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Abstract

Cluster analysis has been identified as a core task in data mining for which many
different algorithms have been proposed. The diversity, on one hand, provides us a
wide collection of tools. On the other hand, the profusion of options easily causes
confusion. Given a particular task, users do not know which algorithm is good since
it is not clear how clustering algorithms should be evaluated. As a consequence,
users often select clustering algorithm in a very adhoc manner.

A major challenge in evaluating clustering algorithms is the scarcity of real data
with a ”correct” ground truth clustering. This is in stark contrast to the situation
for classification tasks, where there are abundantly many data sets labeled with
their correct classifications. As a result, clustering research often relies on labeled
data to evaluate and compare the results of clustering algorithms.

We present a new perspective on how to use labeled data for evaluating cluster-
ing algorithms, and develop an approach for comparing clustering algorithms on the
basis of classification labeled data. We then use this approach to support a novel
technique for choosing among clustering algorithms when no labels are available.

We use these tools to demonstrate that the utility of an algorithm depends on
the specific clustering task. Investigating a set of common clustering algorithms, we
demonstrate that there are cases where each one of them outputs better clusterings.
In contrast to the current trend of looking for a superior clustering algorithm, our
findings demonstrate the need for a variety of different clustering algorithms.
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Chapter 1

Introduction

Clustering is a central data analysis tool with a wide range of applications. Ev-
eryday, new data are clustered, new clustering criteria are introduced and new
algorithms are proposed. Not surprisingly, there are many clustering algorithms.
Faced with a concrete clustering task, users need to choose an appropriate cluster-
ing algorithm. Currently, such decisions are often made in a very ad hoc manner.
Of course, users are aware of the costs involved in employing different clustering
algorithms (software purchasing costs, running times, memory requirements, needs
for data preprocessing etc.) but these considerations do not address the outcomes
that these algorithms may produce.

One of the inherent difficulties in evaluating the qualitative performance of
clustering algorithms is the scarcity of real life data with a “correct”, ground truth,
clustering. This is in stark contrast to the situation for classification tasks, where
there are abundantly many data sets labeled with their correct classifications.

One solution to this issue, that has been reported in the clustering literature
([24], [5]) is to view the classes defined by the data labels as the correct clusters that
the clustering algorithm should detect. We argue that this approach has serious
flaws. Clustering is aimed to group domain elements in a way that corresponds to
their similarities. While it does make sense to assume that similar objects tend to
have similar labels, the converse may not be true. As a simple example, consider
the task of clustering cars for the purpose of evaluating their market value, say,
classifying them into 5 price categories. The claim that cars that are similar (in
terms of some relevant features such as make, brand, age, involvement in past
accidents etc.) may have similar market value, makes much more sense than the
converse claim that all cars in the same price bracket are similar (in terms of the
above mentioned features).
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We propose a new technique for evaluating clustering algorithms that is based
on this observation. Our approach accounts for the possibility that valid cluster-
ings of labeled data have more clusters than there are labels in the data. The key
component of our approach is a new impurity measure that is based on label ho-
mogeneity within clusters, but does not penalize for partitioning similarly labeled
data. While points with distinct labels should be assigned to different clusters,
there may be natural groups of points that share the same label, which may be
mutually non-similar. In particular, we view the number of labels only as a lower
bound on the desired number of clusters.

With this tool for revaluating the quality of clusterings, we investigate a number
of basic questions in clustering theory by applying common clustering algorithms to
classification labeled real data sets, and using our tool to evaluate the resulting clus-
terings. Our message is two-fold. We show that different algorithms produce very
different results and that different tasks require different clustering tools. Our sec-
ond message is the development and demonstration of a clustering model-selection
tool that is based on the stability of clustering results over random perturbations
of the input data set.

With the growing number of applications that require clustering, new algorithms
are often being proposed. It is common to see papers that develop a novel clustering
tool and demonstrate the advantages of that tool by showing that it outperforms
others on some specific data sets. This trend has created a substantial volume of
clustering algorithms that is virtually impossible to navigate through. As a result,
many clustering users continue to rely on the most well-known, easily accessible,
clustering algorithms. To aid clustering users, studies have been conducted with
the aim of identifying which well-known algorithm is best, either in general or for
a specific domain.

We argue that the usefulness of a clustering algorithm depends on the specific
clustering task. Investigating a set of common clustering algorithms, we demon-
strate that there are cases where each one of them outputs better clusterings. That
is, for every algorithm, there are data where it finds better clusterings than all other
algorithms considered.

Our findings illustrate the advantage of having a variety of clustering algorithms.
In addition to showing that the performance of an algorithm is task dependent, we
also show that different algorithms often output substantially different clusterings.
Therefore, having choice when it comes to what algorithm to use increases the
chances of finding a good clustering. These results also demonstrate the need for a
new perspective; instead of searching for overall superior clustering algorithms, re-
searchers should aim to provide users with tools for selecting a clustering algorithm
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according to their specific tasks.

In order to evaluate clusterings, we define a new notion: impurity measure. Our
impurity measure makes use of cluster labels. However, in most clustering scenarios
no such labels are available. We develop an approach for selecting a clustering
algorithm that does not require access to labels. We support this approach by
examining data with classification label information using the impurity measure.

Our new approach is based on the sensitivity of an algorithm to data perturba-
tion. Meaningful clusters are usually well-separated. When an algorithm outputs
a good clustering on some data, we expect that if we slightly perturb the data, the
algorithm will output a similar clustering.

We empirically demonstrate that sensitivity to data perturbation is positively
correlated with low impurity. Algorithms that produce clusterings that are robust
to small perturbations of the underlying distances score well under the impurity
measure. Since testing robustness to perturbation requires no auxiliary information
about the clustering, and is computationally efficient, this makes for a realistic
criterion for selecting a clustering algorithm.

The thesis is organized as follows. The next chapter discusses related previous
work. Chapter 3 lists our basic definitions, notation as well as brief summary of
each clustering algorithm we consider. Next, we present our impurity measure
for clustering evaluation in Chapter 4. We then demonstrate in Chapter 5 that
different clustering algorithms may output substantially different clusterings on the
same data using a clustering-similarity measure. Next, we compare some popular
clustering algorithms using the impurity measure in Chapter 6. We then propose
the sensitivity-based approach for selecting a clustering algorithm in the absence
of data labels, supporting it using the impurity measure in Chapter 7. Finally, in
Chapter 8 we present our conclusions.
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Chapter 2

Related Work

There are many diverse studies comparing clustering algorithms. Virtually every
paper that proposes a new clustering algorithm compares it with some previous
algorithms. Since clustering is an important data exploration tool for a wide range
applications, there are many application-specific comparative studies.

[20] studied three clustering algorithms which are widely used for Wireless Ad
Hoc Networks, namely the Lowest-ID, the Highest Degree and the Extended Robust
Re-clustering algorithm. Their work aims to investigate which are the factors that
significantly affect the re-clustering performance such as cluster head modification
rate, number of the generated clusters, reliability metrics, cluster head availability
probability or end to end message delivery ratio.

[26] and [17] compared different document clustering techniques. The first com-
pared partitional to agglomerative clustering algorithms, and proposed a new al-
gorithm while the second studied K-means and agglomerative algorithms. The
performance measure used in both papers are F-measure and entropy measure,
which are both specific measure for clustering documents. [26] concluded parti-
tional algorithms generally perform better than agglomerative algorithms and [17]
stated that K-means was as good or better than agglomerative approaches.

As in bio-informatics, [2] conducted a comparison of four algorithms: Hierarchi-
cal clustering, K-means, PAM and SOM while [23] compared two implementations
of K-means: Lloyd’s method and Progressive Greedy. [2] concluded that K-means
generated clusters with slightly better structural quality while hierarchical algo-
rithms are bad. [23] focused on the running times and distance efficiency instead of
clustering quality and stated Lloyd’s method outperforms the other implementation
in both measures.
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[12] compared clustering methods for marketing research such as Single Linkage,
Average Linkage, Complete Linkage, Ward’s Method, K-means, Iterative partition-
ing methods and Hill-climbing methods.

The above papers are different from ours since we use data from a variety of
different applications. This will create a more general comparison among clustering
algorithms since we do not restrict our test data to any specific domain. Instead,
we test the algorithms across different data sets and notice their performance. In
addition to task-specific studies, there are a few empirical comparisons of clustering
algorithms for general purposes.

[14] studied five algorithms: Complete Linkage, AutoClass, Self-Organizing
Map, Growing Hierarchical Self-organizing Map and Generative Topographic Map-
ping. The author(s) focused on the robustness of the algorithms in terms of pa-
rameter selection, the ease of handling and the information gained from the result
representation instead of clustering quality, which is our focus. In addition, [14]
only tested the algorithms against one toy data set and one high dimensional data
set.

[18] and [19] proposed a modified version of Single Linkage and demonstrated
that it outperforms the traditional linkage algorithms. In both papers, cluster-
ing quality was determined by comparing the truth clustering and the clustering
produced by the algorithms using Rand-index.

[5] tested four algorithms: K-means, Fuzzy c-means, Mountain and Subtractive
against one heart-disease data set while we provides the comparison across many
different real data. Root mean squared error and accuracy were used to determine
clustering quality. As the result, [5] concluded that K-means is fairly better than
the rest.

[24] presented a survey of clustering algorithms along with a small experiment
with 3 data sets. Similarly, [4] conducted a survey of clustering algorithms and
presented an empirical study of the algorithms on 4 data sets. In both studies, the
authors used the number of labels as the correct number of clusters and measured
the quality of clusterings by counting the percentage of errors.

We, in this work, consider a set of clustering algorithms that are popular in
literature and compare them on a diversity of real data. Clustering algorithms
can be compared based on different criteria, such as usability ([14]), execution time
([11]), CPU time and memory space ([25]), while our emphasis here is on the quality
of the output of clustering algorithms.

Since there is a scarcity of ground-truth clustering data, researchers often rely
on classification data to evaluate the quality of clustering algorithms. In such cases,
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the standard approach is to view the classes defined by the data labels as the correct
clusters that the clustering algorithm should detect (see, for example, [5], [21], [4],
and [24]). The main distinction of our approach lies in how we utilize labeled data
to evaluate clustering quality. We will only use the number of labels as a lower
bound for the number of clusters.

Lastly, we do not try to determine a winning algorithm among the ones con-
sidered as in [5], [26] or [17]. Instead, we demonstrate the diversity of clustering
algorithms and that each algorithm is needed for some data sets. Therefore, there
is no overall superior winner.

6



Chapter 3

Notation and Background

3.1 Notation

A k-clustering C = {C1, C2, . . . , Ck} of a data set X ⊆ Rm is a partition of X into

k disjoint subsets (so,
⋃
i

Ci = X).

A clustering of X is a k-clustering of X for some 1 ≤ k ≤ |X|. We use the letter
k to represent the number of clusters.

For a clustering C, let |C| denote the number of clusters in C and |Ci| denote
the number of points in a cluster Ci. Let |X| denote the number of elements in
data set X.

3.2 Clustering distance: Variation of Informa-

tion

In order to evaluate the difference between clusterings, we need a precise measure
of clustering similarity. Various of such measures have been proposed, and some
of the most popular are Jaccard index ([1]), Rand index ([13]), and Variation of
Information ([9]). We have selected one such common measure, Variation of In-
formation (V I) proposed by Meila, which was shown to satisfy many desirable
properties [9]. Our empirical studies seem to yield very similar results when other
common measures of difference between clusterings are employed.
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Intuitively, Variation of Information [9] represents how much information one
clustering gives about the other. H(C), the entropy associated with a k-clustering
C = {C1, . . . , Ck}, is defined as:

H(C) = −
k∑
i=1

P (i) logP (i) where P (i) = |Ci|
|X|

The mutual information between two clusterings C and C ′ is defined as

I(C,C ′) =
k∑
i=1

k′∑
i′=1

P (i, i′) log
P (i, i′)

P (i)P (i′)
where P (i, i′) =

|Ci∩C′i′ |
|X|

where k and k′ are the total number of clusters in clustering C and C’ respectively.

The Variation of Information between clusterings C and C ′ is then defined as:

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′)

This measure was shown that it was lower-bounded by 0, when the 2 clusterings
are exactly the same and upper-bounded by log(|X|), when one clustering has all
points in 1 cluster and the other clustering has all points in their own cluster.

In order to make the results interpretable across all data sets, instead of pre-
senting the actual values of V I, which varies from 0 to log(|X|), we normalize V I
values by log(|X|).

3.3 Clustering Algorithms

We consider five of the most commonly used clustering algorithms in literature: Av-
erage Linkage [16], Complete Linkage [6], Ward’s Method ([22]), K-means ([7]) and
Nearest Neighbor ([3]). Due to their popularity, we only present short description
of each algorithm.
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3.3.1 Average Linkage

Belonging to Agglomerative algorithm class, Average Linkage starts with |X| clus-
ters and each of them includes exactly one data point. A series of merge operations
are then followed out, which finally leads to the desired number of clusters. Given
the desired number of clusters, the algorithm is as follows:

1. Initialize each data point in its own cluster

2. For each pair of clusters Ci and Cj, compute:

D(Ci, Cj) =

P
x∈Ci,y∈Cj

d(x,y)

|Ci|.|Cj |

where d is the distance measure between any two points in the data set.

3. Repeat from step 2 until the number of clusters equals to k:

(a) Determine the pair Ci and Cj such that D(Ci, Cj) is minimal

(b) Merge cluster Ci and Cj

(c) Update each D(Ci, Cj) accordingly.

Figure 3.1 illustrates how Average Linkage determines the distance between any
two clusters.

9



Figure 3.1: Average Linkage Algorithm [15]

3.3.2 Complete Linkage

Complete Linkage is very similar to Average Linkage in terms of how the clusters
are created. The difference between them lies in how the distance between any 2
clusters are calculated. In Complete Linkage, the distance between two clusters is
determined by the maximum distance between any two points in the two clusters.
Given the desired number of clusters, the specific algorithm is as follows:

1. Initialize each data point in its own cluster

2. For each pair of clusters Ci and Cj, compute:

D(Ci, Cj) = max{d(x, y) : where x ∈ Ci and y ∈ Cj}

where d is the distance measure between points in the data set.

3. Repeat from step 2 until the number of clusters equals to k:

(a) Determine the pair Ci and Cj such that D(Ci, Cj) is minimal

10



(b) Merge cluster Ci and Cj

(c) Update each D(Ci, Cj) accordingly.

Figure 3.2 demonstrates how Complete Linkage determines the distance between
any two clusters.

Figure 3.2: Complete Linkage Algorithm [15]

3.3.3 Ward’s Method

Ward’s Method is also hierarchical method but designed to optimize the minimum
variance within clusters. Ward’s Method tends to join cluster with a small number
of data points and strongly biased towards producing cluster with roughly the same
size. Given the desired number of clusters, the detailed algorithm is as follows:

1. Initialize each data point in its own cluster

2. For each pair of clusters Ci and Cj, compute

D(Ci, Cj) =
∑

x∈A∪B ‖x−
1

|A∪B|
∑

x∈A∪B x‖2

3. Repeat from step 2 until the number of clusters equals to k:

11



(a) Determine the pair Ci and Cj such that D(Ci, Cj) is minimal

(b) Merge cluster Ci and Cj

(c) Update each D(Ci, Cj) accordingly.

3.3.4 K-means

In this work, we implemented Lloyd’s method for K-means clustering. Lloyd’s K-
means Clustering algorithm was proposed by S. Lloyd. Given a number k, the
algorithm separates all data into k disjoint clusters, each of which has a center that
acts as a representative. There are iterations that reset these centers then reassign
each point in the data set to the closest center. The next iteration repeats until
the centers do not move. The detailed algorithm is as follows:

1. Select k random points from the data set as the initial centers: c1, .., ck

2. Assign each data point to the cluster Ci corresponding to the closest cluster
center ci(1 ≤ i ≤ k)

3. After the assignment of all data points, recalculate new cluster centers as

ci = 1
|Ci|

|Ci|∑
j=1

xj ∀xj ∈ Ci

Figure 3.3 illustrates how the K-means works.
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Figure 3.3: KMeans Algorithm [8]

K-means can work well for compact and hyperspherical clusters [24]. It is well
known by the community that there is no efficient and universal method for selecting
initial centers as well as the number of clusters. The convergence of the algorithm
varies depending on the initial centers.

3.3.5 Nearest Neighbor

Nearest Neighbor [3] can be considered as one of the most simple clustering algo-
rithms: grouping the points according to its closest neighbor. Given a threshold T
and the number of clusters k, the algorithm is as follows:

1. Set i = 1. Create the first empty cluster and assign xi to it.

2. Set i = i + 1. Find the nearest neighbor of xi among the points that have
already been assigned to clusters. Let dm denote the distance from xi to its
nearest neighbor. Suppose its nearest neighbor is in the cluster m.

3. If dm is less than or equal to the threshold T and the current number of
clusters is less than k, assign xi to Cm

4. Else if dm is greater the threshold T and the current number of clusters is less
than k, create a new cluster for that record.

13



5. Else if the current number of clusters is equal to k, assign xi to its nearest
neighbor’s cluster.

6. If all points have been assigned, stop; otherwise, continue step 2.

14



Chapter 4

The Impurity Measure

Evaluating clustering quality has been a challenge to researchers. Since there is a
scarcity of ground-truth clustering data, researchers often have to rely on classifica-
tion data to evaluate the quality of clustering algorithms. A common approach to
evaluating clustering algorithms makes use of labeled data by viewing the classes
defined by the data labels as the correct clusters. We argue that this approach
is fundamentally inaccurate. Labels focus on a single feature of the data, while a
clustering may combine multiple features to create a meaningful partition.

Recall the car pricing example from the introduction, where labels correspond
to a car’s market value. While we might expect that similar cars will have similar
market value, there may be very different cars that fall within the same price range.

We propose a new measure that accounts for the possibility that a valid cluster-
ing has more clusters than there are labels in the data. While points with distinct
labels should be assigned to different clusters, there may be natural clusters that
subdivide the classes defined by the labels. In particular, we view the number of
labels only as a lower bound on the true number of clusters.

We formally define a measure of clustering quality that is based on labeling
information. Let L represent the set of labels. Let `(x) be the label of point x.

The label of a cluster is the label of the majority of points in that cluster,
denoted by

`(Ci) = argmaxb∈L|{x ∈ Ci | `(x) = b}|.

The impurity of a clustering is the proportion of points whose label differs from
the labels of their cluster.
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Definition 4.1 (Impurity of a clustering). The impurity of a clustering C is

impurity(C) = 1
|X|

∑|C|
i=1 |{x ∈ Ci | `(x) 6= `(Ci)}|

(where X is the domain set of the clustering).

The impurity of a clustering algorithm, for a specific data set and number of
clusters k, refers to the impurity of the k-clustering that it produces on that data
set.

Observe that a clustering where the number of clusters is equal to the number
of points in the data will have 0 impurity. The objective is to find a clustering with
low impurity and non-trivial cluster sizes. To this end, we examine the impurity as
a function of the number of clusters.

It is easy to see that, for hierarchical algorithms, impurity decreases as the
number of clusters increases. However, it might not always be the case for non-
hierarchical algorithms. For example, consider a situation in which users want to
apply K-means to a data set generated by two well-separated Gaussians, one of
which is labeled with ”+” while the other is labeled with ”-”. When the number of
clusters is 2, K-means is likely to return a close-to-perfect clustering, which results
in small impurity. However, if k is 3, the impurity might increase since K-means
will partition the data set into 3 clusters, one of which contains points from both
Gaussians. Now, if k = 4, K-means is likely to split each Gaussian group into half
and obtain a better impurity than that of k = 3. The above example illustrates
that, in general, for non-hierarchical algorithms, the impurity of k is not always
larger than that of k + 1.

Our impurity measure was motivated by the need of selecting a good clustering
algorithm together with an appropriate value of k. Since our experiments were
performed without setting preference to any specific value of k, we evaluate clus-
tering quality by considering the impurity trend over several values of k. Given two
algorithms, we say the better algorithm is the one that has its impurity trend below
that of the other. However, it is possible to have two impurity trends crossing each
other. In such cases, we suggest to select the algorithm that has lower impurity at
k of interest.
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Chapter 5

Variety of Clustering Algorithms

Given the large available collection of clustering algorithms, each claims to achieve
something better than some other algorithms. As the result, users often choose
clustering algorithms in a very adhoc manner. This is one of the fundamental
motivations for developing tools for clustering algorithm selection since different
clustering algorithms tend to output very different clusterings. This phenomenon
can be observed on many different data sets. We demonstrate it here with a few
examples: some data sets with selected value of k and one data set with various
values of k.

We performed a pairwise comparison of the output of clustering algorithms
on real data sets from the UCI Machine Learning Repository [10]. Figures 5.1,
5.2, and 5.4 present the pairwise comparison of the algorithms on the Transfusion,
Ionosphere, and Dermatology data sets with 15 clusters. We also illustrate this
trend over different values of k on the Dermatology data, Figure 5.3 shows the
results for k = 10 and Figure 5.5 for k = 20. Note that the values presented on
these tables are normalized V I.
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5.1 Data sets with selected value of k

Table 5.1: Transfusion with k = 15

AL CL NN WM KM

AL 0 0.5204 0.5752 0.5119 0.5711
CL 0.5204 0 0.6407 0.4969 0.6253
NN 0.5752 0.6407 0 0.5502 0.5380
WM 0.5119 0.4969 0.5502 0 0.4326
KM 0.5711 0.6253 0.5380 0.4326 0

Table 5.1 presents pairwise comparison of all clustering algorithms on Transfusion
data set, which consists of 748 points, with k = 15. Please refer to Figure 6.9 for
the impurity reference. From the table, we could see that the resulted clusterings
are very different from each other. The closest pair is Ward’s Method and Complete
Linkage; which is approximately 50% different from each other. On the other end,
Nearest Neighbor and Complete Linkage are the most different from each other
among the rest: 64%.

Table 5.2: Ionosphere with k = 15

KM NN WM CL AL

KM 0 0.6101 0.5785 0.6079 0.8291
NN 0.6101 0 0.7484 0.7417 0.8036
WM 0.5785 0.7484 0 0.6733 0.8296
CL 0.6079 0.7417 0.6733 0 0.6619
AL 0.8291 0.8036 0.8296 0.6619 0

The difference among clusterings is demonstrated even more clearly in table
5.2. Please refer to 6.7 for the performance of the algorithms on this data set. On
Ionosphere, which has 354 points, with k = 15, Ward’s Method and K-means are
the most similar among all clusterings but they are 57% difference from each other.
Average Linkage and Ward’s Method are the most different from each other with
almost 83%.
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5.2 Data set with various values of k

Having shown how different algorithms result in very different clusterings on indi-
vidual data with selected value of k, we now demonstrate that phenomenon with
various values of k on one single data set. In particular, we present three pair-wise
comparison tables on Dermatology with k = 10, 15, 20.

Table 5.3: Dermatology with k = 10

KM AL CL NN WM

KM 0 0.2680 0.3099 0.4054 0.2848
AL 0.2680 0 0.2957 0.3001 0.2677
CL 0.3099 0.2957 0 0.3802 0.3324
NN 0.4054 0.3001 0.3802 0 0.3229
WM 0.2848 0.2677 0.3324 0.3229 0

Table 5.4: Dermatology with k = 15

KM NN WM CL AL

KM 0 0.5486 0.5050 0.5993 0.5905
NN 0.5486 0 0.2599 0.5115 0.4287
WM 0.5050 0.2599 0 0.4417 0.4203
CL 0.5993 0.5115 0.4417 0 0.5211
AL 0.5905 0.4287 0.4203 0.5211 0

Table 5.5: Dermatology with k = 20

AL CL NN WM KM

AL 0 0.3031 0.369 0.5628 0.3820
CL 0.3031 0 0.4981 0.5470 0.4550
NN 0.369 0.4981 0 0.5373 0.4447
WM 0.5628 0.5470 0.5373 0 0.56
KM 0.3820 0.4550 0.4447 0.56 0

The tables 5.3, 5.4, and 5.5 present the pair-wise comparison of all algorithms
on Dermatology data set with the number of clusters is set to 10, 15 and 20. For
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impurity reference on this data set, please refer to Figure 6.5 . In all three tables,
we can clearly see the clusterings are substantially different from each other. In
fact, the difference ranges from 26% to 41%, 26% to 60%, and 30% to 56% with
k = 10, 15 and 20 respectively.

5.3 Summary

As shown in the above tables, different algorithms output substantially different
clusterings on the same data. The trend has been demonstrated by both individual
data sets with selected value of k and a data set with various values of k. For
k = 15, the average distance between clusterings is 71% for the Ionosphere data,
55% for Transfusion, and 48% for Dermatology. The Variation of Information
between clusterings on the same data set is often above 50%, going as high as
83%. Although in this work, we only choose one distance metric, Variation of
Information, to compare clustering algorithms, the result does not bound to any
specific metric. The same conclusion can be drawn if using other distance metrics
such as Rand index or Jaccard index.
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Chapter 6

Significance of Each Algorithm

Many empirical studies on clustering aim to identify superior clustering algorithms.
When novel clustering techniques are proposed they are most often accompanied
by experimental results illustrating that on some data the new algorithms find
better clusterings than alternatives. Likewise, comparative studies tend to focus on
identifying algorithms that perform better than their counterparts.

We argue that the utility of an algorithm depends on the specific data considered
and that it is unlikely that any clustering algorithm would consistently outperform
all others. We study five popular clustering algorithms: Lloyd’s method (commonly
refereed to as the K-means algorithm), Average Linkage, Complete Linkage, Ward’s
Method, and Nearest Neighbor. The definitions of these algorithms appear in
Chapter 3. In this chapter, we show for each of these algorithms, there are data
where it performs better than the other algorithms.

In this study we use classification data from the UCI Machine Learning Repository[10].
For every data set, we graph the impurity of the clusterings produced by each algo-
rithm, ranging over different numbers of clusters. Specifically, we begin by plotting
the impurity of every algorithm when the number of clusters equals the number of
labels, we then plot the impurity of the algorithms with k equaling the number of
labels rounded to the closest multiple of 5, and continue to plot the impurity in
intervals of five until we reach 25 clusters.

We say that a clustering algorithm outperforms another clustering algorithm on
a specific data set when the former has a lower impurity score for most values of
k. Notably, a clear winner usually emerges when the number of clusters is between
5 to 10 larger than the number of labels, reinforcing the hypothesis that the true
number of clusters is often larger than the number of labels.
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6.1 Average Linkage

Figure 6.1: Wine - Average Linkage performs the best

The Wine data set consists of 178 elements, 13 attributes, and 3 labels. As is
shown in Figure 6.1, the impurity of Average Linkage is notably better than that
of other algorithms around 10 clusters. Since this data set has 178 elements, at
k = 20 the expected cluster size drops to below 9 elements. We notice here that
the impurity of all algorithms begins to converge from k = 20. This is expected,
since the impurity of any algorithm decreases as the number of clusters approaches
the number of data elements.

Another data set on which Average Linkage performs better than the others
is Iris. This is one of the most popular data sets for examining the performance
of novel methods in pattern recognition and machine learning. Since this data set
only has 150 points with 4 attributes and 3 labels, we only plot the impurity trends
up k = 15 instead of k = 25 as other data sets. As shown in Figure 6.2, even
when the number of clusters is as low as the number of labels, the impurity of
Average Linkage is significantly better than that of others. Only when k reaches
10, K-means and Nearest Neighbor start to catch up with Average Linkage and
eventually converge to similar impurity.
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Figure 6.2: Iris - Average Linkage performs the best

6.2 Complete Linkage

Figure 6.3 shows the impurity of the algorithms on Sonar data set, which has
208 points, and each data point has 60 attributes. Until the number of clusters
reaches 5, the impurity trends are indistinguishable. Complete linkage has notably
lower impurity than the other algorithms from k = 10. As the number of clusters
increases, the impurity of other algorithms decreases. K-means seems to catch up
with Complete Linkage only when the number of clusters reaches 20.
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Figure 6.3: Sonar - Complete Linkage performs the best

Another data set that shows Complete Linkage performs better than other algo-
rithms is Ecoli. This data set consists of 336 points, each of which has 7 attributes.
We can see how the algorithms behave on this data set on Figure 6.4. Initially when
the number of clusters equals to 8, all algorithms achieve quite similar impurity. As
soon as the number of clusters reaches 10, Complete Linkage made a breakthrough
and outperforms the rest.
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Figure 6.4: Ecoli - Complete Linkage performs the best

6.3 Ward’s Method

We use Dermatology data set, which has 351 points, 34 attributes, and 6 labels, to
demonstrate the need for Ward’s Method. Note that as a consequence of having
more labels, the impurity scores are higher than in the previous data sets. As
illustrated in Figure 6.5, Ward’s method outperforms the other algorithms from
k = 10. As the number of clusters reaches 25, Average Linkage seems to catch up,
but its impurity is still higher than that of Ward’s Method.
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Figure 6.5: Dermatology - Ward’s Method performs the best

Ward’s Method also performs the best on Movement Libras data set. This data
set has 360 points, each of which has 90 attributes. Similar to Dermatology data
set, this one has 15 labels; therefore, we expect to see high level of impurity in
Figure 6.6. Also as a consequence, we present the range for k up to 30 instead
of 25 as other data sets. Starting with the lowest possible number of clusters,
Ward’s method has already achieved the best impurity compared to the rest. As
the number of clusters reaches 30, the algorithms seem to converge.
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Figure 6.6: Movement Libras - Ward’s Method performs the best

6.4 K-means

Figure 6.7 shows the impurity trend of five algorithms on the Ionosphere data set.
This data set contains 351 data points each of which has 34 attributes, and 2 labels.
The figure illustrates that K-means achieves a notably better impurity scores on
the great majority of the domain. Ward’s method catch up only when the number
of clusters reaches 20.
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Figure 6.7: Ionosphere - K-means performs the best

Figure 6.8: Breast Cancer - K-means performs the best

Another data set on which K-means performs better than the rest is Breast
Cancer, which has 683 points, 10 attributes and 2 labels. Figure 6.8 shows the
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impurity trend of the algorithms on this data set. Even when the number of clusters
is set as low as 2, K-means already achieves an amazing impurity value while the
others produce much worse clusterings. As the number of allowed clusters increases,
the other algorithms starts to catch up, especially Average Linkage and Complete
Linkage, but K-means still has the best impurity compared to the others’.

6.5 Nearest Neighbor

Figure 6.9: Transfusion - Nearest Neighbor performs the best

Just like the other clustering algorithms, there is also a need for Nearest Neighbor.
Transfusion data set, which has 748 points and 4 attributes, is the one on which
Nearest Neighbor performs better than the rest. As Figure 6.9 shows, the impurity
of Neareast Neighbor is not the best when the number of clusters is as small as
2. However, as the number of clusters increases, Nearest Neighbor is the one that
picks up the fastest and starts to achieve a much better impurity for the number
of clusters greater than or equal to 10.
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6.6 Summary

We have presented above for each clustering algorithm we consider at least one
data set on which it performs the best. While many empirical studies try to show
certain algorithm performs better than some other algorithms by testing them on
a few data sets, our message is that each algorithm has its own advantage, and
there are tasks in which each of them is needed. That also implies: there is no
universal order of which some clustering algorithms always perform better than
others. This result aims to motivate researchers to suggest a tool for selecting the
appropriate clustering algorithm for a specific task instead of introducing many
more new clustering algorithms.
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Chapter 7

Practical Approach to Clustering
Algorithm Selection

Motivated by the results in previous two chapters, we suggest a practical approach
to clustering algorithm selection. Our impurity measure makes use of data labels.
However, in most clustering applications no labels are available. We present an
approach for evaluating clustering algorithms that does not require labels. This new
approach is supported through a comparison to the impurity measure on labeled
data.

A good clustering is usually composed of well-separated clusters. Given an
algorithm that produces a good clustering on some data, we expect that if we
slightly perturb the data, the algorithm will find a similar clustering. In particular,
if an algorithm performs well on a data set, the difference between the clustering
resulting from the original data and the one resulting from the slightly perturbed
data is expected to be small.

In this section we illustrate that our impurity measure is positively correlated
with sensitivity to data perturbation. We provide evidence that by selecting the
algorithm which yields the most robust clustering one selects the algorithm with
lowest impurity. As sensitivity to data perturbation requires no labels, and is easy
(i.e. computationally efficient) to evaluate, this can serve as a realistic approach to
clustering algorithm selection.

This section is organized as follows. We begin by formalizing the notion of
sensitivity to data perturbation. We then discuss how cluster balance is related
to our measure of sensitivity. Next, we apply this approach to evaluate cluster-
ing algorithms on data sets from the UCI Machine Learning Repository[10]. We
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demonstrate a positive correlation between impurity and sensitivity to data per-
turbation on these data sets for a fixed number of clusters. We then study the
relationship between these two measures for different values of k on the Ecoli data
set.

7.1 Defining sensitivity to data perturbation

We define sensitivity for a fixed level of perturbation. To measure the distance
between clusterings, we use the Variation of Information measure discussed in Sec-
tion 3.2.

An ε-perturbation of data set X is obtained by adding white Gaussian noise on
the elements of X. That is:

X ′ = X +G(0, εI)

. where I is the identity matrix.

The ε-sensitivity of an algorithm measures the effect that an ε-perturbation has
on the output of an algorithm.

Definition 7.1 (ε-sensitivity). The ε-sensitivity of an algorithm A for data set X
and 1 ≤ k ≤ |X| is

EX′∼X+G(0,εI)[V I(A(X, k), A(X ′, k))].

Selecting ε: Since our goal is to select the most suitable algorithm for a specific
data set, we are interested in the ranking of the algorithms by their sensitivity.
Since perturbation by ε is randomized, we select ε in a manner that ensures that
the sensitivity ranking is persistent over different ε-perturbations of the data. Si-
multaneously, we need to select a sufficiently high perturbation, as otherwise all
algorithms may be highly robust (note that every algorithm has sensitivity 0 for
sufficiency small perturbations). As such, we have chosen to assign ε to the max-
imum value that yields a stable sensitivity ranking over the algorithms. When is
sensitivity ranking of the algorithms stable? The same level of perturbation on a
given data set can result in different perturbed data sets. Therefore, we say the
sensitivity ranking of the algorithms is stable only if the order of the algorithms in
terms of sensitivity does not change while given different perturbed data sets of the
same level of perturbation.
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We select the maximal value of ε that yields the same sensitivity ranking over
the algorithms on three different ε-perturbations of the data. We estimate the
sensitivity of an algorithm (for a specific data set and number of clusters) using
the average variation of information of the clustering obtained on the original data
with the clusterings on the three perturbed data sets.

7.2 Clusterings with many small clusters

Stability may not be a good indication of quality when the algorithm produces
clusterings which have many small but only a few large clusters. In many cases,
small clusters are the results of detecting outliers. Outliers are points that de-
viate markedly from the remaining data, which makes them insensitive to small
perturbation.

This observation implies that before we can trust stability as an indication of
quality, we need to examine the cluster sizes that the algorithms produce. We say a
balance clustering is one in which most clusters are sufficiently large. Given a data
set on n points partitioned into k clusters, the expected cluster size of a balance
clustering is n/k. We say that a cluster is small if it has less than

√
n/k elements.

As mentioned above, small clusters can be the result of detecting outliers, and
outliers are insensitive to noise regardless how good the clustering is. To be on a
safe side, we decided not to consider clusterings where at least half the clusters are
small. In our initial investigation, we have also included Single Linkage. However,
we consistently notice that when the number of clusters is small, Single Linkage
tends to detect outliers, which are robust to small perturbation. Therefore, we find
its results not interesting, and more importantly, not a reliable indication of quality.
On the other hand, when algorithms find clusterings where the majority of clusters
have at least

√
n/k points, we consistently observe a positive correlation between

impurity and sensitivity.

7.3 Correlation between impurity and sensitivity

across different data sets

We study the correlation between sensitivity and impurity across different data sets,
for a fixed number of clusters. We chose the number of clusters to be the number
of labels plus 3; however, any other value of k where the expected cluster size is not
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too small could have been used. Since Variation of Information (see Section 3.2)
ranges from 0 to log |X|, the same range applies for sensitivity. For interpretability
across different data, we normalize sensitivity by log(|X|).

In order to identify clusterings that contain many small clusters while the other
clusters are large, all diagrams in this section include a list of cluster sizes in de-
scending order next to the name of the algorithm that produced the clustering.
The number of elements, attributes, and labels in the data are indicated on top of
each diagram.

7.3.1 Wine data set

In Figure 7.1, we plot the impurity versus sensitivity of the clustering algorithms
on the Wine data set. Note that half the clusters produced by Average Linkage
have size less than

√
n/k. As discussed above, this type of clusterings tend to have

low sensitivity regardless of its performance, as is confirmed in this example.

The remaining algorithms which produce more balanced clusters clearly illus-
trate a positive correlation between impurity and sensitivity. In particular, the
ranking of the algorithms in terms of sensitivity percentage is consistent with the
ranking of the algorithms in terms of impurity. The one that has smallest sensitivity
percentage also has the lowest impurity score.

Figure 7.1: Wine - Variance = 0.00031623 - k = 6
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7.3.2 Iris data set

Figure 7.2 illustrates a positive correlation between impurity and sensitivity on
the Iris data set. On this data set, all algorithms produce quite balanced cluster-
ings. Ward’s method deviates from the curve, yet does not interfere to the positive
correlation.

Figure 7.2: Iris - Variance = 0.0001 - k = 6

7.3.3 Bupa data set

Figure 7.3: Iris - Variance = 0.0001 - k = 6
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As Figure 7.3 illustrates, both Average Linkage and Complete Linkage produce
clusterings where the majority of clusters are small (consisting of less than

√
n/k

elements) on the Bupa data set. Indeed, these algorithms output clusterings with
a single large. As a result, both Average Linkage and Complete Linkage have low
sensitivity no matter what their impurity is. The other three algorithms produce
quite balance clusterings and demonstrate a positive correlation between impurity
and sensitivity.

7.4 Correlation between impurity and sensitivity

across different k

Having shown the positive correlation between sensitivity and impurity on individ-
ual data sets with certain value of k, we now show that such correlation holds with
various values of k on a data set. We demonstrate this trend on the Ecoli data set,
which has 336 points, 7 attributes, and 8 labels. Figure 7.4, 7.5, and 7.6 illustrate
a comparison of impurity and sensitivity on the Ecoli data set for k ∈ {10, 15, 20}
respectively.

Figure 7.4: Impurity versus sensitivity on the Ecoli data set for k = 10
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Figure 7.5: Impurity versus sensitivity on the Ecoli data set for k = 15

Figure 7.6: Impurity versus sensitivity on the Ecoli data set for k = 20

Impurity and sensitivity are positively correlated across different numbers of
clusters. As we saw in the graphs above, here too Average Linkage produces clus-
terings with many small clusters, and as the result, its sensitivity is very low re-
gardless of its performance. On the other hand, all other algorithms clearly support
our claim: positive correlation between impurity and sensitivity. The algorithms’
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ranking based on sensitivity percentage is consistent with that based on impurity.
In all graphs, among the considered algorithms, Complete Linkage has the lowest
sensitivity percentage as well as the smallest impurity. The result is consistent with
6.4 since Complete Linkage outperforms the others on this data set.

7.5 Summary

In this chapter, we have demonstrated a positive correlation between impurity and
sensitivity to perturbation. We show that the positive correlation holds across
different real data sets, and different numbers of clusters. Our experiments con-
firm that when the majority of clusters are small (which can be due to outliers),
sensitivity is low irrespective of how the clustering relates to the data labels.

We observe that Average Linkage is prone to producing clusterings, in which
there are many small clusters and the rest of clusters are large, and to a lesser degree
this phenomenon also occurs for Complete Linkage. In our original investigation
we have also included Single Linkage algorithm. However, we found that Single
Linkage consistently output clusterings with a majority of small clusters, and has
low sensitivity whether or not it performs well on the task.

On the other hand, when clustering algorithms find more balanced clusters, we
repeatedly observe a positive correlation between impurity and sensitivity. There-
fore sensitivity can replace impurity when no labels are available. We propose a
practical approach to clustering algorithm selection, which does not make use of
data labels. Given a specific task, users can easily calculate the sensitivity of the
available algorithms and select the one with the lowest sensitivity. As we discussed
and explained above, users should not take into consideration the algorithms that
produce unbalanced clusterings since those can be the result of detecting outliers.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

Clustering performance has been difficult to evaluate since there is scarcity of real
life data with a ”correct” ground truth clustering. This is in contrast to the sit-
uation for classification where there are many data sets labeled with their correct
classifications. One solution to this issue is to view the classes defined by the data
labels as the correct clusters that the clustering algorithm should detect. We have
argued that this approach has serious flaws. Due to fundamental differences be-
tween classification and clustering, we cannot directly rely on classifications labels
to identify clusters. Labels describe a single aspect of the data, while clustering
aims to obtain a meaningful partition based on all available attributes. While it
may be reasonable to assume that data with different labels belong to different clus-
ters, elements with the same label may be meaningfully partitioned into multiple
groups. Based on this observation, we develop the impurity measure for evaluating
clustering quality on labeled data, and demonstrate how to utilize this measure for
selecting a clustering algorithm.

We use our new impurity measure to demonstrate that the choice of clustering
algorithm depends on the specific clustering task. Studying a set of well-known
clustering algorithms, we show that each of them outputs the best clustering on
some real data. These results demonstrate the need for a new research perspective:
instead of searching for overall superior clustering algorithms, researchers should
aim to provide users with tools for selecting a clustering algorithm according to
their specific tasks.

We also propose a novel model-selection tool in the absence of data labels. This
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tool is based on the stability of clustering over random perturbations of the input
data set. Using labeled data, we show that sensitivity to data perturbation is
positively correlated with our impurity measure. This indicates that the sensitivity
measure can be used instead of impurity when no data labels are available. In
particular, given a specific task, users can calculate the sensitivity of available
algorithms and select the one that has the lowest sensitivity. In this work, we
suggest not to consider the algorithms that return clusterings where at least half of
the clusters are small since these clusterings may be robust to small perturbation
regardless of how useful they are.

8.2 Future Work

Based on our experiments, we notice that hierarchical algorithms, especially Single
Linkage and sometimes Average Linkage, produce clusterings where more than half
clusters are small. Therefore, they are eliminated from our algorithm selection
process. Perhaps, a small modification to their stopping criteria might resolve the
issue. In particular, instead of the trivial criteria that is being used: the algorithm
stops when k reaches the desired number of clusters K, we could let the algorithm
run until either k = K or K of the current clusters has at least

√
n/k points.

How to select k is one of the very important questions that have been raised in
literature. Unfortunately, it is still not fully answered. As one of our future research
directions, we would like to investigate the relation between k and sensitivity. Since
sensitivity can be evaluated without access to labels, the answer to this might
provide users with practical tools to k selection.

K-means is known to be sensitive to initial choice of centroids. Often, users will
have to run K-means several times, and perhaps pick the clustering with the lowest
cost. By doing that, users seem to ignore the information that the other clusterings
might contain. We are planning to investigate more on K-means’ runs and hope to
introduce an aggregation scheme which makes use of the information contained in
the majority of the runs and returns a single clustering.
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