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Abstract

Safety analysis is recognized as a fundamental problem in access control. It has been
studied for various access control schemes in the literature. Recent work has proposed an
administrative model for Temporal Role-Based Access Control (TRBAC) policies called
Administrative TRBAC (ATRBAC). We address ATRBAC-safety. We first identify that
the problem is PSPACE-complete. This is a much tighter identification of the computa-
tional complexity of the problem than prior work, which shows only that the problem is
decidable. With this result as the basis, we propose an approach that leverages an existing
open-source software tool called Mohawk to address ATRBAC-safety. Our approach is to
efficiently reduce ATRBAC-safety to ARBAC-safety, and then use Mohawk. We have con-
ducted a thorough empirical assessment. In the course of our assessment, we came up with
a “reduction toolkit,” which allows us to reduce Mohawk+T input instances to instances
that existing tools support. Our results suggest that there are some input classes for which
Mohawk+T outperforms existing tools, and others for which existing tools outperform
Mohawk+T. The source code for Mohawk+T is available for public download [11].
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Chapter 1

Introduction

Access control deals with whether a principal may exercise a privilege on a resource; a
user exercising a read privilege on a file. This is an important aspect of the security of a
system. Whether an attempted access is permitted is customarily specified in a policy.

Effecting and intuiting the consequences of changes to an access control policy is called
administration. An aspect of administration is delegation, with which a trusted admin-
istrator empowers another principal to change the policy in limited ways. Delegation is
used so administrative efficiency can scale with the size of an access control system.

With delegation arises the need for safety analysis, which has been recognized as a
fundamental problem in access control since the work of Harrison et al. [4]. The safety
analysis problem takes three inputs:

(1) Start State – is an instance of an access control policy,

(2) State Change Rules – is the set of administrative rules by which a policy can change,

(3) Security Query – a statement that can judge if the system is secure; typically whether
a particular user can obtain a particular privilege.

Safety Analysis returns ‘TRUE’ if the query can never become true, and ‘FALSE’
otherwise. That is, when the safety analysis returns ‘FALSE’, the system is deemed to be
unsafe because there exists a reachable state in which the user indeed has the privilege.
The reason is that the user’s acquisition of the privilege is presumably undesirable.
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t can disable No Rules

Figure 1.1: An example of the Start State component (referred to as TUA) of a TRBAC
policy is the figure on top. We assume that no role is enabled. Ignoring the time periods
on the edges gives us an example of the Start State component (referred to as UA) of
an RBAC policy. Example ARBAC and ATRBAC administrative rules are in the table.
Figure 1.2 and Figure 1.3 contain examples of safety queries.

An example of a security query is: Can an ‘External Consultant’ user ever obtain read
or write permissions to the Internal Documents Server? A ‘secure’ policy would ensure
that this state can never not occur by using the delegation rules provided in the policy.

Safety analysis has been addressed for various access control schemes in the literature.
Our focus is safety analysis in the context of Administrative Temporal Role-Based Access
Control (ATRBAC) [13]. ATRBAC is an administrative scheme for Temporal Role-Based
Access Control (TRBAC). TRBAC is Role-Based Access Control (RBAC) with temporal-
extensions. In RBAC, rather than assigning a user directly to a permission, we adopt
the indirection of a role. A user is authorized to a role, which in turn is authorized to
a permission. In TRBAC, a user’s ability to use their permission is limited to within a
certain time interval.

Furthermore, in TRBAC, a role may be annotated with time-intervals. The role is then
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Consulting
Physician DoctorDirector Surgeon

Alice Bob

Consulting
Physician DoctorDirector Surgeon

Alice revokes Bob
from Doctor 

Alice assigns Bob
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Figure 1.2: An ARBAC safety query for the example in Figure 1.1. We ignore the labels
on edges that pertain to time-intervals to get an example of UA in RBAC. The ARBAC
safety query, “could Bob become a member of the role Consulting Physician?,” is true.
Alice first revokes him from the role Doctor and then assigns him to the role Consulting
Physician.

said to be active during those time-intervals. A user is able to exercise permissions she
acquires via a role when the role is active only.

In Figure 1.1, we show an example of a TRBAC policy. It can be seen as an example
of an RBAC policy by simply ignoring the references to time periods such as “5 am – 8
pm.” We also show instances of administrative rules in ARBAC and ATRBAC syntax.
We discuss ATRBAC more precisely in Chapter 2.1. ATRBAC is an extension of Admin-
istrative RBAC (ARBAC) [8]. ARBAC is used to administer RBAC, i.e., provides syntax
for administrative delegation rules. ATRBAC specifies how two components of a TRBAC
access control policy can change: (1) the temporal assignment of a user to a role, and, (2)
the temporal activation/enablement of a role.

In the example in Figure 1.2, as the caption for the figure says, with the RBAC policy
in the figure as the start-state, the ARBAC safety query, “could Bob become a member of
Consulting Physician?” is true. However, the safety query, “could Bob simultaneously be
a member of Consulting Physician and Doctor?” is false.

Also, for the example in Figure 1.3, with the TRBAC policy as the start-state, the
ATRBAC-safety query, “could Bob become a member of Consulting Physician between 8
am and noon?” is true. The sequence of actions that must occur for that query to become
true, however, is somewhat different from the ARBAC case. In particular, the Director
role must first be enabled, as the t can assign and t can revoke rules that must be exercised
to make that query true have Director as the administrative role.
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Figure 1.3: An ATRBAC safety query for the example in Figure 1.1. The ATRBAC
safety query “could Bob become a member of the role Consulting Physician between 8 am
and noon?,” is true, provided we adopt a version of the problem that does not require the
Consulting Physician role to be enabled. The role Director is first enabled (shown shaded
in the second state in the figure). This allows Alice to carry out administrative tasks.
Alice then exercises the t can revoke rule so Bob is revoked from the Doctor role for 8 am
– noon. She then is able to assign him to the Consulting Physician role for 8 am – noon.
This last state-change is not shown in the above figure. “Could Bob become a member of
the role Consulting Physician between 1 pm and 5 pm?,” is an example of a safety query
that is not true.

1.1 Prior work

There is considerable prior work on safety analysis in various contexts. See, for example,
the work of Harrison et al. [4]. It is beyond the scope of this paper to discuss all of those
pieces of work. We are aware of two pieces of prior work on ATRBAC-safety. The work
of Uzun et al. [13] is, to our knowledge, the first work to propose ATRBAC and pose the
safety-analysis problem for it. In addition, that work discusses the design of two software
tools, TREDROLE and TREDRULE to address instances in practice.

The work of Ranise et al. [7] syntactically generalizes some aspects of the version of
ATRBAC from Uzun et al. [13]. It then presents a result on the computational-complexity
of ATRBAC-safety — it proves that the problem is decidable. It then discusses the design,
construction and evaluation of a different software tool, ASASPTIME, to address problem
instances in practice.
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1.2 Our work

We make both theoretical and practical contributions in the context of ATRBAC-safety.
We observe that prior work refers to a number of different versions of ATRBAC-safety.
We carefully distinguish the various versions. This is important to validate prior claims
regarding the non-existence of an efficient reduction from one version to another, and for
a meaningful empirical assessment. For our theoretical analysis, for each feature of the
problem, we adopt the more general form across the two versions from prior work [7, 13].

Our main theoretical result is a much tighter identification of the complexity-class in
which ATRBAC-safety lies than prior work — we show that it is PSPACE-complete.
PSPACE is the class of decision problems that can be solved by a (deterministic) Turing
machine given space only polynomial in the size of the input.

We show the upper-bound, i.e., that the problem is in PSPACE, by constructing a non-
deterministic Turing machine that decides instances and uses space only polynomial in the
size of the input, and then leveraging the corollary to Savitch’s theorem that NSPACE =
PSPACE [10]. NSPACE is the class of decision problems that can be solved by a non-
deterministic Turing machine given space only polynomial in the size of the input. We infer
the lower-bound, i.e., that the problem is PSPACE-hard, by observing that ATRBAC
generalizes ARBAC, and user-role safety in ARBAC is known to be PSPACE-hard [6].

Our result that ATRBAC-safety is PSPACE-complete is also of practical consequence.
It immediately suggests to us an approach that we can use for instances that arise in prac-
tice — model-checking that is complete for PSPACE. Mohawk [5] is an open-source
tool for ARBAC-safety that leverages a state of the art model checker, and has addi-
tional features that are customized for the ARBAC-safety problem. As ARBAC-safety
is PSPACE-hard and ATRBAC-safety is in PSPACE, we know that there exists an
efficient, i.e., polynomial-time, reduction from the latter to the former.

Mohawk has been shown to scale to problem-instances that comprise tens of thousands
of roles and hundreds of thousands of administrative rules. A thesis we seek to validate
empirically is that Mohawk can be extended via an efficient reduction from ATRBAC-
safety to ARBAC-safety to address ATRBAC-safety with scalability similar to what it
demonstrates for ARBAC-safety instances. We call the tool that we have constructed in
this manner, Mohawk+T. The version of ATRBAC-safety that Mohawk+T supports is
the most general for each feature across the different tools from prior work. Mohawk+T
is available for public download [11].

We provide a thorough empirical assessment of Mohawk+T, and compare its perfor-

5



mance to tools from prior work∗. The versions of the problem that the tools from prior
work support are syntactically incomparable to one another. As we adopt the most gen-
eral from across those tools for each feature for Mohawk+T, to be able to meaningfully
empirically compare the different tools on the same inputs, we efficiently reduce the Mo-
hawk+T version to the others. Towards this, we present a “reduction toolkit”. The toolkit
comprises mappings to efficiently reduce from a version of the problem to another.

A composition of steps from the toolkit is also an efficient reduction, and different
such compositions reduce the version of the problem that Mohawk+T supports to the
other versions. This includes the version of ARBAC-safety that Mohawk supports. In this
manner, we are able to perform an apples-for-apples empirical comparison with prior tools.

∗We thank the creators of the prior tools [7, 13] for making their tools available to us and helping us
with their use. We thank also Ranise et al. [7] for making all of their inputs from their empirical assessment
available to us.
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Chapter 2

ATRBAC-Safety

In this section, we describe ATRBAC, and then pose the ATRBAC-safety problem. We do
this in stages. We first introduce RBAC, ARBAC and a version of ARBAC-safety that is
relevant to ATRBAC-safety. Then, we describe TRBAC, ATRBAC and ATRBAC-safety.
Figure 2.1 shows the relationship between RBAC, ARBAC, TRBAC and ATRBAC.

We then clarify that various versions of ATRBAC- and ARBAC-safety are addressed
in the literature, and discuss the choices we have made with regards to the various features
of the problem. Specifically, that we have chosen the most general of each feature.

2.1 RBAC, ARBAC and ARBAC-Safety

ATRBAC addresses temporal extensions to RBAC and ARBAC. In this section we discuss
RBAC, ARBAC and the version of safety analysis in ARBAC that we call ARBAC-safety
that is relevant to our work on ATRBAC-safety.

RBAC RBAC is used to specify an authorization policy — who has access to what. An
RBAC policy, in the context of this work, is a set UA, the user–role assignment relation.
An instance of UA is a set of pairs of the form 〈u, r〉, where u is a user and r is a role. A user
u is authorized to the role r if and only if 〈u, r〉 ∈ UA. RBAC has other constructs, such
as role-permission assignment and a role-hierarchy, that are not relevant to ATRBAC-
safety with which we deal in this paper. Indeed, a role-hierarchy can be flattened as a
pre-processing step without affecting the correctness or efficiency of our techniques.

7
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Figure 2.1: The relationship between RBAC, ARBAC, TRBAC and ATRBAC. TRBAC
syntactically generalizes RBAC with temporal extensions. Similarly, ATRBAC syntacti-
cally generalizes ARBAC. ARBAC is used to administer RBAC, and ATRBAC is used to
administer TRBAC.

ARBAC ARBAC is a syntax for specifying the ways in which an RBAC policy may
change. As our work deals with the UA component of an RBAC policy only, by ARBAC
we mean its URA portion [8], via which users are authorized to and revoked from roles.

There are only two ways in which an instance of UA may change. One is the addition
of an entry 〈u, r〉 to UA, which is the authorization of u to r. The other is the removal of
an entry 〈u, r〉, which is the revocation of u’s authorization to r. An instance of ARBAC
is a collection of rules, and addresses two issues with regards to such changes to UA: who
may carry out one of those operations, and under what conditions.

A set of can assign rules controls additions to UA, and a set of can revoke rules controls
removals from UA. A
can assign rule is of the form 〈a, C, t〉, where a, t are roles and C is a precondition. The
precondition C is a set in which each entry is either a role r, or its negation, ¬r. The
semantics of the can assign rule 〈a, C, t〉 is that a member of the role a may assign a user
u to the role t provided u is already a member of every non-negated role in C and is not
a member of any negated role in C.

In the can assign rule in Figure 1.1 for example, a member of the role Director, e.g.,
Alice, may assign another user, e.g., Bob, to the role Consulting Physician provided he is
already a member of the role Surgeon and is not a member of the role Doctor.

In a can assign rule 〈a, C, t〉, the role a is called an administrative role and the role t
is called a target role. A can revoke rule has the form 〈a, t〉 where both a and t are roles.
The semantics is that a member of the administrative role a is allowed to revoke a user’s

8



authorization from the target role t. The reason that a can revoke rule has no precondition
is that revocation is seen as an inherently safe operation [8].

ARBAC-safety We now discuss a version of safety analysis in ARBAC that is relevant
to our work. We call it ARBAC-safety. As our work deals with user-role authorization
only, ARBAC-safety refers to that aspect only. More general versions of safety analysis
for ARBAC have been considered in the literature [9], that reconcile not only the user-
role authorizations, but also role-role relationships. Nevertheless, all the versions of safety
analysis in ARBAC of which we are aware lie in the same complexity-class — they are all
PSPACE-complete.

ARBAC-safety is a state-reachability problem. It takes three inputs:

(1) A query, which is a pair 〈u, r〉, where u is a user and r is a role.

(2) A current- or start-state, which is an instance of UA.

(3) A state-change specification, which is an instance of ARBAC, i.e., instances of
can assign and can revoke rules.

The output of the ARBAC-safety instance is ‘false,’ if there exists a state that is reachable
from the start-state in which the user u from the query is a member of the role r from the
query. Otherwise, the output is ‘true.’ Figure 1.2 extends the example from Figure 1.1
with an example of ARBAC-safety.

ARBAC-safety is known to be PSPACE-complete [6]. Several techniques have been
proposed to address instances that are likely to arise in practice. For example, Gofman
et al. [3] propose a tool called RBAC-PAT, and Jayaraman et al. [5] propose a tool called
Mohawk. We adopt the latter as the basis for the tool we build for ATRBAC-safety as it
has been shown to scale well with the size of the input.

2.2 TRBAC, ATRBAC and ATRBAC-Safety

We now discuss the temporal extensions to RBAC and ARBAC that give us TRBAC and
ATRBAC respectively. We discuss also the problem we address, ATRBAC-safety. We first
present a model and encoding of time that is the basis for the syntax for temporality in
ATRBAC. The version we adopt is the same as prior work [13].

Time An instant in time, m, can be thought of as represented by a real number. A time-
slot represents some duration of time, and is represented as a non-negative integer. In an

9



instance of ATRBAC-safety, no two distinct time-slots overlap in time. Given time-slots
i, j where i < j, the time-slot j is associated with a duration of time that occurs later than
time-slot i. A time-instant m falls within a time-slot.

We assume that the earliest time-slot with which an instance of ATRBAC-safety is
associated is 0, and there is some integer, Tmax, such that Tmax − 1 is the latest time-
slot that pertains to the ATRBAC-safety instance. We discuss how time progresses under
ATRBAC-safety below.

A generalization of a time-slot is a time-interval. A time-interval is a pair of integers
〈i, j〉 where i ≤ j. It represents the set of time-slots {i, i + 1, . . . , j}. We say that a
time-instant m falls within a time-interval if m falls within one of the time-slots in that
time-interval.

The mindset that underlies the above notions for time is that each time-slot represents
some realistic, recurring, fixed time period, such as “9 AM – 10 AM.” The particular such
actual time periods to which time-slots in an instance of ATRBAC-safety map is irrelevant
to the analysis.

TRBAC From the standpoint of our work, TRBAC generalizes RBAC in two, temporal
ways. (1) The set UA is generalized to TUA, each of whose elements is a triple 〈u, r, lu,r〉,
where lu,r is a time-interval. The semantics is that u is a member of r during the time-
interval lu,r only. (2) Each role r that appears in TUA is annotated with a time-interval,
lr. We say that lr is the time-interval during which the role r is active. The semantics is
that outside of the time-interval lr, no user can exercise a permission that she acquires via
the role r. The set of all pairs, 〈r, lr〉, is denoted RS.

Thus, a TRBAC policy, and therefore a state in the verification problem we consider,
is a 3-tuple, 〈TUA,RS,m〉, where TUA and RS are as described above, and m is a time-
instant. A user u is authorized to a role r at the time-instant, m, if and only if there exists
an entry 〈u, r, lu,r〉 ∈ TUA such that m is within lu,r. The entries in RS matter when a
user attempts to make an administrative change, i.e., a change to the authorization state.
We discuss this under ATRBAC below.

ATRBAC ATRBAC generalizes ARBAC by providing rules for changes to TRBAC
policies. As we discuss under “Versions of the problem” below, the version we discuss
generalizes prior versions. Under ATRBAC, there are two ways in which a state, which is
a TRBAC policy, can change: (1) via an administrative action, or, (2) the passage of time.

Under (1), four kinds of administrative actions are possible to a TRBAC policy,
〈TUA,RS,m〉. It is possible to add an entry to, and remove an entry from TUA, and

10



it is possible to add an entry to, and remove an entry from RS. The first two kinds of
changes are called assign and revoke administrative actions, and the next two are called
role enabling and disabling administrative actions. We have the corresponding sets of tu-
ples t can assign, t can revoke, t can enable, and t can disable. (As in Uzun et al. [13], we
employ the prefix “t ” to distinguish clearly that these are rules for ATRBAC, rather than
ARBAC.)

Each such set contains 5-tuples. Each tuple is of the form 〈Ca, La, Ct, Lt, t〉. The first
two components, Ca, La are conditions on the administrator that seeks to effect the action.
The next two components, Ct, Lt, are conditions on the user or role to which the rule
pertains. The last component, t, is the target-role; the role that is affected by the action.
Ca is either the mnemonic ‘true,’ or a condition, i.e., a set of negated and non-negated
roles. La is a set of time-intervals. We specify their semantics below for each kind of
administrative rule. The entry t is the target role, i.e., the role that is affected by the
firing of the rule. Ct is a role-condition similar to Ca above. There are some important
differences between Ca and Ct, however, and we discuss these below for each kind of rule.
Lt is a set of time-intervals, similar to La above. We discuss the semantics of Lt below for
each kind of rule as well.

Such a 5-tuple 〈Ca, La, Ct, Lt, t〉 applies when an administrator, say, Alice, attempts an
administrative action at a particular time-instant, m. Each administrative action takes
inputs, one of which is the administrator that attempts it, i.e., Alice, and others that we
discuss below.

Role enabling: the inputs are Alice, a target role t, and a set of time-intervals, L. Al-
ice succeeds in her attempt at enabling the role t if and only if there exists an entry
〈Ca, La, Ct, Lt, t〉 ∈ t can enable for which all of the following are true.

(1) The time-instant, m, at which Alice attempts the action falls within some time-
interval in La.

(2) Alice and the current time-instant m together satisfy the administrative condition,
Ca. That is, if p is a non-negated role in Ca, then Alice is a member of p at time-
instant m in the current state, 〈TUA,RS,m〉, and p is active at the time-instant m.
If n is a negated role in Ca, then either Alice is not a member of n at time-instant
m in the current state, or the role n is not active, or both. If Ca is the mnemonic
‘true,’ then the rule may fire provided m is within some time-interval in La.

(3) The set of time-intervals L is contained within the set of time-intervals Lt. That is,
for every time-interval l ∈ L, there exists a time-interval lt ∈ Lt such that l is within
lt.
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(4) The set of time-intervals L satisfies the target condition Ct for every l ∈ L. That is, if
p is a non-negated role in Ct, then for every l ∈ L, p is active during the time-interval
l, in the current-state, i.e., RS. And if n is a negated role in Ct, then for every l ∈ L,
n is not active during l, in the current-state.

The effect of a successful role enabling by Alice is that the component RS of the current-
state is updated as follows to get a new state: RS← RS ∪ {〈t, l〉 : l ∈ L}.

Example: In Figure 1.1 Alice must first enable the role of “Director” so that she can later
be allowed to exercise rules where the “Director” role is required by the administrative con-
dition, Ca. Alice may exercise the t can enable rule during 6 am – 8 am as she satisfies Ca

during that time. Once she enables it, Alice must wait before she exercises the t can revoke
rule, where the “Director” role is required by t can revoke’s Ca, until the current time falls
within 8 am – noon.

Role disabling: the inputs are Alice, a target role t, and a set of time-intervals, L. Alice
succeeds in disabling t via her action at time-instant m if and only if there exists an entry
〈Ca, La, Ct, Lt, t〉 ∈ t can disable for which all of the following are true.

(1) The current time-instant, m, falls within some time-interval in La.

(2) Alice and the current time-instant, m, together satisfy the administrative condition,
Ca.

(3) The set of time-intervals, L, is contained within the set of time-intervals, Lt.

(4) The set of time-intervals L satisfies the target condition Ct for every l ∈ L.

The effect of a successful role disabling by Alice is that the component RS of the
current-state is updated as follows to get a new state: RS← RS \ {〈t, l〉 : l ∈ L}.

Example: Figure 1.1 does not provide a rule for t can disable. But an example case of this
rule is to have a t can disable rule: 〈true, 6 am – 6 pm, true, noon – 1 pm, Director〉. This
rule allows for the “Director” role to be disabled during lunch time, which means that
no changes to TUA can be done during lunch. Exercising the t can enable rule after this
t can disable rule will overwrite the changes and have the “Director” role enabled during
noon – 1 pm.

User-role assignment: the inputs are the administrator, Alice, a user u, a target role t to
which she seeks to assign u, and a set of time-intervals L. The assignment action that she
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attempts at time-instant m succeeds if and only if there exists an entry 〈Ca, La, Ct, Lt, t〉 ∈
t can assign for which all of the following are true.

(1) The current time-instant, m, falls within some time-interval in La.

(2) Alice and the current time-instant, m, together satisfy the administrative condition,
Ca.

(3) The set of time-intervals, L, is contained within the set of time-intervals, Lt.

(4) The user u and the set of time-intervals L satisfy the target condition Ct for every
l ∈ L. That is, if p is a non-negated role in Ct, then u is a member of p during every
time-interval l ∈ L. If n is a negated role in Ct, then u is not a member of n in any
time-interval l ∈ L. If Ct is the mnemonic ‘true,’ then there are no constraints on
the current role-memberships of the user u.

The effect of a successful assignment by Alice is that the component TUA of the current-
state is updated as follows to get a new state: TUA← TUA ∪ {〈u, t, l〉 : l ∈ L}.

Example: The example in Figure 1.1 shows that Alice is able to assign the “Consulting
Physician” role to Bob during 8 am – noon. She is able to exercise this rule because Bob
has the role “Surgeon,” and does not have the role “Doctor” during 8 am – noon, and
Alice satisfies the administrative condition by having the role “Director.”

User-role revocation: the inputs are an administrator Alice, a user u that she seeks to
revoke from a role, a target role, t from which she seeks to revoke u, and a set of time-
intervals, L. The revocation action she attempts at some time-instant m succeeds if and
only if there exists an entry 〈Ca, La, Ct, Lt, t〉 ∈ t can revoke for which all of the following
are true.

(1) The current time-instant, m, falls within some time-interval in La.

(2) Alice and the current time-instant, m, together satisfy the administrative condition,
Ca.

(3) The set of time-intervals, L, is contained within the set of time-intervals, Lt.

(4) The user u and the set of time-intervals L satisfy the target condition Ct for every
l ∈ L.
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The effect of a successful revocation by Alice is that the component TUA of the current-
state is updated as follows to get a new state: TUA← TUA \ {〈u, t, l〉 : l ∈ L}.

Example: Alice may revoke Bob from the “Doctor” role during 8 am – noon using the
t can revoke rule in Figure 1.1. If she does so, Bob retains membership of “Doctor” during
noon – 5 pm, as we show in Figure 1.3.

Time-change: Another way that a state, 〈TUA,RS,m〉, can change is in its time compo-
nent, m. The manner in which passage of time is modelled [7, 13] is simply by allowing
the m component to increase without any change to the other two components, TUA and
RS. That is, a possible state-change is from 〈TUA,RS,m〉 to a new state, 〈TUA,RS,m′〉,
where m′ > m.

An issue we clarify in this regard of passage of time is whether, once we reach the
time-slot Tmax−1 to which an instance of ATRBAC-safety pertains, the time-slot 0 recurs,
followed by time-slot 1 and so on, forever. The assumption in prior work [13] is that it
does. The reason regards the semantics of a time-slot — it maps to some realistic, recurring
period of time. We refer to this property as periodicity, and revisit it in the context of the
software tools.

Example: Time periodicity is what allows the rules in Figure 1.1 to be described by just
the time of day. The intention of the rules is that they are contained within a day. Thus
when a day ends and the next day begins, the rules should still apply to the new day.

ATRBAC-safety The safety analysis problem for ATRBAC takes three inputs. (1) A
query, 〈u,C, L, t〉, where u is a user, C is a condition (set of negated and non-negated roles),
L is a set of time-intervals and t is some units of time. (2) A start-state, 〈TUA,RS,m〉,
which is an instance of TRBAC. (3) A state-change specification, which is an instance of
ATRBAC, i.e., four sets of rules, t can assign, t can revoke, t can enable, and t can disable.

The output is ‘false,’ if there exists a TRBAC state 〈TUA′, RS′, m′〉 that is reachable
from the start-state in which:

(i) the user u is a member of every non-negated role in C in every time-interval in L,
and is not a member of any negated role in C in any time-interval in L,

(ii) every non-negated role in C is active for every time-interval in L, and no negated
role in C is active in any time-interval in L, and,

(iii) the time-instant m′ of this state is within t time-units of the time-instant of the start-
state. Otherwise, the output is ‘true.’ We point out that it is possible to specify t
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that is large enough that the query pertains to any time-slot that pertains to the
problem instance.

In Figure 1.3 we discuss two ATRBAC safety questions: “could Bob become a member
of the role Consulting Physician between 8 am and noon?” and “could Bob become a
member of the role Consulting Physician between 1 pm and 5 pm?”. As the caption of
the figure discusses, the former is true, provided we do not require the role Consulting
Physician to be enabled when Bob becomes a member of it. The latter question is not
true.

Versions of the problem Prior work that is relevant to our work refers to different
versions of ATRBAC-safety. We broadly classify the various versions along two axes. One
comprises the versions that are discussed theoretically, i.e., in prose, assertions and proofs
only. The other comprises versions supported by software tools.

Correspondingly, from the work of Uzun et al. [13] we have the versions of ATRBAC-
safety that we call TRED–THEORY, and the versions supported by their tools, TREDROLE

and TREDRULE. They are so named because Ranise et al. [7] refer to their two software
tools with the prefix TRED. Similarly, from Ranise et al. [7] we have ASASPTIME–THEORY,
and the versions supported by their tools ASASPTIME-NSA and ASASPTIME-SA. The acronym
“NSA” stands for Non-Separate Administration, and “SA” for “Separate Administration.”
They pertain to whether administrative roles are distinct from user roles. Finally, we refer
to the version of ATRBAC-safety we discuss above as Mohawk+T–THEORY. We also have
the version that is supported by our tool, Mohawk+T.

We address the differences between ASASPTIME–THEORY and TRED–THEORY, and our
choices for Mohawk+T–THEORY here. We address the differences between the versions of
the software tools in Chapter 5. A recognition of the differences of the theoretical versions is
important from two standpoints. One is that Mohawk+T–THEORY syntactically generalizes
both ASASPTIME–THEORY and TRED–THEORY. Thus, an upper-bound for the computational
complexity of ATRBAC-safety for Mohawk+T–THEORY is an upper-bound for each of the
other two as well.

Another reason a recognition of these different versions is important regards an assertion
about the non-existence of an efficient reduction from ASASPTIME–THEORY to TRED–THEORY

in prior work [7]. As we point out in the next section on computational complexity, the
assertion is in error.

The differences between ASASPTIME–THEORY and TRED–THEORY pertain to (1) whether
time-intervals are allowed, or only time-slots, (2) whether an administrative condition may
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be specified in a rule, or an administrative role only, and, (3) the kind of query that may
be specified in an instance of safety. The differences are the following.

1. ASASPTIME–THEORY allows time-slot only, and not time-intervals. TRED–THEORY al-
lows time-intervals. So, for this feature, ASASPTIME–THEORY is less general than
TRED–THEORY. We point out that naively encoding a time-interval as a set of time-
slots is inefficient in the worst-case. Recall from our discussion above under “Time”
that a time-interval is a set of consecutive time-slots {i, i+1, . . . , i+n}, where n ≥ 0.
Encoding a time-interval as the pair 〈i, i + n〉 takes space ≤ 2 log(i + n) only. En-
coding it as the set {i, i + 1, . . . , i + n}, however, takes space ≥ (n + 1) log(i). The
latter is exponential in the former, in the worst-case.

2. ASASPTIME–THEORY allows a condition for the administrator in a rule, rather than an
administrative role only. TRED–THEORY allows an administrative role only. For this
feature, therefore, ASASPTIME–THEORY generalizes TRED–THEORY.

3. A query in ASASPTIME–THEORY is of the form 〈u,C, L〉 where u is a user, C is a role
condition, and L is a set of time-slots. The semantics is: does there exist a reachable
state in which (1) u satisfies C for L, i.e., is a member of every non-negated role for
every time-slot in L and not a member of any negated role in C for any time-slot in
L, and, (2) roles are enabled and disabled as C specifies for the time-slots in L.

TRED–THEORY proposes two kinds of queries. One is of the form 〈u, r, L〉, which
asks whether u can become a member of r in all the time-intervals L. This is less
syntactically general than ASASPTIME–THEORY in that C is allowed to be a role only,
but more general in that L is allowed to be a set of time-intervals, and not only a set
of time-slots. The other kind of query is of the form 〈u, r, L, t〉, which asks whether
u can become a member of r in all the time-intervals in L within t time-units of
the start-state. This syntactically generalizes the version of the safety problem that
allows the first kind of query only — there is a straightforward reduction from the
safety problem that allows the first kind of query only, to one that allows the second
kind of query.

Thus, from the standpoint of the query, the two versions are incomparable to one
another.

For Mohawk+T–THEORY that we describe earlier, for each of the three features above,
we have chosen the more general. For example, the query allows a role condition, a set of
time-intervals and the extra parameter t that limits the number of time units in which the
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query must become true. Also, we assume that all possible users that are allowed to exist
in the system are part of the TUA component in the start-state. (It is easy to incorporate
users that are not assigned to any role into TUA. Create a “dummy” role that does not
appear in any of the administrative rules and assign all users to it in the start-state.)

The reason we have adopted such a general version is to emphasize our complexity
result that we present in the next section — such a choice has no consequence to the
upper-bound computational complexity of ATRBAC-safety.
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Chapter 3

ATRBAC-Safety is
PSPACE-Complete

We now identify the computational complexity of ATRBAC-safety, for the version we
call Mohawk+T–THEORY. In Theorem 1 below, we identify an upper-bound. Then, in
Theorem 2, we identify a tight bound. We then identify that all versions of ATRBAC-safety
we address are PSPACE-complete. We then address the expressive power of ATRBAC
and an assertion in prior work on the non-existence of a reduction.

Theorem 1 ARBAC-safety for Mohawk+T–THEORY is in PSPACE.

The above theorem asserts an upper-bound on the hardness of safety analysis in ATR-
BAC. To prove it, we construct a non-deterministic Turing machine that terminates on
every input with the correct ‘safe’ or ‘unsafe’ output, and runs with space only polynomial
in the size of the input. Then, from the fact that PSPACE = NSPACE, which is a
corollary to Savitch’s theorem [10], we immediately infer that the problem is in PSPACE.

We point out that a similar non-deterministic Turing machine is constructed by Jha
et al. [6] to show that their version of ARBAC-safety is in PSPACE. A main difference
for us is that we need to reconcile the temporal aspect of ATRBAC-safety as well. Our
non-deterministic Turing machine, M , is provided the three inputs:

(1) Query, q = 〈u,C, L, t〉,

(2) Start State, 〈TUA,RS,m〉, and,
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(3) State Change rules in ATRBAC, i.e., the four sets t can assign, t can revoke,
t can enable and t can disable.

M first assembles a set S of all the time-intervals (some of which may be time-slots)
that appear in any of the three components of the input. M then breaks up the time-
intervals in S so none of them overlaps with any other. It does this using the algorithm
in Figure 4.1. The input set S is at worst linear in the size of the input ARBAC-safety
instance. The output from the algorithm in Figure 4.1, call it S ′, is at worst quadratic in
the size of input S – the caption in Figure 4.1 provides a reasoning.

The reason M does this is that it only has to maintain one of these time-intervals as
the current time. The exact value of the current time, or even time-slot, no longer matters.
For convenience, M could rewrite the input ATRBAC rules so each mentions only entries
from S ′ and not S. M then maintains the following state:

(1) The current values for the sets TUA and RS.

(2) The current time-interval from S ′ within which the current time instant falls.

(3) The number of time units that have elapsed.

M performs its moves as follows. M first checks whether the query q is satisfied. It can
do so from the state information it maintains. If yes, it halts with output ‘unsafe.’ If not,
it checks whether it has exceeded t from the query q. If yes, it halts with output ‘safe.’
Otherwise, it assembles all the administrative rules that are enabled, i.e., for which the
administrative and role conditions are met. It also includes an update of the current time-
interval to the next time-interval as an option. It non-deterministically picks an option
from those, updates its state, and continues.

M ensures that it terminates — we know that the input instance is unsafe if and only if
the non-deterministic Turing machine halts with an output of ‘unsafe’ within 2n transitions,
where n is the size of the input. The Turing machine can keep a count of its transitions
with space log2(2

n) = n. Thus, if M has not determined that the instance is unsafe after
2n transitions, it outputs ‘safe’ and halts. We point out also that M maintains state that
is at worst quadratic in the size of the input.

Theorem 2 ATRBAC-safety for Mohawk+T–THEORY is PSPACE-complete.
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We infer the above theorem from the fact that ARBAC-safety is PSPACE-hard [6].
As ATRBAC-safety forMohawk+T–THEORY generalizes that version of ARBAC-safety, the
PSPACE-hard lower bound applies to ATRBAC-safety for Mohawk+T–THEORY as well.
Given Theorem 1, we thus prove Theorem 2.

Theorem 3 All the versions of ATRBAC-safety we consider in this paper are PSPACE-
complete. They are: ASASPTIME–THEORY, TRED–THEORY, Mohawk+T–THEORY, and the
versions supported by the tools ASASPTIME-NSA, ASASPTIME-SA, TREDROLE,
TREDRULE, Mohawk+T, and Mohawk.

To prove the theorem, we first observe that the version of ARBAC-safety, which can be
perceived as a special case of ATRBAC-safety with only 1 time-slot, supported by Mohawk,
is PSPACE-complete. We comment on this more in Chapter 5 under Item (4), “Admin
role is ‘true’ only,” in our Reduction Toolkit. All the other versions generalize the version
supported by Mohawk, and therefore are PSPACE-hard. And, all the versions are at
most as general as Mohawk+T–THEORY, and therefore are in PSPACE.

3.1 Expressive power of ATRBAC

We can interpret the hardness of ATRBAC-safety as a measure of the expressive power
of ATRBAC. The fact that ATRBAC-safety is no harder than ARBAC-safety, within a
polynomial factor, suggests that ATRBAC is no more expressive than ARBAC.

Indeed, in this context, one can point to some seeming deficiencies in the syntax of
ATRBAC. It is not possible, for example, to directly express a rule such as the following:
“if a user is a member of the role Surgeon between 8 am and 9 am, then allow the user
to be assigned to the role Consulting Physician between noon and 5 pm.” The reason is
that the set of time-intervals Lt in a rule 〈Ca, La, Ct, Lt, t〉 serves two purposes. It is used
as a precondition to check the current temporal role-memberships of the user along with
Ct, and, it is used to limit the time-intervals for which the user can acquire membership
in the target role t.

A straightforward way to extend the syntax of ATRBAC to account for such use cases
is to allow Ct to be a set of pairs, each of the form 〈c, l〉, where c is either a non-negated or
negated role, and l is a time-interval. This separates the two purposes mentioned above.
Nonetheless, ATRBAC-safety for this version of ATRBAC is also PSPACE-complete.
That is, from the standpoint of computational complexity of safety analysis, nothing has
changed. This means that this new version can be reduced efficiently to the original.
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Another issue in this context regards an assertion from prior work [7] regarding the non-
existence of an efficient reduction from ASASPTIME–THEORY to TRED–THEORY. Theorem 3
invalidates the assertion. The erroneous reasoning in that work is that to support an
administrative condition in an ATRBAC rule rather than only an administrative role, one
must introduce exponentially many new roles.

An efficient reduction, however, can be constructed as follows. We introduce a new
role for every administrative condition. Thus, the number of new roles is at worst linear in
the ATRBAC-safety instance. We then introduce t can assign rules with the condition as
a role precondition to assign a user to the new role. There are additional details we need
which we omit here, for example to account for when a user no longer satisfies a condition
in a future state.
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Chapter 4

The Reduction Toolkit

There are some common transformations we effect in our efficient reductions from Mo-
hawk+T to ASASPTIME-NSA, ASASPTIME-SA, TREDROLE/TREDRULE, and Mohawk. In this
section, we discuss six mappings, each of which transforms some component of the problem
efficiently (in polynomial time). Then, in subsequent sections, we mention which ones we
need for each of the four reductions. Each of our reductions, from an input Mohawk+T
to one of the other tools, is composed of a subset of transformations from our toolkit. As
each of these transformations is an efficient reduction, so is any of those compositions. The
compositions for each reduction is provided in Section 4.2, 4.3, 4.4, and 4.5.

Reduction (1) Query The safety query syntax provided by the ASASPTIME-NSA/ASASP

TIME-SA, TREDROLE/TREDRULE, and Mohawk are all different thus we provide three kinds
of mappings, which we call Type 1, 2, and 3.

Type 1 For ASASPTIME-NSA and ASASPTIME-SA, we need to map a Mohawk+T query q =
〈R, l〉 to a query q′ = 〈r′, l′〉, where r′ is a single role while R is a set of roles. For this, we
do the following. We first determine to what time-slot the time-slot l is mapped. This may
be the result, for example, from applying Reduction (2) below, “time-intervals to time-
slots.” This mapped-to time-slot is l′. We create a new role r′. We add a t can assign rule,
〈true, L′all, r1 ∧ . . . ∧ rn, l

′, r′〉, where R = {r1, . . . , rn}. And L′all is the set of all mapped-
to time-slots. Note that enumerating them does not affect the fact that the mapping is
efficient. Now, our mapped-to query is 〈r′, l′〉.

Type 2 For TREDROLE and TREDRULE, we need to map a Mohawk+T query, q = 〈R, l〉 to
a query of the form q′ = 〈R′〉. That is, a set of roles only. For this, we first do exactly
what we do for ASASPTIME-NSA and ASASPTIME-SA. That is, we create a new role, r′. We
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add a new t can assign rule: 〈true, l0 − lTmax , r1 ∧ . . . ∧ rn, {l}, r′〉, where R = {r1, . . . , rn}.
The mapped-to query is q′ = 〈{r′}〉.

Type 3 For Mohawk, we need to map a Mohawk+T query q = 〈R, l〉 to a query
q′ = 〈u′, r′〉, where u′ is a user and r′ is a single role. Assume that R = {r1, . . . , rn}
and that set of roles maps to the non-temporal roles {〈r1, l〉 , . . . , 〈rn, l〉} by applying Re-
duction (5), “remove temporality.” We create a new role r′. We add a can assign rule,
〈true, 〈r1, l〉 ∧ . . . ∧ 〈rn, l〉 , r′〉. We also ensure that a user u′ exists in the system by speci-
fying that as part of the input to Mohawk. Our output query is now 〈u′, r′〉.

Reduction (2) Time-intervals to time-slots This reduction maps time-intervals to
time-slots only. Recall from our discussion in Chapter 2.2 that naively enumerating the
time-slots that comprise a time-interval is not efficient. For this reduction, we run the
algorithm from Figure 4.1. We then adopt each time-interval in the output as a time-slot.

Run the algorithm in Figure 4.1. Let i1, . . . , in be all the time-intervals, some of which
may be time-slots, that appear in an input instance to Mohawk+T. We first reconcile
overlapping intervals by breaking intervals up into largest possible intervals that do not
overlap.

Now suppose the resultant set of intervals is j1, . . . , jk. We associate each of these
intervals with a time-slot in the output of the mapping. Note that this affects the query
as well. That is, if 〈R, l〉 is the query in the input to Mohawk+T, the query 〈r, l′〉 in the
output may be such that l 6= l′.

The example in Figure 4.1, the input is 5 time-intervals: {〈0, 3〉, 〈1, 4〉, 〈5, 8〉, 〈6, 6〉,
〈8, 10〉}. The output is 8 non-overlapping time-intervals: {〈0, 0〉, 〈1, 3〉, 〈4, 4〉, 〈5, 5〉, 〈6, 6〉,
〈7, 7〉, 〈8, 8〉, 〈9, 10〉}. To represent the time interval 〈0, 3〉, from the input set S, in non-
overlapping time intervals we would use: {〈0, 0〉, 〈1, 3〉}. Converting the non-overlapping
time intervals to time-slots is trivial, as we have a strict ordering that we use as the time-
slot ordering. The example 8 non-overlapping time intervals: {〈0, 0〉, 〈1, 3〉, 〈4, 4〉, 〈5, 5〉,
〈6, 6〉, 〈7, 7〉, 〈8, 8〉, 〈9, 10〉 }, gets trivially converted to 8 time-slots: {〈0, 0〉, 〈1, 1〉, 〈2, 2〉,
〈3, 3〉, 〈4, 4〉, 〈5, 5〉, 〈6, 6〉, 〈7, 7〉}.

Reduction (3) Remove t can enable and t can disable rules This reduction pro-
duces an output with no t can enable or t can disable rules. This is needed to map Mo-
hawk+T inputs to ASASPTIME-SA, TREDROLE, TREDRULE, and Mohawk.

Our strategy behind eliminating t can enable and t can disable rules is to capture the
constraints they represent in role-conditions in t can assign and t can revoke rules. For
each role r, we introduce a new role re. The semantics of re is that the role r is enabled if
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and only if re is assigned the user for whom we seek to exercise a t can assign or t can revoke
rule. We need to also consider the enabling of the administrative role in a rule.

We transform rules as follows. We change a t can assign or t can revoke rule 〈a, ·, C, ·, t〉
to the rule 〈a, ·, ae ∧ C, ·, t〉, if a is a role. If a is the mnemonic ‘true,’ then we do not
add the extra role-condition ‘ae.’

We transform a t can enable rule 〈a, ·, p1 ∧ . . . ∧ pk ∧ ¬n1 ∧ . . . ∧ ¬nm, ·, t〉 as follows.
In its place, we have a t can assign rule 〈a, ·, ae ∧ p1e ∧ . . . ∧ pke ∧ ¬n1e ∧ . . . ∧ ¬nme , ·,
te〉. Similarly, we change a t can disable rule with target role t to a t can revoke rule with
target role te. As with t can assign and t can revoke rules above, if a is ‘true,’ then we do
not add the extra role pre-condition ‘ae.’

There is special thought that goes into the role ‘ae.’ Given a rule: 〈a, tia, C, tit, t〉, the
administrator role a must be enabled and assigned for the time tia, the user that might
receive the target role t must have the role-condition satisfied for time tit; tia and tit are
time-intervals or time-slots. When tia == tit no special thought is required and ae can be
added directly to the pre-condition.

When tia 6= tit, for any rule in the input, we require ae to reflect the time-interval tia
for each specific rule instance, i.e. atia .

For t can assign and t can enable rules, 〈a, tia, C, tit, t〉, we need to add a new
t can assign rule: 〈true, Lall, a ∧ ae, tia, atia〉. This rule properly reflects t can enable for
the role a.

For t can revoke and t can disable rules, 〈a, tia, C, tit, t〉, we need to add 2 new
t can revoke rules: 〈true, Lall, a, tia, atia〉, and 〈true, Lall, ae, tia, atia〉. These two rules allow
for removing the role atia if either ae or a is removed. This properly reflects t can revoke
and t can disable of the role a.

Reduction (4) Admin role is ‘true’ only In this version of the problem, a state-
change rule must always be of the form 〈true, . . .〉. (The specific format may be different
from this, but the semantics is this.) ASASPTIME-SA, TREDROLE, and TREDRULE support
only such rules. Mohawk also supports only ‘true’ for the administrative role in a rule,
and furthermore, does not have the constraints related to time-intervals for the rule to fire.
We first address the tools that support temporality, i.e., ASASPTIME-NSA, TREDROLE, and
TREDRULE. Then we address Mohawk.

It may seem surprising that a reduction exists from Mohawk+T to this version of the
problem. Indeed, Ranise et al. [7] do not attempt what they call Benchmark class (c)
on TREDROLE and TREDRULE because those tools only support rules with ‘true’ for the
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administrative role, unlike ASASPTIME-NSA. We point out the reduction in Jha et al. [6],
that establishes that ARBAC-safety is PSPACE-hard, is to the version that requires
only ‘true’ for the administrative role. More precisely, every rule in the ARBAC-safety
instance produced by the reduction in that work has the same administrative role, which,
at the start, is assigned a user that is distinct from the user in the query. This user-role
membership does not change. Thus, every rule is enabled in every state, which is exactly
the semantics of ‘true’ for the administrative role.

To reduce to a version that supports only such rules, we first apply the Reduction (3)
“remove t can enable and t can disable rules” from above, so that the only rules we have
are t can assign and t can revoke rules.

Then, we adopt the strategy of moving an admin role in a rule to a precondition. That
is, what we broadly seek is to change a rule 〈a, ·, C, ·, t〉 to 〈true, ·, a ∧ C, ·, t〉. However, we
need to be careful regarding situations such as the following. Suppose we have an admin
role a that, to be assigned a user, has precondition role x. Then, we have a role q that
appears in the query, and the only way to assign a user to q is with a rule that has admin
role a and precondition ¬x.

Thus, if we have two different users, then one of them can act as admin, and the other
as the user that is assigned to q to make the query true. However, if we have one user only,
then q cannot be assigned a user. If we move an admin role to be a precondition role, then
it is as though we seek to simulate a system with several users, using only one user. We
deal with this by introducing new roles and rules. Our reduction is as follows. We replace
the original input with the input we specify below.

Let A =
{
a1, . . . , a|A|

}
be the set of all admin roles, i.e., roles that appear as the first

component of any rule. Let L be the set of all time-intervals (some of which may be time-
slots) that appear in the input. For every role (i.e., both admin and non-admin roles),
we create |A| · |L| + 1 copies of it. We denote the copies using a subscript. That is, for
j = 0, . . . , |A| · |L|, the jth copy of role r from the original system is rj. The jth copy of a
role ri from the original input is designated ri,j.

For the admin roles, we create an additional |A| · |L| copies. Designated as a′i,j; the jth

such copy of the role ai, for j = 1, . . . , |A| · |L|. Now, we make copies of the rules as follows.

Corresponding to subscript j = 0, we create copies of all t can assign and t can revoke
rules, but for the 0th copy of the roles. Then, we retain only those rules that have ‘true’ as
the first component, i.e., the rules in which the admin role is the mnemonic ‘true.’ We do
not include any other rules in the set of rules that corresponds to the index 0. That is, if
we have a rule 〈a, la, C, lt, t〉, we do not create a copy of this rule if a 6= true. However, if
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a = true, we create a copy 〈true, la, C0, t0〉, where C0 indicates every role ri (negated and
non-negated) in the precondition replaced by ri,0.

For the remainder of the subscripts, j = 1, . . . , |A| · |L|, we make a copy of all the rules
as follows. For a rule 〈ai, la, C, lt, t〉 in the original input, we create a rule 〈true, la, a

′
i,j ∧

Cj, lt, tj〉.
Finally, we add the following two sets of rules.

(i) For every j = 1, . . . , |A| · |L|, we add a t can assign rule 〈true, Lall, ai,j−1, Lall, a
′
i,j〉.

(ii) For every j = 1, . . ., |A|·|L|−1, we add a t can assign rule
〈
true, Lall, a

′
i,j, Lall, a

′
i,j+1

〉
.

Finally, consider that the query is 〈R, l〉 where R = {r1, . . ., rk}. We adopt as query〈
R|A|·|L|, l

〉
instead, where R|A|·|L| =

{
r1,|A|·|L|, . . . , rk,|A|·|L|

}
.

The idea behind the above mapping is the following. If indeed the query can become
true in the original system, then we require at most |A| · |L| administrators to make it
true. Thus, the maximum number of users we need in the system is |A| · |L| + 1. (The
“+1” is the user that is assigned to roles to make the query true.) In the new system, we
simulate the actions of all these users using a single user. The assignment of a, possibly
distinct, administrator to an admin role ai in the original system is simulated by assigning
the single user to a′i,j for some j.

Reduction (5) Remove temporality Reduction (5) produces an output with no tem-
porality. This can be seen as a version of the problem with one time-slot only. We need this
to reduce to Mohawk’s version, which is for ARBAC-safety. We map every entry in R×L
to a role in Mohawk, where R is the set of all roles and L is the set of all time-intervals in
the Mohawk+T input.

Suppose R is the set of all roles that appear in the input. This includes roles in the
state-change rules, and the query (or goal). Also suppose that L is the set of all time-
intervals (some of which may be time-slots) that appear in the input. We compute R×L,
where ‘×’ is the cartesian product of those two sets. We adopt R × L as our new set of
roles.

We change the rules as follows. Suppose in the original input that allows temporality,
we have r ∈ R, and l ∈ L. Then we denote as 〈r, l〉 the corresponding member of R × L.
Suppose we have a rule 〈a, la, p1 ∧ . . . ∧ pk ∧ ¬q1 ∧ . . . ∧ ¬qj, lt, t〉, where la, lt are
time-intervals (either or both of which may be time-slots). Note that we have broken up
the rules so that only one admin and one role-condition time-interval appears in the rule.
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We replace this rule with the following rule: 〈〈a, la〉, 〈p1, lt〉 ∧ . . . ∧ 〈pk, lt〉 ∧ ¬ 〈q1, lt〉 ∧
. . . ∧ ¬ 〈qj, lt〉, 〈t, lt〉〉.

If the administrative role, a, is the mnemonic ‘true’ in the original input, then we map
this to 〈true, . . .〉, immaterial of what la is. Similarly, if the role pre-condition is ‘true,’
then we map the rule to 〈·, true, 〈t, lt〉〉.
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Input

Output

Time

Input: a set of time-intervals, S

1: From the entries of S that have not been considered

before, pick one of smallest duration.

2: If any entry in S overlaps with the entry chosen in

Line (1) other than itself, break it up into at most

3 non-overlapping entries and add those back to S.
3: If all entries have been considered, halt.

4: Else goto Line 1.

Figure 4.1: The algorithm to break up input time-intervals into non-overlapping time-
intervals is listed below. An example of an input and output is shown above. The algorithm
is used by the non-deterministic Turing machine in Chapter 3, and as part of our Reduction
Toolkit in Chapter 4. The algorithm takes as input S, a set of time-intervals. The algorithm
is guaranteed to terminate as no entry is chosen more than once in Line (1), and at most
a constant number of entries is added in Line (2) for every entry chosen in Line (1). The
algorithm runs in time at-worst quadratic in the size of the input S because for every entry
chosen in Line (1), each entry in S is broken up into at most a constant number of entries
in Line (2).
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Reduction (6) Remove pre-conditions in can revoke rules ARBAC does not
support role pre-conditions in can revoke rules. That is, a can revoke rule is of the form
〈a, t〉, where a is a role that acts as the administrative role for this rule, or the mnemonic
‘true,’ and t is the target role from which the user is to be revoked. There are no conditions
on the user’s current role memberships and non-memberships. However, this does not affect
the fact that safety analysis in ARBAC is PSPACE-hard. As one would expect, Mohawk,
which deals with ARBAC-safety, does not support pre-conditions on can revoke rules.

We reduce the version of ARBAC-safety that supports pre-conditions in can revoke
rules, to one that does not, as follows. We first ensure that there is no rule in whose
precondition we have both a role and its negation: 〈·, p ∧ . . . ∧ ¬p, t〉. If we have such a
rule, we can simply remove it — it can never fire; i.e no user can have and not have a role
p. Now, let 〈a, C, t〉 be a can revoke rule in the original system. We map it as follows.

We change the rule to 〈a, t〉, which has the same meaning as 〈a, true, t〉. That is, a
member of a can freely revoke users from t. Then, we introduce a new role that corre-
sponds to t, call it t′. We introduce a new can assign rule: 〈a,¬t ∧ C, t′〉. We replace any
occurrence of a role pre-condition ¬t with the pre-condition ¬t ∧ t′.

The mindset behind the above reduction is that a user is considered to be assigned to t
if he is a member of t, immaterial of his membership in t′. He is thought of as not assigned
to t if he is not a member of t and is a member of t′.

Figure 4.2: Simple diagram showing which reductions are required to reduce from Mo-
hawk+T’s general version of ATRBAC to each version of ATRBAC from Ranise et al. [7]
and Uzun et al. [13], and ARBAC from Mohawk.
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4.1 Compositions of Reductions

Figure 4.2 shows an overview of what reductions are required for each version of ATRBAC
and ARBAC that we have considered in this work. Below is a more detailed list of the
reductions and the order in which the reductions are executed.

4.2 Reduction to ASASPTIME-NSA

To reduce the Mohawk+T version to ASASPTIME-NSA, we need the following steps from the
reduction tool-kit.

1. Reduction (2) Time-intervals to time-slots

2. Reduction (1) Query, Type 1

4.3 Reduction to ASASPTIME-SA

To reduce Mohawk+T to ASASPTIME-SA, we need the following steps.

1. Reduction (3) Remove t can enable and t can disable rules

2. Reduction (4) Admin role is ‘true’ only

3. Reduction (2) Time-intervals to time-slots

4. Reduction (1) Query, Type 1

4.4 Reduction to TREDROLE and TREDRULE

To reduce Mohawk+T to TREDROLE and TREDRULE, we need the following steps from the
toolkit.

1. Reduction (3) Remove t can enable and t can disable rules

2. Reduction (4) Admin role is ‘true’ only

3. Reduction (1) Query, Type 2
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4.5 Reduction to Mohawk

To reduce Mohawk+T to Mohawk, we need the following steps from the toolkit.

1. Reduction (3) Remove t can enable and t can disable rules

2. Reduction (4) Admin role is ‘true’ only

3. Reduction (1) Query, Type 3

4. Reduction (5) Remove temporality

5. Reduction (6) Remove pre-conditions in can revoke rules
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Chapter 5

Empirical Assessment

We have designed and built a software tool that we call Mohawk+T for ATRBAC-safety.
Mohawk+T has been built as a wrapper to Mohawk [5], an open-source tool for ARBAC-
safety. Mohawk reduces ARBAC-safety to model-checking and employs an off-the-shelf
model checker, NuSMV [1]. In addition, Mohawk employs within it domain-specific heuris-
tics called abstraction-refinement and bound-estimation for increased efficiency. The em-
pirical results that have been reported for Mohawk suggest that it scales well for large
input instances, for example, 40, 000 roles and 200, 000 rules.

Our intent here is to validate the thesis that we can wrap Mohawk in a manner that we
preserve its scalability for ATRBAC policies. Thus, Mohawk+T would scale significantly
better than what has been shown for existing tools for ATRBAC-safety [7, 13]. The
manner in which Mohawk+T wraps Mohawk is an efficient reduction from ATRBAC-safety
to ARBAC-safety. That is, given as input an instance of ATRBAC-safety, the wrapper
in Mohawk+T maps this to an instance of ARBAC-safety that it provides as input to
Mohawk. The mapping is a reduction, and therefore Mohawk’s ‘safe’ or ‘unsafe’ output
can immediately be adopted as Mohawk+T’s output.

We had to address some technical challenges in realizing and assessing Mohawk+T. One
is that we had to choose a version of ATRBAC-safety that Mohawk+T would support. So
far in this paper, we have discussed what we have called theoretical versions of ATRBAC-
safety. None of the prior tools, ASASPTIME-NSA, ASASPTIME-SA, TREDROLE and TREDRULE

supports its corresponding theoretical version. ASASPTIME-NSA, for example, supports
administrative roles only, and not administrative conditions. Another example is that
TREDROLE allows only a set of time-slots, and not a time-interval, as the role condition.

As with their theoretical counterparts, the two sets of existing tools are incomparable

31



to one another from the standpoint of generality. We have investigated the various features
that the existing tools allow for their input, and chosen for Mohawk+T the more general
for each feature. We discuss this in more detail below.

Another technical challenge we had to address is that we had to devise an efficient
reduction from the version of ATRBAC-safety that Mohawk+T supports to the version of
ARBAC-safety that Mohawk supports. In this context, we point out that Mohawk also has
a corresponding theoretical version [6] that is more general. Mohawk, for example, allows
only ‘true’ for the administrative role in a rule. We discuss our reduction in Chapter 5,
once we introduce our Reduction Toolkit.

We devised our Reduction Toolkit not only to reduce the version of ATRBAC-safety
that Mohawk+T supports to the version of ARBAC-safety that Mohawk supports, but also
so we can conduct a meaningful empirical comparison with existing tools for ATRBAC-
safety. As Mohawk+T syntactically generalizes all existing tools, we cannot directly pro-
vide as input to an existing tool an input designed for Mohawk+T.

So we can perform apples-for-apples comparisons on inputs, we have devised and imple-
mented efficient reductions from the version of ATRBAC-safety that Mohawk+T supports
to the version that each of the existing tools supports. Thus, we need 4 reductions in
total — to (1) ASASPTIME-NSA, (2) ASASPTIME-SA, (3) TREDROLE and TREDRULE, and, (4)
Mohawk. We observed that the reductions have commonalities, which motivated us to
devise our Reduction Toolkit. Composing particular reductions from the toolkit provides
us with each of the 4 reductions we seek.

Versions that tools support Table 5.1 expresses the support for various features in
existing tools, and our design choice for Mohawk+T. We list only those features for which
the tools differ. As the table shows, for Mohawk+T, we have chosen the most general
for each feature in existing tools. We show in the table also the support in Mohawk. We
show this to indicate what our reduction from Mohawk+T’s version of ATRBAC-safety
must address. We point out, in addition to the information in the table, that none of the
existing tools for ATRBAC-safety supports administrative conditions. They also do not
support periodicity of time. Therefore, neither does Mohawk+T. These are features that
are supported by the theoretical versions we discuss earlier in the paper.
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Time-intervals or
time-slots only

Enable/
Disable
rules
supported

Query

Administrative
roles
supported or
‘true’ only

ASASPTIME

NSA
Time-slots only Yes

〈r, l〉 — can some user be-
come a member of r in time-
slot l?

Yes

ASASPTIME

SA
Time-slots only No 〈r, l〉 — see above No — ‘true’ only

TREDROLE,
TREDRULE

Allows time-interval in
administrative condition

No
〈R〉— can the same user be-
come a member of all roles
in R in the same time-slot?

No — ‘true’ only

Mohawk+T
Allows time-interval in
administrative condition

Yes

〈R, l〉 — can the same user
become a member of all
roles in R in the time-slot
l?

Yes

Mohawk No temporal support No 〈u, r〉 — can the user u be-
come a member of role r?

No — ‘true’ only

Table 5.1: Feature-support of the various existing tools, and our design choice for Mohawk+T. For Mo-
hawk+T, we have chosen the most general version of a feature from amongst existing tools for ATRBAC-
safety. We show also the support Mohawk offers. As a tool for ARBAC-safety only, Mohawk expectedly
has no support for temporality. There is also no notion of enable/disable rules in ARBAC-safety. When we
say “‘true’ only” for administrative roles, we mean that every rule is enabled in every state.
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Chapter 6

Empirical Results

We have conducted empirical assessments on the three benchmark classes from prior work
[7]. In addition, we have converted the input instances that were used in the empirical
assessment of Mohawk [5] to ATRBAC-safety instances, and tried them as well on the tools.
The conversion of Mohawk inputs is trivial — we adopt a single time-slot for the policy.
Our results are shown in Figure 6.1, Figure 6.2, and Figure 6.3. The curves interpolate
the average of 5 runs. The error-bars show the standard deviation from the average.
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Figure 6.1: Results on all tools for Benchmark Class (a). It comprises random input
instances from a generator from Uzun et al. [13]. The curves interpolate averages, and
the error-bars show the standard deviation. Larger images can be found: Figure A.1,
Figure A.2, and Figure A.3.

Benchmark Class (a) in Figure 6.1, first presented by Uzun et al. [13] but altered here,
are randomized test-cases where:

34



• For the Roles subplot: the number of Rules are fixed at 200 and Timeslots at 20.

• For the Rules subplot: the number of Roles are fixed at 200 and Timeslots at 20.

• For the Timeslots subplot: the number of Rules and Roles are fixed at 200.

Everything about the rules created in the Benchmark Class (a) rules are randomized:

• Random start and end times for the administrator time-interval, where start ≤ end
time.

• For every role that exists there is a 1
5

chance that it will be added to the rule’s
pre-condition as a positive role condition, and 1

5
chance for a negative pre-condition.

These factors differ from the original code in [13] where there was an equal probabil-
ity of 1

3
for each case. The change is to reduce the number of role-pre-conditions is

to allow for more rules that have zero pre-conditions, and thus are allowed to be exe-
cuted. Without rules with empty pre-conditions the query will always be unreachable
and thus a safe system.

• The target role is randomized.

• The target time-interval is a set of time-slots and there is a 1
2

probability of a time-slot
being added to the “role-schedule”.

• The type of rule is randomized with a 1
2

probability for t can assign or t can revoke.

• The administrator is “TRUE”.

We observe that the results are mixed with regards to favouring Mohawk+T. For Bench-
mark Class (a), which is shown in Figure 6.1, the existing tools for ATRBAC-safety outper-
form Mohawk+T. Mohawk+T completes in a few seconds, while existing tools complete in
less than a second each. Our investigation reveals that the policies in this benchmark are
almost always safe, given the way they are generated. Mohawk’s static slicing does a good
job of paring large policies (e.g., 2,000 roles, 100,000 rules) down to a much smaller size
(e.g., 150 roles and rules). However, its bound estimator estimates a bound that is linear
in the number of roles for these policies, e.g., 150. While this is certainly much better than
the worst-case estimate of 2150, it still results in Mohawk+T taking several seconds.

Benchmark Class (b) in Figure 6.2, presented by Ranise et al. [7], are ARBAC policies
that have “temporality” randomly added to them. We would like to thank Ranise et al.
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Figure 6.2: Results for Benchmark Class (b) (two graphs to the left), and Benchmark
Class (c) (right). These comprise input instances from the work of Ranise et al. [7]. Larger
images can be found: Figure A.4, Figure A.5, and Figure A.6.

for providing these test-cases for us to use. This set of 13 policies all have “TRUE” as the
administrator and only contain t can assign and t can revoke rules.

Benchmark Class (c) in Figure 6.2, presented by Ranise et al. [7], is generated similarly
to Benchmark Class (b) but these rules allow for arbitrary administrator roles.

In Figure 6.3, we present testcases taken from Jayaraman et al. [5], which are ARBAC
policies and we trivially convert them to ATRBAC policies by introducing 1 time-slot and
having every rule associate with that time slot. Given an example ARBAC rule: 〈a, C, t〉,
we can trivially convert it with a single time-slot ts such that the policy still reflects
it’s original guarantees on safety: 〈a, ts, C, ts, t〉. The Mohawk test-cases are split into 3
complexity classes: polynomial time, NP-Complete, and PSPACE-Complete. This reflects
what is contained within the test-cases:

• Polynomial Time: can assign and can revoke rules where the administrator is
“TRUE”, all pre-conditions for can assign rules are positive or “TRUE”, and
can revoke rule’s pre-conditions are “TRUE”.

• NP-Complete: can assign rules where the administrator is “TRUE” and pre-
conditions can include positive or negative roles, or be “TRUE”.

• PSPACE-Complete: can assign and can revoke rules where the administrator is
“TRUE” and pre-conditions can include positive or negative roles, or be “TRUE”.

For Benchmark Class (b), shown in Figure 6.2, and Mohawk inputs, which is shown in
Figure 6.3, however, Mohawk+T significantly outperforms the existing tools. Furthermore,
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the existing tools are unable to withstand the input instances from Mohawk [5] beyond a
certain threshold. For the polynomial-time verifiable sub-class, for example, which is Test
Suite 1 in Figure 6.3, none of the existing tools is able to handle inputs beyond 20,000
roles and 80,000 rules.

For Benchmark Class (c), which is shown in Figure Figure 6.2, ASASPTIME-NSA outper-
forms Mohawk+T. Note that as in prior work [7], we did not try this Benchmark Class on
the other existing tools.

Thus, we have the somewhat interesting situation that no single tool can be said to
be good with all the input ATRBAC-safety instances we have tried. Further investigation
is warranted to carefully identify the structure of input instances, and what features a
universally good tool needs to have.
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Figure 6.3: Trivially converted the Mohawk inputs [5] to ATRBAC-safety instances
using one time-slot. Test Suite 1 is for inputs with non-negated preconditions only. Test
Suite 2 is for inputs with no revoke rules. Test Suite 3 is for both positive and negated
preconditions, and assign/revoke rules. Some of the curves are truncated because the
corresponding tools crash at those inputs sizes and beyond. Larger images can be found:
Figure A.7, Figure A.8, and Figure A.9.
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Chapter 7

Future Work

Mohawk+T currently does two polynomial reductions to two separate PSPACE-Complete
problems: the first is from ATRBAC-Safety to ARBAC-Safety, and the second is from
ARBAC-Safety to a Model Checking. It would be interesting to see the performance
increase from converting ATRBAC-Safety directly to a Model Checking.

For large test cases, Mohawk [5] performs abstraction-refinement to remove elements
of the ARBAC-policy to reduce its size and keep the errors one sided. They also present
bounded estimation that assures one sided errors for the model checker. This increases the
performance of the model checker. Future work into adapting abstraction-refinement and
bounded estimation for ATRBAC-Safety.

NuSMV has had some problems with performance that might be fixed by switching to
nuXmv [2]. A comparison of performance would be interesting to see.
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Chapter 8

Conclusions

We have addressed the safety analysis problem in the context of Administrative Tempo-
ral Role-Based Access Control (ATRBAC-safety). We have shown that the problem is
PSPACE-complete, and also that various versions of the problem from the literature are
PSPACE-complete. As the complexity class is the same as ARBAC-safety, we have inves-
tigated an approach to dealing with practical instances of ATRBAC-safety via a reduction
to ARBAC-safety, and then leveraging an existing tool that has been shown to scale well
— Mohawk. For an apples-for-apples comparison with existing tools, we have also come
up with a Reduction Toolkit. Compositions of reductions from the toolkit allow us to
reduce Mohawk+T’s more general version of ATRBAC-safety to other versions. We have
conducted a thorough empirical assessment. Our results are that there are some classes of
inputs for which exiting tools outperform Mohawk+T, and others for which Mohawk+T
outperforms existing tools.

39



APPENDICES

40



Appendix A

Benchmark Results

A.1 Large Images for Benchmark Class A
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Figure A.1: Results on all tools for Benchmark Class (a). It comprises random input
instances from a generator from Uzun et al. [13]. The curves interpolate averages, and the
error-bars show the standard deviation. A larger version taken from Figure 6.1.
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Figure A.2: Results on all tools for Benchmark Class (a). It comprises random input
instances from a generator from Uzun et al. [13]. The curves interpolate averages, and the
error-bars show the standard deviation. A larger version taken from Figure 6.1.
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Figure A.3: Results on all tools for Benchmark Class (a). It comprises random input
instances from a generator from Uzun et al. [13]. The curves interpolate averages, and the
error-bars show the standard deviation. A larger version taken from Figure 6.1.

A.2 Large Image for Benchmark Class B and C
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Figure A.4: Results for Benchmark Class (b). These comprise input instances from the
work of Ranise et al. [7]. A larger version taken from Figure 6.2.
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Figure A.5: Results for Benchmark Class (b). These comprise input instances from the
work of Ranise et al. [7]. A larger version taken from Figure 6.2.

Ho
sp
ita

l 1

Ho
s 2

Ho
s 3

Ho
s 4

Ho
s 5

Ho
s 6

Ho
s 7

Ho
s 8

Ho
s 9

Ho
s 1

0

Un
ive

rsi
ty

1
Un

i 2
Un

i 3
Un

i 4
Un

i 5
Un

i 6
Un

i 7
Un

i 8
Un

i 9

Un
i 1
0

0

20

40

���
�

����

�

�
��
�
���

�
���

→→→→→→→→→→→→→→→→→→→
→

T
im

e
(s
ec
)

Benchmark Class (c)

�Mohawk+T→ ASASPTime NSA

Figure A.6: Results for and Benchmark Class (c). These comprise input instances from
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A.3 Large Image for Mohawk Benchmark
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Figure A.7: Results for inputs used in the empirical assessment of Mohawk [5]. We
trivially converted the Mohawk inputs to ATRBAC-safety instances — there is one time-
slot only. This graph is for inputs with non-negated preconditions only. Some of the curves
are truncated because the corresponding tools crash at those inputs sizes and beyond. A
larger version taken from Figure 6.3.
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Figure A.8: Results for inputs used in the empirical assessment of Mohawk [5]. We
trivially converted the Mohawk inputs to ATRBAC-safety instances — there is one time-
slot only. This graph is for inputs with no revoke rules. Some of the curves are truncated
because the corresponding tools crash at those inputs sizes and beyond. A larger version
taken from Figure 6.3.
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Figure A.9: Results for inputs used in the empirical assessment of Mohawk [5]. We triv-
ially converted the Mohawk inputs to ATRBAC-safety instances — there is one time-slot
only. This graph is the hardest class, in which both negated and non-negated precon-
ditions are allowed, as are revoke rules. Some of the curves are truncated because the
corresponding tools crash at those inputs sizes and beyond. A larger version taken from
Figure 6.3.
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