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Abstract

Underwater vehicles that use differential thrust for surge and yaw motion control have the

advantage of increased maneuverability. Unfortunately, such vehicles usually don’t have

thrusters/actuators to control the lateral movements. Hence, they fall into the underactu-

ated vehicle category.

The goal of the work in this thesis is to develop an autonomous control system for a

differential thrust underwater remotely operated vehicle (ROV) to track predefined position

trajectories. This is challenging because the mathematical model for underwater vehicles is

highly nonlinear and the environmental disturbances are usually strong and unpredictable.

These factors make the design of the control system very difficult.

In this work, we use the VideoRay Pro III micro ROV as the test platform, on which

we design an autonomous control system. We first present the development and analysis

of a hydrodynamic model of the VideoRay Pro III using both analytical and experimental

approaches. Based on this model, a state estimator is then designed using the unscented

Kalman filter, which yields better estimates of the system states and their uncertainty level

in a highly nonlinear system than the commonly used extended Kalman filter. In the con-

troller design, the integrator backstepping technique is used to achieve a Lyapunov stable

trajectory tracking controller based on the work by A. P. Aguiar et al. [2]. We extended

their work by further considering the quadratic drag terms in the vehicle’s hydrodynamic

model. The sliding mode control is used to design the bearing and depth controller.

Finally, the autonomous control system is validated by simulation and experimental

tests. It is shown that the VideoRay Pro III is able to track the predefined trajectory

within error range of 0.5 meters.
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Chapter 1

Introduction

Remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have

been applied in a wide variety of areas. Recently, there has been a trend to use smaller au-

tonomous underwater vehicles, both tethered and untethered, in rivers, lakes and oceans.

The potential uses for AUVs include: scientific (oceanography, geology, geophysics, ...),

environmental (waste disposal monitoring, wetland surveillance, ...), commercial (oil and

gas, submerged cables, harbours, ...), military (minehunting, tactical information gather-

ing, smart weapons, ...) and other applications where their endurance, economy and saftey

can replace divers.

During a mission, an AUV is expected to carry sensors, such as scanning sonar,

bathymetry, bottom profiler, etc., track a certain planned trajectory, and even make on-line

decisions allowing for mission reconfiguration.

Currently, there are many AUVs being deployed for research purposes and even for

carrying out missions. For example, the SeaBED AUV is built by the Woods Hole Oceano-

graphic Institute (WHOI) for geologic and benthic-habitat studies of the sea floor. The

SeaBED AUV is constructed of two horizontal cylinders configured one above the other,

connected by struts. It is designed to precisely navigate survey tracks at altitudes as low

as 2.5 m above the sea floor. Another example is the Phoenix AUV and ARIES AUV de-

veloped by Naval Postgraduate School, for studies relating to the design of control system,

navigational accuracy, mission planning, etc. These two AUVs are shown in Figure 1.1.

Ultimately, AUVs like SeaBED or ARIES may be left entirely unattended awaiting

1



Introduction 2

ocean events or conducting repeated surveys.

(a) SeaBED AUV (courtesy of WHOI) (b) ARIES AUV (courtesy of NPS)

Figure 1.1: (a) SeaBED (b) ARIES

AUVs like SeaBED usually use differential thrust to control their motion, especially in

the horizontal plane. Compared to using one propulsion thrust and several hydro surfaces

such as fins and rudder, differential thrust from propellers provide more advantanges in

terms of maneuveribility1. For instance, AUVs with differential thrust are able to turn with

smaller radius, and even turn on spot without having to have a certain forward moving

speed.

In this work, an autonomous control system of a differential thrust AUV will be diss-

cussed. The control system will be verified and validated by computer simulations, and

field tests using a VideoRay Pro III ROV.

1.1 Autonomous Control for VideoRay Pro III ROV

Among many requirements that make an AUV autonomous, is the ability to track a pred-

ifined trajectory, which might be parameterized with time. There has been a great deal

of research on trajectory tracking problem for land vehicles, using various positioning sys-

tems, such as GPS, for navigation. Although much success has been achieved for the land

1maneuverability can be defined as the capability of the vehicle to carry out specific maneuvers [9]
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vehicles trajectory tracking, it is still a problem for underwater vehicles. In the underwater

world, vehicle positioning is much more difficult because several issues must be addressed

including positioning accuracy, bandwidth, and possible time delay for underwater com-

munication.

In this work, we develop a control system for an AUV to track a predefined trajectory

using an underwater acoustic positioning system. With the ability to track trajectories,

the AUV will be able to carry out missions on its own without human intervention. One

of the possible missions, for example, would be deep sea survey consisting of a descent

to a predetermined position on the sea floor followed by the execution of a series of lawn

mower-like tracklines above the sea floor, and finally an ascent back to the surface ship for

recovery.

The vehicle used in this research is a VideoRay Pro III micro ROV. It is a system

designed for intensive, underwater operations. It has an open architecture that accommo-

dates a wide variety of tools and sensors. The VideoRay Pro III system consists of a control

console, a submersible robot and a tether deploying mechanism. The control console has

a video display, joystick controls for horizontal and vertical movement, and a computer

control interface. The submersible robot has two horizontal thrusters and one vertical

thruster for its motion control, a pressure sensor for measuring depth, and a compass for

measuring orientation. It also has an accessory connector allowing for field integration of

various instruments and sensors, as shown in Figure 1.2.

Figure 1.2: VideoRay Pro 3 system



Introduction 4

The Pilot tracking system from Desert Star systems was used for the underwater posi-

tioning system. The Pilot tracking system uses short base line (SBL) technology to track

small ROVs. The system consists of a control console connected to a PC running DiveTerm

software, and three cabled sonar transducers. The sonar transducers are lowered over the

side of the surface vessel or dock. The best tracking performance of this acoustic position-

ing system is a nominal of ±0.15 m RMS. The accuracy of the target position depends on

the distance between the surface station transducers and the distance between the target

and the transducers. The Pilot tracking system is shown in Figure 1.3.

Figure 1.3: Pilot acoustic positioning system.

To allow the robot to track a predefined trajectory, an autonomous control system was

developed, the structure of which is shown in Figure 1.4. In this system block digram, we

have an input trajectory which could be generated by some high level mission planning

algorithm, a controller that outputs desired control parameters such as surge force and

yaw torque to drive the vehicle to follow the trajectory, a sensor system consisting of an

underwater positioning system and compass, and an observer/estimator providing full state

estimation including position and velocity information for the controller. Note that for the

observer/estimator to generate accurate state estimation, an accurate dynamic model of

the VideoRay Pro III is required.
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C o n t r o l l e r

O b s e r v e r /E s t i m a t o r S e n s o rS y s t e m

V i d e o R a yP r o I I IT r a j e c t o r yR e f e r e n c e +

+

m e a s u r e m e n tn o i s e
p r o c e s sn o i s e

C o n t r o l S y s t e m P h y s i c a l S y s t e m
Figure 1.4: Autonomous control system configuration

1.2 Organization of this Work

Chapter 2 is devoted to the development of a six-degree of freedom vehicle dynamical

model. The model developed is based on theoretical and existing empirical hydrodynamic

work. It is expected that the parameters for the model will require tuning because the

influence of the tether is not considered in the model. Our focus here is on the model

structure.

In Chapter 3, the state observer (or estimator) is discussed. A state observer is crucial

to the realization of this autonomous system. For the controller to work properly, full

state feedback including the vehicle’s position and velocity is required. However, only

the position information could be obtained with the Pilot acoustic positioning system

and the compass. The observer uses model-based predicted states, and fuses them with

the acoustic positioning system observations and the compass heading observations. This

results in a full state estimation. The well known observer/estimator for state estimation

is the Kalman filter, which works quite well in linear systems. Since underwater vehicles

exhibit high nonlinearity in their models, the Kalman filter, even the extended Kalman
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filter, will not work well in this situation. Therefore, the unscented Kalman filter (UKF)

will be used to solve this problem.

In Chapter 4, the analysis and development of a tracking controller for the horizontal

plane trajectory tracking is discussed. The use of sliding mode control for depth and

bearing control is also presented

In Chapter 5, simulation results of the vehicle following a circular trajectory are pre-

sented using the full non-linear six-degree of freedom model. The experimental results of

the vehicle following a straight line trajectory are also presented and discussed for evalu-

ating the tracking performance.

Finally, this work is concluded by considering the limitations of the trajectory tracking

controller and suggesting directions for future work.



Chapter 2

Modeling of VideoRay Pro III

2.1 Introduction

An accurate dynamic model is required for autonomous control of an underwater vehicle.

Accurate dynamic models are crucial to the realization of precision autopilots, AUV sim-

ulators and for prediction of performance [28, 31]. However, the modeling and control of

underwater vehicles is difficult. The governing dynamics of underwater vehicles are fairly

well understood, but they are difficult to handle for practical design and control purposes

[23, 5]. The problem includes many nonlinearities and modeling uncertainties. These hy-

drodynamic and inertial nonlinearities are present due to coupling between the degrees

of freedom [9]. For example, currents usually exist in the underwater environment which

become coupled with the direction of motion. The presence of these non-linear dynamics

requires the use of a numerical technique to determine the vehicle response to thruster

inputs and external disturbances over the wide range of operating conditions.

In general, modeling techniques tend to fall into two categories [10]:

1. Predictive methods based on either Computational Fluid Dynamics or strip theory,

and

2. Experimental techniques.

The predictive methods calculate the vehicle’s dynamic motion parameters from the

vehicle’s design. It has the advantages of low cost, being easy to implement, and being

7



Modeling of VideoRay Pro III 8

able to carry out even before the vehicle has been built, but it has the disadvantage of less

accuracy.

In contrast, experimental techniques are usually carried out by using towing tank testing

and more recently by system identification methods, and have the advatange of being more

accurate. They are usually more costly as well.

Figure 2.1: VideoRay Pro III

These two techniques will be used to build a hydrodynamic model for the VideoRay

Pro III ROV. The VideoRay Pro III is a small inspection-class micro ROV, with hundreds

of units in operation around the world (see Figure 2.1). It is designed for underwater

exploration at maximum depth of 500 feet (152 meters). The basic system includes the

submersible itself, an integrated control box, a tether deployment system, and a tool kit.

The vehicle is neutrally buoyant and hydrostatically stable in the water due to its weight



Modeling of VideoRay Pro III 9

distribution. It is equipped with a system of sensors including front facing and rear fac-

ing cameras, depth gauge and compass. The vehicle has three control thrusters, two for

horizontal movements and one for vertical movements.

The vehicle is considered as a 6 degrees of freedom (DOF) free body in space, namely

surge, sway, heave, pitch, roll and yaw motions. The control of the vehicle is only available

in the surge, heave, and yaw motion. Equal and differential thrust from the horizontal

thrusters provide control in surge motion and yaw motion respectively. The heave motion is

controlled by the vertical thruster. Therefore, the VideoRay Pro III falls into the category

of underactuated vehicles because the dimension of the control vector is less than the

degrees of freedom.

In this chapter, a dynamic model of the VideoRay Pro III micro ROV is presented, using

both strip theory and/or experimental techniques. In determining the model parameters, a

series of experiments were performed and a system identification method is used. Finally,

a decoupled dynamical model of the vehicle is described to faciliate the design of trajectory

tracking controllers.

2.2 Vehicle Dynamics

2.2.1 6-DOF Reference Frames

For marine vehicles, the 6 degrees of freedom are conventionally defined as surge, sway,

heave, roll, pitch and yaw. Two reference frames are used to describe the vehicle states,

one being the inertial frame (or earth-fixed frame), and the other being the local body-fixed

frame with its origin coincident with the vehicle’s center of mass and the three axes in the

vehicle’s surge, sway and heave directions. (see Figure 2.2)

2.2.2 Kinematics

The motion of the vehicle in 6 degree of freedom, surge, sway, heave, roll, pitch and yaw,

are described by the following vectors [9]:

η1 = [x, y, z]T : position in inertial frame;
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0

O

O

Inertial Frame

Body−fixed FrameYaw
r, N

Roll
p, K

Surge
x  , u, X0

Heave
z  , w, Z0

Sway
y  , v, Y0

Pitch
q, M

z

xy

θ

ψ φ

Figure 2.2: Body-fixed and inertial reference frames

η2 = [φ, θ, ψ]T : orientation (Bryant angles) describing the relation from the inertial

frame to the body-fixed frame;

η = [ηT
1 , η

T
2 ]T : position and orientation in inertial frame;

ν1 = [u, v, w]T : translational velocities in body-fixed frame;

ν2 = [p, q, r]T : rotational velocities in body-fixed frame;

ν = [νT
1 , ν

T
2 ]T : translational and rotational velocities in body-fixed frame;

τ1 = [X, Y, Z]T : forces acting on the vehicle in body-fixed frame.

τ2 = [K, M, N ]T : moments acting on the vehicle in body-fixed frame.

τ = [τT
1 , τ

T
2 ]T : forces and moments acting on the vehicle in body-fixed frame.

The translational velocity of the vehicle expressed in the body-fixed frame is expressed

as translational velocity in the inertial frame through the following transformation [9]

η̇1 = J1(η2)ν1, (2.1)
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where

J1(η2) =







cosψ cos θ − cosψ + cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ

sinψ cos θ cosψ cosφ+ sinψ sin θ sin φ − cosψ sin φ+ sinψ sin θ cosφ

− sin θ cos θ sinφ cos θ cosφ







The rotational velocity of the vehicle expressed in the body-fixed frame is expressed as

rotational velocity in the inertial frame through the following transformation [9]

η̇2 = J2(η2)ν2, (2.2)

where

J2(η2) =







1 sin φ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ







Note that J2 above is singular for pitch angle θ = ±90◦, where the inverse transformation

does not exist. However, the VideoRay Pro III is unlikely to pitch near ±90◦ due to the

weight distribution. For this reason we choose to define the transformation matrices J1

and J2 in terms of the familiar and widely used Bryant angles.

2.2.3 Rigid Body Dynamics

The translational and rotational motion of a general rigid body with six degrees of freedom

is formulated as follows [9]:

m (̊v0 + ω × v0 + ω̊ × rG + ω × (ω × rG)) = f0 (2.3)

I0ω̊ + ω × (I0ω) +mrG × (̊v0 + ω × v0) = m0 (2.4)

where

I0 denotes the inertia tensor defined at the origin of the body-fixed frame,

rG = [xG, yG, zG]T is the vector from the frame origin to the center of gravity.

ω denotes the rotation velocity vector,

v is the translational velocity vector,
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m is the rigid body mass,

f0 constitutes the force vector acting on the vehicle,

m0 constitutes the moments vector acting on the vehicle

v̊0 denotes the time derivative of velocity vector in the body-fixed reference frame.

ω̊ denotes the time derivative of rotational velocity vector in the body-fixed

reference frame.

According to the notation defined in Section 2.2.2, applying substitution of τ1 = f0, τ2 =

m0, ν1 as the translational velocity vector and ν2 as the rotational velocity vector to these

equations yields

m[u̇− vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = X (2.5)

m[v̇ − wp+ ur − yG(r2 + p2) + zG(qr − ṗ) + xG(qp+ ṙ)] = Y (2.6)

m[ẇ − uq + vp− zG(p2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = Z (2.7)

Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+m[yG(ẇ − uq + vp) − zG(v̇ − wp+ ur)] = K (2.8)

Iy q̇ + (Ix − Iz)rp− (ṗ+ qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz

+m[zG(u̇− vr + wq) − xG(ẇ − uq + vp)] = M (2.9)

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx

+m[xG(v̇ − wp+ ur) − yG(u̇− vr + wq)] = N (2.10)

Since the body-fixed frame is chosen to be coincident with the three principal axes of

the VideoRay Pro III, we have Ixz = Iyz = Ixy = 0. Now, the rigid body dynamics of the

vehicle can be expressed in matrix form as

MRB ν̇ + CRB(ν)ν = τRB (2.11)
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where

MRB =





















m 0 0 0 mzG −myG

0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ixx 0 0

mzG 0 −mxG 0 Iyy 0

−myG mxG 0 0 0 Izz





















(2.12)

CRB =





















0 0 0

0 0 0

0 0 0

−m(yGq + zGr) m(yGp+ w) m(zGp− v)

m(xGq − w) −m(zGr + xGp) −m(zGq + u)

m(xGr + v) m(yGr − u) −m(xGp+ yGq)

m(yGq + zGr) −m(xGp− w) −m(xGr + v)

−m(xGq + w) m(zGr + xGp) −m(yGr − u)

−m(xGr − v) −m(zGq + u) m(xGp+ yGq)

0 Izzq −Iyyp

−Izzq 0 Ixxp

Iyyq −Ixxp 0





















(2.13)

2.2.4 Hydrodynamics - Equations of Motion

The external forces and moments acting on an underwater vehicle can be classified as:

• added mass due to the inertia of the surrounding fluid,

• hydrodynamic damping due to effects like skin friction, vortex shedding, and energy

carried away by generated surface waves,

• restoring forces due to the vehicle’s weight and buoyancy,

• currents

• thruster/propeller forces
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• control surface/rudder forces

The added mass is a concept of pressure-induced forces and moments due to a forced

harmonic motion of the body, which are proportional to the acceleration of the body [9].

Therefore, the added mass forces and the acceleration will be 180 degrees out of phase to

the forced harmonic motion:

−MAν̇ − CA(ν)ν

The hydrodynamic damping forces usually consist of linear and quadratic damping

terms. These are in the opposite direction to the vehicle’s velocity and can be expressed

as a sum of these two terms:

−Dlin.(ν)ν −Dquad.(ν)ν

Restoring forces, sometimes also called hydrostatic forces, consist of gravity force and

buoyancy force. These are functions of the vehicle’s position and are denoted as g(η). The

propulsion forces and moments are the control effects acting on the vehicle, denoted as τ .

In basic hydrodynamics, it is common to assume that the hydrodynamic forces and

moments on a rigid body can be linearly superposed [8]. Hence, the external forces and

moments acting on the vehicle can be expressed as:

τRB = τH + τE + τ = −MAν̇ − CA(ν)ν − Dlin.(ν)ν −Dquad.(ν)ν + τE + τ − g(η) (2.14)

In order to simplify this model, currents will be neglected, i.e., τE = 0.

Based on this assumption, the mathematical model of an underwater vehicle can be

expressed, with respect to a local body-fixed reference frame, by the nonlinear equations

of motion in matrix form [9]:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (2.15)

η̇ = J(η)ν (2.16)

where:

M = MRB + MA,

C(ν) = CRB(ν) + CA(ν),
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D(ν) = Dquad.(ν) + Dlin.(ν), see Section 2.2.5,

g(η) is the hydrostatic restoring force matrix, see Section 2.2.6,

τ is the thruster input vector;

J(η) is the coordinate transform matrix which brings the inertial frame into align-

ment with the body-fixed frame:

J(η) =

[

J1(η) 0

0 J2(η)

]

The mass matrix M consists of the rigid body component MRB and an added mass

component MA. The centripetal and Coriolis force matrix C consists of the rigid body

component CRB and an added mass component CA. The damping matrix D consists of a

linear drag term Dlin. and a quadratic drag term Dquad.. The quadratic drag term is signif-

icant when the vehicle is moving at higher speed, while the linear drag term predominates

at low speeds.

2.2.5 Hydrodynamic Forces

The forces applied to the underwater vehicle by the surrounding fluid medium can be

broken down into added mass, lift, drag, and hydrostatic or restoring forces. Aside from the

hydrostatic forces, exact analytical expressions for these forces are very difficult to obtain.

In practice, they are described in terms of corresponding hydrodynamic coefficients, which

are estimated with first order Taylor series expansion. These coefficients are expressed in

the form of hydrodynamic derivatives in accordance with the SNAME (1950) [1] notation.

For example, the axial quadratic drag force X on a body moving at a velocity u in a

fluid medium is modeled as:

X = −(
1

2
ρCdAf )u|u| = Xu|u|u|u|,

which implies that the drag force derivative in the surge direction with respect to u|u| is:

Xu|u| =
∂X

∂(u|u|)
= −

1

2
ρCdAf .
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The task of modeling the vehicle then becomes analytically approximating or experi-

mentally determining the coefficients to complete the vehicle’s equations of motion, Equa-

tion 2.15 and Equation 2.16.

Added Mass

The concept of added mass refers to pressure-induced forces and moments proportional to

the acceleration of the body. For rigid body dynamics, the added mass forces and moments

τA can be expressed in terms of an added inertia matrix MA and a matrix of hydrodynamic

centripetal and Coriolis terms CA:

MAν̇ + CA(ν)ν = τA. (2.17)

In general, the motion of an underwater vehicle moving at high speed will be highly

nonlinear and coupled. Since the VideoRay Pro III is port-starboard and top-bottom

geometrically symmetric, and assuming the vehicle moves at low speed, simple expressions

for MA and CA can be obtained as:

MA =





















Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 0

0 0 Zẇ 0 0 0

0 0 0 Kṗ 0 0

0 0 0 0 Mq̇ 0

0 0 0 0 0 Nṙ





















(2.18)

CA =





















0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0





















(2.19)

In practice, this diagonal approximation is reasonable for the VideoRay Pro III, due to the

fact that the off-diagonal elements of the inertia matrix are much smaller than the diagonal

ones.
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Hydrodynamic Damping

Since the VideoRay Pro III underwater vehicle is symmetric about the x-z plane, and close

to symmetric about y-z plane, we assume that the motions in surge, sway, pitch and yaw

are decoupled [9]. Although it is not symmetric about the x-y plane, the surge and heave

motions are considered to be decoupled because when the vehicle is operated at relatively

low speed, the coupling effects can be neglected. This suggests a diagonal structure for

Dlin. and Dquad.:

Dlin.(ν) =





















Xu 0 0 0 0 0

0 Yv 0 0 0 0

0 0 Zw 0 0 0

0 0 0 Kp 0 0

0 0 0 0 Mq 0

0 0 0 0 0 Nr





















(2.20)

Dquad.(ν) =





















Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 0

0 0 Zw|w||w| 0 0 0

0 0 0 Kp|p||p| 0 0

0 0 0 0 Mq|q||q| 0

0 0 0 0 0 Nr|r||r|





















(2.21)

As seen later in Section 2.4, a series of experimental tests were performed to verify these

assumptions. The results indicate that the coupling effects are relatively small and can be

neglected. Hence, the resulting added mass matrix and drag matrices are approximated

reasonably well with diagonal matrices.

2.2.6 Hydrostatic Forces

For underwater vehicles, the gravitational and buoyant forces are called hydrostatic forces

or restoring forces. The gravitational force acts through the center of gravity rG =

[xG, yG, zG]T of the vehicle, which is assumed to be coincident with the center of mass.

Similarly, the buoyant force acts through the center of buoyancy RB = [xB, yB, zB]T .
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For an underwater vehicle, let the submerged weight of the body be W and the buoy-

ancy force be B, then the restoring force and moment vector in the body-fixed frame is

represented with Euler angles as

g(η) =





















(W − B) sin(θ)

−(W − B) cos(θ) sin(φ)

−(W − B) cos(θ) cos(φ)

yBB cos(θ) cos(φ) − zBB cos θ sin(φ)

−zBB sin(θ) − xBB cos(θ) cos(φ)

xBB cos(θ) sin(φ) + yBB sin(θ)





















(2.22)

2.2.7 Theoretical Parameter Estimation

Theoretically, the hydrodynamic derivatives can be determined using an approach called

strip theory [25]. Fossen [9] provided some two-dimensional added mass coefficients. If

the vehicle is divided into a number of strips, the added mass for each 2D strip can be

computed and summed over the length of the body to get the 3D hydrodynamic derivative.

Besides the added mass, the drag coefficients can also be determined with the application

of strip theory. In this way, the hydrodynamic derivatives can be completely determined

according to the vehicle’s geometric properties, even before the vehicle is built. However,

the derivatives produced using this approach are often inaccurate and sometimes unsatis-

factory. Validation of these derivatives is always desired.

This approach has been implemented to model the VideoRay’s added mass and damping

derivatives through the strip theory. The resultant coefficients are shown in Table 2.1. More

importantly, the coefficients in translational directions estimated using strip theory are in

good agreement with those later obtained by experiment.

2.3 Decoupled Models

The fact that

1. the weight and buoyancy distribution of the VideoRay Pro III will always force the

vehicle to return back to the zero pitch and zero roll state. Therefore, we assume for
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Added mass

Analytical∗ Experimental

Xu̇ 1.94 NA

Yv̇ 6.05 NA

Zẇ 3.95 NA

Kṗ 3.26 × 10−2 NA

Mq̇ 1.75 × 10−2 NA

Nṙ 3.21 × 10−2 1.18 × 10−2

Linear drag coefficients

Analytical∗ Experimental

Xu 2.30 0.95

Yv 8.01 5.87

Zw 5.81 3.70

Kp 0.0009 NA

Mq 0.0012 NA

Nr 0.0048 0.023

Quadratic drag coefficients

Analytical∗ Experimental

Xu|u| 8.28 6.04

Yv|v| 23.69 30.73

Zw|w| 20.52 26.36

Kp|p| 0.0048 NA

Mq|q| 0.0069 NA

Nr|r| 0.0089 0.45

∗ obtained by using strip theory.

Table 2.1: Hydrocoefficients for the model of VideoRay Pro III
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all time φ = 0, θ = 0, p = 0 and q = 0

2. the thrusters of the VideoRay Pro III only have effect in surge, heave and yaw motion.

suggest that the system can be decoupled into two non-interacting subsystems:

1. x, y, ψ, u, v, r for horizontal plane motion

2. z, w for vertical plane motion

The decomposition also supports the idea that any control action for the surge direction is

implemented using balanced thrusts from both side thrusters; and any control action for

the yaw direction is implemented using differential thrust. The vertical thruster provides

the control thrust for the heave direction.

Assuming the vehicle is always in the zero-pitch and zero-roll state, i.e., , φ = 0 and

θ = 0, we can write the decoupled models as follows.

• The model for horizontal plane motion:

m11u̇ = −m22vr +Xuu+Xu|u|u|u|+X, (2.23)

m22v̇ = m11ur + Yvv + Yv|v|v|v|, (2.24)

Jṙ = Nrr +Nr|r|r|r| +N, (2.25)

where

m11 = the (1,1) entry of the vehicle inertia matrix M ,

m22 = the (2,2) entry of the vehicle inertia matrix M ,

J = vehicle’s moment of inertia about the z axis, which is the (6,6) entry

of the vehicle inertia matrix M ,

Xu,Xu|u| = linear and quadratic hydrodynamic coefficients in the surge direction,

Yv,Yv|v| = linear and quadratic hydrodynamic coefficients in the sway direction,

X = external force acting on the vehicle in the surge direction,

N = external torque acting on the vehicle about the z axis.
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• The model for vertical plane motion:

m33ẇ = Zww + Zw|w|w|w|+ Z (2.26)

where

m33 = the (3,3) entry of the vehicle inertia matrix M ,

Zw,Zw|w| = linear and quadratic hydrodynamic coefficients in the heave direction,

Z = external force acting on the vehicle in the heave direction,

This decoupled model will facilitate the design for the trajectory tracking controllers,

which will be described in Chapter 4.

2.4 Experimental Parameter Identification

The problem of modeling the VideoRay Pro III is now becoming the estimation and iden-

tification of the vehicle’s mass, moments of inertia, hydrodynamic derivatives and thruster

coefficients in Equation (2.15). In considering only the decoupled motions for the Video-

Ray Pro III, the parameters of interest are the translational drag derivatives in the surge,

heave, sway directions, and the rotational drag derivatives in the yaw direction. These

parameters will be determined by experiment.

The inertia matrix in Equation (2.15) consists of the vehicle’s mass and moments of

inertia about its three principal axes. In order to estimate the moments of inertia, a series

of oscillation experiments with a small swing angle about vehicle’s principal axes were

performed. By measuring vehicle’s oscillating frequency, the moments of inertia Ixx, Iyy

and Izz can be determined. (see Table 2.2 for the results).

Typically, determination of the hydrodynamic derivatives of a vehicle is performed

experimentally in towing tank tests or in flumes with controlled flowing water. A series

of tests were performed using a flume in the Experimental Fluid Lab at the University of

Waterloo. The vehicle was mounted on a horizontal-bending mechanism and submerged

in the water. The water flow rate is controlled manually by valves. The hydrodynamic

forces acting on the vehicle are transferred to the horizontal-bending mechanism so that the

horizontal force and the bending force can be measured by two load cells (See Figure 2.3).

Using a data acquisition system, the forces are logged by a personal computer.
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Parameter Value Units

L 3.60 × 10−1 m

W 3.50 × 10−1 m

H 2.30 × 10−1 m

Ixx 2.28 × 10−2 kg·m2

Iyy 2.39 × 10−2 kg·m2

Izz 2.53 × 10−2 kg·m2

Table 2.2: Dimensions and moments of inertia of VideoRay Pro III

cell

water flow

cell

load

load

Figure 2.3: horizontal-bending mechanism in the flume test
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2.4.1 Thruster Parameters

In Equation (2.15), the thruster input vector τ consists of the thruster forces and mo-

ments acting on the vehicle. This is a vector function of the thrusters’ forces and their

configuration.

An underwater vehicle’s thrusters, both for propulsion and directional control, are

highly nonlinear actuators. For a fixed pitch propeller, the force (thrust) T depends on

the advance speed ua, and the propeller rate n, (see Figure 2.4) as follows [4]:

T = ρD4(α1 + α2
ua

nD
)n|n|, (2.27)

where ρ is the water density, D is the diameter of propeller, α1 and α2 are constants given

by the propeller’s property, ua is related through the speed of the vehicle relative to the

ambient water.

a

u

Q

T

u

Figure 2.4: Schematic drawing of a propeller

A comprehensive study on thrusters and their influence on underwater vehicle maneu-

verability has been produced [37]. By considering the energy balance of a control volume

about a thruster, and neglecting the effect of the advance speed ua, simplified nonlinear

equations for thrust T can be derived as:

ṅ = βτmotor − αn|n|, (2.28)

T = Ctn|n| (2.29)
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where τmotor is the input torque supplied by the thruster’s motor, β, α and Ct are thruster

constants.
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Figure 2.5: Output thrust vs. input signal for port/starboard thrusters

The VideoRay Pro III has 3 thrusters: port, starboard and vertical. Each one has its

own drive which controls the rotational speed. Since the diameter and the mass of the

propellers and their driving motors are small, the dynamics of the thruster control system

in Equation 2.28 is much faster than the dynamics of the vehicle. For this reason, the

propeller dynamics are neglected.

The CT parameter from Equation 2.29 needs to be identified experimentally. The

vehicle was mounted on the horizontal-bending mechanism where the thrust of the hor-

izontal thrusters and vertical thruster were measured and recorded at various thruster

control signals. The least squares method was applied to compute the coefficients for the

port/starboard thrusters and the vertical thruster.

Mapping of the output thrust versus the thruster input for the two horizontal thrusters
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is shown in Figure 2.5. The estimated thruster coefficients are shown in Table 2.3. Since

the geometry of the propellers is non-symmetrical, the forward and backward thrusts are

also non-symmetrical. It can be seen that the propellers are more efficient driving forward

than backward. Another property for the propellers is that the thrust saturatutes when

the control input is beyond the range of -150 and +150. Therefore, the effective will be

restricted in this range.

Ct (N)

thruster forward backward

port/starborad 2.59 × 10−4 1.01 × 10−4

vertical 1.19 × 10−4 7.53 × 10−5

Table 2.3: Thruster coefficients

2.4.2 Experimental Set-up for Derivatives in Translational Mo-

tions

Translational hydrodynamic drag forces in the x, y and z directions are modeled as the sum

of linear and quadratic terms [9]. For example, the hydrodynamic drag in the x direction

due to surge motion is expressed as:

Drag Force = Xuu+Xu|u|u|u| (2.30)

where u is the surge velocity, Xu is the surge drag force derivative with respect to u, Xu|u|

is the surge drag force derivative with respect to u|u|. When the vehicle moves at low

speed, the linear drag term is dominant, while the quadratic drag term is dominant when

the vehicle is moving at higher speed. These coefficients are part of the entries in the drag

matrix in Equation (2.15).

In determining the drag coefficients, a number of flume experiments were performed

using the horizontal-bending mechanism to test the drag force under various water flow

speeds up to 0.55 m/s. Figure 2.6, 2.7 and 2.8 show the experimental data and resulting

fit curves for the drag forces in the surge, sway and heave directions.
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Figure 2.6: Drag force in surge direction: experiment data and fit curve
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Figure 2.7: Drag force in sway direction: experiment data and fit curve
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Figure 2.8: Drag force in heave direction: experiment data and fit curve

The hydrodynamic forces in the heave and sway directions were also tested and recorded

while the vehicle was moving in the surge direction. Figure 2.9 shows the relationship

between the change of hydrodynamic force in heave as a function of the surge speed. The

results demonstrate that change in the heave direction drag force resulting from surge

motion is less than one tenth of the drag force in the surge direction. However, the heave

direction drag force resulting from surge motion could be a result of inaccurate positioning

of the vehicle during experiments, which causes a slight angle of attack to the water flow.

Because its magnitude is relatively small, it can be neglected.

Figure 2.10 shows that the sway drag force is constant when tested in different surge

speeds. Therefore, it is considered independent of the surge speed. This is expected since

the vehicle is symmetrical about the x-z plane.
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Figure 2.9: Heave lift force vs. surge speed
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Figure 2.10: Sway drag force vs. surge speed
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2.4.3 Experimental Set-up and Identification for the Yaw Move-

ment

Accurate hydrodynamic derivatives for the yaw motion is essential for modeling the Video-

Ray Pro III. Because of the symmetry of the x-z and the y-z planes, the yaw motion

is decoupled from other motions [9] and described by Equation 2.25. If we substitute

parameters a = Nr/J , b = Nr|r|/J , n = N and c = 1/J , and introduce a bias parameter d,

Equation 2.25 can be rewritten as:

ṙ = ar + br|r| + cn+ d (2.31)

where r is the state variable describing the yaw rate, n is the input variable describing the

torque the thrusters exert on the vehicle, the unknown parameters a and b are the linear

and quadratic drag coefficients, the unknown parameter c is the inverse of the vehicle’s

moment of inertia about the y-axis, including the rigid body and added mass.

To estimate the unknown parameters in Equation 2.31, we start by describing the

system dynamics. The state variable r in Equation 2.31 is completely controllable by the

control variable n and completely observable at discrete time instants {tk}k≥0 through

the output variable y(tk), corrupted by the additive zero-mean noise e(tk). The system

dynamics can be expressed as [22]:

ṙ = φr(r(t), n(t))θr (2.32)

y(tk) = r(tk) + e(tk) (2.33)

where φr(r(t), n(t)) = [r r|r| n 1] is a row vector of the state and control input, θr =

[a b c d]T is a constant (unknown) parameter vector that characterizes the system dynamics.

The identification problem consists of estimating the unknown parameter vector θr on

the basis of a finite number of discrete time measurements of input variable {n(tk)} and

output variable {y(tk)}. The parameter vector θr can be identified by minimizing the

following cost function with the Least Squares method:

Jr(θr) =
∑

ǫ(tk)
2 (2.34)

The cost function is a sum of squares of prediction errors ǫ(tk), which are the difference

between the observed output variable and the one-step-ahead prediction of the output
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ŷ(tk):

ǫ(tk) = y(tk) − ŷ(tk) (2.35)

If the measurement noise e(tk) is zero-mean, then the output variable is simplified as:

ŷ(tk) = r̂(tk) (2.36)

where r̂(tk) is the expected state variable at time tk.

The one-step-ahead prediction of the output variable ŷ(tk) can be obtained by integrat-

ing the state space equation in Equation (2.33) between two subsequent time instants tk−1

and tk:

r(tk) − r(tk−1) =

[

∫ tk

tk−1

φr(r̂(τ), n(τ))dτ

]

θr (2.37)

From Equation (2.36), it is implied that r(tk−1) = ŷ(tk−1). The following estimate for

the state variable r at time tk is obtained as:

r̂(tk) = ŷ(tk−1) + Φkθr (2.38)

where

Φk =

∫ tk

tk−1

φr(r̂(τ), n(τ))dτ (2.39)

Hence, the one-step-ahead prediction error of Equation 2.35 can be evaluated as:

ǫ(tk) = ŷ(tk) − ŷ(tk−1) − Φkθr (2.40)

Inserting this prediction error into the cost function Jr(θr), we can find the parameter

vector θr that minimizes the cost function on the basis of M observations through the

Least Squares algorithm:

θr = (Φ(M)T Φ(M))−1Φ(M)TY (M) (2.41)

where

Φ(M) =













Φ1

Φ2

...

ΦM













, Y (M) =













ŷ(t1) − ŷ(t0)

ŷ(t2) − ŷ(t1)
...

ŷ(tM) − ŷ(tM−1)













(2.42)
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Thus, if we have M observations of the yaw rate r and control variable n, we can

estimate the system parameters a, b, c and d. Furthermore, we can estimate the yaw

dynamic parameters Nr and Nr|r|.

The experimental setup for the yaw motion is depicted in Figure 2.11. The vehicle is

mounted on a pivot which allows the vehicle to rotate about its z-axis freely. An overhead

video camera is placed on top of the vehicle to record its angular movement during the test.

The vehicle is driven by the horizontal thrusters with a series of oscillating input signals,

which have the same oscillating period and various amplitude from n = 50 to n = 150.

The vehicle oscillates about its z-axis following the input signals. The measured rotational

angles of the vehicle are shown in Figure 2.12. The estimated parameters are: a = 0.62,

b = 1.12, c = 26.95 and d = 0.0316.

camera

yaw mode

Figure 2.11: Experimental set-up for yaw motion

From the obtained values of a, b, and c, the corresponding hydrodynamic derivatives

related to yaw motion Nr, Nr|r| and Nṙ can be derived and the results are shown in

Table 2.1.
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Figure 2.12: Test data for yaw motion



Modeling of VideoRay Pro III 33

2.5 Model Verification

2.5.1 Surge mode

To verify the surge mode of the dynamic model of the VideoRay Pro III, a series of surge

tests were performed in a pool. The movements of the vehicle were recorded with a video

camera and the distance traveled analyzed and processed with Matlab. Figure 2.13 shows

the observed and simulated surge speed with an applied thruster input of n = 60. The

predicted surge speed with the dynamic model is u = 0.51m/s, which is a bit higher than

the actual testing speed of 0.47m/s. This could be attributed to the effect of the tether on

the vehicle, something not included in our dynamic model.
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Figure 2.13: Surge test experiment data and simulation result



Modeling of VideoRay Pro III 34

2.5.2 Yaw Mode

Figure 2.14 shows the experimental yaw angle and the simulated yaw angle with the model

parameters determined in section 2.4.3. In this test, the thrusters input is n = 150 and

oscillating period is t = 1.5 seconds. We see that the predicted yaw angles match the test

results very well.
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Figure 2.14: Identification for yaw motion (thruster inputs n = ±150, period t = 1.5

seconds)



Chapter 3

State Observer/Estimator Design

3.1 Introduction

Having accurate VideoRay Pro III motion information, namely its position information x,

y, z, ψ and velocity information u, v, w, r, is crucial for the trajectory tracking controller

to work properly. Unfortunately, among these parameters only the 3-dimension position

information (x, y, z) and heading information (ψ) are available from the vehicle’s sensor

system and underwater acoustic positioning system; the velocity could not be measured

directly. Also, the position information obtained through the measurement is uncertain

due to noise and other imperfections. To handle this problem, filtering is applied to the

measurements.

Filtering is used when estimating the system states as observations become available

on-line. The Kalman filter (KF) is a popular choice for estimating the system state for

linear systems with Gaussian process and measurement noise. To solve the problem of non-

Gaussian, nonlinear filtering, the most often used algorithm is the extended Kalman filter

(EKF). This filter is based on the principle of linearizing the measurements and evolution

models using Taylor series expansion.

Unfortunately, the EKF has two significant drawbacks. First, it requires the derivation

of the Jacobian matrices, i.e., the linear approximation to the nonlinear functions, which

can be complex and causes implementation difficulties. Second, these linearizations can

lead to filter instability if the timestep intervals are not sufficiently small [18]. Besides

35
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these drawbacks, the EKF is not suitable for discontinuous process models [17], where

the representation of the nonlinear functions and probability distribution of interest is not

adequate.

Another popular solution strategy for the general filtering problem is to use sequential

Monte Carlo methods [11, 29, 7, 32, 6, 21], also known as particle filters. These methods

allow for a complete representation of the posterior distribution of the states, so that any

statistical estimates, such as mean, modes, kurtosis and variance, can be easily computed.

Therefore, they can deal with any nonlinearities or distributions. This approach is very

general, but can be very inefficient.

Recently, a new filter called the unscented Kalman filter (UKF) has been developed

by Julier and Uhlmann [16, 34]. The UKF operates on the presumption that it is eas-

ier to approximate a Gaussian distribution than it is to approximate arbitrary nonlinear

functions. Instead of linearizing using Jacobian matrices, the UKF uses a deterministic

sampling approach to capture the mean and covariance estimates with a minimum set of

sample points. It is shown that the UKF generates much better estimates of the mean

and covariance of the system states than the EKF in various applications including road

vehicle navigation [14], parameter estimation for time series modeling [35] etc.

In this chapter, we discuss the use of UKF as the state observer/estimator for the

VideoRay Pro III autonomous control system. The notation and the general state-space

model formulation are first introduced. Since the UKF is a direct extension to the EKF,

the EKF is first discussed, followed by UKF in more detail.

3.2 Dynamic State-Space Model

By using [ηT νT ]T as the system state, τ as the control input, the equation of motion in

Equation 2.15 can be generalized as a state-space model:

xt = f(xt−1,ut−1,mt−1) (3.1)

yt = h(xt,nt) (3.2)

where

x is the state of the system with dimension n,
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u denotes the control input observations,

y denotes the sensor output observations,

m the process noise with dimension nm, and

n the measurement noise with dimension nn

Our goal is to estimate the posterior distribution of the state variable xt at time step t,

given the knowledge of the output observations yt at time t and the process control input

ut−1 at time t− 1.

3.3 The EKF and Unscented Kalman Filters

3.3.1 The Extended Kalman Filter

The EKF is a minimum mean-square-error (MMSE) estimator that has the recursive

“predict-correct” structure. It is based on Taylor series expansion of the nonlinear functions

f and h around the estimates x̄t|t−1 of the state xt [12]. For example

f(xt) = f(x̄t|t−1) +
∂f(xt)

∂xt

∣

∣

∣

∣

(xt=x̄t|t−1)

(xt − x̄t|t−1) + · · · (3.3)

Using only the linear expansion terms (ignoring the higher order expansion terms), it is

easy to derive the following update equations for the mean x̄ and covariance P of the

Gaussian approximation to the posterior distribution of the states [12]:

• predict step:

x̄t|t−1 = f(x̄t−1, ūt, 0) (3.4)

Pt|t−1 = FtPt−1F
T
t + MtQtM

T
t (3.5)

• correct step:

Kt = Pt|t−1H
T
t [NtRtN

T
t + HtPt|t−1H

T
t ]−1 (3.6)

x̄t = x̄t|t−1 + Kt[yt − h(x̄t|t−1, ū, 0)] (3.7)

Pt = Pt|t−1 − KtHtPt|t−1 (3.8)
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where

x̄t|t−1 is the predicted state mean,

Pt|t−1 is the predicted state covariance,

Kt is known as the Kalman gain;

Q is the variance of the process noise;

R is the variance of the measurement noise;

F = ∂f(xt)
∂xt

is the Jacobian of the process model, with respect to the states;

M = ∂f(mt)
∂mt

is the Jacobian of the process model, with respect to the process

noise;

H = ∂h(xt)
∂xt

is the Jacobian of the measurement model, with respect to the states;

N = ∂h(nt)
∂nt

is the Jacobian of the measurement model, with respect to the mea-

surement noise.

3.4 The Unscented Kalman Filter

The unscented Kalman filter (UKF) is also a recursive MMSE estimator that has the

“predict-correct” structure. It addresses some of the approximation issues of the EKF [16].

Because in the EKF, only the first order terms of the Taylor series expansion of nonlinear

functions is used for approximating the original system, large errors are usually introduced

in the posterior distribution estimates of the states. This is especially evident when the

models are highly nonlinear and the local linearity assumption breaks down, in which

situation the effects of higher order terms of the Taylor series expansion becomes significant.

Unlike the EKF, the UKF uses another way to solve this problem. Rather than approxi-

mating the nonlinear system with Taylor series expansion, it approximates the distribution

of the state random variable. Like the EKF, the UKF will work for nonlinear systems with

Gaussian random variables.

In the UKF, the state distribution is still represented by a Gaussian random variable

(GRV). Instead of using the mean and variance to describe the distribution of the GRV, the

UKF uses a minimal set of deterministrically chosen sample points. These sample points

completely capture the true mean and the covariance of the GRV, and when propagated

through the true non-linear system, captures the posterior mean and covariance accurately
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to the second order for any nonlinearity. The errors of the UKF only exhibit in the third

and higher orders.

In the next sections, we start by first explaining the unscented transformation, followed

by the scaled unscented transformation, which is a generalizing extension of the unscented

transformation. The scaled unscented transformation forms the algorithmic core of the

unscented Kalman filter.

3.4.1 The unscented transformation

The unscented transformation (UT) is a method for calculating the statistics of a random

variable which undergoes a nonlinear transformation. It was first proposed by Simon Julier

and Jeffrey K. Uhlmann as a general method for approximating nonlinear transformations

of probability distributions [17]. This method is based on the principle that it is easier

to approximate a probability distribution than it is to approximate an arbitrary nonlinear

function/transformation [17].

Consider propagating an n dimensional Gaussian random variable x through an arbi-

trary nonlinear function g : Rn → Rm to generate y,

y = g(x) (3.9)

Suppose the Gaussian random variable x has mean x̄ and covariance P. To calculate the

mean and covariance of y using the UT, we proceed as follows:

1. a set of 2n+ 1 weighted samples or sigma points Si = {Wi,Xi} are deterministically

chosen so that they completely capture the true mean and covariance of the prior

Gaussian random variable x. A selection scheme that satisfies this requirement is

X0 = x̄ W0 = κ/(n+ κ) i = 0

Xi = x̄ + [
√

(n+ κ)P]i Wi = 1/[2(n+ κ)] i = 1, . . . , n

Xi = x̄ − [
√

(n + κ)P]i Wi = 1/[2(n+ κ)] i = 1 + n, . . . , 2n

(3.10)

where:

κ is a scaling aprameter;
√

(n + κ)P is the ith row or column of the matrix square root of (n+ κ)P.
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Wi is the weight associated with the ith point such that
∑2n

i=0Wi = 1.

2. The transformed set of sigma points are evaluated for each of the Si = {Wi,Xi} by

Yi = g(Xi) i = 0, . . . , 2n (3.11)

3. the predicted mean of y is computed as:

ȳ =
2n
∑

i=0

WiYi (3.12)

4. and the predicted covariance is computed as

P =

2n
∑

i=0

Wi(Yi − ȳ)(Yi − ȳ)T (3.13)

It is shown that these estimates of the mean and covariance are accurate to the second

order of the Taylor series expansion of any nonlinear function g(x) [17]. In comparison,

the EKF only calculates the a posterior mean and covariance accurately to the first order

with all higher order moments truncated.

As an example, a comparison of the performance of the UT versus that of the lin-

earization approach used in the EKF is shown in Figure 3.1 [34]. In this example, 5000

samples are drawn from a Gaussian distribution by a Monte Carlo approach and propa-

gated through an arbitrarily highly nonlinear function. The posterior sample mean and

covariance are then calculated as the truth data.This is shown in the left plot of Figure 3.1.

Next, the posterior random variable’s mean and covariance are calculated by a linearization

method same as in the EKF, shown in the middle plot. The estimates calculated by the

unscented transformation are shown in the right plot. It is evident that there is almost

no bias error in the mean estimate, and the covariance estimate is much closer to the true

covariance than that of the linearization method. The performance of UT is superior over

the linearization approach as in the EKF.

Another advantage of the UT over linearization approach is that the UT doesn’t need

the Jacobian to be calculated or make any other approximation of g(·). Also, the compu-

tation complexity is the same as the linearization method [17]. This property will make

the implementation of the UT very easy.



State Observer/Estimator Design 41

Figure 3.1: Example of UT for mean and covariance propagation [32]



State Observer/Estimator Design 42

The sigma point selection scheme used in the UT has two difficulties. The first difficulty

is that the radius of the sphere that bounds all the sigma points is a function of
√

(n + κ).

Therefore, as n increases, the radius also increases. This will lead to a problem of sampling

non-local effects. If the nonlinearities in question are very severe, this effect can lead to

significant difficulties. Although the sigma points can be scaled towards or away from the

mean point by a proper choice of κ, there is still a potential that the calculated covariance

could be non-positive definite.

The second difficulty is that the sigma points are asymmetrically distributed about the

mean point. Therefore, higher order effects such as the skew become more significant as

the state dimension n increases.

To address these difficulties, the scaled unscented transformation was developed [13].

3.4.2 The scaled unscented transformation

To overcome the dimensional scaling effects, the scaled unscented transformation (SUT)

replaces the original set of sigma points with a transformed set given by [13]:

X
′

i = X0 + α(Xi −X0) i = 0, . . . , 2n, (3.14)

where α is a positive scaling parameter which can be made arbitrarily small to minimize

higher order effects. With proper choice of α, the predicted covariance will be guaranteed

positive semidefinite, and the second order accuracy in both the mean and covariance will

also be preserved.

In [13], a method was proposed to select α in Equation 3.14. First, a set of sigma points

S = {W,X} is calculated using equation 3.10. Then they are transformed into the scaled

set S
′
= {W

′
,X

′
} by

X
′

i = X0 + α(Xi − X0)

W
′

i =







W0/α
2 + (1 − 1/α2) i = 0

Wi/α
2 i 6= 0

(3.15)

where α is the new sigma point scaling parameter. These two steps of selecting and scaling

the sigma points can also be combined into a single step by setting

λ = α2(n + κ) − n (3.16)
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and selecting the sigma point set by

X0 = x̄

Xi = x̄ +
[

√

(n+ λ)P
]

i
i = 1, . . . , n

Xi = x̄ −
[

√

(n+ λ)P
]

i
i = n + 1, . . . , 2n

W
(m)
0 = λ/(n+ λ)

W
(c)
0 = λ/(n+ λ) + (1 − α2 + β)

W
(m)
i = Wi = 1/[2(n+ λ)] i = 1, . . . , 2n (3.17)

where the superscript (m) and (c) in the weighting parameters correspond to mean and

covariance respectively. Because the weighting on the zeroth sigma point X0 directly affects

the magnitude of the errors in the fourth and higher order terms for symmetric a priori

distributions [13]. A third parameter, β, is thus introduced to incorporate prior knowledge

of the distribution of x (for Gaussian distribution, β = 2 is optimal).

W e i g h t e ds a m p l ec o v a r i a n c e
W e i g h t e ds a m p l em e a n

γ
√

x̄

Px

f(·)

{Xi} =
[

x̄ x̄ + γ
√

Px x̄ − γ
√

Px

]

{Yi}

W
m

i

W
c

i

ȳ

Py

+ −

Figure 3.2: UT block diagram
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A block diagram illustrating the procedures in performing the UT is shown in Fig-

ure 3.4.2. The algorithm is given as follows:

1. Choose the parameters κ, α and β. The parameter α determines the spread of the

sigma points around x̄ and is usually set to a small positive value. The parameter

κ is a secondary scaling parameter. β is used to incorporate the knowledge of the

higher order moments of the distribution.

2. Calculate the set of 2n + 1 scaled sigma points and weights S = {W, X} by using

Equation 3.16 and Equation 3.17. Here n is the dimension of random variable x.

3. Propagate each sigma point through the nonlinear transformation

Yi = f(Xi) i = 0, . . . , 2n (3.18)

4. Calculate the mean ȳ and covariance Py as follows

ȳ =
2n
∑

i=0

W
(m)
i Yi (3.19)

Py =
2n
∑

i=0

W
(c)
i [Yi − ȳ][Yi − ȳ]T (3.20)

3.4.3 An Example of Unscented Transformation for

VideoRay Pro III

To compare the performance of the unscented transformation to the linearization method

as in EKF, we take as an example the VideoRay Pro III running straight forward from

position (0, 0) in the x-y plane, with a heading angle of ψ = 90 degrees and a constant

forward speed of u = 1.2 m/s and zero yaw rate r = 0. After one sampling period of 0.033

seconds (assuming the sampling frequency is 30 Hz), the vehicle will move from (0, 0) to

somewhere around (0, 40cm) in the horizontal plane. The kinematic equations of motion

in the x-y plane for the vehicle can be expressed as:






xt

yt

ψt






=







xt−1

yt−1

ψt−1






+







ut−1∆t cos(ψt−1)

ut−1∆t sin(ψt−1)

0






(3.21)
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where

xt is the x position at time step t,

yt is the y position at time step t,

ψt is the yaw angle at time step t,

u is the surge speed,

ψ is the yaw rate,

∆t is the sampling period

Suppose the system states are described with a state variable sv = [x y ψ]T, and the

covariance for the initial state is

Psv =







1 0 0

0 1 0

0 0 0.1






(3.22)

The Monte Carlo method is used as the truth data. 500 samples starting from the initial

position are drawn with covariance of Psv and propagated through Equation 3.21. The

effect of the large error variance on the nonlinearly transformed estimates is shown in

Figure 3.3. Problems arise when the heading error is significant as in this example. The

speed control can be made very accurate while the bearing measurement can be very poor

(standard deviation of 5 degrees). As we can see, the points lie on a “banana-shaped” arc.

The range error causes the points to lie in a band, and the heading error causes this region

to stretch around the circumference of a circle. As a result, the mean does not lie at (0,

40 cm) but is actually located closer to the origin.

In Figure 3.4, the transformed means and covariances using Monte Carlo sampling,

linearization and UT are illustrated respectively. The figure plots the 1 − σ contours

calculated by each method. Compared to the “true” result, the linearized estimate is biased

and inconsistent. The linearized mean is at (0, 40cm) but the true mean is at (0, 38.2cm).

The covariance of the linearized method is underestimated to the true covariance. On the

other hand, we can see that the UT transformation captures the mean and covariance more

accurately. This property of UT makes it a very promising method for estimating states

of Gaussian nonlinear systems.
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Figure 3.3: The true nonlinear transformation
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3.5 The Unscented Kalman Filter

The unscented Kalman filter (UKF) is a straightforward application of the scaled unscented

transformation to recursive minimum mean- squared-error estimation [16]. The state ran-

dom variable is redefined as the concatenation of the original state variables xt and noise

variables mt and nt, which is called the augmented state variable:

xa
t =







xt

mt

nt






(3.23)

The covariances associated with xt, mt and nt are Pt, Q, and R, respectively. Here, we

assume that the Q and R are constant. The UKF algorithm will use the augmented state

variable to predict the system state with contron input and correct the predicted states

using the measurements.

The complete UKF algorithm is given as following:

1. Initialize with:

x̄0 = E[x0] (3.24)

P0 = E[(x0 − x̄0)(x0 − x̄0)
T] (3.25)

x̄a
0 = E[xa] =







x̄0

0

0






(3.26)

Pa
0 = E[(xa

0 − x̄a
0)(x

a
0 − x̄a

0)
T] =







P0 0 0

0 Q 0

0 0 R






(3.27)

2. For t ∈ {1, . . . ,∞},

(a) Calculate sigma points:

X a
t−1 =

[

x̄a
t−1 x̄a

t−1 +
√

(n + λ)Pa
t−1 x̄a

t−1 −
√

(n+ λ)Pa
t−1

]

(3.28)
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(b) Prediction step:

X x
t|t−1 = f(X x

t−1,u−t−1,X
v
t−1) (3.29)

x̄t|t−1 =

2n
∑

i=0

W
(m)
i X x

i,t|t−1 (3.30)

Pt|t−1 =

2n
∑

i=0

W
(c)
i [X x

i,t|t−1 − x̄t|t−1][X
x
i,t|t−1 − x̄t|t−1]

T (3.31)

Yt|t−1 = h(X x
t|t−1,X

n
t|t−1) (3.32)

ȳt|t−1 =
2n
∑

i=0

W
(m)
i Yi,t|t−1 (3.33)

(c) Correction step:

Pỹtỹt
=

2n
∑

i=0

W
(c)
i [Yi,t|t−1 − ȳt|t−1][Yi,t|t−1 − ȳt|t−1]

T (3.34)

Pxtyt
=

2n
∑

i=0

W
(c)
i [Xi,t|t−1 − x̄t|t−1][Yi,t|t−1 − ȳt|t−1]

T (3.35)

Kt = Pxtyt
P−1

ỹtỹt
(3.36)

x̄t = x̄t|t−1 + Kt(yt − ȳt|t−1) (3.37)

Pt = Pt|t−1 −KtPỹtỹt
KT

t (3.38)

where:

xa =







x

v

n






is the augmented state variable with dimension na;

X a =







X x

X v

X n






is the augmented sigma points,

λ = composite scaling parameter,

na = nx + nm + nn is the dimension of the augmented state variable,

Q = process noise covariance,
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R = measurement noise covariance,

K = Kalman gain,

Wi = weights for sigma points

Note that the unscented Kalman filter has the same recursive “predict-correct” struc-

ture as the Kalman filter. However, there is no requirement to calculate the Jacobians in

this algorithm. Moreover, the computation complexity in the UKF is as the same as in

the EKF. So, not only does the UKF outperform the EKF in accuracy and robustness, it

does so at no extra computational cost. The superior performance of the UKF over that

of the EKF have been reported in numerous publications [15, 16, 35, 36].

The algorithm discussed above is a general form of the unscented Kalman filter. There

are many practical cases where the process and measurement noise are purely additive or

can be approximately considered additive as expressed as

xt = f(xt−1,ut−1) + mt−1 (3.39)

yt = h(xt) + nt. (3.40)

For this system, the computational complexity of the UKF can be reduced.

When the process and measurement noise are additive, the system state need not be

augmented with the noise random variables. The dimension of the sigma points as well as

the total number of sigma points can be reduced. The covariances of the noise sources are

then incorporated in the state covariance using a simple additive procedure [33], which is

given as follows:

1. Initialize with:

x̄0 = E[x0] (3.41)

P0 = E[(x0 − x̄0)(x0 − x̄0)
T] (3.42)

2. For t ∈ {1, . . . ,∞},

(a) Calculate sigma points:

Xt−1 =
[

x̄t−1 x̄t−1 +
√

(n + λ)Pt−1 x̄t−1 −
√

(n+ λ)Pt−1

]

(3.43)
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(b) Predict step:

Xt|t−1 = f(Xt−1,ut−1) (3.44)

x̄t|t−1 =
2n
∑

i=0

W
(m)
i Xi,t|t−1 (3.45)

Pt|t−1 =
2n
∑

i=0

W
(c)
i [Xi,t|t−1 − x̄t|t−1][Xi,t|t−1 − x̄t|t−1]

T + Q (3.46)

Yt|t−1 = h(Xt|t−1,ut|t−1) (3.47)

ȳt|t−1 =
2n
∑

i=0

W
(m)
i Yi,t|t−1 (3.48)

(c) Correct step:

Pỹtỹt
=

2n
∑

i=0

W
(c)
i [Yi,t|t−1 − ȳt|t−1][Yi,t|t−1 − ȳt|t−1]

T + R (3.49)

Pxtyt
=

2n
∑

i=0

W
(c)
i [Xi,t|t−1 − x̄t|t−1][Yi,t|t−1 − ȳt|t−1]

T (3.50)

Kt = Pxtyt
P−1

ỹtỹt
(3.51)

x̄t = x̄t|t−1 + Kt(yt − ȳt|t−1) (3.52)

Pt = Pt|t−1 − KtPỹtỹt
KT

t (3.53)

where:

x is the state variable;

X is the sigma points,

λ = composite scaling parameter,

Q = process noise covariance,

R = measurement noise covariance,

K = Kalman gain,

Wi = weights for sigma points

In this work, we implement the UKF using the additive noise approach, because the

process model and measurement model for the VideoRay Pro III are considered to be
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noise additive. When calculating the square root for the state covariance matrix, we use

Cholesky factorization, which is in general of order n3/6.



Chapter 4

Controller Design

4.1 Introduction

Controllers can be classified according to whether they are applied to linear systems or

nonlinear systems.

Linear controllers have been applied in the autopilot system for marine vehicles for

several decades. Many researchers have successfully applied linear controllers, such as PID

controllers, in forward speed control, course-keeping control, turning rate control for marine

vehicles [9].

However, linear controllers have two major drawbacks when applied in the autonomous

control for underwater vehicles. First, the linear controllers rely on the key assumption of

small range operation for the linearization model to be valid. This assumption is not always

true for underwater vehicles because their operation range is usually large, in which case

a linear controller is likely to perform very poorly or be unstable. Second, in designing

linear controllers, it is usually necessary to assume that the parameters of the system

model are reasonably well known. On the contrary, in underwater vehicle application,

the uncertainties in the model parameters and unpredictable disturbances have a large

impact on the vehicle modeling accuracy. A linear controller based on inaccurate model

parameters may exhibit significant performance degradation or even instability.

These two issues can be solved with the use of nonlinear control tools. Nonlinear

controllers can handle the nonlinearities across a larger range of operation and overcome

53
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the impact of model inaccuracy. Since the VideoRay Pro III ROV is usually operated in

various working conditions, we need a robust nonlinear controller to work over the whole

operating range so as to achieve the control objective for the autopilot system.

4.1.1 Control Objective

The objective of autopilot design for the VideoRay Pro III ROV is to control the vehicle

such that it can fulfill its mission as listed in the following:

• following a feasible trajectory which is defined by a series of waypoints, consisting of

x, y and z coordinates, along the trajectory;

• maintaining a required depth and heading while the vehicle is on its mission.

Because the VideoRay Pro III ROV is actuated by two parallel thrusters for its surge and

yaw control, and a vertical thruster for the depth control, the above objectives sometimes

conflict with each other. For example, when the ROV is following a series of waypoints, it

is not always possible to keep the heading in a certain orientation. And, from the mission

point of view, it is also not necessary to fulfill the two objectives simultaneously.

Therefore, we want to develop an autopilot system so as to control the VideoRay Pro

III to work in two modes:

1. 3D trajectory tracking of x, y and z coordinates. In this mode, we will develop a

planar trajectory tracking controller for the VideoRay Pro III to track a path in the

horizontal x-y plane; In the vertical plane, the z coordinate tracking will be achieved

with a depth controller.

2. Bearing control mode. We will develop a bearing controller to control VideoRay Pro

III’s bearing.

By combining these two control modes in a mission, the VideoRay Pro III can carry

out its objective using the autopilot system. For example, the vehicle may run in the 3D

trajectory tracking mode to follow a predefined trajectory. Once it gets to the desired

position, the controller may change to the bearing control mode to adjust its attitude for

tracking target.
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4.1.2 Trajectory Tracking Systems

Trajectory tracking problems are concerned with the design of control laws that force a

vehicle to reach and follow a time parameterized reference.

Controlling the VideoRay Pro III to track a trajectory is challenging because of its

actuator configuration. The control actuators available for the VideoRay Pro III are the

two thrusters on the port and starboard sides for surge and yaw control, and a vertical

thruster for the depth control. See Figure 2.1. Note that there is no thruster for the sway

control. When moving in the horizontal plane, the VideoRay Pro III has no control in

the sway direction. Therefore, it falls into the category of underactuated system, which is

defined to be one where the dimension of the space spanned by the control vector is less

than the dimension of the configuration space. Simply stated, this refers to a system that

has fewer control inputs than degrees of freedom.

In the past few decades, many efforts have been made in the area of trajectory track-

ing control for underactuated vehicles. Among such methods, the guidance, navigation

and control (GNC) has been widely used in the aircraft industry, missile guidance and

marine ship industry. More recently, a new approach that is based on model-based-direct-

Lyapunov method has obtained attention from reserachers.

The Guidance, Navigation and Control (GNC) Approach

The classical approach for implementing autopilot control for underactuated systems like

airplanes or ships uses the so called guidance navigation control (GNC) method.

The classical GNC autopilot control of airplanes or ships involves controlling the vehi-

cle’s yaw angle ψ. The system is usually designed such that the vehicle can move forward

with constant speed u at the same time as the yaw angle ψ is controlled. Hence, the vehicle

can be made to track a predifined reference path, which is easily specified by way points.

A typical guidance, navigation and control system is depicted in Figure 4.1. In addition

to the navigation system, autopilot control of this kind usually consists of a control system

and a guidance system. The guidance system usually utilizes techniques such as [9]:

• way point guidance based on the straight line between two points;

• way point guidance by line of sight
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Figure 4.1: A typical guidance, navigation, and control system

Many GNC systems have been implemented in controling marine vehicles to track a

predefined path. In [26], Fotis A.Papoulias presented a theoretical analysis of the nonlinear

dynamic phenomena involved in pure pursuit guidance of marine vehicles. The navigation

loop processes positional information, determines the actual geographical location of the

vehicle and compares it to the commanded path. This loop has its own dynamics but it

operates at a rather slow rate. The guidance loop accepts navigational information and

generates appropriate commands which in turn become the input to the vehicle control

systems, and these determine the necessary vehicle actuator signals. For accurate path

keeping, the guidance and autopilot functions have similar dynamic response characteristics

and this may create stability problems once the two systems are coupled together.

In [24], W. Naeem, et al. investigated a novel approach to an underwater vehicle cable

tracking mission by employing an integrated guidance and control system using a propor-

tional navigation guidance (PNG) law and model predictive control (MPC), which was

originally used for missile systems.

However, GNC systems exhibit some drawbacks. Strictly speaking, GNC systems are

just path following systems rather than trajectory tracking systems. This is because GNC

systems follow a path that is not defined as a function of time. The way points that define

the path do not have an associated time requirement for the vehicle to reach the points.

On the other hand, the goal that we want to accomplish for the autonomous control of the

VideoRay Pro III is the ability to drive the vehicle to track a pre-defined trajectory, which

is defined by a series of way points associated with time.
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Another drawback for the GNC systems is loss of stability, which is possible if the

control law is not sufficiently responsive compared to the dynamics of the guidance law.

Explicit stability conditions could be derived with extensive use of bifurcation theory,

center manifold reduction and integral averaging. A great deal of effort is required to

achieve stability for GNC systems.

Model-Based Direct-Lyapunov Stability Approach

The classical approach for trajectory tracking of underactuated marine vehicles utilizes lo-

cal linearization and coordinate decoupling to steer the same number of degrees of freedom

as the number of available control inputs [9]. Alternative approaches include the lineariza-

tion of the vehicle error dynamics about trajectories combined with gain scheduling [19].

The basic limitation of these approaches is that the stability is only guaranteed in a neigh-

borhood of the selected operating points. Moreover, performance can suffer significantly

when the vehicle executes maneuvers that emphasize its nonlinearity and cross-couplings.

Another method is to consider the kinematics of the vehicle and design a time-varying

control law for the surge and yaw inputs [27] to follow a feasible trajectory defined with

line segments and circle arcs. Under this controller, the errors in position and orientation

with respect to the reference trajectory is practically globally exponentially stabilized to

zero.

These approaches suffer from the drawback that the vehicle’s dynamics usually ex-

hibit complex nonlinear terms with significant uncertainty, making the task of computing

a feasible trajectory hard. Fortunately, only the need to track the position rather than

the state-space trajectory is desired in practical applications. Motivated by this consid-

erations, in [3] Aguiar and Hespanha proposed a model-based direct-Lyapunov stability

method to the position tracking problem for a fairly general class of underactuated au-

tonomous vehicles that is applicable to motion in either two or three dimensional spaces.

The control algorithm proposed builds on iterative Lyapunov-based techniques and it was

shown to yield global stability and exponential convergence of the position tracking error

to a neighborhood of the origin that can be made arbitrarily small. Furthermore, the

desired trajectory does not need to be specially chosen. In fact, it can be any sufficiently

smooth bounded curve parameterized by time. In this method, an integrator backstepping
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technique is used to develop the control law to perform position tracking.

Since our goal is for the VideoRay Pro III to track a position trajectory without tracking

a desired bearing, this model-based direct-Lyapunov stability approach is applicable. We

will develop a trajectory tracking algorithm based on this approach, and the resulting

closed loop system can be proven Lyapunov stable.

4.1.3 Bearing Control

Sliding mode control has been applied successfully in the control of underwater vehicles with

a series of single-input single-output controllers [39, 40, 38]. All these experiments show

that sliding mode controllers have significant advantages to traditional linear controllers.

The main advantange for sliding mode control is that it is robust when there exists much

uncertainty for the model parameters and the disturbance from environment is relatively

high.

We will apply sliding mode control for the bearing and depth control of the VideoRay

Pro III.

4.2 Planar Trajectory Tracking Control Design

In this section we will develop a control law to allow the VideoRay Pro III to track a

horizontal planar position trajectory Φ(t) defined by

Φ(t) =

[

x(t)

y(t)

]

.

The key step in the approach is to apply the backstepping technique to track only

two position variables instead of the entire three dimensional configuration [x, y, ψ] in the

horizontal plane, based on the work by Aguiar et al. in [2]. However, Aguiar et al. did

not consider in their vehicle’s model the quadratic damping terms, which are significant in

our application. We developed the trajectory tracking controller with the quadratic drag

terms considered in the model.

The next step is to select the surge force X and yaw torque N so that the control inputs

appear one at a time as we iterate the backstepping procedure. The resulting control law



Controller Design 59

can be proven globally stable with the condition that the actuator never saturates.

We will start by describing the kinematic and dynamic equations for the VideoRay Pro

III, followed by the formulation of the corresponding problem of planar trajectory tracking

control. Finally, we will derive the solution to this problem by utilizing an integrator

backstepping technique.

Vehicle Modeling

From Chapter 2, the general kinematic equations and dynamic equations of motion of

the vehicle can be developed using an earth-fixed coordinate frame {U} and a body-fixed

coordinate frame {B} that are depicted in Figure 4.2.

xU

yU yB

xB u
v

ψ

r

{U}

{B}

Figure 4.2: Body-fixed {B} and earth-fixed {U} coordinate frames

In the horizontal plane, the kinematic equations of motion for the vehicle can be reduced

as:

ẋ = u cosψ − v sinψ, (4.1)

ẏ = u sinψ + v cosψ, (4.2)

ψ̇ = r (4.3)

where:

x = Cartesian coordinate of vehicle’s center of mass, expressed in the {U} frame;
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y = Cartesian coordiante of vehicle’s center of mass, expressed in the {U} frame;

u = surge speeed in the {B} frame;

v = sway speed in the {B} frame;

ψ = vehicle’s orientation, expressed in the {U} frame;

r = ψ̇ vehicle’s angular speed.

Therefore, the kinematic equations and the dynamic equations 2.23, 2.24 and 2.25 can

also be written in matrix format as:

ṗ = R(ψ)ν, (4.4)

ψ̇ = r, (4.5)

Mν̇ = −S(r)Mν +Dν(ν)ν + gX, (4.6)

Jṙ = dr(r)r +N. (4.7)

where

p =

[

x

y

]

is the position vector, expressed in the {U} frame;

ν =

[

u

v

]

is the velocity vector, expressed in the {B} frame;

R(ψ) =

[

cosψ − sinψ

sinψ cosψ

]

is the rotation matrix;

S(r) =

[

0 −r

r 0

]

is a skew-symmetric matrix;

M =

[

m11 0

0 m22

]

is the mass matrix;

Dν(ν) =

[

Xu +Xu|u||u| 0

0 Yv + Yv|v||v|

]

is the damping coefficient matrix, which is

negative definite and time varying;

dr(r) = Nr +Nr|r||r|, which is negative definite and time varying;

g =

[

1

0

]



Controller Design 61

From the equations of motion above, we see that the VideoRay Pro III is underactuated

because there is no available control in the sway direction.

Problem Formulation

Given the kinematic and dynamic equations of motion, the problem of trajectory tracking

for the VideoRay Pro III can be formulated as following:

Suppose that pd : [0,∞) → R2 be a given sufficiently smooth time-varying desired

trajectory with its first three derivatives bounded. We are going to design a controller

such that all the closed-loop signals are globally bounded and the tracking error ||p− pd||

converges exponentially to a neighborhood of the origin that can be made arbitrarily small.

4.2.1 Backstepping Technique

In this section, we are going to design a control law for the VideoRay Pro III to track

trajectories. The integrator backstepping technique will be used.

Step 1: Coordinate Transformation

The tracking error e can be expressed in the body-fixed frame {B}, using the coordinate

transformation from earth-fixed coordinate frame {U}, as:

e = R(ψ)T (p− pd), (4.8)

and since Ṙ(ψ) = S(r)R(ψ), ṘT (ψ) = −S(r)RT (ψ) and ν = RT (ψ)ṗ, the dynamics ė can

be expressed as

ė = −S(r)e− R(ψ)T ṗd + ν. (4.9)

where

p =

[

x

y

]

position of the vehicle;

pd =

[

xd

yd

]

desired position of the vehicle;

S(r) is the skew-symmetric matrix.

The block diagram of the error dynamics is depicted in Figure 4.3.
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+

eėν

−S(r)e − RT (ψ)ṗd

∫

Figure 4.3: Block diagram for error dynamics ė

Step 2: Convergence of e

We define the Lyapunov function V1 as:

V1 =
1

2
eT e (4.10)

and since eTS(r)e = 0, its time derivative is computed as:

V̇1 = eT ė = eT [ν − R(ψ)T ṗd] (4.11)

We would like to use ν as a virtual control to make V̇1 negative, so that the tracking error

e will converge to zero exponentially fast. This could be achieved if the virtual control

input ν could be set equal to θ, which is defined as:

θ := R(ψ)T ṗd −KeM
−1e (4.12)

where Ke is a positive constant.

We define a new error variable z1 as:

z1 := ν − θ = ν − R(ψ)T ṗd +KeM
−1e. (4.13)

Hence,

ν = R(ψ)T ṗd −KeM
−1e+ z1. (4.14)

Rewrite the tracking error dynamics ė as, using Equation 4.9 and 4.14:

ė = −S(r)e−KeM
−1e+ z1. (4.15)
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We can now rewrite V̇1 as:

V̇1 = −Kee
TM−1e+ eT z1 (4.16)

We see that if we can drive z1 to zero, we can guarantee that the tracking error e converge

to zero exponentially fast.

By adding and subtracting θ, the error dynamics is now depicted in Figure 4.4.

z1

−θ

+

eėν ∫
+

−S(r)e − RT (ψ)ṗd + θ

Figure 4.4: Introducing θ

Step 3: Backstepping for z1

Before backstepping for z1 term, the block diagram of z1 and the vehicle’s dynamics are

depicted in Figure 4.5.

∫
+

ν

+

z1

−θ

+−S(r)Mν M
−1

g Dνν

ν̇

ν

X

r

Figure 4.5: Before backstepping for z1
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By using equations 4.6, 4.12, 4.14, and 4.15, the z1 dynamics can be written as:

Mż1 = Mν̇ −Mθ̇

= Mν̇ −M [Ṙ(ψ)T ṗd +R(ψ)T p̈d −KeM
−1ė]

= Mν̇ +MS(r)R(ψ)T ṗd −MR(ψ)T p̈d +Keė

= Mν̇ +MS(r)R(ψ)T ṗd −MR(ψ)T p̈d +Ke[−S(r)e−KeM
−1e+ z1]

= −S(r)Mν +Dνν + gX

+MS(r)R(ψ)T ṗd −MR(ψ)T p̈d +Ke[−S(r)e−KeM
−1e+ z1]

= [−S(r)M +Dν ][R(ψ)T ṗd −KeM
−1e+ z1] + gX

+MS(r)R(ψ)T ṗd −MR(ψ)T p̈d +Ke[−S(r)e−KeM
−1e+ z1]

= −S(r)Mz1 +Dνz1 + gX + h(e, ψ, z1, ṗd, p̈d) (4.17)

where

h = DνR(ψ)T ṗd −KeDνM
−1e−MR(ψ)T p̈d +Kez1 −K2

eM
−1e

From equation 4.17, it turns out that it will not always be possible to drive z1 to zero.

Instead, we will drive z1 to a small constant δ, which could be made arbitrarily small. To

achieve this we define a new error variable ϕ,

ϕ := z1 − δ (4.18)

where

δ =

[

δ1

δ2

]

Consider the augmented Lyapunov function V2:

V2 := V1 +
1

2
ϕTMTMϕ. (4.19)

The time derivative of V2 is written as:

V̇2 = −Kee
TM−1e+ eT δ + ϕTMTDνϕ+ ϕT [MTB(δ)µ+MTh+MTDνδ + e] (4.20)

where
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B(δ) =

[

1 m22δ2

0 −m11δ1

]

µ =

[

X

r

]

Dν is negative definite.

Here, µ can be regarded as a virtual control that we would like to use to make V̇2 negative.

This goal could be achieved if we could set µ equal to α, which is defined as:

α := −B(δ)−1[h(e, ψ, z1, ṗd, p̈d) +Dνδ +M−1e+KϕM
−1ϕ] (4.21)

where

Kϕ =

[

Kϕ1 0

0 Kϕ2

]

, Kϕ1 > 0, Kϕ2 > 0.

So far, in virtual control µ, we actually get the real control X. If we set X as:

X =
[

1 0
]

α (4.22)

and r as:

r =
[

0 1
]

α, (4.23)

we will be able to drive z1 to the small constant δ.

Still, we have a virtual control r. Let’s introduce the error variable z2 as:

z2 := r −
[

0 1
]

α. (4.24)

We can rewrite V̇2 as:

V̇2 = −Kee
TM−1e+ eT δ + ϕTMDνϕ− ϕTKϕϕ+ ϕTMBb(δ)z2 (4.25)

where Bb(δ) is the second column of B(δ).

After backstepping for z1, the system is depicted as in Figure 4.6, where we use real

control input of

X =
[

1 0
]

α (4.26)
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∫

ν

+

z1

−S(r)Mν M
−1

g Dνν

ν̇r

+ + + +

+

X = [1 0]α θ

−[0 1]α [0 1]α −θ̇

z2 ż1

Figure 4.6: After backstepping for z1

and virtual control input of

r =
[

0 1
]

α. (4.27)

Examining V̇2, we see that although V̇2 is not necessarily always negative, it will be

sufficient to achieve practical stability.

Step 4: Backstepping for z2

Before backstepping for z2, the dynamical system is depicted as in Figure 4.7.

∫
+

z2

+

−[0 1]α

r

J
−1

drr

ṙN

Figure 4.7: Before backstepping for z2
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Consider a third Lyapunov function V3 as:

V3 := V2 +
1

2
Jz2

2 (4.28)

The time derivative of V3 is computed as:

V̇3 = −Kee
TM−1e+ eT δ + ϕTMDνϕ− ϕTKϕϕ+ drz

2
2

+z2(ϕ
TMBb(δ) + dr

[

0 1
]

α−
[

0 J
]

α̇ +N) (4.29)

where Dν is negative definite, dr < 0.

If we then choose

N = −ϕTMBb(δ) − dr

[

0 1
]

α +
[

0 J
]

α̇− kz2
z2, (4.30)

the time derivative of V3 becomes

V̇3 = −Kee
TM−1e+ eT δ − ϕTMDνϕ− ϕTKϕϕ+ drz

2
2 − kz2

z2
2 (4.31)

The z2 dynamics after backstepping is depicted in Figure 4.8.

∫
+

z2

+

−[0 1]α
r

J
−1

drr

ṙN
+

[0 1]α

ż2

Figure 4.8: Before backstepping for z2

Again, note that although V̇3 is not necessarily always negative, this will be sufficient

to achieve practical stability.
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Up to now, we have developed the control law for surge force X and yaw torque N as

in Equation 4.26 and Equation 4.30. By selecting values for the control gains of Ke, Kϕ

and kz2
we can adjust the performance of this trajectory tracking controller. Parameters

δ1 and δ2 can be used to adjust the controller accuracy. Although theoretically they can

be made arbitrarily small, it is usually set to a value that will not cause the controller to

be overly sensitive to system noise.

4.2.2 Stability of the PTT Controller

It can be proved, in [3] that given a three-times continuously differentiable time-varying

desired trajectory pd : [0,∞) → R2 with its first three derivatives bounded, consider

the closed-loop system
∑

consisting of the underactuated vehicle model and feedback

controller,

1. for any initial condition the solution to
∑

exists globally, all closed-looop signals are

bounded, and the tracking error ||p(t) − pd(t)|| satisfies

||p(t) − pd(t)|| ≤ e−λtc0 + ε, (4.32)

where λ, c0, ε are positive constants. From these, only c0 depends on initial condi-

tions.

2. By appropriate choice of the controller parameters ke, Kϕ, kz2, any desired values for

ε and λ in Equation 4.32 can be obtained.

4.3 Bearing and Depth Control

In this section, we will derive the sliding mode controller for bearing and depth control for

VideoRay Pro III.

By neglecting all kinematic and dynamic cross-coupling terms and using substitution

of ż = w and ψ̇ = r for Equation 2.25 and Equation 2.26, we obtain a general 2nd-order

system model for the heave motion and yaw motion:

m33z̈ + Zwż + Zw|w|ż|ż| = Z (4.33)

m66ψ̈ +Nrψ̇ +Nr|r|ψ̇|ψ̇| = N (4.34)
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Note that the heave and yaw motion have the equation of motion of the same structure.

We will use mη̈ + d1η̇ + d2η̇ |η̇| = τ as a general form for the heave and yaw motion to

derive the sliding mode control law.

4.3.1 SMC for Bearing and Depth Control

Consider the second-order system:

mη̈ + d1η̇ + d2η̇ |η̇| = τ (4.35)

where m, d1 and d2 are system parameters that are not well known.

Tracking Error and Sliding Surface

The tracking error is defined as:

e = η − ηd (4.36)

where ηd is the desired position.

We define a scalar measure of tracking error

s = ė+ λe (4.37)

where e is the tracking error, and λ > 0 is the control bandwidth.

Suppose we can design a control law that constrains the motion of the system to the

manifold (or surface)

s = ė+ λe = 0, (4.38)

This surface is called sliding surface.

On this surface, the motion is governed by:

ė = −λe. (4.39)

The solution to this equation is

e(t) = exp(−λ(t− t0))e(t0), (4.40)
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Choosing λ > 0 guarantees that η tends to zero as t tends to infinity and the rate of

convergence can be controlled by choice of λ. Actually, the error trajectory will reach

the time-varying sliding surface in finite time for any initial condition e(t0) and then slide

along the sliding surface towards e(t) = 0 exponentially. The motion of the system on the

sliding surface s = 0 is independent of the original system. The sliding surface is depicted

in Figure 4.9. Once the system gets on the sliding surface, it cannot leave it.

s = 0

e

ė

Figure 4.9: Graphical interpretation of sliding surface

Hence, the control objective is reduced to finding a nonlinear control law to ensure that:

lim
t→∞

s(t) = 0. (4.41)

Control Law

In finding out the control law, the direct Lyapunov method is used.
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Consider the dynamics of s:

mṡ = më+mλė

= mη̈ −mη̈d +mλė

= τ − d1η̇ − d2η̇|η̇| −mη̈d +mλė

= −d2|η̇|(η̇ − η̇d + λe) + [τ −m(η̈d − λė) − d1η̇ − d2|η̇|(η̇d − λe)]

= −d2|η̇|(ė+ λe) + [τ −m(η̈d − λė) − d1η̇ − d2|η̇|(η̇d − λe)]

= −d2|η̇|s+ [τ −m(η̈d − λė) − d1η̇ − d2|η̇|(η̇d − λe)] (4.42)

Define a virtual reference ηr satisfying:

η̇r = η̇d − λe (4.43)

and plug it into Equation 4.42, we get:

mṡ = −d2|η̇|s+ [τ −mη̈r − d1η̇ − d2|η̇|ηr] (4.44)

Consider the Lyapunov function candidate:

V =
1

2
ms2 (4.45)

Differentiating V with respect to time yields

V̇ = mṡs

= −d2|η̇|s
2 + s [τ −mη̈r − d1η̇ − d2|η̇|η̇r] (4.46)

In order to make V̇ negative, we take the control law to be

τ = m̂η̈r + d̂1η̇ + d̂2|η̇|η̇r −Kds−Ksgn(s) (4.47)

where

m̂ = the estimates of m,

d̂1 = the estimates of d1,

d̂2 = the estimates of d2,
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Kd = damping coefficient, Kd > 0,

K = switching gain,

sgn(s) =



















1 if s > 0

0 if s = 0

−1 otherwise

This control law yields

V̇ = −(Kd + d2|η̇|)s
2 + (m̃η̈r + d̃1η̇ + d̃2|η̇|η̇r)s−K|s| (4.48)

where

m̃ = m̂−m,

d̃1 = d̂1 − d1

d̃2 = d̂2 − d2

The switching gain K can be found by applying the requirement of V̇ < 0. We select the

particular choice of

K ≥ |m̃η̈r + d̃1η̇ + d̃2|η̇|η̇r| + µ (4.49)

where µ > 0. This implies that

V̇ ≤ −(Kd + d2|η̇|)s
2 − µ|s| ≤ 0 (4.50)

which further implies that s is bounded. Finally, applying Barbalat’s lemma [20] yields

the result of s→ 0 and thus e→ 0 as t→ ∞.

In summary, the sliding mode control signal is:

τ = m̂η̈r + d̂1η̇ + d̂2|η̇|η̇r −Kds−Ksgn(s). (4.51)

The motion of the system consists of a reaching phase during which the system trajectory

starting off the manifold s = 0 moves towards it and reaches it in finite time, and a following

sliding phase during which the motion is confined to the manifold s = 0 and the dynamics

of the system are represented by the model ė = −λe.

The striking feature of sliding mode control is its robustness with respect to system

parameters. We only need to know the uppper bound |m̃η̈r + d̃1η̇+ d̃2|η̇|η̇r| and during the

sliding phase, the motion is completely independent of system parameters.
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Chattering

Because of imperfections in switching devices and delays, sliding mode control suffers from

chattering. In Figure 4.9, the system trajectory starts off the sliding surface s = 0. It first

hits the manifold at some point a. In ideal sliding mode control, the trajectory should start

sliding on the manifold from point a. In reality, there will be a delay between the time the

sign of s changes and the time the control switches. During this delay period, the trajectory

crosses the manifold. When the control switches, the trajectory reverses its direction and

heads again toward the manifold. Once again it crosses the manifold, and repetition of

this process creates the “zig-zag” motion known as chattering. See Figure 4.10.

Chattering results in low control accuracy, high heat losses in electrical power circuits,

and high wear of moving mechanical parts. It may also excite unmodeled high-frequency

dynamics, which degrades the performance of the system and may even lead to instability.

Practically, for the controller to perform properly, elimination of chattering is desirable.

One method to eliminate chattering is to replace the sgn(·) function in the control law with

a saturation function sat(·) to smooth out the discontinuity inside a boundary layer [30]:

sat(s/φ) =







sgn(s) if |s/φ| > 1

s/φ otherwise
(4.52)

where φ is the boundary layer thickness.

Furthermore, we will examine the derivative of the Lyapunov function after replacing

sgn(·) with sat(·) for both inside and outside the boundary layer:

• Inside the boundary layer: |s/φ| ≤ 1

V̇ = −(Kd + d|η̇|)s2 + (m̃η̈r + d̃1η̇ + d̃2|η̇|η̇r)s+Ks
s

φ

≤ −(Kd + d|η̇| +
µ

φ
)s2 (4.53)

• Outside the boundary layer: |s/φ| > 1

V̇ = −(Kd + d|η̇|)s2 + (m̃η̈r + d̃1η̇ + d̃2|η̇|η̇r)s+Kssgn(s)

= −(Kd + d|η̇|)s2 − µ|s| (4.54)
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s = 0

x

ẋ

Figure 4.10: Chattering as a result of imperfect control switchings

For better accuracy, we need to choose φ as small as possible, but too small a value of

φ will induce chattering in the presence of time delays or unmodeled fast dynamics.

4.4 Summary

In this chapter, a planar trajectory tracking in the x-y plane motion was developed us-

ing the integrator backstepping technique. This controller is Lyapunov stable with the

condition that the actuator will never saturate. The depth and bearing controller were

implemented using sliding mode control, which is robust when the nonlinear system model

has uncertainty in its parameters. The planar trajectory tracking controller and depth

controller work together as a 3-D trajectory tracking controller because the planar motion

and the vertical motion of the vehicle are decoupled. The controllers will be validated by

simulation and actual tests on the VideoRay Pro III in the next Chapter.



Chapter 5

System Evaluation

In this chapter an analysis of controller performance is presented from simulations and

experiments. We start by describing the system architecture that we use for the trajectory

tracking control, followed by a description of the equipment used in the experimental tests.

Finally, the test results will be presented.

5.1 System Architecture

The block diagram of the trajectory tracking system used for the VideoRay Pro III is shown

in Figure 5.1. It primarily consists of a trajectory reference input, a control system, and a

physical system. The control system is composed of a planar trajectory tracking controller,

a depth controller, a bearing controller, a command conversion and an unscented Kalman

filter. These controllers were described in Chapter 4. The unscented Kalman filter was

described in Chapter 3.

The physical system is composed of a VideoRay Pro III ROV system and a Pilot

underwater acoustic positioning system.

The working principle of this entire trajectory tracking system is described as follows:

1. The control system takes the reference trajectory and decides in which mode it will

run. The reference trajectory contains the horizontal position information x, y and

their first three time derivatives:ẋ, ẍ,
...
x , ẏ, ÿ and

...
y .

75
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P l a n a rT r a j e c t o r yT r a c k i n gC o n t r o l l e r
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U n s c e n t e dK a l m a nF i l t e r

V i d e o R a yP r oS e n s o r s

C o m m a n dC o n v e r s i o n

D e s e r t S t a rS y s t e m
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C o n t r o l S y s t e m P h y s i c a l S y s t e m[x̂, ŷ, ẑ, ψ̂, û, v̂, ŵ, r̂]

[X, Z, N ]

[x, y, z, ψ]

[z, ψ]

[x, y, z]

X

Z

N

[X, Z, N ]

N

Figure 5.1: Architecture of Entire Tracking System for VideoRay Pro III
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2. The control system then computes the control input based on the reference trajectory

and the state feedback from the unscented Kalman filter;

3. The control system converts the control input of surge force X, yaw torque N and

heave force Z into the thruster control command and sends them to the VideoRay

Pro III.

4. Meanwhile, the unscented Kalman filter predicts the system states [x y z ψ u v w r]

based upon the control input. Whenever there are measurements from the physical

system coming in, the UKF corrects the system states with the knowledge of the

measurement models.

The controller works at a sampling frequency of 25 Hz. The sensor system on board

VideoRay Pro III provides the information of heading angle ψ and depth z, also at the

bandwidth of 25 Hz. The Pilote acoustic positioning system works at a lower bandwidth

of about one measurement every 1.5 to 3 seconds, depending on the distance of the sonar

transducers.

The performance of the trajectory tracking system will be investigated by using simu-

lations and experiments in the following sections.

5.2 Simulation Results

The controller performance was studied by computer simulation. In this simulation, the

vehicle is initially located at the origin (0, 0) with heading angle ψ = 0. The reference

trajectory is a circle with the following parameters: radius=2.5 m, motion speed is 0.3

m/s, depth=1 m, starting point (2.5, 0) at time t0 = 0 and stopping time at tf = 45.

The process noise for the vehicle has the covariance of Q = diag(0.05, 0.05, 0.05) for its

three thrusters. The measurement variances for heading angle and depth are obtained by

tests, which are 0.05 rad2 and 0.03 m2 respectively. The variance for position measurement

from the Pilot acoustic system is given by the manufacturer as 0.4 m2, which is also

confirmed by test. The heading and depth measurement will be obtained at the frequency

of 25 Hz, while the position information from the Pilot system will come out once every 2

seconds.
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The simulation result is shown in Figure 5.2. The desired trajectory in x-y plane is

shown with dashed blue line. The position measurements are shown with asterisks. The

red dash-dot line shows the simulated vehicle trajectory that is calculated with the 6-DOF

nonlinear dynamic model of the VideoRay Pro III developed in Chapter 2. The green solid

line shows the estimated vehicle position calculated by the UKF based on the decoupled

dynamic model in Equation 2.23, 2.24 and 2.25.

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

x

y

reference
estimates
simu. results
measurements

Figure 5.2: Planar trajectory tracking simulation

Figure 5.3 shows the depth and yaw position in this simulation. Figure 5.4 shows the
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Figure 5.3: Depth and bearing in simulation
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estimated covariance computed by the UKF. The controller output forces and torque are

shown in Figure 5.5.

From the simulation, we see that the proposed controller makes the tracking error

converge to a very small value. Therefore, the performance of the tracking error system is

satisfactory in simulation.

5.3 Experimental Results

5.3.1 Experimental Setup

We used the VideoRay Pro III micro ROV as the test vehicle. It is propelled by two

horizontal thrusters for surge and yaw motion control, and a vertical thruster for heave

motion control. The dynamics of the vehicle are underactuated and input constrained, and

exhibit highly nonlinear behavior. This makes it challenging to control the vehicle to track

a predefined trajectory in real-time.

We implemented the planar trajectory tracking controller and the sliding mode con-

troller for depth and bearing tracking on the VideoRay Pro III micro ROV. The control

program is implemented in C++ running on a laptop which communicates with the Vide-

oRay’s control console through a serial communication. The control bandwidth is about

25Hz, i.e., the control sampling time is 0.04 seconds. The depth and heading sensors on

board VideoRay Pro III also provide us the measurement with bandwidth of 25 Hz.

The Pilot acoustic positioning system was used for the tests. The system consists of

two principle parts: a surface station and an ROV transponder. The surface station has

three sonar transducers attached and put into the water over the side of the boat. The

transducers form a triangle which is used to locate the ROV. The surface station will track

the underwater vehicle that is equipped with a ROV transponder.

Figure 5.6 shows how the Pilot system works. The surface station is on the boat.

The three cabled sonar transducers are lowered over the side. The ROV transponder is

mounted on the underwater vehicle. To find the ROV position, the surface station transmits

an interrogate signal through transducer #1. This signal travels through the water and

reaches the ROV mounted transponder, which replies with a message that includes its
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current depth. The reply travels back to all three surface station transducers. The surface

station measures the time elapsed between the transmission of the interrogate and the

reception of the ROV reply at transducers #1, #2 and #3. Because the speed of sound in

water is well known, these signal run times are easily converted to distance (d1, d2 and d3.

Finally, calculation with trigonometry yields the position of the ROV.

The tests were conducted in the swimming pool in the University of Waterloo. We

used the Pilot underwater acoustic system as the position system. Three cabled sonar

transducers are lowered over the three corners of the pool constructing a triangle. A

sonar transponder was mounted on the VideoRay Pro III ROV to receive and respond the

acoustic signal from the three cabled sonar transducers.

T r a n s d u c e r # 2
T r a n s d u c e r # 1

T r a n s d u c e r # 3
p r i m a r y b a s e l i n e second aryb aseli ne

t r a c k i n gt a r g e t t r a n s p o n d e r
Figure 5.6: Target position determined by “Short Baseline” method
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5.3.2 Test Results

Seven tests were conducted with the desired trajectory being straightline starting from a

position of (3 m, 0) in the x-y plane and moving to the target position of (3 m, 7.8 m); Once

the vehicle arrives the target position, it returns back and moves to the original starting

points. During the entire trajectory, the desired depth is set to 0.5 m below water surface.

One of these tests is shown in Figure 5.7, where the arrow shows the moving direction of

the VideoRay Pro III.

The statistics of the test results are listed in Table 5.1. The results show that the

controller works well in tracking the trajectory. The mean error of the actual trajectory is

within 0.2 m. The maximum variance is 0.245 m.

experiment # mean value of x variance standard deviation

1 3.19 0.185 0.43

2 2.91 0.245 0.50

3 3.10 0.017 0.13

4 3.04 0.019 0.14

5 3.19 0.032 0.18

6 2.89 0.070 0.27

7 2.97 0.024 0.15

Table 5.1: Straightline test results

The reference and actual trajectory tracked for one of the tests are shown in Figure 5.8.

The VideoRay Pro III was launched at (2 m, 0), which is 1 meters off the desired starting

point. Note that the vehicle moves towards the reference trajectory and eventually con-

verges to a neighborhood of the trajectory. The controller parameters were first obtained

by simulation and then fine tuned by trial and error in the experiments. The parameters

that we used in the expermients are:

• The planar trajectory tracking controller parameters:

ke = 4.0, δ1 = −0.01, δ2 = −0.001, kφ1
= 20, kφ2

= 20 and kz2
= 0.1.

• The depth controller parameters:

λ = 4.0, η = 0.1, kd = 8.0, φ = 0.01.
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Figure 5.7: Pool test
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• The heading controller parameters:

λ = 2.0, η = 0.01, kd = 0.05, φ = 0.02.

Note that the Pilot acoustic positioning system returns the position information with

relatively large noise (with standard deviation of about 0.15 m). Also, not only the position

measurements are noisy, they are coming up at vary time intervals as well. These noisy

measurements are filtered out throught the unscented Kalman filter. In the plots of position

variance shown in Figure 5.9 and Figure 5.11, we can see that the variances grow when

there are no measurements coming in. At the moment the measurement is obtained, the

position covariance is reduced as a result of the sensor fusion achieved through the UKF.

Figure 5.10 shows the depth trajectory and the yaw angle. The tests show that the

performance of the trajectory tracking controller relies heavily on the accuracy and per-

formance of the compass. However, the compass is affected in a large extent by the en-

vironment, especially for the indoor test. As we can see, when the VideoRay Pro III is

heading forward, the compass response is relatively smooth. When the vehicle is moving

backwards returning to the starting point, the response of the compass is very sensitive to

the environment and exhibits a large error.

In Figure 5.10, we see that the depth sensor has a resolution of about 0.175 meters.

This characteristic of the depth sensor is compensated by use of the UKF. Hence, the depth

estimates is smoothed out, and the resulting performance of the depth control is satisfied.

Two other field tests were conducted in Paradise Lake in Waterloo. In these tests, no

positioning system was used. The reference trajectory is given as a half figure 8. The

vehicle will only use its compass for navigation. The results are shown in Figure 5.12

and Figure 5.13. In Figure 5.12(a), the vehicle’s position estimates match the reference

trajectory considerably well. In Figure 5.13(a), the vehicle’s estimates match the reference

very well except when in the last part the vehicle got stuck in weeds.
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Figure 5.8: Straight line test trajectory: The reference trajectory is a straightline starting

from (3, 0) to (3, 7.8) and then returning back along the same line to the starting point; The

green asterisks show the Pilot measurements as the vehicle is moving along the trajectory.

The blue line segments show the estimates of the vehicle’s position achieved through the

UKF.
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Figure 5.12: Figure 8 test #1
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Figure 5.13: Figure 8 test #2



Chapter 6

Conclusions

In this work, we presented the development and analysis of a dynamical vehicle model as

well as a trajectory tracking controller for the VideoRay Pro III ROV.

With respect to vehicle modeling, our basic approach was to model the vehicle as

having constant inertial and added mass characteristics, decoupled vehicle motion due to

its symmetric geometric profile, and low operating speed. The hydrodynamic coefficients of

the model were determined by both theoretical and experimental approaches. The model

was verified by experiments and exhibited adequate accuracy for the design of trajectory

tracking controller.

A state estimator was designed using the unscented Kalman filter. Since the vehicle’s

model exhibits high non-linearity and the vehicle has a large operating range, the unscented

Kalman filter was used to overcome several drawbacks that come with the traditional

extended Kalman filter, which has been widely used for state estimation.

With the decoupled vehicle model developed, we designed a trajectory tracking con-

troller using the integrator backstepping technique, based on the work done by Aguiar et

al. [2]. As a result, we obtained a Lyapunov stable trajectory tracking controller, consider-

ing the quadratic damping terms in the dynamical model which were neglected by Aguiar

et al.. For the depth and heading control, we developed a sliding mode controller which

provided robust tracking control despite the the fact that the vehicle model may have

inaccurate parameters and may be subject to unmodeled disturbances during its mission.

The controllers were validated by simulation and experiments. For validation, we used
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the Pilot acoustic underwater positioning system as our position measuring device. In the

simulation, the closed-loop system was shown to be stable to track a feasible predefined

trajectory. In the experiments, we have shown that the controller was working well in

tracking a straight line trajectory. The tracking error was within a certain range that is

acceptable to the AUV of its category.

Currently, the controller developed heavily relies on the performance the onboard com-

pass to obtain bearing information. Unfortunately, the onboard compass exhibits high

nonlinearity measuring heading and is extremely affected by its working environment.

This made it difficult to control the vehicle in tracking the trajectory.

6.1 Future Work

As a result of the work performed in this project, serveral issues require further investiga-

tion. These include:

• Parameter error is inevitable in the developed dynamic model for the VideoRay Pro

III ROV. In particular, when the vehicle is outfitted with various sensors, such as

the sonar transponder that we have mounted, the vehicle model needs to be rebuilt

and reverified.

• Since the trajectory tracking controller relies heavily on the performance of heading

measuring compass, which in our experiment was exhibiting large noise in certain

directions, we need to find solutions to filter out the noise.

• Another approach to get relatively accurate heading measurement would be to use

a inertial measurement unit (IMU) to compensate for the compass noise, as well

as to use a scanning sonar to detect environmental features as reference point to

compensate for the compass errors.
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