
The application of the in-tree
knapsack problem to routing

prefix caches

by

Patrick Kevin Nicholson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Patrick Kevin Nicholson 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Modern routers use specialized hardware, such as Ternary Content Addressable
Memory (TCAM), to solve the Longest Prefix Matching Problem (LPMP) quickly.
Due to the fact that TCAM is a non-standard type of memory and inherently
parallel, there are concerns about its cost and power consumption. This problem is
exacerbated by the growth in routing tables, which demands ever larger TCAMs.

To reduce the size of the TCAMs in a distributed forwarding environment,
a batch caching model is proposed and analysed. The problem of determining
which routing prefixes to store in the TCAMs reduces to the In-tree Knapsack
Problem (ITKP) for unit weight vertices in this model.

Several algorithms are analyzed for solving the ITKP, both in the general case
and when the problem is restricted to unit weight vertices. Additionally, a variant
problem is proposed and analysed, which exploits the caching model to provide
better solutions. This thesis concludes with discussion of open problems and future
experimental work.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Ian Munro, for all of
the help he has provided to me during the completion of this thesis. His guidance
and suggestions were critical in keeping me focused and providing a direction for
my research.

I would also like to thank Suran de Silva, Nilesh Shah, and Shyam Kapadia for
all of their help during my internship at Cisco. The many discussions I had with
them paved the way for this work.

Finally, I would like to thank my readers, Anna Lubiw and Gordon Agnew, for
their very helpful corrections and suggestions to the initial version of my thesis.

iv

Contents

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Motivating application: routing prefix caches 1

1.1.1 The longest matching prefix problem 1

1.1.2 A caching model for routing prefix caches 2

1.2 Previous work on routing prefix caching 3

1.2.1 Overview . 3

1.2.2 Handling prefix dependencies 5

1.2.3 Summary . 7

1.3 Contributions of this thesis . 8

2 Modelling prefix caching using the in-tree knapsack problem 9

2.1 Problem descriptions and notation 9

2.1.1 Directed Graphs . 9

2.1.2 The precedence constraint knapsack problem 9

2.1.3 In-tree and out-tree knapsack problems 10

2.1.4 The routing prefix caching problem 10

2.1.5 Variant problem: punt prefixes 11

2.2 Exact vs. Approximate solutions 13

2.3 Numerical Examples . 14

2.4 Review of prior work on the ITKP 16

2.4.1 Subtree density method . 16

2.4.2 Dynamic programming algorithms 18

v

2.4.3 Other work on the Precedence Constraint Knapsack Problem
(PCKP) . 19

2.4.4 Summary . 19

3 Dynamic programming algorithms 20

3.1 Overview and assumptions . 20

3.2 Bottom-up method for the ITKP 21

3.2.1 Description . 21

3.2.2 Dynamic programming by solution weight 22

3.2.3 Numerical Example . 23

3.2.4 Dynamic programming by solution profit 23

3.2.5 Improved time bound for the RPCP 26

3.3 Left-right method for the ITKP . 27

3.3.1 Description . 27

3.3.2 Dynamic programming by solution weight 29

3.3.3 Numerical Example . 30

3.3.4 Dynamic programming by solution profit 30

3.4 The bottom-up method for the RPCP+ 31

3.4.1 Description . 31

3.4.2 Dynamic programming over solution weight 32

3.4.3 Numerical Example . 34

3.5 FPTAS for the ITKP . 37

3.6 Reducing storage requirements . 38

3.7 Summary . 40

4 Greedy algorithms 42

4.1 Overview . 42

4.2 The subtree density method for the ITKP 42

4.3 Properties of the subtree density method 47

4.4 The region-heap algorithm for the ITKP 51

4.5 Discussion of the RPCP . 54

4.5.1 Error bounds . 54

4.5.2 Time bounds . 54

4.6 Discussion of the RPCP+ . 55

4.7 Summary . 59

vi

5 Conclusions and future work 61

APPENDICES 63

A List of Abbreviations 64

B Further discussion of the RPCP+ 65

References 66

vii

List of Tables

2.1 A comparison of algorithms for the ITKP and Out-tree Knapsack
Problem (OTKP) by source. 19

3.1 The dynamic programming table, TBU, created by the bottom-up
method when run on the tree found in Figure 3.1. By examining
table entry TBU[v21, 10] it can be seen that the optimal solution has
a profit value of 60. 24

3.2 For a subtree of size α+β+1 this table indicates how many compar-
isons must be done to compute the optimal solution for each capacity
over the interval [1, α + β + 1]. 27

3.3 The dynamic programming table, TLR, created by the left-right
method when run on the tree found in Figure 3.1. By examining
table entry TLR[v21, 10] it can be seen that the optimal solution has
a profit value of 60. 30

3.4 The dynamic programming table (TIN) created by the bottom-up
method that allows for punt vertices when run on the tree found in
Figure 3.1. 35

3.5 The dynamic programming table (TEX) created by the bottom-up
method that allows for punt vertices when run on the tree found in
Figure 3.1. 36

3.6 A comparison of the different dynamic programming methods ap-
plied to the ITKP, Routing Prefix Caching Problem (RPCP), and
Routing Prefix Caching Problem with Punt Prefixes (RPCP+). Ta-
ble entries that are dashed out do not mean that no bounds can be
shown for those problems, but rather that the bounds have not been
explicitly stated in this chapter. Note that any bounds for the ITKP
immediately hold for the RPCP. 41

4.1 Comparison of the greedy algorithms presented in this Chapter for
solving the ITKP, RPCP, and RPCP+. Each of these algorithms
has a space requirement of Θ(n). The algorithm for the ITKP and
RPCP provide an error bound of 1

2
. 60

viii

List of Figures

1.1 An example 4-bit routing table represented as a tree. A prefix c is a
child of p if the address of c is matched by p and c has a longer mask
length than p. 4

1.2 The 4-bit example routing table from Figure 1.2 represented as a trie.
The black vertices represent prefixes defined in the routing table,
while the white vertices are merely structural and do not correspond
to actual prefixes. A right branch in the trie represents a 1 and a left
branch represents a 0. The trie is traversed by recursively examining
the next most significant bit of an address. 5

1.3 Left: The prefixes (black vertices) bounded by the dotted line are the
only prefixes which are allowed to be cached under the “No modifica-
tion” scheme. Right: Under the “Full modification” scheme, many
expanded prefixes (yellow leaf vertices) must be added to the trie
in order to cover the address space of the associated prefix with de-
pendencies. For example, the prefix 0000/0 has dependencies, and
therefore must be expanded into 0110/3 and 1100/3. The arrows de-
note which internal black vertices correspond to the new expanded
yellow vertices. 6

2.1 An example tree to demonstrate the subtree function S(vj) and the
ancestor function A(vi), which would result in the set of vertices
bounded by the solid line and dashed line, respectively. 11

2.2 An example of how punt vertices relax the requirement that a vertex
set be closed under predecessor. Consider the set of vertices bounded
by the solid line in the figure, where the three vertices marked by
‘P’ have been toggled to be punt vertices. Because of these punt
vertices, this set of vertices is a valid solution for the RPCP+ . . . 12

2.3 An example of an instance of the OTKP. Here, each vertex has unit
weight, and the number written on each vertex indicates its profit
value. The optimal solution to this OTKP instance for capacity
C = 10 is bounded by the solid line. 14

ix

2.4 An example of an instance of both the ITKP, and the RPCP. Here,
each vertex has unit weight, and the number written on each vertex
indicates its profit value. The optimal solution to this instance for
capacity C = 10 is bounded by the solid line. 15

2.5 An example of an instance of the RPCP+. The optimal solution
to this RPCP+ instance for capacity C = 10 is bounded by the
solid line. In this particular example, converting v12 into B(v12)—
denoted by replacing v12 with a vertex with a ‘P’—has resulted in
a higher profit solution than would otherwise be attainable without
punt vertices. 15

3.1 An example of how a tree where vertices with more than two pre-
decessors can be converted into a binary tree. The vertices marked
with ‘X’ are dummy vertices, each of which have a weight and profit
of zero. 21

3.2 Suppose the input to the bottom-up and left-right dynamic pro-
gramming algorithms is the above tree. During the computation of
TBU[v15, k], the goal is to find the optimal legal combination of ver-
tices within S(v15); indicated by the solid boundary. In contrast, for
TLR[v15, k], not only is S(v15) considered, but all vertices previously
visited; as indicated by the dot-dashed boundary. 28

3.3 Left: Suppose the above tree is an instance of the ITKP, and the
table row for the vertex marked by the arrow is currently being com-
puted. The nodes marked in black indicate which table rows must
be stored, not only for the computation of the current row, but for
any future rows. In this particular case, the marked node represents
the vertex having the maximum storage requirements. Right: If the
tree on the left is traversed in a way such that the largest subtree is
always traversed first, then the number of rows that must be stored
is significantly reduced. 39

4.1 If the subtree density method were run on this example, a solution
with no profit would be found, since the vertex with profit t is not
feasible. However, if punt vertices are allowed, a solution with profit
equal to t is clearly possible. 55

4.2 In this figure there are 3 disjoint subtrees rooted at vertices v1, v2, v3,
and a chain of vertices rooted at v4. The punt sets rooted at v2 and
v3 require t punt vertices to cover the t predecessors of these vertices
which have zero profit, thus δ(B∗(v2)) = δ(B∗(v3)) = t

2
. Meanwhile,

δ(B∗(v4)) = t−1
2

. The greedy strategy would select v1 and either v2

or v3, then stop. The optimal algorithm would select the entire chain
rooted at v4. This is because even though each individual punt set
has a low density, selecting the chain results in a better solution. . . 58

x

Chapter 1

Introduction

1.1 Motivating application: routing prefix caches

1.1.1 The longest matching prefix problem

Routers maintain a table of routing prefixes, each of which match a contiguous

range of the Internet Protocol (IP) address space, and are associated with packet

forwarding information. Routing prefixes are expressed in the form a/m, where,

in the case of IP version 4, a is a 32-bit address, and m is a mask length, defined

over the range [0, 32]. The address portion of the prefix is typically expressed as

a series of four octets in decimal, each representing 8 bits of the address, with

values over the range [0, 255], and concatenated by dots. The mask represents the

size of the range that the prefix matches. Specifically, a prefix matches all IP ad-

dresses which share the m most significant bits of the prefix’s address. To illustrate

this, the routing prefix 192.168.2.0/24 matches all addresses between 192.168.2.0

and 192.168.2.255, whereas a prefix 192.168.0.0/16 matches all addresses between

192.168.0.0 and 192.168.255.255. Thus, the 32−m least significant bits of a prefix

are ‘don’t care’ bits; their value is inconsequential in determining whether the prefix

matches an address.

When a packet arrives at a router, the router must determine where to forward

the packet so that it arrives at its destination. This is done by solving the Longest

Prefix Matching Problem (LPMP) for the packet’s destination address. The solu-

tion to the LPMP is the unique routing prefix, if it exists, that not only matches

the destination address of the packet, but has a longer mask length than any other

1

matching prefixes. This problem is fundamental to routing, as it must be solved

multiple times for every packet that is transmitted over the Internet.

Since 2000, solving the LPMP has become increasingly problematic due to the

explosive growth in the number of routing prefixes for Internet routing tables. As

of 2009, these tables contain around 290000 routing prefixes, and this number is

expected to increase further [1, 2]. The rapid increase in the number of routing

prefixes has led to the need for ever more scalable solutions to the LPMP.

Many interesting algorithms have been proposed to address this need, which

can be used to solve the LPMP efficiently in software [32, 9]. However, most

high-end routers use specialized hardware, such as Ternary Content Addressable

Memory (TCAM), to solve the the LPMP in a single memory access [14]. Although

these hardware solutions are incredibly fast, they have other drawbacks. The main

ones being that they tend to be expensive and consume a great deal of power, as

they are highly parallelized.

1.1.2 A caching model for routing prefix caches

In a distributed forwarding environment, where each router line-card maintains a

TCAM storing the entire routing table, one idea to reduce power consumption and

cost is to reduce the capacity of the TCAM in each line-card. Effectively, this

would turn each line-card TCAM into a routing prefix cache: packets triggering

cache hits could be forwarded to their correct port of egress immediately, whereas

packets triggering cache misses would have to be forwarded to a central forwarding

engine with access to the complete routing table. However, this model of prefix

caching introduces two challenges not present in standard caching models, such as

page caching.

The first is that dependencies exist among the routing prefixes, which means

that certain prefixes can only be cached if all of their dependencies are also cached.

This can be best illustrated by the following example. Suppose a cache has room

for one prefix, and the routing table has only two prefixes, 192.168.2.0/24 and

192.168.2.100/32 (the latter being a subrange of the former). In this case, the

prefix 192.168.2.0/24 cannot be cached, as it will cause the cache to give incorrect

solutions to the LPMP for packets having the destination address 192.168.2.100.

Because each prefix matches a contiguous range of addresses, and these ranges

are nested, the dependencies among prefixes can be modelled by a tree (or trie).

2

In this tree, each prefix p is a vertex, and all prefixes q which are subranges of

p become descendants of this vertex. If p has the longest mask of any prefix for

which q is a subrange, then the vertex corresponding to p is the parent of the vertex

corresponding to q. In terms of this dependency tree, if a vertex is to be cached,

then the entire subtree induced by that vertex must be cached as well.

The second challenge is that information regarding which prefixes are the most

heavily used is difficult to obtain in this model. At current line rates, this informa-

tion must be gathered using hardware counters and sampling devices [22], which

take time to determine which prefixes are being used most frequently. Because

these time-scales are much longer than the per packet rate of the router, enacting a

prefix cache replacement policy with per packet granularity—for example, when a

cache miss occurs—is difficult. Due to this, a more feasible approach for this model

of prefix caching would be to enact cache replacement in batch at much longer

time-scales. Discussion of the appropriate length of time between replacement op-

erations is outside the scope of this thesis, but the assumption throughout is that

a good cache hit ratio can be maintained even when these replacement operations

occur at half-minute intervals.

In light of these two challenges, the problem of determining which routing pre-

fixes should be stored in the line-card caches will be referred to as the Routing Prefix

Caching Problem (RPCP). Before diving into more details about the RPCP, some

of the previous work on routing prefix caching will be reviewed.

1.2 Previous work on routing prefix caching

1.2.1 Overview

The idea of using caching to ease the burden of solving the LMPP is not new.

In 1988, Feldmeier proposed the use of a destination address cache to reduce the

amount of time required to do routing table lookups [10]. By caching the forward-

ing decision for incoming destination addresses, solving the LPMP for subsequent

requests for that destination address could be avoided. At that time this was

proposed, packet forwarding was handled by dedicated Network Processors (NPs),

which meant the caching model was very standard: a cache was considered to be

fully associative, and a replacement decision would occur at each cache miss. A

simulation comparing standard cache replacement policies was conducted using real

3

packet traces, and it was concluded that use of the proposed caching scheme could

increase the speed of NPs by 65%.

The justification for caching destination addresses is based on the notion that

incoming destination addresses have an exploitable temporal locality. Evidence to

this effect was given in [10], and since then other studies since then have yielded

similar results [6, 29]. In 2000, Chiueh and Pradhan proposed a different approach

to caching with the Intelligent Host Address Range Cache scheme for NPs [6].

Their scheme seems to be the first scheme to cache routing prefixes rather than

destination address alone, as well as to identify the dependency issues associated

with prefix caching. By caching prefixes instead of destination addresses, a much

larger portion of the address space could reside in the cache. Experimental evidence

showed that IHARC provided a factor of 5 improvement in average lookup time

over destination address caching alone.

Since 2000, most of the research on caching for network routing has been fo-

cused on prefix caches [21, 3], as well as ‘multizone’ caches, in which the cache

is partitioned into different sections based on the length of the prefixes they store

[8, 30, 25, 18]. Here the focus will be solely on methods developed to handle routing

prefix dependencies, as these methods are applicable to prefix caching in both the

NP model, as well as the distributed model described in Section 1.1.2.

0000/0

0000/2

0000/3

0100/3 1000/2

1010/3

1011/4

1110/3

Figure 1.1: An example 4-bit routing table represented as a tree. A prefix c is a child of
p if the address of c is matched by p and c has a longer mask length than p.

4

0000/0

0000/2

0000/3 0100/3

1000/2

1010/3

1011/4

1110/3

Figure 1.2: The 4-bit example routing table from Figure 1.2 represented as a trie. The
black vertices represent prefixes defined in the routing table, while the white vertices
are merely structural and do not correspond to actual prefixes. A right branch in the
trie represents a 1 and a left branch represents a 0. The trie is traversed by recursively
examining the next most significant bit of an address.

1.2.2 Handling prefix dependencies

The predominant strategies for dealing with the problem involve either refusing to

cache prefixes with dependencies, or alternatively, modifying the routing table to

either remove or reduce the number of dependencies [21, 3, 18]. Before describing

the strategies, first consider the example the set of 4-bit routing prefixes in Figure

1.1. In this figure, the routing prefixes are arranged so that child prefixes are

dependencies of their parents.

Another way of picturing the routing table is in the form of a binary trie. In a

binary trie each edge represents one bit: 1 or 0. Each prefix is stored at a vertex,

and the path to a vertex corresponds to bit-wise expansion of the address of the

prefix. However, this path is truncated, such that its length is equal to the mask

length of the prefix. For example, if the routing table in Figure 1.1 is represented

in this manner, it results in the trie in Figure 1.2. To solve the LPMP in terms of

this trie, the next most significant bit of the query destination address is recursively

examined, and the branch taken in the trie—left or right—is determined by this

bit. During this search, the last vertex corresponding to a routing prefix that is

visited is the longest matching prefix for that destination address.

All of the strategies for eliminating or reducing routing table dependencies are

described in terms of this trie representation of the routing table. These strategies

fall into one of three categories:

5

Figure 1.3: Left: The prefixes (black vertices) bounded by the dotted line are the only
prefixes which are allowed to be cached under the “No modification” scheme. Right:
Under the “Full modification” scheme, many expanded prefixes (yellow leaf vertices)
must be added to the trie in order to cover the address space of the associated prefix
with dependencies. For example, the prefix 0000/0 has dependencies, and therefore must
be expanded into 0110/3 and 1100/3. The arrows denote which internal black vertices
correspond to the new expanded yellow vertices.

No Modification

In this method, only prefixes that have no dependencies are allowed to be cached.

In the 4-bit example, this means that only the prefixes bounded by the dotted line

in Figure 1.3 (left) can be cached. This scheme is called ‘No Prefix Expansion’ in

[21], or ‘Parent Restriction’ in [3]. Whenever a replacement happens a simple check

is performed to determine whether the inserted prefix has dependencies, and, if so,

an alternative course of action must be taken. One alternative in this situation is to

instead cache the entire destination address of the packet with a full /32 bit mask

[21].

Full Modification

All of the prefixes with dependencies are expanded into prefixes without dependen-

cies by adding extra prefixes to the routing table [21, 3]. This entails modifying

the trie structure of the routing table so that each internal vertex storing a routing

table prefix is converted into one or more leaf vertices (see the right side of Figure

1.3). The added leaves contain the forwarding information of the original internal

vertex.

One side effect of this method is that the added leaves greatly inflate the size of

the routing table. In [21] it was found that, for routing tables with between 15906

and 61832 entries, the inflated tables can vary between 143-218% of the size of the

original tables. Another side effect is that additional prefixes can increase the time

6

to update the routing table by more than constant factor in the worst case. This

is due to the extra work required to deal with the added expanded prefixes during

a prefix deletion, for example.

A solution to the first problem, called minimal expansion, was proposed in [3].

This entails expanding the prefixes in an on-demand fashion, so that new prefixes

are only added as they are used. Although this reduces the inflation of the routing

tables, minimal expansion still suffers from the increased worst case cost for routing

table updates.

Partial Modification

Somewhere in between the previous two approaches is the partial modification

scheme. Prefixes with dependencies are expanded, as in the full modification

scheme, but in a limited way which only adds one at most expanded prefix per

prefix in the routing table. This single new prefix is placed in such a way as to

maximize the coverage of the address space [21].

Because the routing table receives exactly one extra entry for each prefix with

dependencies the inflation factor is less concerning than that of the full modification

method. In [21] it was found that this method caused routing tables to inflate

to between 111-120% of their original size, and performed nearly as well as full

modification.

Although this deals with the space issue, the trade off is that—as with the no

modification scheme— partial modification provides no strict guarantees on caching

performance. This is because some portions of the address space may remain unable

to be cached. However, in its defense, experimental evidence suggests that it works

almost as well as full modification [21].

1.2.3 Summary

Although prior work on prefix caching identifies and handles the problem of depen-

dencies among prefixes, it also introduces new complications. If the full modification

scheme is used, the number of additional prefixes required to modify the routing

table can more than double it in size in practice. If the no modification, or par-

tial modification schemes are used, then there is no strict guarantee that a heavily

7

used routing prefix will be able to be cached. Furthermore, both the full modifica-

tion and partial modification schemes necessitate an extra layer of abstraction for

routing table insertions and deletions.

The assumption throughout the literature is that replacement can occur on

a per packet basis, and therefore most work recommends implementing standard

cache replacement policies. This assumption is valid in the case where a network

processor is used to solve the LPMP. However, for the specific distributed hardware

forwarding model described in Section 1.1.2, it is not feasible.

1.3 Contributions of this thesis

In this thesis, an approach to solving the RPCP that is more suited to the model

discussed in Section 1.1.2 is presented. Cache replacement is considered to be a

batch replacement operation, rather than occurring on a per packet basis. Under

this model, each cache replacement operation is shown to be equivalent to a special

case of the In-tree Knapsack Problem (ITKP) where each vertex has unit weight.

Therefore, this thesis addresses the question of how hard it is to solve the RPCP

without modifying the routing table, if strict performance guarantees are desired.

Although the RPCP is the motivation for this work, the main results of this

thesis are improved algorithms for the ITKP. Chapter 2 details the ITKP, explains

its connection to the RPCP, and defines notation that will be used throughout the

remainder of this thesis. In Chapter 3, new dynamic programming algorithms are

presented to find the optimal solution of the ITKP, and their implications are dis-

cussed for the RPCP. In Chapter 4, a new 1
2
-approximation algorithm is presented

for the ITKP, for the case where the tree structure need not be constructed. It is

shown that this algorithm retains the same error bound, but has a superior running

time when applied to the RPCP. In the final chapter, conclusions of this work are

discussed along with a list of open problems.

8

Chapter 2

Modelling prefix caching using the

in-tree knapsack problem

2.1 Problem descriptions and notation

2.1.1 Directed Graphs

A directed graph G is a tuple (V,E), where V is a set of vertices, and E is a set

of edges. Each edge (u, v) ∈ E is a pair of vertices and represents a connection

between them, such that u is a predecessor of v, and v is a successor of u. Define

Pre(v) to be the set of vertices which are predecessors of v, and Suc(v) to the set

of vertices which are successors of v.

A cycle in a directed graph G = (V,E) is a set of vertices {v1, ..., vk} ⊆ V for

any k ≥ 1, such that v1 ∈ Suc(vk), and vi ∈ Suc(vi+1) for 1 ≤ i < k. A directed

acyclic graph is a directed graph that contains no cycles.

2.1.2 The precedence constraint knapsack problem

Given a directed acyclic graph G = (V,E), define a set of vertices V ′ ⊆ V as closed

under predecessor with respect to G, if for every edge, (v, u) ∈ E, u ∈ V ′ implies

v ∈ V ′. In other words, if a vertex set is closed under predecessor, then there are

no edges directed into it from vertices not contained in the set. In the Precedence

Constraint Knapsack Problem (PCKP) a directed acyclic graph G = (V,E) is

given, called the precedence graph, as well as a profit function p : V 7→ Z+, a

9

weight function w : V 7→ Z+, and a capacity C ≥ max {w(v) : v ∈ V }. Let n = |V |
represent the number of vertices in the graph, P = p(V) =

∑
v∈V p(v) represent

the total sum of the vertex profits, and W = w(V) =
∑

v∈V w(v) be the total

sum of the vertex weights. The optimal solution to an instance of the Precedence

Constraint Knapsack Problem (PCKP) is a vertex set X ⊆ V that maximizes

Q =
∑
v∈X

p(v) , (2.1)

is closed under predecessor with respect to G, and satisfies

∑
v∈X

w(v) ≤ C . (2.2)

2.1.3 In-tree and out-tree knapsack problems

An in-tree is a rooted tree with all edges directed toward the root. Similarly, an

out-tree is a rooted tree with all of its edges directed out from the root.

In a tree, the subtree induced by a vertex v consists of v along with every

descendant of v. For a given tree with vertex set V , define S(v) to be the subtree

induced by vertex v, for all v ∈ V . Conversely, for all v ∈ V , let A(v) be set of

vertices on the path from v to the root, inclusive. Figure 2.1 provides an illustration

of these two concepts. For brevity, throughout this thesis the term ‘subtree’ should

be interpreted to mean ‘subtree induced by some vertex v ∈ V ’ unless otherwise

stated.

In the case of an in-tree, S(v) is closed under predecessor for all v ∈ V . Likewise,

in the case of an out-tree, A(v) is closed under predecessor for all v ∈ V . Two special

cases of the PCKP are the In-tree Knapsack Problem (ITKP), and the Out-tree

Knapsack Problem (OTKP), which occur when the precedence graph is an in-tree

and an out-tree, respectively.

2.1.4 The routing prefix caching problem

At this point the link between the ITKP and the Routing Prefix Caching Problem

(RPCP) should be clarified. In the RPCP, entries in the cache are replaced in batch

whenever enough statistical information is available to indicate which prefixes are

10

vi

vjA(vi)

S(vj)

Figure 2.1: An example tree to demonstrate the subtree function S(vj) and the ancestor
function A(vi), which would result in the set of vertices bounded by the solid line and
dashed line, respectively.

being accessed most frequently. Each prefix requires the same amount of TCAM to

be stored in the cache. At the time that the replacement occurs, it is assumed that

each prefix in the routing table has been mapped to an integer profit value based

on these statistics. The profit value is a measure of the benefit that is expected to

be obtained by inserting the prefix into the cache.

From the above problem description and the nature of the prefix dependencies,

the RPCP can be viewed as a special case of the ITKP where each vertex has unit

weight. However, due to the precedence constraints, the ITKP is non-trivial for

instances where each vertex has unit weight. This issue is discussed much later

in this thesis, at the end of Chapter 4, but now one variant of the RPCP will be

described.

2.1.5 Variant problem: punt prefixes

In practice, it might be the case that a particular routing prefix has a very large

profit value, but too many unprofitable dependencies which prevent it from being

cached. One mechanism to circumvent this issue is the introduction of punt prefixes,

which trigger a cache miss when they are returned as the result of a LPMP query.

At first, caching prefixes that cause cache misses may seem strange. However, as

the following paragraph will explain, these punt prefixes can result allow better

11

P PP

Figure 2.2: An example of how punt vertices relax the requirement that a vertex set be
closed under predecessor. Consider the set of vertices bounded by the solid line in the
figure, where the three vertices marked by ‘P’ have been toggled to be punt vertices.
Because of these punt vertices, this set of vertices is a valid solution for the RPCP+

solutions to the RPCP.

Suppose that any prefix in the routing table can either be cached as a normal

prefix, or as a punt prefix. When a punt prefix is present in the cache, none of

its dependencies are required to be in the cache. This is because a cache miss is

guaranteed to result in the correct forwarding decision for any packets matched by

the punt prefix. Thus, in order to cache a given prefix p, not all of its dependencies

need to be cached: only those prefixes which are children of p—in terms of the

tree representation of the routing table—need to be cached as punt prefixes. Of

course, the downside to punt prefixes is that since they cause a cache miss, no profit

is gained by caching a prefix as a punt prefix. To distinguish this problem from

the RPCP it will be referred to as the Routing Prefix Caching Problem with Punt

Prefixes (RPCP+).

The addition of punt prefixes means that the RPCP+ cannot be abstracted

directly to the ITKP with unit weights. To illustrate this, consider an instance of

the ITKP having an in-tree G = (V,E). To provide an analogous concept to punt

prefixes, suppose that each vertex in V has the extra ability to toggle between a

normal vertex and a punt vertex. A normal vertex v behaves exactly as expected:

it has a profit p(v) and weight w(v) associated with it, and if X is a solution

containing v, then all of the predecessors of v must be in X as well. Alternatively,

if v is toggled to be a punt vertex, denoted B(v), it still has weight w(B(v)) = w(v),

but p(B(v)) = 0, and if B(v) ∈ X, none of the predecessors of v are required to be

12

in X.

To clarify, punt vertices change the requirement that X be closed under prede-

cessor. The new requirement can be explained recursively as follows. Suppose a

normal vertex v is in X, having predecessors {u1, ..., uk}. For each ui, 1 ≤ i ≤ k, ei-

ther ui ∈ X as a normal vertex, along with its required predecessors, or B(ui) ∈ X.

Note that in the latter case, even though any descendants of ui are not required to

be in X, they can be in X, so long as they also satisfy this new recursive closure

definition. Figure 2.2 illustrates how punt vertices can be used.

Even though the RPCP+ is clearly distinct from the ITKP, the same general

techniques presented in Chapters 3 and 4 can be applied to both problems. This

is due to the fact that the RPCP+ retains a similar tree structure to the ITKP.

There may be a better way of representing the RPCP+, though this remains an

open question. For further discussion of an alternate framework for the RPCP+,

refer to Appendix B after reading Chapters 3 and 4.

2.2 Exact vs. Approximate solutions

Throughout this thesis, there are many algorithms that are presented which sacrifice

the optimality of a solution for a decrease in running time. Let Q represent the

maximum achievable profit for the optimal solution(s) to the above problems. An

ε-approximation algorithm [13] is defined to be any algorithm which returns a

solution having profit Q̂, such that

Q− Q̂
Q

≤ ε . (2.3)

For approximation algorithms which accept ε as input, the ε parameter typically

makes an appearance in the algorithm’s time (and possibly space) requirements.

Algorithms are called Polynomial Time Approximation Schemes (PTASs) if their

running time is polynomial in n for any fixed ε. For example, an ε-approximation

algorithm running in Θ(n1/ε) is considered to be a PTAS. However, note that as ε

approaches 0, the running time of the algorithm, though still polynomial, becomes

increasingly undesirable.

Another class of approximation algorithms, called Fully Polynomial Time Ap-

proximation Schemes (FPTASs), have a more strict property which is absent from

13

0 0 0

0 0

0

0 0 0

0

10

20

40

10

5 5

v16

v15v8

v4 v5 v6 v7

v1 v2 v3

v9 v12 v13 v14

v10 v11

OTKP

Figure 2.3: An example of an instance of the OTKP. Here, each vertex has unit weight,
and the number written on each vertex indicates its profit value. The optimal solution
to this OTKP instance for capacity C = 10 is bounded by the solid line.

PTASs. The running time of an FPTAS must be polynomial in both n and ε.

For example, an ε-approximation algorithms requiring Θ(nk/ε) time and space for

some constant k would be considered to be FPTASs.

2.3 Numerical Examples

Before moving on to discuss prior work on the ITKP, it would help to provide some

numerical examples of each of the above problems.

Example 2.3.1. Figure 2.3 is an example of an instance of the OTKP. This

particular instance, which will be our running example, is a special case in which all

the vertices have equal unit weight. If the knapsack capacity, C = 10, meaning that

at most 10 of the vertices can be selected, then the optimal solution (minimizing

weight) would be {v4, v5, v8, v10, v12, v15, v16}, with total profit 90. It is easy to verify

that this is the best solution, because each vertex is closed under predecessor, and

it contains every vertex with non-zero profit.

Example 2.3.2. The direction of all of the edges in Figure 2.3 are reversed, then the

problem becomes an instance of the ITKP, shown in Figure 2.4. Since each vertex

has unit weight, this is also an example of the RPCP. For this instance of the prob-

lem, the optimal solution for C = 10 is less apparent since some of the vertices which

14

0 0 0

0 0

0

0 0 0

0

10

20

40

10

5 5

v16

v15v8

v4 v5 v6 v7

v1 v2 v3

v9 v12 v13 v14

v10 v11
ITKP

Figure 2.4: An example of an instance of both the ITKP, and the RPCP. Here, each
vertex has unit weight, and the number written on each vertex indicates its profit value.
The optimal solution to this instance for capacity C = 10 is bounded by the solid line.

0 0 0

0 0

0

0 0 0

0

10

20

40

10

5 P

v16

v15v8

v4 v5 v6 v7

v1 v2 v3

v9 v12 v13 v14

v10 v11
RPCP+

Figure 2.5: An example of an instance of the RPCP+. The optimal solution to this
RPCP+ instance for capacity C = 10 is bounded by the solid line. In this particular
example, converting v12 into B(v12)—denoted by replacing v12 with a vertex with a ‘P’—
has resulted in a higher profit solution than would otherwise be attainable without punt
vertices.

15

have no profit associated with them must be selected in order to be able to reach the

most profitable vertices. The optimal solution is {v5, v9, v10, v11, v12, v13, v14, v15},
with total profit 60.

Example 2.3.3. Let the in-tree shown in Figure 2.5 be an instance of the RPCP+,

the problem variant that allows punt vertices. The optimal solution for C = 10 has

a higher profit than the solution from Example 2.3.2 since punt vertices allow us

to access more profitable vertices at less cost than before. The optimal solution is

{v1, v2, v3, v4, v9, v10, B(v12), v13, v14, v15}, with total profit 70.

2.4 Review of prior work on the ITKP

Other applications of the ITKP include project scheduling and manufacturing,

where a given project cannot be started until others been completed [16]. The

OTKP can be applied to optimize strip mining operations [17], as well as a number

of telecommunication network design problems [7].

The ITKP and OTKP can be shown to be NP-complete through a trivial reduc-

tion from the Knapsack Problem (KP) [19]: when the precedence constraints are a

forest with no edges these problems reduce exactly to the KP. However, as is the

case with the KP, the tree knapsack problems permit algorithms that are pseudo-

polynomial in both time and space. An algorithm which is pseudo-polynomial runs

in time polynomial in the value of its input, but exponential in the size of the input

when it is reasonably represented (i.e. not in unary). For example, an algorithm

which runs in O(nC) time and space is pseudo-polynomial since C can be input to

the algorithm in logC bits. Even though O(nC) seems to be a polynomial time

algorithm, it requires time exponential in the size of C.

In this section a quick overview of prior work on the ITKP, OTKP, and PCKP

is given. Technical details are mostly omitted, since they are described thoroughly

in Chapters 3 and 4. In these chapters the same techniques are used and expanded

upon to develop new algorithms for the ITKP, RPCP, and RPCP+.

2.4.1 Subtree density method

Ibarra and Kim [16] seem to be the first to have considered the ITKP, and they

developed a PTAS for the problem. Their method, which is analogous to the PTAS

16

for the KP from [26], is based on the idea of repeatedly selecting subtrees which

have high profit per unit of weight, or high density. The density of a subtree rooted

at vertex v is defined as:

δ(S(v)) =

∑
v′∈S(v) p(v

′)∑
v′∈S(v)w(v′)

. (2.4)

This subtree density method entails greedily filling the knapsack capacity with

subtrees of maximum density, until the next most dense subtree cannot fit. Suppose

the optimal solution has value Q and the subtree density method yields a solution

with value Q0. Ibarra and Kim showed that the difference in profit Q−Q0 is less

than than the most profitable subtree in the optimal solution. They also showed

that filling the knapsack using the subtree density method can be done in O(n2)

time.

Their PTAS works by choosing sets of disjoint subtrees and placing them in the

knapsack. The subtree density method is then run on what remains of the tree after

these subtrees have been removed. The number of different sets tried by the PTAS

is based on the value of the desired error bound, ε, where ε is a unit fraction. If an

error bound of ε is desired, all possible sets of 1/ε− 1 or fewer disjoint subtrees are

tried, and this number of sets is no more than

1/ε−1∑
k=1

(
n

k

)
≤ (1/ε− 1)n1/ε−1 . (2.5)

Since the subtree density method must be run on each subset, the total running

time of the PTAS becomes:

O(
n

1
ε
+1

ε
) . (2.6)

Furthermore, for the special case where ε = 1
2
, they gave an improved algorithm

that runs in O(n2) time and Θ(n) space. This algorithm is discussed in great detail

in Chapter 4, where a new algorithm is proposed which matches this error bound

and provides a superior worst case running time of O(n log n), for the case where

the in-tree is constructed and given as input.

17

2.4.2 Dynamic programming algorithms

By far the most important work on the tree knapsack problems can be attributed

to Johnson and Niemi [17]. First, they showed that the “bottom-up” dynamic

programming approach on trees, used by Lukes [23] to solve a related tree partition

problem, can be applied to both the OTKP and ITKP to solve them in Θ(nQ2) time

and space. Then, they presented an algorithm that solves instances of the OTKP

in Θ(nQ) time and space, using their so-called “left-right” dynamic programming

method for trees. Their left-right approach therefore benefits from a factor of Q

time speedup over the bottom-up approach.

Although they did not directly apply the left-right method to the ITKP, they

showed that a profit maximization instance of the ITKP is transformable into a

profit minimization instance of the OTKP. Thus, their left-right approach can be

adapted to solve instances of in-trees in Θ(n(P−Q)) time and space. In comparison,

in Chapter 3 it is shown that the left-right method can be adapted to achieve a

matching bound of Θ(nQ) for the ITKP.

Johnson and Niemi also gave a FPTAS for the OTKP based on their dynamic

programming algorithm, which requires Θ(n2(1
ε

+ log n)) time and Θ(n2/ε) space.

However, due to the P term when the algorithm is applied to the ITKP, this

FPTAS yields a running time of Θ(n3/ε) for that problem. By using the dynamic

programming algorithm from Chapter 3 in conjunction with the 1
2
-approximation

algorithm from Chapter 4, this bound is improved to Θ(n2/ε) for the ITKP.

Later, Cho and Shaw modified the left-right approach for the OTKP to be

pseudo-polynomial in C rather than Q, yielding a Θ(nC) time and space algorithm

for the OTKP [7]. Because of the relationship between the ITKP and OTKP, the

minimization version of this algorithm can therefore be used to solve the ITKP in

Θ(n(W −C)) time and space1. As before, in Chapter 3 it is shown that a matching

bound of Θ(nC) can be achieved for the ITKP.

Shaw and Cho have also developed a branch and bound algorithm that is the

current fastest method of solving instances of OTKP in practice [28]. The key

operation of this algorithm is the identification of the “critical item” of the ITKP.

Finding this critical item is done using an algorithm similar to the subtree density

method of [16], and takes O(n2) time. Therefore, the results in Chapter 4 have

relevance to this branch and bound algorithm, as they improve its worst case time

1Even though this is not explicitly mentioned in that paper.

18

Source
Problem

ITKP OTKP
Ibarra and Kim [16]

O(n
1
ε
+1/ε) time

–
(ε-approximation)

Ibarra and Kim [16]
O(n2) time, Θ(n) space

–
(1

2
-approximation)

Johnson and Niemi [17] Θ(nQ2) time Θ(nQ2) time
(Bottom-up method) Θ(nQ) space Θ(nQ) space

Johnson and Niemi [17]
Θ(n(P −Q)) time/space Θ(nQ) time/space

(Left-right method)
Johnson and Niemi [17]

Θ(n3/ε) time/space
Θ(n2(1/ε+ log n) time

(ε-approximation) Θ(n2/ε) space
Cho and Shaw [28] – Θ(nC)

Table 2.1: A comparison of algorithms for the ITKP and OTKP by source.

bound.

2.4.3 Other work on the PCKP

Several others algorithms have been developed for the PCKP restricted to different

classes of precedence graphs. These classes include series parallel graphs [5], two-

dimensional partial orders [20], interval orders and bipartite convex orders [33],

and general directed acyclic graphs [27]. Because this thesis is narrowed in scope

to in-trees, exploration of these other graph classes is left to the reader.

2.4.4 Summary

Several algorithms have been proposed for both the ITKP and OTKP. Table 2.1

compares the time and space requirements of these algorithms. Surprisingly, there

is a discrepancy between the bounds for the ITKP and OTKP even they are very

closely related. Chapter 3 addresses this discrepancy, and discusses these techniques

described in this section in further detail.

19

Chapter 3

Dynamic programming algorithms

3.1 Overview and assumptions

In this chapter several dynamic programming algorithms are presented for solving

the In-tree Knapsack Problem (ITKP), Routing Prefix Caching Problem (RPCP),

and Routing Prefix Caching Problem with Punt Prefixes (RPCP+). These al-

gorithms make use of two different methods for doing dynamic programming on

trees. The first, called the bottom-up method [23, 17], is presented to help clarify

the advantages of second, called the left-right method [17].

For all of the algorithms, it is assumed that the precedence tree1 is input as

a binary tree, and does not need to be constructed. Items with more than two

predecessors can be supported by adding “dummy” vertices that have zero profit

and weight. Similarly, any forest of two or more trees can be converted into a

binary tree by adding a number of dummy vertices at the root. For a forest with n

vertices, the equivalent binary tree with dummy vertices will have at most 2n − 1

vertices. In all of these cases, it is assumed that dummy vertices are added to make

the resultant binary tree as balanced as possible. Figure 3.1 illustrates how the tree

from Figure 2.4 can be modified into binary form.

The assumption of receiving a tree structure as input may not be appropriate

for some applications of ITKP, but in the case of prefix caching, it is reasonable to

assume that a tree-like data structure is used to manage the TCAM hardware. The

extra requirement that the tree be in binary format is for notational convenience,

1The terms in-tree and tree are used interchangeably from now on, as all of the problems
discussed are variants of the ITKP.

20

10

v21

10

X

020 0

X

X0

0 0

1040

X

0 0

X

0

0 5
5

0

10

v11
v20

v19v16

v15
v12 v17 v18

v13 v14

v10

v9v8

v7

v6v5

v1 v4

v3v2

Figure 3.1: An example of how a tree where vertices with more than two predecessors
can be converted into a binary tree. The vertices marked with ‘X’ are dummy vertices,
each of which have a weight and profit of zero.

and the algorithms can be modified to resemble those in [17], which directly deal

with vertices of arbitrary degree.

Additionally, each of the dynamic programming algorithms presented here tra-

verses the tree in post-order. Denote vertex vi as the i-th vertex visited during

the post-order traversal, 1 ≤ i ≤ n, and vn as the root of the in-tree. The reason

for this ordering is so that the optimal solution for vertex vi is computed after the

solutions for all other vertices in S(vi).

3.2 Bottom-up method for the ITKP

3.2.1 Description

Johnson and Niemi were the first to apply the bottom-up method to the ITKP

[17]. The bottom-up method works by combining the optimal solutions to sub-

problems, starting at the leaves and ending at the root of the tree. Each vertex is

considered for all capacities k, 0 ≤ k ≤ C. For a given vertex and capacity, finding

the optimal solution is a straightforward process. If there is enough room to take

the entire subtree, then that is the right choice, as it clearly maximizes the profit

for that sub-problem. Otherwise, a scan needs to be conducted to find an optimal

combination of the solutions from the left and right children.

21

First a recursive formula is described for performing the dynamic programming

in terms of solution weights, followed by an alternate formulation which is done

in terms of solution profits. The above description of how the algorithm works

remains the same, except that instead of maximizing profit for the target weight,

the profit version of the algorithm attempts to find the minimum weight solution

that achieves the target profit. The reason the profit version is important—other

than for providing an alternate parameter over which to do the optimization—is

because it, unlike the weight version, can be used to derive an FPTAS [13, 17]. The

exact method for turning the profit versions into an FPTAS is described in Section

3.5. This section closes with a description of how to modify the weight version of

the recursion to improve the running time for the case when each vertex has unit

weight; otherwise known as the RPCP.

3.2.2 Dynamic programming by solution weight

Define a set of vertices V ′ as feasible for a given capacity k, if
∑

v∈V ′ w(v) ≤ k

and V ′ is closed under predecessor. Let the n × C dynamic programming table

TBU store the maximum profit feasible subset of S(vi) for capacity k in each entry

TBU[vi, k]. The following three cases determine how TBU[vi, k] is computed:

• vi is a leaf,

TBU[vi, k] =

p(vi) if k ≥ w(vi),

0 otherwise.
(3.1)

• vi has a single child vc,

TBU[vi, k] =

p(S(vi)) if k ≥ w(S(vi)),

TBU[vc, k] otherwise.
(3.2)

• vi has both a left and right child, vl and vr respectively,

TBU[vi, k] =

p(S(vi)) if k ≥ w(S(vi)),

max
0≤j≤k

{TBU[vl, j] + TBU[vr, k − j]} otherwise.
(3.3)

Theorem 3.2.1. The weight version of the bottom-up dynamic program for the

ITKP requires Θ(nC2) time and Θ(nC) space.

22

Proof. The general case of the recursion, Equation 3.3, requires Θ(k) time. Since

the algorithm is run C times on n vertices, this gives a running time of Θ(nC2).

The space bound is Θ(nC) for the n×C dynamic programming table. Correctness

is straightforward, since the problem can be shown to exhibit optimal substructure

by contradiction on Equation 3.3.

Equations 3.1-3.3 compute the value of the optimal solution. Suppose the root

of the in-tree is vertex r. The optimal solution value will be stored in the table

entry TBU[r, C]. To find the actual set of vertices that achieve this value, standard

dynamic programming techniques can be used which are described in [19]. One

method would be to fill a second n×C table XBU with the decision that was made

at each vertex.

For example, suppose the decision to take the entire subtree is made at vertex

vi for capacity k. A special flag value take could be used to indicate this decision,

thus XBU[vi, k] = take. Otherwise, suppose vi has two children, and the decision

was made to take a weight of j from the left child and k− j from the right child. In

this case, XBU[vi, k] = j, which would indicate what capacity should be examined

when the algorithm recurses to the left child (and right child implicitly).

It is important to note that maintaining such a table is up to the discretion of

the implementer, as the recursions in Equations 3.1-3.3 are entirely reversible. For

this reason, the topic of extracting the actual solution will not be discussed further,

as it does not affect the asymptotic running time of any of the algorithms, and is

mostly an implementation detail.

3.2.3 Numerical Example

Example 3.2.2. The bottom-up method, presented in Equations 3.1-3.3, would

yield the dynamic programming table displayed in Table 3.1 when run on the tree

in Figure 3.1 with C = 10.

3.2.4 Dynamic programming by solution profit

Let the n×C dynamic programming table UBU store the minimum weight feasible

subset of S(vi) having profit at least q in each entry UBU[vi, q]. Since the dynamic

programming is done over profits, the subsets need only be feasible with respect

23

TBU

Capacity (C)
Vertex 0 1 2 3 4 5 6 7 8 9 10
v1 0 0 0 0 0 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0 0 0
v3 0 0 0 0 0 0 0 0 0 0 0
v4 0 0 0 0 0 0 0 0 0 0 0
v5 0 0 0 0 20 20 20 20 20 20 20
v6 0 5 5 5 5 5 5 5 5 5 5
v7 0 5 5 5 20 25 25 25 25 25 25
v8 0 0 0 0 0 0 0 0 0 0 0
v9 0 0 0 0 0 0 0 0 0 0 0
v10 0 0 0 0 0 0 0 0 0 0 0
v11 0 5 5 5 20 25 25 25 35 35 35
v12 0 0 0 0 0 0 0 0 0 0 0
v13 0 10 10 10 10 10 10 10 10 10 10
v14 0 0 0 0 0 0 0 0 0 0 0
v15 0 10 10 15 15 15 15 15 15 15 15
v16 0 10 10 15 15 15 15 15 15 15 15
v17 0 0 0 0 0 0 0 0 0 0 0
v18 0 0 0 0 0 0 0 0 0 0 0
v19 0 0 0 0 0 0 0 0 0 0 0
v20 0 10 10 15 15 15 15 55 55 55 55
v21 0 10 15 15 20 30 35 55 60 60 60

Table 3.1: The dynamic programming table, TBU, created by the bottom-up method
when run on the tree found in Figure 3.1. By examining table entry TBU[v21, 10] it can
be seen that the optimal solution has a profit value of 60.

24

to the total capacity C. If there is no feasible solution achieving profit q, then the

table entry is denoted at ∞. The following three cases determine how UBU[vi, q] is

computed:

• vi is a leaf,

UBU[vi, q] =

∞ if q > p(vi),

w(vi) otherwise.
(3.4)

• vi has a single child vc,

UBU[vi, q] =


∞ if q > p(S(vi)),

UBU[vc, q] if w(S(vi)) > C,

min {w(S(vi)),UBU[vc, q]} otherwise.

(3.5)

• vi has both a left and right child, vl and vr respectively,

UBU[vi, q] =



∞ if q > p(S(vi)),

min

 {u = UBU[vl, j] + UBU[vr, q − j] :

0 ≤ j ≤ q, u ≤ C}

 if w(S(vi)) > C,

min


{w(S(vi))}∪
{u = UBU[vl, j] + UBU[vr, q − j] :

0 ≤ j ≤ q, u ≤ C}

 otherwise.

(3.6)

It is important to note the w(S(vi)) term which appears in Equations 3.5 and

3.6. This term is necessary for the case when the alternative choice has infinite

weight.

Theorem 3.2.3 (From [17]). The profit version of the bottom-up dynamic program

for the ITKP requires Θ(nQ2) time and Θ(nQ) space.

Proof. The general case of the recursion, Equation 3.6, requires Θ(q) time. Suppose

a value of Q̃ is supplied to the algorithm, such that the memoized version of the

above recursion is run on each vertex for all values 0 ≤ q ≤ Q̃. This algorithm will

require Θ(nQ̃2) time and Θ(nQ̃) space.

25

Suppose the root of the tree is vertex r. After the algorithm terminates,

UBU[r, Q̃] will contain some value. If UBU[r, Q̃] = ∞ then it means that Q < Q̃,

and

Q = max
0≤k≤Q̃

{k : UBU[r, k] 6=∞} . (3.7)

Otherwise, the value of Q̃ can be doubled, and the algorithm can continue. By

starting with a value

Q̃ = max
v∈V
{p(v)} , (3.8)

the algorithm can be run, doubling Q̃ until Q < Q̃. Therefore, the algorithm

requires Θ(nQ2) time and Θ(nQ) space, since when the algorithm terminates,

Q̃/2 ≤ Q ≤ Q̃.

3.2.5 Improved time bound for the RPCP

The bottom-up method, as presented, implies a worst case running time of O(n3)

for the RPCP. This is because 0 ≤ C < n for the RPCP. However, it can be

shown that the running time of the bottom-up method can be improved for RPCP

through a slight modification to the algorithm. This is done by exploiting the fact

that for the RPCP, w(v) ≤ 1 for all v ∈ V .

Theorem 3.2.4. The running time of the bottom-up method can be improved to

O(min {nC2, n2}) for the case where w(v) ≤ 1 for all v ∈ V .

Proof. Consider the following two facts. First, for each vertex v ∈ V , TBU[v, i]

does not need to be computed for |S(v)| < i ≤ C, since w(S(v)) ≤ |S(v)|. In this

case, TBU[v, i] is guaranteed to be equal to p(S(v)). Second, when TBU[v, i] is being

computed for an i that is larger than the cardinality of the smaller child subtree of

v, denoted |S(vc)|, all i comparisons do not need to be made. Rather, |S(vc)| + 1

comparisons suffice, since it is only necessary to determine ‘how much’ of S(vc) to

take when there is enough capacity to take the entire subtree.

Suppose a problem instance consists of a binary tree with n vertices, rooted at

vertex r. Let one of the children of r be a subtree containing α vertices, and the

other be a child subtree containing β vertices, where, without loss of generality,

26

α ≥ β. The running time of the bottom-up dynamic programming method which

exploits the above two facts can be expressed as:

T (n) = T (α) + T (β) + ∆(r) (3.9)

where ∆(r) is the cost of computing TBU[r, i] for 0 ≤ i ≤ n = α + β + 1. Table

3.2 indicates how much work has to be done for each of the α+ β+ 1 table entries.

∆(r) is therefore the sum of each entry in the ‘cost’ row. Effectively, this is the

amount of work to solve the RPCP at a given vertex in the dependency tree for all

cache sizes. Therefore, T (n) is an upper bound on the running time of our modified

bottom up method for any capacity in the case where all vertices have unit weight.

capacity 1 2 . . . β . . . α α + 1 . . . α + β α + β + 1
cost 2 3 . . . β + 1 . . . β + 1 β . . . 2 1

Table 3.2: For a subtree of size α+β+1 this table indicates how many comparisons must
be done to compute the optimal solution for each capacity over the interval [1, α+β+ 1].

The sum, ∆(r), can be expressed as:

∆(r) = 2

β∑
i=1

(i+ 1) + (α− β) (β + 1) + 1 (3.10)

= αβ + α + 2β + 1 (3.11)

Using a guess of T (n) ≤ n2 and substituting this and Equation 3.11 back into

Equation 3.9, the inequality can be shown to hold. Therefore the running time of

the bottom-up method for the RPCP is O(min {nC2, n2}).

3.3 Left-right method for the ITKP

3.3.1 Description

The left-right method, first presented in [17] for the OTKP, is a significant improve-

ment over the bottom-up method which results in a factor of C speedup. Here,

27

10

v21

10

X

020 0

X

X0

0 0

1040

X

0 0

X

0

0 5
5

0

10

v11
v20

v19v16

v15v12 v17 v18

v13 v14

v10

v9v8

v7

v6v5

v1 v4

v3v2

L(v15) = v12

L(v12) = v11

L(v11) = ∇

Figure 3.2: Suppose the input to the bottom-up and left-right dynamic programming
algorithms is the above tree. During the computation of TBU[v15, k], the goal is to find
the optimal legal combination of vertices within S(v15); indicated by the solid boundary.
In contrast, for TLR[v15, k], not only is S(v15) considered, but all vertices previously
visited; as indicated by the dot-dashed boundary.

the method is adapted and applied in an analogous way to the ITKP, to achieve a

better running time. As with the bottom-up method, both the weight and profit

versions of the dynamic programming recursion will be discussed.

For the bottom-up method, solving a sub-problem at a vertex vi involves finding

the maximum profit feasible subset of vertices in S(vi). In contrast, the goal of the

left-right method is to find the maximum profit feasible subset of all previously

visited vertices, {v1, ..., vi}. Recall that the vertices of the tree are visited in post-

order. At any point during the post-order traversal, the set of visited vertices

induces a forest. The current vertex vi can be thought of as the root of the rightmost

subtree in this forest. Define L(vi) = vj, such that 1 ≤ j < i and j is the maximum

index such that vj /∈ S(vi). L(vi) points to the root of the subtree directly to the

left of the subtree rooted at vi. Figure 3.2 provides an illustration of this concept

for clarification. If L(vi) is undefined, because all previously visited vertices are

contained in S(vi), then this is denoted by L(vi) = ∇.

The key observation is that for each vertex vi and capacity k, only a single

comparison is necessary to determine whether vi is part of the optimal solution for

the capacity k. If vi is not part of the solution, then the optimal solution at vi is

identical to the solution at vi−1. Otherwise, if vi is part of the solution, then so

must S(vi) too, as well as the optimal solution at vertex L(vi) for the remaining

28

weight. Since these are the only two possibilities, filling the table is much faster

than with the bottom-up method.

3.3.2 Dynamic programming by solution weight

Let the n× C dynamic programming table TLR store the maximum profit feasible

subset of {v1, . . . vi} for capacity k in each entry TLR[vi, k]. The following two cases

can be used to compute each entry TLR[vi, k]:

• If the first vertex in the traversal is being visited, i.e. i = 1, then

TLR[v1, k] =

p(v1) if k ≥ w(v1),

0 otherwise.
(3.12)

• For all other vertices vi, 1 < i ≤ n,

TLR[vi, k] =



TLR[vi−1, k] if k < w(S(vi)),

p(S(vi)) if L(vi) = ∇,

max

 TLR[vi−1, k], p(S(vi)) +

TLR[L(vi), k − w(S(vi))]

 otherwise.

(3.13)

Theorem 3.3.1. The weight version of the left-right dynamic program for the ITKP

requires Θ(nC) time and space.

Proof. Each entry in the n × C dynamic programming table can be computed in

constant time, since L(vi) is precomputable. Therefore, the total running time of

the algorithm is Θ(nC), and the space consumption is dominated by the size of the

dynamic programming table.

It is important to note that a more general version of this technique has been

applied to directed acyclic graphs [27]. However, the resulting algorithm for directed

acyclic graphs is not pseudo-polynomial, as no pseudo-polynomial algorithm can

exist for the general PCKP [17].

29

TLR

Capacity (C)
Vertex 0 1 2 3 4 5 6 7 8 9 10
v1 0 0 0 0 0 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0 0 0
v3 0 0 0 0 0 0 0 0 0 0 0
v4 0 0 0 0 0 0 0 0 0 0 0
v5 0 0 0 0 20 20 20 20 20 20 20
v6 0 5 5 5 20 25 25 25 25 25 25
v7 0 5 5 5 20 25 25 25 25 25 25
v8 0 5 5 5 20 25 25 25 25 25 25
v9 0 5 5 5 20 25 25 25 25 25 25
v10 0 5 5 5 20 25 25 25 25 25 25
v11 0 5 5 5 20 25 25 25 35 35 35
v12 0 5 5 5 20 25 25 25 35 35 35
v13 0 10 15 15 20 30 35 35 35 45 45
v14 0 10 15 15 20 30 35 35 35 45 45
v15 0 10 15 15 20 30 35 35 40 45 45
v16 0 10 15 15 20 30 35 35 40 45 45
v17 0 10 15 15 20 30 35 35 40 45 45
v18 0 10 15 15 20 30 35 35 40 45 45
v19 0 10 15 15 20 30 35 35 40 45 45
v20 0 10 15 15 20 30 35 55 60 60 60
v21 0 10 15 15 20 30 35 55 60 60 60

Table 3.3: The dynamic programming table, TLR, created by the left-right method when
run on the tree found in Figure 3.1. By examining table entry TLR[v21, 10] it can be seen
that the optimal solution has a profit value of 60.

3.3.3 Numerical Example

Example 3.3.2. The left-right method would yield the dynamic programming

table displayed in Table 3.3 when run on the tree in Figure 3.1 with C = 10.

3.3.4 Dynamic programming by solution profit

As with the bottom-up method, the left-right method can be done over profits as

follows. Let the table ULR store the minimum weight feasible solution having profit

q that can be obtained from the set of vertices {v1, . . . vi} in each entry ULR[vi, q].

The following three cases can be used to compute each entry ULR[vi, q]:

30

• If the first vertex in the traversal is being visited, or i = 1, then

ULR[v1, q] =

∞ if q > p(v1),

w(v1) otherwise.
(3.14)

• If L(vi) = ∇, then

ULR[vi, q] =


ULR[vi−1, q] if w(S(vi)) > C,

∞ if p(S(vi)) < q,

min {ULR[vi−1, q], w(S(vi))} otherwise.

(3.15)

• Otherwise, let r = w(S(vi)) + ULR[L(vi), q − p(S(vi))],

ULR[vi, q] =



ULR[vi−1, q] if w(S(vi)) > C,

min {ULR[vi−1, q], r} if p(S(vi)) < q and r ≤ C,

ULR[vi−1, q] if p(S(vi)) < q and r > C,

min {ULR[vi−1, q], w(S(vi))} otherwise.

(3.16)

Theorem 3.3.3. The profit version of the left-right dynamic program for the ITKP

requires Θ(nQ) time and space.

Proof. As with the weight version, each entry in the dynamic programming table

requires constant time to fill. Using the same iterative search procedure as in

Theorem 3.2.3, the desired bounds are achieved.

3.4 The bottom-up method for the RPCP+

3.4.1 Description

The methods presented in this chapter for the ITKP can by modified in order

to find the optimal solution to the Routing Prefix Caching Problem with Punt

Prefixes (RPCP+) as well. This section describes how to modify the bottom-up

method to correctly deal with punt vertices in such a way to only increase the time

and space complexity by a constant factor. The same kind of modification can

31

likely be performed on the left-right method, however the constants are larger and

the algorithm is less clear. It is also important to note that although vertices have

unit weight in the RPCP+, the algorithm presented here can be used to handle

arbitrary weights.

The main idea of this approach is to use two separate n×C dynamic program-

ming tables, TIN and TEX. Each entry TIN[vi, k] corresponds to the maximum profit

solution that can be obtained from the subtree rooted at vertex vi with weight at

most k that includes vertex vi. Each entry TEX[vi, k] corresponds to the maximum

profit solution that can be obtained from the subtree rooted at vertex vi with weight

at most k that excludes vertex vi.

When determining which vertices should be toggled to be punt vertices, it seems

necessary to have access to the two tables described above. This is because the

decision to toggle a child vc of a given vertex vi to be a punt vertex can only be

made efficiently if there is knowledge of both the optimal solution which contains

vc, and the optimal solution which does not contain vc. By comparing these two

values it is easier to determine whether or not there is a benefit to toggling vc to

be a punt vertex B(vc). For instance, if vi has high profit, and B(vc) allows vi to

be part of a feasible solution for a given capacity, then this can be determined in a

straightforward way if the two tables described are accessible.

3.4.2 Dynamic programming over solution weight

Recall that there are also dummy vertices present in the tree which do not cor-

respond to any prefixes in the routing table. These vertices cannot be toggled to

be punt prefixes, as a punt vertex can only be an actual prefix that exists in the

routing table. Let

M(vi) =

1 if vi is a dummy vertex,

0 otherwise.
(3.17)

If it is not possible to take a vertex vi for a given capacity k, then TIN[vi, k] = −∞.

The values of TIN[vi, k] and TEX[vi, k] can be computed as follows:

32

• If vi is a leaf:

TIN[vi, k] =

{
p(vi) if k ≥ w(v),

−∞ otherwise.
(3.18)

TEX[vi, k] =

{
p(vi) if k ≥ w(v),

0 otherwise.
(3.19)

• If vi has a single child, vc, let r = k − (w(vi) + w(vc)):

TEX[vi, k] = max {TEX[vc, k],TIN[vc, k]} (3.20)

TIN[vi, k] =



p(S(vi)) if k ≥ w(S(vi)),

max

{
p(vi) + TEX[vc, r],

p(vi) + TIN[vc, k − (w(vi))]

}
if r ≥ 0 and M(vc) = 0,

p(vi) + TIN[vc, k − (w(vi))] if k ≥ w(vi)

−∞ otherwise.

(3.21)

• If vi has both a left and right child, vl and vr respectively:

TEX[vi, k] = max

{
max {TEX[vl, j],TIN[vl, j]}+

max {TEX[vr, k − j],TIN[vr, k − j]} : 0 ≤ j ≤ k

}
(3.22)

TIN[vi, k] =

{
p(S(vi)) if k ≥ w(S(vi)),

max [Stt ∪ Slt ∪ Stl ∪ Sll ∪ {−∞}] otherwise,
(3.23)

where

Stt =

{
p(vi) + TIN[vl, j] + TIN[vr, ktt − j] :

0 ≤ j ≤ ktt, ktt ≥ 0

}
, (3.24)

Slt =

{
p(vi) + TIN[vr, j] + TEX[vl, klt − j] :

0 ≤ j ≤ klt, klt ≥ 0, M(vl) = 0

}
, (3.25)

Stl =

{
p(vi) + TIN[vl, j] + TEX[vr, ktl − j] :

0 ≤ j ≤ ktl, ktl ≥ 0, M(vr) = 0

}
, (3.26)

Sll =

{
p(vi) + TEX[vl, j] + TEX[vr, kll − j] :

0 ≤ j ≤ kll, kll ≥ 0, M(vl) = 0, M(vr) = 0

}
, (3.27)

33

and

ktt = k − w(vi) , (3.28)

klt = k − (w(vi) + w(vl)) , (3.29)

ktl = k − (w(vi) + w(vr)) , (3.30)

kll = k − (w(vi) + w(vl) + w(vr)) . (3.31)

Each set Stt, Slt, Stl, and Sll correspond to computing the optimal solution when

both children are selected, the left child is covered with a punt vertex, the right

child is covered with a punt vertex, or both children are covered with punt vertices,

respectively. Note the constraints on each set are defined so that they are non-

empty only when k is large enough to store the current vertex vi, plus whatever

combination of punt vertices are required.

Theorem 3.4.1. The bottom-up dynamic program for the RPCP+ requires Θ(nC2)

time and Θ(nC) space.

Proof. Though the three cases are messier looking than the original bottom-up

method, they add no more than a constant factor to the running time, because

finding the max of Stt, Slt, Stl, and Sll requires Θ(k) time. Since the memoized

versions of these recursions are run on each vertex for 0 ≤ k ≤ C, the overall

running time is Θ(nC2). Finally, because just two dynamic programming tables

need to be maintained, each of size n× C, the space required is still Θ(nC).

3.4.3 Numerical Example

Example 3.4.2. The bottom-up method the allows for punt vertices would yield

the dynamic programming table displayed in Tables 3.4 and 3.5 when run on

the tree in Figure 3.1 with C = 10. The optimal profit that can be obtained

is max {TEX[r, C],TIN[r, C]} where r is the root of the precedence tree. In this

case, the optimal solution is 70, as in Example 2.3.3.

34

TIN

Capacity (C)
Vertex 0 1 2 3 4 5 6 7 8 9 10
v1 −∞ 0 0 0 0 0 0 0 0 0 0
v2 −∞ 0 0 0 0 0 0 0 0 0 0
v3 −∞ 0 0 0 0 0 0 0 0 0 0
v4 −∞ −∞ 0 0 0 0 0 0 0 0 0
v5 −∞ −∞ −∞ −∞ 20 20 20 20 20 20 20
v6 −∞ 5 5 5 5 5 5 5 5 5 5
v7 −∞ −∞ 5 5 5 25 25 25 25 25 25
v8 −∞ 0 0 0 0 0 0 0 0 0 0
v9 −∞ 0 0 0 0 0 0 0 0 0 0
v10 −∞ −∞ 0 0 0 0 0 0 0 0 0
v11 −∞ −∞ −∞ −∞ −∞ 15 15 15 35 35 35
v12 −∞ 0 0 0 0 0 0 0 0 0 0
v13 −∞ 10 10 10 10 10 10 10 10 10 10
v14 −∞ 0 0 0 0 0 0 0 0 0 0
v15 −∞ −∞ −∞ 15 15 15 15 15 15 15 15
v16 −∞ −∞ 0 10 15 15 15 15 15 15 15
v17 −∞ 0 0 0 0 0 0 0 0 0 0
v18 −∞ 0 0 0 0 0 0 0 0 0 0
v19 −∞ −∞ 0 0 0 0 0 0 0 0 0
v20 −∞ −∞ −∞ −∞ −∞ 40 50 55 55 55 55
v21 −∞ −∞ −∞ 0 10 15 15 40 50 55 60

Table 3.4: The dynamic programming table (TIN) created by the bottom-up method that
allows for punt vertices when run on the tree found in Figure 3.1.

35

TEX

Capacity (C)
Vertex 0 1 2 3 4 5 6 7 8 9 10
v1 0 0 0 0 0 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0 0 0
v3 0 0 0 0 0 0 0 0 0 0 0
v4 0 0 0 0 0 0 0 0 0 0 0
v5 0 0 0 0 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0 0 0 0 0
v7 0 5 5 5 20 25 25 25 25 25 25
v8 0 0 0 0 0 0 0 0 0 0 0
v9 0 0 0 0 0 0 0 0 0 0 0
v10 0 0 0 0 0 0 0 0 0 0 0
v11 0 5 5 5 20 25 25 25 25 25 25
v12 0 0 0 0 0 0 0 0 0 0 0
v13 0 0 0 0 0 0 0 0 0 0 0
v14 0 0 0 0 0 0 0 0 0 0 0
v15 0 10 10 10 10 10 10 10 10 10 10
v16 0 10 10 15 15 15 15 15 15 15 15
v17 0 0 0 0 0 0 0 0 0 0 0
v18 0 0 0 0 0 0 0 0 0 0 0
v19 0 0 0 0 0 0 0 0 0 0 0
v20 0 10 10 15 15 15 15 15 15 15 15
v21 0 10 15 15 20 40 50 55 60 60 70

Table 3.5: The dynamic programming table (TEX) created by the bottom-up method
that allows for punt vertices when run on the tree found in Figure 3.1.

36

3.5 FPTAS for the ITKP

In [17] an FPTAS for the both the ITKP and OTKP was developed based on the

dynamic programming algorithm specifically designed for the OTKP. Since the

OTKP dynamic programming algorithm required Θ(n(P − Q)) time to solve the

ITKP, the resultant FPTAS for the ITKP required Θ(n3/ε) time and space, whereas

the FPTAS for the OTKP required only Θ(n2(1/ε+log n)) time and Θ(n2/ε) space.

Here it is shown that the FPTAS for the ITKP can be improved to Θ(n2/ε) time

and space using the adapted left-right method presented in this chapter.

Theorem 3.5.1. Using the left-right method (Equations 3.14 - 3.16), a Θ(n2/ε)

time and space FPTAS for the ITKP can be derived, for 0 < ε ≤ 1, provided a

lower bound Q̂ is known, where Q̂ ≤ Q ≤ 2Q̂.

Proof. The FPTAS works by creating a modified instance of the problem where the

profits of vertices are scaled in order to guarantee the desired error bound, ε [17, 19].

Suppose the ITKP instance I consists of a graph G = (V,E) and a knapsack

capacity C. A modified instance I ′ can be created, consisting of G′ = (V ′, E ′) and

capacity C in the following way. First, for each vertex v ∈ V , set the corresponding

vertex v′ ∈ V ′ to have profit:

p(v′) =

⌊
p(v)n

Q̂ε

⌋
. (3.32)

The left-right dynamic program over profits (Equations 3.14-3.16) can find the

optimal solution to instance I ′ in Θ(n2/ε) time and space, due to the fact that

the optimal profit of instance I ′ lies somewhere in the range (0, 2n
ε

). Suppose the

optimal solution for I is set X ⊆ V , and the solution from solving instance I ′

is X ′ ⊆ V ′. To avoid overloading the term Q̂, p(X) and p(X ′) will be referred

to directly, which are the profit of the optimal solutions to instances I and I ′,

respectively. Let p′(X ′) = p(X′)Q̂ε
n

. The rounding process introduced an error of at

most Q̂ε
n

per vertex. Since there are n vertices, the total error is:

p(X)− p′(X ′) ≤ Q̂ε ≤ p(X)ε . (3.33)

Returning to the definition of an ε-approximation (Equation 2.3), it is the case that

p(X)− p′(X ′)
p(X)

≤ p(X)ε

p(X)
= ε , (3.34)

37

which completes the proof.

In Chapter 4 it is shown that finding Q̂ can be done in O(n log n) time, which is

dominated by the running time of the above FPTAS. It is also important to note

that Theorem 3.5.1 provides the following weaker bound for an FPTAS derived

from the bottom-up method.

Corollary 3.5.2. Using the bottom-up method, a Θ(n3/ε2) time and Θ(n2/ε) space

FPTAS for the ITKP can be derived, for 0 < ε ≤ 1, provided a lower bound Q̂ is

known, where Q̂ ≤ Q ≤ 2Q̂.

3.6 Reducing storage requirements

In [17] a method is described for reducing the storage requirement of the dynamic

programming algorithms for the OTKP. This same method can be applied to all of

the dynamic programming algorithms presented in this chapter. However, here it is

only described using the left-right method for the ITKP (see Section 3.3), though

it can be applied to any of the other algorithms in an analogous way.

Recall that during the general case of the computation of TLR[vi, k], for 1 ≤ k ≤
C, only two other rows of the dynamic programming table need to be inspected.

These rows are TLR[vi−1, k] and TLR[L(vi), k]. Because so much of the dynamic

programming table goes unused during this computation, it is only really necessary

to keep a small number of table rows in memory in order to compute the optimal

solution. Furthermore, many rows can be discarded after they are used, as they will

never be used again in the future. Figure 3.3 (left) illustrates this fact by showing

both which rows must be accessible during the computation of a vertex, as well as

which rows will be needed in the future.

Theorem 3.6.1 (Based on method for the OTKP [17]). To compute the optimal

solution value for an instance of the ITKP requires Θ(nC) and Θ(C log n) space.

Proof. If the tree is highly skewed to the right, as in Figure 3.3 (left), the number of

rows that must be stored can be O(n). The number of rows that need to be stored is

exactly equal to the maximum number of right branches in any path from the root

to a given vertex. However, a clever trick can be used to circumvent this problem,

since the concept of left and right is not strictly enforced. At a given vertex, v,

38

Figure 3.3: Left: Suppose the above tree is an instance of the ITKP, and the table row
for the vertex marked by the arrow is currently being computed. The nodes marked
in black indicate which table rows must be stored, not only for the computation of the
current row, but for any future rows. In this particular case, the marked node represents
the vertex having the maximum storage requirements. Right: If the tree on the left is
traversed in a way such that the largest subtree is always traversed first, then the number
of rows that must be stored is significantly reduced.

the post-order traversal is carried out by recursing on the left child, then the right

child, and then visiting v. By examining the size of the left and right child, the

maximum number of right branches can be constrained by always traversing the

largest child subtree first, thus implicitly making it the left child. Figure 3.3 (right)

illustrates how the traversal of a tree is transformed by this action. By doing this,

the number of vertices in the right subtree is ensured to be at least halved each

time a right branch is taken. Therefore, the maximum number of right branches

for a tree with n vertices can be bounded using the following recursion:

B(0) = B(1) = 1, (3.35)

B(n) ≤ B(bn− 1

2
c) + 1, n > 1, (3.36)

The general case of the recursion for B(n) comes from the fact that the right child is

guaranteed to have no more than half of the remaining vertices in the tree. B(n) is

upper bounded by log n+ 1, for all n ≥ 1, which means that at any point, O(log n)

rows of the dynamic programming table need to be stored.

The above method for reducing space requirements can be implemented in terms

of a stack. Each row of the table can be pushed onto the stack as it is computed,

and the stack is manipulated in the following way during when visiting vertex vi:

39

• If vi 6= Parent(vi−1), the row is computed for the new vertex and is then

pushed on top of the stack.

• If vi = Parent(vi−1) and vi−1 has no left sibling—either by virtue of being

a left sibling or by being an only child—this requires the stack to be popped

before the new row is pushed on.

• Otherwise, the stack must be popped twice before the new row is pushed:

once to get rid of the row for vi−1, and again to get rid of the row for its left

sibling.

Although this method can be used to compute the value of the optimal solu-

tion with no increase in running time, identifying the solution requires the above

algorithm to be run multiple times.

Theorem 3.6.2 (From [17]). The left-right method using the above storage re-

duction techniques can be used to solve the ITKP in O(n
2C

logn
) time and O(C log n)

space.

Proof. In order to recover the solution, store an the last O(log n) rows of the dy-

namic programming table, in addition to the Θ(log n) rows required to compute the

optimal solution value. Then, once the optimal value has been discovered, a part

of the solution can be recovered the last rows. The algorithm can then be started

over again, this time stopping at last vertex for which no row was stored during

the previous iteration. To recover the entire solution would then take O(n/ log n)

iterations of an algorithm requiring Θ(nC) time, matching the bound in the theo-

rem.

3.7 Summary

In this chapter several algorithms have been presented for solving the ITKP, RPCP,

and RPCP+. These algorithms make use of two different techniques for doing dy-

namic programming on trees. A comparison of the performance of these algorithms

can be found in Table 3.6.

Unfortunately, even the most efficient algorithms presented in this chapter are

not appropriate for solving the RPCP or RPCP+. This is because in consideration

of the sheer number of prefixes in modern routing tables, quadratic space and time

40

Problem
Method

Bottom-up Left-right
Time Space Time Space

By weight
ITKP Θ(nC2) Θ(nC) Θ(nC) Θ(nC)
RPCP O(min {nC2, n2}) Θ(nC) Θ(nC) Θ(nC)
RPCP+ Θ(nC2) Θ(nC) – –

By profits ITKP Θ(nQ2) Θ(nQ) Θ(nQ) Θ(nQ)
ε-approximation ITKP Θ(n3/ε2) Θ(n2/ε) Θ(n2/ε) Θ(n2/ε)

Table 3.6: A comparison of the different dynamic programming methods applied to the
ITKP, RPCP, and RPCP+. Table entries that are dashed out do not mean that no
bounds can be shown for those problems, but rather that the bounds have not been
explicitly stated in this chapter. Note that any bounds for the ITKP immediately hold
for the RPCP.

is prohibitively expensive. Furthermore, even if the optimality of the solution is

sacrificed, the ITKP FPTAS presented in Section 3.5 requires Θ(n2/ε) time and

space. For this reason, in the next chapter a different algorithm is examined as a

starting point for a more practical solution.

41

Chapter 4

Greedy algorithms

4.1 Overview

In this chapter, a greedy 1
2
-approximation algorithm for the ITKP is presented that

has a running time of O(n log n), under the assumptions described at the beginning

Chapter 3; i.e. that the input to the algorithms is given as a binary tree. In

this chapter, the predecessor and successor notation (see Section 2.1.1) is used.

These concepts are still defined in terms of the original tree. Using Figure 3.1 as

an example, Pre(v20) = {v12, v15, v17, v18}, and Suc(v12) = v20. Furthermore, for

convenience, example problems used to demonstrate the tightness of error bounds

will discard the binary tree notation.

The layout of this section is as follows. First, the 1
2
-approximation algorithm

from [16] called the subtree density method is reviewed, and the solution it provides

is shown to have two important properties. By exploiting these properties, an

alternative algorithm is developed which computes a solution with the same error

bound, but a better worst case running time. After presenting these algorithms,

the remainder of the chapter discusses their application to both the RPCP and

RPCP+.

4.2 The subtree density method for the ITKP

In [16], it is observed that the optimal solution to an instance of the ITKP is

likely to contain subtrees which have high density. The density of a subtree rooted

at vertex v is defined as:

42

Algorithm 1 Subtree-Density(G,C) [Modified from [16]]

1: X̂ ← ∅
2: r ← Root(G)
3: for i← 1 to n do
4: ws [vi]← w(S(vi))
5: ps [vi]← p(S(vi))
6: δs [vi]← Calc-Density [vi]
7: m[vi]← Prop-Max [vi]
8: end for
9: while true do

10: d← m[r]
11: if δs [d] = −∞ then
12: Return X̂
13: else if ws [d] + w(X̂) = C then
14: Return X̂ ∪ S(d)
15: else if ws [d] + w(X̂) > C then
16: for d0 ∈ Top(A(d)) do
17: if w(S(d0)) ≤ C and p(S(d0)) > p(X̂) then
18: X̂ ← S(d0)
19: end if
20: end for
21: Return X̂
22: else
23: X̂ ← X̂ ∪ S(d)
24: for d0 ∈ Top(A(d) \ d) do
25: ws [d0]← ws [d0]− ws [d]
26: ps [d0]← ps [d0]− ps [d]
27: δs [d0]← Calc-Density [d0]
28: m[d0]← Prop-Max [d0]
29: end for
30: end if
31: end while

43

δ(S(v)) =

∑
v′∈S(v) p(v

′)∑
v′∈S(v)w(v′)

. (4.1)

The subtree density method1 is presented here in a slightly modified form for

analysis purposes. The main idea of the method is to greedily remove the most

dense subtrees from the tree, and add them to the current solution. When a

subtree rooted at vertex v has been removed, the density of each subtree rooted at

the vertices in A(v) \ v needs to be recomputed.

It is assumed that for each vertex v ∈ V , w(S(v)) and p(S(v)) has been com-

puted, which can easily be done in Θ(n) time. For an instance of the ITKP having

binary in-tree G = (V,E) and capacity C, Algorithm 1 can be used to construct a

solution X̂ iteratively using the subtree density method. However, before examin-

ing Algorithm 1, it would be helpful to continue reading as the next few paragraphs

describe the algorithm in detail.

Since X̂ is constructed iteratively, during the course of the algorithm separate

residual values ws [v], ps [v], and δs [v] are maintained for each v ∈ V , which rep-

resent w(S(v) \ X̂), p(S(v) \ X̂), and δ(S(v) \ X̂), respectively. Another array,

m[v], defined for each v ∈ V , keeps a pointer to the root d of the maximum density

subtree such that S(d) ⊆ S(v) \ X̂. Two ‘helper’ functions are used, which are

defined as follows. The first function, Calc-Density is defined to compute δs [v]

for an input vertex v in the following way:

δs [v] =

−∞ if w(S(v)) > C,

ps [v] /ws [v] otherwise.
(4.2)

If ps [v] and ws [v] are known, Calc-Density [v] can be computed in constant time

for any vertex. The second function, Prop-Max is defined to receive a vertex v

as a parameter, and to operate under the assumption that m[vl] and m[vr] have

been computed for the left and right children of v, respectively. Prop-Max [v]

returns either the root of the maximum density subtree contained within S(v) \ X̂,

or a special “ignore” flag if v ∈ X̂. This flag is used to avoid selecting v in the

future, since it is already part of the solution. Ties can be broken by returning

the subtree of lesser weight. If m[vl] and m[vr] are precomputed for the left and

right children of v, then Prop-Max can be computed in constant time for any

1Called “MODALPHA” in the original publication.

44

vertex. To accomplish this, whenever a loop calling Prop-Max iterates over a set

of vertices, the vertices are visited in topological order. The notation Top indicates

this requirement in the algorithm.

At this point a detailed description of Algorithm 1 will be given. Values are

initialized on Lines 1 to 8. The current solution X̂ is initialized to be an empty set,

and the density values δs [v] for the subtree of each vertex v ∈ V are initialized using

Calc-Density. This function ensures that infeasible subtrees—i.e. subtrees which

are too large for the capacity—will not be added to the X̂. After the initialization

step, Prop-Max has ensured that m[r], where r is the root of G, stores a pointer

to the root of the maximum density subtree of G.

In the main loop (Line 10) m[r] is examined to identify the vertex d that is the

root of the maximum density subtree S(d) in the current tree. By attempting to

add S(d) to the solution X̂, the result is one of the following four cases:

1. If δs [d] = −∞ then S(d) is infeasible for the capacity C. This implies that

all feasible subtrees have been added to the X̂ already, so X̂ is returned (Line

12).

2. If w(X̂)+w(S(d)) = C, then the capacity has been filled exactly, and X̂∪S(d)

is returned (Line 14).

3. If w(X̂) + w(S(d)) > C, then S(d) cannot fit in the remaining capacity, and

the maximum profit subtree which contains S(d), denoted S(d0), is located.

If the profit obtained by choosing S(d0) is greater than the current solution

X̂, then X̂ is set to S(d0). Finally, the computed solution X̂ is returned

(Lines 16-21).

4. Otherwise, if w(X̂) + w(S(d)) < C, then S(d) is added to the solution X̂,

and the densities of all feasible vertices on the path from d to the root of G

are recomputed. The process then starts over again (Lines 23-29).

Theorem 4.2.1 (From [16]). Algorithm 1 is a 1
2
-approximation algorithm for the

ITKP.

Proof. If Algorithm 1 terminates on Lines 12 or 14, then X̂ is the optimal solu-

tion, because the entire capacity has been filled with subtrees of maximum density.

Suppose instead that it terminates on Line 21. Let X̂0 be equal to the solution

before entering the loop on Line 16, S(d0) be the maximum profit feasible subtree

45

identified during the loop, and Q (as before) represent the value of the optimal

solution. It must be the case that p(X̂0 ∪ S(d0)) > Q, because S(d0) contains the

most dense subtree S(d) in V \ X̂0, and w(X̂0) ∪ S(d) > C. Also, it must be the

case that p(X̂0) ≤ Q and p(S(d0)) ≤ Q since both sets are feasible solutions. Since

Algorithm 1 returns a solution X̂ with profit Q̂, where

Q̂ = max
{
p(X̂0), p(S(d0))

}
, (4.3)

it is the case that

Q̂ ≤ Q ≤ p(X̂0) + p(S(d0)) ≤ 2Q̂ . (4.4)

Returning to the definition of an ε-approximation (Equation 2.3) and substituting

in Equation 4.4,

Q− Q̂
Q

≤ 1

2
, (4.5)

which completes the proof.

In practice it is likely a good idea to run Algorithm 1 again after it terminates, to

fill any remaining unused capacity. By starting the algorithm over again, subtrees

which cannot fit in the remaining capacity will be excluded during the initial pass

through the tree by Calc-Density. Doing this may uncover some number of less

dense but still profitable subtrees which should be added to the solution. However,

running the algorithm more than once does not improve the error bound in the

worst case.

Lemma 4.2.2 (From [16, 26]). The error bound of Algorithm 1 can be approached.

Proof. Consider a tree with three vertices, v1, v2, v3, and a knapsack of capacity

2p′. Set p(v1) = 2, and w(v1) = 1, p(v2) = w(v2) = p(v3) = w(v3) = p′. Since

Algorithm 1 selects vertices by density, a solution of value p′ + 2 will be found,

whereas the optimal solution has value 2p′.

The running time of the subtree density method is given as O(n2) in [16]. But,

since it is assumed here that the binary tree is constructed prior to executing

46

Algorithm 1, O(n2) is slightly pessimistic. This is because the running time can

only be O(n2) if the height of the tree is Θ(n).

Theorem 4.2.3. Algorithm 1 requires O(nh) time and Θ(n) space, where h is the

height of the binary tree.

Proof. The space bound is immediate since only a constant amount of extra infor-

mation needs to be stored per vertex. The time bound comes from the fact that

the loop starting on Line 9 can run for O(n) iterations, and during each iteration

the inner loop on Lines 23-29 can run as many as O(h) times. This is due to the

fact that |A(v)| ≤ h for each vertex v ∈ V .

Even though Algorithm 1 does not compute an optimal solution to the ITKP, it

has the advantage of only requiring linear space. This makes the subtree density

method more appealing from a practical standpoint than the dynamic programming

algorithms presented in Chapter 3, which all require quadratic space.

4.3 Properties of the subtree density method

In this section two properties of the solution provided by Algorithm 1 are described.

It is shown that any solution having these two properties must be unique. Estab-

lishing this fact allows for easier development of more efficient algorithms which

compute the same solution. First, the following two basic lemmas are required.

Lemma 4.3.1. Let S, R1 and R2 be sets of vertices having non-zero weight, and

R1 and R2 be disjoint:

1. If δ(R1) > δ(S) and δ(R2) > δ(S), then δ(R1 ∪R2) > δ(S).

2. If δ(R1) > δ(S) and δ(R2) ≥ δ(S), then δ(R1 ∪R2) > δ(S).

3. If δ(R1) < δ(S) and δ(R2) < δ(S), then δ(R1 ∪R2) < δ(S).

4. If δ(R1) < δ(S) and δ(R2) ≤ δ(S), then δ(R1 ∪R2) < δ(S).

Proof. From the definition of the density function, statement 1 implies:

δ(R1) =
p(R1)

w(R1)
> δ(S) =

p(S)

w(S)
, (4.6)

47

and

δ(R2) =
p(R2)

w(R2)
>
p(S)

w(S)
. (4.7)

Since the sets R1 and R2 are disjoint, it is true that

δ(R1 ∪R2) =
p(R1 ∪R2)

w(R1 ∪R2)
=

p(R1) + p(R2)

w(R1) + w(R2)
. (4.8)

Since the weight function is defined over the non-negative integers:

p(R1) + p(R2)

w(R1) + w(R2)
>

p(S)
w(S)

(w(R1) + w(R2))

w(R1) + w(R2)
= δ(S) (4.9)

It is clear at this point that the same argument can be used to prove the re-

maining statements.

Lemma 4.3.2 (From [16]). Let R be a tree and δ(R) ≥ δ(S) for each subtree S of

R. Let S1, ..., Sm be any possibly empty set of subtrees of R and R̄ = R − ∪mi=1Si.

If R̄ 6= ∅ then δ(R̄) ≥ δ(R).

Proof. Assume the contrary, with R̄ 6= ∅. If this is the case, then δ(R) > δ(R̄). By

Lemma 4.3.1 and the definition of R, it is implied that

δ(R) ≥ δ(∪mi=1Sm) . (4.10)

Since

R = R̄ ∪ S1 ∪ ... ∪ Sm , (4.11)

it is implied that

δ(R) > δ(R̄ ∪ S1 ∪ ... ∪ Sm) = δ(R) (4.12)

by Lemma 4.3.1. This is a contradiction, thus the lemma holds.

Algorithm 1 repeatedly selects the most dense subtrees from G. If the algorithm

is run until all feasible subtrees have been exhausted, rather than until the capacity

48

is filled, it would partition the tree into a set of regions2. Suppose the algorithm

selects the subtrees rooted at vertices {v1, . . . , vk}, where v1 is selected first by

Algorithm 1. Define the resultant set of regions as D = {r1, . . . , rk}, where:

rj = S(vj) \
j−1⋃
i=1

ri . (4.13)

Notice that every feasible vertex in G is contained by a single region in D, all

regions in D are disjoint, and each region is rooted at a single vertex. Region r

is referred to as being below s if there exist vertices v ∈ r and u ∈ s such that

(v, u) ∈ E(G). Likewise, region r is referred to as a descendant of region s if the

root of r is a descendant of the root of s. The following properties can be used to

describe a set of regions.

Definition 4.3.3. A set of regions D has the monotonicity property, if for every

pair of regions r ∈ D and s ∈ D, r below s implies δ(s) ≤ δ(r).

Definition 4.3.4. For a given region r, define a subregion r′ as a subtree of r

that is closed under predecessor with respect to r, such that r 6= r′. D has the

region density property, if for all r ∈ D, δ(r) > δ(r′), for any subregion r′ of r.

From these definitions, the following three lemmas can be proved: the first

two are straightforward based on Definitions 4.3.3 and 4.3.4, and the third is by

induction.

Lemma 4.3.5. The set of regions created by Algorithm 1 has the monotonicity

property.

Proof. Suppose there exists regions r and s such that s is below r and δ(r) > δ(s).

Let T represent the complete set of regions below r, and t0 ∈ T be the least dense

region in T . Clearly, δ(t0) ≤ δ(s). It is also clear that t0 must have been selected by

Algorithm 1 before r, since t0 is below r, and after all other regions t ∈ T s.t. t0 6= t.

However, δ(r ∪ t0) > δ(t0) by Lemma 4.3.1, which means that Algorithm 1 would

have selected r ∪ t0 before t0. Since this is a contradition, the initial assumption

must have been false.

Lemma 4.3.6. The set of regions created by Algorithm 1 has the region density

property.

2Technically, regions are just subtrees, though not in the sense that subtree is used throughout
the rest of this thesis.

49

Proof. Suppose there exists a subregion r′ of region r such that δ(r′) ≥ δ(r). This

is an immediate contradiction, as it implies that r′, rather than r, should have been

selected as the maximum density subtree during the execution of Algorithm 1. This

is due to the fact that ties are broken by selecting the subtree of lesser weight3.

Lemma 4.3.7. For a given in-tree G = (V,E), the set of regions D = {r1, . . . , rk}
that has both the monotonicity property and region density property is unique.

Proof. The proof is by strong induction on the number of vertices, n, in the in-tree.

Base Case: The theorem holds trivially for n = 0, n = 1. Induction: Assume the

theorem holds for all trees with 0 ≤ n ≤ k−1 vertices. Suppose there are two sets of

regions, D and D̄, of a tree G = (V,E) with k vertices, for which the monotonicity

and region density properties hold and D 6= D̄. D and D̄ each contain one region

that contains the root of G. Call these regions r and r̄, respectively. It must be

the case that r 6= r̄, otherwise, by the inductive hypothesis, it can be shown that

D = D̄, which is a contradiction. Without loss of generality, assume that r̄ contains

a vertex not in r. There are two cases:

i) r̄ does not ‘divide’ any regions in D. Rather, r̄ is the union of r and a set

of regions T = {t1, . . . , tj} ⊂ D. Each region T is either below some other

region in T , or below r. By the monotonicity property of D, δ(ti) ≥ δ(r) for

1 ≤ i ≤ j. This implies that δ(∪ji=1ti) ≥ δ(r) by Lemma 4.3.1. Let tm be the

maximum density region in T . Because tm is a subregion of r̄, δ(r̄) > δ(tm)

due to the region density property of D̄. However, since δ(tm) ≥ δ(∪ji=1ti) ≥
δ(r), it is implied that δ(tm) ≥ δ(r ∪ ti) = δ(r̄) by Lemma 4.3.1, which is a

contradiction.

ii) r̄ divides at least one region t ∈ D into two parts: tu the upper part of t,

and a lower forest F = t \ tu = {f1 . . . fj}. By the inductive hypothesis, the

possibly empty set of regions below any fi ∈ F must be unique. Call one

such set of regions Y . By the region density property of D, δ(t) > δ(fi) for

1 ≤ i ≤ j. Since any subregion of fi is also a subregion of t, no subregion of

any fi ∈ F can have greater density than any region in Y . This implies that

there exists at least one region s ∈ D̄ which is a descendant region of r̄, and

either s = fi, or s is a subregion of fi for some 1 ≤ i ≤ j. The region density

3If ties are broken by selecting the subtree of greater weight, then the less than operator for
the monotonicity property becomes strict, and equality is allowed for the region density property.
Either way all of the proofs in this section still hold.

50

property of D indicates that δ(t) > δ(s), since fi is a subregion of t. From

this point, there are two possibilities which both arrive at a contradiction:

(a) If tu is a subregion of r̄, then δ(r̄) > δ(tu) by the region density property

of D̄, and δ(tu) ≥ δ(t) by Lemma 4.3.2. But if this is the case, then D̄

does not have the monotonicity property, since δ(r̄) > δ(t) > δ(s), and

a contradiction has been reached.

(b) If tu is not a subregion of r̄, then find some z0 ∈ D which is a descendant

region of t and shares a root with a subregion z of r̄, such that z ⊆ z0.

Such a region must exist, and by Lemma 4.3.2 and the region density

property, it is implied that δ(z) ≥ δ(z0). Since δ(z0) ≥ δ(t) by the

monotonicity property of D, δ(z) ≥ δ(t) > δ(s). Again, a contradiction

has been reached, since this implies that δ(r̄) > δ(z) > δ(s) which

violates the monotonicity property of D̄.

Since, in all cases, a contradiction is reached if D 6= D̄, the statement must hold

for trees of size k.

4.4 The region-heap algorithm for the ITKP

In [4], an O(n log n) algorithm for solving min-cost flow problems with upper and

lower capacities in trees is described. The algorithm uses mergable heaps to improve

upon the previous worst case time bound for that problem. Here, it is shown that

mergeable heaps can also be used to improve the time bound of the subtree density

method for the ITKP.

Lemma 4.3.7 implies that if another algorithm can identify the set of regions

which has the region density and monotonicity properties, it will guarantee the

same error bound as Algorithm 1. Such an algorithm works as follows. The set

of regions is computed for the tree by visiting the vertices in post-order4. At each

vertex, v ∈ G, a data structure D is created by merging data structures Dl and Dr

computed for the left and right children of v, vl and vr, respectively. D is created

in such a way as to contain the same unique set of regions that would be created

by Algorithm 1 when executed on S(v). To create D for a given vertex v, execute

Algorithm 2.

4Any topological ordering will suffice.

51

Algorithm 2 Region-Heap(v,Dl, Dr)

1: D ←Merge(Dl, Dr)
2: if w(S(v)) ≤ C then
3: R← {v}
4: M ← Get-Min(D)
5: while M 6= ∅ and δ(M) < δ(M ∪R) do
6: Delete-Min(D)
7: R← R ∪M
8: M ← Get-Min(D)
9: end while

10: Insert(D,R)
11: end if
12: Return D

Lemma 4.4.1. The set of regions stored in D, the data structure returned by

Algorithm 2, has the monotonicity property.

Proof. If the data structures Dl and Dr are assumed to have the monotonicity

property, then D can be shown to have the monotonicity property in the following

way. When the loop on Line 5 terminates, it must be the case that δ(R) ≤ δ(M)

by Lemma 4.3.1. Since D at this point is a subset of the regions in Dl and Dr—

because up until this point only been deleting regions from Dl ∪ Dr —it must be

the case that the regions in D have the monotonicity property. Finally, since M is

the least dense region in D before R is inserted, R cannot violate the monotonicity

property for any region in D. Therefore D has the monotonicity property after R

is inserted. Since Dl and Dr do have the monotonicity property when they contain

either zero or one regions in the base case, the above argument suffices to prove the

lemma.

Lemma 4.4.2. The set of regions stored in D, the data structure returned by

Algorithm 2, has the region density property.

Proof. As with the previous proof, it is assumed that the regions stored in Dl and

Dr have the region density property. Since R is initialized to be a single vertex, it

clearly has the region density property. Therefore, prior to the first iteration of the

loop on Line 5, both R and M have the region density property.

Choose any subregion T of R∪M . T is either M , a subregion of M , a subregion

of R, or comprised of two parts Tu ∪M where Tu ⊂ R. If T = M , T is a subregion

of M , or T is a subregion of R, then the region density property holds trivially due

52

to the initial assumptions and the termination conditions of the loop. Otherwise,

since δ(R) > δ(Tu), it is the case that δ(R/Tu) > δ(Tu) by Lemma 4.3.2, which

implies that δ(R/Tu) > δ(M). Then, by Lemma 4.3.1, δ(R/Tu) > δ(Tu ∪M). This

means that δ(R ∪M) > δ(Tu ∪M) also by Lemma 4.3.1. Thus, R has the region

density property after the first iteration of the loop. The same argument follows

for every subsequent iteration, and therefore the region density property holds for

all regions in D after R is inserted.

A pairing heap is a self-adjusting data structure that is designed to provide

operation time bounds comparable to a Fibonacci heap, be simple to implement,

and also work well in practice [12, 31].

Lemma 4.4.3. If Algorithm 2 is implemented using a pairing heap, then the total

time required to run Algorithm 2 at each vertex in the in-tree is O(n log n).

Proof. At each vertex, a single Merge operation, and a single Insert operation

must be performed. Within the while loop on line 5, potentially many delete-min

and Get-Min operations are performed. However, note that each region in D

is rooted at a single vertex, and once deleted, that region never is inserted into

D again. Therefore, the number of Delete-Min and Get-Min operations is

bounded by n. It is important to mention that the union operation on line 7 can be

done in constant time, since each region can be stored in the heap with a pointer

to its root, total profit, and total weight. A sequence of m operations, Merge,

Insert, Delete-Min and Get-Min, each take amortized O(logm) time using a

pairing-heap. Since there are at most n of each of these operations, the running

time is O(n log n).

Theorem 4.4.4. When the in-tree is already constructed, Algorithm 2 can be used

as part of a 1
2
-approximation algorithm for the ITKP which takes O(n log n) time.

Proof. Follows from Theorem 4.2.1 and Lemmas 4.3.5, 4.3.6, 4.3.7, 4.4.1, 4.4.2, and

4.4.3. Once the data structure at the root of the in-tree has been created, the

regions can be extracted. The set of regions can be extracted in sorted order to

find the 1
2
-approximation solution in O(n log n) time. Alternatively, the regions can

be extracted in linear time unsorted, and the solution can be determined in linear

time using the standard iterative median searching technique, described in [19].

53

4.5 Discussion of the RPCP

4.5.1 Error bounds

Algorithms 1 and 2 both achieve an error bound of 1
2

in the general case of the

ITKP. Unfortunately, even when each vertex has unit weight, the following lemma

illustrates that the error bound remains tight.

Lemma 4.5.1. The error bound of Algorithms 1 and 2 can be approached, even

with the added restriction that for each v ∈ V , w(v) ≤ 1.

Proof. Consider a forest with three subtrees, having roots v1, v2, v3, and knapsack

capacity 2p′. Set p(v1) = 2, and p(v2) = p(v2) = p′. Create p′ − 1 descendants

for both v2 and v3, each of which have unit weight, and zero profit. The greedy

strategy will result in a solution with profit p′ + 2, whereas the optimal solution

will have profit 2p′.

Although Lemma 4.5.1 shows how an instance of ITKP with general weights

can be reduced to the unit weight case, the reduction requires a more than linear

number of additional vertices. If the size of each individual subtree in the input

is constrained to be less than C
2

, then the error bound does improve. However, in

general, a better algorithm for the unit weight case appears to be non-trivial.

4.5.2 Time bounds

The reason the running time of Algorithm 1 is O(nh) for the ITKP is due to the

fact that when the knapsack capacity and vertex weights are arbitrary, it is trivial

to construct instances where O(n) regions must be selected to fill the capacity.

However, a stronger claim can be made about the running time of Algorithm 1

when it is applied to the RPCP.

Theorem 4.5.2. The running time of Algorithm 1 is O(Ch + n) when applied to

the RPCP.

Proof. Because 1 ≤ C ≤ n for all instances of the RPCP, and dummy vertices are

never leaves in the binary tree, it is guaranteed that the main loop of Algorithm

1 will terminate after at most C iterations. This is because every region selected

must contain at least one unit of weight. This simple observation leads to a better

54

running time for Algorithm 1 of O(Ch + n) time, where the additive factor of n

comes from the initial preprocessing of the binary tree.

Furthermore, a similar observation can be made about the running time of

Algorithm 2 when it deals with unit weight vertices.

Theorem 4.5.3. The running time of Algorithm 2 is O(n logC) when applied to

the RPCP.

Proof. This proof relies on constant amortized time bounds for the operations

Insert, Get-Min, and Merge in a pairing heap [15]. Consider the fact that

Delete-Min is only executed in heaps that are of size at most C, since new re-

gions are only added if they rooted at feasible vertices5. For a given subtree of size

at most C, the cost of constructing the regions for the subtree is at most O(C logC).

There can be at most n
C

such subtrees, which, after they are constructed, can be

linked together in O(n) time since Merge only requires constant amortized time.

Therefore the total amount of work is less than or equal to O(n) + O(n
C
C logC),

which is O(n logC).

4.6 Discussion of the RPCP+

So far in this chapter the question of how to handle punt vertices has not been

addressed. Figure 4.1 demonstrates that if punt vertices are allowed, then the

greedy algorithms presented thus far do not provide any error bound.

0 0

t

0

...

C − 1

punt

Figure 4.1: If the subtree density method were run on this example, a solution with no
profit would be found, since the vertex with profit t is not feasible. However, if punt
vertices are allowed, a solution with profit equal to t is clearly possible.

5This analysis ignores dummy vertices, since they can only increase the size of a given subtree
by at most a factor of 2.

55

Algorithm 3 Punt-Set-Density(G,C)

1: X̂ ← ∅, r ← Root(G)
2: for i← 1 to n do
3: ws [vi]← w(B∗(vi))
4: δs [vi]← Compute-PS-Density(vi)
5: m[vi]← Prop-Max-PS [vi]
6: end for
7: while true do
8: d← m[r]
9: if δs [d] = −∞ then

10: Return X̂
11: else if ws [d] + w(X̂) = C then
12: Return X̂ ∪B∗(d)
13: else if ws [d] + p(X̂) > C then
14: if p(B∗(d)) > Q̂ then
15: X̂ ← B∗(d)
16: end if
17: Return X̂
18: else
19: X̂ ← X̂ ∪B∗(d)
20: Mark(d)
21: if d 6= r then
22: ds ← Suc(d)
23: ws [ds]← w(B∗(ds))− w(d)
24: δs [ds]← Compute-PS-Density(ds)
25: end if
26: for dp ∈ Pre(d) do
27: ws [dp]← w(B∗(dp))− w(dp)
28: δs [dp]← Compute-PS-Density(dp)
29: end for
30: for d0 ∈ Top

(⋃
dp∈Pre(d)A(dp)

)
do

31: m[d0]← Propagate-Max-PS (d0)
32: end for
33: end if
34: end while

56

In this section an algorithm is presented to deal with punt sets using the same

general technique as Algorithm 1. For a given tree G = (V,E) a punt set is defined

for each non-dummy vertex v ∈ V to be the union of v with the minimum number

of punt vertices required to make v closed under predecessor with respect to G.

The punt set B∗(v) of vertex v is defined as:

B∗(v) = {v} ∪
⋃

v′∈Pre(v)

B(v′) . (4.14)

The profit p(B∗(v)) and weight w(B∗(v)) of each punt set for all non-dummy

vertices in V can be computed in linear time. After this initial preprocessing,

Algorithm 3 can be executed, which proceeds in a similar manner as Algorithm 1.

The main idea of the algorithm is that each punt set can be treated as an

individual item to be placed in the knapsack, and the standard greedy strategy

of inserting items by density can be used. When a punt set is inserted into the

knapsack, its root is marked (Line 20) so that it is never considered again in the

future. Each time a punt set rooted at vertex v is inserted into the knapsack, it

causes other punt sets to lose weight in one of two ways. The first way is that the

punt set rooted at the successor of v, vs, loses weight equal to the weight of v, since

B(v) is no longer required to make B∗(vs) closed under predecessor. The second

way is that each punt set rooted at a predecessor of v, vp, loses its weight equal to

w(vp), since B(vp) has already been inserted into the knapsack. This means that if

B∗(vp) is subsequently inserted, there is no need to account for the weight of vp, as

it has already been accounted for when B(vp) was added.

As with the original algorithm, separate residual values, ws [v] and δs [v], are

maintained for each non-dummy vertex v ∈ V . These values represent w(B∗(v)\X̂),

and δ(B∗(v) \ X̂), respectively6. There is also another array, m[v], which keeps a

pointer to the root d of the maximum density punt set such that B∗(d) ⊆ S(v)\ X̂.

Algorithm 3 uses two helper functions which are defined analogously to those from

Algorithm 1. The first function, Calc-Density-PS is defined to compute δs [v]

for a punt set rooted at vertex v in the following way:

δs [v] =

−∞ if w(B∗(v)) > C,

p(B∗(v))/ws [v] otherwise.
(4.15)

6The residual profit does not need to be kept for this algorithm, since the profit of a punt set
does not change during the course of the algorithm.

57

Since w(B∗(v)) is precomputed, Calc-Density-PS [v] can be computed in con-

stant time for any vertex. The second function, Prop-Max-PS is defined to

receive a vertex v as a parameter, and to operate under the assumption that m[vl]

and m[vr] have been computed for the left and right children of v, respectively.

Prop-Max-PS [v] returns either the root of the maximum density punt set con-

tained within S(v) \ X̂, or a special “ignore” flag if no remaining punt sets are con-

tained within S(v). As before, ties can be broken by returning the punt set of lesser

weight. Since m[vl] and m[vr] are assumed to be precomputed, Prop-Max-PS can

be computed in constant time for any vertex.

t

t

t2

2

t

t− 1

0

2t

t− 1

t− 1

t2

2

v1 v2 v3 v4

...

Figure 4.2: In this figure there are 3 disjoint subtrees rooted at vertices v1, v2, v3, and a
chain of vertices rooted at v4. The punt sets rooted at v2 and v3 require t punt vertices
to cover the t predecessors of these vertices which have zero profit, thus δ(B∗(v2)) =
δ(B∗(v3)) = t

2 . Meanwhile, δ(B∗(v4)) = t−1
2 . The greedy strategy would select v1 and

either v2 or v3, then stop. The optimal algorithm would select the entire chain rooted at
v4. This is because even though each individual punt set has a low density, selecting the
chain results in a better solution.

Conjecture 4.6.1. Algorithm 3 is a 3
4
-approximation algorithm for RPCP+, and

improves to an 1
2
-approximation if the algorithm is run multiple times to fill any

remaining capacity.

Although there is currently no proof for the above statement, the following

lemma illustrates a potential worst case, explaining the conjecture in the process.

Lemma 4.6.2. The error bound of 3
4

can be approached for Algorithm 3.

Proof. The problematic instance is illustrated in Figure 4.2 with capacity C = 2t.

Algorithm 3 will find a solution with profit t + t2

2
, while the optimal solution has

profit

58

(2t− 1)(t− 1) = 2t2 − 3t+ 1 (4.16)

Thus the error bound approaches 3
4

as t→∞.

If Algorithm 3 is run subsequently to fill any remaining capacity, the error bound

improves for this particular example. It seems that to achieve the error bound of
3
4
, vertices which form a chain must be present, such as the one rooted at v4 in

the example. To avoid selecting the chain, large high density punt sets such as the

ones rooted at v2 and v3 must also be present. However, if the algorithm is run

again after terminating, these large punt sets will be ignored they are too large to

fit in the remaining capacity. By running the algorithm multiple times, it seems

that some portion of the remaining profit in the tree will be extracted each time,

improving the error bound to 1
2
.

Theorem 4.6.3. Algorithm 3 requires O(Ch+n) time and Θ(n) space, where h is

the height of the binary tree.

Proof. Potentially, O(C) punt sets can be extracted before the algorithm termi-

nates, since 1 ≤ C < n. This means that the for loop on Lines 30-32 can be

executed O(C) times. Within this loop itself, there are at most h iterations, where

h is the height of the tree, plus a number of iterations which is strictly less than the

number of predecessors of d. These extra iterations, along with the cost of the for

loop on lines 26-29 can be charged to the O(n) initialization step of the algorithm.

This is because each vertex is a predecessor for at most one other vertex, and thus

will only be “touched” by the algorithm in this particular manner at most one time.

Therefore, the algorithm requires O(n) time for the initialization step, and O(Ch)

time for the main loop, which achieves the desired bound.

The running time of Algorithm 3 matches that of Algorithm 1. However, due

to the nature of punt sets, it appears that the mergeable heap technique from

Algorithm 2 cannot be applied to the RPCP+.

4.7 Summary

In this chapter several algorithms have been presented which make use of the sub-

tree density method for solving the ITKP described in [16]. Table 4.1 gives a

59

Problem Algorithm 1 Algorithm 2 Algorithm 3
ITKP O(nh) O(n log n) –
RPCP O(Ch+ n) O(n logC) –
RPCP+ – – O(Ch+ n)

Table 4.1: Comparison of the greedy algorithms presented in this Chapter for solving the
ITKP, RPCP, and RPCP+. Each of these algorithms has a space requirement of Θ(n).
The algorithm for the ITKP and RPCP provide an error bound of 1

2 .

comparison of the running times of these algorithms when applied to the ITKP,

RPCP, RPCP+.

The most notable result in this section is the improved running time for the

ITKP provided by Algorithm 2, which yields a solution at least 1
2

as profitable as

the optimal solution. It was also shown that the subtree density method could be

adapted for the RPCP+, though proving that the error bounds match for the two

problems remains a conjecture.

Since all of the algorithms presented in this chapter only require Θ(n) space,

they provide a practical starting point for an online solution to the RPCP and

RPCP+. The next step in this research is to perform an experimental comparison

of these algorithms to determine their relative performance under real-world con-

ditions. It is very likely that the worst case situations described in this chapter

will not happen in practice as they were particularly contrived for the RPCP and

RPCP+.

60

Chapter 5

Conclusions and future work

In this thesis it has been shown that the problem of maintaining routing prefix

caches in high speed routers—the Routing Prefix Caching Problem (RPCP)—can

be viewed as a special case of the In-tree Knapsack Problem (ITKP), where each

vertex has unit weight. Furthermore, an interesting and practical variant of the

RPCP, called the Routing Prefix Caching Problem with Punt Prefixes (RPCP+),

has been defined as well.

The first set of algorithms presented for solving these three problems made use

of dynamic programming. The most notable of these algorithms uses the left-right

dynamic programming method to solve the ITKP (Section 3.3). This algorithm

improves upon prior time bounds for solving the ITKP both optimally and approx-

imately, since it can be used to derive a FPTAS as well. An immediate consequence

of these dynamic programming algorithms is that only polynomial time and space

are required to find optimal solutions to the RPCP and RPCP+. However, given

the real-world input sizes to the RPCP and RPCP+, dynamic programming would

not be practical for these problems.

Algorithms in the second set were based on a previously known greedy 1
2
-

approximation algorithm, and sacrifice the optimality of a solution for a superior

running time and linear storage requirement. Several modifications were made to

this algorithm to both improve the asymptotic running time for the ITKP, as well

as to adapt it to the RPCP+. In contrast to the dynamic programming algorithms,

these greedy algorithms should be simple and efficient enough to be used as the

basis for an online solution to the RPCP and RPCP+.

This thesis concludes with a list of open problems and suggested future work:

61

1. There are many practical and experimental issues left unaddressed by this

thesis. A clear next step would be to gather experimental evidence to show

how the various algorithms for the RPCP and RPCP+ perform using real-

world Internet trace data and routing tables.

2. Can a better framework be given for the RPCP+, thus simplifying the algo-

rithms for solving it optimally?

3. The bottom-up dynamic programming method can be modified to provide a

superior running time for the RPCP. Can a similar improvement be made for

the left-right method when applied to the RPCP? Specifically, is there some

way of exploiting unit weight vertices to provide guarantees on the number

of dominated states in the dynamic programming table? If so, the time and

space bounds could be improved by doing the dynamic programming using

linked lists1.

4. There are many trade-offs still unexplored for the greedy 1
2
-approximation

algorithms. By grouping vertices, or seeding the greedy algorithm with judi-

ciously chosen subsets of vertices, can the an optimal solution to the RPCP

be found in quadratic (or sub-quadratic) time and linear space? Specifically,

for the case where C = Θ(n), can an ε-approximation be found for the RPCP

which runs in O(21/εn log n) time and Θ(n) space?

5. Can an algorithm identify the set of regions for an instance of the ITKP in

linear time? The deletion operations in the pairing heap are what increase the

running time to O(n log n). Can the techniques described in [11] be adapted

for this particular problem?

6. Finally, can the conjectured error bound for the greedy algorithm for the

RPCP+ be proved or disproved? Does it match the bound of the greedy

algorithms for the ITKP? If not, how can the algorithm be modified to make

them match?

1See [19] for more details on dynamic programming with linked lists.

62

APPENDICES

63

Appendix A

List of Abbreviations

KP Knapsack Problem

FPTAS Fully Polynomial Time Approximation Scheme

IP Internet Protocol

ITKP In-tree Knapsack Problem

LPMP Longest Prefix Matching Problem

NP Network Processor

OTKP Out-tree Knapsack Problem

PCKP Precedence Constraint Knapsack Problem

RPCP Routing Prefix Caching Problem

RPCP+ Routing Prefix Caching Problem with Punt Prefixes

PTAS Polynomial Time Approximation Scheme

TCAM Ternary Content Addressable Memory

64

Appendix B

Further discussion of the RPCP+

In this section the problem of finding a better abstraction for the RPCP+ is dis-

cussed. Recall from Chapter 4 that for a given in-tree G = (V,E) a punt set is

defined for each vertex v ∈ V to be the union of v with the minimum number of

punt vertices required to make v closed under predecessor with respect to G. A

punt set B∗(v) is:

B∗(v) = {v} ∪
⋃

v′∈Pre(v)

B(v′) . (B.1)

The problem of maximizing profit by selecting individual punt sets is odd since

adding a punt set p to the solution reduces the weight of other punt sets which

share vertices with p. In a more abstract sense, this problem can be generalized to

the following optimization problem:

max
n∑
i=1

pixi

s.t.
n∑
i=1

n∑
j=1

wijxixj ≤ C

xi ∈ {0, 1}, pi ∈ Z+, wii = Z+, wij ∈ Z . (B.2)

In this problem each xi represents the decision to take the i-th item, which has

profit pi and weight wii. If items i and j overlap, then wij and wji contain negative

integers, so that the weight of the overlap is not counted twice. This overlap is

65

analogous to the way vertices can overlap between punt sets. Thus, the matrix

(wij) has positive integers along its diagonal, and all other values are negative.

This optimization problem is similar to both the quadratic knapsack problem [19],

as well as the knapsack problem discussed in [24].

The quadratic knapsack problem can be shown to be strongly NP-hard since it

generalizes CLIQUE [19]. Not surprisingly, the above optimization problem can be

shown to be strongly NP-hard in the same way.

Theorem B.0.1. The optimization problem described by Equation B.2 is strongly

NP-hard since it generalizes CLIQUE.

Proof. Input: an undirected graph G = (V,E) and an integer k > 0, i.e. does G

contain a clique of size k or greater?

This can be converted into an instance of Equation B.2 by associating an item

with each vertex in G and then setting:

• pi = 1 for all i, 1 ≤ i ≤ n.

• wii = t for some t > k, for all i, 1 ≤ i ≤ n.

• wij =


−(t−1)
(k+1)

if (i, j) ∈ E,

0 otherwise.

• C = k.

If an algorithm can solve Equation B.2, then it can also solve CLIQUE using

the above transformation. If the feasible solution to this transformed problem has

profit k, the solution must be a CLIQUE of size k in the original input graph. This

is because such a solution consists of k vertices and such a set of vertices must have

weight:

tk − e(2(t− 1))

k + 1
(B.3)

where e is the number of edges between the vertices. The 2 comes from the fact

that the matrix is symmetric. For this value to be equal to k demands e =
(
k
2

)
.

Further study of this problem is left as future work.

66

References

[1] BGP Reports, March 2009. Retrieved March 25th, 2009 from http://bgp.

potaroo.net/.

[2] CIDR Report, March 2009. Retrieved March 25th, 2009 from http://www.

cidr-report.org/as2.0/.

[3] M.J. Akhbarizadeh and M. Nourani. Efficient prefix cache for network proces-

sors. Proc. of IEEE Symposium on High Performance Interconnects, 12:41–46,

2004.

[4] W. Bein and P. Brucker. An O(nlogn)-algorithm for solving a special class of

linear programs. Computing, 42(4):309–313, 1989.

[5] S. Chakrabarti and S. Muthukrishnan. Resource scheduling for parallel

database and scientific applications. In Proc. of ACM Symposium on Par-

allel Algorithms and Architectures, pages 329–335. ACM New York, NY, USA,

1996.

[6] T.C. Chiueh and P. Pradhan. Cache memory design for network processors.

Proc. International Symposium on High-Performance Computer Architecture,

6:409–418, 2000.

[7] G. Cho and D.X. Shaw. A Depth-First Dynamic Programming Algorithm

for the Tree Knapsack Problem. INFORMS Journal on Computing, 9(4):431,

1997.

[8] I.L. Chvets and M.H. MacGregor. Multi-zone caches for accelerating IP routing

table lookups. Workshop on High Performance Switching and Routing, pages

121–126, 2002.

67

[9] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding tables

for fast routing lookups. Proceedings of the ACM SIGCOMM’97 conference

on Applications, technologies, architectures, and protocols for computer com-

munication, pages 3–14, 1997.

[10] D.C. Feldmeier. Improving gateway performance with a routing-table cache.

INFOCOM’88. Networks: Evolution or Revolution? Proceedings. Seventh An-

nual Joint Conference of the IEEE Computer and Communcations Societies.,

IEEE, pages 298–307, 1988.

[11] G.N. Frederickson. An optimal algorithm for selection in a min-heap. Infor-

mation and Computation, 104:197–197, 1993.

[12] M.L. Fredman, R. Sedgewick, D.D. Sleator, and R.E. Tarjan. The pairing

heap: A new form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.

[13] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. 1979.

[14] P. Gupta. Algorithms for Routing Lookups and Packet Classification. PhD

thesis, Stanford University, 2000.

[15] J. Iacono. Improved upper bounds for pairing heaps. Lecture notes in computer

science, pages 32–45, 2000.

[16] O.H. Ibarra and C.E. Kim. Approximation algorithms for certain scheduling

problems. Math. Oper. Res., 3(3):197–204, 1978.

[17] D.S. Johnson and K. Niemi. On Knapsacks, partitions, and a new dynamic

programming technique for trees. Math. Oper. Res., 8(1):1–14, 1983.

[18] S. Kasnavi, P. Berube, V.C. Gaudet, and J.N. Amaral. A multizone pipelined

cache for IP routing. IFIP Networking Conference, 2005.

[19] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[20] S.G. Kolliopoulos and G. Steiner. Partially ordered knapsack and applications

to scheduling. Discrete Appl. Math., 155(8):889–897, 2007.

[21] H. Liu. Routing prefix caching in network processor design. Proceedings of the

Tenth International Conference on Computer Communications and Networks,

10:18–23, 2001.

68

[22] Y. Lu, B. Prabhakar, and F. Bonomi. ElephantTrap: A low cost device for

identifying large flows. In High-Performance Interconnects, 2007. HOTI 2007.

15th Annual IEEE Symposium on, pages 99–108, 2007.

[23] J.A. Lukes. Efficient Algorithm for the Partitioning of Trees. IBM Journal of

Research and Development, 18(3):217–224, 1974.

[24] L.A. McLay and S.H. Jacobson. Integer knapsack problems with set-up

weights. Computational Optimization and Applications, 37(1):35–47, 2007.

[25] J.J. Rooney, J.G. Delgado-Frias, and D.H. Summerville. Associative ternary

cache for IP routing. IEE Proceedings - Computers and Digital Techniques,

151(6):409–416, 2004.

[26] S. Sahni. Approximate Algorithms for the 0/1 Knapsack Problem. Journal of

the ACM (JACM), 22(1):115–124, 1975.

[27] N. Samphaiboon and Y. Yamada. Heuristic and Exact Algorithms for the

Precedence-Constrained Knapsack Problem. Journal of Optimization Theory

and Applications, 105(3):659–676, 2000.

[28] D.X. Shaw and G. Cho. The critical-item, upper bounds, and a branch-and-

bound algorithm for the tree knapsack problem. Networks, 31(4):205–216,

1998.

[29] W.L. Shyu, C.S. Wu, and T.C. Hou. Efficiency analyses on routing cache

replacement algorithms. Proceedings of IEEE International Conference on

Communications, 4, 2002.

[30] W.L. Shyu, C.S. Wu, and T.C. Hou. Multilevel aligned IP prefix caching based

on singleton information. Proceedings of the Third IEEE Global Telecommu-

nications Conference, 3, 2002.

[31] J.T. Stasko and J.S. Vitter. Pairing heaps: experiments and analysis. Com-

munications of the ACM, 30(3):234–249, 1987.

[32] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed

IP routing lookups. ACM SIGCOMM Computer Communication Review,

27(4):25–36, 1997.

[33] G.J. Woeginger. On the approximability of average completion time scheduling

under precedence constraints. Discrete Appl. Math., 131(1):237–252, 2003.

69

