Autonomous Cooperating Web Crawlers

Gregory Louis McLearn

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2002

(©Gregory Louis McLearn 2002

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

il

Abstract

A web crawler provides an automated way to discover web events — creation,
deletion, or updates of web pages. Competition among web crawlers results in
redundant crawling, wasted resources, and less-than-timely discovery of such events.
This thesis presents a cooperative sharing crawler algorithm and sharing protocol.
Without resorting to altruistic practices, competing (yet cooperative) web crawlers
can mutually share discovered web events with one another to maintain a more
accurate representation of the web than is currently achieved by traditional polling

crawlers.

The choice to share or merge is entirely up to an individual crawler: sharing
is the act of allowing a crawler M to access another crawler’s web-event data (call
this crawler S), and merging occurs when crawler M requests web-event data from
crawler S. Crawlers can choose to share with competing crawlers if it can help
reduce contention between peers for resources associated with the act of crawling.
Crawlers can choose to merge from competing peers if it helps them to maintain
a more accurate representation of the web at less cost than directly polling web
pages. Crawlers can control how often they choose to merge through the use of a
parameter p, which dictates the percentage of time spent either polling or merging
with a peer. Depending on certain conditions, pathological behaviour can arise if

polling or merging is the only form of data collection.

Simulations of communities of simple cooperating web crawlers successfully show
that a combination of polling and merging (0 < p < 1) can allow an individual
member of the cooperating community a higher degree of accuracy in their repre-
sentation of the web as compared to a traditional polling crawler. Furthermore, if
web crawlers are allowed to evaluate their own performance, they can dynamically
switch between periods of polling and merging to still perform better than tradi-
tional crawlers. The mutual performance gain increases as more crawlers are added

to the community.

il

Acknowledgements

I would like to thank everyone who has given their assistance and support during

the completion of this thesis.

Special thanks must go to my supervisor Gordon V. Cormack. His insights
and criticisms proved to be invaluable, and his patience was infinite. Thanks for

everything, Gord.

I would also like to thank my readers, Charlie L.A. Clarke and William B.

Cowan for taking the time to read this work and for supplying helpful comments.

I must also thank Karin Hung — for she is truly an inspiring person and capable

of great things.

Thanks to the members of the Programming Languages Group, who provided

not only intellectual moments, but also many needed distractions.

This work has been made possible through generous funding by the National
Sciences and Engineering Research Council (NSERC) of Canada.

v

Contents

1 Introduction 1
1.1 Problems with Web Crawlers Today 2
1.1.1 The Freshness Problem 2

1.1.2 Bandwidth and Overlap Problems 3

2 Background Information 8
2.1 Introduction to Web Crawlers 8
2.2 Taxonomy of Crawler Communication 11
2.2.1 Non-interactive o 13

2.2.2 Coordination 13

2.2.3 Collaboration 14

224 Self-interest 14

2.3 Implementing Web-event Dissemination

Systems 16

2.3.1 A General Event Notification Architecture 16

2.3.2 Information Delivery Methods 19

2.4 Distributing Web Events 0oL 19
24.1 Changes to HTTP 21
2.4.2 Crawler-centric Web-Event Dissemination 22

Protocol 24

3.1 Web-Events Describe the Ever-changing Web 25

3.2 Information Sharing and Merging 27
3.2.1 Share-control File 27
3.2.2 Web-Event Data Files 30
3.2.3 Share-repositoryo 32

3.3 Specific Protocol Issues L. 33
3.3.1 Event Resolution Rules 33

Theory 35

4.1 A Simple Sharing Crawler 35

4.2 Freshness as a Metric L oL 37

4.3 Algorithm Analysis 39
4.3.1 Preamble to the Analysis 40
4.3.2 Intuition of Interaction 41
4.3.3 Deriving an optimal number of crawlers. 43
4.3.4 Number of Operations as Related to Freshness 44

vi

5 Simulation Software
5.1 Simulation Architecture L.
52 Web Objects
53 Web Crawlers
54 The Simulated Web
5.5 Simulation Variables 0oL

5.6 Web Crawler Algorithms

6 Experiments and Results
6.1 Experimental Setupo
6.2 Experiments and Analysis
6.2.1 Establishing a Baseline
6.2.2 The All-or-Nothing Approach
6.2.3 Exercising Varying Valuesof p
6.2.4 Mirrors and Parasites
6.3 Dynamic Strategieso

6.3.1 Bang-bang Dynamic Systems

7 Conclusions and Future Work
7.1 Conclusions about Cooperative Behaviour
7.2 Application to the Real World

7.2.1 Implementation Issues

vii

45

45

46

47

49

49

50

55

95

57

57

o8

66

67

74

76

80

7.2.2 Security Concerns 83

7.3 Future Work 84
7.3.1 More dynamic systems 84

7.3.2 Real-world Study oL 85

7.3.3 Ubiquitous Sources of Web-event Data 85
Bibliography 87

viil

List of Tables

1.1 Traffic associated with crawlers at two busy web servers at the Uni-

versity of Waterloo.o 3

6.1 Percentage of time an average crawler in the bang-bang dynamic

strategy spends in p-low mode (p = 0.10) and p-high mode (p = 0.90). 79

1X

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

3.1

3.2

Overlap of five crawlers in the web. Some crawlers can crawl large
regions and others only crawl small regions. Some crawlers overlap
completely and have a complete duplication of effort such as the case
of crawler four (4) within crawler three (3). All areas not contained

within an ellipse is considered uncrawled data.

Simulation in which a number of crawlers compete for bandwidth as

a limited resource.

Communication interactions within systems of web crawlers.
Basic subscription-based event notification architecture
Two forms of data transfer.

A hybrid model combining the best of client-pull and server push. .

The NFA state machine of web-event generation for any web object’s

lifecycle.

A typical, step-by-step request-response scenario between two data-

sharing-protocol enabled web crawlers (M and S).

26

3.3

3.4

5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

A sample /robots.shr file. This example illustrates the use of each

of the fields. 30
A sample web-event data file. 32
Simulation architecture. 47

Simulation communication and contention model between crawlers

and objects and crawlers and crawlers. 48

Crawlers running under current world conditions (oblivious to peers;

no crawler is sharing). L. 58

Two crawlers share and merge with one another with various values

of po o 60
64 crawlers share and merge with one another for various values of p. 61

256 crawlers share and merge with one another for various values of

Various crawler systems for increasing values of p over a set of N

non-contending web crawlers. L. 64

Various crawler systems for increasing values of p over a set of N

contending web crawlers. oL 65

System of 64 web crawlers. Each has an independent, randomly
assigned value of p. The equidistant distribution curve is overlaid as

& COMPAriSON. o it e e 68

Slopes of regression lines for systems of crawlers in which a random
p was assigned. The slope (m) is for a line y = maz + b which fits to

curves similar to figure 6.7.o 0L 69

X1

6.9

6.10

6.11

6.12

6.13

An example system of crawlers with a single global mirror. The

mirror is consistently better than any of the cooperating crawlers for

An example system of crawlers with a single parasite. The parasite

is consistently better than any of the cooperating crawlers for any p.

One global mirror operates within various-sized crawling systems.
One parasite operates within various-sized crawling systems.

Simulations for various selected values of N, in which crawlers use
the bang-bang model to adjust p. This model is compared to the
baseline as well as the optimal freshness seen when using the fixed-p

strategy. L

xii

72

74

75

List of Algorithms

2.1

4.1

5.1

5.2

5.3

Basic web crawler traversal algorithm.

A simple sharing/merging web crawler.

Crawler :: algorithm()
Crawler :: poll() from line 5 of algorithm 5.1.
Crawler :: merge-from() from line 16 in algorithm 5.1

xiil

...... 52

Chapter 1

Introduction

This thesis examines mechanisms whereby a set of autonomous web crawlers can
share information to their mutual benefit. The Hyptertext Transfer Protocol (HTTP)
— the protocol that drives the web — does not have the ability to inform interested
parties of web-events — the creation, deletion, or updates of web objects (pages,
images, etc.). The most common method of addressing this problem is to use a
polling web crawler — a software program designed to traverse the web in search of
web events. Web crawlers consume a great deal of network bandwidth and do not
discover web-events in a timely manner; the most powerful web crawlers can take

weeks or months to discover a particular web-event[28].

There are a large number of crawlers currently active on the web. They com-
pete for bandwidth, but by and large, do not share their discoveries. This thesis
describes a general protocol to allow competing web crawlers to cooperatively share
knowledge of web events. The choice to share or merge is entirely up to an indi-
vidual crawler: sharing is the act of allowing one crawler (call it crawler M) to

access another crawler’s web-event data (call this crawler S). Merging occurs when

CHAPTER 1. INTRODUCTION 2

crawler M requests web-event data from crawler S. Crawlers can choose to share
with competing crawlers if it can help reduce contention between peers for resources
associated with the act of crawling. Crawlers can choose to merge from competing
peers if it helps them to maintain a more accurate representation of the web at less
cost than directly polling web objects. It is hypothesized that crawlers using com-
binations of polling and exchanges of web-event data can mutually achieve more

accurate representations of the web than a strictly-polling crawler.

1.1 Problems with Web Crawlers Today

Several major problems affect non-cooperative web crawlers on the web. The first
problem is that web crawlers do not maintain a high-degree of freshness. The second
is that multiple crawlers can redundantly crawl the same regions of the web. The
third is that with the proliferation of web crawlers comes increased contention for

shared network resources.

1.1.1 The Freshness Problem

Assume that at time ¢; there exists a set of web objects W such that the state of
all of W can be captured as a set M;. At time t; (j > ¢) some subset of W may
have changed due to internal or external forces (publishers, database queries, etc.).
Another snapshot of the web objects in W at time ¢; results in a representation
of the state of each object (M;). A web-event describes changes that occur to any
specific object w € W between time ¢; and ¢; or any new objects added between
t; and t;. The set of objects that have changed between ¢; and t; define the set of

web-events S; ;. The fraction of web objects that have not changed between ¢; and

CHAPTER 1. INTRODUCTION 3

Server | avg % hits due to avg % bytes due to
web crawlers per day | web crawlers per day
goedel 6.5% 13.2%

mef07 10.5% 5.5%

Table 1.1: Traffic associated with crawlers at two busy web servers at the University
of Waterloo.

t; represents the freshness of the set W for the interval t; — t;:

(W — Sl

freshness =
W

Crawlers that try to keep a fresh set of web pages must schedule revisitations
to existing pages during the course of crawling. If a web crawler requests a web
page that has not changed between ¢; and ¢;, then the web crawler has wasted their
resources, as well as the resources of the web server. This problem is magnified
when hundreds of independent, competing web crawlers visit a web server over a

period of time.

1.1.2 Bandwidth and Overlap Problems

Table 1.1 show the activity of web crawlers as they request information from
two busy web servers at the University of Waterloo: mef07.uwaterloo.ca® and
goedel.uwaterloo.ca?. All activity was recorded over a three-month period from

May 17, 2002 to July 13, 2002. Web crawlers were identified as any IP attempting

'mef07.uwaterloo.ca is the main web server for the various math and computing science
departments and graduate students.

2goedel .uwaterloo.ca is the main web server for all undergraduate math and computing
science department information as well as undergraduate students.

CHAPTER 1. INTRODUCTION 4

Crawler 3

Crawler 5

O

Figure 1.1: Overlap of five crawlers in the web. Some crawlers can crawl large
regions and others only crawl small regions. Some crawlers overlap completely and
have a complete duplication of effort such as the case of crawler four (4) within
crawler three (3). All areas not contained within an ellipse is considered uncrawled
data.

to download /robots.txt®. The table shows that even though web crawlers con-
stitute about 0.5% of the overall number of clients*, they account for a significant

portion of the clients causing data traffic to-and-from the web servers.

Competition among crawlers can lead to detrimental behaviour at a more fun-

3Any web crawler that aims to be a good net citizen should follow the Robots Exclusion
Standard [27]. A single request for the /robots.txt file within the three-month period should
have been observed, even in the face of a web crawling using a long-persisting /robots.txt file
cache. Spurious requests for /robots.txt from other sources may cause a slight skew in the
results. Note that any IPs within the University of Waterloo subnet were excluded; we are only
interested in web crawlers operating external to the University.

41446 unique IPs corresponding to web crawlers were identified versus the over 250000 unique
IPs corresponding to non-web crawlers.

CHAPTER 1. INTRODUCTION)

damental level. Studies in 1997 indicate a small region (1.4%) of crawling overlap
common to major web crawlers at the time. Further analysis showed that pairwise
crawling overlap regions between four major search engines of the time ranged from
0.24% to 4.08%][3]. Of course, since this study, the results have very likely been

significantly altered.

Over the years, more and more crawlers have been released on the web. Many
web crawlers now make use of distributed or parallel technology in efforts to increase
a search engine’s web coverage. Web crawlers have had negative impacts on Internet
resources in the past[26], and so while brute-force crawling techniques may help a
crawler gain a small competitive edge, the impact on shared resources could be

more problematic.

Figure 1.2 represents a simulation which graphs the freshness for a varying
number of crawlers (N), all of which attempt to crawl a simulated web of one
million web objects. The cache freshness starts from 1.0 (perfect) and decreases
over time (the simulation assumes each crawler starts with a fresh snapshot of the
web). The simulation is based on the software described in Chapter 5. A multi-
processor contention model is used to simulate bandwidth being divided among

several web crawlers. This contention model is described in section 5.1.

Figure 1.2 illustrates how freshness degrades as more crawlers are added to the

system (as N increases) in the face of competition for shared resources (bandwidth).

Increasing the freshness for web crawlers should not depend on using more
crawlers; instead, crawlers should examine the fundamental way in which they

regard competing peers.

Chapter two will examine web crawlers and how they can communicate with

one another. Chapter three will develop the protocol used for crawlers to be able to

CHAPTER 1. INTRODUCTION 6

Effect of increasing number of crawlers (N) on crawler cache freshness over time

1 T T T T T T T T
N=1 —+—
N=2 ---x---
N=4 ---*--
N=8 ---&-
N=16 --m-
08 L N=32 ---o-- o
N=64 ----e-
@ N=128 ----&-
4 N=256 ----a---
< N=512 —=—
2 N=1024 ---v---
<06]
) : %
= SRSt
5] RT3 2
S b S A A AV
8 E **){%*% AV NV AV VISV
5 e X*%%%x%%*%%%**%*
% HRIHRAHK KK K K KKK KKK KK K K KK AR K K KK
Y
G 04]
Ba
o Hoag
o BB8agag
© [] Eialaislzis]
g a BOEE0EE0DNEEoEEEOBaEaaaED
> -0 =
z -i‘%:' . .l.llllll."._ll“'
2880 EEEm
: []
o2 L o2 Oe@eGOOO INESEEEEEEERE R
oo 09'999000669900009
3322220 20 0000000060
AAAAAAAAAAAAA
2 /N /N
O 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Days

Figure 1.2: Simulation in which a number of crawlers compete for bandwidth as a
limited resource.

CHAPTER 1. INTRODUCTION 7

share information back and forth. A simple implementation of a crawler using the
protocol to augment polling is presented in chapter four along with a brief intuitive
analysis of how inter-crawler interaction can work. Chapter five describes a simula-
tion architecture used to provide reinforcement of the the analysis of the previous
chapter. Chapter six describes experiments using a small sample of sharing policies
in which self-interested sharing behaviour is show-cased. Finally, conclusions are

drawn and future research directions are discussed in chapter seven.

Chapter 2

Background Information

This chapter presents the literature from three related aspects. First, we examine
the evolution of the web crawler from inception to its current incarnation. Second,
we examine the communicating paradigms in which web crawlers can share web-
events with one another. Finally, we discuss various implementations as to how such
web-events could be disseminated efficiently and effectively among cooperating web

crawlers.

2.1 Introduction to Web Crawlers

Since its inception in the early 1990’s, the World-Wide Web has undergone explo-
sive, exponential growth. Consumers increasingly find themselves unable to browse
the ever-changing, distributed hyperlink structure of the web. Furthermore, they
are subjected to information overload — literally, information is too abundant. Cen-
tralized web search indexes have become the panacea of this problem, and web

crawlers are generally the enabling technology. With the availability of the tech-

CHAPTER 2. BACKGROUND INFORMATION 9

nology, web crawlers are also rapidly becoming more popular with individuals for

specific information-finding tasks.

A web crawler is an automatic web object retrieval system that exploits the

web’s dense link structure. It has two primary goals:

1. To seek out new web objects, and

2. To observe changes in previously-discovered web objects (web-event detec-

tion).

The basic web crawler algorithm has not changed since the World Wide Web Wan-
derer (the first reported web crawler) was designed in 1993[29]. Almost all crawlers
follow some variant of the basic web-traversal algorithm shown in algorithm 2.1.
(Web crawlers typically contain much more functionality than outlined in algo-

rithm 2.1, though such functionality merely serves to satisfy the primary goals).

Algorithm 2.1 Basic web crawler traversal algorithm.

Require: pg is a valid web URL hyperlink
Require: @ is a queue of valid hyperlinks
Require: P is a set of web pages
Require: H is a set of hyperlinks

1: Q«+— P, {insert Py into the queue @}
2: while |Q| # 0 do

3 p—Q {get head of queue Q}
4: retrieve web page p

5: P— PUp

6: extract URL hyperlinks contained in p into H

7. forallhe Hh¢Qdo

8: Q< h

9: end for
10: end while

Crawlers must continue to deal with issues of scalability as the World-Wide Web

expands. How does one efficiently and effectively crawl the current set of almost

CHAPTER 2. BACKGROUND INFORMATION 10

2.5 billion publically indexable web pages® if crawlers are limited by crawling speed

and difficulty in predicting web-events?

The speed at which a crawler can traverse the web is limited by a number of
factors, including the bandwidth of the crawler and the latency of the network.
Modern, heavily multi-threaded crawlers can currently crawl at rates up to 100

web pages per second.

Predicting when a web object is going to change helps to limit the amount of
useless polling[5] done by a crawler to determine if it has been updated since the
last visit (see primary goal #2). The fewer resources wasted by a crawler doing
useless polls, the more that can be delegated to the task of locating new information.
Unfortunately, even with numerous studies into how web pages change, prediction

is still a relatively difficult task[6, 7, 10, 12, 13, 16, 22].

In the end, crawlers are going to be relying upon communicating with others
— be it instances of themselves (in the parallel sense), or with crawlers outside of
their controlling domain (ie. a competing corporation). It is the lack of organization
between crawlers in the latter sense that this work is based. We are interested in
autonomously cooperative sharing web crawlers — crawlers that can make decisions
on their own, and communicate with others when the need arises. The next section

assesses the different communication paradigms within web crawler communities.

!The publically-indexable web consists of all web objects not hidden behind /robots.txt
protection[27], authentication mechanisms, forms, databases, etc. As of September 2002, the
Google search service (http://www.google.com) had indexed about 2.5 billion web documents,
390 million images, and 700 million Usenet messages. These numbers continue to climb. Of
course, these numbers represent a lower bound on the size of the entire web (indexed and non-
indexed).

CHAPTER 2. BACKGROUND INFORMATION 11

2.2 Taxonomy of Crawler Communication

Web crawlers have increasingly become more complex in their design and organi-
zation to address the need of crawling the web in a timely manner. Depending on
their organization, crawling systems may devote time and energy communicating
with one another to help coordinate their behaviour to reduce overlapping crawling

regions.

Ho[24] describes a taxonomy of web crawling communication patterns in the

context of information-gathering agents?:

e non-interactive
e purely coordinated

coordinated with collaboration

purely collaborative

e self-interested

Each communication paradigm can be illustrated by figure 2.1. Communication
can occur vertically from a central authority to web crawlers, horizontally among
peer web crawlers, in both directions, or not at all. (The choice of communication
vertically is independent of the choice to communicate horizontally.) Intermediate
brokers can exist as part of the hierarchy to aide in scalability and flexibility of
information dissemination. They work on behalf of the central authority, and in
turn control the actual crawlers. The Harvest system[4] uses a series of brokers

similar to those in figure 2.1 to provide an efficient and flexible caching solution.

2An agent is a process that performs a task on behalf of a user, usually in collaboration with
one or more other agents to perform a collective task and/or reach a mutual goal.

CHAPTER 2. BACKGROUND INFORMATION

Central
Authority

Broker Broker

12

Y

Crawler < ta Crawler —< Crawler

Figure 2.1: Communication interactions within systems of web crawlers.

CHAPTER 2. BACKGROUND INFORMATION 13

2.2.1 Non-interactive

Non-interactive web crawlers have limited functional scope and require no commu-
nication with other web crawlers. Many personal web crawlers (eg. web-site cloning
tools such as the offline browsing mode built into Microsoft Internet Explorer) and
the work discussed in the SPHINX project[30] fall into this category. Although they
affect the network to some degree, their independent nature implies they would not

benefit from adapting to a network of communicating web crawlers.

2.2.2 Coordination

Coordinated crawlers usually manifest themselves as an explicit hierarchy and use
vertical communication as shown in figure 2.1. Coordinated web crawlers usually
receive their crawling instructions from a central authority. In the simplest case, a
central authority hands out groups of URLs to each crawler drone under its control.
Each crawler performs one iteration of the basic crawler algorithm described in
algorithm 2.1 using this group of URLs. After crawling the initial set, the drone
will return the set of crawled web pages (P) and newly extracted hyperlinks (H)
to the central authority. The authority collects all extracted URLs to distribute to
the drones as directed by its policies. The central authority can ensure that web
crawlers working in this fashion can traverse efficiently, with little or no overlap
in web coverage. The Public Robot Server Manager (PRSM)[39] is an example of
a central authority presiding over a set of vertically-communicating web crawler

drones.

CHAPTER 2. BACKGROUND INFORMATION 14

2.2.3 Collaboration

Collaboration among crawlers is horizontal communication among peers at the same
level of authority. Such crawlers make decisions affecting future crawling based on
information received from peers. Collaborating crawlers working within a coordi-
nated system are exemplified by the multi-agent paradigms described in DIAMS[9]
and Amalthaeal31] which use networks of agents, all interested in achieving the
same mutual goal. Purely collaborating systems of web crawlers may exist as part
of a distributed system without a controlling entity. The X4 crawler described by
Chung[14] uses a set of web crawlers which collaborate in order to allow specific

crawlers to crawl particular topics.

2.2.4 Self-interest

A self-interested web crawler is an independently communicating web crawler that
has the ability to autonomously self-evaluate its own performance and act accord-
ingly (modify its level of communication with others) to try to improve. A self-
interested crawler is interested in performing at an optimal level: decisions that
it makes regarding its performance may be based solely on selfish reasoning. Of
course, decisions that affect how it communicates with other web crawlers could
affect how those web crawlers communicate with it. Hence, any selfish decisions
made by an autonomously self-interested crawler may have to take into account the

effects of its decisions on the entire system of crawlers.

Ho[24] uses a biological energy model inspired from artificial life theory. The
crawlers make crawl meta-data (similar to web-events) available to other remote
crawlers. It is up to the local crawler to make local (selfish) decisions to either

retrieve or ignore the information depending on the cost of retrieval. Ho’s crawlers

CHAPTER 2. BACKGROUND INFORMATION 15

monitor their health (their energy) using a combination of a potential function and
a cost function. The potential function determines how costly communication with
a remote crawler could be. The cost function determines how beneficial it is to
regularly (or semi-regularly) merge crawl data from the remote crawler. The local
crawler’s energy is updated based on, among other things, how much information

is gained or lost by communicating with other crawlers.

Coordination, collaboration and self-interested communication strategies can
all be viewed as cooperative types of communication among crawlers. However,
coordination and collaboration imply a sense of imposed architectural limits as
to how such cooperation can proceed. Self-interested cooperative communication
implies the decision-making process may not be fixed by architecture, and that

communication patterns could change at any time.

Game Theory and Autonomous Crawlers

The decision-making process performed by autonomous crawlers can be examined
from a game-theoretic perspective. The classic game-theory problem “The Pris-
oner’s Dilemma” can be applied to the decision-making process used by crawlers
capable of exchanging information® by assuming that mutual cooperation can yield

the greatest benefit.

Nash equilibria are especially useful for dealing with cooperative crawlers that
mutually exchange information with one another[19]. Mutual cooperation can affect
the entire system of crawlers. If a set of strategies are being used to exchange

information, a Nash Equilibrium occurs when no single crawler can change their

3A° version of the Prisoner’'s Dilemma can be read at http://william-
king.www.drexel.edu/top/eco/game/dilemma.html

CHAPTER 2. BACKGROUND INFORMATION 16

cooperation strategy to increase their personal benefit if all other crawlers in the
system do not change their strategies. Multiple equilibria exist when multiple

combinations of strategies can result in such stalemates.

2.3 Implementing Web-event Dissemination

Systems

The various communication paradigms have several different methods in which they
could exchange web-events. Web-event detection and delivery implementations
basically break down into those that are based on notification and those that are
based on polling. Active notification and polling each have their advantages and
disadvantages. Notification systems can deliver every event to an interested party.
Unfortunately, high-frequency event data could overwhelm an the listener if too
many notifications are delivered. A polling solution can choose the rate at which
to poll the data. This runs the risk of missing events in the event that the poll rate
is less than the event rate, or can result in many useless requests if events occur
less frequently than the source is polled. Active notification systems do not waste

such resources.

2.3.1 A General Event Notification Architecture

Logically, an event notification system of any sort can be broken down into the
constituent parts illustrated in figure 2.2(a). The object is the source of all events,
which must be observed in order to be processed. If they are not observed, then
they are lost. The act of generating an event is free; it is the act of observing

and delivering the event which incur a cost[35]. In figure 2.2(b), the observer is

CHAPTER 2. BACKGROUND INFORMATION 17

clearly the primary sink, although both the broker and the client are also event
sinks. The broker is a component that may allow preprocessing of events before
they are delivered to the client such as aggregation (union of events), filtering

(intersection/difference) and temporal ordering.

Before an event can be delivered to the client, the broker must know of its
existence. The client subscribes to the broker as a recipient of events from the

broker’s source observer as shown in figure 2.2(a).

Once subscription succeeds, events pass from the source object to the client,
optionally passing through a series of processors as seen in figure 2.2(b). As stated
above, these processors can exist at the broker-side, or they can exist at the client-
side or both. The advantage to broker-side preprocessors is that the number of
events being delivered is throttled back. This is useful if the source generates more
events than a client can handle (although the broker must still be able to keep
up). However, implementing broker-side preprocessing can be expensive in terms

of processor time and management.

It should be noted that any of the components in figure 2.2 may be loosely-
coupled (shown) or tightly-coupled. A tightly-coupled system may combine any of
the source object, observer and broker into single entity. Additionally, the broker
component itself may be a complex system as used by Hinze and Faenses[23]. The
SIENA system[8] extends the generic architecture by allowing the intermediary bro-
ker to be part of a larger distributed mesh. This architecture is also apparent in

the proxy configurations discussed in[40].

CHAPTER 2. BACKGROUND INFORMATION 18

Event

Observer {_ Object

Event

—

Subscribe
Broker 4 Client

0

(a) Clients subscribe to recieve events from an object.

Event

Observer {_ Object

Event

—

Event Notification

Broker
L Processor

(b) Events are propagated from the object to the client,
optionally being filtered.

E

-

Figure 2.2: Basic subscription-based event notification architecture

CHAPTER 2. BACKGROUND INFORMATION 19

2.3.2 Information Delivery Methods

As implied by the generic architecture, there are two distinct forms of communica-

tion. These are illustrated in figures 2.3(a) and 2.3(b).

The dominant model of communication on the web is client-pull. Server-push
applied to the web emerged in the mid 1990’s as a potential panacea to web in-
formation overload which was readily becoming a problem|[37]. Server-push was to
be the active notification system missing on the web. Unfortunately, bandwidth
overload from transmitting large amounts of information to thousands of users as
well as managing user accounts on the server limited the scalability of push[21, 37].
Even so, other protocols on the Internet continue to make use of push architec-
tures such as Usenet[25]. In an attempt to curb the bandwidth issues, the ideas of
automatic periodic client-polling, and a hybrid (push/pull) model of information
delivery were adopted (figure 2.4). In the hybrid model, small information packets
are sent to the client from the server (eg. URL z has been updated). The client

then uses the traditional pull method to retrieve the much larger content-body.

2.4 Distributing Web Events

In order to determine the state of any object on the web, one must poll using
HTTP. Implementing a web crawler would be much easier if web objects notified
their changes to interested entities*. Over the years, a number of initiatives have at-

tempted to incorporate active notification into the context of web objects. Some or

4Unfortunately, this active web would suffer crippling scalability issues. Imagine if one million
web objects suddenly changed at the same time. This is not too difficult to imagine, considering
that there are at about 2.5 billion web pages. The network would suffer the same scalability issues
as the pure-push transmission model.

CHAPTER 2. BACKGROUND INFORMATION 20

Network Separation

|
|
Server
|
l |
| :

Channel(s)

(a) Client-pull. The end-user requests information from information providers.

Network Separation

|
|
Server
|
1 |
| :

Channel(s)

| Server

(b) Server-push. The information provider sends information asynchronously to the
end-user.

Figure 2.3: Two forms of data transfer.

CHAPTER 2. BACKGROUND INFORMATION 21

Network Separation
|
|

Server

Channel(s)

Server

Legend
4— Push

— Pull

Figure 2.4: A hybrid model combining the best of client-pull and server push.

all of these are interesting ideas to incorporate into crawlers that share information

about the ever-changing web.

2.4.1 Changes to HTTP

Hypertext Transfer Protocol [2, 17], the protocol used to drive the web, has been
studied in an attempt to add notification features. Particularly of interest are the
efforts of the General Event Notification Architecture Base (GENA-Base)[15] and
the Event Notification Protocol[34]. In the former, any object with a valid URL

5

can be the source for an event. New HTTP extensions® are proposed:

e Subscribe: a client wishes to be informed of events generated by the object

A generalized framework for setting up HTTP extensions can be found in RFC2774 [33].

CHAPTER 2. BACKGROUND INFORMATION 22

at the URL.
e Unsubscribe: a client no longer wishes to receive events generated by a URL.
e Poll: a client wishes to check for outstanding events associated with a URL.

e Notify: a client or object at a particular URL wishes to inform another client

or object at another URL of an event.

The Event Notification Protocol proposal[34] uses XML coupled with new exten-
sions to HTTP to aide in event notification as applied to web-based distributed
authoring and versioning (WebDAV[18, 36]). Interested clients can subscribe to a

notification server to receive events about changes to objects at a particular URL.

2.4.2 Crawler-centric Web-Event Dissemination

Aliweb (Archie-like indexing of the web) was a web crawler developed in late 1993
to gather documents|[26]. Aliweb did not automatically traverse the web. Instead,
it required web servers to register with it, and provide a text file containing meta-
information about each and every web document the server wanted to make public.
This text file would be periodically retrieved by Aliweb with a frequency set by the

web server administrator.

Brandman et al re-examines per-web server update indices[5]. Their work allows
for search engines to discover changes without retrieving full indices. Crawlers
receive web object meta-data (URL, last-modified-date, file size, file checksum,
etc.) which can be used to decide if their local copy is stale. This idea is carried
still further by Gupta and Campbell, by allowing the local web server to measure

the popularity of its own object repository[20]. Web crawlers can then use the

CHAPTER 2. BACKGROUND INFORMATION 23

popularity and frequency of change data measured at the web server to schedule
efficient crawls. Furthermore, the data is pushed to subscribed search engines rather

than remaining passive on the local web server.

Ho’s own protocol for web-event dissemination among a network of crawler peers
describes the role of web object meta-information as a succinct representation of a

web event[24].

Chapter 3

Protocol

Ambiguity in communications — indeed, in humans as well as in computer systems
— can lead to problems or utter failure. The Internet, and hence, the web, is
driven by protocols in order to achieve successful data transmission. It is not
enough to say that web crawlers will communicate web-event data with one another.
An algorithmic procedure is necessary to ensure that all crawlers interested in

cooperation know how to share and merge with peers.

The protocol used to allow web crawlers to communicate web-event data with
one another must be both simple and efficient. A protocol that uses non-standard
technology or that is difficult to implement will be rejected. It is desirable to reuse
and exploit existing frameworks and technologies to ensure easy incorporation into
existing systems. Web crawlers are already a deeply-rooted software paradigm
on the web: crawlers augmented to make use of the web-event data cooperation
protocol must remain backwards-compatible. The end-goal is to provide a protocol
that focuses primarily on effective and efficient web-event dissemination with the

least possible impact on current architectures.

24

CHAPTER 3. PROTOCOL 25

Traditionally, crawlers act as clients and have little or no server-based respon-
sibilities built into them. In order to be able to respond to peer requests for web
object meta-data, web crawlers must use web-server capabilities. All communica-
tion between web crawler peers uses existing HT'TP standards and all information

transmitted to and from peers is in easily-parseable human-readable text.

3.1 Web-Events Describe the Ever-changing Web

Web-events are succinct representations of changes to a web object. The smallest
amount of information required to convey a web-event is the last-modified-date of
a specific URL. Previous knowledge of the last-modified-date of a URL enables a
client to determine if indeed a change has occurred®. Additional information, such
as the classification of a web-event as a CREATE, UPDATE, or DELETE event can be

added to allow filtering by event type.

Storing web-events is far cheaper than storing the full text of a web object.

They can be encoded in about 200 bytes and compressed to about 25% of that size.

Web-events must follow the state transitions shown in figure 3.1. Exactly one
CREATE web-event and one DELETE web-event are generated and observed. A
variable number of UPDATE events can be generated (U,) and observed (Uy). The
difference between the set of generated web-events for a particular web object and
those events observed by a web crawler manifests itself as the number of missed

events (|U,| — |Us| > 0).

Logically, when a web object is published to the web, a CREATE web-event

!This assumes that the last-modified-date of a specific URL can be determined and that it
increases monotonically with each web event.

CHAPTER 3. PROTOCOL 26

UPDATE
Event

Figure 3.1: The NFA state machine of web-event generation for any web object’s
lifecycle.

occurs. When an already published object is modified in any way, then an UPDATE
event is generated. Finally, when the object is removed permanently from the web,
a DELETE web-event is generated. These events are captured in the state of the
object; though one must observe a state change to accurately detect an event. Such
changes could easily be missed by a polling web crawler if the event rate is greater
than the poll rate of the crawler. As a result, a crawler may develop inconsistencies

between the actual state of the web and its perceived state of the web.

Presented in the remainder of this chapter is the specification for a two-part
protocol: a web-event sharing crawler and a web-event merging crawler. Both parts
of the protocol hinges on the share-control file. This protocol does not dictate use
of the shared data; it is not even necessary for a crawler to share their own data.
Both the sharing and the merging specifications are independent operations, though

their specifications are intrinsically intertwined.

CHAPTER 3. PROTOCOL 27

3.2 Information Sharing and Merging

A pair of web crawlers adhering to the data-sharing-protocol is shown in figure 3.2
performing a typical request-response transaction. Figure 3.2(a) requires the merg-
ing crawler (M) to request the share-control file from the sharing crawler (S). The
share-control file contains information that identifies the web crawler, as well as
specific details required by crawler M to successfully merge web-event data from
crawler S. In figure 3.2(b), web crawler M identifies the share-repository: this
repository is a key aspect about crawler S describing where web-event data is
stored. Figure 3.2(c) has crawler M computing which web-event data files must
be obtained from crawler S and retrieving them (in this case, three files called
11882.dat, 11883.dat, and 11884.dat are requested). This computation is based
upon the current date, and the date of the previous merge with crawler S, if any.
All file transfers are based on HTTP GET operations. Figure 3.2(d) has web
crawler S’s web server transferring two of the three requested files (11883.dat and
11884 .dat) to crawler M. Figure 3.2(e) shows web crawler M merging the contents

of these files to update it’s view of the web.

3.2.1 Share-control File

The share-control file is the enabling component of the protocol. This file is labeled
robots.shr and is accessible from the root of a web crawler’s web server (eg.
http://www.foo.com/robots.shr). The content of this file provides information
about the serving web crawler, as well as how the web crawler shares its information.
No meta-data information is stored in this file. This file is engineered to be easy
to parse: it uses the standard field:value syntax used by both HTTP[2] and the
Robots Exclusion Standard[27]. The available fields are described below.

CHAPTER 3. PROTOCOL

(a)

/robots.shr

Identify and get

/robots.shr.

28

Repository

(b) Identify repository URL.

HTTP GET

M | HTTP

(c)

11882.dat
11883.dat
11884.dat

Request required web-

events data.

(e) Merge web-event data with local reposi-

tory.

Response
11883.dat
11884.dat

(d) Server responds with available data.

Figure 3.2: A typical, step-by-step request-response scenario between two data-
sharing-protocol enabled web crawlers (M and 5).

CHAPTER 3. PROTOCOL 29

contact

crawler

The contact information for this crawler is optional. This should be an
email address of the human operator of this crawler. This field should
have the same value as used by the crawler for its HTTP FROM field-
header (as defined in section 10.8 of RFC 1945[2]).

The identification string for this crawler is required. It is composed
of the host/IP for locating this crawler, the port on which the web
server serving the /robots. shr file listens and a crawler moniker. The
moniker is the same string as used by this crawler for its HT'TP USER-
AGENT field-header value (as defined in section 10.15 of RFC 1945[2]).

repository The repository field is required. It is a URL path used to locate where

special

version

web-event data files are stored.

A crawler can optionally advertise a set of URLs for which it is es-
pecially proficient at crawling. Local web servers are prime specialty
candidates, as well as any web servers attached on a high-speed, low-
latency network. Peers can choose not to crawl URLs that fall within
this crawler’s special set, and instead choose to merge their shared data.
There can be more than one special field in the /robots.shr file, and

their field values are cumulative.

The required version string indicates that this crawler uses a specific

protocol version. All other peers must use the specific version if possible.

An example /robots.shr is shown in figure 3.3.

CHAPTER 3. PROTOCOL 30

version: 1.0

crawler: plg2.math.uwaterloo.ca:33433 WaterlooCrawler/1.0Beta/PLG
contact: glmclear@uwaterloo.ca

special: http://129.97.224.77/

special: http://plg2.math.uwaterloo.ca/

special: http://www.math.uwaterloo.ca/

repository: http://plg2.math.uwaterloo.ca/share-dir/

Figure 3.3: A sample /robots.shr file. This example illustrates the use of each of
the fields.

3.2.2 Web-Event Data Files

Each web-event data file consists of a series of records separated by blank lines.
All records consist of a series of lines laid out in easily-parseable field:value
pairs. A record represents meta-data about a specific URL, which presumably,
has been identified by a crawler as being affected by a web-event. The meta-data
records compose the actual data content transferred between crawlers S and M in
figure 3.2(d). No web object content is ever transferred between sharing/merging
crawlers; it is the responsibility of crawler M to later retrieve the content from the

server on which the web object identified by a web-event resides.

In an attempt to reduce the ratio of descriptive information to actual informa-

tion, the field names are purposely truncated or abbreviated.

cid The crawler identification is required. The format for the cid is the
same as the crawler field value defined in the /robots.shr file above.

It is used to identify the crawler that first identified this web-event.
size The size of the web object in bytes is required.

Imd The last-modified-date of the object is required. It is a sequence of digits
representing the number of seconds since Jan. 1/1970 GMT when the

CHAPTER 3. PROTOCOL 31

Ipd

stat

ttl

url

object was last updated.

The last-polled-date of the object is required. It is a sequence of digits
representing the number of seconds since Jan. 1/1970 GMT when the
object was last polled by the crawler identified in the cid field (could

be itself or a peer).

The web-event status flag is required. The flag is one character denoting
the classification of the web-event corresponding to this record. The

valid values are C, U, D for CREATE, UPDATE, and DELETE, respectively.

The time-to-live is the number of seconds after the last-polled-date
(LPD) when this entry is no longer valid. This field is optional, and
may be used if the crawler associated with this entry is unsure whether
it will be visiting the web object again, or if it is relatively sure that no
changes will occur to the web object during that time. Merging crawlers
can use this value to effectively schedule revisitation of either the URL

or future merging operations to the crawler sharing this data.

The specific URL associated with the recorded web-event meta-data.
This field is required.

An example web-event data file containing web-events is shown in figure 3.4. The

cid field is used to identify the web crawler that reported the original web event

data. This is useful if a merging web crawler wishes to use the field to identify which

peer crawlers would have the most up-to-date meta-information about a URL.

CHAPTER 3. PROTOCOL 32

url: http://plg.uwaterloo.ca/plg.html

size: 9824

Imd: 993226666

lpd: 1008242754

cid: plg2.math.uwaterloo.ca:33433 WaterlooCrawler/1.0Beta/PLG
stat: U

url: http://www.google.com/index.html
size: 2332

Imd: 1011415503

lpd: 1011415503

cid: 129.97.224.77:7777 SharingRobot/1.0
ttl: 1209600

stat: C

Figure 3.4: A sample web-event data file.
3.2.3 Share-repository

All web-event data files are stored in the share-repository. Merging web crawlers ex-
pect to be able to request a specific file from the sharing web crawler using standard
HTTP requests. Physically storing the web-event meta-data is implementation-

dependent, as long as the external interface is perceived as an accessible file.

All web-event data files are referenced using a specific naming convention to
which both crawlers M and S must adhere. The file name prefix is a sequence of
digits followed by the suffix .dat. The sequence of digits prefixing the file extension
is the number of days since Jan. 1/1970 GMT (call this day D). All web-event
records contained in this file must have been discovered (ie. have a last-polled-date
occurring) between 00 : 00 : 00.0 GMT and 23 : 59 : 59.9 GMT on day D. This

addressing method is similar to that proposed by Brandman, et al. [5].

Using figure 3.2 as a reference and the share-repository location information

stated in figure 3.3, the HTTP request header from crawler M to crawler S (located

CHAPTER 3. PROTOCOL 33

at http://plg2.math.uwaterloo.ca: 33433 according to the URL in figure 3.3)
would look like:
GET /share-dir/11883.dat HTTP/1.0<CR><LF>
<CR><LF>
(Crawler M wants to get the web-event data from crawler S for the date of
July 15, 2002: 11883 days * 86400 sec/day, is the number of seconds since Jan.
1/1970, which can be converted to a date.)

Crawler S would proceed to serve the requested file if it existed. Note that in,
figure 3.2(d), file 11882.dat did not get returned to crawler M from crawler S.
Assuming no errors, this could imply one of two thing: (1) crawler S did not have
any knowledge of web-events occurring on day 11882, or (2) file 11882.dat was
removed due to space considerations. Crawler M has no choice but to accept that

no data may be available for that day.

3.3 Specific Protocol Issues

3.3.1 Event Resolution Rules

When multiple, independent crawlers share data with one another, it is possible for
crawlers to have varying views of the web. Some may have high-quality snapshots of
a portion of the web, and others may have lower-quality approximations of a portion
of the web. Crawlers that overlap may have recorded different events depending on

a number of factors.

If a web crawler M merges web-event meta-data from crawler S and has no prior
record of the URL associated with the web-event meta-data, then crawler M simply

mirrors the web-event and modifies the cid field for this meta-data to crawler S.

CHAPTER 3. PROTOCOL 34

On the other hand, if crawler M has prior knowledge of the URL associated with
the web-event meta-data, then crawler M must resolve the events according to a

set of logical rules?.

When trying to determine recency, the last-modified-date of an event is used.

e In the normal course of sharing, all DELETE events occur after UPDATE events;
all UPDATE events occur after CREATE events. This sequence must be adhered
to. Any deviation indicates an error, and the crawler should attempt to

investigate by scheduling a network poll of the URL directly.

e [f a URL has two different CREATE events according to crawler M and crawler
S, then the least recent event is assumed to be the most accurate creation
date. The least-recent CREATE event can be discarded, and the most recent
CREATE event is assumed to reflect an update. It should therefore be recorded

and reclassified as an UPDATE event.

e If a URL has two different UPDATE events between crawler M and crawler S,

then the most recent is recorded and all others can be discarded.

e If a URL has two different DELETE events between crawler M and crawler S,

then the least recent event is assume to be the most accurate deletion date.

e If a URL recorded in crawler M has an UPDATE event and crawler S has a
more recent CREATE event, then S’s CREATE event is assumed to be an invalid
detection of an update to the URL. The CREATE event should be merged from

M, but reclassified as an UPDATE event.

2These rules are based on the assumption that all data shared by crawlers is genuine. See
section 7.2.2 for security concerns regarding misleading or incorrect meta-data.

Chapter 4

Theory

Current-day web crawlers can be easily modified to take advantage of cooperative
sharing behaviour. It is important to be able to quantitatively validate cooperative
sharing as compared to current-day behaviour. We use the concept of freshness,
previously introduced in the Introduction, to measure a crawler’s performance. The
chapter completes with a brief analysis of simple interaction between cooperating

web crawlers is done from an intuitive perspective.

4.1 A Simple Sharing Crawler

A simple web crawler capable of traversing the web as well as communicating shared
data to and from peers is shown in algorithm 4.1. This, in turn, is based on the

basic design of a web crawler (algorithm 2.1).

Our simple cooperating web crawler uses a value known as p to enable it to
switch between polling a web object and merging web-event data from peers. The

value p can take on any real value in [0...1]. In the extreme cases, when p = 0,

35

CHAPTER 4. THEORY 36

the crawler will only merge web-event data and when p = 1, the crawler will only

poll web objects. Any value 0 < p < 1 represents the ability to do both operations.

The condition in lines 2 and 3 of algorithm 4.1 implies that over time, p rep-
resents a percentage of time devoted to polling; conversely, 1 — p represents the

percentage of time devoted to merging.

In addition to p, a crawler can choose whether to make public any of its web-

event data by enabling the sharing variable (lines 7 and 14 of algorithm 4.1).

Algorithm 4.1 A simple sharing/merging web crawler.

Require: W is a set of web objects representing the entire web
Require: C'is a set of all web crawlers on the web including this one
Require: FE, is a cache (a set) of web-events to be made public
Require: E’' is a set of web-events independent of E,
Require: @, is a queue initialized as a random permutation of W
Require: (). is a queue initialized as a random permutation of C

1: for ever do

2: P « uniform-random-value

3: if P <p then

4 w «— head(Q,) {w is a specific web object}
5: e «— visit(w) {get a web-event e about w}
6 reinsert(Qq, w) {w gets put back into rotation}
7 if sharing then

8 E.—FE.Ue {store the web-event to be merged by others}
9 end if

10: else

11: ¢ «— head(Q.) {c is a specific web crawler other than this one}
12: E' — visit(c) {E' is a set of events merged from c}
13: reinsert(Q., ¢) {c gets put back into rotation}
14: if sharing then

15: E.—FE UFE {store the web-events to be merged by others}
16: end if

17: end if

18: end for

Given p and sharing, a crawler implementing a variant of algorithm 4.1 could

CHAPTER 4. THEORY 37

operate in any of six potential capacities:

1. Current-day behaviour: poll the web without regard for the behaviour of
peers (p = 1, sharing = false)

2. Altruistic behaviour: poll the web and share all information without ever

merging from peers (p = 1, sharing = true)

3. Parasitic behaviour: always merge from peers (never poll the web directly)

and never share with peers (p = 0, sharing = false)

4. Mirroring behaviour: always merge from peers (never poll the web directly)

but share everything (p = 0, sharing = true)

5. Non-sharing hybrid: poll the web sometimes and merge from peers sometimes,

but never share any information (0 < p < 1, sharing = false)

6. Sharing hybrid: poll the web sometimes and merge from peers sometimes,

sharing any information (0 < p < 1, sharing = true)

It is hypothesized that web crawlers that are cooperative (ie. if 0 < p < 1 or
sharing is enabled) can mutually benefit from sharing web-event data more so than
crawlers operating in a traditional current-day role. Such benefit can be quantified

by measuring a web crawler’s cache freshness.

4.2 Freshness as a Metric

Crawler freshness is the primary measure of the performance. As can be seen

from algorithm 4.1, a crawler maintains a cache (E.) which is a set of web-event

CHAPTER 4. THEORY 38

data records for associated web objects that have either been polled directly by
the crawler or merged from a peer. An individual entry in the cache is denoted
as e. A transformation function (7°) is used to convert a specific web object w
into the associated web-event data record e when polled by a crawler ¢ at time
t: e € E., e = T/(w). Freshness of a single cache entry is a binary measure,
determining, if at time ¢, the cache entry e is synchronized (state-equivalent) with

its associated web object w [11]:

1 ife=T(w
Fle; t) = fe=T{w) (4.1)
0 else
State-equivalence between two web-event data records means the relationship
7;(w) = T;(w) holds for times i < j. Note that the nature of web-events implies
that if 7;(w) = Tx(w) for some time i < k < j such that a web-event occurs on

object w at time j, then 7;(w) # 7;(w). This is because web objects only maintain

the current state; once a web-event occurs, any previous state information is lost.

Note that we ignore that the definition given by equation 4.1 assumes the ability
to perform instantaneous comparisons between a cached web-event data record and
the current state of the associated web object. Such instantaneous comparisons are

usually not possible when dealing with the web.

The definition of freshness for a specific crawler’s cache (E.) at time ¢ is an
average of the freshness for the individual web-event records stored in F, at that

time:

1
|E|

F(E;t)= > F(e; t)

GEEC

CHAPTER 4. THEORY 39

Of course, F'(E,; t) is only useful as a measure of the instantaneous freshness of
the cache E.. We wish to observe the freshness of a crawler’s cache as it changes

over time. The freshness of E. over time is intuitively a time-based average:

— lim 1 gt
F(B. t) = ?/o F(E.; t)dt

t— o0

4.3 Algorithm Analysis

Algorithm 4.1 can intuitively be reasoned to show that there exists a point whereby
a combination of polling and merging can yield more web-event data than simple

polling.

Presumably, a crawler can schedule when to merge with another crawler. How-
ever, if it merges too soon, not enough data will be amassed by the peer to make the
merging operation beneficial. If it waits too long, then the crawler runs the risk of
doing too much polling and rendering the peer’s potentially-shared web-event data
records redundant. The strategy used by a crawler to wait “just the right amount
of time” is a complex process. Values for p cannot be easily analyzed by mathemat-
ics. Several complexities in the potential interactions between peers quickly make a
more in-depth analysis intractable. Simulations developed in the next chapter are
used to support the intuitive evidence that combinations of polling and merging
can produce better freshness among mutual cooperative crawling systems than if

individual crawlers decided to crawl on their own.

CHAPTER 4. THEORY 40

4.3.1 Preamble to the Analysis

We will assume that the web (W) is sufficiently large such that it can be close to
infinite in size. Over time, web-events will occur randomly to web objects in the
web (W). The dynamics of the physical web have been studied and shown that

web-events can be modeled after a Poisson process[10, 11, 38]:

(alt; — 1)) e
z!

Prob(x events) =

where « is the mean number of web-events that occur during a unit time, and

t; — t; is the time-interval being examined.

For the purposes of this analysis, we will assume that web-events occur with a
rate such that each poll will yield one web-event. This does not imply that web-
events are not missed — merely that at least one web-event will occur to a web
object w between subsequent polls to that web object by a specific web crawler.
It will also assume that web crawlers will not poll the same object at the same
time. Together these assumptions imply that only one crawler can ever have the

most-recent web-event for a specific web object.

Crawlers using algorithm 4.1 will select specific web objects from their crawling

set ()., and specific peers from (). in a uniform random fashion.

We will assume that sharing and merging take the same time as a single network
poll. This is a gross assumption, since, of course, transferring large amounts of data

over a network can incur more time than sending a single byte.

Finally, we will assume that a crawler has a vested interest in knowing about

the entire web.

CHAPTER 4. THEORY 41
4.3.2 Intuition of Interaction

If the number of crawlers in the system were, in fact, zero, then the web would
never get crawled and vital events would be lost. Of course, this means that at
least one crawler is required (C; € C). The single crawler must crawl the entire
web (@, = W). Since there are no peers with which to merge, C; will implicitly
have a value of p = 1. This implies that crawler C} will perform |W | network polls,
for a total number of |W| polling operations. At most one web-event per poll can

be gleaned, resulting in an information gain to network operation ratio of % =1.

This crawler will not necessarily have the most up-to-date cache (E.) because

polling the entire web is a slow process. Many web events may be missed.

When another cooperating crawler (Cy) is added to C, each crawler can poll
between 1 and |IW| web objects and then share (a single operation) between 1 and
|W| web-event records with their peer. The longer a crawler waits to merge, the
more web events can be transferred (until a point). The length of time between
merges is controlled by a crawler’s value of p. Mutually, the best case occurs when
each crawler crawls about @ objects and then performs a merge operation with
its peer. This results in a total of || 4 2 operations over both crawlers for an

. w
information gain to network operation ratio of |V|V
=

‘Jrl > 1 per crawler. This will not
happen if p is either 0 or 1 (since either extreme results in no information being

shared and results in |W| operations per crawler).

If we add yet another web crawler (C3) to the process, then each crawler is
capable of polling between 1 and |W| web objects and then sharing between 1 and
|W| web-events with another peer. Again, a crawler’s value of p dictates how long
to wait before merging with another crawler. If every crawler decides to do the same

| web objects), then a single crawler can merge

amount of work (ie. each polls ‘%

CHAPTER 4. THEORY 42

from both peers to receive @ web-event data records in only two operations. The

total number of operations over all 3 crawlers is 3 ('?—' + 2) and the information

gain to network operation ratio of ,V‘WLL > 1 per crawler.
=
Each crawler does the same amount of work, and gets three times the data for
it’s effort. If we attempt to generalize this, we may assume that an optimal crawling

distribution is for all crawlers in C' to poll:

:M 4.2
@l = 17 (12)

web objects before attempting merging operations which can yield the remaining

web-event data records.

Note that as membership in C increases, the size of an individual crawler’s Q),,
decreases, until the point where there are |[W| crawlers and each crawler C; € C
crawls only one object. At this point, each crawler is performing one poll operation
followed by |[W|—1 merges of all other crawlers to get their single web-event record
(for a total operation count of |W|* over all |C| = |W| crawlers). Per crawler, the
information gain to network operation ratio of % = 1, which is no better than the
case when |C| = 1.

Both |C| = 1 and |C| = |W] illustrate the limiting scenarios in equal-work
cooperative web-crawling behaviour. Since the behaviour for |C| = 2 exhibits an

information gain greater than either of the limiting scenarios, there must be an

optimal number of web crawlers.

CHAPTER 4. THEORY 43

4.3.3 Deriving an optimal number of crawlers

An individual crawler’s information gain compared to the number of operations
required to receive knowledge about all of W can be expressed as a function of the

size of the community of crawlers in equation 4.3.

W
119D = By e (4.3)

In other words, a single crawler in a community of |C| crawlers must poll |Q,|
web objects, and then merge from the remaining |C|—1 peers to get all [IW| objects.
Discovering the local extrema of f(|C|) is as simple as solving for, and minimizing

f(|C]) (making sure to substitute appropriately for |Q.|):

: Wl (1- 'Cﬂl')

o) = : .
Fcy) (54 e 1) (4.4)

The minimization of f'(|C|) yields |C| = 4,/|W|; however, only the positive so-
lution makes sense. This represents the local/global minimum. For a web of size 10°
in a non-contention environment, the least number of equal-work, cooperating web
crawlers needed to achieve optimal freshness is |C| ~ 31623, each of which crawls
|C| different web objects. If there is no contention for communication resources,
then this means that for any size of crawler community in which |C] > \/W , the
remaining crawlers (y/|W|—|C]) should simply merge from all other crawlers rather
than poll. In this way, all crawlers will achieve a maximal freshness. Determining

which crawlers should poll and which should merge remains a problem.

CHAPTER 4. THEORY 44

4.3.4 Number of Operations as Related to Freshness

The above analysis deals with the number of operations that could occur when
cooperating crawlers interact. Operation-counting does not translate directly into
a measure of freshness. However, it is a good indicator, especially when one takes
into account the fact that merges are not, in fact, a free operation. A merging
operation can be considered cheaper than a network poll, because it is possible to
get more than one web-event data record per merge, as compared to being able to

get at most one record per network poll.

Chapter 5

Simulation Software

A web crawling simulator was developed to quickly collect data while being in full
control over crawling parameters. The web crawler can be configured to crawl a
virtual web using a variety of strategies. The simulator is able to omnisciently
measure various metrics of any web crawler and the virtual web at any point in
time. Our primary interest is in how the freshness of a crawler’s cache can change
over time, especially when interacting with peers to share or merge data. Our
secondary interest is in how crawlers can mutually affect the freshness of their own

cache and the cache of others as they compete for resources.

5.1 Simulation Architecture

The simulation uses a freely available simulator package known as YACSIM!. Yet

Another CSIM [C-Simulator| is an event- and process-oriented simulator imple-

! Available for download from http://www.crpc.rice.edu/softlib/rppt.html

45

CHAPTER 5. SIMULATION SOFTWARE 46

mented as a set of library calls for the C programming language. The GNU Scien-
tific Library? provides the necessary random-number generator and random-number

distribution functions.

Three objects are represented within the simulation environment: web objects,
web crawlers, and the virtual web (network). The network is simply a passive,
observable entity, whereas web objects and web crawlers are active participants.
The crawler is the most sophisticated of all of the simulated objects and accounts

for nearly all of the work.

The architecture of the simulation is shown in figure 5.1. All of the simulated
objects have resources associated with them. Simulation resources use a multi-
processor-sharing contention model based on a uni-processor model supplied by
YACSIM: if there are k£ simulation objects requiring service from a multi-processor-
sharing resource that has s servicing slots, then each object will obtain an amount

s

of service proportional to 7. If s > k, then all k objects will receive full use of a

processor (ie. no contention).

5.2 Web Objects

A web object is a uniquely-identified entity within the simulated web. It possesses

the basic properties of file size (in bytes) and a last-modified-date.

Web objects can be polled and retrieved in the simulation, but both operations
have a cost associated with them. The cost is realized by the time to transfer the
data (which is directly related to the bandwidth associated with the requester and
the object).

2 Available for download from http://www.gnu.org/software/gsl/gsl.html

CHAPTER 5. SIMULATION SOFTWARE 47

Meta-data

Q

Cache of \
Web Objects

Web Object
Web Crawler World Wide Web

visitset <:>/{
peerset
<:>// / Object’s Resources
Crawler’s Resources <:>

Network’s Resources
Figure 5.1: Simulation architecture.

All web objects evolve over time by periodically generating web-events via a
YACSIM event process. The standard lifecycle for any web object follows the simple

state-machine illustrated in figure 3.1.

All events are exponentially-distributed. CREATE web-events are generated by
instantiating new web objects at a rate A\o. UPDATE web-events are generated at a
rate A\y. Web objects may delete themselves with a Poisson distribution probability
using an event rate of A\p. If Ao = Ap, then the size of the virtual web remains

approximately constant over time.

5.3 Web Crawlers

Web crawlers have a number of important structures and algorithms associated

with them. Crawlers essentially consist of the following pieces:

e A queue of web objects to poll (visitset)

e A queue of web crawler peers to contact (peerset)

CHAPTER 5. SIMULATION SOFTWARE 48

Web Crawler Web Crawler

i A
Crawler’s Resources Crawler’s Resources

U

Network’s Resources Network’s Resources

b

Object’s Resources Crawler’s Resources

3l

. Web Crawler
Web Object
(a) Crawlers communicate with (b) Crawlers communicate with
web objects via the shared net- other peers via the shared net-
work resource. work resource as well.

Figure 5.2: Simulation communication and contention model between crawlers and
objects and crawlers and crawlers.

CHAPTER 5. SIMULATION SOFTWARE 49

e A cache to store web object meta-data polled by the crawler or obtained from

a peer

e p - a variable used to determine how often this crawler should poll and merge;

it is used in algorithm 4.1

Web objects that have been known to be deleted are removed from the wvisitset. The
decision to poll the network or merge records from another crawler is determined

by crawler’s value of p.

It should be noted that crawlers are assumed not to suffer access errors as a

result of communicating with either web objects or other web crawlers.

5.4 The Simulated Web

The web consists of nothing more than a set of web objects and web crawlers.
The notion of a web server, prevalent in the actual web, has been removed in this
simulation. As illustrated in figure 5.2, the network is a shared resource used by all
web crawlers and web objects. Directly influencing the cost of the network access

is the network bandwidth.

5.5 Simulation Variables

Each of the variables alluded to in the previous sections are described in more
detail. In each case, the set of legal values and/or selection method and criteria is

described.

CHAPTER 5. SIMULATION SOFTWARE 20

The bandwidth associated with the link from a web object to the network cloud
as shown in figure 5.2(a) is described using a uniformly chosen random variable
By It can range from 5 KBps to 200 KBps. Note that it is possible for an object

to be unreachable by a crawler if the object’s bandwidth is set to 0.

The bandwidth associated with the link from a web crawler to the network cloud
as shown in figure 5.2(b) is described using a uniformly chosen random variable B,,.
B, is chosen from 5 KBps to 200 KBps. A crawler can be considered unreachable

if its bandwidth is set to 0.

The network bandwidth is fixed at 1.5 Mbps.

5.6 Web Crawler Algorithms

Algorithm 5.1 follows quite closely to algorithm 4.1. Each network access to a
web object costs some time, which is clearly charged against the crawler regardless of
the outcome of the polling operation (updated or not). When one crawler attempts
to merge from a target crawler, both crawlers will incur the communications cost,

since they are both involved.

Line 7 of algorithm 5.1 shows the crawler’s cache being updated in the event a

poll yields a new web-event.

Lines 14 to 15 represent the local crawler attempting to determine the necessary
information from the remote crawler’s /robots.shr file. Only if this succeeds can

a merge occur.

Lines 17 to 19 show how a single merging operation could potentially yields

several web-events being added to the crawler’s cache.

CHAPTER 5. SIMULATION SOFTWARE 51

Algorithm 5.1 Crawler :: algorithm()

Require: visitset is a structure containing the set of all URLs that will be visited.
Require: peerset is a structure containing the set of all peers that will be con-

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

tacted.
loop

rr < random()
if rr < p then
URL « visitset.pop() {get the head URL from the queue}
obj < poll(URL)
if obj # () then
cache < cache U obj
end if
if obj.event.type # DELETE then
visitset.push(URL)
end if
else
peer «— peerset.pop() {get the next crawler to merge from}
validate-peer(peer)
if peer-is-valid then
eventset «— merge-from(peer)
for = € eventset do
cache «— cache U x
end for
end if
end if

22: end loop

CHAPTER 5. SIMULATION SOFTWARE 52

Algorithm 5.2 Crawler :: poll() from line 5 of algorithm 5.1.
Require: URL is a URL for an object that may or may not exist on the physical
web.

1: obj < get-network-state(URL)
2: cobj < cache N obj {Determine if we already have previous knowledge about
URL or not}

3: if cobj = () then

4. if obj.event.type # DELETE then

5: return obj {detected a CREATE web-event to object}
6: end if

7: else

8: if obj.event.type # DELETE then

9: if obj.last-modified-date > cobj.last-modified-date then

10: return obj {detected an UPDATE web-event to object}
11: end if

12: else

13: return obj {detected a DELETE web-event to object}
14: end if

15: end if

The polling algorithm described in algorithm 5.2 has three branches of interest.
If a web object has never been seen by a crawler before (line 3), then the crawler

assumes that the web object has just been created.

If the web object is already known to the polling crawler, then it can use the
difference in information retrieved from this poll and the previous record to deter-
mine if a change has occurred. Note that if the crawler detects that an object has

been deleted, then it will remove it from the polling queue®.

The merging process outlined in algorithm 5.3 shows the two-stage merging pro-

cess. In order for a crawler to merge data from a target crawler, it must first check

3The idea that something has been permanently deleted is somewhat of a controversy, since
traces of the content may be cached or preserved. The Internet Archive’s Wayback Machine
(http://www.archive.com) is an example of object preservation.

CHAPTER 5. SIMULATION SOFTWARE 93

Algorithm 5.3 Crawler :: merge-from() from line 16 in algorithm 5.1.

Require: peer is a cooperating web crawler sharing its web-event cache.
1. updates — () {initialize the return set to be empty}
2: if peer is sharing data then

3: lastvisit < peervisitset N peer {get last time we visited peer}
4: if lastvisit = () then

5: lastvisit < current-time

6: peervisitset «— peervisitset U lastvisit {add new peer to our set}
7. end if

8: for x € peer.cache s.t. x.last-modified-date > lastvisit do

9: mycopy «— cache N x

10: if mycopy # () then
11: if mycopy.last-modified-date # z.last-modified-date then
12: updates «— updates U x {found an updated object on the target}
13: end if
14: else
15: updates < updates U x {found a new object on the target}
16: end if
17 end for
18: end if

19: return updates

CHAPTER 5. SIMULATION SOFTWARE 54

to find out when it last visited the crawler. If the crawler has not updated their
sharing data file since the last visit, then there is no need to continue. Otherwise,
the local merging crawler will requests all available web-events from the remote

sharing crawler since the last time the remote crawler was contacted.

Chapter 6

Experiments and Results

The experiments described in this chapter show the effects of various policies that
can be adopted by cooperating web crawlers. Specifically, these experiments are
designed to illustrate the ways in which p can affect the freshness of an individual
crawler within a system of NV — 1 peers. The results of these exploratory exper-
iments can be used to dictate the direction of more dynamic strategies in which
an individual crawler can monitor it’s performance and crawling environment and
adjust p accordingly. We examine changes in the size of the crawling space as well
as changes in the disposition of a crawler (parasitic, mirror, hybrid, etc. as outlined

in section 4.1).

6.1 Experimental Setup

All simulations were performed operated under a common set of conditions. The

size of the simulated web was set to an initial size of 1 x 10° objects, with a creation

%)

CHAPTER 6. EXPERIMENTS AND RESULTS o6

growth rate mean of 3476 web objects per day!. Conversely, objects were deleted
from the simulated web with an identical mean, thus resulting in an approximately
static web. The simulation ran over a simulated 180-day (1.5552 x 107 seconds)

span.

The network bandwidth was set at 1.5 Mbps, and all crawlers operated with
an individual bandwidth of 100 Kbps. In the absence of contention, web crawlers
could crawl approximately one object per second. The contention model — the
processor-sharing model as described in section 5.1 — was dampened by using a
constant s > 1. This helps avoid resource contention crippling the performance of

a system of web crawlers.

Crawlers started with an entirely fresh cache for the portion of the web they
were set to crawl (ie. freshness for a crawler at time 0 was 1.0). Unless otherwise
dictated by a crawler’s policy, web objects were randomly ordered and selected for

crawling; peer crawlers were also randomly ordered and selected for merging.

All crawlers independently operate as a single-thread: no parallelism is ex-
pressed or implied by algorithm 4.1. Each poll performed by a crawler was a
simulated HTTP HEAD operation. In all cases, the web server associated with an
object was assumed to transmit the last-modified-date information for each web ob-
ject requested. A merging crawler was assumed to operate under the pretense that
it retrieved web-events beginning with the most recent. Furthermore, the sharing
crawler did not perform any filtering based on a peer’s merge-request, and so all
pertinent web-events were transmitted to the merging crawler. Note that a crawler
that was in the process of merging could not poll, but a crawler in the act of sharing

could continue to poll with a penalty applied to their personal network bandwidth.

LA constant growth rate of 0.3476% per day for the web is assumed from the growth data
described in a study by Cyveillance [32].

CHAPTER 6. EXPERIMENTS AND RESULTS 57

6.2 Experiments and Analysis

6.2.1 Establishing a Baseline

Under current world conditions, a set of web crawlers will crawl the entire web,
entirely ignoring peers. Using our simulation model, this corresponds to each
crawler attempting to crawl the entire web, having a p = 1.0, and not allowing
any peer to merge. The number of crawlers crawling the simulated web was varied
at 2V, 0 < N < 10. As the baseline simulation ran, the system of N crawlers
stabilized in their cache freshness value. That is, at the end of the simulation, the
crawler’s cache freshness is indicative of the value that the crawler is capable of
achieving. The equilibrium state achieved by all N crawlers in the system can be

averaged to show the average crawler cache freshness.

The simulation was run with network contention enabled and disabled allowing
for the two curves shown in figure 6.1. The only affecting factor should be contention
for network resources among crawlers. An increase of crawlers in the system should

elicit a decrease in the freshness of an average crawler’s cache.

Although the entire system of N crawlers starts with a cache freshness of 1.0 at
time 0, when the simulation ends, the equilibrium state for a system of N crawlers
in a non-contending environment ends with an average freshness of about 20% re-
gardless of the size of N. This freshness value arises from various parameters con-
trolling the speed of crawling and the frequency of web-events. Increasing the speed
of crawling or decreasing the frequency of web-events would result in an increased
average crawler cache freshness. Conversely, decreasing the speed of crawling or
increasing the frequency of web-events would result in a decreased average crawler

cache freshness.

CHAPTER 6. EXPERIMENTS AND RESULTS 58
Web crawlers operating under modern, non-sharing conditions
1 T T r— . r-r-r - 1t~ 1~ 1~ rrr T rrr ot
No contention —+—
Contention ---x---
09 r b
0.8 _
0.7 b
[]
[%]
()
c
% 06 b
g
Q
5 05F E
©
o
§ 04 + -
g
(@)
03 B
————— (ARREEEEE— L A—
01} T i
e
0 1 . [T TN P S N Pk S Yerooqo oy
1 2 4 8 16 32 64 128 256 512 1024

N (N = number of web crawlers) (log, scale)

Figure 6.1: Crawlers running under current world conditions (oblivious to peers;

no crawler is sharing).

With contention enabled, figure 6.1 shows that, as expected, when N is large

enough, resource contention among all crawlers in the system adversely affects the

average crawler cache freshness. The rate of decrease in this curve is based on the 7

processor-sharing contention model employed by the simulator. Contention is not

immediately noticeable because s > k when N is small.

6.2.2 The All-or-Nothing Approach

In order to enable sharing and merging, crawlers must enable their ability to share

data and use algorithm 4.1 with 0 < p < 1. If all NV crawlers in the system use the

CHAPTER 6. EXPERIMENTS AND RESULTS 29

same fixed value of p, then the crawling system evolves in an interesting way.

Small values of N

Figure 6.2 shows a system of two (2) web crawlers using algorithm 4.1 such that
all web crawlers operate with the same value of p. A curve denoting the behaviour
of the system with and without contention is shown. Each curve represents the
average behaviour for all crawlers in the system. The optimal cache freshness is
indicated by a mark on each curve. It is at these marked points that a combination
of merging and polling yields the best freshness. It would be expected that values
of p close to 0 and 1 would show a decline in the freshness compared to values of
0 < p< 1. For N = 2, the optimum should occur for a value of p ~ 1 since there is
only one other crawler from which to receive web-events. In order to make a merge
worthwhile, the crawler should wait until enough information has been amassed by

its peer.

The optimum freshness with two sharing crawlers shows a distinct improvement
in the average cache freshness: the highest point of each curve in figure 6.2 is above

the baseline average cache freshness of figure 6.1.

Two interesting aspects are present in this graph: the relative closeness between
the contention and non-contention curves, and the behaviour at the extreme ends of
the curves. The relative closeness between the two curves is apparent because the
processor-sharing contention model (7 for & jobs) uses a constant s > 1. Contention

will be practically non-existent for such a small value of V.

When p = 0, the freshness is approximately 0 as well. This is to be expected.
When all crawlers are trying to merge from one another and no polling is done, the

freshness will degrade completely. When p increases, a larger percentage of time

CHAPTER 6. EXPERIMENTS AND RESULTS 60

Behaviour of 2 sharing web crawlers for varying p

T T T T T T T T B T
No contention —+—

Contention ---x---

09 —

0.7 —

05 —

Crawler cache freshness

Figure 6.2: Two crawlers share and merge with one another with various values of
p-

is spent polling — doing real work — and the freshness for each crawler begins to
increase. Sharing only becomes a useful operation for medium-high values of p. At
this point, sharing enables each crawler in the system to achieve a freshness better
than that achieved by the baseline in figure 6.1. The optimum point is achieved
close to p = 1.0 as expected. The sudden decline as p approaches 1.0 after the
optimal values in each curve means that the cache freshness in each respective
crawler simulation is actually hindered for values of p greater than the optimum.
This is expected: the amount of work to retrieve web objects by merging with other
crawlers is a bit less than the work required to retrieve them directly since multiple

data-records can be merged for the same cost as a single poll.

CHAPTER 6. EXPERIMENTS AND RESULTS

Behaviour of 64 sharing web crawlers for varying p

0.8

0.7

05

0.4

Crawler cache freshness

03

0.1

T T
No contention —+——
Contention_---x---

Figure 6.3:

0.1 0.2 0.3 0.4 0.5 0.6 0.7
p

0.8 0.9

61

64 crawlers share and merge with one another for various values of p.

CHAPTER 6. EXPERIMENTS AND RESULTS 62

Larger Values of N

If we increase the number of crawlers in the system without changing any other
parameter, then we can see how such an increase in N has a profound effect on
the average crawler cache freshness. Figure 6.3 shows a system of 64 web crawlers.
All use the same value of p for their entire running time. The maximum average
crawler cache freshness for the non-contention and contention models is indicated
in each. With such a large set of web crawlers, merging should show an increased
performance relative to the baseline performance of 0.2. However, contention for

resources will also be apparent.

The most obvious feature of figure 6.3 is the large performance gap between the
contention and non-contention simulations. The non-contention curve illustrates

the behaviour if resource contention were not a factor.

The optimum crawler cache freshness is shown at about p = 0.85 for the con-
tention curve. This value of p is less than the value of p for the optimum when
N = 2 in figure 6.2. However, the optimal cache freshness is about twice that when

N = 2, and three times greater than the baseline.

Figure 6.4 shows a system with N = 256. Like figure 6.3, we expect to see a

significant performance gap due to resource contention.

The performance gap shown in figure 6.4 is actually more pronounced than in
figure 6.3. Freshness in the non-contention curve is almost perfect because there are
so many crawlers in the system from which to gather information from. The curve
then falls sharply when all the crawlers are polling more than 90% of the time,
which causes resource contention to access the web objects. The non-contention
curve also sports a plateau between p = 0.3 and p = 0.9 which illustrates that it is

only slightly more advantageous to poll more than half the time when N is quite

CHAPTER 6. EXPERIMENTS AND RESULTS 63

Behaviour of 256 sharing web crawlers for varying p

09

0.8 [

0.6

No contention —+—

05 Contention ---x---

Crawler cache freshness

0.4 R
0.3
0.2

0.1

0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

Figure 6.4: 256 crawlers share and merge with one another for various values of p..

large.

Figures 6.2, 6.3, and 6.4 examine the role of varying p for a set of N crawlers.
Each of figures 6.5 and 6.6 shows the associated crawler cache freshness for p =
0.001, p = 0.30, p = 0.85 and p = 1.0. The value of p is fixed for the entire set of
crawlers over the duration of a simulation. The figures start at N = 2 because a

single crawler does not exhibit interesting features.

Figure 6.5 graphs the behaviour when there is no contention. Each simulation
shows that freshness tends to increase regardless of the number of crawlers in the
system. However, as N increases, smaller values of p cause the growth toward a

freshness of 1 to slow significantly.

CHAPTER 6. EXPERIMENTS AND RESULTS 64

Performance of web crawler systems at specific values of p (no contention)

1 T T T T T T T Lk
09 * T _
v <)
0.8 p=0.001 —— o
p=0.300 ---x---
* x p=0.850 ---*---
0.7 - p=1.000 & -
[}
[%]
] K %
c »
% 06 % X -
o y
o
5 05F -
I) L
s} . e
— 54 //
2 04F -
g g
o ’
03 %" e)
0.2 1 5] =] = = = B3 B = 1
01% 1
O ! 1] 1 1 1
2 4 8 16 32 64 128 256 512 1024

N (N = number of web crawlers) (log, scale)

Figure 6.5: Various crawler systems for increasing values of p over a set of N
non-contending web crawlers.

Figure 6.6 graphs the behaviour when there is contention for resources. This
figure shows that the majority of systems observe much better freshness when
p = 0.85 then for any other value of p except for when N is very large. When N is
very large (N > 28), our simulations show that a low value of p (indicating more
merging than polling) may achieve better freshness (as shown by the cross-over

point between the curves for p = 0.85 and p = 0.30).

Finally, figure 6.6 shows that p = 0.30 has a distinct plateau for 2* < N < 28,
This indicates that p = 0.30 offers similar potential over a wide range of values of

N.

CHAPTER 6. EXPERIMENTS AND RESULTS 65

Performance of web crawler systems at specific values of p (contention)

1 T T T T T T T T
p=0.001 —+—
p =0.300 ---x---
0.9 - p=0.850 ---%---
p=1.000 &
0.8 | i
" 0.7 _
¢ -
< 06 [B : i
o *
)
< 05 F _
& X
o i "
9] *
2 04t i
© S B i A
03}~ e B N 4
¥ /,></” N
X
0.2 B Bt = 8 o i
% . N
0.1 ha =S T
.. e . S. %
0 ! B g o !
2 4 8 16 32 64 128 256 512 1024

N (N = number of web crawlers) (log, scale)

Figure 6.6: Various crawler systems for increasing values of p over a set of N
contending web crawlers.

CHAPTER 6. EXPERIMENTS AND RESULTS 66

6.2.3 Exercising Varying Values of p

If all crawlers within a cooperating crawling system are independently initialized
with a random value of p, then a number of interesting effects can be witnessed.
An example system consisting of 64 crawlers is shown in figure 6.7. The data was
obtained by running several simulation trials in which each of the N = 64 crawlers
was assigned a valid uniformly-generated random value for p. The mean uniform-
distribution is also displayed in figure 6.7 as an example of a “perfect” distribution

of values for p.

The law of averages states that all crawlers should assume a value of p such
that each successive pair of values is approximately equidistant from one another.
In fact, the perfect equidistant distribution crawling system is overlaid in figure 6.7
to show that this is occurring. Working with a system of N = 64 crawlers makes
some assumptions about the uniformity of the resulting data that will be discussed

below.

Figure 6.7 shows the interesting characteristic that in a 64-crawler system, the
freshness is at its best for crawlers that exhibit a p between 0 and 0.60, and it is at
its worst for a crawler that exhibits a p close to 1. However, as figure 6.3 shows,
if all crawlers in an N = 64 system take on a value of p close to 0, the average
freshness for a crawler is worse than that shown here. Overall, this graph aims to
illustrate the freshness that could be expected if a random value for p were assigned
to a crawler within a system of N = 64 crawlers, each of which is also assigned a

random value for p.

Curves can be generated for various N similar to that shown in figure 6.7. It
is the shape of the curve that is important to know such that we can discern the

size and breadth of the plateau section (if any) and how steep the curve increases

CHAPTER 6. EXPERIMENTS AND RESULTS 67

or decreases (figure 6.7 shows a steep decrease). We apply a least-squares line fit

to the data points for each of the curves generated for various V.

Figure 6.8 shows the result of applying a least-squares regression curve to each
of the crawling systems for N > 1. The slope (m) of the regression line y =
mx + b is plotted. The magnitude of the slope indicates how the type of value
for p that should be selected in order to attempt to maximize the freshness of the
system. Slopes that are positive indicate that values closer to 1.0 should be selected,
whereas negative slopes indicate that values closer to 0 should be selected. Relative
differences between the magnitudes are indicative of how close to an extremum
(p=0or p=1) from which to select: the higher the magnitude, the closer to the

extremum, the particular p should be.

One interesting feature of figure 6.8 is that when N = 512, the magnitude of
the slope is less than the magnitude for N = 256. Indeed, although not shown, it is
expected that as N — o0, the magnitude would approach 0 to indicate that when
a system is too large, there is no bias toward more polling or more merging. Any
value of p would achieve the same level of freshness — which is to say, a freshness

of about zero.

This analysis fits with previous findings showing that for smaller values of N, a
value of p favoring polling should be selected — indeed, for N = 2 a value of p close
to 1 should be selected which is suggested by the magnitude and direction of the
slope in figure 6.8.

6.2.4 Mirrors and Parasites

If you recall from section 4.1, a crawler can operate in one of six modes. When a

crawler acts as a mirror, it uses a value of p = 0, but in turns shares everything

CHAPTER 6. EXPERIMENTS AND RESULTS 68

Random p Assignments to 64 Cooperating Crawlers
0.6 T T T T T T T

T
random +
perfect ---x---

[}
[%]
o
c
ey
(%]
o
o
ey
Q
I
(8]
& A%
= e
: %
o 02 ++‘++_
%
or | i
k
A
1
O 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

Figure 6.7: System of 64 web crawlers. Each has an independent, randomly assigned
value of p. The equidistant distribution curve is overlaid as a comparison.

CHAPTER 6. EXPERIMENTS AND RESULTS 69

Regression line slopes as an indicator of selection of p
0.15 T T T T T T T T T

0.1

0.05

-0.05

-0.1

-0.15

Slope of Performance Curve

-0.2

-0.25

03 I I I I I I I I I
2 4 8 16 32 64 128 256 512

N (N = number of web crawlers) (log, scale)

Figure 6.8: Slopes of regression lines for systems of crawlers in which a random p
was assigned. The slope (m) is for a line y = max + b which fits to curves similar to
figure 6.7.

CHAPTER 6. EXPERIMENTS AND RESULTS 70

that it merges with any peer. It relies on others to do network polling. A parasite

is similar, but it does not share anything that it merges from others.

A system involving a total of N web crawlers was set up. Of those, N — 1
crawlers are regular cooperating web crawlers which use the same, fixed value of p.
The last crawler acts as a global mirror which merges from all of the N — 1 crawlers

and makes all of the shared data available to any other peer.

Figure 6.9 shows the results of comparing a mixed crawler environment for which
N = 32 (ie. there are 31 cooperating crawlers and 1 mirror) and a completely
cooperating environment (measured at p = 0.85). Figure 6.10 shows the same

except with a single parasite instead of a mirror.

Both figures are extremely similar. Theoretically, the cooperating crawlers in-
fluenced by a parasite should be impacted more than those cooperating crawlers
influenced by a mirror. However, with only one non-cooperative crawler in each

experiment, this difference cannot be seen.

The other notable feature of each figure is that the crawler operating with a
value of p = 0 consistently maintains a cache freshness as good as, or better than
its cooperating peers. When all of the cooperating crawlers have a p ~ 1, the
non-cooperative crawler’s cache freshness is at its best. This illustrates one of the
properties of being a single non-cooperative crawler in a cooperative environment:
a non-cooperative crawler’s cache freshness can never be worse than the average

cooperating peer.

Incentive to Crawl

Neither a mirror or a parasite poll. Hence, the above crawling systems have the

equivalent polling power of a system of N = 31 crawlers (each with p > 0). As

CHAPTER 6. EXPERIMENTS AND RESULTS 71

Behaviour of mirrors and cooperating crawlers (31 cooperating) (Contention)
1 T T T T T T T

T K T

Non-mirrors —+——
Mirrors ---x---

09 -

0.7 i ><>2%®<><><—
0.6 E

05 —

03

Average crawler cache freshness

0.2

01 F 4

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

Figure 6.9: An example system of crawlers with a single global mirror. The mirror
is consistently better than any of the cooperating crawlers for any p.

CHAPTER 6. EXPERIMENTS AND RESULTS 72

Behaviour of parasites and cooperating crawlers (31 cooperating) (contention)

1 T T T T T T T T R T
Non-parasites —+—
Parasites ---x---
09 r b
0.8 b

X
0.7 //’>Q<></>4><><>€><><_

0.6 —

04 F -

03

Average crawler cache freshness
o
(6]
T
1

0.2

01 F 4

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

Figure 6.10: An example system of crawlers with a single parasite. The parasite is
consistently better than any of the cooperating crawlers for any p.

CHAPTER 6. EXPERIMENTS AND RESULTS 73

shown in figure 6.6, increasing N (which increases the collective polling power) can
increase freshness of the average crawler up to a point. Therefore, a non-cooperating
crawler could achieve a greater degree of freshness if it contributed to the collective

polling power.

Two simulations were set up such that N — 1 cooperating crawlers running
with a fixed p = 0.85 were influenced by a single non-cooperating crawler (mir-
ror and parasite, respectively). It is expected that the performance of a single
non-cooperating crawler is inferior as compared to a pure cooperating crawler en-
vironment for small values of N. Similarly, it is expected that the performance of

a single non-cooperating crawler is superior when N is large enough.

Figure 6.11 plots the results of the experiment in which a single mirror is used.
The freshness of the mirror is compared to the freshness achieved by an average
cooperating peer being influenced by the single mirror. Similarly, figure 6.12 plots
the results when a single parasite is used. Accompanying each of the results is the
curve shown in figure 6.6 to show how a completely cooperating environment of N

crawlers would perform.

Again, both figures are extremely similar. The cooperating crawlers influenced
by a parasite should be impacted more than those cooperating crawlers influenced
by a mirror. With only one non-cooperative crawler in each experiment, this dif-

ference cannot be seen.

The expected behaviour is observed in both figures by the existence of a cross-
over point between the performance curve of a purely-cooperative system and
a system containing a single non-cooperative crawler. For smaller N, the non-
cooperating crawler does not contribute to the collective polling power which im-

pacts negatively on the freshness of the entire system. For larger NV, enough crawlers

CHAPTER 6. EXPERIMENTS AND RESULTS 74

Comparison of single mirror affecting cooperation vs. completely cooperating crawler systems

1
N cooperative crawlers —+—
N-1 cooperative crawlers influenced by 1 mirror ---%---
09 r _
0.8 [4

Crawler cache freshness

0 1 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 256 512
N (N = Total number of crawlers) (log, scale)

Figure 6.11: One global mirror operates within various-sized crawling systems.

exist to supply polling power. The cross-over point illustrates an over-abundance

of cooperating crawlers.

6.3 Dynamic Strategies

Figure 6.7 hints that in the absence of any other knowledge about the crawling
system, it may be useful for a single crawler to implement a value of p = 0 in order
to receive the largest number of web-events. Unfortunately, if all crawlers decide
on this strategy, then the freshness for an average crawler is worse-off than if all

crawlers had all settled on a particular non-zero value for p.

CHAPTER 6. EXPERIMENTS AND RESULTS

Comparison of single parasite affecting cooperation vs. completely cooperating crawler systems

75

1
N cooperative crawlers (p=0.85) —+—
1 parasite influenced by N-1 cooperative crawlers (p=0.85) ---%---
09 r i
08 i

Crawler cache freshness

0 1 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 256
N (N = total number of web crawlers) (log, scale)

Figure 6.12: One parasite operates within various-sized crawling systems.

512

CHAPTER 6. EXPERIMENTS AND RESULTS 76

6.3.1 Bang-bang Dynamic Systems

A bang-bang system is a simple method used in control systems to adjust parame-
ters dynamically in response to environmental conditions. We will allow crawlers to
dynamically change their value of p depending on how effective their current value
of p appears to be at maintaining their freshness. A crawler cannot measure their
own cache freshness directly; they can only measure the freshness of independent
web objects. To determine how effective it is doing, a crawler can use the following

heuristics to approximately measure it’s own performance:

e When a crawler polls, the number of times that it polls versus the number of
web-events received for polling indicates how effective polling is. This ratio
(call it p,) can never be greater than 1 because a crawler can only receive 0

or 1 web-events per poll.

e When a crawler merges, the number of times that it merges versus the number
of web-events received for merging indicates how effective merging is. This
ratio (call it m,) can be any number > 0 since a merge can result in several

web-events being transmitted per merge attempt.

The value of p should be high if p, > m, and low if the converse condition occurred.
The value of p must never be 1.0 or 0.0 since this would effectively ensure that m,
and p, (respectively) could never change to challenge the other. Also note that if
it takes a long time to perform a merge operation, then the next merge operation
will result in a large number of web-events being ready. Transmitting all of these
web-events takes time and resources. By the time they have been received by the
merging crawler, more web-events could have been detected. This can result in a

vicious circle in which m,. is high, but the overall freshness is still low.

CHAPTER 6.

EXPERIMENTS AND RESULTS

Analysis of bang-bang dynamicism within cooperating crawler systems

1

I I I I I Ban(j;-bang solutilon —+

Max-possible optimum ---x---
09 Baseline ---*--- -
0.8 [_
0.7 LR . _

e \\X\\
06 e]
“x.

05 [_

Average crawler cache freshness

7

0.2%-------eon W e Koo *. -

0.1 - T -

0]]]]] R Koo 4
2 4 8 16 32 64 128 256 512

N (N = number of web crawlers) (log, scale)

Figure 6.13: Simulations for various selected values of N, in which crawlers use the
bang-bang model to adjust p. This model is compared to the baseline as well as
the optimal freshness seen when using the fixed-p strategy.

In order to reduce the effects that past decisions made using this scheme have

on the present, a dampener factor is applied to p, and m,. We only look at the

previous 30% when making a decision about the present. No parameter studies were

performed to determine how changing the dampener factor affected the freshness.

Figure 6.13 shows a series of simulations run for selected values of N. Each

crawler in the system is using the bang-bang model for dynamically adjusting p.

In this case, low is p = 0.10 and high is p = 0.90. A binary change from one to the

other is performed: no other values of p is permissible.

CHAPTER 6. EXPERIMENTS AND RESULTS 78

Figure 6.13 shows the results of running a series of simulations for a specific
set of N crawlers using the bang-bang dynamic strategy. In this figure, two other
lines are present: the line labelled “max-possible optimum” represents the system
of crawlers in which p has been set to a fixed constant for all crawlers in the N-
crawler system (equivalent to the optimum observed in, for example, figure 6.3).

The plain line is the baseline from figure 6.1.

It is interesting to note that this dynamic strategy produces a crawler cache
freshness that is better than the baseline (figure 6.1) for all values of N. However,
the difference between the freshness produced using this scheme is quite less than
the maximum possible value achievable when p is fixed for small-to-mid values of
N. Only for large values of N is the dynamic system better than the maximum
possible freshness achievable when p is fixed. Note that this does not imply that a
fixed-p strategy is the optimal strategy.

Equally interesting is that the bars are at an approximately constant height.
This means that the bang-bang solution was successful in modifying p to account

for the size of N.

Table 6.1 shows the percentage of time that an average crawler in a system of
N crawlers spent in the low-p position (p = 0.10), and how much time it spent in

the high-p position (p = 0.90).

It is clear in table 6.1 that the system is adjusting the amount of time spent in
the high and low modes as a function of the number of crawlers in the system. These
results support the previous findings that when N is small, a high p should be used,
and when p is medium-large, a lower p should be employed. The interesting result
is when N is very large: we see that p-high has started to increase for N > 256. It

is expected that when N — oo it is no longer an issue to determine which value

CHAPTER 6. EXPERIMENTS AND RESULTS 79

‘ N ‘ p-low ‘ p-high ‘
2 10.362 | 0.638
4 1 0.572 | 0.428
8 10.707 | 0.293
16 | 0.780 | 0.220
32 | 0.805 | 0.195
64 | 0.808 | 0.192
128 | 0.816 | 0.184
256 | 0.782 | 0.219
512 | 0.628 | 0.373

Table 6.1: Percentage of time an average crawler in the bang-bang dynamic strategy
spends in p-low mode (p = 0.10) and p-high mode (p = 0.90).

of p is more beneficial than another. Because of the sheer number of crawlers, any
value of p will result in the same freshness performance — namely that freshness
will approach zero. It is expected that if we continue to increase N, table 6.1 would

show p-low=p-high=0.5.

Chapter 7

Conclusions and Future Work

7.1 Conclusions about Cooperative Behaviour

With the size of the web increasing at a dizzying rate, web crawlers are being more
and more challenged to discover and maintain web objects, especially on behalf of
web search engines. Currently, web search engines relying on web crawlers to keep
their indices up-to-date are falling behind. Certain techniques can ensure that the

most popular material is kept up-to-date, but that is limiting.

This thesis presented a general protocol to allow competing web crawlers to
share information among peers to their mutual benefit. Crawlers can choose to
merge shared data from competing peers if it helps them to maintain a fresher
database at a lesser cost than directly polling web objects on the web. However,
merging can become as prohibitive if not carefully controlled. Hence, it is shown in
theory and simulation that web crawlers must strike a balance between polling and

merging to obtain a degree of freshness which can exceed current-day behaviour.

A number of simulations were devised to show the behaviour of combining

80

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 81

polling and merging within a system of crawlers. All crawlers were based on a
simple algorithm in which the key lay in the ability to switch between polling and

merging via a parameter p.

Simulations in which the value of p was fixed at a particular value for all crawlers
within a system show that an optimum can be reached which always results in an
average crawler cache freshness better than the baseline. The value of p that can be
used to obtain such performance changes as a function of N. When N is small, p
should favour more polling than merging; when N increases p can decrease toward
0. When N is too large — that is, when there is an overabundance of crawlers in

the system, any value of p seems to work just as well as any other.

Changing the behaviour of single cooperating web crawlers to function in non-
cooperative, merge-only modes serve to illustrate the property of incentive-to-crawl.
A non-cooperating web crawler could conceivably perform better if it was acting in
a mutually cooperative manner for small values of N. Larger values of N showed

that a non-cooperative crawler would gain no benefit from actively polling the web.

Finally, a simulation was built using crawlers that could dynamically change
their individual values of p. The results indicate that a very simple bang-bang
technique can produce better freshness results for a crawler using the strategy as
compared to the baseline model, though other non-dynamic strategies are superior.
However, the ability to change p means that no pre-defined value need exist, which
can reduce the complexity in attempting to search p based on the size of a com-
munity of crawlers. Furthermore, if the number of crawlers can change (which is
a realistic scenario), a specific value of p at some time ¢; may be unsuitable for a

community at time ;.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 82

7.2 Application to the Real World

7.2.1 Implementation Issues

The protocol outlined by Ho[24] uses a communication interface module that can
be plugged into a web crawler. Two flat files (webrobots.shr and webrobots.dat)
provide all of the information necessary to share information among crawlers (the
former is the list of web crawlers known to the local crawler, and the latter is the
data to be shared). A crawler supporting the protocol generates and maintains
these files. Visiting robots use HTTP natively to retrieve the contents of the files.

Unfortunately, a number of issues go unaddressed.

Computationally, flat files are expensive to manage when existing data needs to
be updated rather than appended. Ho recognizes this, and indicates that although
the webrobots. shr file will remain fairly small (since there are only a small number
of robots on the web), the webrobots.dat file will grow to an impractical size.
Two alternatives to using flat files are to use an indexed file scheme, or a more

sophisticated database engine.

Storing information to be shared in a database is the most flexible solution of
all, but is potentially the most computationally expensive solution. Downloading
needless data can be reduced to nil through the use of query languages and filtering

techniques.

Server Locating

Locating a web crawler that implements the cooperation protocol presents a circular
problem. How does one locate a web crawler on a distributed network that, in itself,

can not function without published hyperlinks contained within HTML web pages?

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 83

Essentially, the problem is reduced to an accepted means to publishing references
to web crawlers in some well-known form (URLs?) in well-known locations (specific

web servers? specific communication ports? specific web pages?).

One example of detecting web crawlers requires assistance by web servers. Web
crawlers can be detected by their activities on web servers. The action of down-
loading robots.txt usually indicates the presence of a web crawler. The IP and
name could be saved by the web server and stored in a file called robots.dat,
which could be scanned and merged by any crawling robot to build up a database

of potential cooperating crawlers.

7.2.2 Security Concerns

The act of updating the /robots.shr file or any shared web-event data file causes
a web-event to be generated for that specific file. This can easily generate an
infinite loop if two (or more) web crawlers are polling each other’s shared web-
event data files. To avoid such aberrant behaviour, it is desirable to either limit the
number of times each URL can generate an event in a given period or simply avoid
recording events pertaining to shared data files. Protection of the share-repository

via /robots.txt is the prudent thing to do.

The other concern is that up to this point, all data has been assumed to be
correct. Unfortunately, malicious web clients adhering to the protocol may prac-
tice cache poisoning. Cache poisoning can occur when malformed, misleading, or
incorrect web-event data is shared by crawler S and added to the collection of data
possessed by crawler M. Crawler M could, in turn, distribute this poisoned data to
other peers. Decisions to merge or crawl based on previously merged data (which

could be tainted) should be avoided. Trust-networks[1l] could be used to provide

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 84

web crawler community feedback regarding the quality of data shared by specific

peers.

7.3 Future Work

Three major avenues for future expansion and exploration can be identified.

7.3.1 More dynamic systems

One of the more interesting, but unanswered questions raised by this work deals
with how web crawlers can dynamically alter their strategies to increase their own
personal cache freshness. As alluded to in earlier chapters, autonomous behaviour
does not necessarily imply non-cooperative behaviour. Indeed, this is shown in
some of the results of experiments in the previous chapter. Ho[24] showed that
self-interested web crawlers can mutually benefit from web-event data sharing; im-

plementing Ho’s biological fitness model is an avenue left to be explored.

Additional dynamic strategies could be examined with respect to how they
can exploit the relationships and trends discovered by the analysis presented in

Chapter 6. Some interesting examples include:

e A crawler could modify its own p depending on the number of crawlers per-

ceived in the system.

e A share/merge ratio system could be employed to enforce cooperation. Crawlers
violating the ratio system would be forced to poll (ie. they would have to ad-

just their p to favour polling), rather than be allowed to merge.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 85

e Similar to the bang-bang model, crawlers could adjust their p depending on
the number of important web-events detected. Although importance is a
qualitative judgment, one could assume that CREATE web-events are slightly
more interesting and hence more important than UPDATE events. DELETE
events would not be very interesting since no further events could come from

a deleted web object.

e Crawlers could advertise their value of p to peers. A crawler would use the set
of advertisements to adjust it’s own value of p in an attempt to optimize. Very
little work was done on the behaviour of crawling systems with varied values
of p. Figure 6.7 represents the behaviour when p is randomly-distributed

among all crawlers in the system.

7.3.2 Real-world Study

It would be useful to actually run a real-world study. A series of web crawlers
implementing the web-event data sharing algorithm 4.1 could validate the trends

seen in the simulations.

7.3.3 Ubiquitous Sources of Web-event Data

It would be interesting to use sources other than web crawlers to collect web-events.
Any web client could be a candidate: this includes web crawlers (by design), web

caches, proxies, and even web users.

A subset of web-users providing web-event data could provide magnitudes more

timely event-detection, since there are many more web users than web crawlers. It

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 86

should be noted that collection of data from users poses potential security hazards

and ethical treatments which are beyond the scope of this work.

Providing web-event dissemination services with other sources (web servers,
proxy servers, etc.) could be realized through development of an Apache! web
server module. This could be used to provide the services described by Brand-

man et al [5]and Gupta et al [20].

Thttp://www.apache.org/

Bibliography

1]

Alfarez Abdul-Rahman and Stephen Hailes. A Distributed Trust Model.
In Proceedings of the 1997 New Security Paradigms Workshop, pages 48-60,
September 1997.

T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hy-
pertext Transfer Protocol - HTTP/1.0, May 1996. Available at
http://www.faqgs.org/rfcs/rfc1945.html.

Krishna Bharat and Andrei Broder. A Technique for Measuring the Relative
Size and Overlap of Public Web Search Engines. In Proceedings of the 7th In-
ternational World Wide Web Conference, pages 379-388, Brisbane, Australia,
April 1998.

C. Mic Bowman, Peter Danzig, Darren Hardy, Udi Manber, Michael Schwartz,
and Duane Wessels. Harvest: A Scalable, Customizable Discovery and Access
System. Technical Report CU-CS-732-94, Department of Computer Science,
University of Colorado, Boulder, March 1995.

O. Brandman, J. Cho, H. Garcia-Molina, and N. Shivakumar. Crawler-Friendly
Web Servers. In Workshop on Performance and Architecture of Web Servers

(PAWS), June 2000.

87

BIBLIOGRAPHY 38

[6]

[10]

[11]

[13]

Brian E. Brewington and George Cybenko. How dynamic is the Web?
WWW9/Computer Networks, 33(1-6):257-276, 2000.

Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual
Web Search Engine. Computer Networks and ISDN Systems, 30(1-7):107-117,
1998.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design of
a Scalable Event Notification Service: Interface and Architecture. Technical
Report CU-CS-863-98, University of Colorado at Boulder, Colorado, USA,
September 1998. Available at http://www.cs.colorado.edu/~carzanig/
papers/CU-CS-863-98.ps.gz.

James R. Chen, Nathalie Mathe, and Shawn Wolfe. Collaborative Information
Agents on the World Wide Web. In ACM DL, pages 279280, 1998.

Junghoo Cho and Hector Garcia-Molina. Estimating Fre-
quency of Change. Technical Report ID-135, Standford Uni-
versity, Stanford, CA USA, November 2000. Available at

http://www-db.stanford.edu/pub/papers/cho-freq.ps.

Junghoo Cho and Hector Garcia-Molina. Synchronizing a Database to Improve
Freshness. In Proceedings of 2000 ACM SIGMOD International Conference on
Management of Data, pages 117-128, Dallas, Texas, USA, May 2000.

Junghoo Cho and Hector Garcia-Molina. The Evolution of the Web and Im-
plications for an Incremental Crawler. In Proceedings of 26th International

Conference on Very Large Databases (VLDB), pages 200-209, September 2000.

Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient Crawling

BIBLIOGRAPHY 89

[16]

[17]

[18]

Through URL Ordering. Computer Networks and ISDN Systems, 30(1-7):161—
172, 1998.

Chaisen Chung. Topic-Oriented Collaborative Web Crawling. Master’s thesis,
University of Waterloo, Waterloo, Ontatio, Canada, 2002.

J. Cohen and S. Aggarval. General Event Notification Architecture Base,
July 1998. Available at http://www.alternic.org/drafts/drafts-c-d/

draft-cohen-gena-p-base-01.txt.

Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey C.
Mogul. Rate of Change and Other Metrics: A Live Study of the World Wide
Web. In USENIX Symposium on Internet Technologies and Systems, December
1997.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol - HTTP /1.1, June
1999. Available at http://www.faqs.org/rfcs/rfc2616.html.

Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. RFC 2518:
HTTP Extensions for Distributed Authoring - WEBDAV, February 1999.
Available at http://www.faqs.org/rfcs/rfc2518 . html.

Amy R. Greenwald and Jeffrey O. Kephart. Shopbots and Pricebots. In Agent
Mediated Electronic Commerce (IJCAI Workshop), pages 1-23, 1999.

Vijay Gupta and Roy H. Campbell. Internet Search Engine Freshness by Web
Server Help. In Symposium on Applications and the Internet, pages 113-119,
2001.

BIBLIOGRAPHY 90

[21]

[22]

[23]

[24]

[25]

[26]

Manfred Hauswirth and Mehdi Jazayeri. A Component and Communication
Model for Push Systems. In Proceedings of the Seventh European Engineer-
ing Conference held jointly with the Seventh ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 20-38, Toulouse, France, Septem-

ber 1999.

Allan Heydon and Marc Najork. Mercator: A Scalable, Extensible Web
Crawler. World Wide Web, 2(4):219-229, 1999.

Annika Hinze and Daniel Faensen. A Unified Model of Internet Scale Alerting
Services. In Proceedings of the International Computer Science Conference

(ICSC), pages 284-293, 1999.

Kinson Ho. WatEAer: An Effective and Efficient Web Notification Protocol.
Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 1999.

Brian Kantor and Phil Lapsley. RFC 977: Network News Transfer Protocol,
February 1986. Available at http://www.faqgs.org/rfcs/rfc977 . html.

M. Koster. Aliweb - Archie-Like Indexing in the Web. In Proceedings of the
First International World Wide Web Conference, pages 175-182, Amsterdam,
March 1994.

Martijn Koster. Robots Exclusion Standard. Available at

http://www.robotstxt.org/.

Steve Lawrence and C. Lee Giles. Accessibilty of Information on the Web.

Nature, 400:107-109, July 1999.

Michael L. Mauldin. Lycos: Design choices in an Internet search service. IEEFE

FEzpert, (January-February):8-11, 1997.

BIBLIOGRAPHY 91

[30]

[34]

[35]

[36]

[37]

Robert Miller and Krishna Bharat. SPHINX: A Framework for Creating Per-
sonal, Site-Specific Web Crawlers. In Proceedings of the Seventh International
World Wide Web Conference, Brisbane, Australia, April 1998.

A. Moukas. Amalthaea: Information Discovery and Filtering using a Multia-

gent Evolving Ecosystem. London, 1996.

Brian H. Murray and Alvin Moore. Sizing the Internet. White paper, Cyveil-
lance, July 2000. Available at http://www.cyveillance.com/.

R. Nielsen, P. Leach, and S. Lawrence. RFC 2774: An
HTTP Extension Framework, February 2000. Available at
http://www.faqgs.org/rfcs/rfc2774 . html.

Surendra Reddy and Mark Fisher. Event Notification Proto-
col - ENP. WEBDAV Working Group Internet Draft, June
1998. Available at http://alternic.net/drafts/drafts-r-s/

draft-reddy-enp-protocol-00.html.

David S. Rosenblum and Alexander L. Wolf. A Design Framework for Internet-
Scale Event Observation and Notification. In Proceedings of the Sizth Euro-
pean Software Engineering Conference/ACM SIGSOFT Fifth Symposium on
the Foundations of Software Engineering, pages 344-360, Zurich, Switzerland,
September 1997.

J. Slein, F. Vitali, E. Whitehead, and D. Durand. RFC 2291: Requirements
for a Distributed Authoring and Versioning Protocol for the World Wide Web,
February 1998. Available at http://www.faqgs.org/rfcs/rfc2291.html.

Aarno Lehtola Tuula Kapyla, Isto Niemi. Towards an Accessible Web by
Applying PUSH Technology. In C. Stephanidis and A. Waern, editors, 4th

BIBLIOGRAPHY 92

[39]

[40]

ERCIM Workshop on ”User Interfaces for All”, Stockholm, Sweden, October
1998.

J.L. Wolf, M.S. Squillante, P.S. Yu, J. Sethuraman, and L. Ozsen. Optimal
Crawling Strategies for Web Search Engines. In World-Wide Web 2002, Hon-
olulu, Hawaii, USA, May 2002.

Hayato Yamana, Kent Tamura, Hiroyuki Kawano, Satoshi Kamei, Masanori
Harada, Hideki Nishimura, Isao Asai, Hiroyuki Kusumoto, Yoichi Shinoda,
and Yoichi Muraoka. Experiments of Collecting WWW Information Using
Distributed WWW Robots. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 379 — 380, Melbourne, Australia, August 1998.

Haobo Yu, Deborah Estrin, and Ramesh Govindan. A Hierarchical Proxy
Architecture for Internet-scale Event Services. In IEEE FEighth International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-

prises (WETICE), Palo Alto, CA, June 1999. IEEE.

