 mg/L of 2,6-DNT, 138713 mg/L of nitrobenzene, 1395 

mg/L of 2,6-DAT and 2,4-DAT, and 1655 mg/L of aniline. In addition, NaCl was used as a 
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conservative tracer using a stock solution of 10,000 mg/L, and was added to the solution 

being injected for the purpose of monitoring for dilution. The ISM treatments were as 

follows: 

Test 1:  ISMs were amended with nitroaromatics at an initial concentration of approximately 

10 mg/L, where ISM 1 contained 2,4-DNT, ISM 2 contained 2,6-DNT, ISM 3 contained NB, 

and ISM 4 was amended with 2,4-DNT and 2,6-DNT at 10 mg/L each. The chloride 

concentration in each injection solution was approximately 60 mg/L ClP

-
P.  

Test 2: Replicate of Test 1  

Test 3: Nitro-reduction products of 2,4- and 2,6-DNT and NB, ie. 2,4-and 2,6-DAT and 

aniline, were injected, with target concentrations of 10 mg/L each. ISM 3 was amended with 

aniline, and ISM 4 with aniline, 2,6-DAT and 2,4-DAT. NaCl was included at a target 

concentration of 80 mg/L ClP

-
P, in both ISMs.  

In all ISMs, concentrations of methanol, as a carrier solvent, ranged between 0.04 and 0.39 mg/L. 

Samples were withdrawn from the sampling spike through 3.2 mm Teflon® tubing to ground 

surface. Prior to sampling, 15 mL of groundwater was purged (with a plastic syringe) from 

each of the ISMs (approximately one tubing volume). An air-tight glass on Teflon ® syringe 

was then attached to the tubing, and different volumes of water were extracted, depending on 

the analyses required for the specific sampling event. Samples for organic analysis were 

collected at every sampling event. Sampling frequency was dependent on the behavior of the 

compounds, where sampling was most frequent (every other day) when organic 

concentrations were changing significantly between sampling events. For these analyses,       

2 mL autosampler vials were filled, then capped and crimped leaving no head space. 

Additional analyses were conducted on a biweekly basis, including alkalinity, total dissolved 

iron, anions, Eh and pH. Between samplings, syringes were cleaned once with methanol and 

three times with DI water. Equipment blanks were taken between every sampling event and 

trip blanks were occasionally taken to monitor for cross contamination during sampling and 

transportation. 
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2.1.4 Removal and Recovery of ISMs and Aquifer Material 

The objective of this procedure was to retrieve the aquifer material in the ISM chamber for 

subsequent use in laboratory microcosm tests and sequential treatment of 2,4- and 2,6-DNT. 

The ISMs were removed using a hydraulic jack and winch system attached to the drill rods 

on the ISMs. Tubing attached to the main screen was connected to a peristaltic pump to 

create suction for the purpose of reducing the amount of soil falling out of the test chamber 

during the removal process. Once the ISM chamber was removed, NB2(g)B was vented over the 

bottom and a Ziploc® bag was placed underneath. Suction was removed from the tubing and 

the test chamber was hit with a hammer until all the aquifer material fell into the bag. The 

bag of soil was continuously vented with NB2(g)B while removing the soil from the test 

chamber. This was done to reduce exposure of soil to oxygen during the removal process. 

Excess NB2(g)B was then removed from the bag, which was sealed and transported in coolers 

filled with ice to the laboratory. Upon arrival at the laboratory, the soil was immediately 

placed in an anaerobic glove-box. The soil remained in the glove-box for two days for the 

purpose of removing any oxygen that may have penetrated the Ziploc® bags during 

transport. The soil was then transferred to glass jars, sealed and stored in a refrigerator at 

2P

o
PC.  

2.2 Laboratory Microcosms 

2.2.1 Materials 

Stock solutions of 2,4- and 2,6-DNT were prepared in methanol at concentrations of       

92,491 mg/L and 92,557 mg/L, respectively. Three different soil materials were used in the 

microcosm tests, including soil collected from within the ISM test chamber, soil collected 

from the surface near the ISM site at CFB Borden and silica sand. The silica sand was 

washed with 5% nitric acid, rinsed with deionized water to a pH of 7, and autoclaved three 

times for one hour prior to use. Groundwater collected from CW1 (Figure 3) following the 

removal of the ISMs, was stored below 2P

o
PC and used in all microcosm tests.  
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Modified Bushnell Haas (MBH) medium stock solution was prepared using KB2BHPOB4, 

BNHB4BNOB3B, MgSOB4B*7HB2BO, CaClB2B*2HB2BO, KB2BHPOB4B and FeClB3B*6HB2BO at the concentrations 

listed in Appendix A. 

2.2.2 Procedures 

The microcosm tests were conducted using 250 mL bottles, filled with 50 g of soil and 

approximately 230 mL of groundwater. 

Duplicates of each of the following were prepared: 

Micro 1: Anaerobic groundwater and soil from the ISM test chamber, for the purpose of 

duplicating the field results. 

Micro 2: Autoclaved groundwater and soil were used to differentiate between biotic and 

abiotic reduction processes. Soil was autoclaved three times for one hour, and groundwater 

was autoclaved for one hour, each with 24 h interval. 

Micro 3: Anaerobic groundwater and soil from the ground surface at CFB Borden were 

used to determine if the reducing potential present within the subsurface is also present in 

oxidized soil at ground surface. 

Micro 4: Autoclaved silica sand and anaerobic Millipore waterB Bto act as a control. 

Bottles (250 mL) were filled with water and soil, then capped, and spiked with the stock 

solution of 2,4-DNT and 2,6-DNT to concentrations of 10 mg/L each and methanol 

concentrations ranged around 9.3 x 10P

-4
P mg/L. The microcosms were incubated in an 

anaerobic glove-box.  

 

Microcosms were sampled each week over a total period of eight months. A glass on glass 

syringe was used to withdraw 0.5 mL samples which were transferred to 2.0 mL autosampler 

vials. Between samples, syringes were rinsed once with methanol and then three times with 

Millipore water. Following each sampling event the microcosms were shaken for 10 minutes, 

and then stored on their sides.  
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Following approximately three months, bottles from Micro 1 and Micro 2 were modified by 

adding an MBH nutrient stock solution of 5% of the volume remaining in the bottles. The 

nutrient solution was added to determine if microbial populations present in the microcosm 

bottles would be stimulated by the nutrients resulting in faster degradation of DNTs. 

 

2.3 Sequential Treatment of 2,4-DNT & 2,6-DNT 

Two sequential treatment systems were established for the purpose of determining if 

competitive effects of 2,4- and 2,6-DNT would occur. The sequential treatment systems were 

setup similar to those described in Kim (2006) and Bell et al. (2003). The first system, 

referred to as ‘anaerobic treatment’, included an anaerobic granular iron column followed by 

an anaerobic soil column (Figure 5). The second system referred to as ‘aerobic treatment’, 

consisted of an anaerobic granular iron column, an oxygen diffusion column, and an aerobic 

soil column (Figure 5).  

2.3.1 Column Design and Source Solution 

All columns used in the sequential treatment experiments were made of Plexiglas® , with 

screw-on end caps and Viton® O-ring seals. The influent and effluent ends of the columns 

were fitted with nylon screen (#11) and nylon mesh (#91) to ensure minimal loss of iron or 

sediment at each end of the column and to insure uniform flow across the column. Prior to 

packing the columns, each was cleaned with commercial bleach and autoclaved water. 

Tubing used in the anaerobic portions of the systems was 3.2 mm (ID) stainless steel, for the 

purpose of reducing oxygen diffusion that might otherwise occur through the tubing. All 

connectors between tubing, and tubing in the peristaltic pump were made of Viton®. 

  

The granular iron columns were 14 cm (L) x 2.5 cm (ID) with sampling ports along the 

column at every 1.25 cm. Granular iron used in the column was from Connelly (Chicago, 
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IL), batch UW-297.  Surface area of the iron was determined to be 1.37 mP

2
P/gP

 
Pusing the 

Brunauer, Emmit, Teller (BET) method. Iron columns were packed with 30% iron and 70% 

silica sand. Silica sand was washed with dilute nitric acid and thoroughly rinsed with 

deionized water.  Packing of the columns occurred with the gradual addition of small 

quantities of iron sand mixtures. During packing, the surface was roughened between the 

additions of iron-sand mixture in order to achieve a homogenous packing. The procedure was 

repeated until the columns were completely filled. The columns were then flushed with COB2B 

to remove any oxygen and clamped off until they were used. 

 

An oxygen diffusion emitter, similar to that of Bell et al. (2003), was used in the aerobic 

sequential treatment system following the granular iron column. The oxygen emitter 

consisted of a Plexiglas® column, 20 cm (L) x 3.8 cm (ID). Three ports were located in the 

column at 2.5 cm, 15 cm and 17.5 cm from the influent end. A 20 cm length of silicone 

tubing ran between the sampling ports at 2.5 cm and 17.5 cm from the influent end, and was 

held in place by 3.2 mm stainless steel Swagelock® fittings installed in the column wall. The 

silicone tubing was attached to an oxygen tank and pressurized to 20 psi, to facilitate 

continuous diffusion of oxygen into solution. 

 

Prior to packing the soil columns, all instruments and columns were cleaned with diluted 

commercial bleach and Millipore water. Soil columns were packed using the same method as 

described for the granular iron columns. Soil was at residual saturation, and originated from 

the test chambers of ISM 3 and ISM 4. The length of both soil columns was 50 cm with 

sampling ports at 9, 19.5, 24, 29, 34, 41.5, 44.5, 45.4, and 46.5 cm from the influent end. 

Columns were then saturated with autoclaved Borden groundwater, though the anaerobic 

treatment water was first sparged with NB2(g)B to remove any oxygen present prior to saturating 

the column.  
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Source solutions prepared for the sequential treatment systems were contained in 9L Pyrex® 

carboys, Borden groundwater was autoclaved (for one hour) and deoxygenated with NB2(g) Bto 

DO levels below 0.1 mg/L. Solid phase 2,4-DNT and 2,6-DNT were added to the carboys, 

following deoxygenation of the water, to concentrations of 10 mg/L and mixed until 

dissolved. In order to ensure stock solutions remained anaerobic, a NB2(g)B filled foil balloon 

was attached to the stopper which allowed for the headspace to be filled with NB2(g)B when 

solution was lowered in the carboy. 

2.3.2 Operation  

Operation of the column experiments included 2 phases. A log of the operations is listed in 

Appendix B. Columns were operated in each phase until steady state concentration profiles 

were achieved. 

 

Samples were taken at one-week intervals from sampling ports in the iron and soil columns, 

as well as from the influent and effluent ends of the columns. A glass on glass syringe was 

used, which was cleaned with methanol followed by rinsing three times with autoclaved 

Millipore water. The syringe was screwed onto sampling ports for collection of appropriate 

sample volumes, based on the types of analyses required for the particular sampling event. 

Volumes of samples were as follows: organics (1 mL), Eh/pH (2 mL), dissolved oxygen 

(DO) (2 mL), NHB4PB

+
P (2 mL). A needle tip was added to a syringe following collection of the 

sample and was then placed at the bottom of sample vial and appropriate volumes of water 

were released into each vial as required for the analyses. During column operation, waste was 

collected and weighed to determine the number of pore volumes that had passed through the 

systems, from which the average flow rates were calculated.  

 

In Phase I, sequential treatment systems were in operation for 91 days. Samples for 

nitroaromatic analyses were collected every seven days, and samples for Eh, pH, DO, NHB4PB

+
P 
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were collected bimonthly. One pore volume was considered to be the sum of all pore 

volumes of the individual columns in the system. 

 

In Phase II, the iron columns and the oxygen emitter were disconnected from the soil 

columns. Source solutions were amended with 10 mg/L each of 2,4-DNT, 2,6-DNT, 2,4-

DAT and 2,6-DAT and MBH nutrient solution was added to the columns at a T connector in 

the influent line (Figure 6). MBH solutions were prepared in 9L Pyrex® carboys, and diluted 

by 50% from the  prepared stock solution (Appendix A), and were stored in a refrigerator 

during this phase of the experiment.  

 

Initial flow rates through the columns were 0.25 mL/min and 0.30 mL/min for the anaerobic 

and aerobic treatments, respectively, and were gradually decreased to 0.10 mL/min and 0.14 

mL/min, respectively, over the course of three weeks prior to commencing sampling. 

Sampling frequency was the same as in Phase I, and until steady state was achieved. Pore 

volumes of solution that passed through the soil column in Phase II began at zero. 

 

During the later stages of Phase II, in the aerobic soil column, MBH and nitroaromatics were 

combined in one source solution bottle and contained only 2,4-DAT and 2,6-DAT. Aerobic 

solutions were bubbled with pure oxygen which was filtered with a 0.45 micron sterile filter, 

at 20 psi for approximately 3 hours daily. A 0.45 micron filter was also added to the stopper 

to eliminate bacterial contamination when air entered the bottle while the stock solution 

levels lowered in the carboy.  Anaerobic solutions were prepared as described earlier, though 

NB2(g)B was filtered with a 0.45 micron filter prior to entering the sterile carboy. Solutions were 

again kept in a refrigerator. Source solution with DATs was flushed through the column until 

2,4- and 2,6-DNT could no longer be detected in the aerobic soil column. Source solutions 

were adjusted to accurately determine the amounts of DAT that were degrading. This could 

not be calculated in the early stages of Phase II because DNT was degrading and forming 
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DAT, while at the same time DAT was being reduced. Sampling procedures were as 

described earlier for Phase I. 

2.4 Analytical Methods 

Organic samples in all experiments were centrifuged at 10,000 rpm for 5 minutes following 

collection, for the purpose of removing suspended particulates. Analyses included 2,4-DNT, 

2,6-DNT, 2-A-4-NT, 4-A-2-NT, 2-A-6-NT, 2,4-DAT and 2,6-DAT for the microcosm and 

sequential column experiments. For the ISM experiment, NB and aniline were also analyzed 

in each sample. A Hewlett Packard 1100 Quatenary Pump High Performance Liquid 

Chromatograph (HPLC) equipped with a Diode Array Detector was used for the analyses. A 

Zorbax® SB-C18 column with a Zorbax® guard column was used to separate and identify 

target compounds. The injection volume was 50 µL. For NB, aniline, DNTs and 

aminonitrotoluenes, the mobile phase consisted of 55% methanol and 45% Millipore water, 

with a flow rate of 1 mL/min. For DATs a mobile phase of 95% of 0.1% phosphoric acid and 

5% methanol solution, at a flow rate of 1 mL/min was used. A wavelength of 254 nm was 

used. Standards were included each time samples were analyzed for organics. Standards were 

prepared at concentrations of 10 mg/L, 5 mg/L, 3 mg/L, 1.5 mg/L, 0.5 mg/L and 0.1 mg/L 

using pure nitroaromatics and Millipore Water for each. 

 

Eh and pH measurements in all experiments were conducted using a portable meter. pH 

measurements were taken with an Orion Model 9107 triode and Orion model 250A meter. 

The electrode used for Eh measurements was VWR Ag/AgCl used on an Orion model 250A 

meter. For ISM tests, Eh and pH measurements were made using a flow through cell while 

pumping water at a low rate. Following the collection of each sample in the sequential 

treatment experiments, Eh and pH samples were injected into a glass vial where the needle 

tip was placed at the bottom and the electrode was placed near the bottom of the vial. 
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Dissolved oxygen (DO) was determined using a colourmetric method using CHEMets Kits 

(model K-7512 or K- 7540) from the manufacturer CHEMetrics. If dissolved oxygen levels 

were above 1 mg/L kit model K-7512 was used, and below 1 mg/L kit K-7540 was used. An 

Oakton DO 100 series hand-held DO meter and probe was used for verification of the DO 

concentrations. The CHEMets kits tended to give higher DO concentrations than the DO 

meter. This is believed to be a consequence of interference from ‘elevated’ concentrations of 

DAT in solution, though the threshold of the ‘elevated’ concentration was not determined. 

 

Total dissolved iron was determined using a CHEMet kit (K-62909) in the ISM 

experiments. 

 

Anion analyses included fluoride, chloride, nitrite, sulphate, and nitrate. All samples were 

placed into plastic 0.5 mL Bionex IC autosampler vials. Samples (25 μL) were injected into a 

Dionex ICS-2000 Ion Chromatograph (IC), equipped with an Ion-Eluent Generator and 

conductivity detector. The column was a Dionex IonPac AS18 (4 x 250 mm), and the mobile 

phase was 30 mM KOH at a flow rate of 1.2 mL/min. 

 

Unfiltered samples for full cation analyses were acidified to a pH less than 1 following 

collection and were shipped to Maxxam Analytics Inc, in Waterloo, ON, for quantification of 

iron, manganese, and calcium.  

 

Total organic carbon (TOC), extractible iron and manganese were determined in soil 

samples collected from the test chamber of ISM 3 and ISM 4. Soil samples were sent to 

Guelph Chemicals, Guelph ON, for analysis. 
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Alkalinity samples were collected during the ISM field experiments and filtered through a 

0.45µ filter. Concentrations in the form of CaCOB3 Bwere determined using a HACH Alkalinity 

Test Kit (Model AL-DT). 

 

Ammonium (NHB4PB

+
P-N) concentrations for the laboratory sequential treatment tests were 

determined using the phenate method as described in Standard Methods for the Examination 

of Water and Wasterwater [American Public Health Association, 1985]. A wavelength of 630 

nm was set on a Beckman BU530 UV/VIS spectrophotometer for quantification of 

ammonium. 

 

Water level measurements were taken throughout the summer months, while the ISM 

experiments were being conducted. The purpose of these measurements was to determine 

where the water table was relative to the main screen of the ISM. Water levels were taken 

from wells CW1, CW2, CW3, CW4, and averaged to a more accurate representation of 

where the water table was likely located at each of the ISMs. A Solinst model 101 water level 

meter was used for the measurement of the water table elevation relative to ground surface. 
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Chapter 3 Results and Discussion 

3.1 Geochemical Environment at CFB Borden 

Background water samples were collected prior to the ISM experiments on June 10, 2006, 

from the ISMs and CW2. CW2 was selected in addition to the ISMs because this well is 

located at the center of the gate (Figure 3) and allows for comparison between geochemical 

conditions near the contaminant injection wells and the ISMs. All samples were analyzed for 

anions and cations. Only samples collected from CW2 were analyzed for pH and DO. 

 

Because of the small degree of variability between sampling locations, the results as given in 

Table 1 are averaged values. The results showed low levels of nitrate (0.82 mg/L), high 

amounts of nitrite (5.9 mg/L), low sulphate (22.4 mg/L) and moderate concentrations of total 

dissolved iron (3.19 mg/L) across all sampling locations. Dissolved oxygen was 1 mg/L in 

CW2 indicating that the study area was close to anaerobic. The pH in CW2 was 7.13. Very 

low concentrations of 2,4-DNT, 2,4-DAT, NB and aniline were detected, and were all below 

0.410 mg/L. These are assumed to be a consequence of residuals from the previous study of 

Robinson (2006). 

 

Water levels, pH, DO, Eh and alkalinity measurements were taken throughout the summer 

months to monitor for changes in the geochemical environment. Water levels gradually 

lowered to a depth of 1.6 meters below ground surface (mbgs) between June and September 

of 2006 (Figure 7) and pH values were relatively constant at about 8 over the course of the 

study (Figure 7). Table 2 summarizes DO and alkalinity measurements during the ISM 

experiments. Measured DO concentrations ranged between 0.5 mg/L and 3 mg/L. 
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Soil samples obtained from the test chamber of the ISMs were analyzed for extractable iron 

and manganese. Results were averaged across ISM 2, ISM 3, and ISM 4, for total iron and 

total manganese and were 2928 μg/g and 62 μg/g, respectively.  

 

Table 1: Results of background water samples at CFB Borden (June 10, 2006) 

Cations Concentration 

(mg/L) 

Anions Concentration 
(mg/L) 

Al 

Ca 

K 

Mg 

Mn 

Na 

Fe 

1.84  

47.22  

1.29  

4.30  

0.10  

1.82  

3.19  

 

NOB3PB

-
P 

NOB2PB

- 

SOB4PB

2- 

ClP

-
P 

CaCOB3 *B 

0.82 

5.9 

22.4 

1.73 

74.4 

Organics Concentration  

(mg/L) 

Other  

2,4-DNT 

2,4-DAT 

Nitrobenzene 

Aniline 

0.015  

0.410  

0.055 

0.002 

pH 

DO 

Alkalinity          
(as CaCOB3B) * 

 

7.13 

1 mg/L 

124 mg/L 

ND = Non detected, -- = Data not available 
Note: All samples were averaged across ISM1, ISM 2, ISM 3, ISM 4, and CW 2 
* Sample collected June 13, 2006 
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Table 2: Summary of alkalinity and DO results in ISMs 

Date ISM1  ISM2  ISM3  ISM4  
 Alkalinity DO Alkalinity DO Alkalinity DO Alkalinity DO 

Rep 1 
13/6/6 

 
123 

 
1 

 
132 

 
1.5 

 
120 

 
0.5 

 
121 

 
0.5 

30/6/6  0.2  1  2  2 
2/7/6 112  75  100  92  

20/7/06 113  75  46  41  
Rep 2 
25/7/6 

  
3 

  
3 

  
1 

  
1 

5/8/6  0.9  1  0.8  0.9 
8/8/6 120  85  48  90  
23/8/6 111 0.9 110 1 77 0.8 84 0.9 
Rep 3 
25/9/6 

     
140 

 
1 

 
84 

 
1 

 

3.2 ISM Experiments 

As described in Section 2.1, three tests were completed using four ISMs. The second test was 

a duplicate of the first and Test 3 included injection of the degradation products of the DNTs 

and NB. ISM 1 received 2,4-DNT and chloride; duplicate results (Test 1 and Test 2)  are 

shown in Figures 8a & 8b. A decrease in chloride concentrations over time was observed in 

both tests, and was attributed to dilution within the test chamber as a consequence of 

sampling. In all tests, when chloride concentrations were below 50% of the injected value, 

the experiments were terminated as a result of uncertainty in the data due to dilution. 

Therefore, in ISM 1 both tests were terminated 20 days after the initial injection. 

 

Over the 20-day period of the tests, the concentration of 2,4-DNT decreased by 87% and 

92% in Test 1 and Test 2, respectively, with the formation of degradation products including 

2-A-4-NT, 4-A-2-NT, and 2,4-DAT. The trends in 2,4-DNT were very similar in the 

duplicate tests, though the pattern of the aminonitrotoluenes and DATs differed. In Test 1, 

the 2-A-4-NT and 4-A-2-NT were observed at a later time, and at lower concentrations than 

in Test 2. In Test 1, transformation of 2,4-DNT may have formed unidentified products prior 
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to formation of 2,4-DAT in the reduction pathway, resulting in DAT appearing at a later 

time. During the reduction of 2,4-DNT there did not appear to be a favored direction in the 2 

or 4 position of aminonitrotoluenes, though the trends in both tests suggest 2,4-DAT to be the 

final product. The formation of aminonitrotoluenes and 2,4-DAT clearly indicates the decline 

in 2,4-DNT to be a consequence of degradation rather than sorption.  

 

Mass balances for all ISM tests were calculated by converting all measured concentrations to 

DNT (or NB) equivalents and adding. For complete mass balances, the trends in mass 

balance should reflect the dilution that has occurred within the ISM and thus should follow 

the trend of the chloride concentration. Mass balance results for ISM 1 duplicates follow the 

chloride trends moderately well, considering the natural heterogeneity of the soil within the 

ISM. Of particular note, both tests showed a depression in the mass balance during the first 

five days, possibly indicating the presence of unidentified intermediate products of 2,4-DNT 

degradation.  

 

First order kinetic rate constants were calculated and adjusted to account for the soil to 

solution ratios in the ISM tests. A volume ratio of soil to solution was calculated for the ISM 

test chambers in order to compare the observed pseudo first order rate constants (kBobsB) in 

various experiments. Calculations are as follows: 

kBobsB= [ln (C/CBoB)]/t 

Volume of Solids = 1.00 – 0.33 (porosity) 

          = 0.67 

Soil/Solution = 0.67 [(volume of solid)/ 0.33 (porosity)]  

Soil/ Solution = 2.03 

kBNB= k/2.03 

tB1/2B = Ln(2) / kBN 
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Half lives for all ISM tests were calculated using the kBNB values, and are included in Table 3. 

The normalized half lives for 2,4-DNT were 15.6 days and 10.1 days in tests 1 and 2, 

respectively. These results are similar to those reported by Robinson (2006). Though 

Robinson (2006) could not duplicate the field results in the laboratory, they were reproduced 

with considerable confidence using the ISM. The unexpected results of Robinson (2006) are 

confirmed, and as a secondary result, the utility of the ISM has been demonstrated.  

 

In ISM 2, duplicate tests included 2,6-DNT and chloride. The results are shown in Figure 9a 

& 9b. Chloride concentrations gradually decreased over time in both tests, resulting in 

termination at 29 days and 28 days in Test 1 and Test 2, respectively. Reduction of 2,6-DNT 

was similar to that of 2,4-DNT, with decline in 2,6-DNT concentrations in Test 1 and Test 2 

of 96% and 87%, respectively. Transformation products included 2-A-6-NT, and 2,6-DAT 

with similar patterns of appearance in the duplicate tests. Mass balance calculations for 2,6-

DNT followed the chloride concentrations closely, in Test 1 and moderately well in Test 2. 

In both tests a depression was observed in mass balances, possibly indicating the presence of 

unidentified intermediates of 2,6-DNT transformation. Calculated normalized half lives, for 

Test 1 and Test 2 were 13.9 days and 1.9 days, respectively. Overall, 2,4- and 2,6-DNT 

behaved in a very similar manner in the ISM tests, with similar product distributions, similar 

normalized half lives and no apparent lag phase.  

  

ISM 3 included duplicate tests, with the addition of NB and chloride. The results are shown 

in Figure 10a and 10b. The NB experiments continued for periods of 29 days for each test. 

Chloride trends in both tests were relatively consistent over the duration of the experiments. 

Reduction of NB was observed in both tests at 99% over 29 days. Aniline was the only 

detected product of transformation. Tests showed nearly complete transformation of the 

initial NB concentrations to aniline, though in Test 2, aniline concentrations exceeded NB 

injected concentrations by up to 64%. Though all reasonable causes have been considered the 

reason for the apparent excess of aniline is currently unknown. None the less, it is clear that 
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transformation of NB to aniline occurs in the Borden aquifer. In Test 2 NB had a normalized 

half life of 2.1 days, Test 1 produced a poor fit to the kinetic model and thus a half life was 

not calculated. Maximum mass loss of NB concentrations occurred within approximately 20 

days of contaminant injection, similar to Robinsons (2006) results (14 days), though 

Robinson did not observe aniline concentrations that exceeded initial NB concentrations. 

 

In duplicate tests, ISM 4 was injected with equal concentrations of 2,4- and 2,6-DNT (10 

mg/L of each). The results are shown in Figure 11a and 11b. In Test 1 chloride 

concentrations gradually decreased over time, though chloride levels in Test 2 were relatively 

steady until late times. Dilution below 50% of the injected chloride concentration and 

subsequent termination of the experiment occurred at 20 days and 16 days for Test 1 and Test 

2, respectively. Complete transformation of 2,4- and 2,6-DNT occurred in both tests. 

Observed transformation products included respective aminonitrotoluenes and DATs as seen 

in ISM 1 and ISM 2. In Test 1, fluctuations of 2,4- and 2,6-DNT exceeded initial injected 

concentrations, and occurred at day 1, which is believed to be a consequence of poor mixing 

prior to the injection into the ISM. 2,4- and 2,6-DAT formed at concentrations close to the 

injected DNT values in Test 1, 2,4-DAT formed at slightly higher concentrations than 2,6-

DAT. In Test 2, formation of 2,6-DAT slightly exceeded that of 2,4-DAT. Normalized rate 

constants were also calculated until days 11 and 8 (Test 1 and Test 2) and showed normalized 

half lives for 2,4-DNT to be 4.8 days and 3.0 days in Test 1 and Test 2, respectively. Similar 

half lives were observed for 2,6-DNT of 4.3 days and 2.7 days, respectively. Normalized 

rates of transformation of 2,4- and 2,6-DNT were higher when present together compared to 

when present individually, as shown in Table 3.  

 

The concentration of methanol present in the initial stock solutions of all microcosm tests 

exceeded 0.30 mg/L, providing additional carbon source and may have stimulated bacterial 

growth. Therefore, even though results from the ISM tests seem to suggest that DNTs and 

NB were transformed by abiotic processes, further tests are needed to confirm this. 
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In the previous tests, dilution in the ISM occurred before there was sufficient time to observe 

the behaviour of the aromatic amines. For this reason, in Test 3, aniline and DATs (2,4 and 

2,6) were injected in ISM 3 and ISM 4, respectively. The results are shown in Figure 12a and 

12b. The experiments continued for 25 days and 28 days, in ISM 3 and ISM 4, respectively. 

Changes in aniline concentrations followed the chloride concentrations very closely in both 

ISMs, indicating the absence of degradation. Slight decreases of 2,4- and 2,6-DAT 

concentrations were apparent in ISM 4 indicating that degradation or sorption likely occurred 

due to heterogeneities between ISMs across the gate. The presence of methanol may have 

stimulated bioactivity in ISM 4, the observed difference between DATs and aniline is 

inconsistent with biodegradation. Thus the cause will be further determined in subsequent 

laboratory tests.   

 

Table 3: Summary of kinetic rate constants for ISM experiments 

  2,4-DNT        

ISM Rep 
kBobs 

(DaysP

-1
P) 

RP

2
P 

 
 KBNB 

(DaysP

-1
P) 

tB1/2 
(Days)     

ISM 1 1 0.09 0.90 0.04 15.6     
ISM 1 2 0.14 0.98 0.69 10.1     

  2,6-DNT        

  
kBobs 

(DaysP

-1
P) 

RP

2
P 

 
KBN 

(DaysP

-1
P) 

tB1/2 
(Days)     

ISM 2 1 0.10 0.99 0.05 13.9     
ISM 2 2 0.73 0.95 0.36 1.9     

  NB        

  
KBobs 

(DaysP

-1
P) 

RP

2
P 

 
KBNB 

(DaysP

-1
P) 

tB1/2 
(Days)     

ISM3 1 0.13 0.73 0.06 ---     
ISM3 2 0.17 0.96 0.08 8.3     

  2,4-DNT    2,6-DNT   

  
KBobs 

(DaysP

-1
P) 

RP

2
P 

 
 KBNB 

(DaysP

-1
P) 

tB1/2 
(Days)

KBobs 
(Days P

-1
P) RP

2
P 

KBNB 

(DaysP

-1
P) 

tB1/2 
(Days)

ISM 4 1 0.29 0.89 0.14 4.8 0.33 0.90 0.16 4.3 
ISM 4 2 0.47 0.98 0.23 3.0 0.52 1.00 0.26 2.7 
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3.3 Laboratory Microcosms 

Laboratory microcosm tests were conducted to determine the extent to which the ISM results 

could be duplicated in the laboratory. Specific tests were conducted to determine if reduction 

of DNTs was a result of biotic or abiotic processes. Microcosms included both 2,4- and 2,6-

DNT, as there is a lack of literature concerning the behaviour of 2,4- and 2,6-DNT when 

present in combination in aqueous solution. Since, the behaviour of NB and aniline has been 

documented in several studies, it was not included in the laboratory microcosm experiments 

[Agrawal et al., 2002; Bell et al., 2003; Eriksson et al., 2004; Hiejman et al., 1995; Klausen 

et al., 1995].  

 

Descriptions of all laboratory microcosms using 2,4- and 2,6-DNT are given in Section 2.3. 

Micro 1 tests were designed to duplicate field observations in the lab. The results are shown 

in Figure 13a. In Figure 13 (and all other microcosm results), the data points represent the 

average of duplicate microcosms. Over the 87-day period of the test, 2,4- and 2,6-DNT 

showed reductions in concentrations of 73% and 64%, respectively. Transformation of 2,4- 

and 2,6-DNT was confirmed by the formation of aminonitrotoluenes and DATs. The 

normalized half lives of 2,4- and 2,6-DNT were estimated by adjusting for the soil to solution 

ratios (0.08) to allow for comparison to field results, and were 3.9 days and 5.5 days, 

respectively. Normalized half lives for both 2,4- and 2,6-DNT in Micro 1 were slower than 

the normalized half lives in the ISM tests (Table 4). Results from laboratory microcosms 

were very similar to ISM results when considering heterogeneities in geochemical conditions 

in soils. Overall, duplication of field results showing reductions of 2,4- and 2,6-DNT in the 

lab was successful.  
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Table 4: Summary of kinetic rate constants for Micro 1 and Micro 2 

 2,4-DNT 
K 

(DaysP

-1
P) 

RP

2
P 

 
KBobsB 

(DaysP

-1
P) 

tB1/2 
(Days) 

2,6-DNT 
K 

(Days P

-1
P) RP

2
P 

KBobsB 

(DaysP

-1
P) 

tB1/2 
(Days) 

Micro 1 0.014 0.99 0.18 3.9 0.011 0.94 0.13 5.5 

Micro 2 0.012 0.90 0.15 4.5 0.012 0.85 0.15 4.7 

 

Subsequent microcosm tests were conducted to assist in determining whether surface 

mediated abiotic or biological processes were responsible for the observed reduction of 2,4- 

and 2,6-DNT. Figure 13b shows results from the Micro 2 tests, which used autoclaved 

groundwater and soil. Over 60 days a reduction of 58% for both 2,4- and 2,6-DNT was 

observed. Observed kinetic rate constants were calculated and adjusted for soil to solution 

ratios (0.08), as presented in Table 4. Normalized half lives for 2,4 and 2,6-DNT in Micro 2 

were very similar to Micro 1, with differences of approximately 0.5 days between the two 

microcosm tests. The pattern and rates of removal in the unsterilized (Micro 1) and sterilized 

(Micro 2) tests were very similar. Anaerobic biodegradation of nitroaromatics has been 

identified in several studies [Berchtold et al., 1999; Cao et al., 2004; Lui et al., 1984; Razo-

Flores et al.,1995], and in all cases an additional primary substrate was required for the 

reduction of DNT to DAT to occur. The methanol used in the microcosm experiment could 

serve as a primary substrate, though it is unlikely when considering that reduction rates of 

DNT in the unsterilized (Micro 1) and sterilized (Micro 2) microcosms were very similar. 

This further suggests that the transformation of the nitroaromatics was caused by abiotic 

processes. 

 

Figure 14a shows the results from Micro 3 which included soil taken at ground surface and 

groundwater from CFB Borden. Between day 4 and day 70, a reduction of 2,4- and 2,6-DNT 

of 18% and 13%, was observed. Initial concentrations (Day 0) were lower than subsequent 

data and were attributed to poor mixing. Observed degradation products included 4-A-2-NT, 
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2-A-4-NT, 2-A-6-NT, and 2,6-DAT. 2,4-DAT was not observed. DNT reduction in the 

oxidized surface soil (Micro 3) was substantially slower than in the material collected from 

the anaerobic zone below the water table (Micro 1 and Micro 2). This further supports the 

conclusion that the reduction of 2,4- and 2,6-DNT was caused by surface mediated abiotic 

processes that were not active in the oxidized surface soil.  

 

Figure 14b shows the results from the control microcosms (Micro 4), which included 

autoclaved silica sand and Millipore water. Over 85 days, there was no significant decline in 

the 2,4- and 2,6-DNT concentrations. The appearance of trace concentrations of 

aminonitrotoluenes suggests that a very small degree of degradation occurred.   

 

A further test to investigate the biotic versus abiotic hypothesis was conducted, which 

included the addition of a nutrient solution (Appendix A) to Micro 1 and Micro 2. The 

nutrient solution (MBH) was added to determine if a bacterial community would be 

enhanced, and subsequently the rate of DNTs. Results from Micro 1 and Micro 2 prior to and 

following the addition of nutrients are shown in Figure 13a and 13b, respectively. When 

comparing trends before and after the addition of nutrients, both Micro 1 and Micro 2 sets 

showed that reduction of 2,4- and 2,6-DNT remained relatively unchanged following the 

addition of nutrients. Biologically mediated processes can usually be stimulated by the 

addition of nutrients. 

 

Further evidence supporting the view that abiotic transformation of DNTs to DATs is 

occurring is seen in the results from extractible iron and manganese concentrations.  

Extractible iron concentrations were particularly high compared to the lower manganese 

concentrations, suggesting FeP

2+
P is likely an important reductant in the Borden aquifer 

material. DNT is reduced when ferrous iron (FeP

2+
P) losses one electron, becoming ferric iron 

(FeP

3+
P), and six electrons are required to reduce one nitro group. Therefore, 

stoichiometrically, 12 FeP

2+
P are needed to reduce one DNT molecule. When considering 20 
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mg/L (109 µmol/L) of DNTs are present in 2928 µg/g (20.9 µmol/g) of FeBTotalB, there is 

potentially a sufficient amount of FeP

2+
P present at the soil surface to reduce the DNTs. 

Previous studies have shown that high levels of ferrous iron present at the surface of soil 

grains can reduce nitroaromatics [Klausen et al., 1995; Nefso et al., 2005]. Another study 

found that monosubstituted nitrobenzenes were reduced to anilines, and such reductions were 

a result of the presence of magnetite which contains ferrous iron [Heijman et al., 1995]. This 

is significant because Borden soil has been shown to contain a mixture of amphiboles and 

carbonates, which include magnetite [Ball et al., 1990]. Evidence therefore suggests that 

under anaerobic condition, the reduction of nitroaromatics in Borden soil could be the result 

of magnetite and possibly other minerals containing ferrous iron.  

 

3.4 Sequential Treatment of 2,4-DNT and 2,6-DNT 

The possibility of competitive effects between 2,4- and 2,6-DNT transformation was 

investigated in a sequential treatment system. The sequential treatment system included an 

iron column followed by a soil column. The iron column was designed to reduce DNTs to 

DATs and the soil column was used to determine if indigenous bacteria capable of degrading 

DAT were present in Borden soil.  

 

Anaerobic Treatment  

Phase I of the anaerobic treatment of 2,4- and 2,6-DNT included anaerobic iron and soil 

columns. A total of 26.1 pore volumes passed through the sequential treatment system which 

included both iron and soil columns. The average flow rate was 0.010 mL/min, resulting in 

residence times of 298 min in the iron zone and 3427 min in the soil zone. DO levels were 

below 1 mg/L (Figure 15a), and pH was about 8 across the iron and soil columns (Figure 16a 

& b). At a pore volume of 16.6, Eh decreased from 79 mV to -524 mV across the iron 

column (Figure 16a), indicating that the iron was active. Eh measurements in the soil column 
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did not vary to the same degree, generally ranging from -26 mV to 109 mV, at a pore volume 

of 16.6 (Figure 16b). Similar results and trends were observed at subsequent pore volumes. 

 

Complete removal of both 2,4- and 2,6-DNT occurred very quickly in the iron column at a 

residence time of 159 min during Phase I of the study, as represented in the typical 

concentration profile in Figure 17a. Degradation kinetics of 2,4- and 2,6-DNT in the iron 

column could not be calculated as the rates of degradation were very high, resulting in low 

RP

2
P values, even when the iron columns included only 30% iron to slow degradation of DNTs 

across the column. Degradation products of DNT were first identified within 19 min along 

the iron column, including 2-A-4-NT, 4-A-2-NT, 2-A-6-NT, 2,4- and 2,6-DAT, with a mass 

balance of 100 % (not shown in Figure 17a). No evidence of competitive effects or 

passivation of the iron during Phase I was observed. As shown in Figure 17b, DAT 

concentrations varied slightly across the soil column during a residence time of 872 min, 

with an indication of persistence in the anaerobic soil column. Small decreases of DATs 

across the soil column may have been a result of sorption. Total organic carbon was 

measured to be 0.573 %, indicating that sorption was possible. Sorption of nitroaromatics has 

been observed in some studies, although it was particularly dependent on factors such as 

organic carbon content and soil type [Cowen et al., 1998; Krumholz et al., 1997].  

Furthermore, NHB4PB

+
P concentrations were constant throughout Phase I (Figure 15a), 

suggesting that DATs were not degrading.  

 

In Phase II of the anaerobic treatment, the feed solution contained 2,4-DNT, 2,6-DNT, 2,4-

DAT, and 2,6-DAT entered the soil column directly (Figure 6). A nutrient solution was also 

added to the influent at a T connector to mix with the feed solution prior to entering the soil 

column. The nutrient solution was added to determine if a bacterial community able to 

degrade DNTs and/or DATs would be enhanced thus increasing degradation. Pore volumes 

in Phase II for anaerobic treatment began at zero, and only included the volume of the soil 

column. Steady state concentrations were achieved after 25.9 pore volumes, with an average 
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flow rate of 0.14 mL/min during Phase II. DO, Eh and pH measurements in Phase II were 

consistent with the results of Phase I (Figure 19).  

 

In order to calculate the amount of DAT being reduced in the soil column during Phase II, 

relative DAT concentrations were adjusted to account for the reduction of DNT to DAT. 

C/CBoB values for DAT were calculated as follows: 

 

C/CBo, DATB = DAT Concentration at time X  (μmol/L)______________________             

         (Initial DAT Concentration + Initial DNT Concentration) (μmol/L) 

 

Upon the addition of nutrients to the feed solution, DNT and DAT concentrations remained 

fairly consistent across the soil column with small variations (Figure 18) even after nutrient 

addition, suggesting that biological processes able to degrade DNTs and DATs did not exist 

within the soil column. A summary of relative concentrations removed in the anaerobic soil 

column during Phase I and Phase II is given in Appendix D and Appendix E.  

 

Aerobic Treatment  

Phase I of the aerobic treatment of 2,4- and 2,6-DNT included an anaerobic iron column, 

followed by an oxygen addition column and finally an aerobic soil column.  A total of 24.3 

pore volumes flowed through the iron and soil columns, at an average flow rate of 0.13 

mL/min. DO concentrations throughout the study were steady, at <1.0 mg/L in the iron 

column and 10 mg/L in the soil column (Figure 15b). pH ranged from 7.7 to 9.0, as shown in 

Figure 19. Eh measurements in the iron column decreased across the column from 79 mV to 

-181 mV, at a pore volume of 17.5 (Figure 19a). Eh measurements in the soil column had no 

consistent trend with values ranging between 193 mV and 4.5 mV (Figure 19b).  

 



 

  37

Complete reduction of 2,4- and 2,6-DNT was observed in the iron column, similar to the 

anaerobic sequential treatment system, and is shown in Figure 20a. 2,4- and 2,6-DAT 

concentrations appeared to be consistent throughout the soil column (Figure 20b). Even 

though several studies have shown that the reduction of DATs commonly occurs under 

aerobic conditions where previous contamination of DAT occurred [Berchtold et al., 1999; 

Freedman et al., 1996; Krumholz et al., 1997; Pesce and  Wunderlin, 1997; Vanderloop et 

al., 1999]. The lack of bioactivity in the aerobic soil column was possibly due to the 

limitation of nutrients. Researchers have attributed the ability of bacterial cultures to degrade 

nitroaromatics as being directly related to the ‘sufficient’ supply of nutrients at a site 

[Fortner et al., 2003; Lendenmann and Spain, 1998; Nishino et al., 2000b; Peres et al., 1998; 

Smets and  Mueller, 2001; Zhang et al., 2000]. It has also been suggested that the onset of 

biodegradation in 2,4-DNT contaminated soils is directly related to nutrients supplied 

[Fortner et al., 2003]. Furthermore, NHB4PB

+
PB Bmeasurements shown in Figure 15b revealed that 

concentrations slightly increased across the soil column, suggesting that very small amounts 

of DATs may have been degraded. 

 

Following the assumption that the lack of reduction of DNTs and DATs was due to 

insufficient supply of nutrients, a nutrient solution was subsequently added following the 

same procedure as Phase II of the anaerobic sequential treatment system. A total of 27.4 pore 

volumes flowed through the soil column, with an average flow rate of 0.14 mL/min. 

Reduction of 2,4- and 2,6-DNT was observed at 42% and 22%, respectively, across the soil 

column (Figure 21a). The increase in 2,6-DNT concentrations may be a result of differing 

influent concentrations at earlier pore volumes, persistence of 2,6-DNT is possible though an 

overall increase in 2,6-DAT is observed. Relative DAT concentrations during Phase II were 

adjusted as described in Phase II of the anaerobic sequential treatment system. The behaviour 

of 2,4-DAT showed an increase of 75% from the influent end to the first sampling port. The 

increase in 2,4-DAT at a residence time of 536 min was attributed to the reduction of 2,4-

DNT that occurred between the influent end and the first sampling port. Strong evidence for 

the reduction of 2,4-DAT is realized when considering that while there is a decrease in 2,4-
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DAT, simultaneous reduction of  2,4-DNT and formation of 2,4-DAT is also occurring. 2,6-

DAT increased until a residence time of 2026 min and then decreased slightly until the 

effluent end of the column.  

 

In order to accurately determine the behaviour of DATs, feed solutions were altered to only 

include 2,4- and 2,6-DAT, and the nutrient stock solution, at a pore volume of 21.2. Small 

decreases of 2,4- and 2,6-DAT were observed at 17% and 18%, respectively, and are shown 

in Figure 21b. Upon these results it would appear that the transformation of DAT under 

aerobic conditions is likely enhanced in the presence of DNT and a sufficient supply of 

nutrients. One study showed that biodegradation of DAT occurred under aerobic conditions 

when organic substrates and excess nitrogen was supplied [Freedman et al., 1996]. In 2006 a 

sequential treatment system including iron followed by an aerobic soil zone confirmed 

complete degradation of 2,4-DNT with P

14
PC analysis in a soil with a higher organic carbon 

content and nutrients than Borden sand [Kim, 2006].  

 

In summary sequential treatment of 2,4- and 2,6-DNT including an iron zone followed by an 

aerobic soil zone was only moderately successful. While the DNTs degraded rapidly in the 

iron column, aerobic biodegradation of the DATs was much slower. The supply of nutrients 

and presence of organic carbon seemed to be important in supporting the growth of DAT-

degrading bacteria in Borden soil.  
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Chapter 4 Conclusions 
 

Because NB and DNTs are frequently found to be persistent in the subsurface environment, 

the rapid degradation of these compounds observed by Robinson (2006) in the Borden 

aquifer was particularly surprising, prompting questions concerning the reliability of the 

results. The ISM tests of this study were highly effective in duplicating the results of 

Robinson (2006). DATs and aniline were persistent when present as degradation products 

from the injected DNTs and NB. Though, aniline was persistent and DAT concentrations 

decreased somewhat over time when injected together in a separate injection. Also, no 

competitive effects were observed between 2,4- and 2,6-DNT when present together at 

similar concentrations.  

 

Laboratory microcosm experiments gave results that were highly consistent with the ISM 

field results. Subsequent addition of a nutrient medium to laboratory microcosms showed no 

change in the transformation rates of 2,4- and 2,6-DNT, suggesting that the transformation 

process was not biological. This was supported by the similar rates of transformation in the 

autoclaved controls (Micro 2 and Micro 4). Soil analyses showed high concentration of total 

extractable iron, suggesting that ferrous iron species present in the form of magnetite and 

possibly other minerals are likely the reducing agent in Borden soil, though further tests are 

needed to confirm this. The structure and behaviour of NB is similar to DNT, thus it can be 

assumed that the same conclusions can be made from the transformation of DNT as for the 

reduction of NB.  

 

Sequential treatment of 2,4- and 2,6-DNT was partially successful. Complete removal of 2,4- 

and 2,6-DNT was observed in the iron column. DATs decreased by approximately 20% 

across the aerobic soil column, suggesting that a bacterial community able to degrade DATs 

was likely present. The reduction of 2,4- and 2,6-DAT seemed to be dependent on the degree 
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of nutrients supplied to indigenous bacterial communities under aerobic conditions. A 

sufficient supply of nutrients in soils is required for a microbial population able to degrade 

2,4- and 2,6-DAT to grow. This study also showed that under anaerobic conditions 2,4- and 

2,6-DAT were persistent.  
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Chapter 5  Recommendations 

Following this study, several recommendations for future studies involving in situ 

microcosms, the behaviour and treatment of 2,4- and 2,6-DNT should be considered. 

1) One should strongly consider altering the slot size of the main screen of the in situ 

microcosm in soils with porosities lower than 0.33. This alteration would reduce the 

likelihood of clogging the main screen during installation and development. The 

specific selection of screen size for the ISM would allow for a broader range of soil 

types to utilize the tool for biological and chemical monitoring. 

2) Confirm the presence of abiotic reducing agents in the Borden soil, including 

minerals which cause the reduction of NB and DNTs. 

3) The bacterial community able to transform 2,4- and 2,6-DAT under aerobic 

conditions should be identified and quantified. 

4) Degradation pathways for 2,4-and 2,6-DAT should be investigated. The confirmation 

of whether complete mineralization of DATs, under aerobic conditions occurred in 

Borden soil should also be investigated. 

5) Pilot scale sequential treatment of 2,4- and 2,6-DNT system, including an anaerobic 

iron zone (PRB) followed by an aerobic soil zone should be investigated in other soils 

apart from Borden sand. The contaminated site selected for pilot scale sequential 

treatment should contain a variety of nutrients and organic matter in the soil.
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Figure 1: Map view of Gate 3, in the ‘Barker Barn’ at CFB Borden, Ontario 

   (After Robinson, 2006) 

 

 

 

 

 



 

 

TFigure 2: Schematic of an in situ microcosm 
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TFigure 3: Location of previous contaminant wells (CWs) and in situ microcosms (ISMs)
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Figure 5: Setup of sequential treatment systems during Phase I 
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Figure 6: Representation of Phase II, nutrient addition to soil columns 
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Figure 7: a) Average water levels over CW1, CW2, CW3, CW4  b)Average  pH readings over                                  
ISM 1, ISM 2, ISM 3, and ISM 4  
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T Figure 8: Results from ISM experiments: a) Test 1, ISM1, b) Test 2, ISM 1
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Figure 9: Results from ISM experiment: a) Test 1, ISM 2, b) Test 2, ISM 2 
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Figure 10: Results from ISM experiments: a) Test 1, ISM 3 b) Test 2, ISM 3 
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Figure 11: Results from ISM experiments: a) Test 1, ISM 4 b) Test 2, ISM 4 
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TFigure 12: Results from ISM experiments: a) Test 3, ISM 3 b) Test 3, ISM 4
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Figure 13: Microcosm results in the anaerobic glovebox: a) Micro 1 (groundwater and soil), b) 
Micro 2 (autoclaved groundwater and soil) 



 

  56

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80

Time (Days)

C/
Co

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80
Time (Days)

C/
Co

2,4-DNT 2,6-DNT 2A4NT 4A2NT 2A6NT 2,4-DAT 2,6-DAT
 

Figure 14: Microcosm results in anaerobic glovebox: a) Micro 3 (soil from ground surface) b) Micro 
4 (control) 
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Figure 15: Sequential treatment systems, NHB4 PB
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Figure 16: Results of pH and Eh in the anaerobic sequential treatment system: a) Iron column, b) 
Soil Column 
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Figure 17: Results of 2,4- and 2,6-DNT in the anaerobic sequential treatment at pore volume 23.7: a) 
Iron column b) anaerobic soil column 
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Figure 18: Soil column results of the addition of nutrient solution to the anaerobic sequential 
treatment system at pore volume 25.9 
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Figure 19: Results of pH and Eh in the aerobic sequential treatment: a) Iron column, b) Soil Column 



 

  62

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 50 100 150 200

Residence Time (Minutes)

C/
Co

2,4-DNT 2,6-DNT 4A2NT 2A4NT 2A6NT 2,4-DAT 2,6-DAT
 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

200 700 1200 1700 2200 2700

Residence Time (Minutes)

C/
Co

2,4-DAT 2,6-DAT
 

 
Figure 20: Results of 2,4- and 2,6-DNT in the aerobic sequential treatment at a pore volume of 21.9: 
a) Iron Column b) Soil Column 
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Figure 21: Soil column results of the addition of nutrient solution to the aerobic sequential treatment 
system: a) 18.4 pore volumes b) 27.4 pore volumes 
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Appendix A- Recipe for MBH solution 
 

Preparation of Modified Bushnell Hass Medium Stock Solution 

(Modified from Mueller et al., 1981) 

 

Chemical Manufacturer Concentration 

(mg/L) 

KB2BHPOB4B BDH 1000 

KHB2BPOB4B Aldrich 1000 

NHB4BNOB3B Aldrich 1000 

MgSOB4B*7HB2BO BDH 200 

CaClB2B*2HB2BO BDH 20 

FeClB3B*6HB2BO Aldrich 8.3 

 

Dilution water: Millipore 

Sterilize no more than 2 hours following preparation. 

Autoclave time: 1 hour 
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Appendix B- Operating Schedule of Sequential Treatment Columns 

Dec 6, 2006 Initial set-up of aerobic and anaerobic sequential treatment columns. Begin 

flushing columns with DI water. 

Dec 12, 2006 Phase I begins, COB2 B is flushed through the iron column only and 10 mg/L 

2,4-DNT & 2,6-DNT solutions commence being flushed through the 

sequential treatment columns at a flow rate of 0.166 mL/min. 

Dec 20, 2007 Aerobic and anaerobic treatment columns are sampled for organics, Eh and 

pH at a flow rate of 0.14 mL/min and 0.15 mL/min respectively. 

Feb 21, 2007 Pump tubing for both aerobic and anaerobic treatment are changed. 

Mar 13, 2007 Shut off OB2(g)B to oxygen diffusion column. 

Mar 15, 2007 Disconnected iron columns from sequential treatment systems and Phase I 

ends. 

Mar 24, 2007 Phase II of aerobic soil column begins, 10 mg/L of 2,4-DNT, 2,6-DNT, 2,4- 

DAT, 2,6-DAT and MBH solution are combined at a T-junction prior to 

entering the soil column. 

Mar 27, 2007 Aerobic column becomes unsaturated to residual saturation levels, caused by 

not having enough tension in pump tubing. Pump tubing is tightened and soil 

column is re-wetted with solutions. 

April 6, 2007 Phase II begins for anaerobic soil column, where 10 mg/L of 2,4-DNT, 2,6-

DNT, 2,4- DAT, 2,6-DAT and MBH solution are combined at a T-junction 

prior to entering soil columns. Flow rate for columns begin at 0.25 mL/min 

and 0.297 mL/min, for anaerobic and aerobic treatment. 

May 21, 2007 Anaerobic soil columns are disconnected and completed. Aerobic columns 

change source solutions where DATs are mixed with MBH, resulting in the 

removal of T-junction.  

June 6, 2007   Phase II is completed for aerobic treatment. 
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Appendix C- Summary of phase I results before adding nutrients in 
anaerobic treatment 

 
  2,4-DAT    2,6-DAT    

Date PV + - φ φ2 + - φ φ2 

20-Dec-06 2.8 1.149 0.944 0.069 0.005 1.410 1.050 0.106 0.011 

28-Dec-06 5.0 1.065 0.716 0.091 0.008 1.094 0.947 0.048 0.002 

5-Jan-07 5.9 1.171 0.854 0.397 0.013 1.181 0.999 0.387 0.004 

13-Jan-07 8.6 1.398 0.931 0.136 0.019 1.356 1.168 0.057 0.003 

21-Jan-07 11.4 1.165 0.889 0.103 0.011 1.183 0.886 0.078 0.006 

30-Jan-07 14.2 1.150 0.900 0.081 0.007 1.246 0.986 0.076 0.006 

6-Feb-07 16.6 1.372 0.818 0.151 0.023 1.136 0.935 0.086 0.007 

13-Feb-07 18.7 1.036 0.779 0.087 0.008 1.294 0.920 0.104 0.011 

20-Feb-07 21.0 1.125 0.897 0.071 0.093 1.357 0.863 0.120 0.014 

27-Feb-07 23.7 1.382 0.872 0.149 0.022 1.368 1.152 0.075 0.006 

Note: +: Maximum C/Co value 
          -: Minimum C/Co value 
        Φ: Standard deviation 
       ΦP

2: 
PVariance 
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Appendix D- Summary of anaerobic treatment results following the 
addition of nutrients 

 
    2,4-DNT       2,4-DAT       

Date PV + - φ φ2 + - φ φ2 

25-Apr-07 19.8 1.000 0.734 0.078 0.006 0.282 0.048 0.061 0.004

16-May-07 25.9 1.000 0.848 0.097 0.009 0.414 0.211 0.058 0.003

          

    2,6-DNT       2,6-DAT       

Date PV + - φ φ2 + - φ φ2 

25-Apr-07 19.8 1.000 0.921 0.023 0.001 0.558 0.398 0.056 0.003

16-May-07 25.9 1.000 0.658 0.056 0.003 0.624 0.427 0.061 0.004

Note: +: Maximum C/Co value 
          -: Minimum C/Co value 
        Φ: Standard deviation 
       ΦP

2: 
PVariance 
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Appendix E- Summary of aerobic treatment results prior to adding 
nutrients 

 
    2,4-DAT       2,6-DAT       

Date PV + - φ φ2 + - φ φ2 

20-Dec-06 2.6 0.923 0.522 0.132 0.018 1.042 0.872 0.053 0.003

28-Dec-06 4.7 1.294 0.646 0.186 0.035 1.152 0.903 0.095 0.009

5-Jan-07 7.3 1.049 0.774 0.093 0.009 1.035 0.891 0.046 0.002

13-Jan-07 9.9 0.816 0.597 0.063 0.004 0.893 0.776 0.035 0.001

21-Jan-07 12.4 0.925 0.691 0.081 0.007 0.944 0.850 0.029 0.001

30-Jan-07 15.0 1.061 0.703 0.109 0.012 1.063 0.771 0.082 0.007

6-Feb-07 17.5 1.007 0.703 0.110 0.012 1.031 0.771 0.075 0.006

13-Feb-07 19.6 1.179 0.828 0.104 0.011 1.003 0.665 0.126 0.016

20-Feb-07 21.9 0.922 0.828 0.030 0.001 1.003 0.942 0.028 0.001

27-Feb-07 24.3 0.945 0.757 0.065 0.004 1.039 0.862 0.069 0.005

Note: +: Maximum C/Co value 
          -: Minimum C/Co value 
        Φ: Standard deviation 
       ΦP

2: 
PVariance 
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Appendix F-  Summary of aerobic treatment results following the 
addition of nutrients 

    2,4-DNT       2,4-DAT       

Date PV + - φ φ2 + - φ φ2 

14-Apr-07  7.9 1.000 0.558 0.348 0.121 1.161 0.558 0.191 0.037

25-Apr-07  15.1 1.000 0.348 0.207 0.043 0.615 0.187 0.158 0.025

16-May-07  18.4 1.000 0.259 0.213 0.046 1.174 0.421 0.222 0.049

28-May-07  21.2 - - - - 1.000 0.296 0.270 0.073

7-Jun-07  24.9 - - - - 1.000 0.859 0.042 0.002

11-Jun-07  27.4 - - - - 1.000 0.782 0.069 0.005

          

          

    2,6-DNT       2,6-DAT       

Date PV + - φ φ2 + - φ φ2 

14-Apr-07  7.9 1.000 0.690 0.156 0.024 1.019 0.577 0.155 0.024

25-Apr-07  15.1 1.000 0.702 0.092 0.008 0.683 0.323 0.109 0.012

16-May-07  18.4 1.222 1.000 0.110 0.339 1.139 0.339 0.247 0.061

28-May-07  21.2 - - - - 1.000 0.148 0.338 0.114

7-Jun-07  24.9 - - - - 1.000 0.799 0.055 0.003

11-Jun-07  27.4 - - - -   0.753 0.067 0.004

Note: +: Maximum C/Co value 
          -: Minimum C/Co value 
        Φ: Standard deviation 
       ΦP

2: 
PVariance 
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