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Abstract

In the last few years, unglazed transpired solar collectors (UTCs) have proven
to be an effective and viable method of reducing HVAC loads and building energy
consumption. With the growing interest in PV /Thermal collectors, a study of a
PV/Thermal UTC with PV cells mounted directly on the absorber was carried out.

In the first part of this project, a TRNSYS model was developed to predict
the performance of a PV/Thermal UTC. It was based on an actual UTC model,
but modifications were made to account for the wind, the presence of PV cells
and the corrugated shape of the plate. Simulations showed that mounting the
cells only on the top surfaces of the corrugations prevented the cells from being
shaded by the collector and consequently, presented the greatest potential. With
this configuration, it was found that the addition of PV cells on the UTC decreased
the thermal energy savings by 5.9%, but that 13.6% of the thermal energy savings

could be recovered in the production of electricity.

In the second part of the study, a 2.5 m? prototype of a PV/Thermal UTC was
constructed. The collector was mounted outdoors and tested at different air suction
rates for a period of three weeks, during which the thermal output and electrical
power were recorded. It was found that 10% more electricity was obtained when
the fan was turned on than for zero flow conditions. It was also observed that at
greater air suction rates, more cooling of the panel was achieved and potentially
higher electrical power could be produced. The effect of the PV cells on the collector
thermal performance could not be quantified, however, due to the small portion of

PV cells on the whole collector area.

TRNSYS simulations were performed using the prototype parameters and the
weather data of some experimental days. The results predicted by the component
developed showed similar trends as the experimental results. The predictions were,
however, not within the experimental uncertainties. The deviation in the results
was attributed to the fact that the wind heat losses were not estimated accurately
by the model and the non-uniform suction at the panel surface that prevented the

prototype tested to work at its optimal performance.
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Chapter 1

Background

1.1 Introduction

1.1.1 Energy Consumption and GHG Emissions

In recent years, energy consumption and greenhouse gases (GHG) emissions
have become a worldwide concern. According to the Intergovernmental Panel on
Climate Change (IPCC, 2007), if the rate of energy consumption and GHG emis-
sions are not reduced, global warming will accelerate and have catastrophic effects
on the planet. Besides the fact that humans will have to face more frequently ex-
treme weather such as scorching heat, flooding and draught, the IPCC report that
a global warming of 1.4°C to 5.8°C could cause the sea level to rise by 0.09 m to
0.88 m by 2100 due to melting glaciers (IPCC, 2007). This last phenomenon could
lead to the extinction of number of species and to significant flooding of inhabited
land.

Canada has made little effort to fight climate change. From 1990 to 2004,
its energy consumption and GHG emissions have increased by 22.9% and 23.9%,
respectively (Statistics Canada, 2006). In order to find solutions to curb both
GHG emissions and global warming, the first step consists of identifying the sectors

mainly responsible for the production of GHG.



1.1.2 Energy Savings Potential

Figures 1.1 (a) and (b) present the distribution by end-use of the 2004 Cana-
dian total energy consumption and GHG emissions in the residential and institu-
tional /commercial sectors. As can be seen, for both sectors more than half of the
total energy consumption and GHG emissions are due to space heating. Therefore,
a small improvement in this sector could have a significant impact on the total

amount of GHG emitted and ultimately, on the environment.
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Figure 1.1: Percentage of energy use and GHG emissions by end-use in Canada for the
(a) residential sector (b) institutional and commercial sectors (Statistics
Canada, 2006)



1.1.3 Solutions

There are several actions that can be taken to limit GHG emissions that are
specifically related to space heating, and are applicable for all kinds of buildings.
One of them consists of reducing energy consumption. For new construction, this
can be done by minimizing the building heat losses by using walls and windows
with better insulation. In existing buildings, installing programmable thermostats
can help in reducing the heating required at night or when the building is not
occupied. The use of high performance heating devices such as heat pumps can
also contribute in reducing the energy consumption. Another action consists of
selecting sources of energy that are clean compared to fossil fuels, such as natural
gas, oil, propane and coal. Wind, water, geothermal and solar energy are all very
promising sources of energy that do not produce GHG and are renewable. In certain
locations, however, some cannot be used because they are simply not available in
large enough quantities to be economically viable. The sun is accessible almost
everywhere on the planet. Therefore, solar energy presents great potential as a

source of energy.

1.2 Background

1.2.1 Basics of Solar Energy

Solar energy technologies transform the radiation coming from the sun to useful

energy. It is typically used for:

e Passive solar heating
e Active solar heating

e Photovoltaic cells

Passive solar heating is a process that usually does not require any mechanical
or electrical devices to function. It can be as simple as direct gain of energy through

windows, but can also consist of any system where the working fluid is circulated
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naturally, such as in thermosyphon systems. Active solar heating implies that a
mechanical component like a pump or a fan, is involved. These mechanisms are
used to circulate the working fluid through devices called solar collectors. Finally,
solar energy can be used with photovoltaic (PV) cells that absorb the light from
the sun and convert it into electricity.

Solar thermal collectors are devices that convert solar radiant energy into heat.
They are available in several designs, but the basic operating principles remain the
same. An absorber plate, usually of dark color, absorbs radiation from the sun
and transfers this energy to a working fluid, either air or liquid. Figure 1.2 shows
an example of a flat plate collector where the fluid circulates through pipes. The

collector on this figure has a cover to minimize heat losses from the absorber plate.
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Figure 1.2: A typical solar thermal collector

Liquid working fluids are typically employed for solar water heating (SWH)
purposes, while air is used for solar air heating (SAH). Collectors having air as
their working fluid present some advantages. Contrary to liquid solar collectors, the
air can be directly drawn into the building without the need for any further heat
exchange. Also, in SAH systems, the problem of fluid leakage is not as critical and
corrosion and freezing are not issues. With air collectors, however, high efficiencies

cannot be achieved because of the low thermal capacity of air. Moreover, these



systems are generally bulky because large air channels are required to displace a

small amount of energy.

1.2.2 Unglazed Transpired Collectors

In the last few years, a new type of air solar thermal collector, the unglazed
transpired collector (UTC), has received a great deal of attention, mainly because
it has proven to be an effective and viable method of reducing HVAC loads, build-
ing energy consumption and GHG emissions. SolarWall® is a well-known UTC
that was developed in the early 1980s. Over 1000 SolarWall® systems have now
been installed in 25 different countries on commercial, industrial, institutional and
multi-residential buildings (Conserval Engineering Inc., 2007). Just like other air
collectors, UTCs consist of an interesting alternative to fossil fuels for buildings

requiring a large amount of hot fresh air, or for solar crop drying applications.
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Figure 1.3: Schematic diagram of a UT'C mounted on a building wall

Unglazed transpired collectors are dark and perforated plates, usually corru-
gated in a trapezoidal shape to provide structural stiffness. They are typically
made out of aluminium or galvanized steel and are available in a wide range of col-

ors to match the aesthetics of the building. They can be installed either on vertical



walls or on inclined roofs that are strongly exposed to solar radiation. In order to
maximize the annual energy availability, the general rule is that a solar collector
should be mounted so that its slope is equal to the latitude of the location where
it is installed (Duffie and Beckman, 1991). In the case of UTCs, however, wall
installations are more common, because the roofs of large commercial or industrial

buildings are usually flat.

Typically, a gap of 10 to 20 cm, called the plenum, is left between the wall or roof
and the absorber plate to let the air travel as it passes through the perforations
of the plate (Figure 1.3). A fan, installed in the ventilation system, forces the
outdoor air to pass through the perforated plate by creating a negative pressure.
Therefore, when incident solar radiation hits the collector, the air going through
the perforations takes back the heat gained by the absorber plate. As a result,
the outdoor air is preheated when it goes into the plenum and enters the building
ventilation system. A great advantage of UTCs compared to other types of solar
air collectors is that since suction is occurring at the surface, the plate is kept at a
relatively low temperature and the convective heat losses from the absorber plate
is reduced (Kutscher et al., 1991). Therefore, there is no need for any covers, which

reduces the optical losses and decreases the cost of the collector.

1.2.3 Photovoltaic Cells

PV cells are typically composed of a P-type and a N-type semiconductor. The
semiconductors can be made of different materials such as mono or polycrystalline
silicon (Si), amorphous silicon (a-Si), cadmium sulfide (CdS) or cadmium telluride
(CdTe). The P-type semiconductor has available electron-holes (+) and the N-type
semiconductor has free electrons (-). Therefore, when the two semiconductors are
placed back-to-back, a potential difference is created in a region called the P-N
junction. When intense light or solar radiation hits a PV cell, the photons with
high enough energy can displace electrons, creating hole-electron pairs. For a N-
on-P silicon cell, these holes tend to collect on the back contact electrode while
the free electrons move to the front contact electrode (Figure 1.4). When a load is

connected to the front and back electrodes, electrons use the newly created path to



return to the P-type contact grid, creating current. Photovoltaic cells are known
to convert only a small part of the solar energy they absorb into electricity. In fact,
their efficiency is in the range of only 6-15%, depending on the type of cells. The
main reason for this poor efficiency is that only photons with a certain amount of
energy are able to create hole-electron pairs. The photons with not enough energy
or the ones that are left when the maximum amount of electron-hole pairs are
created cannot produce electricity. Instead, their energy is converted to heat and
contributes to raising the cells temperature. This heating up is undesirable for PV

cells, because it decreases their electrical conversion efficiency.
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Figure 1.4: Schematic diagram of the principle of PV cells

A solar cell or a PV module is usually characterized by a current-voltage curve
(I-V curve). An example of an I-V curve is shown in Figure 1.5. On this plot,
the short-circuit current, I,., is the current at zero voltage while the open-circuit
voltage, V,., corresponds to the voltage at zero current. A PV cell or PV module

will always operate somewhere on its -V curve according to the electrical load that



is applied. Ideally, it will operate at the locus on the I-V curve called the maximum
power point, where the current (I,,,) and voltage (V,,,) generated are such that the

maximum possible power is produced.
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Figure 1.5: Typical I-V curve for a PV module

1.2.4 Hybrid PV /Thermal Collectors

Hybrid photovoltaic/thermal collectors, also known as PV/Thermal collectors,
consist of a PV module or PV cells mounted on the front of an absorber plate.
Just like thermal collectors, they can be glazed or unglazed and can have either air
or liquid as their working fluid. Contrary to stand-alone thermal collectors or PV
modules, PV /Thermal collectors have the benefit of producing thermal energy and
electricity simultaneously.

PV /Thermal collectors usually improve the PV modules efficiency compared to
stand-alone PV modules, because the fluid circulating behind the PV removes the
heat from the cells and cools them. They also contribute in decreasing the energy
losses by converting the heat unused by the cells to useful energy. Combining PV

with solar thermal collectors generally results in a reduction of the thermal and elec-



trical output compared to stand-alone PV modules or thermal collectors (Zondag et
al., 2003). However, they are of great interest for buildings where the potential area
for solar installations is limited. As shown by Zondag et al. (2003), an area covered
with a PV /Thermal collector produces more energy than the same area partially
covered with a PV module and a solar thermal collector. Moreover, compare to a
thermal collector and a PV module side by side, PV/Thermal collectors are simpler

to install and provide a greater aesthetic uniformity:.

The first prototype of PV/Thermal unglazed transpired collectors was built in
the late 1990’s by Hollick (1998), the inventor of SolarWall®. On this collector,
crystalline silicon cells encapsulated in teflon were mounted on the top of the cor-
rugations of the SolarWall®, leaving a small gap between the cells and the absorber
plate. Presently, Conserval Engineering is producing a PV /Thermal UTC where
PV modules are mounted on the front of the collector (Figure 1.6). This thesis
looks at a different design of a PV /Thermal UTC where the PV cells are mounted

directly on some surfaces of the collector, leaving the perforations uncovered.

Figure 1.6: Example of a PV /Solarwall cogeneration system with PV modules mounted
on the front of the absorber plate (Conserval Engineering Inc., 2007)



1.3 Motivation and Objectives of the Research
Work

This research work was motivated by the creation of Task 35 of the International
Energy Agency Solar Heating and Cooling program. The purpose of this project
was to enhance the development, commercialization and general understanding of
the PV /Thermal technology. One of the objectives was to provide mathematical
models of different types of PV/Thermal collectors that could be used as tool to
predict their performance as stand-alone devices and when they are integrated in
a building.

The objectives of this thesis are as follows:

e To develop a model of a combined PV /Thermal transpired solar collector to

be implemented in TRNSYS, a building energy simulation tool.

e To build a prototype of a PV /Thermal UTC and perform outdoor experiments

to study its thermal and electrical performance.

e To compare the model predictions with the results from the experimental

study.

1.4 Thesis Outline

The series of steps that were followed in order to achieve the objectives stated
previously are described in this thesis. In Chapter 2, a literature review summarizes
the research work performed on unglazed transpired collectors and PV /Thermal
UTCs over the last years. Chapter 3 presents the development of the PV /Thermal
transpired collector mathematical model. It is followed by Chapter 4 that contains
the description of the construction of the prototype and the experimental setup.
The experimental results as well as the comparison of the collector performance ob-
tained experimentally and with the model developed are then discussed in Chapter

5. Finally, Chapter 6 formulates conclusions and recommendations for future work.
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Chapter 2

Literature Review

2.1 Introduction

Over the past thirty years, research on UTCs has mainly focused on the under-
standing of the heat transfer occurring through the perforated plates. The main
goals of the different studies were to improve heat transfer and to decrease the
cost of the collector. There is little literature available on PV /Thermal unglazed

transpired collectors.

Section 2.2 will review the different studies (analytical, numerical and experi-
mental) that led to the development of the main aspects of the UTC heat transfer
theory. Several models and pieces of software will then be discussed in Section 2.3.
Finally, an overview of the work performed on PV /Thermal UTCs will be presented

in Section 2.4.

2.2 Previous Studies of UTCs

2.2.1 Heat Transfer Theory

Sparrow and Ortiz (1982) were among the first researchers to study the heat

transfer through perforated plates with suction. Their objective was to determine
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the heat transfer coefficients between the absorber plate and the ambient air. In
order to achieve this goal, they performed experiments on plates with holes in an
equilateral triangular pattern using a mass transfer method and the heat and mass
transfer analogy. They obtained an expression for the Nusselt number at the front
of the plate for normal flow under no-wind conditions as a function of the pitch-
to-hole diameter ratio and the Reynolds number. The correlation was, however,
not applicable to transpired collectors since the porosities (ratio of the total area
covered by the perforations to that of the total absorber plate) were much higher
(14%-22%) than the ones of the plates typically used in transpired collectors (0.1%-
0.5%).

The research on perforated plates for solar collectors mainly started with Kutscher
et al. (1993), with the development of the basic heat loss theory for flat plate UTCs.
By performing an energy balance on the collector absorber plate, they obtained the

following equation.
PCst (Tout - Tamb) = CTYT,colacol - Q”rad,colfsur - Q”conv,colfamb (21)

In Equation 2.1, p and ¢, are the air density and specific heat, V; is the air suction
velocity on the panel, T,,; is the temperature at the outlet of the collector, T,,,; is
the ambient temperature, G o is the solar radiation incident on the collector, o
is the collector plate absorptance, Q”md’col_sw is the radiative heat losses from the
collector to the surroundings and Q”com,col_amb is the convective heat losses from
the plate to the ambient. By assuming the collector plate to be gray and diffuse,

they expressed the radiative heat losses as

99 4 4 4
Q rad,col—sur — EcolT sb (Tcol - FcolfskyTsky — FcolfgndTgnd) (22)

where €., is the collector absorber plate emissivity, o is the Stefan-Boltzmann
constant, Ty is the absorber plate temperature, Ty, is the sky temperature, 1,4 is
the ground temperature, Fi_sy, is the view factor between the collector and the

sky, and Fio—gnq is the view factor between the collector and the ground.
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Figure 2.1: Diagram of the unglazed transpired collector used by Kutscher et al. (1993)
in the development of the UTC heat loss theory

In order to find an expression for Q” conv,col—ambs the remaining unknown in
Equation 2.1, Kutscher et al. (1993) assumed the flow on the perforated plate
to be laminar with homogeneous suction (Figure 2.1). With this assumption, they
showed analytically that the convective heat losses were only occurring in the region
of the plate called the starting length, where the thermal and velocity boundary
layers are growing. In the other part of the plate called the asymptotic region
where the boundary layers reach constant thicknesses, there are no net fluxes of
heat from the absorber plate into the boundary layer because the boundary layer
is sucked in the plate. Therefore, there are no convective heat losses in this region
and Q”Com’col,amb consist of the heat losses that occur during the starting length
and that are carried all the way to the downstream edge of the plate (Figure 2.2).
They considered the possibility of having turbulent flow at lower suction velocities,
but not a lot of information was available regarding the velocity and temperature
profiles of perforated plates with suction. The only profiles available came from

experimental data that considered lower suction velocities and wind speeds than
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the ones typically used in transpired collectors. Nevertheless, Kutscher et al. (1993)
used this data and found that the convective heat losses were only an order of
magnitude higher than in the case of a laminar asymptotic boundary layer. They
concluded that for the high suction velocities used in transpired collectors, the

laminar asymptotic boundary layer assumption was valid.

Tamb, Cp, VWind
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FELLLULLLLLL L P e ate

- ”»
Q conv,col-amb

Figure 2.2: Thermal and velocity boundary layers development over the perforated plate

Based on this analytical study, Kutscher et al. (1991) showed that the nat-
ural convective heat losses to the ambient were negligible compared to the forced
convective heat losses and expressed the convective heat loss coefficient from the

collector to the ambient Ay, o1 amp S

Vwind VpCy

h'com) col—amb — 0.82
,col b * LV,

(2.3)

where V,,;,q is the wind velocity, L is the length of the absorber plate and v is the

air kinematic viscosity. Considering the UTC to be isothermal, they could relate

14



T, to the collector heat exchanger effectiveness ey x with the following equation.

Tout - Tamb
=% ~9m 2.4
X Tcol - Tamb ( )

Using Equations 2.1 and 2.4, Kutscher et al. (1991) could express the collector
thermal efficiency 7, as

h _ _ _1

Ny, = Oleol |:1 -+ (M + hconv,colamb) (p‘/scp) 1] (25)
EHX

where Nyqd co—sur 1S the radiative heat transfer coefficient from the collector to the

surroundings. Equation 2.5 was of great interest, because once ey x was obtained,

the collector efficiency could be predicted in a straightforward manner. Conse-

quently, numerous research initiatives followed that tried to find expressions for

EHX-

2.2.2 UTC Effectiveness

In order to find an expression for the collector heat exchange effectiveness, gy,
Kutscher (1994) performed experiments on several plates of different thicknesses,
hole diameters and hole pitches having circular perforations arranged on a triangular
layout. He subjected the plate to a parallel wind and studied the asymptotic
region of the plate. The following Nusselt number was obtained to predict the heat
exchange effectiveness

S

P\ 12 043 Vivind 048
Nup = 2.75 (5) Re +0.0110 Rep (- (2.6)

where, D is the hole diameter, p is the hole pitch (shortest distance between two
adjacent holes), o is the plate porosity and Rep is the hole Reynolds number based
on the hole velocity and diameter. Equation 2.6 takes into account the heat transfer
occurring in all three regions of the hole: the front, the sides and the back. It is
applicable for plate porosities of 0.1% to 5% and Rep of 100 to 2000. With this

experiment, Kutscher was also able to develop an empirical expression to calculate

15



the pressure drop for perforated plates under normal flow for the same range of

porosities and Reynolds number.

Several studies conducted in the Solar Thermal Research Lab at the University
of Waterloo followed the work done by Kutscher and investigated ey x for different
plate designs. Cao et al. (1993) and Golneshan (1994) studied plates perforated
with long narrow rectangular slots. Cao et al. (1993) conducted a two-dimensional
numerical analysis by assuming the flow to be transverse to the slits but parallel
to the plate, and by neglecting the heat transfer at the back of the slits. They
found the velocity and temperature at the entrance of a perforation and expressed
the plate effectiveness as a combination of the heat transfer occurring at the front
and in the holes. Their results showed that 20% of the total heat transfer occurred
in the hole. Golneshan (1994) developed a 2D momentum integral analysis and
performed experiments on these plates perforated with long narrow rectangular
slots (Golneshan & Hollands, 1998). The experiments were conducted on 4 different
plates in the asymptotic region with the wind perpendicular to the slits. A relation

between the plate effectiveness and six dimensionless parameters was obtained.

Arulanandam et al. (1999) tried to find an expression for the heat exchange
effectiveness of perforated plates using a CEFD model. The plate studied was perfo-
rated with circular holes laid out on a square pitch. They considered only the heat
transfer occurring at the front of the plate and in the hole, modeling the back of the
plate as adiabatic, and did not take the wind into account. The relation obtained

was in agreement with Kutscher’s work for the same conditions.

Van Decker et al. (2001) extended Kutscher’s (1994) work on the plate effec-
tiveness to a wider range of parameters by conducting experiments with the same
experimental setup used by Golneshan (1994). They studied 9 plates of different
materials, hole pitches, hole diameters, thicknesses and thermal conductivities in
the asymptotic region. Using their experimental data and the previous work of
Arulanandam et al. (1999) and Golneshan (1994), a correlation for the effective-
ness of UTCs with holes laid out on a square pitch was developed by splitting the

total heat transfer in three parts: the heat transfer occurring at the front face ey,
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in the sides of the holes €5, and at the back of the plate &,.
eux =1—(1—ep)(1 —ep)(1 —ep) (2.7)

In Equation 2.7, €, €, and ¢} are expressed as

17.7,0.708 Re%3 )\ '
e = 1- (1 . mmax( o ewmd)> (2.8)
€ 1 1 (2.9)
b f — .
14 3.4Re, /*
p  20.62¢
= 1- —0.0204—= — 2.1
En exp [ 0.020 D RehD] (2.10)
where v " - VD
Rewind = windl Res = d 1:{eb = P Reh == (211)
1% vo vo

They found that their model could also be applied to plates with a triangular pitch
by multiplying p by a scaling factor corresponding to 1/1.6. Using this factor, they
were able to compare their model to the one of Kutscher (1994) and found that
both models were giving similar results for the same conditions and plate geometry.
Van Decker’s model was, however, applicable for a wider number of plates, being
valid for the following ranges of variables: 0.028 < V; < 0.083 m/s, 0 < Viyjng < 5
m/s, 7 <p<24dmm, 0.8 <D <36 mm, 0.6 <t <6.5mm,0.15 <k < 200
W/m-K, where ¢t and k are the plate thickness and thermal conductivity.

2.2.3 Conductivity

The research conducted on UTCs heat exchange effectiveness by Golneshan and
Hollands (1998), Arulanandam et al. (1999) and Van Decker et al. (2001) demon-
strated that plate conductivity had an important effect on the effectiveness, but
only slightly influenced the collector efficiency. The effect of the plate conductivity
was studied in depth by Gawlik et al. (2005) who compared numerically and exper-
imentally the performance of a plate of high-conductivity (aluminium) and a plate

of low-conductivity (styrene). Both panels were flat and perforated with holes on
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a triangular layout. The two plates showed comparable efficiencies under similar
conditions. This result was explained by the fact that the holes on the plate are
so close to each other that a large temperature gradient between the perforations
cannot be supported. They extended their result to corrugated plates, by suggest-
ing that the plate conductivity would not affect the performance of these kinds of
panels since the height of a corrugation and the distance between two corrugations
were much larger than the hole pitch. This was of great interest, because using

materials of low conductivity could significantly decrease the cost of UTCs.

2.2.4 Wind Effect

The convective heat losses from the absorber plate to the ambient, also called
the wind heat losses, are of great importance in the prediction of the performance
of UTCs as it was shown in Equation 2.5. Based on the previous work done by
Kutscher et al. (1993) on flat absorber plates (Equation 2.3), Gawlik and Kutscher
(2002) studied numerically and experimentally the wind heat losses from UTCs with
sinusoidal corrugations of amplitude A and pitch p (Figure 2.3). Assuming uniform
suction and a crosswind air flow perpendicular to the corrugations, they found that
after the starting length, greater than for the case of a flat plate, the thermal and
velocity boundary layer thicknesses approached a constant average value over a
corrugation. Moreover, the same temperature and velocity profiles were repeated
cyclically on each corrugation. It was also observed that similar to the flat plate
case, the convective heat losses occurred in the starting length and were carried all
the way to the downstream edge of the plate. Under certain combinations of wind
speed, suction velocity, and plate geometry, the flow on the plate could be either
attached or separated. They obtained a criterion to determine whether the flow
was attached or separated and developed a Nusselt number correlation for each
case. For attached flow, the wind heat losses were similar to flat plate UTCs. In
the case of a separated flow, however, the convective heat losses from plates with

sinusoidal corrugations could be as much as 17 times greater than for flat plates.

Fleck et al. (2002) questioned the parallel laminar boundary layer assump-
tion used by Kutscher et al. (1993), Kutscher (1994) and Dymond and Kutscher
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(1995). Their doubt came from the fact that in real applications, the wind induces
turbulence close to a building. In order to investigate the wind effects on the per-
formance of a transpired collector in real conditions, Fleck et al. (2002) monitored
the wind direction, speed and fluctuation intensity on an outdoor UTC installa-
tion. They observed that turbulence was occurring near the wall where the UTC
was installed and that greater turbulence intensities were decreasing the collector
efficiency. Moreover, the collector peak efficiency surprisingly did not occur at zero
wind speed, but at 1-2 m/s. Finally, they stated that wind direction was likely to
have an influence on the heat transfer occurring at the surface of the plate and on

the collector performance.
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Figure 2.3: Diagram of the sinusoidal plate used by Gawlik et al. (2002) in the devel-
opment of a hying correlation for corrugated UTCs

2.3 Numerical/Software Approach to UTCs

One of the first simulation tools for predicting the performance of unglazed tran-
spired collectors was called TCFLOW and was developed by Dymond and Kutscher
(1997) who modeled the flow distribution in the collector using a pipe network
analogy. They assumed a parallel boundary layer flow along a smooth wall that
accounted for all four pressure drops occurring in the collector: the pressure drop
through the absorber plate, the friction inside the plenum, the buoyancy pressure

drop and the air acceleration pressure drop. The correlations of Kutscher (1994)
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were applied to model the heat exchange effectiveness. To calculate the convective
heat losses from the plate to the ambient, they used Equation 2.3, but modified it

slightly to account for plate corrugations, obtaining the following relation.

T (2.12)

VwindVPC
hconv,col—amb = Cf [082 * 71;|
In Equation 2.12, C; represents the corrugation factor, an empirical coefficient
corresponding to the ratio of the wind heat losses on a corrugated plate to that of
a flat plate. This analysis was not as accurate as a CFD model but was meant to

be used to quickly obtain predictions on the performance of UTCs.

Gunnewiek (1994) developed a 3D CFD model, later simplified to a 2D model, to
predict the flow distribution in the plenum of a transpired collector under zero-wind
condition (Gunnewiek et al., 1996). Their model was meant to be more accurate
than the pipe network method used by Dymond and Kutscher (1997). The absorber
plate was modeled under continuous suction and the convective heat losses to the
ambient were neglected. They observed that in the asymptotic region, significant
heat transfer could occur at the back of the plate under non-uniform flow. It was
also found that at low suction velocities, reverse flow could occur in the plenum.
This phenomenon was more likely to happen at the top of UTCs of large area where
the buoyancy pressure could cause the air to leave through the perforations and
escape from the plenum. Under no wind conditions, the CFD model showed that
the suction velocity had to be at least 0.0125 m/s to avoid reverse flow. When this
analysis was extended to windy conditions (Gunnewiek et al., 2002), the minimum
suction velocity was estimated to be 0.017 m/s for long buildings with the collector
facing the wind and 0.039 m/s for cubical buildings with the wind blowing at 45°
on the UTC.

Following these two models, two programs were developed by Enermodal Engi-
neering for Natural Resources Canada (NRCan) to facilitate the design of UTCs:
SWift99 (SWift99, 2001) and RETScreen (RETScreen International, 2005). Both
models predict the energy savings, the life cycle savings and the reduced amount of
GHG resulting from the installation of a UTC, but use quite different approaches.

RETScreen is based on empirical correlations and performs a monthly analysis
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while SWift99 uses equations derived from basic thermodynamics principles and
performs hourly simulation. Consequently, SWift99 is considered as being more
accurate. Carpenter and Meloche (2002) performed simulations for different lo-
cations and types of buildings and concluded that both SWift99 and RETScreen
predicted similar results. Gogakis (2005) also compared the two pieces of software
and found that they were in acceptable agreement, obtaining a difference in annual
energy savings prediction of 10%. Moreover, he identified that RETScreen had
a better approach in the calculation of the irradiation when converting the solar

irradiance from an horizontal plane to the plane of the collector.
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Figure 2.4: UTC configuration used in Summers’ model (Summers, 1995)

In addition to these programs, a TRNSYS (SEL, 2005) model was developed by
Summers (1995). This model solves a set of energy balances to predict the perfor-
mance of the collector (Figure 2.4). It also minimizes the amount of auxiliary energy
needed by optimizing the amount of air going through the collector. The model
uses Kutscher’s relation (Equation 2.6) to calculate the Nusselt number, but does

not account for any wind effects or for the corrugated shape of the absorber plate.
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Summers validated the model by comparing his simulations with results obtained
from testing at the National Solar Testing Facility (NSTF) (Hollick, 1994) and with
data from an operating GM battery production facility (Enermodal, 1994). The
TRNSYS model was found to overpredict the air temperature rise at low suction
velocity compared to the indoor results obtained at the NSTF. This deviation was
attributed to the fact that the wind was not taken into account. When comparing
the results to the data from the GM facility, Summers noticed that the model was
under predicting the recaptured wall heat losses.

Maurer (2004) looked at the performance of UTCs in warm climates. The main
goal was to verify if the collector would induce unwanted heat in the building
during summer months, when the collector is bypassed. To do so, the data coming
from the monitoring of an existing manufacturing facility in North Carolina where
a UTC was installed were analyzed. Maurer also made some modifications to
the TRNSYS model of Summers to account, for example, for the plate wind heat
losses. By performing simulations for different cities, the model was found to be
in reasonable agreement with Summers model, with the greatest difference in the
predictions of the energy savings of 10.4%. In order to study the performance of
the collector during bypass conditions, Maurer developed a Fortran code and found
that the transpired collector could increase the cooling load in the summer when
the collector is bypassed due to the increase of the building wall temperature. More
information on the flow in the plenum was needed, however, in order to formulate

a conclusion.

Leon and Kumar (2007) developed a model to predict the performance of UTCs
where high temperatures are needed such as in solar crop drying applications. Like
Summers, their model consisted of solving a set of energy balance equations and
considered both the absorber plate and the surface at the back of the plate to be
isothermal. The absorber plate was assumed to be perforated with circular holes
on a triangular pitch. Contrary to Summers, the collector studied was not mounted
on a wall as shown in Figure 2.5. Therefore, the model included convective and
radiative heat transfer from the surface at the back of the collector to the ambient.
They assumed minimum pressure drop and suction velocity of 25 Pa and 0.02 m/s

and neglected the convective heat losses from the absorber plate to the ambient as
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well as the effect of plate corrugation. Kutscher’s relation was used to calculate
the absorber plate effectiveness. A sensitivity analysis on their model, made them
conclude that solar absorptivity, hole pitch and air flowrate had the strongest effect

on the collector heat exchange effectiveness and efficiency.
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Figure 2.5: UTC configuration used in the model of Leon and Kumar (2007)

2.4 PV /Thermal UTCs

As was previously mentioned, research on PV /Thermal transpired collectors
started in the late 1990’s with Hollick (1998), the inventor of SolarWall®. He com-
bined the transpired collector and photovoltaic technologies by partially covering
the top of the corrugations of a SolarWall® with encapsulated crystalline silicon
PV cells. The area covered by PV cells was approximately 24% of the 1.1664 m?
transpired collector area. The hybrid collector was tested under a solar simulator
at the NSTF. In order to assess the effect of UTCs on PV cells, the temperature of
the stand-alone PV module was predicted using a model developed by CANMET
Energy Technology Centre. The experiment showed that the temperature of the
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cells was lower for the PV /SolarWall than the PV only, by 2-4°C for an irradiation
of 600 W/m? and by 3-7°C for an irradiation of 900 W/m?. It was also found that
even if the thermal efficiency of the panel was slightly decreased with the addi-
tion of PV cells, the total efficiency (electrical 4+ thermal) was greater than for the
stand-alone UTC.

Naveed et al. (2006) studied the effect of mounting a PV module on the front of
a UTC absorber plate. In order to achieve their objective, they performed outdoor
experiments on a stand-alone PV module and on a PV module mounted on the

2 and

front of a transpired collector (Figure 2.6). The plate had an area of 6.5 m
the PV module consisted of a 75 W polycrystalline silicon PV module. The UTC
behind the module was found to decrease the temperature of the PV by 3-9°C with

a 5% recovery in the electrical power output.
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Figure 2.6: Schematic diagrams of the experimental setup used by Naveed et al. (2006)
(a) Stand-alone PV module (b) Combined PV /Thermal collector

Katic (2007) performed outdoor experiments on four different systems simul-
taneously: a PV/Thermal collector with a high flowrate, a PV/Thermal collector
with a low flowrate, a stand-alone SolarWall®, and a PV module with a back fully
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open. The PV /Thermal collector consisted of a PV module, the same than the
stand-alone PV module, mounted on the front of a SolarWall® panel. The four
systems were installed at 45°, facing south. He found that the PV cells tempera-
ture was lower on the stand-alone PV module than on the combined PV /Thermal
collector, even at the highest air suction rate tested. Thus, Katic concluded that
natural ventilation had a greater cooling effect on the PV cells than the transpired

collector.
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Chapter 3

PV /Thermal Transpired Collector
Model

3.1 Introduction

This chapter presents the development of an analytical model for a PV /Thermal
transpired solar collector, where the PV cells are mounted directly on some unper-
forated portions of the absorber plate. To predict the thermal and electrical per-
formance of the PV/Thermal collector, a set of energy balances were performed.
These equations were similar to the ones used in the unglazed transpired collector
TRNSYS component developed by Summers (1995), but changes were made to ac-
count for the wind, the corrugated shape of the plate, and the fact that PVs are on
the absorber plate. The energy equations developed were formulated as a TRNSYS

component.
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3.2 Collector Configuration

3.2.1 Panel Geometry

The absorber plate of the collector considered in this model consists of a perfo-

rated panel with trapezoidal corrugations and small slot perforations (Figure 3.1).

(b)

Figure 3.1: Close-up of the absorber plate used in the PV/Thermal UTC model (a)
trapezoidal corrugations (b) small slot perforations

One of the parameters that defines the collector absorber plate is the plate
porosity, which consists of the ratio of the total area covered by the perforations,
Ay, to that of the total absorber plate, Ar.

_ A
-

g

(3.1)

Van Decker et al. (2001) defined the porosity of a plate with circular holes on a
square pitch as

o= (3.2)

For the geometry studied in this case, the perforations are laid out on a square
pitch, but consist of slots, not holes. Considering the porosity and the pitch to be
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known parameters, Equation 3.2 is used to calculate an equivalent diameter D for
the slots. The rest of the absorber geometry can be fully defined with the following
geometric parameters (Figure 3.2): the height of the trapezoidal corrugation (hr),
the distance between two corrugations (d), the plate width (W), the plate length
(L), the plate thickness (t), the length of the base of the trapezoid (a) and the
length of the top of the trapezoid (b).

I

) W

Figure 3.2: PV /Thermal UTC geometric variables

Once these dimensions are specified, the other variables shown in Figure 3.2 can

tT:\/h?p+ (a;b)2 (3.3)

sin O = ZL—T (3.4)
T

b= s (a4 () 55

W—a+d(1—Nbc)

be calculated.

Wend = 5 (3.6)
h
tanf.,q = —Tb (3.7)
Wend + ! 5
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In Equations 3.3 to 3.7, tr is the length of the side of the trapezoid corrugation,
07 is the acute angle inside the trapezoid, D, is the length of the diagonal in the
trapezoid, W,,4 is the width of the end surfaces of the absorber plate and 6., is the

angle between the end surface of the plate and the top surface of the corrugation.

3.2.2 PV /Thermal Collector Configurations

As mentioned in Section 2.4, the different prototypes of hybrid PV /Thermal
transpired collectors that have been investigated up to now have all consisted of
PV cells or PV modules mounted at a certain distance of the plate, with a small
gap left between the solar cells and the absorber plate. Contrary to these previous
prototypes, this analysis presents a design of a PV /Thermal UTC where the PV
cells are mounted directly on the absorber plate. Figure 3.3 presents the two dif-
ferent configurations studied. In configuration (a), only the top of the corrugations
can be covered with PV cells while in configuration (b), PV cells can be deposited

on every surface of the absorber, except for the surfaces located at the panel edges.

Figure 3.3: Configurations considered in the PV /Thermal collector model (a) PV cells
mounted only on the top of the corrugations (b) PV cells mounted on every
surface of the absorber plate
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3.3 Model Theory

3.3.1 Assumptions

The following assumptions were made to keep the model simple and to minimize

the computation time.

e The temperature of the plate is assumed to be uniform. This is a common
assumption for UTCs that are used in SWift99, RETScreen and in Summers’
model. In reality, there is a temperature gradient around the perforations
where the convective heat transfer is greater, but Gawlik et al. (2005) showed

that it does not have a great effect on the collector performance.

e The temperatures at the front and at the back of the absorber are assumed

to be equal because the plate is very thin and highly conductive.

e The calculations performed at every time step are assumed to have reached
steady-state. This is a valid assumption because in his experiment, Gogakis
(2005) found that the response time of a UTC to a change in solar radiation

was approximately 1 minute.
e The PV cells are assumed to operate at the maximum power point.

e The corrugations are parallel to the surface on which the collector is mounted,

lengthwise.

e The suction and porosity are assumed to be uniform at the surface of the
absorber plate, and the perforations are considered to be circular on a square

pitch.
e The wall or roof on which the collector is mounted is assumed to be isothermal.
e The outside air is considered to be flowing perpendicular to the corrugations.

e The air properties used in the model are all calculated at ambient tempera-

ture.
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3.3.2 Heat Transfer Theory

In order to predict the performance of the PV/Thermal collector, a set of ten
energy balances are performed on the collector. These equations are similar to the
ones used by Summers (1995), but changes were made to account for the wind, the
corrugated shape of the plate and the presence of PV cells. Figure 3.4 presents
the different terms associated with the heat transfer occurring in the transpired
collector. In this figure, the collector is assumed to be mounted on a vertical wall,
but could also be installed on an inclined roof. Therefore, the term “wall” used in
this chapter refers to the surface at the back of the absorber plate that could be

either a wall or a roof.
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Figure 3.4: Heat transfer exchanges in the PV /Thermal collector
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The first equation is the one developed by Kutscher et al. (1993) for an isother-

mal UTC that expresses the collector as a heat exchanger of effectiveness e x.

Tplen - Tamb
== 3.8
cHX Tcol - Tamb ( )

In Summers’ model, the value of ey x in Equation 3.8 is calculated with Kutscher’s
(1994) correlation. In this model, it was decided to use Van Decker’s correlation

(Equations 2.7 to 2.11), since it applies for a greater number of panels.

The next equations are obtained by performing energy balances on the absorber
plate, on the wall located at the back of the plate, and in the holes, respectively.

Qabs + Qrad,wall—col = Qcom},col—plen + Qrad,col—sur + Qwind (39)

Qcond,wall = C2conv,wall7plen + Qrad,wallfcol (310)
mcp (Tplen - Tamb) (311)

Qconv,col —plen

In Equations 3.9 to 3.11, Q

the radiation heat transfer between the wall and the back of the absorber plate,

abs 1S the total absorbed solar radiation, de’wall_col is
Qconv,col—plen 1S the convective heat transfer from the absorber plate (front, side and
back) to the plenum, Quina is the wind heat loss (or the heat transfer from the
collector to the ambient), Qrad,col—sur is the radiation heat transfer from the plate
to the surroundings, Qconvywall,plen is the convective heat transfer from the wall to
the plenum, Qcond,wall is the conductive heat transfer through the building wall and
m is the air mass flowrate going through the plate perforations. de’wall_wl can be

expressed as
Qrad,wallfcol == hrad,wallfcolAcol,proj (Twall - Tcol) (312)

where Ryqdwaii—cor 1S the radiative heat transfer coefficient between the wall and the
back surface of the absorber plate, T, is the wall temperature and T, is the plate

surface temperature. A.q pro; is the absorber plate projected area defined as
Acol,proj =WL (313)
Assuming the view factor between the wall and the back of the plate to be one, i.e.
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neglecting the sides of the plenum, A;qdwali—cor can be defined as

s T2 - T2 Twa Tco
hrad,wall—col - 2 b( walll COZ)1< ut l) (314)

Ewall Ecol b o

where e,4; and €., are the emissivities of the outdoor wall surface and the back

of the absorber plate, respectively.

The plate surface is considered to be at a uniform temperature. Therefore, the

radiation losses from the collector to the surroundings, @, .4 co1—sur» 1S given as

Qrad,colfsur = OsbEcol (Tfol - Tjur) ACOLPTOJ'(l - U) (315)

where Ty, is the surroundings temperature. Radiation losses from the collector
surface occur both to the ground and to the sky. Thus, T,,, corresponds to

T = FeotsiyTopy + Feot—gndTma (3.16)

sur

where T4 is assumed to be equal to the ambient temperature in this model. The

view factors Fip—sky and Fro—gnq are expressed as a function of the collector slope,

6 col

1+ cosp,,

Fcolfsk:y = 9 ﬁ L (317)
1 — cos

Fcolfgnd = 5 ﬂcol (318)

The perforated panel can be partially covered with PV cells. Therefore, €., is
calculated as a weighted average of the emissivities of the panel (absorber plate),

Epanel, and of the PV cells, epy .

Ecol = (]- - PPV) Epanel + PPV5PV (319)

In Equation 3.19, Ppy is the ratio of the projected area covered with PV cells,
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Apvproj, to that of the total collector projected area.

Ppy = =202 (3.20)

Acol ,proj

The convective heat losses from the wall to the plenum, me,wall_plen is ex-
pressed as

Qconv,wallfplen - hconv,wall—plenAcol,proj (Twall - Tplen) (321)

where heony waii—pien 15 the convective heat transfer coefficient between the outdoor
wall and the plenum. It is calculated with the average Nusselt number in the
plenum obtained with the following relations from Incropera and DeWitt (2002)

Nuy, = 0.664Re)/*Pr'/? Rey, < 5 x 107 (3.22)
Nuy (0.037Re‘;/5 —871) Pr'/%  5x10° <Rey > 10°  (3.23)

where Pr is the Prandtl number. Equation 3.22 is used for laminar flow and Equa-
tion 3.23, for mixed boundary layer conditions. The Reynolds number of the air in
the plenum, Rey, is calculated at the average velocity in the plenum, Ve, qvg, and

corresponds to
V;)len,a'ugL

Rep = ———— 3.24
L ” (3.24)
Considering the mass flowrate of air to be zero at the bottom of the plenum and
to reach its maximum at the top, the average velocity in the plenum corresponds
to half of the maximum velocity.
m
1 1 p
Vlen,av = _Vlen,maz =3 3.25
p g 9 p 2 Acs,plen ( )

In Equation 3.25, A¢s pien is the plenum cross-sectional area corresponding to

b
Acs,plen = WhT + NbChT (a;— ) (326)

where Ny is the number of corrugations on the panel. During the summer months,

or at nighttime, UTCs are usually bypassed to let fresh air enter the building.
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Nonetheless, it is still interesting to know the temperature of the absorber plate in
the summer during bypass conditions, since the PV cells will continue producing
electricity. Maurer (2004) tried to find an approximation for hcony waii—pien for two
different bypass conditions. In the first scenario, the air enters the plenum at the
bottom of the collector due to the plate getting heated, rises as it flows along the
wall driven by natural convection, and exits at the top of the plenum. In the
second scenario, Maurer assumed that there was no flow induced in the plenum
and that only natural convection was taking place. For the first case, a convective
heat transfer coefficient of 0.1 W/m?-K was obtained, and for the second case, the
simulations predicted a value between 0.1 and 1 W/m?-K. As an approximation,

the value of heony wall—pien Was set to 0.1 W/ m?-K during bypass conditions.

The conduction through the wall on which the collector is mounted, Qcond?wa”,

is given as

Q 1 1
cond,wall — -
Uwall hwall

—1
) Acol,proj (Tblg - Twall) (327)

where Tjj, is the temperature inside the building, U, is the rate of heat transfer
through the wall per unit area, also known as U-value, and h,,q; is the heat transfer
coefficient by long-wave radiation and convection at the outdoor surface of the
building wall (film coefficient) assumed to be equal to 15 W/m?-°C (Enermodal,
1994). The reason why h,q; is substracted from the value of Uy, is because
the U-value usually incorporates both the radiative and convective heat transfer
coefficient of the indoor and outdoor surfaces of the building wall. In this case, the
energy balance is performed between the indoor space of the building and the wall
outdoor surface. Thus, only the indoor heat transfer coefficient and the resistance

through the wall have to be considered in the calculation of Qamd’wall.

In the model of Leon et al. (2007) and Summers (1995), the collector was
assumed to be of large area with a suction velocity greater than 0.02 m/s and a
pressure drop of at least 25 Pa. Therefore, according to Kutscher (1994), they could
neglect the convective heat losses due to the wind. In this case, however, the model
was going to be compared to experimental results performed on a collector of small

surface area. Therefore, neglecting the convective heat losses was not advisable.
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The convective heat losses from the absorber plate to the wind, med, can be

expressed as
sz‘nd = hwindAcol,proj (Tcol - Tamb) (328)

where hing is the convective heat transfer coefficient from the plate to the ambient.
There are several correlations available in the literature to calculate the wind heat
transfer coefficient of UTCs, but none of them seem to apply directly to plates with
trapezoidal corrugations. Maurer (2004) used Kutscher’s (1994) relation modified
for panels with a corrugated shape (Equation 2.12) and set the value of the corru-
gation factor C to 5.This was based on the IEA report (Brunger, 1999) that stated
that for a plate with quasi-sinusoidal shape with a mass flowrate of 0.03 kg/m?-s,
a cross wind speed of 2 m/s and a net radiation of 750 W/m?, the heat losses were
of 83 W/m width of collector compared to 17 W/m width of collector for a flat
perforated plate. The ratio of these two heat losses is approximately 4.9, which can
explain why Maurer chose a value of 5 for Cy. These results, however, came from
experiments performed on panels with quasi-sinusoidal shape, not with trapezoidal
corrugations. In this model, it was decided to use the wind heat transfer correlation
of the SWift99 software (Carpenter et al., 1999) given as

hwind = min [hwind,UTC’7 hcom),glazed] (329)

where hyingurc is the wind heat transfer coefficient for transpired plates and

Reonv,glazed 1 the convective heat transfer on a glazed solar collector.

Vwind (330)

hwind,glazed - 28+30Vwmd (331)

hwinavre = 0.02

Equation 3.30 was developed based on experiments performed on lab-scale flat plate
transpired collector by the Solar Thermal Research Laboratory at the University
of Waterloo (STRL), later modified using the work of Kutscher et al. (1993) to
represent better full-scale SolarWall® panels (Enermodal, 1994). The original wind
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heat transfer coefficient correlation developed by the STRL was expressed as

hewing = 6.0 -+ 4.0 % Viying — 76 % V, (3.32)

Equations 3.8 to 3.12, 3.15, 3.21, 3.27 and 3.28 consist of 9 of the 10 equations that
need to be solved in order to find the unknown temperatures and heat flows shown

in Figure 3.4. The only equation missing is for the absorbed solar radiation, Qups.

3.3.3 Absorbed Radiation on the Collector

3.3.3.1 Total Radiation on a Surface ¢

In the models of UTCs described in the literature, including the one of Summers,
the calculation of the total absorbed solar radiation Qabs is straight forward and is

given as

Qabs = Qcol Acol,proj C7YT,col (333)

Equation 3.33 does not account for the fact that the collector can shade itself or for
the multiple reflections that can occur on the surfaces located in the grooves. For
thermal collectors, the shading and reflecting can be neglected since they are not
expected to play significant roles in the prediction of the collector performance. In
this analysis, however, they must be taken into account because PV cells can be
located in the grooves. If shading occurs on the cells, the electrical performance of
the collector will be significantly affected. Also, if the grooves are very deep, the
multiple reflections could lead to a considerable increase in the irradiation of certain
surfaces. To account for these two phenomena, the total irradiation falling on the
collector was calculated considering each surface of the absorber plate separately.
Assuming the corrugations to be identical along the collector width, the absorber

plate can be divided in 8 different types of surfaces i (Figure 3.5) where the total
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area of each type of surfaces correspond to

A = (d—a)L- (Nyo — 1)
Ay = Ay=trL- (N — 1)
A3 = bL-Nyo

Ay = Ay =Wial

As = Ag=trL

Generally, the total radiation falling on a surface corresponds to the summation
of the beam, sky diffuse and ground reflected components of the solar radiation.
In this analysis, however, when one of the components of the incident radiation
hits a surface in a groove, it is reflected on the other surfaces as diffuse radiation.
Therefore, the diffuse radiation component for these surfaces is not only due to sky
diffuse (G4q,;) and ground reflected radiation (G ), but also to the beam radiation
reflected diffusely (Ga,i). The general expression for the total radiation falling on

a surface 7, Gr;, can consequently be written as

Gri = Gpi+ Gaai + Gagi + Gap, (3.34)

In Equation 3.34, the component of beam radiation, Gy, is calculated in a straight
forward manner knowing the inclination of the collector and the sun’s position,
while the three components of diffuse radiation are obtained by performing a solar

optical analysis.

Figure 3.5: Absorber plate divided in 8 different types of surfaces
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3.3.3.2 Diffuse Radiation on a Surface ¢

The general expression for the radiation falling on a surface ¢, G;, located in an

enclosure of N surfaces, is given as
N
Gi=> FijJj (3.35)
j=1

where F;_; is the view factor between a surface i and a surface j and J; is the
radiosity of the j** surface. In order to calculate Gaq; and Gg4; for the surfaces
located in the grooves (surfaces 1, 2 and 4) and at the edges of the plate (surfaces
5, 6, 7 and 8), three fictitious surfaces are added at the top of the groove (surface 9)
and on the sides of the plate (surfaces 11 and 10) to simulate the area from which

the diffuse radiation is coming (Figure 3.6).

"'f

0 3 SEN

Figure 3.6: Absorber plate with the addition of 3 fictitious surfaces for the calculation
of the diffuse radiation due to sky diffuse and ground reflected radiation

For each surface ¢, the radiosities Jy4; and Jg,,; are expressed as the product
of the reflectance at the incidence angle of the diffuse radiation on the collector,

Pdeoli» and the incoming diffuse radiation.

Jagi = GadiPdcols (3.36)
Jdg,i = Gd97ipdcol,i (337)

Surfaces 9 to 11 are fictitious surfaces considered to be the source of the sky diffuse

and ground reflected radiation. Therefore, the reflectance of these surfaces is 1 and
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their radiosity corresponds to the diffuse radiation (sky or ground).

Jad—g,9 = Gld—g)9 (3.38)
Jaa-g10 = Ga—g)10 (3.39)
Jaa-g)11 = Ga—g)11 (3.40)

In the case of surface 3, there is no diffuse radiation coming from other surfaces.

Jd(d—9)73 = G(d—g)ﬁp(d—g)col,i’: (341)

In Equations 3.38 to 3.41, G4; and G, ; are the sky diffuse and ground reflected

components of the total radiation falling on the surface 7. These terms are obtained

using the isotropic model of Liu and Jordan (1963) for diffuse radiation.

Gai = Gan (HCTOS@) (3.42)
1— : G
Gy, — LB 0ty

In Equations 3.42 and 3.43, p,,,4 is the ground reflectance, (3, is the slope of the sur-

face i and Gy and G4 g represent the total and diffuse component of the horizontal

radiation.

In the case of the radiosity for the beam radiation reflected diffusely, Jg.;, the
surfaces in the grooves can be shaded and not receive direct beam radiation. De-
pending on the geometry of the plate, the shaded proportion of the surfaces in the
grooves will be more or less significant on the thermal energy absorbed, but it will
certainly affect the electrical output of the collector. Consequently, each surface
that can be shaded is split into two surfaces; one that does not receive beam radia-
tion due to shading (surfaces 9 to 16) and one that does (surfaces 1 to 8), as shown
in Figure 3.7. Surface 1 is split into three surfaces because it can be shaded from
each side.
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In this case, the diffuse radiation due to beam radiation, Jg,;, can be expressed
as the summation of both reflected beam radiation and beam radiation reflected
diffusely.

Javi = PbiGoi + PacoriGav,i (3.44)

In Equation 3.44, p,; is the reflectance of a surface 7 at the incidence angle of the

beam radiation on that particular surface.

SHADED
PORTION

Figure 3.7: Absorber plate with the numbering of the shaded surfaces necessary for the
calculation of the diffuse radiation due to beam radiation

Combining Equation 3.35 with Equations 3.36, 3.37 and 3.44, the following
relations can be obtained for each surface i

11

Jadi — pdcol,iZFd,ifded,j =0 (3.45)
=1
11

Jagi = Pacor, P _Fai-jlagy = 0 (3.46)
j=1
16

Javi — pdcol,iZF bijJdv = pb,iGb,i (3.47)
j=1

where the view factors Fj,;_; and Fp,;_; are calculated according to the method
described in Appendix A. By writing Equations 3.45 to 3.47 for each surface in a
matrix form, the values of the radiosities can be obtained. Gg4;, G4g; and Gg; can
then be calculated using Equations 3.36, 3.37 and 3.44.
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3.3.3.3 Beam Radiation on a Surface ¢

The last unknown term in Equation 3.34 is the beam radiation component on
a surface i, Gy ;. It can be expressed as a function of the horizontal beam radiation

Gym, which is an input to the model.

Gy = RpiGo (3.48)

Ry ; is a geometric factor defined by Duffie and Beckman (1991) as

cos 0;

bi = (3.49)

cos 6,

where 6, is the solar zenith angle. The sun incidence angle on a surface i, 6; is
given by Duffie and Beckman (1991) as

cos§; = cosf, cos 3, + sind, sin 3, cos (v, — ;) (3.50)

where 7, is the solar azimuth angle and 3, and ~, are the slope and azimuth angle
of the surface, respectively. From Figure 3.5, it can be observed that surfaces 1,
3, 5 and 7 are in the same plane as the wall on which the collector is mounted.

Therefore, the azimuth angle of these surfaces correspond to the collector azimuth

angle) Yeol-

M1=73=75=77= 79 = Yeal

In order to find an expression for the azimuth angle of the other surfaces, a particular
approach is followed. Figure 3.8 shows the orientation of surface 4 with respect to

surface 3 which is in the plane of the collector.

The orientation of surface 4 in the xyz plane can be expressed with 3 unit vectors

— — — —
Ui4, Usy4, and Usy, where U, is the vector normal to surface 4. From Figure
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3.8, the three unit vectors can be expressed as

— — — —
Uig = —cosvyyycos0pi +siny,cosfrj —sinfrk (3.51)
— — — —
U2,4 = —COos ﬂcol sin Yeol I — oS ﬂcol COS Y o1 j + sin ﬂcol k (352)
— — —
Usqg = Upax Uy (3.53)
— —
Uss = (Sin [,y sin ., cosbp — cos By COS Yoy sinbr) i +
—
COS 7 oy COS O sin B, + €08 By SNy, Sinfr) j +

(
(cos O cos ﬂcol)?

ﬁ
By projecting U 34 on the zy plane, the vector 7 4 is obtained.
Va4 = (Sin [,y 807 €SO — COS [y COS Yoo SINOT) @ + (3.54)

—_
(COS Y gy €OS O 8in By + €08 By iDLy, SiNO7) j

The angle ¢ between the vectors 7 ., and 74 (Figure 3.8) corresponds to

¢ = cos ! (sin 3, cos Or) (3.55)

The azimuth angle of surface 4, v,, is the angle between the vector 74 and due

south. Using 7., as a reference, v, can be expressed as
Y4 = Yeol — g = Yeol — [Cosil(Sin ﬂcol COoS 9T)j|

Repeating the same procedure for the other surfaces, the following expression

for the surface azimuth angle of every surface is obtained.

Yo = Vg = Ve +cos ! (sin 3, cosbr)

1/ .
Y4 = V6= Yeor — COs " (sin (3, cosOr)
Y0 = Yeol T cos ™ (sin (3, €08 Oena)
Vi1 = Veol — cos™! (sin (3, €08 Oena)
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y SOUTH A

Figure 3.8: Orientation of surface 4 of the PV /Thermal UTC with respect to surface 3

Considering v, and 6, to be inputs to the model, the only unknown left in
Equation 3.50 is 3;, the angle between the plane of the surface ¢ and the horizontal.
For the surfaces in the same plane of the wall on which the collector is mounted,

this angle corresponds to the slope of that surface.
B =03 =05 =07 =By = Bea
For the surfaces in a different plane, 3, has to be calculated. Taking the slope of

a surface ¢ as the angle between the normal of a surface ¢ and a horizontal plane,

H
the scalar product of the normal to the surface 4, Ugs,4, and the normal to the

44



H
horizontal plane, N, can be written as

- — — —
UsaN = HUsAH HNH cos 8, (3.56)

where
—

é
N =k (3.57)

Substituting Equations 3.53 and 3.57 in Equation 3.56, the slope of surface 4, 3,

can be expressed as
B = cos™ (cosr.c08 By) = By = iy = By
Repeating the same procedure for the surfaces 10 and 11, the following is obtained.

ﬂlO = 511 = COS_1 (COS eend COoSs ﬂcol)

With all the 3,’s and ~,’s known, Equations 3.48 to 3.50 can be solved for every
surface.

3.3.3.4 Collector Optical Properties

The solar optical properties of a surface are dependent of the angle of incidence
of the ray hitting that surface. The incidence angle of the beam radiation on a
surface i, 6;, is calculated with Equation 3.50 while the effective incidence angle
of the sky diffuse, 0,;, and ground reflected radiation, 6,;, are obtained with the

following relations from Brandemuehl and Beckman (1980).

04 = 59.68 — (0.13883 4 0.0014973%) (3.58)
0, = 90— (0.57880 + 0.0026933%) (3.59)

From Section 3.3.2, the reflectance of the different surfaces at the beam, sky
diffuse and ground reflected angles are necessary to solve for the total radiation

falling on each surface. In the case of the collector studied, some surfaces of the
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panel can be partially covered with PV cells. Therefore, the general expression for

the reflectance of a surface ¢ at an angle of incidence 6 is given as
Piey = Prvippvie) + (1 — Ppvi) Ppanetio) (3.60)

where Ppy,; is the proportion of PV cells on a surface ¢ and ppy ;9 and ppgneri(o)
are the PV cells and absorber plate (panel) reflectance on that surface ¢ at an angle
f. The relation between the absorptance, «, transmittance, 7, and reflectance, p,

of a surface is given by Kirchoft’s law as

l=7+a+p (3.61)

In this case, the absorber plate is an unglazed opaque surface. Therefore, the
transmittance can be set to zero, the angular dependence of the absorptance can

be neglected, and pp,,,;; can be simplified to
pPanel,i(O) = PPanel = I — apanel (362)

PV cells are usually covered with a thin layer of glass or plastic bonded to the
cell surface. Thus, ppy ;) in Equation 3.60 is in fact, the reflectance of the cover
of the PV cells. De Soto et al. (2005) showed that a simple air-glass model could
be used to represent the cover. For such a model, the refraction angle, 6, is given
by Snell’s law (Duffie and Beckman, 1991) as a function of the refractive index of

the cover n. )
sin 0

0, = sin~!(

—) (3.63)

With 6,., the ratio of the transmitted radiation over the total incident radiation, 7,

Kt
Ta = €Xp (— COSPQV> (3.64)

can be expressed as

where K is the glazing extinction coefficient and tpy is the thickness of the PV
cover. As presented by De Soto et al. (2005), the transmittance of the glazing by

taking into account both the reflective losses at the interface and the absorption in
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the glazing is given as

_|_

1 <sin2 6, —0)

7(0) =74 [1 -3 tan” (6, — 6) )} (3.65)

sin? (0, +60) tan2(6,+0)

The absorptance of the cover can be calculated with the following approximation
of Kirchoff’s law obtained by Duffie and Beckman (1991).

af) ~1—1, (3.66)

Using Equations 3.65 and 3.66 in Equation 3.61, the reflectance of the PV cover,
Ppvi(e)> can be obtained.

In a similar way than Equation 3.60, the absorptance-transmittance product of

a surface can be expressed as
(Ta)i(G) = PPV’,'(TOé)pV’NIAMpVJ;(g) + (1 — va’i)apanel (367)

where (7a)py,n is the tau-alpha product of the PV cells-cover combination at nor-
mal incidence and IAMpy;(g) is the incidence angle modifier of the PV cells located
on a surface ¢ for an incidence angle #. The general expression for this incidence
angle modifier is given by De Soto et al. (2005) as

7(0
(

~—

TAM =

(3.68)

(@)
=

\]

3.3.3.5 Absorbed Solar Radiation

With the radiation on each surface and the solar optical properties known, the

total solar radiation absorbed on each surface i, Qabs,i, can be expressed as
Qabsi = Qi + Qu (3.69)

where le and Qd,i are the beam and diffuse components of the absorbed solar
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energy corresponding to

Qri = (1), Ai(1 = 0) (1 = Puy) Gy (3.70)
Qd,i = (Ta)d,i Ai(l1—o0)x (3.71)
(Gapi (1 — Psni) + Gapi—sh (Psnyi) + Gaai + Gagil

In Equations 3.70 and 3.71, Py, ; is the shaded portion of a surface calculated with
the method demonstrated in Appendix B and Gg,;—sp, is the diffuse radiation due
to beam radiation falling on the shaded portion of the surface. The total solar

radiation absorbed by the plate can then be expressed as
. 8 .
Qabs - ZQabs,i [1 - nPVPPV,i] (372)
i=1

where npy is the PV cells efficiency. For simplicity npy is assumed to depend
linearly on the PV cells temperature, Tpy (Sandnes & Rekstad, 2002).

Npy = ey + 1 (Tpv — Trer) (3.73)

The PV cells are considered to be mounted directly on the absorber plate. Thus,
they can be assumed to be at the same temperature as the plate and Equation 3.73

can be simplified to
Npv = Nrep + 1 (Teot — Trey) (3.74)

In Equation 3.74, n,., is the PV cells efficiency at the reference temperature 7.y,
and p is the temperature coefficient. Thus, Equation 3.72 is a function of the
collector temperature and consists of the 10™* equation in the set of energy balance

equations.

3.3.4 Solution Method

The 3 unknown temperatures and the 7 unknown heat transfer terms are ob-
tained by solving the 10 equations (3.8 to 3.12, 3.15, 3.21, 3.27, 3.28, and 3.72) with
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a matrix solver. The collector outlet temperature 7,,; can then be calculated by
performing an energy balance in the plenum of the collector and the useful thermal

energy Qu can be computed.

Qconv wall—plen + Qconv col—plen
Tout = ’ s - : “ + Tamb (375)

mcy

Qu = M6y (Tout — Tums) (3.76)

For configuration (a), the PV cells will never be shaded by the collector and the

calculation of the electrical power output P,; is as follows.

Py =npy PPV,3Qabs,3 (3.77)

In the case of configuration (b), obtaining a value for P.; is more complex
because of the shading of the cells. Typically, when a PV module is partially
shaded, the shaded cell current drops. In order to compensate, the non-shaded cells
move on their operating I-V curve closer to the open-circuit voltage. While trying
to increase the current at which they are operating, the voltage of the shaded cells
can then be driven in the negative voltage range. This result in the formation of a
hot-spot which will reduce the PV output or in worst cases, damage the module. To
avoid this, bypass diodes are generally installed. A reduction of the PV performance
however, still occurs. The power output in such cases is difficult to predict because it
will depend on how the cells are linked together. A 50% shading will not necessarily
result in a 50% reduction of the power production. Nevertheless, to simplify the
calculations, a conservative approximation similar to the one used by the TRNSYS
Type 551 component (TESS, 2005) is employed to estimate the power production.
When the collector is partially shaded, the PV cells layout is assumed to see the

minimum of the diffuse radiation seen by any of the surfaces i.

Pel :77PV mZTL

, . - 4
Qa1 Qo Qa3 Qd4 Z [A; Ppy,]
Al (Ta)d 1 AQ (Ta)d 2 A3 (Ta)d 3 A4 TOé i=1

(3.78)
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When the collector is unshaded, the PV cells are assumed to see the minimum of

the total radiation seen by any of the surfaces i.
Qa1 Qb 1 Qd 2 Qb 2
+ - 3.79
Al <<Ta>d,1 (Ta)b,l (Ta>d2 (Ta) ¢ )
1 Qus Qb 3 Qd 4 Qb 4 .
— = 4 [A; Ppy;
As ((704>d,3 (70‘) A4 (704>d4 ; vl

This method is however, approximative and could certainly be improved if more

P, = npy -min

information on the cells electrical connections are known. Once both P,; and Qu are

known, the collector thermal (7,,) and electrical efficiencies (n,,) can be obtained.

Qu
= 3.80
T Acol ,proj GT,col ( )
P
Ny = G (3.81)

Acol,proj GYT,col

The reduced wall heat losses, Q
through the wall due to the presence of the transpired collector can also be calcu-
lated.

red.wails corresponding to the reduction of heat losses

Qred,wall = ont - Qcond,act (382)

In Equation 3.82, ont represents the potential heat losses through the wall without
the presence of a UTC and Qcond’act is the actual conduction heat losses from the

inside of the building to the plenum.

CQcond,act - Awall (Tblg—Tplen) * (383)

( 1 1 1 )—1
- -
Uwall hwall hrad,wallfcol + hconv,wallfplen
ont = UwallAwall (Tblg - Tsol—air) (384)

In Equation 3.84, T, _air is the sol-air temperature defined in the 2005 ASHRAE
Handbook-Fundamentals (ASHRAE, 2005) as the fictitious outside air temperature

50



for which the convective heat exchange between the surface and the outdoor is the
same as the heat exchange occurring by both convection and radiation (long-wave
and short-wave). For a vertical surface, T4 i given as

Qall GT,col

Tsol—air - Tamb + (385)

hwall

where a,q; is the wall absorptance.

3.3.5 Control Method

UTCs can be controlled in different ways depending on the type of building on
which they are installed and the purpose for heating the air. In this model, the
collector is controlled in a similar way as Summers’ UTC model (1995) where the
objective was to minimize the amount of auxiliary heat required. Thus, the elec-
tricity produced by the PV cells is considered to be additional. Figure 3.9 presents
the schematic of a simple building heating system where a PV /Thermal UTC is
installed. In this figure, Tp1s, T4y and my are inputs to the model and represent
the building temperature, the temperature of the air that needs to be supplied to
the building and the total mass flowrate entering the building, respectively. The air
supplied to the building consists of a mixing of recirculated and fresh air to which
auxiliary heat can be added if the mixing temperature, T,,;;, is below Ty,,. The
mixing temperature is calculated by performing an energy balance at the mixing
point and is given as

Tniz = YT ow + (1 —¥) Thig (3.86)

In Equation 3.86, v is the mass fraction of fresh air defined as

Y= (387)

mr

where m is the fresh air mass flowrate. The value of v varies between 1 and the
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minimum required mass fraction of fresh air, v, corresponding to

(3.88)

where My, is an input to the model and corresponds to the minimum amount of

fresh air required in the building.

Depending on the time of year and moment of the day, the fresh air entering the
building will be either preheated by going through the PV /Thermal UTC or taken
directly from outside, bypassing the collector. In this model, contrary to Summers’
(1995), the collector is automatically bypassed at night and both the thermal and
electrical output are set to zero. In the summer, however, the user has the choice to
enable or disable an option that will automatically open the collector bypass damper
if the ambient temperature becomes greater than a selected bypass temperature,
Tyypass- In such a case, the collector will be solved under bypass conditions, i.e.
with a air mass flowrate of zero. If this option is disabled, the mass flowrate of
air going through the collector, m, will be set to my,;,. In winter time, during the
day, if at the minimum flowrate, the mixed temperature is found to be lower than
Tsup, then the mass flowrate is set to muyin. If for the lowest and highest value of
7, the mixed temperature is found to be higher than Tg,,, then the flowrate in the
collector is also set to My, unless the summer bypass option was enabled by the
user. In any other cases, the mass flowrate, m, that minimizes the auxiliary heat

required, i.e. when T},;, = Tg,p, is determined using the bisection method.

< A
(1-y)my
T
_ BYPASS Toig blg
ymry - Tsy
Tamb | PVThermal | v ¥ Tiix [ Auxitiary | *P

uTC — 7| Heat
Tou 3

Figure 3.9: Diagram of the heating system for a building with a PV/Thermal UTC
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3.4 TRNSYS Component

The model was developed in Fortran and implemented as a TRNSYS compo-
nent. The component developed allows the user to choose between three different
modes. Mode 1 corresponds to the case where there are no PV cells on the collec-
tor, while modes 2 and 3 are for the panel with the PV cells mounted according to
configuration (a) and (b), respectively (Figure 3.3). The Fortran code of the model
is available in Appendix C.

3.4.1 Simulation Parameters and Inputs

In order to compare the thermal and electrical performance of the different
configurations, a south-facing PV /Thermal collector with an area of 100 m? was
simulated in TRNSYS for each one of the three modes available. The simulations
were performed hourly with the typical meteorological yearly (TMY2) data sets of
solar radiation and meteorological elements for the city of Toronto (SEL, 2005).
For modes 2 and 3, the fraction of the surfaces covered with PV cells was set to
75%. The PV efficiency at standard test conditions (STC) (IEC 61215, 2005) of
1000 W/m? and 25°C, Nref> Was set to 12.58% and the temperature coefficient, p,
to -0.00058 1/°C, which are typical values for poly-crystalline cells (De Soto et al.,
2005). The minimum air flowrate through the collector and the total flowrate enter-
ing the building were fixed to constant values of 8280 and 11 000 kg /h, respectively.
Consequently, the amount of energy entering the building was varied by changing
the temperature of the air needed to be supplied to the building, Tg,,. This temper-
ature was calculated at every time step with the following relation obtained from

an energy balance performed on the building shown in Figure 3.10.

. leg - Qred,wall - Qint

Tsup -
mrcCp

+ Ty (3.89)

In Equation 3.89, th are the building internal heat gains and leg represent the
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heat losses from the building envelope defined as

leg = (UA)blg (Tblg - Tamb) (390)

where (UA)yg is the overall building conductance. For the simulations, (UA)yg
was set to 3000 kJ/h-K and Q,,, was fixed to 3000 kJ/h. All the parameters and

inputs of the simulations are indicated in Table 3.1.

mr Tblg

—

iy T |
E Qint
)

leg

— Qredwall

Figure 3.10: Heat transfer exchanges in the building with a PV /Thermal collector

With the results from the simulation, the thermal energy savings obtained from
the installation of a PV/Thermal collector, Qsmngs, were calculated using the
method of Maurer (2004). In that procedure, the thermal energy savings corre-
spond to the difference between the auxiliary heat required for a base case building
without a solar collector, Qam’base, and for a building with a PV/Thermal UTC
installed, QGU%UTC.

Qsavings - Qaux,base - Qau:c,UTC’ (391)

The simplified diagram of the heating system for the base case building is shown
in Figure 3.11. In this context, 7,,, is the fraction of fresh air that minimizes the

auxiliary heat required.
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Table 3.1: Parameters and Inputs to the TRNSYS simulation

PARAMETERS
Length of the base of the trapezoid a |[m 0. 15
Length of the top of the trapezoid b [m 0.115
Height of the corrugation ht [m] 0.033
Plate porosity o 0.0025
Pitch p |m 0.01403
Collector length L [m 4
Distance between two corrugations d [m 0.2
Collector width W [m] 25
Absorptance of the wall Qlyyall 0.4
Plenum height hpjen [m] 0.2
Emissivity of the collector back surface Ecol,b 0.8
Emissivity of the wall Ewal 0.9
Absorber plate thickness t m} 0.001
Panel absorptance QPanel 0.94
Panel emissivity EPanel 0.9
Wall U-Value Uyall [KJ /hem? K] 2
1: No PV PV Mode Vary
2: PV cells on the top of the corrugations
3: PV cells on every surface
PV cells temperature coefficient at maximum power point 4 [1/°C] -0.00058
PV cells reference efficiency Nrof 0.1258
PV cells reference temperature Tref [°C] 25
PV cells absorptance-transmittance product (T@)PV N 0.8
PV cells emissivity EPV 0.6
Bypass collector in the summer? 1:Yes, 0: No Bypass? 1
Bypass temperature Thypass [°C] 18
PV cells refraction index n 1.526
PV cells glazing extinction coefficient K [1/m 4
PV cells glazing thickness tpy [m 0.002
PV cells proportion at the top of the corrugations Ppy(s) 0.75
PV cells proportion at the bottom of the grooves Ppva) 0.75
PV cells proportion on the sides of the grooves Ppv(2), Ppv(4) 0.75

INPUTS

Beam radiation on the collector Gp,col [kJ/ h-m?] Vary
Diffuse radiation on the collector Gd col [kJ/ h-m2} Vary
Ground reflected radiation on the collector G col [kJ/ h-m?] Vary
Horizontal beam radiation Gpu [kJ kJ /h-m?] Vary
Solar zenith angle 0, [°] Vary
Solar azimuth angle Y5 [°] Vary
Wind velocity Vind. [m/s] Vary
Ambient temperature Tamp | C] Vary
Ambient pressure P.mb [Pa] Vary
Sun incidence angle on the collector col [ Vary
Building temperature Tb 1g [°C] 21
Sky temperature v °C] Vary
Minimum fresh air mass flowrate mmm[ g/h] 8280
Total mass flowrate of air entering the building mr [k g/ h] 11000
Collector slope ﬁcol [ ] 90
Collector azimuth angle Yeol '] 0
Ground reflectance Pgnd 0.2
Total horizontal radiation Gty [kJ/h'm 2 Vary
Horizontal diffuse radiation Gq,u [kJ/h-m 2 Vary
Temperature of the air supplied to the building Tsup [°C) Vary
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Figure 3.11: Diagram of the heating system for the base case building without a solar
collector

By performing an energy balance on the auxiliary heat in Figures 3.9 and 3.11,

Qaum can be expressed for both cases as
Qaum = mTCp (Tsup - Tmix) (392)

For the building with a PV /Thermal UTC installed, Ty, is calculated with Equa-
tion 3.89 and T, is an output to the model. For the base case, both temperatures
can be obtained by performing energy balances on the building and at the point

where the fresh and recirculated air mix (Figure 3.11).

Tsup _ leg‘_ Qint + Tblg (393)
mrcCp
Tmix = ’YminTamb + (1 - Vmin)Tb lg (394)

3.4.2 Simulation Results

The thermal energy savings were calculated using Equation 3.91 for the three

modes of the PV /Thermal collector component and the yearly electricity produced
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was determined. The results are presented in Table 3.2. From this table, it can
be observed that the addition of PV cells on the collector surface resulted in a
diminution of the thermal energy savings. This decrease was 5.9% in the case of
configuration (a) and 8.2% for configuration (b). The reason for this is because
the absorptance of the PV cells is not as high as the one of the absorber plate and
part of the absorbed solar energy was converted into electricity instead of heat.
The amount of electricity produced was estimated to be 45.3 kWh/yr-m2panel
and 34.1 kWh/yr-m?panel for modes 2 and 3, respectively. Thus, even though
the collector surface covered with PV cells was more than double in configuration
This is due to

the assumption that the whole collector does not see beam radiation when one of

(b), the electrical output was less compare to configuration (a).

the surfaces is partially shaded. With a better knowledge of the cells electrical
connections, a more appropriate estimation of the PV output under partial shading
conditions could have been obtained. Nevertheless, it can still be considered that
configuration (a) would be more cost-effective since there is a possibility of always

obtaining the maximum power from the PV cells.

Table 3.2: Thermal energy savings and electricity produced for the 3 modes of the
PV /Thermal collector model for the city of Toronto

Mode 1 | Mode 2 | Mode 3
No PV | Conf (a) | Conf (b)
Thermal energy savings [kWh/yr-m? panel] | 353 332.2 324.1
Electricity produced [kWh/yr-m? panel] - 45.3 34.1
% decrease in thermal energy savings - 5.9 8.2
compare to the UTC with no PV

From the testing of a PV /SolarWall, Hollick (1998) evaluated that the electrical
energy delivered by a PV /Thermal UTC could represent approximately 10% of the
collector thermal energy savings (50-100 kWh/yrm?panel). For modes 2 and 3,
the simulations results showed that the amount of electricity produced represented
13.6% and 10.5% of the thermal energy savings, respectively. The conditions under
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which Hollick’s estimate was formulated are not specified, but it still shows that

the model predictions are reasonable.

In order to verify the effect of the different changes made to Summers’ model on
the overall collector performance, a TRNSYS simulation was performed using the
original component developed by Summers with equivalent inputs and parameters
than the ones indicated in Table 3.1. In his model, Summers neglected the collector
wind heat losses. Therefore, the results were compared to the ones obtained with
two different cases of the Mode 1 of the PV/Thermal UTC: the wind speed set
to zero and V,;,q provided by the weather data file. The thermal energy savings
achieved and useful thermal energy collected are shown in Table 3.3. According to
this table, the useful thermal energy predicted by the Mode 1 of the PV /Thermal
UTC with zero wind was only 0.7% lower than that obtained from Summers’ com-
ponent. When considering the wind, the difference increased to 11.9%. Thus,
accounting for this variable is certainly the modification that had the greatest ef-
fect on the collector thermal performance. As for the thermal energy savings, the
PV /Thermal UTC component predicted 12.4% less energy savings than Summers’

model under zero wind conditions and 21.8% less when accounting for the wind.

Table 3.3: Comparison of the thermal energy savings and useful thermal energy collected
obtained with Mode 1 of the PV/Thermal UTC model and with Summers’
UTC component

Mode 1 Mode 1 Summers

With Wind | Zero Wind
Thermal Energy Savings 353 395.2 451.1
[kWh/yr-m? panel]
% Difference with Summers | -21.8 -12.4 -
Useful Thermal Energy 346.5 390.6 391.5
collected [kWh/yr-m? panel|
% Difference with Summers | -11.9 -0.7 -

The simulation described in Section 3.4.1 was repeated using the hourly weather
data of different climates for Mode 2 of the PV/Thermal UTC component. The

results presented in Table 3.4 demonstrate that in colder climates than Toronto like
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Montreal and Edmonton, more electricity and more thermal energy savings can be

expected.

Table 3.4: Thermal energy savings and electricity produced for different cities using
Mode 2 of the PV /Thermal collector model

Toronto | Montreal | Edmonton
Thermal Energy Savings [kWh/yr-m? panel] | 332.2 371.8 491.3
Electricity Produced [kWh/yr-m? panel] 45.3 51 60.2
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Chapter 4

Experimental Setup

4.1 Introduction

In order to validate the TRNSYS model, a prototype of a PV/Thermal tran-
spired solar collector was built and tested. The prototype consisted of 40 solar
cells mounted on a SolarWall® with a corrugated shape profile. The collector was
installed on a east wall of the University of Waterloo Building Engineering Group
(BEG) Hut and tested outdoors for a period of three weeks, from the end of August
2007 to the beginning of September 2007. The performance of the PV /Thermal
collector was studied by recording the collector outlet temperature and the solar
cell power output at different air suction rates. The power output from the cells
was obtained by tracing the I-V curve at every minute, by varying the load applied
to the PV cells with a set of resistors. Instrumentation was put in place to moni-
tor the solar radiation on the wall, temperatures and the air flowrate. The sensor

output signals were recorded with a data acquisition system.
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4.2 PV /Thermal Collector Prototype

4.2.1 Selection of the Solar Cells

The prototype was quite different from existing PV/Thermal transpired col-
lectors. For this experiment, the PV cells needed to be directly mounted on the
absorber surface, without covering the perforations. Consequently, the use of a
pre-built PV module was not an option and the only possibility was to build a
layout of solar cells that would fit between the perforations. This posed a challeng-
ing problem because the areas where PV cells could be mounted were very narrow
rectangles. In fact, for the plates provided for the experiment, the largest width

available between two perforations was 18.2 mm (Figure 4.1).

Figure 4.1: Close-up of the largest width available between two perforations on the
absorber plate

Solar cells are sold in many different shapes, but square or rectangular cells are
very rarely available with a width smaller than 100 mm. A company from Czech
Republic, Solartec, was able to provide solar cells with a width of 17.1 mm and a
length of 102.5 mm as shown in Figure 4.2. These cells were cut by the company
from high-efficiency monocrystalline solar cells of type SC2460 that had a nominal
size of 102.5 mm by 102.5 mm. The temperature coefficients of these full-size solar
cells as well as their electrical parameters at an irradiance of 1000 W/m? and a cell
temperature of 25°C (STC conditions) are presented in Table 4.1.
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102.5 mm

Figure 4.2: Solar cell cut from a Solartec photovoltaic cell of type SC2460

Table 4.1: Solartec SC2460 photovoltaic cells electrical parameters and temperature co-

efficients (Solartec, 2007)

4.2.2 Perforated Plate

The absorber plates used in the construction of the prototype were provided by
Conserval Engineering Inc. and consisted of two galvanized steel SolarWall® panels

Electrical Parameters | Temperature Coefficients
I 342 A By.. -0.34 %/°C

Voe 0.598 V Bv,, -0.45 %/°C

Inp 3.13 A arg,, 0.09 %/°C

Vinp 0.489 V L, 0.00 %/°C

Nee 14.7 % Bp,., -0.45 %/°C

FF 74.8 %
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with 0.25% porosity. Both panels were of profile SW200 with a width of 1.05 m

and a length of 1.25 m. The dimensions of the panel are shown in Figure 4.3.

SW100 Profile

1050mm owverall

1000mm coverage
[ Painted Surface F—QDOmm
LS R

¥
N N R u? 33mm

SW200 Profile
1050mm overall .
1000mm coverage
200mm
Painted Surface _>| 115mrr |4_ r_ 4{
\ P s by rA A 33mm

Figure 4.3: SW100 and SW200 SolarWall® panels dimensions (Conserval Engineering
Inc., 2006)

To prevent shading on the PV cells, it was more beneficial to use a SW100
SolarWall®. Therefore, the SW200 SolarWall® was flipped and painted black. The
shortwave solar reflectance of the painted surface of the panel was measured with
a CARY 5000 spectrophotometer (Varian, 2005) and found to be 3.96 % (ASTM
E903, ASTM E891). Knowing that for an opaque surface, the shortwave solar
absorptance is given as

& panel = 1- PPanel

The shortwave solar absorptance of the absorber, apgne;, was calculated to be 0.96.
The emissivity of the painted surface of the absorber and the back surface of the
absorber were obtained with a SOC 400T spectrometer (Surface Optics, 2001) and
both found to be 0.94.
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4.2.3 PV Cell Layout

The PV cell layout consisted of 10 rows of 4 cells mounted in parallel. Each
set of 4 cells was made by soldering together the back and the front terminal of
each cell with 2.38 mm wide tinned copper foil from E. Jordan Brookes Co. (E.
Jordan Brookes, 2007). A crimp in the copper foil was made between each cell to
avoid putting stress on the cells in case of thermal expansion. Ten sets of solar
cells were connected in parallel using the same 2.38 mm wide tinned copper foil.
Before putting the layout on the perforated plate, fiberglass screen was glued on the
absorber at the location where it would be mounted to provide electrical insulation.
The PV cells were then glued on the panel with a thin layer of silicone and the whole
layout was encapsulated with optically clear silicone cut with Xylene to protect from
humidity (Figure 4.4). The positive and negative busbars were wrapped in heat

shrink and run along the inside of the panel.

/

_—
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Figure 4.4: Picture of the PV /Thermal UTC prototype
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In order to get the properties of the PV cells layout, a flash test was conducted
at Photowatt in Cambridge, Ontario. A flash test consists of placing a PV module
or an individual solar cell under a simulator where a lamp flashes an irradiance of
1000 W/m? for a very short period of time (less than one second). Within this
time, the I-V curve of the PV module is traced, and the temperature of the cells is
recorded. Once the flash test is done, the program that controls the simulator is able
to determine the electrical parameters of the module at standard test conditions
(STC) of 1000 W/m? and 25°C. The results obtained from the flash test of the
panel are showed in Table 4.2.

Table 4.2: Results of the flash test on the PV /thermal collector prototype

‘/;c [V] ]sc [A] Pmp [W] Vmp [V] ]mp [A] FF [%] nref [%]
2.22 3.804 | 2.11 1.08 1.943 25.02 3.01

Unfortunately, flash tests do not provide information on the temperature coeffi-
cients of a PV module or PV cell. Therefore, a value of the temperature coefficient,
i, for the panel was estimated by assuming the PV cells layout to have the same
temperature properties as the full-size solar cells. According to Duffie and Beckman
(1991), p can be approximated as

By,

= Ty VZ; (4.1)

where (. is the temperature coefficient of the open circuit voltage, V,,, is the
voltage at maximum power point and 7, is the PV cells efficiency at reference
conditions. Using the variables of Tables 4.1 and 4.2 in Equation 4.1, the following

value for p was obtained.

3 L
0.0034[>5] £ 2.22 V. —0.00021 =
108V OC

1= 0.0301 x
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4.3 Experimental Setup Description

4.3.1 Wall and Plenum Construction

The PV /Thermal solar collector was set up on a east wall of the University of
Waterloo BEG Hut as shown in Figure 4.5. The RSI-value of the wall was calculated
to be 3.5 m?-K/W. A hole of 0.15 m diameter was made at the top of the wall and
a ventilation grid was placed in front of the hole. To act as a plenum, a wooden
frame with a height of 2.49 m, a width of 1.05 m and a thickness of 0.14 m was
built and mounted on the wall as shown in Figure 4.6. For aesthetic reasons and to
improve the uniformity of the temperature on the collector, the frame was covered

with black painted galvanized steel sheet.

PV CELLS WALL DUCT

[
— /

I
PLENUM 0 VARIABLE SPEED

FAN
E :

TRANSPIRED
COLLECTOR

I

A v |

Figure 4.5: Diagram of the experimental setup

After the remaining spaces between the wooden box and the wall were sealed
with silicone, the two panels were mounted on the plenum box by inserting the side
surfaces of the panel under the galvanized steel sheet of the wooden frame (Figure
4.7). To avoid any air leakage, screws were inserted along the side surfaces of the

panel and all the joints were sealed with silicone.
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Figure 4.6: View of the BEG Hut east wall with the plenum box installed
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Figure 4.7: PV /Thermal transpired solar collector prototype installed on the BEG Hut
east facing wall
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4.3.2 Suction Flow Line

The duct for the suction flow line consisted of an ABS (acrylonitrile butadiene
styrene) plastic pipe duct with a nominal diameter of 152.4 mm (6 in). It was
necessary to have a rigid material of a certain thickness for the duct, so that the
flowmeter and the thermocouple measuring the collector outlet temperature could
be inserted with compression fittings. Usually, it is recommended that the fan
be installed as close as possible to the collector outlet to minimize the pressure
drop the fan needs to overcome. In this case, however, the flowmeter required 10
diameters of straight pipe upstream of the meter and 5 diameters of straight pipe
downstream of the meter to ensure fully developed flow. Thus, a total length of

straight pipe of 2.3 m was necessary.

Figure 4.8: Overall view of the duct and fan installation inside the BEG Hut
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The suction through the collector was obtained with a FG6 centrifugal DC
fan from FANTECH (Fantech, 2007) used in combination with a variable speed
controller. This fan was able to overcome a pressure drop of 281 Pa at 196 m?/h.
As demonstrated in Appendix D, the total pressure drop through the system was
calculated to be only 72 Pa at 196 m? /h. It had been noticed, however, in a previous
experimental study (Maurer, 2004), that the pressure drop through the collector
and in the plenum calculated with the formulae developed by Kutscher (1994) were
underestimated. Therefore, it was decided to oversize the fan to ensure that the
desired flowrate would be obtained. The duct and fan installation inside the hut

are shown in Figure 4.8.

4.4 Instrumentation and Measurements

4.4.1 Data Acquisition System

The data acquisition system (DAQ) consisted of an OMEGA Personal Daq/56
(Omega Engineering, 2003) connected by USB port to a personal notebook. This
DAQ had a high-resolution of 22 bit A /D converter and was cold-junction calibrated
for the direct measurement of thermocouples. It had 10 differential ended (20 single-
ended) analog inputs that could be set to record either voltages or thermocouples,
16 digital inputs/outputs and 3 frequency/pulse inputs. The configuration of the
data logger channels and the record setup were done through the Personal Daq
View software. Seven channels of the data acquisition system were dedicated to the
measurement of the thermocouples output while two channels were used to record
the DC voltage outputs of the pyranometer and the flowmeter. The measurement
duration of each channel was set to 310 ms, the scan rate to 3750 ms and the
averaging to 16, so that the DAQ would output average recorded values at intervals
of 1 minute. With this speed of measurement, the resolution could be kept at 22
bits RMS. The accuracy of the Personal Daq/56 for voltage analog inputs was 0.01
% of the reading + 0.002 % of the selected range.
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4.4.2 Temperature Measurements

The temperature measurements were performed using OMEGA 30-gauge type
T thermocouple wire having an accuracy of 1°C. The temperature at the collector
outlet was measured by inserting a 3.17 mm diameter stainless steel tube in the duct
containing a thermocouple wire. The tube was bent at 90° to minimize the effect of
conduction and to avoid disturbing the flow. The tube was installed 32.5 cm from
the outdoor wall surface, because it was the closest location from the duct entrance
where the probe could still be reached after its installation. The tip of the tube was
covered with plastic for radiation shielding. In order to investigate the temperature
profile of the air in the duct, the temperature was measured at different heights in
the duct when the fan was on. The largest temperature variation was found to be
0.1°C . Consequently, it was decided to measure the collector outlet temperature
at the center of the duct.

The outdoor temperature was also monitored with a shielded thermocouple
inserted in a stainless steel tube. This thermocouple was placed on the east wall of

the building where the collector was installed.

The outdoor wall temperature was measured with four thermocouples of iden-
tical length located as shown in Figure 4.9 (a). Because of the limited number of
channels of the data acquisition system, the four thermocouples were mounted in
parallel through the use of a terminal block, so that the average temperature would
be measured. The absorber plate was also instrumented with four thermocouples
(Figure 4.9 (b)), but each temperature was recorded separately to investigate the
uniformity of the plate temperature. The thermocouples were placed on the back
surface of the plate, because the temperature of the front and back surfaces of the
panel were expected to be similar since the plate was very thin and made of a ma-
terial with high thermal conductivity. For every thermocouple mounted on a flat
surface, a piece of electrical tape was used between the surface and the thermo-
couple, and aluminium tape was applied on the thermocouple bead to shield from
any radiation. The temperature inside the hut was not measured, because it was
already being recorded by a BEG Hut data logger.
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(b)

Figure 4.9: Location of the thermocouples on (a) the wall (b) the absorber plate

4.4.3 Flowrate Measurements

The air flowrate was measured with a 620S Fast-Flow insertion mass flowmeter
from Sierra Instruments. This flowmeter works on the principle that the cooling
effect of the flowing fluid on the sensing element is proportional to its mass flowrate.
The accuracy of this instrument was stated to be £1.0 % of full scale + 0.5 % of
reading, and the repeatability was +0.2 % of full scale. In order to minimize flow
disturbance and ensure accurate and repeatable results, the manufacturer suggested
for this type of installation having 10 diameters of straight pipe upstream of the
meter and 5 diameters downstream (Sierra Instruments, Inc., 1999). Therefore,
the probe was placed at 1.52 m from the duct entrance and at 0.79 m from the
elbow. The flowmeter was calibrated by Sierra Instruments for a user full scale of
155 SCFM at an output of 5 VDC. Thus, the voltage output was converted into
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the volumetric flowrate at standard conditions using the following relation.

Vaa 155 SCFM

v, 5V

(4.2)

In Equation 4.2, V,, is the voltage signal recorded by the data logger and V o1 is the
volumetric flowrate at standard conditions, in SCFM. The conversion of standard

volumetric flowrate to actual volumetric flowrate, V4, is given as

’ ’ P, std} [Tact ]
Vac - Vs * 4.3
! td [Pact Tstd ( )

where P,y and T4 are the pressure and temperature at standard conditions. They
were stated in the flowmeter calibration certificate to be 14.7 psia and 530°R,
respectively. The air temperature at the actual conditions, T, was taken to be the
collector outlet temperature. This is a valid assumption because by calculating the
heat transfer through the duct between the thermocouple and the mass flowmeter,
the maximum variation in the air temperature was estimated to be 0.2°C. The
actual pressure in the duct, P,., was assumed to be the same as the ambient
pressure, because the pressure drop through the collector was considered to be
negligible compare to the ambient pressure. Using this information and Equation
4.3, the following expression was obtained to convert the flowmeter voltage into

flowrate units.

14.7] {Tout] § 1.699 [st] (4.4)

Vacr = Vara * [Pamb 530 | © 1 CFM

4.4.4 Irradiance Measurements

The total radiation on the BEG Hut east wall including both beam and diffuse
components was measured with a black and white Eppley Pyranometer model 8-
48. The calibration certification of this instrument stated that the pyranometer
was linear to within +1 % up to the intensity of 1400 W/m? with temperature
compensation in the range of -20 to 40°C. The cosine response was +2 % from 0-70°

incidence angle and +5 % from 70°-80° incidence angle. The voltage response was
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linearly proportional with the incident solar radiation and the constant was 11.80
wV/W-m~2. The pyranometer was mounted on the east wall of the BEG Hut, beside
the solar collector, and at 13 cm from the wall to avoid being shaded by the roof.
The pyranometer was used in conjunction with a Universal Single Ended Amplifier
(USEA). This amplifier was set to a gain of 200 and had a constant output offset
voltage of 2 to 3 mV.

4.4.5 PV Cells Maximum Power

In order to track the power output from the collector, the PV cells layout was
connected in series as shown in Figure 4.10, with a shunt resistance, Ry, of 0.1 €2
+ 5 % and a variable load.

V-Measurement with

OMEGA HHM26 multimeter
Resistance decade box
Reh x 0-9000 Q
+
V-Measurement with PV/Thermal ] _
Fluke 29 multimeter [} collector A fSerlesg_ fOF\’ge?;stance

Figure 4.10: Schematic diagram of the PV cells layout connection for the maximum
power point tracking

The load consisted of a resistance decade box varying from 0 to 9000 €2 connected
in series with a set of 9 resistances of 0.1 €2. The voltage across the PV cells, Vpy,
was measured using a Fluke 29 multimeter with an accuracy of + 0.3 %, while the
was obtained with a OMEGA HHM26
multimeter having an accuracy of + 0.25 % of Reading + 1 digit. By measuring the

voltage across the shunt resistance, Vg, ,

voltages across the PV cells layout and across the shunt resistance, the current, I,
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and power, P,;, of the solar cells layout were obtained using the following equations

from Ohm’s law.

Vk
I = fa 45
R (4.5)
Pag = IVpy (4.6)

At the beginning of every minute, the load was varied, the voltage outputs from the
multimeter were recorded and the power produced was calculated using Equations
4.5 and 4.6. By doing so, the I-V curve of the PV cells layout at the particular
temperature and solar irradiance of the moment was plotted and the maximum
power point was found. This process usually took less than 20 seconds. For the
rest of the minute, the load of the PV cells was maintained so that the panel was
operating at the maximum power point. The load at which the solar cells were
producing the maximum power output would usually only change at intervals of
4 to 6 minutes and by only 0.1 2. Therefore, a good estimation of the resistance
needed to get the maximum power point was always known and the tracking could

be done very quickly.

4.4.6 Data Collection

The data collection period was from August 24 to September 8, 2007 between
7:30 AM and 1:00 PM. The data were recorded in the morning since the collector
was mounted on a east facing wall and after 1:00 PM, the wall would be shaded.
The collector was tested under four different cases: zero flow, fan maximum speed,
flowrate of 75 m®/h-m? and fan minimum speed. All the instruments were connected
prior to this period to the data acquisition system and every day the following steps

were taken:

1. The pyranometer was mounted on the east wall and connected to the ampli-

fier. The power supplies for the pyranometer and flowmeter were activated.

2. The fan variable speed controller was turned on at the location where the

flowmeter would indicate the desired air flowrate for the day.
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3. When the measured irradiance and air flowrate reached steady-state, generally

less than 5 minutes, the data recording was started.

4. The PV cell load was varied until the maximum power point was found. This

step took approximately 20 seconds and was repeated at every minute.

5. When the collector outlet temperature was measured to be no more than
1°C greater than the outdoor temperature, the data collection was stopped.
The data logger, the fan and the two power supplies were turned off and the

pyranometer was removed.
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Chapter 5

Experimental Results and Model
Validation

5.1 Introduction

The first section of this chapter presents the results obtained from the monitor-
ing of the PV /Thermal collector prototype at different air suction rates. Data were
collected over a period of three weeks among which six clear sky days were chosen
for the data analysis. The reason why only clear sky days were used is because it
was not possible to take voltage measurements on cloudy days. The values indi-
cated by the multimeters would fluctuate too much. The second section presents a
comparison between the predictions of the TRNSYS model and the results of the

experiment on the solar collector.

5.2 Experimental Results

5.2.1 Experimental Conditions and Weather Data

The six clear sky days and suction flowrates chosen for data analysis are sum-

marized in Table 5.1. The wind speed and wind direction were measured by a
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pre-existing anemometer on the BEG Hut roof. The average values of these vari-
ables were recorded hourly by a BEG Hut data logger and are available in Appendix
E. Figure 5.1 presents the variation of the wind direction and wind speed for the

six days used in the data analysis.

Table 5.1: Average air flowrate measured for each clear sky day

Day | Average Air Flowrate [m’/h-m?]
Aug-20 75
Aug31 5
Sep-01 82
Sep-02 75
Sep-06 No Flow
Sep-08 55

From Figure 5.1 (a), it can be observed that the wind was generally blowing
from west to east (270° north) during the time period studied, except for Septem-
ber 1% where it was blowing from the south-east (150° north). Therefore, the wind
direction was a relatively constant parameter. In Figure 5.1 (b), it can be seen that
the wind speed varied for each day. Moreover, it fluctuated in the time interval
where the collector was monitored. The wind speed was only roughly constant on
September 1%, blowing at an average velocity around 2 m/s. The ambient temper-
ature and irradiance profiles recorded during the six days are shown in Figures 5.2
and 5.3. From these graphs, it can be concluded that only September 6 and August

29 presented almost identical ambient temperature and irradiance profiles.

5.2.2 Experimental Data

The experimental data recorded by the data logger during the six clear sky
days of the experiment are available in Appendix E. The variation of the seven
temperatures measured, the total solar radiation on the collector surface and the
electrical and thermal output are presented in Figures 5.4 to 5.9. The experimental
uncertainties on the measured and calculated variables were obtained by carrying
out an uncertainty analysis available in Appendix F. Only bias errors are included
in the uncertainty analysis, because not enough data were collected to estimate

precision errors.
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The Figures 5.4 through 5.9 (a) show that the peak temperature measured by
the four thermocouples located at the back of the absorber plate (Teo1a4) and on
the outdoor wall (T,q;) did not match the peak of irradiance. In fact, there was
a delay of approximately 30 minutes for the collector and 1 hour for the outdoor
wall. This was not unexpected because as the day got later, the sun continued
to heat the earth and the ambient temperature increased even though there was
less sun shining on the BEG Hut east wall. The time interval between the peak
temperatures measured on the collector surface and on the outdoor wall is due to
the fact that the wall had a greater thermal mass than the panel and thus, took
longer to heat up. Another observation that can be made by looking at the trend
of the different curves is that the variations of the collector outlet temperature
are almost perfectly synchronized with the fluctuations of the four thermocouples
located at the back surface of the panel. This shows that a change in the plate
temperature had an instantaneous effect on the temperature of the air entering the

building.

In Figures 5.4 to 5.9 (a), the four temperatures measured at the back of the
absorber indicate that the plate temperature was not uniform. On September 1%
for example, the difference between the highest and lowest recorded temperatures
on the panel varied from 2.8°C to as high as 8.5°C. For each day, however, the
lowest temperatures were always measured on the upper panel (7., 1 and T, 2)
while the highest temperatures were recorded on the lower panel (Tpy 3 and Tee4).
This is primarily due to the inlet duct location. Dymond and Kutscher (1997)
observed that the suction velocity at the locations very close to the duct entrance
were greater than anywhere else, because the air does not have to fight against the
acceleration, friction and buoyancy pressure drop. Therefore, since thermocouples 3
and 4 were located further than thermocouples 1 and 2 from the duct entrance, the
suction flowrate at these locations were not as high. This resulted in a poorer heat
transfer between the plate and the ambient air and this is why the temperatures
measured on the lower panel were higher than the ones on the upper panel. The
hypothesis of a non-uniform suction is confirmed by looking at the temperatures
recorded on September 6, when the fan was turned off. For that day, the highest

temperature difference between two thermocouple measurements was found to be
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only 4.6°C. In this case, however, the lowest temperature was always measured at
the left of the upper panel (7., 1) while the hottest spot was found to be at the
right of the lower panel (7,4)-

From Figures 5.4 to 5.9 (b), it can be observed that the maximum heat output
coincided with the peak of irradiance. This indicates that the transpired collector
responded almost instantaneously to a change in solar radiation. The highest elec-
trical power from the PV cells, however, tended to occur approximately one hour
before the peak of irradiance. This could be due to the fact that even though the
irradiance was increasing, the panel electrical conversion efficiency was decreasing

due to the higher panel temperature.

5.2.3 Effect of the Transpired Plate on the PV Cells Per-

formance

In order to evaluate the benefits of the transpired collector on the solar cells,

the variation of the electrical power output for each day was plotted.
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Figure 5.10 indicates that the maximum electrical power produced was clearly
less on September 6, when the fan was turned off, than on the other days when
suction was occurring at the surface of the plate. The weather conditions were,
however, different for each day. Therefore, only August 29 and September 6 were
compared since they presented similar ambient temperature and irradiance profiles
(Section 5.2.1).
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Figure 5.11: Variation of the upper panel back temperature and PV cells efficiency for
August 29 and September 6

Figure 5.11 presents the variation of the average upper panel back surface tem-
perature and PV cells efficiency for these two days. From this plot, it can be
observed that the PV cells conversion efficiency was always greater on August 29
than on September 6. This higher efficiency can be directly attributed to the fact
that the panel back surface temperature was lower when the fan was turned on
(August 29). It could be argued that this lower temperature was due to the fact
that the wind speed was higher on August 29 at the beginning of the day, but after
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10:30, the wind was blowing at the same speed for both days. Thus, after 10:30,
the higher PV cells conversion efficiency measured on August 29 had to be due to
the fact that the PV cells were cooled by the air flowing through the transpired
collector and in the plenum. In fact, between 10:30 and 11:30, the maximum elec-
trical power on August 29, was about 10 % greater than on September 6, when the

fan was turned off (Figure 5.10).

The other observation that can be made by looking at Figure 5.11 is, however,
very surprising and consists in the fact that the electrical efficiencies calculated were
always greater than 3 %. Considering that the electrical efficiency determined with
the flash test was 3 % at 25°C and 1000 W/m? (Table 4.2), it is in fact unexpected
that higher efficiencies were obtained at a higher cell temperature. In order to
verify if the measurements from the multimeters could have been influenced by
other instruments, a quick test was performed on the PV/Thermal collector. The
prototype was mounted at a different location than where the experiment took
place and the maximum electrical power output was tracked without the presence
of the other instruments. At an irradiance of 600 W/m? and a cell temperature of
approximately 40°C, a maximum electrical power output of 1.5 W was measured.
This corresponded to an electrical efficiency of 3.6 % which was still higher than
the maximum theoretical efficiency obtained during the flash test. Consequently, it
was concluded that the settings at which the flash test had been conducted might
not have been appropriate for the testing of the PV/Thermal collector.

As for the effect of the air flowrate on the electrical output, the curves of Figure
5.10 seem to indicate that the PV cells performed better at higher suction rates,
since the highest power was measured on September 1% when the fan was running at
its maximum speed. Unfortunately, this statement cannot be verified because there
were no days that had similar ambient temperature and irradiance profiles than
September 1%*. Another way to predict the performance of a PV module is to look at
its temperature. Comparing the panel temperature at different airflow rates would
not have been appropriate, however, because the testing of the panel at the various
suction flowrates were all done on different days. The back panel temperature rise,
defined as the difference between the average upper panel temperature and the

ambient temperature seemed to be a more relevant parameter to analyze, since it
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took the ambient temperature into account. The variation of the upper panel back
surface temperature rise at different suction flowrates for a wind speed measured

on the roof between 2 m/s and 3 m/s is shown in Figure 5.12.
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Figure 5.12: Variation of the upper panel back surface temperature rise with the irra-
diance for a wind speed measured on the roof between 2 m/s and 3 m/s

From this graph, it can be observed that the upper panel temperature rise
decreased with an increase in the air flowrate. The reason for that is because with
greater suction, the air spends less time in the plenum and the plate does not heat
up as much. It can also be clearly seen that the temperature of the plate increased
considerably when the fan was off and only natural convection was operating. In
fact, at 55 m3/h-m?, the upper panel temperature rise was generally 9°C lower than
at zero flow, and at 75 m?®/h-m?, approximately 14°C lower. Therefore, it can be
concluded that an increase in the suction flowrate is more likely to produce greater

electrical power, because the PV cells are kept at a lower temperature.
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5.2.4 Effect of the PV cells on the Collector Thermal Per-

formance

In order to analyse if the PV cells affected the thermal performance of the UTC,
the air temperature rise measured were compared to the ones obtained from the
testing of a 5 m? SolarWall® at the NSTF (Hollick, 1994). This comparison is

shown in Figure 5.13 where the experimental data and NSTF curves are plotted for

different air flowrates. It was not possible to find the wind conditions associated
with the NSTF measurements, but it was assumed that the data had been obtained

at zero or low wind speed (< 2 m/s). Thus, only the experimental data collected

when the wind speed was between 1.8 m/s and 2.3 m/s were considered.
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Figure 5.13: Variation of the temperature rise with the irradiance for a SolarWall ©

(Hollick, 1994) and from the testing of the prototype
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From this graph, it can be observed that just like the SolarWall® tested at the
NSTF, the PV/Thermal UTC showed higher air temperature rise at lower suction
rates. The air temperature rise measured with the prototype were, however, always
lower than the ones obtained at the NSTF. For example, at 75 m3/h-m? and 600
W/m?, the air temperature rise was of 11.2 °C for the prototype and 14.8°C for
the SolarWall® tested at the NSTF. A comparison of the experimental and NSTF

thermal efficiencies at different air flowrates are presented in Figure 5.14.
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Figure 5.14: Variation of the thermal efficiency with the air flowrate for a SolarWall ©
(Hollick, 1994) and from the testing of the prototype

From this graph, it can be observed that the experiment followed a similar trend
as the SolarWall® tested at the NSTF: higher thermal efficiencies were obtained
at greater air flowrates and lower wind speeds. As a consequence of the lower
air temperature rise achieved by the PV/Thermal UTC, the experimental thermal

efficiencies were, however, lower than that obtained at the NSTF.
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There are several factors that can explain why the air temperature rise and ther-
mal efficiencies obtained during the experiment were lower than that measured at
the NSTF. One reason is that the PV/Thermal UTC was about half the size of the
collector tested at the NSTF. For a transpired collector, the wind heat losses occur
during the plate starting length (Kutscher et al., 1993). Therefore, the smaller is
the area of a collector, the more significant is the proportion of edge area to collector
area, and the more important are the wind heat losses (Hollick, 1994). Thus, the
convective heat losses to the ambient might have been greater on the PV /Thermal
UTC tested. Another explanation for this difference can come from the definition of
the ambient temperature. For the experiment, the ambient temperature was mea-
sured on the east wall. With the measurements being taken in the morning, the air
on the east wall was always at a slightly higher temperature than the ambient air
on the BEG Hut roof. In order to verify the effect of taking the roof temperature as
the true ambient temperature, a new temperature rise was calculated by using the
roof hourly averaged ambient temperature recorded by the BEG Hut data logger.
For the case of an airflow of 75 m®/h-m?, the average difference between the old and
the new temperature rise was of 1°C. Finally, even though it is usually expected
that the thermal performance of a combined PV/Thermal collector will not be as
high as the one of a stand-alone thermal collector, it is less likely that the solar
cells had an influence on the thermal performance in this case. The main reason
being that the PV cells were covering a very small portion of the panel area. If a
transpired collector of the same size without PV cells had been tested at the same
time or if more solar cells had been mounted on the panel, it would have been eas-
ier to identify at which extent the solar cells were responsible for the poor thermal

performance of the collector.

5.3 Model Validation

5.3.1 TRNSYS Simulation

In order to validate the model, TRNSY'S simulations were performed using the

PV /Thermal transpired collector with the prototype parameters and the weather
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data of four clear sky days with different air suction rates. The following TRNSY'S

components were used in the simulations:

Data Reader (Type 9c)

Psychometrics (Type 33e)

Sky Temperature (Type 69b)

Radiation Converter

Printer (Type 25a)

All these components were part of the main TRNSYS library except for the Radia-
tion Converter that consisted of a modified version of a model originally developed
by Barrett in 1987 (SEL, 2005). It was necessary to this simulation to split the
radiation measured on the east wall into its beam, sky diffuse and ground reflected
components and to estimate the horizontal beam and diffuse radiation. These vari-
ables were required since they are inputs to the PV /Thermal UTC model. As for
the Psychometrics component, it was used to calculate the dew point temperature
so that the sky temperature could be evaluated. The Fortran code of the Radiation

Converter can be found in Appendix G.

The wind velocity and building temperature inputs to the model came from the
records of the BEG Hut data logger (Appendix E) while the solar radiation and
solar angles were all obtained from the Radiation Converter component mentioned
above. The BEG Hut was not instrumented to record the ambient pressure, so the
data were taken from the measurements of the Waterloo Weather Station (Water-
loo Weather Station, 2007). The other inputs to the model consisted of variables
measured during the experiment. In order to prevent the model from optimizing
the air flowrate through the collector, the supplied temperature was fixed to 50°C
and both the flowrates for the minimum amount of fresh air (m,;,) and total air
required in the building (mg) were set to the value of the air flowrate measured
experimentally.
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5.3.2 Preliminary Results

As a first evaluation of the model validity, a preliminary comparison of the
results predicted by the TRNSYS simulations and measured experimentally was
carried out. The thermal output estimated by the model was found to be much
higher than that obtained with the prototype, while the electrical power predicted

was significantly lower than the one measured.

The over prediction of the thermal output was directly caused by an overestima-
tion of the panel temperature. This was expected, however, because as discussed in
Section 5.2.4, the wind heat losses from the prototype tested were probably greater
than on typical transpired collector installations because of the small area of the
panel. Consequently, the correlation used in the model to estimate the wind heat
transfer coefficient was replaced by the correlation developed by the Solar Ther-
mal Research Laboratory from testing on a lab-scale flat plate transpired collector
(Equation 3.32).

As for the electrical power produced, it was also not surprising that the TRN-
SYS simulation estimated much lower values. The reason being that the reference
electrical efficiency entered as a parameter in the model was the one measured with
the flash test. As observed in Section 5.2.3, it is more likely that the reference
efficiency obtained from that test was lower than the actual PV cells reference
efficiency and that a new value for this variable had to be calculated. Further-
more, considering that the flash test results had also been used to calculate the
temperature coefficient i in Section 4.2.3, it is probable that this variable was also
not accurate. Unfortunately, the manufacturer data could not be used to obtain
new estimates for 7,., and u, because the electrical parameters were provided for
individual full size solar cells, while the PV cells layout consisted of bits of cells
connected together. Without resorting to the flash test results and not being able
to use the manufacturer data, the only option left to obtain values for n,., and u

was to use the experimental results.
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5.3.2.1 PV Cells Layout Electrical Parameters

A method suggested by Whitaker et al. (1991) was used to evaluate the PV cells
layout parameters from the experimental measurements. This procedure is based on
the assumption that at constant irradiance, the PV cells power is a linear function

of the PV cells temperature and can be expressed as

Pel = Pel, — |1+ BPmp (TPV - Tref)] (51)

where P,y is the electrical power at reference irradiance Gy o ey and PV cells
temperature T, P is the electrical power measured at desired irradiance Grco
and PV cells temperature Tpy, and (3 P, 18 the temperature coefficient at maximum

power point. Isolating 3p ~in Equation 5.1,

Pel GT,col,ref -1

Pel ref GT col
By = , 5.2
Prmp TPV - Tref ( )

Using the following relation,

GT col )
P =Payes | =— 5.3
elref brel <GT,col,ref ( )
Equation 5.2 can be simplified to
1 Pel - Pe7l ref
Bp = ( ’ 5.4
Fin Pél,ref TPV - Tref ( )

In the model developed in Chapter 3, the following equation is used to evaluate the

PV cells efficiency.
Npv = Nrep + 1 (Tpy — Trey) (5.5)

By comparing Equations 5.1 and 5.5, it can be found that these two equations are

equivalent if the temperature coefficient © corresponds to

n= ﬁPmpn'ref (56)
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In order to evaluate 3 Pn,» Whitaker et al. (1991) suggest to plot the module power
output as a function of the PV cells temperature for different bins of irradiance.
The first issue with this procedure is that during the experiment, the PV cells
temperature was not measured. The resistance between the back of the panel and
the PV cells was considered to be negligible, however, so the average temperature
measured on the upper panel was assumed to be representative of the actual PV
cells temperature. The second issue that was raised by the production of this plot
is that in order to obtain accurate correlations, measurements have to be taken over
a period of at least two months to collect data in a wide range of cells temperatures
and irradiances. In this case, only the measurements taken on September 6 could
be used, because it was the only day where the PV cells were relatively isothermal.
Consequently, curves could only be obtained for bins of irradiance of 500 W/m?,
550 W/m? and 600 W/m? + 3% as shown in Figure 5.15.
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Figure 5.15: Electrical power measured as a function of the upper panel average tem-
perature for different bins of irradiance
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In Figure 5.15, the slope m at each reference level of irradiance is given as

AP.;/AT,p avg- Therefore, from Equation 5.4, 3 Py corresponds to

m
Bp, == (5.7)
Fo Pel,ref

Taking an arbitrary reference temperature 7.y of 30°C, the electrical power Py .y
at each reference level of irradiance G o7 can be calculated using the equations
of the curves shown in Figure 5.15. Taking Gr., to be equal to 1000 W/m2,
P} ¢y can be obtained for each bin of irradiance using Equation 5.3 and Sp = can
be calculated with Equation 5.7. The desired temperature Tpy being 25°C, the
electrical power F,; at desired temperature Tpy =25°C and irradiance G’y ¢, =1000
W/m? can then be estimated for each reference conditions using Equation 5.1. The
PV cells efficiency, 7, ., at the desired conditions of 1000 W/m? and 25°C (STC

conditions) can then be obtained using

o Pel
nPV B APVGT,col

2

where Apy is the PV cells area corresponding to 0.07 m®. The temperature co-

efficient 1 can also be calculated from Equation 5.6. The summary of the data
obtained for each bin of irradiance is shown in Table 5.2. By averaging 7, and p
calculated for the three different levels of irradiance, an average temperature coef-
ficient of -0.0002 1/°C was calculated and a PV cells efficiency at STC conditions
of 25°C and 1000 W/m? was estimated to be 0.046.

Table 5.2: Parameters of the PV cells layout calculated for different bins of irradiance
using the experimental measurements of September 6

GT,col,gef Pel,ref Pél,ref 6Pmp Pel nPV 2
W/m | [W] | [W] |[1/°C] |[W] [1/°C]
500 + 3% | 1.67 | 3.35 | -0.0035 | 3.40 | 0.049 | -0.00017
550 £ 3% | 1.70 | 3.08 | -0.0034 | 3.14 | 0.045 | -0.00015
600 + 3% | 1.80 3.00 -0.0046 | 3.07 | 0.044 | -0.0002
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5.3.3 TRNSYS Parameters and Inputs

The parameters and inputs of the PV /Thermal transpired collector component
used in the TRNSYS simulations with the changes described in Section 5.8.2 are
shown in Table 5.3.

5.3.4 Simulation Results

The four clear sky days selected were simulated in TRNSY'S at a time step of one
minute. Figures 5.16 to 5.19 present the experimental collector outlet and surface
temperatures, thermal output and maximum electrical power compared with the

model.
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Table 5.3: Parameters and Inputs to the TRNSYS simulation of the experimental days

PARAMETERS
Length of the base of the trapezoid a |m 0. 15
Length of the top of the trapezoid b [m 0.115
Height of the corrugation ht [m 0.033
Plate porosity o 0.0025
Pitch p [m 0.01403
Collector length L [m 2.49
Distance between two corrugations d [m 0.2
Collector width W [m] 1.05
Absorptance of the wall Qlyall 0.4
Plenum height hpjen [m] 0.14
Emissivity of the collector back surface Ecol.b 0.94
Emissivity of the wall Ewall 0.93
Collector thickness t [m] 0.001
Panel absorptance QPanel 0.96
Panel emissivity EPanel 0.94
Wall U-Value Ugan [KJ/hom?-K]  1.02
1: No PV PV Mode 2
2: PV cells on the top of the corrugations
3: PV cells on every surface
PV cells temperature coefficient at maximum power point  f [1/°C| -0.0002
PV cells reference efficiency Nyt 0.046
PV cells reference temperature Tret [°C] 25
PV cells absorptance-transmittance product (T&)PV N 0.9
PV cells emissivity EPV 7 0.8
Bypass collector in the summer? 1:Yes, 0: No Bypass? 0
Bypass temperature Thypass [ C] -
PV cells refraction index n -
PV cells glazing extinction coefficient K [1/m -
PV cells glazing thickness tpy [m 0
PV cells proportion at the top of the corrugations Ppy(3) 0.049

INPUTS

Beam radiation on the collector Gh,col [kJ/ h-mz} Vary
Diffuse radiation on the collector Gd,col [kJ/ h-m2} Vary
Ground reflected radiation on the collector Gy col [kJ/ h-mg} Vary
Horizontal beam radiation Gpy [kJ/h-m?] Vary
Solar zenith angle L, 1° Vary
Solar azimuth angle Y5 [°] Vary
Wind velocity Vind Mm/s] Vary
Ambient temperature Tamb | C] Vary
Ambient pressure Pamb[Pa] Vary
Sun incidence angle on the collector col [ Vary
Building temperature Thig [C] Vary
Sky temperature Teky [°C] Vary
Minimum fresh air mass flowrate Munin[kg/h] Vary
Total mass flowrate of air entering the building mr[kg/h] Vary
Collector slope Beor [] 90
Collector azimuth angle Yeol 1] -90
Ground reflectance Pend 0.2
Total horizontal radiation Gry [kJ/h-m?] Vary
Horizontal diffuse radiation Gan [kJ/h-m?] Vary
Temperature of the air supplied to the building Tsup [°C] 50
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September 1 (a) Temperatures (b) Thermal and electrical output

102

Electrical Output [W]



- >
__v|l|~._.|x|.
88— >
F—a——
__Ihlﬂ
___|I|A- 5y
——
==
1 ]
IS
1 | r o
T T @
Yo} Yo} o
™ N
[o.]

00000000

5555555

9:30 10:30 11:30 12:30
| Time [Hours]

8:30

N~

for

nd TRNSYS predictions

imental data a

ical output

(b) Thermal and electr

103



Sy}
()]

a
o

ﬁ@ % i} %
E% ﬁﬂﬁﬁii

N
()]

Temperature ["C]
N
o
%

w
()]
I
.

30 A ﬁ -Teor TRNSYS = Teo Exp

25 ; T T T T T
() 7:30 8:30 9:30 10:30 11:30 12:30
a

1.8

> &
5&5
%x:j
.i‘
e,
'.:%%:%
ﬂtﬂ
%
m
.i‘

Electrical Output [W]
o

—
o
ﬁ

o
(o]
I

Pei TRNSYS x Pel Exp

0-6 T T T T T
7:30 8:30 9:30 10:30 11:30 12:30
Local Time [Hours]
(b)
Figure 5.18: Comparison between the experimental data and TRNSYS predictions for
September 6 (a) Temperatures (b) Electrical output

104



(b)

Figure 5.19: Comparison between the experimental data and TRNSYS predictions for
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5.3.5 Discussion

In Figures 5.16 to 5.19 (a), it can be seen that the surface and outlet temperature
curves of the TRNSYS model and the experiment follow the same trend. Although
the TRNSYS model predicts a higher surface and outlet temperature, the difference
between the curves is relatively constant. The root-mean-square error (RMSE) for
both temperatures were calculated and shown in Table 5.4. The RMSE is defined

as

N 2

1 2
RMSE = NZ (Tpred,m - Texpym)

z=1

where N is the number of observations, T,eq . is the 2" predicted temperature and

Texp,z 1s the 2" temperature measured experimentally.

Table 5.4: RMSE of the collector surface and outlet temperatures predicted by TRNSYS

Date RMSE

Tout [o C] TCOLan [O C]
Sep-01 2.3 3.4
Sep-02 2.7 3.4
Sep-06 - 2.1
Sep-08 3.3 4.2

From Table 5.4 and Figure 5.18 (a) it can be observed that the predictions of
the collector temperature were the closest to the experimental results on September
6, when the fan was turned off. This shows that the method used to calculate the
amount of solar energy absorbed by the panel is accurate and is not a source of
error. For the days when the fan was on, the RMSE of the collector outlet and
surface temperature were the smallest on September 1%¢. As mentioned in Section
5.2.1, the wind was blowing from the south-east on that day, while it was generally
blowing from west to east on the other days. The models to obtain the wind
heat transfer coefficient of UTCs are all based on the assumption that the wind
is perpendicular to the normal of the plate (crosswind). Thus, the fact that the

wind was the closest to being parallel to the east wall on September 1°* can explain
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why the model predictions were better for that day. With this observation, it was
decided to examine if using the wind velocity measured on the roof in correlations

requiring the free stream velocity was problematic.

To investigate this possible source of error, TRNSYS simulations were performed
with the parameters and inputs indicated in Table 5.3, but using the local wind
velocity in front of the wall instead of the wind speed measured on the roof. In
order to obtain this local wind speed, correlations developed by Emmel et al. (2007)
from CFD analysis on a low-rise building were used. These correlations provided an
estimate of the local wind velocity at a distance of 1 m from the wall, Viyind ioc, from
the wind free stream velocity measured 10 m above the ground, V,,inq10. Equation
5.8 is for windward conditions when the wind blows at an angle of 45° on the wall,
while Equation 5.9 is for leeward conditions where the angle between the wind

direction and the normal to the wall is 180°.

Vwind,loc = 0~57Vwind,10+0-05 (58)
Vwind,loc - 0~32Vwind,10 (59)

The local wind speed was estimated with Equation 5.8 for September 1, because
the wind was generally blowing south-east for that day and for the other days,
it was calculated with Equation 5.9. In all cases, Vyinq,10 Was taken as the wind
measured on the BEG Hut roof. Table 5.5 presents the RMSE calculated with the
new simulation results.

Table 5.5: RMSE of the collector surface and outlet temperatures predicted by TRNSYS
with the local wind speed as input

Date RMSE

Tout [o C] Tcol,avg [o C]
Sep-01 3.0 5.0
Sep-02 4.1 6.4
Sep-06 - 8.4
Sep-08 4.8 7.1
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By comparing Tables 5.4 and 5.5, it can be observed that using the local wind
speed instead of the roof wind velocity increased significantly the difference be-
tween the model predictions and the experimental results. This was not surprising,
because the local wind speed of a wall with a leeward wind is about a third than
the wind velocity measured on the roof (Equation 5.9). Therefore, using Viyind,ioc in
the TRNSYS simulation decreased significantly the wind heat losses and the model
over predicted even more the experimental results. The validity of the model is not
compromised by this information, however, because this local wind speed is not
equivalent to a crosswind speed, which is the type of wind assumed in the hying

correlation.

Another issue associated with the wind predictions is that the models to obtain
the wind heat transfer coefficient of UTCs are all based on the assumption of the
presence of a laminar boundary layer at the panel surface. With the wind being
leeward for most of the days, it is probable that local recirculation was occurring
at the front of the east wall, inducing turbulence. As observed by Fleck et al.
(2002), with the presence of turbulence on the wall where a UTC is mounted, it is
unlikely that a laminar boundary layer can develop over the collector. Moreover,
recirculation zones at the front of the collector induce hot spots on the collector
which decrease the collector efficiency. Thus, the TRNSYS model might have been
overpredicted the temperature measurements because the laminar boundary layer

assumption was not respected.

In order to verify if the wind heat transfer coefficient estimated with the STRL
correlation was still being under predicted, different h,;,q were investigated to see
if better results could be obtained. Two expressions were found in the literature
that could be used to estimate a value of h;,q on a building facade with a leeward

wind. The first one was developed by Loveday and Taki (1996) and is given as

hwind - 16-25vaind,loco.503 (510)

where Viyind oc is a function of Viing11, the wind measured 11 m above the ground,
Vwind,loc - O-vaind,ll —-0.1
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The other one is suggested in ASHRAE (1975) and corresponds to

hwind = 18.6 * Vwind,loco.605 (511)

where Viind.ioc is obtained from the wind measured 10 m above the ground, Vind.10-

Vwind,loc == O-O5Vwind,10 + 0.3

The wind heat transfer coefficients at different wind speeds estimated with the
correlations of ASHRAE and Loveday and Taki were compared to the h,;,q obtained
with the expression used in Maurer’s UT'C model (Equation 2.12 with C/ fixed to a
value of 5), the hymg predicted by the STRL model (Equation 3.32) and the hying
used in the SWift99 software (Equations 3.30 and 3.31). For the correlations using
the suction velocity as a variable, a value of 0.02 m/s was used. The results are
shown in Figure 5.20. As it can be observed the highest heat transfer coefficient at
wind speeds greater than 1.5 m/s is predicted by the STRL model used in TRNSYS.
This concludes that in theory the STRL model should have predicted the most
accurate results, since a lower h,,;,q would result in a greater collector temperature.
Since the turbulent boundary layer is likely to increase the wind convective heat
transfer coefficient, it shows that further research developing an h.,q correlation
is required. In addition, none of the h,,;,q models take into account the trapezoidal

corrugated shape of the collector.

Another explanation to the TRNSYS model temperature over prediction is the
fact that the model assumes uniform suction and an isothermal panel, whereas these
two conditions were not observed during the experiment. The non-homogeneous
suction prevented the maximum heat to be extracted from the panel, creating a
non-uniform temperature along the absorber plate resulting in higher radiation
losses to the surroundings. Therefore, with the panel possibly not working at its
optimal performance, it is not surprising that the temperatures estimated by the
TRNSYS model were slightly higher than the ones measured on the prototype.

As a direct consequence of the higher collector outlet temperature, the use-
ful thermal output calculated by the TRNSYS model was always greater than
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that obtained experimentally, even though the curve trends were very similar. In
fact, the difference between the two curves varied between 50 W/m?panel and 100
W /m?panel, as shown in Figures 5.16 to 5.19 (b). From these plots, it can also
be observed that the predicted maximum electrical power curve was the closest to
the experimental results on September 6. On the other days, when the fan was
turned on, the power estimated by the model was generally higher between 7:30
and 10:30. Within this period, the trends of the experimental and predicted curves
were also quite different. The TRNSYS curves corresponded to a dome with a peak
coinciding with the highest measurement of solar radiation, while the experimental
data points followed a trend similar to a descending plateau. The experimental
results did not show a peak on September 6 either, but the measured values were

much closer to what was predicted.
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Figure 5.20: Variation of the wind heat transfer coefficient with the wind speed for
different correlations

The reason why the TRNSYS results were closer to the experimental measure-

ments on the day with zero flow is because the PV cells layout consisted of solar
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cells mainly connected in parallel. The maximum power point current and voltage
temperature coefficients for the full-size solar cells used in the panel construction
were of 0 %/°C and -0.45%/°C, respectively. Once the PV cells were cut and con-
nected together, these coefficients changed, but the solar cells voltage at maximum
power point should have remained much more sensitive to a change in temperature
than the current. When suction occurred at the collector surface, the temperature
on the panel was not uniform. Thus, each series of cells was at a particular temper-
ature thereby operating at a different voltage. With the series of cells connected in
parallel, the voltage of the whole PV cells layout was brought down to the voltage
produced by the series of cells at the highest temperature. This resulted in the
reduction of the power measured. On September 6, the collector was closer to be-
ing isothermal, and consequently, the voltage generated by each series of cells were
more similar and the power measured was predicted better by the PV/Thermal
UTC model.
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Figure 5.21: Variation of the current and voltage recorded on September 1
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A possible explanation for the absence of a peak of power on the experimental
curve at the point of maximum solar radiation can be found in Figure 5.21 where
the voltage and current recorded on September 1°¢ are plotted. This figure shows
that the trend of the voltage measured was as expected. Between 7:45 and 9:30, the
voltage remained constant despite the increase of solar radiation, because of the rise
of the cells temperature. The current, on the other hand, was expected to vary only
with the irradiance, since the current temperature coefficient of the full size solar
cells at maximum power point was of 0%/°C. From Figure 5.21, it can be seen that
not only the current seemed to be influenced by the cells temperature, but a greater
current was measured at lower irradiance. An assumption for these unexpected
measurements can be that even though the cells were electrically insulated from
the panel, a portion of the current might have started leaking to the plate when
the collector reached a certain temperature. Unfortunately, during the maximum
power point tracking, the current was not directly calculated. Thus, the possible

anomaly related to this variable was not noticed in the three weeks of the testing.
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Chapter 6

Conclusions and

Recommendations

6.1 Conclusions

A TRNSYS model was developed to predict the heat output and electricity pro-
duced by a PV/Thermal unglazed transpired collector of corrugated shape. The
model was based on an existing UTC component, but was modified to account for
the wind effects, the corrugated shape of the plate and the fact that PV cells could
be directly mounted on the panel. By comparing the thermal predictions of the
PV /Thermal UTC component with no PV cells to the ones of the original UTC
model, it was found that accounting for the wind heat losses was the change that
had the most significant impact on the overall collector performance. Two configu-
rations were considered in the development of the model. In the first configuration,
the cells were mounted only on the top surfaces of the corrugations, while in the
second configuration, the cells could be present on every surface of the collector.
TRNSYS simulations showed that mounting PV cells according to the first config-
uration would be a more cost-effective design because it prevented the solar cells
from being shaded by the collector. With such a configuration, the addition of PV
cells was estimated to decrease the thermal energy savings by 5.9%, but 13.6% were

expected to be recovered in the production of electricity.
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In order to validate the model, a 2.6 m? prototype of a PV/Thermal UTC was
built and mounted outdoors on the east facing wall of the University of Waterloo
BEG Hut. For a period of three weeks, the performance of the PV /Thermal collec-
tor at different air suction rates was studied by recording the collector surface and
outlet temperatures as well as the PV cells electrical output. Results showed that
when the fan was turned on, the PV cells were kept at a lower temperature and
that consequently, the electrical conversion efficiency was better. At 75 m3/h-m?,
an increase of 10% in the electrical power production was observed compared to
the case where the fan was turned off. The experiment also showed that at zero
flow, the back surface temperature rise of the panel on which the PV cells were
mounted was 9°C higher than at a flowrate of 55 m®/h-m?, and 14°C higher than
at 75 m3/h-m2. Thus, it was concluded that more electrical power could potentially
be produced at higher suction rates. As for the collector thermal performance, the
experimental results were as expected: greater temperature rise was measured at
lower air suction rates and higher thermal efficiencies were obtained at greater air
flow rates and lower wind speeds. Both the air temperature rise and collector ther-
mal efficiencies were found to be lower than expected. This could be attributed to
the non-uniform suction preventing the maximum heat of being extracted from the

panel and to the higher wind heat losses due to the small panel area.

TRNSYS simulations were performed with the PV/Thermal UTC component
using the prototype properties and the weather data of some experimental days as
parameters and inputs. The collector surface and outlet temperatures measured
and predicted by TRNSYS were found to follow similar trends. The temperatures
estimated by the model were, however, always a little higher than that obtained
experimentally, even after having modified the wind heat transfer correlation to
account for the small area of the collector. Several explanations were formulated
to justify the deviation between the measured and experimental results. First,
the wind heat loss coefficient used in the model did not take the wind direction
and trapezoidal corrugated shape of the collector into account. Second, two main
assumptions in the model were not respected during the experiment: the suction
was non-uniform and the panel was not isothermal. As a result, the thermal output

was generally over predicted by the model by approximately 50 W/m?panel to 100
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W /m?panel. At zero flow, the electrical power estimated by TRNSYS was found to
be very similar to that measured on the PV/Thermal collector. On the days where
the fan was on, the non-uniform temperature of each series of cells connected in
parallel caused a drop in the panel voltage measured. This resulted in lowering the
power produced by the prototype and an over prediction in the amount of electricity

estimated by the model.

6.2 Recommendations

e The correlations to estimate the wind heat transfer coefficient on UTCs have
not been adapted yet to panels with trapezoidal corrugated shapes. Further-
more, they do not take the effect of wind direction into account. As noticed
in this project, the wind plays a significant role in the performance of UTCs
and PV /Thermal UTCs. Thus, there is a need to study more in depth the
effect of wind speed and wind direction on transpired collectors with their

actual shape, that is trapezoidal corrugated shapes.

e In the experiment performed, it was not possible to evaluate the effect of the
PV cells on the UTC thermal performance. Thus, it is recommended that if
a similar prototype is built in the future, more PV cells be mounted on the
collector surface. Following the same idea, it is strongly suggested that for
outdoor testing, the PV/Thermal collector be monitored at the same time
as a PV module of equivalent power and a stand-alone UTC of same area,
for reference purposes. Furthermore, if resources are available, it would also
be very interesting to compare the performance of a PV/Thermal UTC with
PV cells mounted directly on the absorber plate to one with a PV Module
mounted on the front of the UTC.

e The prototype built for the experiment could not be used in real applica-
tions. The reason being that in order to leave the perforations uncovered,
the crystalline cells mounted on the panel were left without any cover. This
is of course, not recommended because not only could the cells have been

easily broken at any moment, but serious problems regarding dust collection
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started being noticed after the three weeks of testing. Moreover, if the panel
had not been protected on rainy days, the performance of the cells would
have seriously been affected. Consequently, it would be interesting to build
a prototype less fragile that could be used in the long-term. To build such a
collector, paint-on or flexible solar cells would have to be used. These types
of cells are, however, not as efficient as crystalline solar cells and do not
depend as much on temperature. Thus, the effect of the UTC on the cells
would probably not be as noticeable. To avoid the electrical performance of a
PV /Thermal collector to be affected by the non-uniform cooling of the cells,
it is also strongly recommended that the PV cells on the collector be mounted

in series as much as possible.

Finally, a better model, such as the 5-Parameter model, could be used in
the PV/Thermal UTC model to provide a more accurate estimation of the
electricity produced by the PV cells. These types of models, however, require
much more information regarding the solar cells properties and this is why a

simple model was preferred in this study.
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Appendix A

Method for Calculating the View

Factors

The view factors between two surfaces are calculated using Hottel’s String Rule
for 2D enclosures. This rule states that the view factor between a surface 1 and a
surface 2, F7_5, can be calculated using the following expression (Siegel & Howell,
1992).

Sum of crossed strings-Sum of uncrossed strings
F1,2 - g 2L g (Al)
1

For example, for the enclosure shown in Figure A.1, the view factor F;_, corre-

sponds to
(AC — BD) — (BC + AD)

F1,2 - (A2)

214

Figure A.1: 2D Enclosure for Hottel’s String Rule
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Six expressions were developed from the Hottel’s String Rule to obtain all the
view factors needed in the calculation of the absorbed solar radiation. The first
expression obtained is used to calculate the view factor between two surfaces with

a common edge and separated by an angle a (Figure A.2).

Figure A.2: Schematic diagram of surfaces 1 and 2 in the calculation of view factor 1

For surfaces 1 and 2 in Figure A.2, Equation A.1 can be written as

(Ll + Lg) — X
FLog=———" A3
g = (43)
where = can be expressed from the cosine law as
v = L3+ L3 — 2L, Lycos (A.4)

Using Equation A.4 in Equation A.3 and taking AF = f—f, Fi_5 can be simplified
as

AF +1—+/1+ AF?2 —2AF cosa
Fi_o= 5 (A.5)

The second expression developed is used to calculate the view factor between

two surfaces separated by an angle « that do not have a common edge (Figure A.3).
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Figure A.3: Schematic diagram of surfaces 1 and 2 in the calculation of view factor 2

From Figure A.3, Equation A.1 can be expressed as

Ly+x)—(Ls—Ly+y) x—y+Ly
2L1 B 2Ll

(A.6)
where L3 is considered to be a known variable and x and y correspond to

1172 = <L3 - L2)2 + L? — 2L1 <L3 - Lg) COS &
y* = L3+ L3 —2L1L3cosa

The third expression is used to calculate the view factor between two areas of

same length that face each other as shown in Figure A.4.

Figure A.4: Schematic diagram of surfaces 1 and 2 in the calculation of view factor 3
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From Figure A.4, the view factor between surfaces 1 and 2 can be expressed as

20 —z—y
i o=——7-—7—— A.
= St (AT

where z is considered to be a known variable and x and y are given as

v = 22+ L5 —2L1zcosa

y? = L?+2*—2xL cos(a— () (A.8)

In Equation A.8, ( is obtained from the sine law.

L
B =>C:sin_1(

sina sin(

Ly sin«
T

The fourth expression is used to calculate the view factor between two areas of

different length facing each other as shown in Figure A.5.

Figure A.5: Schematic diagram of surfaces 1 and 2 in the calculation of view factor 4

According to this Figure, the view factor between surface 1 and surface 2 can

be expressed as
rT+y—w-—=z
P y=— A9
12 oL, (A.9)
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Considering v and L3 to be known variables, z, x, w and y can be found from the

cosine law.

22 = (Ly—L1)*+ L2 —2(Ly— Ly) Lycos o

v = L34 L% —2LyL3cosa

w® = L3+ 2* —2Lyxcos(x — () (A.10)
y> = w’+ L] — 2wk, cos (180 — )

In Equation A.10, the angle ( is given as

L
- =>C:sin_1(

sina sin(

Lo sin o
T

The fifth expression is to calculate the view factor between two surfaces as shown

in Figure A.6.

Figure A.6: Schematic diagram of surfaces 1 and 2 in the calculation of view factor 5

The view factor between surface 1 and surface 2 is given as

z+ Ly — ((Ls — Li) +y) _rt+Li—y
2L1 2Ll

where L3 is a known variable and x and y correspond to

1> = (Ls— Ly)* + L2 — 2Ly (L3 — Ly) cosa
y* = L3+ L3—2LyL3cosa
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The sixth expression is to evaluate the view factor between two surfaces of

different length facing each other as demonstrated in Figure A.7.

Figure A.7: Schematic diagram of surfaces 1 and 2 in the calculation of view factor 6

According to this figure, F7_» can be expressed as

(A.11)

In Equation A.11, L3 is known and z, y and z are given as

v = L3+ L} —2L3L cosa
y2 = L% + L% — 2L3L9cosa
22 = 2?4+ L3 —2xLycos(a— ()

Lisin«
R | 1
¢ = sin ( . )

where
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Appendix B

Method for Calculating the
Shaded Portion

In order to find the shaded portion of a surface ¢, Py, i, a two-step method is
followed. The first step consists of identifying the shading case by comparing the
comparison angle 6. to each one of the 5 shading cases. This comparison angle is
the projection of the sun incidence angle on the cross-section plane of the surface
on which the collector is mounted. The method used to find 6. is based on the work
of Lee, Chung and Park (1987) assuming a surface of slope 3., mounted with an
azimuth angle v, as shown in Figure B.1. The orientation of the surface relative
to the cardinal points can be expressed with three unit vectors ﬁl,col; ﬁg,col and
5)37601 defined as

U lLeol = —COSYep + SN Y1 J

Uscot = —8IN7Y,0 €08 Bop & — COS By COSYVopy J +sin By k

— — — . . - . — -
U3,col = U 1,col X U2,col = SIN 7Y, SN ﬁcol 1 +sin ﬁcol COSYeor J =+ cos Bcol k

ﬁ
The sun ray is represented by the vector S and corresponds to

= . —- — . -
S =cosagsiny, ¢ +cosascosy, j +sinagk
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— — —
By projection the vector S on the (U1 o1, U 3.001) plane, the comparison angle 6. is

obtained.
— =
tanf, = (M)
S - Uicol
tanf, — COS g SN 3, (81N 7Y SIN 7Y ; + COS Y4 COS Y,pp) + SID € €OS By

COS (g (COS Y, SIN Y,y — COS Yy SIN7Y)

. is measured from the vector ﬁ)l,col and is between -180° and 180°, thus

—

— — =
when S - Uiy <0Oand S -Usge >0=0.=m—0,

’

— - =
when Ui <0and S - Ugeq <0=0.=0.—7

ﬁ
S Uy,
- — — =

S-UlcolzoandS-Ug,col<0:>962—00

)

when

Z
aNorth

kS

—
U3,cc-l

East

y South

Figure B.1: Sun’s position relative to the solar collector
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There are 5 different shading cases, each delimited by a minimum and a maxi-
mum angle that are function of the dimensions of the collector as shown in Figure
B.2.

3
16
15
‘ Case 1 0<0:<0.4 ‘ Case 2 0,i<0.<0
Us.col S S -
> i S %, U3,col
3
./
7 ?
‘ Case 3 Bﬁﬁcﬁn-eﬂ ‘ Case 4 m-07<0:<m-Ogrit
U3,col
- \\\\
T ‘\",_ _I‘ﬂcnl

3 = / \' " U.i col
8 12 2 14
7 91 13

Case 5  m-0gi<0<n ‘

Figure B.2: Mininum and maximum angle delimiting the 5 shading cases

The second step consists of calculating the shaded portion of each surface by

using the geometric variables of the collector. Defining the critical angle 6..;; as

hr
—) (B.1)

ecrit = tan_l(
d—a+(%57)

the shaded portion of each surface can be expressed
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for case 1 as

for case 2 as

for case 4 as

and for case 5 as

D, sin (0zrit — 6,)

Ps - .
hit tT S1n (90 + QT)
_(a—2>
. hr — (55—)tanb.
LT (d = a)tand,
hr — (25-0)tand
T —ojtante
Psh,7 =

Wenatant,

he — (&5)tan(n — 6.)
Psh,l =

(d — a)tan(m —6,)

hy — (%5 b)tcm(w —46,)
Psh,l - 2

Wepatan(m —6,.)

Dgsin (0erip + 6. — )
tT sin (71' — Hc + HT)

Psh,2 =
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Appendix C

PV /Thermal Collector Model
Fortran Code

SUBROUTINE TYPE250 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL, *)
C************************************************************************
C Object: NewPV/Thermal UTC
C Simulation Studio Model: Type250
C
C Author: David Summers, 1995 (UTC model)

C Editor: Veronique Delisle, 2007 (PV/Thermal UTC model)

C Changes were made to account for the wind effects,
C the corrugated shape of the plate (absorbed solar

C energy) and the fact that PV cells are mounted

C on the absorber plate

C Last modified: November 19, 2007

This models predicts the thermal and electrical performance of a
PV/Thermal Collector unglazed transpired collector with PV cells
mounted directly on the absorber plate. The absorber plate has a
trapezoidal corrugated shape. In Mode 1, the collector
is solved as a stand-alone UTC. In Mode 2, the PV cells can be
mounted only on the top surfaces of the corrugation. In Mode 3,
the PV cells can be mounted on every surface of the collector.
ks

*** Model Parameters
Hkkk

Length of the base of the trapezoid m [0;+Inf]

Length of the top of the trapezoid m [0;+Inf]

Ribs height m [0;+Inf]

Plate porosity -[0;1]

Hole pitch m [0;+Inf]

Plate length m [0;+Inf]

Distance between 2 corrugations m [0;+Inf]

Plate width m [0;+Inf]

Absorbtance of the wall/roof on which the collector is mounted -[0;1]
Gap between the corrugated plate and the wall ~ m [0;+Inf]

Back of the collector emissivity - [0;1]

Wall emissivity - [0;1]
Collector thickness - [0;+Inf]
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Panel absorptance - [0;1]

Collector surface emissivity - [0;1]

Opverall loss coefficient of the building wall kJ/hr.m"2.K [0;+Inf]
PV Mode- [1;3]

Efficiency modifier-Temperature - [-Inf;+Inf]

PV efficiency at reference conditions - [0;1]

PV cell reference temperatureC [-Inf;+Inf]

PV absorptance-transmittance product - [0;1]

PV emissivity -[0;1]

Bypass collector in the symmer [1:yes,0:NO] - [0;1]

Bypass temperature C [-Inf;+Inf]

PV cells glazing refraction index - [0;+Inf]

PV cells galzing extinction coefficient m”-1 [0;+Inf]

PV cells glazing thickness ~ m [0;+Inf]

Proportion of PV cells on the surface at the top of the corrugation- [0;1]
Proportion of PV cells on the surface at the bottom of the corr. [0;1]

Proportion of PV cells on the surface on the sides of the grooves - [0:1]
skdok
*** Model Inputs
skdok
Beam radiation on the collector surface kJ/hr.m"2 [-Inf;+Inf]
Sky diffuse radiation on the collector surface kJ/hr.m?2 [-Inf;+Inf]
Ground reflected diffuse on the collector surface kJ/hr.m"2 [-Inf;+Inf]
Horizontal beam radiation  kJ/hr.m"2 [-Inf;+Inf]
Incidence angle on the horizontal surface degrees [-Inf;+Inf]
Solar azimuth angledegrees [-Inf;+Inf]
Wind velocity m/s [-Inf;+Inf]
Ambient temperature C [-Inf;+Inf]
Ambient pressure  Pa [-Inf;+Inf]
Incidence angle on the collector surface degrees [-Inf;+Inf]
Building temperature C [-Inf;+Inf]
Sky temperature  C [-Inf;+Inf]
Minimum air flow rate through the collector kg/hr [-Inf;+Inf]
Maximum air flow rate through collector kg/hr [-Inf;+Inf]
Collector slope degrees [-Inf;+Inf]
Azimuth angle degrees [-Inf;+Inf]
Gound reflectance - [-Inf;+Inf]
Total horizontal radiation kJ/hr.m”2 [-Inf;+Inf]
Horizontal diffuse radiation kJ/hr.m"2 [-Inf;+Inf]
Temperature of the air that needs to be supplied to the building[-Inf;+Inf]
kdok
*** Model Outputs
kosfesk

Collector surface temperature C [-Inf;+Inf]

Plenum temperature C [-Inf;+Inf]

Mixed temperature C [-Inf;+Inf]

Collector outlet temperature C [-Inf;+Inf]

Mass fraction of outside air - [-Inf;+Inf]

Mass fraction of recirculated air - [-Inf;+Inf]

Mass flow rate of air through the collector kg/hr [-Inf;+Inf]
Collector heat exchange effectiveness - [-Inf;+Inf]
Collector thermal efficiency - [-Inf;+Inf]

Collector electrical efficiency - [-Inf;+Inf]

PV cells efficiency - [-Inf;+Inf]

Collector useful energy W [-Inf;+Inf]

Maximum electrical power output W [-Inf;+Inf]
Reduced wall heat losses W [-Inf;+Inf]

Collector is bypassed: NO=0, YES=1 - [0;1]

Absorbed solar energy W/m”2 [-Inf;+Inf]
C************************************************************************
C TRNSYS acess functions (allow to acess TIME etc.)

USE TrnsysConstants

ololoNooloNoNolo o NoNo o RoNoNoNo o loNoNoNoNoNolo o lolo oo Nololo o loloNoloNoloNo o NoRoloRoNoNoNo o No o NoNo o RO RO XO K]
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USE TrnsysFunctions

aa

REQUIRED BY THE MULTI-DLL VERSION OF TRNSYS
'DECSATTRIBUTES DLLEXPORT :: TYPE250 ISET THE CORRECT TYPE NUMBER HERE

[oN®!

[oNeXe!

[ONOK®!

[N N®!

TRNSYS DECLARATIONS
IMPLICIT NONE !'REQUIRES THE USER TO DEFINE ALL VARIABLES BEFORE USING THEM

DOUBLE PRECISION XIN,OUT,TIME,PAR,STORED, T,DTDT
INTEGER*4 INFO(15)

INTEGER*4 NP,NLNOUT,ND

INTEGER*4 NPAR,NIN,NDER

INTEGER*4 IUNIT,ITYPE

INTEGER*4 ICNTRL

INTEGER*4 NSTORED

CHARACTER*3 OCHECK,YCHECK

USER DECLARATIONS - SET THE MAXIMUM NUMBER OF PARAMETERS (NP), INPUTS (NI),
OUTPUTS (NOUT), AND DERIVATIVES (ND) THAT MAY BE SUPPLIED FOR THIS TYPE
PARAMETER (NP=30,NI=20,NOUT=16,ND=0,NSTORED=0)

REQUIRED TRNSYS DIMENSIONS

DIMENSION XIN(NI),0UT(NOUT),PAR(NP),YCHECK(NI),OCHECK(NOUT),
1 STORED(NSTORED),T(ND),DTDT(ND)

INTEGER NITEMS

COMMON BLOCK DEFINITIONS

Common variables
COMMON/PVT/a,b,h_trap,d,pitch,length,dist,width
COMMON/PVT/hp,e_back,e_wall,th,Uwall,EffT,EffRef, Tref
COMMON/PVT/PPV,Uwind,Tamb,Tblg, Tsup,hfilm
COMMON/PVT/Flow,Gam,t_trap,ThetaT,Por,rho_amb,visc_amb
COMMON/PVT/AreaW k_amb,ecol,Trad,L,cp_amb,Area_cs
COMMON/PVT/QBsurf,QDsurf,Qsurf,Psh,Area,AlphaB,AlphaDcoll
COMMON/PVT/PVOn,SHCASE,nb_corr,PVMode

ADD DECLARATIONS AND DEFINITIONS FOR THE USER-VARIABLES HERE

PARAMETERS

DOUBLE PRECISION a,b,h_trap,d,pitch,length,dist,width,AlphaW
DOUBLE PRECISION hp,e_back,e_wall,th,AlphaPle_coll,Uwall
DOUBLE PRECISION EffT,EffRef, Tref,TauAlfPV,e pv,Tbypass
DOUBLE PRECISION Kgl,Lgl,ngl
DOUBLE PRECISION PPV

INPUTS

DOUBLE PRECISION GbW,GdW,GgW,GbH
DOUBLE PRECISION ThetaZ,GammaS,Uwind, Tamb,Patm,ThetabW
DOUBLE PRECISION Tblg, Tsky,MinFlow,MFlow,betaW,GammaW
DOUBLE PRECISION GrndRef,Gh,GdH,Tsup
INTERNAL AND COMMON VARIABLES
DOUBLE PRECISION Gb,Gd,Gg,GamMIN, Theta,Beta,lowg,hig,oldg,difg
DOUBLE PRECISION t_trap,ThetaT,diag,Por,tho_amb,Gam
DOUBLE PRECISION T comp,T _crit,Trad,visc_amb,Flow,ThetaEnd,k_amb
DOUBLE PRECISION Gamma,Thetar,Tau_a,TauC,Thetar_0,Tau_0
DOUBLE PRECISION Thetard, Thetarg,Tau_ad,Tau_ag,Taud, Taug,hrad_wc
DOUBLE PRECISION prop_sh,Area,L,PS
DOUBLE PRECISION AlphaDcoll,AlphaB,cp_amb,Wend,ecol,Area_cs
DOUBLE PRECISION Tground,AreaW,Zeta,FB,FD
DOUBLE PRECISION mx_dd,ma_augmdd,ma_augmdb,mx_db,ma_augmdg,mx_dg
DOUBLE PRECISION Jdb,Gdb,Jdd,Gdd,Jdg,Gdg,Rb
DOUBLE PRECISION QBsurf,QDsurf,Qsurf,Psh
DOUBLE PRECISION RhoB,RhoGceoll,AlphaG,SsU1,SsU2,AlphaS
DOUBLE PRECISION RhoDColl, ThetadW,ThetagW
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DOUBLE PRECISION EffPV,QE,EffELEffTh,QradW,PropPV
DOUBLE PRECISION hfilm,Tsa,QredW,Qpot, Tmix,FCS, FCG
DOUBLE PRECISION Time0,TFINAL,DELT

C PVTtrcSOLVE Variables
DOUBLE PRECISION Tcol,Tplen,Qrad_cs,Qrad_wc,Twall
DOUBLE PRECISION Qconv_wa,Qwind,Qconv_ca,Qcond_wT,Qabs
DOUBLE PRECISION Tout,Vs,Qu,effhx,hwall UTC

C CONSTANTS
DOUBLE PRECISION PI,Rair,SB,G

INTEGER*4 PVmode,BypTemp
INTEGER*4 nb_surf,Bypass,PVSurf,PVOn
INTEGER*4 i,j,K,nb_case,N,NbJ,SHCASE,FPASS,nb_corr, COUNT

PARAMETER (nb_case=5,nbJ=11,nb_surf=8)

DIMENSION PPV(nb_surf)

DIMENSION Gamma(nbJ), Theta(nblJ),Beta(nblJ),Gd(nbJ),Gg(nbJ),Rb(nbJ)
DIMENSION mx_dd(nbJ),Jdd(NbJ),Jdg(NbJ),mx_dg(nbJ),Gdg(nb_surf)
DIMENSION Gb(nb_surf),Psh(nb_surf),Area(nb_surf)

DIMENSION RhoB(nb_surf),RhoGcoll(nb_surf),PVSurf(nb_surf)
DIMENSION RhoDColl(nb_surf*2),L(nb_surf*2),Jdb(nb_surf*2)
DIMENSION mx_db(nb_surf*2),ma_augmdb((nb_surf*2),((nb_surf*2)+1))
DIMENSION Gdb(nb_surf*2),FB((nb_surf*2),(nb_surf*2))

DIMENSION prop_sh(nb_surf,(nb_case+1)),Gdd(nb_surf)

DIMENSION PS(nb_surf),QBsurf(nb_surf),QDsurf(nb_surf)
DIMENSION Qsurf(nb_surf),PVOn(nb_surf),AlphaG(nb_surf)
DIMENSION ma_augmdd(nbJ,(nbJ+1)),ma_augmdg(nbJ,(nbJ+1))
DIMENSION FD(NbJ,NbJ),AlphaB(nb_surf),AlphaDcoll(nb_surf)
DIMENSION Thetar(nb_surf),Tau_a(nb_surf),TauC(nb_surf)

C
C DATA STATEMENTS
DATA P1/3.141592654/,Rair/0.2870/,g/9.8/
DATA YCHECK/IRI'IR1''IR1"'IR1','DG1'/DGI','VE1','TE1',
& 'PR3','DGI1','TE1',TEl')MF1''MF1','DG1','DG1',DM1,
& 'IR1,'IR1",'TE1"
DATA OCHECK/'TE1','TEl', TE1', TE1','DM1'/DM1'MF1'/DM1',
& 'DM1',DM1',DM1',/PW2'PW2"'PW2''DM1','IR2"/
C
c TRNSYS FUNCTIONS
TIMEO=getSimulationStartTime()
TFINAL=getSimulationStopTime()
DELT=getSimulationTimeStep()
C

C SET THE VERSION INFORMATION FOR TRNSYS
IF(INFO(7).EQ.-2) THEN
INFO(12)=16
RETURN 1
ENDIF

C DO ALL THE VERY LAST CALL OF THE SIMULATION MANIPULATIONS HERE
IF (INFO(8).EQ.-1) THEN

RETURN [

ENDIF
C
C PERFORM ANY 'AFTER-ITERATION' MANIPULATIONS THAT ARE REQUIRED HERE

IF (INFO(13).GT.0) THEN
RETURN [

ENDIF

C

C DO ALL THE VERY FIRST CALL OF THE SIMULATION MANIPULATIONS HERE
IF (INFO(7).EQ.-1) THEN
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C  SET SOME INFO ARRAY VARIABLES TO TELL THE TRNSYS ENGINE HOW THIS TYPE IS TO WORK
TUNIT=INFO(1)
ITYPE=INFO(2)
INFO(6)=NOUT
INFO(9)=1
INFO(10)=0  !STORAGE FOR VERSION 16 HAS BEEN CHANGED

C SET THE REQUIRED NUMBER OF INPUTS, PARAMETERS AND DERIVATIVES THAT THE USER
SHOULD SUPPLY IN THE INPUT FILE
NIN=NI
NPAR=NP
NDER=ND

C CALL THE TYPE CHECK SUBROUTINE TO COMPARE WHAT THIS COMPONENT REQUIRES TO
WHAT IS SUPPLIED IN
C THE TRNSYS INPUT FILE
CALL TYPECK(1,INFO,NIN,NPAR,NDER)
CALL RCHECK(INFO,YCHECK,OCHECK)
C RETURN TO THE CALLING PROGRAM
RETURN 1
ENDIF

a0

DO ALL OF THE INITIAL TIMESTEP MANIPULATIONS HERE
IF (TIME .LT.(TIMEO+DELT/2.D0)) THEN

C  SET THE UNIT NUMBER FOR FUTURE CALLS
TUNIT=INFO(1)
ITYPE=INFO(2)

C Read the values of the parameters in sequential order
a=PAR(1)
b=PAR(2)
h_trap=PAR(3)
Por=PAR(4)
pitch=PAR(5)
length=PAR(6)
dist=PAR(7)
width=PAR(8)
AlphaW=PAR(9)
hp=PAR(10)
e_back=PAR(11)

e wall=PAR(12)
th=PAR(13)
AlphaPl=PAR(14)

e coll=PAR(15)
Uwall=PAR(16)
PVMode=PAR(17)
EffT=PAR(18)
EffRef=PAR(19)
Tref=PAR(20)
TauAlfPV=PAR(21)
e_PV=PAR(22)
BypTemp=PAR(23)
Tbypass=PAR(24)
ngl=PAR(25)
kgl=PAR(26)
Lgl=PAR(27)
PPV(3)=PAR(28)
PPV(1)=PAR(29)
PPV(2)=PAR(30)
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C CHECK THE PARAMETERS FOR PROBLEMS AND RETURN FROM THE SUBROUTINE IF AN ERROR
IS FOUND

IF(a.LE.0) CALL TYPECK(-4,INFO,0,1,0)

IF(b.GE.a) CALL TYPECK(-4,INFO,0,2,0)

IF(b.LE.0) CALL TYPECK(-4,INFO,0,2,0)

IF(h_trap.LE.0) CALL TYPECK(-4,INFO,0,3,0)

IF(Por.LE.0) CALL TYPECK(-4,INFO,0,4,0)

IF(pitch.LE.0) CALL TYPECK(-4,INFO,0,5,0)

IF(length.LE.0.OR.length.LE.a.OR.

& length.LE.b) CALL TYPECK(-4,INFO,0,6,0)
TF(a.GE.dist.OR.dist. LE.0) CALL TYPECK(-4,INFO,0,7,0)
IF(width.LE.dist.OR.width.LE.0) CALL TYPECK(-4,INFO,0,8,0)
IF(AlphaW.LE.0.OR.AlphaW.GT.1)CALL TYPECK(-4,INFO,0,9,0)
IF(hp.LE.0)CALL TYPECK(-4,INFO,0,10,0)
TF(e_back.LT.0.OR.¢_back.GT.1) CALL TYPECK(-4,INFO,0,11,0)
IF(e_wall.LT.0.OR.e_wall.GT.1) CALL TYPECK(-4,INFO,0,12,0)
IF(th.LE.0) CALL TYPECK(-4,INFO,0,13,0)
TF(AlphaPl.LE.0.OR.AlphaPl.GE.1) CALL TYPECK(-4,INFO,0,14,0)
TF(e_coll.LT.0.0R.¢_coll.GT.1) CALL TYPECK(-4,INFO,0,15,0)
IF(Uwall.LE.O) CALL TYPECK(-4,INFO,0,16,0)
IF(PVMode.LT.1.0R.PVMode.GT.3) CALL TYPECK(-4,INFO,0,17,0)
IF(EffRef.LE.0.OR.EffRef.GT.1) CALL TYPECK(-4,INFO,0,19,0)
IF(TauAlfPV.LT.0.0R.TauAlfPV.GT.1) CALL TYPECK(-4,INFO,21,0)
IF(e_PV.LE.0.OR.e PV.GT.1) CALL TYPECK(-4,INFO,22,0)
TF(BypTemp.LT.0.0R BypTemp.GT.1)CALL TYPECK(-4,INFO,24,0)
IF(PPV(3).LT.0.0R.PPV(3).GT.1)CALL TYPECK(-4,INFO,28,0)
IF(PPV(1).LT.0.0R.PPV(1).GT.1)CALL TYPECK(-4,INFO,29,0)
IF(PPV(2).LT.0.OR.PPV(2).GT.1)CALL TYPECK(-4,INFO,30,0)

RETURN 1
ENDIF
C
C RE-READ IN THE VALUES OF THE PARAMETERS IN SEQUENTIAL ORDER
IF(INFO(1).NE.IUNIT) THEN

C RESET THE UNIT NUMBER
TUNIT=INFO(1)
ITYPE=INFO(2)

=PAR(1)
b=PAR(2)
h_trap=PAR(3)
Por=PAR(4)
pitch=PAR(5)
length=PAR(6)
dist=PAR(7)
width=PAR(8)
AlphaW=PAR(9)
hp=PAR(10)
e back=PAR(11)
e wall=PAR(12)
th=PAR(13)
AlphaPI=PAR(14)
e _coll=PAR(15)
Uwall=PAR(16)
PVMode=PAR(17)
EffT=PAR(18)
EffRef=PAR(19)
Tref=PAR(20)
TauAlfPV=PAR(21)
e PV=PAR(22)
BypTemp=PAR(23)
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Tbypass=PAR(24)
ngl=PAR(25)
kgl=PAR(26)
Lgl=PAR(27)
PPV(3)=PAR(28)
PPV(1)=PAR(29)
PPV(2)=PAR(30)
ENDIF

C RETRIEVE THE CURRENT VALUES OF THE INPUTS TO THIS MODEL FROM THE XIN ARRAY
GbW=XIN(1)
GdW=XIN(2)
GgW=XIN(3)
GbH=XIN(4)
ThetaZ=XIN(5)
GammaS=XIN(6)
Uwind=XIN(7)
Tamb=XIN(8)
Patm=XIN(9)
ThetabW=XIN(10)
Tblg=XIN(11)
Tsky=XIN(12)
MinFlow=XIN(13)
MFlow=XIN(14)
BetaW=XIN(15)
GammaW=XIN(16)
GrndRef=XIN(17)
Gh=XIN(18)
GdH=XIN(19)
Tsup=XIN(20)

C CHECK THE INPUTS FOR PROBLEMS
IF(Uwind.LT.0.) CALL TYPECK(-3,INFO,7,0,0)
IF(Patm.LT.0.) CALL TYPECK(-3,INFO,9,0,0)
IF(MinFlow.LT.0)CALL TYPECK(-3,INFO,13,0,0)
IF(MFlow.LT.0)CALL TYPECK(-3,INFO,14,0,0)
IF(MinFlow.GT.MFlow)CALL TYPECK(-3,INFO,14,0,0)
IF(GrndRef.GT.1)CALL TYPECK(-3,INFO,17,0,0)

IF(ErrorFound()) RETURN 1

C SET THE PROPORTION OF PV CELLS ON EACH SURFACE
DO i=1,nb_surf
PVsurf(i)=0
ENDDO

IF (PVMode.EQ.1)THEN
DO i=1,nb_surf
PPV(i)=0.0
PVsurf(i)=0
ENDDO
ELSE IF (PVMode.EQ.2)THEN
DO i=1,nb_surf
IF (i.EQ.3) THEN
PPV(i)=PPV(i)
PVsurf(i)=1
ELSE
PPV (i)=0.0
PVsurf(i)=0
ENDIF
ENDDO
ELSE
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DO i=1,nb_surf

C

IF (i.LE.4)THEN
PPV(i)=PPV(i)
PVsurf(i)=1

ELSE
PPV(i)=0.0
PVsurf(i)=0
ENDIF
ENDDO
ENDIF
IF (MFlow.LE.0.0)THEN
GamMIN=0.0
ELSE

GamMIN=MinFlow/MFlow
ENDIF
CALCULATE DIAMETER WITH THE RELATION OF Van Decker
D=((4*POR*Pitch*Pitch)/PI)**0.5

ek sk sk sk sk sk sk sk sk sk sk sk sk skl sk sk sk sk skeoske sk sk ske sk sk sk sk sk sk skeske sk sk sk sk sk sk skl sk sk sk sk skeske sk sk sk sk sk sk skt sk skeske sk sk sl sk skosk stk sk kol sk skokoskokskokokskok

C

110

SET CONSTANTS VALUE
SB=(5.67e-8)*3.6 !Stefan Boltzmann constant [kJ/hr*m2*K4]

MODIFY AND CONVERT PARAMETERS & INPUTS
Uwind=Uwind*3600 !Convert m/s in m/h
Tamb=Tamb+273.15

Tsup=Tsup+273.15

Tblg=Tblg+273.15

Tsky=Tsky+273.15

Tground=Tamb

SET FILM COEFFICIENT TO 15 W/m2 C [ENERMODAL, 1994]
hfilm=15.0*3.6 !Film heat transfer coefficient [kJ/hm2C]

CALCULATE TRAD

FCS=(1+COSD(BetaW))/2.0
FCG=(1-COSD(BetaW))/2.0
Trad=(((Tground**4)*FCG)+((Tsky**4)*FCS))**0.25

CALCULATE TOTAL RADIATION ON THE COLLECTOR SURFACE
QradW=GbW+GdW+GgW

IF NIGHTTIME, THE COLLECTOR IS AUTOMATICALLY BYPASSED
Bypass=0
IF(QradW.LT.1.0)THEN
Bypass=1
GO TO 110
ENDIF

IF SUMMER, BYPASS COLLECTOR WHEN THE BYPASS OPTION IS SET TO 1
IF (Tamb.GT.(Tbypass+273.15))THEN
IF(BypTemp.GE.1)THEN
Bypass=1
ELSE
Bypass=0
ENDIF
ELSE
Bypass=0
ENDIF

CONTINUE
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C

CALCULATE PV/THERMAL COLLECTOR GEOMETRIC CONSTANTS AND
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C AREA FOR EACH SURFACE INCLUDING HOLES

e sfe s 3 sfe e s sfe s 3 shesie s sfe s s she e sfesfe sk s sfe e sfesfe sk sfeshe st sfesfe sk sfeshe s sfe e sk sfeshe s st she sk sfeske s sfeshe sk sfeske s she s skeste sk st shesie skeste sk st st skesteokokoskeolokolokk
t_trap=sqrt((h_trap**2)+(((a-b)/2)**2)) ![m]
ThetaT=asin(h_trap/t trap) ![rad]
ThetaEnd=ATAN(h_trap/(((a-b)/2)+Wend))
diag=(((dist-((atb)/2))**2)+(h_trap**2))**0.5
nb_corr=AINT((width+dist-a)/dist)
Wend=(width-a-(dist*nb_corr)+dist)/2

i=1

DO i=1,nb_surf
Area(i)=0.0

ENDDO

Area(1)=(dist-a)*length
Area(2)=t_trap*length
Area(3)=b*length
Area(4)=Area(2)
Area(5)=Wend*length
Area(6)=Area(2)
Area(7)=Area(5)
Area(8)=Area(2)

AreaW=width*length
Area_cs=(width*hp)+(nb_corr*h_trap*((a+b)/2))

st stk s ot ek sk sk ol et s s ol et sl s ol sl ok st sl ok stk sl ek sl skl ek s sk ol R sk ok Rkl ok Rkl o Rk sk ok ok

C CALCULATE AIR PROPERTIES AT AMBIENT TEMPERATURE WITH IDEAL GAS LAW
C AND SUTHERLAND LAW
stk stk o sk o ok sk ok skof sk ok sk sk sk skt skl stk stk sk ok s ok skt skok stk ok sk sk okoskok sk ok sk stk skokosk sk ok ok ok skokokkoksk ok ok skoksk ok
rho_amb=(Patm*0.001)/(Rair*Tamb) I[kg/m3]
visc_amb=(((1.71e-5)*((Tamb/273)**1.5)*((273+110.4)/
(Tamb+110.4))))*3600 I[kg/mh]
cp_amb=(28.11+(0.001967*Tamb)+(0.4802¢-5*Tamb*Tamb)-
(1.966e-9*Tamb*Tamb*Tamb))*(1/28.97) I[kJ/kgK]
k_amb=(((2.414¢-2)*((Tamb/273)**1.5)*((273+194.4)/
(Tamb+194.4))))*3.6 I[kJ/mC]
Flow=Mflow/rho_amb I[m3/hr]
stk st o sk o sk sk ok skof sk ok sk ok sk sk ok skl stk ook sk ok sk skt sk stk ok sk skokoskok ok ok skok kokosk sk ok ok ok sk koksk ok ok skokosk ok
C CALCULATE SOLAR ANGLES AND IRRADIATION FOR EACH SURFACE
stk stk o sk o ok sk ok skok sk ok sk ok sk kot skl stk ook sk ook sk skt skok stk ok sk sk okoskok ok ok sk stk kokosk sk ok ok ok skokosk ok sk ok ok skoksk ok
DO i=1,NbJ
Gamma(i)=0.0
Beta(i)=0.0
Theta(i)=0.0
Rb(i)=0.0
Gg(i)=0.0
Gd(i)=0.0
ENDDO
C AZIMUTH ANGLE (Gamma)
DO i=1,9,2
Gamma(i)=GammaW I[deg]
ENDDO
Gamma(2)=GammaW-+ACOSD(SIND(BetaW)*COS(ThetaT)) I[deg]
Gamma(4)=GammaW-ACOSD(SIND(BetaW)*COS(ThetaT)) I[deg]

Gamma(6)=Gamma(4)
Gamma(8)=Gamma(2)
Gamma(10)=GammaW+ACOSD(SIND(BetaW)*COS(ThetaEnd)) ![deg]
Gamma(11)=GammaW-ACOSD(SIND(BetaW)*COS(ThetaEnd)) ![deg]
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DO i=1,NbJ

[oNoNe!

150

IF(Gamma(i).GT.180)THEN
Gamma(i)=Gamma(i)-360.0
ELSE IF(Gamma(i).LT.(-1.0*180.0)) THEN
Gamma(i)=Gamma(i)+360.0
ENDIF
ENDDO

SLOPE (Beta)

DO i=1,9,2
Beta(i)=BetaW

ENDDO

DO i=2,8,2

Beta(i)=ACOSD(COS(ThetaT)*COSD(BetaW)) ![deg]
ENDDO
Beta(10)=ACOSD(COS(ThetaEnd)*COSD(BetaW)) I[deg]
Beta(11)=ACOSD(COS(ThetaEnd)*COSD(BetaW))

INCIDENCE ANGLE (Theta)
DO i=1,NbJ
Theta(i)=ACOSD((COSD(ThetaZ)*COSD(Beta(i)))+
(SIND(ThetaZ)*SIND(Beta(i)) *COSD(GammaS-Gamma(i)))) 'DEG
ENDDO

SKIP THIS STEP WHEN NO RADIATION ON THE COLLECTOR
IF (QradW.LE.(1.0)) GO TO 150

CALCULATE RATIO OF BEAM RADIATION (Rb)
DO i=1,NbJ
[F(COSD(ThetaZ).LE.0.001)THEN
Rb(i)=COSD(Theta(i))/0.001
ELSE
Rb(i)=(MAX(0.0,(COSD(Theta(i)))))/(COSD(ThetaZ))
ENDIF
ENDDO

BEAM RADIATION ON EACH SURFACE (GB)-ONLY FOR REAL SURFACES
DO i=1,nb_surf

Gb(i)=Rb(i)*GbH
ENDDO

GROUND REFLECTED RADIATION ON EVERY FICTITOUS SURFACE (GG)
SKY DIFFUSE RADIATION ON EVERY FICTITIOUS SURFACE (GD)
ISOTROPIC MODEL
Gg(9)=GgW
Gd(9)=GdW
DO i=10,11
Gg(i)=0.5*(1-(COSD(Beta(i))))*GrndRef*Gh
Gd(i))=GdH*(1+((COSD(Beta(i)))/2.0))
ENDDO

DO i=9,11
IF (Gg(i).LE.0.001)THEN
Gg(i)=0.0
Gd(i)=0.0
ENDIF
ENDDO
GO TO 160

CONTINUE
DO i=1,Nb_surf
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Gb(i)=0.0
Gd(i)=0.0
Gg(i)=0.0
ENDDO
160 CONTINUE
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C CALCULATE SOLAR OPTICAL PROPERTIES FOR EACH SURFACE
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DO i=1,nb_surf
AlphaB(i)=0.0
AlphaG(i)=0.0
RhoB(i)=0.0
RhoGecoll(i)=0.0

Thetar(i)=0.0

Tau_a(i)=0.0

TauC(i)=0.0
ENDDO

C EFFECTIVE SKY DIFFUSE AND GROUND REFLECTED ANGLES [DUFFIE AND BECKMAN, 1991]
ThetadW=59.68-(0.1388*BetaW)+(0.001497*BetaW *BetaW)
ThetaGW=90.0-(0.5788*BetaW)+(0.002693*BetaW *BetaW)

IF (Lgl.LE.0.001)GO TO 170

DO i=1,nb_surf
Thetar(i)=ASIND(SIND(Theta(i))/ngl)
Tau_a(i)=exp(-1*Kgl*Lgl/COSD(Thetar(i)))
TauC(i)=Tau_a(i)*(1-(0.5*((((SIND(Thetar(i)-Theta(i))) **2)/
((SIND(Thetar(i)+Theta(i)))**2))+
(((TAND(Thetar(i)-Theta(i)))**2)/
((TAND(Thetar(i)+Theta(i)))**2)))))

SRR

ENDDO

DO i=1,nb_surf
Thetar(i)=Thetar(i)
Tau_a(i)=Tau_a(i)
TauC(i)=TauC(i)

ENDDO

Tau_0=exp(-1*Kgl*Lgl)*(1-(((ngl-1)/(ngl+1))**2))/
& (1+(((ngl-1)/(ngl+1))**2))

Thetard=ASIND(SIND(Thetad W)/ngl)
Thetarg=ASIND(SIND(ThetagW)/ngl)

Tau_ad=exp(-1*Kgl*Lgl/COSD(Thetard))
Tau_ag=exp(-1*Kgl*Lgl/COSD(Thetarg))

Taud=Tau_ad*(1-(0.5*((((SIND(Thetard-ThetadW))**2)/
((SIND(Thetard+ThetadW))**2))+
(((TAND(Thetard-ThetadW))**2)/
((TAND(Thetard+ThetadW))**2)))))

Taug=Tau_ag*(1-(0.5*((((SIND(Thetarg-ThetagW))**2)/
((SIND(Thetarg+ThetagW))**2))+
(((TAND(Thetarg-ThetagW))**2)/
((TAND(Thetarg+ThetagW))**2)))))

PR R

DO i=1,nb_surf

Rhob(i)=PPV (i)*(1-TauC(i)-(1-Tau_a(i)))*+((1-PPV(i))*(1-AlphaPl))
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Rhogeoll(i)=PPV(i)*(1-Taug-(1-Tau_ag))+((1-PPV(i))*(1-AlphaPI))

170
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RhoDcoll(i)=PPV(i)*(1-Taud-(1-Tau_ad))+((1-PPV(i))*(1-AlphaPl))

Alphab(i)=(PPV(i)*(TauC(i)/Tau_0)*TauAlfPV)+((1-PPV(i))*AlphaPl)
Alphadcoll(i)=(PPV(i)*(Taud/Tau_0)*TauAlfPV)+((1-PPV(i))*AlphaPl)

ENDDO

CONTINUE

IF NO GLAZING ON THE PV CELLS, DO NOT TAKE INTO ACCOUNT THE

EFFECT OF THE INCIDENCE ANGLE

IF (Lgl.LE.0.001)THEN

DO i=1,nb_surf

Rhob(i)=(PPV (i)*(1-TauAlfPV))+((1-PPV(i))*(1-AlphaPl))
Rhogeoll(i)=(PPV(i)*(1-TauAlfPV))+((1-PPV(i))*(1-AlphaPl))
RhoDcoll(i)=(PPV(i)*(1-TauAlfPV))+((1-PPV(i))*(1-AlphaPl))

Alphab(i)=(PPV(i)*TauAlfPV)+((1-PPV(i))*AlphaPl)
Alphadcoll(i)=(PPV (i)*TauAlfPV)+((1-PPV(i))*AlphaPl)
ENDDO
ENDIF

SET RHOB, RHOD AND RHOG FOR EACH SURFACE

RHODCOLL(9 TO 16) ARE THE SHADED SURFACES TO CALCULATE THE BEAM DUE TO BEAM
RADIATION

RhoDcoll(10)=RhoDcoll(1)

RhoDcoll(9)=RhoDcoll(1)

DO i=11,16
RhoDcoll(i)=RhoDcoll(i-nb_surf)
ENDDO

CALCULATE COLLECTOR EMISSIVITY AS A WEIGHTED AVERAGE OF THE
PANEL AND PV CELLS EMISSIVITIES
IF (PVMode.EQ.1)THEN

PropPV=0.0

ecol=e_coll

ELSEIF (PvMode.EQ.2)THEN
PropPV=PPV(3)*Area(3)*Nb_corr/(AreaW)
ecol=((1-PropPV)*e_coll)+(PropPV*e_pv)

ELSE
PropPV=((PPV(1)*Area(1)*(Nb_corr-1))+
(PPV(3)*Area(3)*Nb_corr)+
(PPV(2)*Area(2)*(Nb_corr-1)*cos(ThetaT))+
(PPV(4)*Area(4)*(Nb_corr-1)*cos(ThetaT)))/AreaW
ecol=((1-PropPV)*e_coll)+(PropPV*e pv)
ENDIF
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C

FIND SHADING PORTION AND VIEW FACTORS
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AlphaS=90.0-ThetaZ I[deg]

CRITICAL ANGLE T _crit
T crit=atan(h_trap/(dist-at((a-b)/2))) ![rad]

CALCULATE SCALAR PRODUCT S.Ul AND S.U2
SsU1=(-1.0*COSD(GammaW)*COSD(AlphaS)*SIND(GammaS))+
(COSD(AlphaS)*COSD(GammaS)*SIND(GammaW))
SsU2=(COSD(AlphaS)*SIND(GammaS)*SIND(GammaW)*SIND(BetaW))
+(COSD(AlphaS)*COSD(GammaS)*COSD(GammaW)*SIND(BetaW))+
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&  (SIND(AlphaS)*COSD(BetaW))

C AVOID DIVIDING BY ZERO!
IF (SsUL.EQ.0)THEN
T _comp=ACOS(ABS(SsU2))
ELSE
T_comp=ATAN(ABS(SsU2)/ABS(SsU1))
ENDIF

IF(SsU1.LT.0.AND.SsU2.GE.0)THEN
T_comp=PI-T_comp

ELSE IF(SsU1.LT.0.AND.SsU2.LT.0)THEN
T_comp=-1.0*(PI-T_comp)

ELSE IF(SsU1.GE.0.AND.SsU2.LT.0)THEN
T _comp=-1.0*T comp

ELSE
T _comp=T_comp

ENDIF

DO i=1,nb_surf
PS(i)=0.0
DO j=1,(nb_case+1)
prop_sh(i,j)=2.0
ENDDO

ENDDO

DO i=1,(nb_surf*2)
L(1)=0.0
DO j=1,(nb_surf*2)
FB(i,j)=0.0
ENDDO
ENDDO

SHCASE=0
FPASS=1
200 CONTINUE
IF (GbW.GT.0) THEN

C "CASE 1"
IF(T_comp.GT.(0.0).AND.T_comp.LE.T_crit)THEN

SHCASE=1
ICALCULATE SHADING

prop_sh(1,1)=1.0
prop_sh(2,1)=1.0
prop_sh(4,1)=(diag*sin(T_crit-T_comp))/
& (t_trap*sin(T_comp+ThetaT))
prop_sh(3,1)=0.0
prop_sh(5,1)=0.0
prop_sh(6,1)=0.0
prop_sh(8,1)=1.0
prop_sh(7,1)=1.0

DO i=1,nb_surf
PS(i)=prop_sh(i,1)
ENDDO

C CALCULATE length OF EACH SURFACE
CALL CALCULDIM(PS,DIST,A,T_TRAP,B,Wend,L)

C CALCULATE RELEVANT SHAPE FACTORS
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CALL CALCULSF2(L(9),L(4).t_trap,(PI-ThetaT),FB(9,4))
CALL CALCULSF6(L(12),L(11),(Dist-a),(PI-ThetaT),FB(12,11))
CALL CALCULSF4(L(4),L(11),(Dist-a),(PI-ThetaT),FB(4,11))
CALL CALCULSF1(L(15),L(16),(PI-ThetaT),FB(15,16))
CALL CALCULSF1(L(9),L(12),(PI-ThetaT),FB(9,12))
CALL CALCULSF1(L(9),L(11),(PI-ThetaT),FB(9,11))
CALL CALCULSFI(L(5),L(6),(PI-ThetaT),FB(5,6))

FB(4,9)=(FB(9,4)*L(9))/(L(4))
FB(11,4)=(FB(4,1 1)*L(4))/(L(11))
FB(12,9)=(FB(9,12)*L(9))/(L(12))
FB(11,12)=(FB(12,11)*L(12))/(L(11))
FB(11,9)=(FB(9,1 1)*L(9))/(L(11))
FB(16,15)=(FB(15,16)*L(15))/(L(16))
FB(6,5)=(FB(5,6)*L(5))/(L(6))

"CASE 2"
ELSE IF(T_comp.GT.T _crit AND.T _comp.LE.ThetaT)THEN

SHCASE=2

prop_sh(1,2)=(h_trap-(tan(T_comp)*((a-b)/2)))/
((dist-a)*tan(T_comp))

prop_sh(2,2)=1.0

prop_sh(3,2)=0.0

prop_sh(4,2)=0.0

prop_sh(5,2)=0.0

prop_sh(6,2)=0.0

prop_sh(7,2)=(h_trap-(tan(T_comp)*((a-b)/2)))/
(Wend*tan(T_comp))

IF((prop_sh(7,2)).GT.(1.0))THEN
prop_sh(7,2)=1.0

ENDIF

prop_sh(8,2)=1.0

DO i=1,nb_surf
PS(i)=prop_sh(i,2)
ENDDO

CALCULATE length OF EACH SURFACE
CALL CALCULDIM(PS,DIST,A,T TRAP,B,Wend,L)

CALCULATE RELEVANT SHAPE FACTORS
CALL CALCULSFI(L(1),L(4),(PI-ThetaT),FB(1,4))

CALL CALCULSF1(L(9),L(11),(PI-ThetaT),FB(9,11))

CALL CALCULSF5(L(9),L(4),(Dist-a),(PI-ThetaT),FB(9,4))
CALL CALCULSF3(L(4),(Dist-a),(PI-ThetaT),FB(4,11))
CALL CALCULSF5(L(1),L(11),(Dist-a),(PI-ThetaT),FB(1,11))
CALL CALCULSF1(L(15),L(16),(PI-ThetaT),FB(15,16))
FB(16,15)=(FB(15,16)*L(15))/(L(16))

IF((PS(7)).LT.(1.0)) THEN
CALL CALCULSF5(L(7),L(16),Wend,(PI-ThetaT),FB(7,16))
FB(16,7)=(FB(7,16)*L(7))/(L(16))

ENDIF

CALL CALCULSF1(L(5),L(6),(PI-ThetaT),FB(5,6))
FB(4,1)=(L(1)*FB(1,4))/(L(4))

FB(4,9)=(FB(9,4)*L(9))/(L(4))
FB(11,4)=FB(4,11)
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FB(11,9)=(FB(9,11)*L(9))/(L(11))
FB(11,1)=(FB(1,11)*L(1))/(L(11))
FB(6,5)=(FB(5,6)*L(5))/(L(6))

C "CASE 3"
ELSE IF(T_comp.GT.ThetaT.AND.T_comp.LE.(PI-ThetaT))THEN
SHCASE=3

prop_sh(1,3)=0.0
prop_sh(2,3)=0.0
prop_sh(3,3)=0.0
prop_sh(4,3)=0.0
prop_sh(5,3)=0.0
prop_sh(6,3)=0.0
prop_sh(7,3)=0.0
prop_sh(8,3)=0.0

DO i=1,nb_surf
PS(i)=prop_sh(i,3)
ENDDO

C CALCULATE length OF EACH SURFACE
CALL CALCULDIM(PS,DIST,A,T TRAP,B,Wend,L)

C CALCULATE SHAPE FACTOR FOR THE EXISTING SURFACES

CALL CALCULSF! (L(1),L(4),(PI-ThetaT),FB(1,4))
CALL CALCULSFI (L(1),L(2),(PI-ThetaT),FB(1,2))
CALL CALCULSF! (L(7),L(8),(PI-ThetaT),FB(7.8))
CALL CALCULSF! (L(5),L(6),(PI-ThetaT),FB(5,6))
CALL CALCULSF3(L(2),(Dist-a),(PI-ThetaT),FB(2,4))

FB(2,1)=(FB(1,2)*L(1))/(L(2))
FB(4,1)=(FB(1,4)*L(1))/(L(4))
FB(4,2)=FB(2,4)

FB(8,7)=(FB(7,8)*L(7))/(L(8))
FB(6,5)=(FB(5,6)*L(5))/(L(6))

C "CASE 4"
ELSE IF(T_comp.GT.(PI-ThetaT).AND.T_comp.LE.(PI-T_crit)) THEN
SHCASE=4

prop_sh(1,4)=(h_trap-(tan(PI-T_comp)*((a-b)/2)))/
& ((dist-a)*tan(PI-T_comp))

prop_sh(2,4)=0.0

prop_sh(3,4)=0.0

prop_sh(4,4)=1.0

prop_sh(5,4)=(h_trap-(tan(PI-T_comp)*((a-b)/2)))/
& (Wend*tan(PI-T_comp))

IF((prop_sh(5,4)).GT.(1.0))THEN

prop_sh(5,4)=1.0
ENDIF

prop_sh(6,4)=1.0
prop_sh(7,4)=0.0
prop_sh(8,4)=0.0

DO i=1,nb_surf

PS(i)=prop_sh(i,4)
ENDDO
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CALCULATE length OF EACH SURFACE
CALL CALCULDIM(PS,DIST,A,T TRAP,B,Wend,L)

CALCULATE RELEVANT SHAPE FACTORS

CALL CALCULSFI (L(10),L(12),(PI-ThetaT),FB(10,12))
CALL CALCULSFI (L(1),L(2),(PI-ThetaT),FB(1,2))

CALL CALCULSFI (L(7),L(8),(PI-ThetaT),FB(7,8))

CALL CALCULSFI (L(13),L(14),(PI-ThetaT),FB(13,14))
CALL CALCULSF5 (L(1),L(12),(Dist-a),(PI-ThetaT),FB(1,12))
CALL CALCULSF3 (L(12),(Dist-a),(PI-ThetaT),FB(12,2))
CALL CALCULSF5 (L(10),L(2),(Dist-a),(PI-ThetaT),FB(10,2))

TF((PS(5)).LT.(1.0)) THEN

CALL CALCULSFS (L(5),L(14),Wend,(PI-ThetaT),FB(5,14))
FB(14,5)=(FB(5,14)*L(5))/(L(14))

ENDIF

FB(12,10)=(FB(10,12)*L(10))/(L(12))
FB(12,1)=(FB(1,12)*L(1))/(L(12))
FB(2,12)=FB(12,2)
FB(2,10)=(FB(10,2)*L(10))/(L(2))
FB(2,1)=(FB(1,2)*L(1))(L(2))
FB(8,7)=(FB(7,8)*L(7))/(L(8))
FB(14,13)=(FB(13,14)*L(13))/(L(14))

"CASE 5"
ELSE IF(T_comp.GT.(PI-T_crit).AND.T _comp.LE.PI)THEN
SHCASE=5

prop_sh(1,5)=1.0
prop_sh(2,5)=(diag*sin(T_comp-PI+T _crit))/
(t_trap*sin(PI-T_comp+ThetaT))
prop_sh(3,5)=0.0
prop_sh(4,5)=1.0
prop_sh(6,5)=1.0
prop_sh(7,5)=0.0
prop_sh(8,5)=0.0
prop_sh(5,5)=1.0

DO i=1,nb_surf
PS(i)=prop_sh(i,5)
ENDDO

CALCULATE length OF EACH SURFACE
CALL CALCULDIM(PS,DIST,A,T TRAP,B,Wend,L)

CALCULATE RELEVANT SHAPE FACTORS

CALL CALCULSF! (L(9),L(12),(PL-ThetaT),FB(9,12))

CALL CALCULSF! (L(9),L(11),(PL-ThetaT),FB(9,11))

CALL CALCULSF! (L(7),L(8),(PI-ThetaT),FB(7.8))

CALL CALCULSF! (L(13),L(14),(PI-ThetaT),FB(13,14))

CALL CALCULSF6 (L(11),L(12),(Dist-a),(PI-ThetaT),FB(11,12))
CALL CALCULSF4 (L(2),L(12),(Dist-a),(PL-ThetaT),FB(2,12))
CALL CALCULSF2 (L(9),L(2).t_trap,(PI-ThetaT),FB(9,2))

IF((PS(5)).LT.(1.0)) THEN

CALL CALCULSFS5 (L(5),L(14),Wend,(P1-ThetaT),FB(5,14))
FB(14,5)=(FB(5,14)*L(5))/(L(14))

ENDIF

FB(12,9)=(FB(9,12)*L(9))/L(12)
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FB(12,11)=(FB(11,12))*L(11)/L(12)
FB(12,2)=(FB(2,12)*L(2))/(L(12))
FB(11,9)=(FB(9,11)*L(9))/(L(11))
FB(2,9)=(FB(9,2)*L(9))/(L(2))
FB(8,7)=(FB(7,8)*L(7))/(L(8))
FB(14,13)=(FB(13,14)*L(13))/(L(14))

ENDIF

DO i=1,nb_surf
prop_sh(i,(nb_case+1))=MIN(prop_sh(i,1),prop_sh(i,2),
& prop_sh(i,3),prop_sh(i,4),prop_sh(i,5))
ENDDO

ENDIF

DO i=1,nb_surf
IF(prop_sh(i,(nb_case+1)).GE.2.0)THEN
prop_sh(i,(nb_case+1))=1.0
ELSE
prop_sh(i,(nb_case+1))=prop_sh(i,(nb_case+1))
ENDIF
ENDDO

IF (FPASS.EQ.2) THEN
goto 210
ENDIF
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C CALCULATE ABSORBED SOLAR RADIATION DUE TO BEAM
C*****************************************************************************
C SET MATRIX MA_AUGMDB
DO i=1,(nb_surf*2)
mx_db(i)=0.0
DO j=1,((nb_surf*2)+1)
ma_augmdb(i,j)=0.0
ENDDO
ENDDO

DO i=1,(nb_surf*2)
DO j=1,(nb_surf*2)
IF(i.eq.j)THEN
ma_augmdb(i,j)=1.0
ELSE
ma_augmdb(i,j)=-1.0*RhoDcoll(i)*FB(i,j)
ENDIF
ENDDO
ENDDO

DO i=1,nb_surf
ma_augmdb(i,17)=RhoB(i)*Gb(i)
ENDDO

CALL SOLVEMATRIX((nb_surf*2),ma_augmdb,mx_db)

DO i=1,(nb_surf*2)
Jdb(i)=mx_db(i)
ENDDO

C RE CALCULATE CONFIGURATION FACTORS
FPASS=2
DO i=1,(nb_surf*2)
DO j=1,(nb_surf*2)
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FB(i,j)=0.0
ENDDO
ENDDO

C RE CALCULATE SHAPE FACTORS
GO TO 200
210 CONTINUE
DO i=1,(nb_surf*2)
Gdb(i)=0.0
DO j=1,(nb_surf*2)
Gdb(i)=Gdb(i)+(FB(i,j)*Jdb(j))

ENDDO
ENDDO
ok ]
C CALCULATE ABSORBED SOLAR RADIATION DUE TO SKY DIFFUSE
C AND GROUND REFLECTED RADIATION
o e e L e S L
C CALCULATE VIEW FACTORS
FPASS=1
220 CONTINUE
DO i=1,(NbJ)
DO j=1,(NbJ)
FD(1,j)=0.0
ENDDO
ENDDO

CALL CALCULSF1 ((dist-a).t_trap,(PI-ThetaT),FD(1,2))
FD(2,1)=(FD(1,2)*(dist-a))/(t_trap)

CALL CALCULSF3(t_trap,(Dist-a),(PI-ThetaT),FD(2,4))
FD(4,2)=FD(2,4)

FD(1,4)=FD(1,2)

FD(4,1)=FD(2,1)

CALL CALCULSF1((dist-b),t_trap,ThetaT,FD(9,2))
FD(2,9)=(FD(9,2)*(dist-b))/t_trap

FD(4,9)=FD(2.9)

FD(9,2)=0.0

CALL CALCULSFI1 (Wend,t_trap,(PI-ThetaT),FD(5,6))
FD(6,5)=(FD(5,6)*Wend)/t_trap

FD(8,7)=FD(6,5)

FD(7,8)=FD(5,6)

CALL CALCULSF7 ((Dist-a),(Dist-b),h_trap,FD(1,9))
FD(7,10)=1-FD(7,8)

FD(8,10)=1.0-FD(8,7)

FD(5,11)=FD(7,10)

FD(6,11)=FD(8,10)

IF(FPASS.EQ.3)GO TO 240

C Set matrix ma_augmdd and ma_augmdg
DO i=1,nbJ
mx_dd(i)=0.0
mx_dg(i)=0.0
DO j=1,(nbJ+1)
ma_augmdd(i,j)=0.0
ma_augmdg(i,j)=0.0
ENDDO
ENDDO

DO i=1,nbJ
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DO j=1,nbJ

230

240

IF(i.eq.j) THEN
ma_augmdd(i,j)=1.0
ma_augmdg(i,j)=1.0

ELSE
IF(i.LE.nb_surf) THEN
ma_augmdd(i,j)=(-1.0¥RhoDcoll(i)*FD(i,j))
ma_augmdg(i,j)=(-1.0*RhoDcoll(i)*FD(i,j))
ELSE
ma_augmdd(i,j)=0.0
ma_augmdg(i,j)=0.0
ENDIF
ENDIF
ENDDO
ENDDO

ma_augmdd(3,12)=RhoDcoll(3)*GdW
ma_augmdd(9,12)=Gd(9)
ma_augmdd(10,12)=Gd(10)
ma_augmdd(11,12)=Gd(11)

ma_augmdg(3,12)=RhoGcoll(3)*GgW
ma_augmdg(9,12)=Gg(9)
ma_augmdg(10,12)=Gg(10)
ma_augmdg(11,12)=Gg(11)

IF (FPASS.eq.2)THEN
go to 230
ENDIF

CALL SOLVEMATRIX(NbJ,ma_augmdd,mx_dd)
DO i=1,NbJ

Jdd(i)=mx_dd(i)
ENDDO

RE CALCULATE CONFIGURATION FACTORS
FPASS=2

GO TO 220

CONTINUE

CALL SOLVEMATRIX(NbJ,ma_augmdG,mx_dG)
DO i=1,NbJ

Jdg(i)=mx_dg(i)
ENDDO

RE CALCULATE CONFIGURATION FACTORS
FPASS=3

GO TO 220

CONTINUE

DO i=1,nb_surf
Gdd(i)=0.0
Gdg(i)=0.0

ENDDO

DO i=1,nb_surf
IF(i.EQ.3)THEN
Gdd(i)=GdW
Gdg(i)=GgW
ELSE
DO j=1,NbJ
Gdd(i)=Gdd(i)+FD(i,))*Jdd())
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Gdg(1)=Gdg()+(FD(i,j)*Idg(j))

ENDDO
ENDIF
ENDDO
C*****************************************************************************
C DETERMINE QABS ON EACH TYPE OF SURFACE i
C*****************************************************************************
C DETERMINE % SHADING
DO i=1,Nb_surf
Psh(i)=0.0

Psh(i)=prop_sh(i,(nb_case+1))
QBsurf(i)=0.0
QDsurf{(i)=0.0
Qsurf(i)=0.0
ENDDO

TF(QradW.GT.(1.0)) THEN

C FIND DIFFUSE AND BEAM PORTION OF THE TOTAL ABSORBED
C SOLAR RADIATION
DO i=1,Nb_surf
QBsurf(i)=(1-Por)*Area(i)*AlphaB(i) *Gb(i) *(1-Psh(i))

IF(i.EQ.1)THEN
IF(SHCASE.EQ.4)THEN
QDsurf(i)=(1-Por)*AlphaDcoll(i)*Area(i) *(Gdd(i)

& +Gdg(i)+(Gdb(i)*(1-Psh(i)))+
& (Gdb(i+9)*Psh(i)))
ELSE
QDsurf(i)=(1-Por)*AlphaDcoll(i)*Area(i) *(Gdd(i)
& +Gdg(i)+(Gdb(i)*(1-Psh(i)))+
& (Gdb(i+nb_surf)*Psh(i)))
ENDIF
ELSE IF(i.EQ.2)THEN
QDsurf(i)=(1-Por)*AlphaDcoll(i)*Area(i) *(Gdd(i)
& +Gdg(i)+(Gdb(i)*(1-Psh(i)))+
& (Gdb(i+9)*Psh(i)))
ELSE IF(i.EQ.3)THEN
QDsurf{(i)=(1-Por)*AlphaDcoll(i)* Area(i)*
& (Gdd(i)+Gdg(1))
ELSE
QDsurf(i)=(1-Por)*AlphaDcoll(i)* Area(i) *(Gdd(i)+
& Gdg(i)+(Gdb(i)*(1-Psh(i)))+
& (Gdb(i+nb_surf)*Psh(i)))
ENDIF
Qsurf(i)=QBsurf(i)+QDsurf(i)
ENDDO
ELSE
DO N=1,Nb_surf
QBsurf(i)=0.0
QDsurf(i)=0.0
Qsurf(i)=QBsurf(i)+QDsurf(i)
ENDDO
ENDIF

C******************************************************************************

OPTIMIZE FLOW RATE AND SOLVE SUBROUTINE FOR HEAT FLOWS AND TEMPERATURES
In this model, contrary to Summers' (1995), the collector is automatically bypassed

at night and both the thermal and electrical output are set to zero.

In the summer, however, the user has the choice to enable or disable an option

that will automatically open the collector bypass damper if the ambient

temperature becomes greater than a selected bypass temperature, Tbypass.

o0 an
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In such a case, the collector will be solved under bypass conditions, i.e.
with a air mass flowrate of zero. If this option is disabled, the mass flowrate of
air going through the collector (m) will be set to (mmin).In winter time,
during the day, if at the minimum flowrate, the mixed temperature is found
to be lower than Tsup, then the mass flowrate is set to mmin. If for the lowest
and highest value of Gamma, the mixed temperature is found to be higher
than Tsup, then the flowrate in the collector is also set to mmin, unless
the summer bypass option was enabled by the user. In any other cases,
the mass flowrate, m, that minimizes the auxiliary heat required, i.e.
when Tmix=Tsup, is determined using the bissection method.
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SET THE FIRST GAMMA TO THE MINIMUM GAMMA
Gam=GamMIN
IF(bypass.GE.1)THEN
Gam=0.0
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ENDIF

C CALL SUBOURINTE

CALL PVTtrcSOLVE(Tcol,Tplen,Qrad_cs,Qrad_wc,Twall,
Qconv_wa,Qwind,Qconv_ca,Qcond wT,Qabs,
Qu,Tout,efthx,Vs,hwall_UTC)

R R

C CALCULATE TMIX
Tmix=((Gam*Tout)+((1-Gam)*(Tblg)))

C EXIT IF COLLECTOR IS BYPASSED
IF (Bypass.GE.1) THEN
Tmix=(GamMIN *Tamb)+((1-GamMIN)*Tblg)
GO TO 260
ENDIF

c EXIT IF SUMMER AND NO BYPASS
IF(Tamb.GE.(Tbypass+273.15))GO TO 260

C WINTER DAYTIME
C OPTIMIZE FLOW RATE THROUGH COLLECTOR TO MINIMIZE REQUIRED AUXILIARY ENERGY
IF (Tmix.LT.Tsup)THEN
GAM=GamMIN
GO TO 260
ELSE
C Tmix>Tsup=>TRY GAM=1
Gam=1.0
CALL PVTtreSOLVE(Tcol,Tplen,Qrad_cs,Qrad_wc,Twall,
Qconv_wa,Qwind,Qconv_ca,Qcond wT,Qabs,
Qu,Tout,efthx,Vs,hwall UTC)

SR

Tmix=((Gam*Tout)+((1-Gam)*(Tblg)))

IF(Tmix.LT.Tsup)THEN

C FIND GAM FOR Tmix=Tsup USING BISSECTION METHOD
COUNT=0
lowg=GamMIN
hig=1.0
GAM=(lowg+hig)/2.0

250 CONTINUE

COUNT=COUNT+1

CALL PVTtreSOLVE(Tcol,Tplen,Qrad_cs,Qrad_wc,Twall,
Qconv_wa,Qwind,Qconv_ca,Qcond wT,Qabs,
Qu, Tout,efthx,Vs,hwall UTC)

(SRS

Tmix=((Gam*Tout)+((1-Gam)*(Tblg)))
IF(Tmix.LT.Tsup)THEN
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hig=GAM
ELSE
lowg=GAM
ENDIF
oldg=Gam
Gam=(lowg-+hig)/2.0
difg=abs(GAM-oldg)

255 IF((difg.gt.0.01).AND.(COUNT.LT.150))GO TO 250
C ERROR MESSAGE IN CASE IT DOESN'T CONVERGE
ELSE
C Tsup IS TOO HOT
IF (BypTemp.GE.1)THEN

C SUMMER BYPASS SHOULD HAVE BEEN OPENED BECAUSE Tsup IS TOO HOT

Gam=0.0

Bypass=1.0

CALL PVTtreSOLVE(Tcol, Tplen,Qrad_cs,
Qrad_wc, Twall,
Qconv_wa,Qwind,Qconv_ca,Qcond_wT,Qabs,
Qu,Tout,efthx,Vs,hwall UTC)

Tmix=(GamMIN*Tamb)+((1-GamMIN)*Tblg)

GO TO 260

R

ELSE

C NO SUMMER BYPASS AND GAM IS SET TO GAMMIN

Gam=GamMIN

CALL PVTtrcSOLVE(Tcol, Tplen,Qrad_cs,
Qrad_wc, Twall,
Qconv_wa,Qwind,Qconv_ca,Qcond wT,Qabs,
Qu,Tout,efthx,Vs,hwall UTC)
ENDIF

SRS

ENDIF
ENDIF

260 CONTINUE
C*****************************************************************************
C CALCULATE THE REDUCED WALL HEAT LOSSES, THE ELECTRICITY PRODUCED
C AND THE THERMAL AND ELECTRICAL EFFICIENCIES
C*****************************************************************************
C FIND SOL-AIR TEMPERATURE [ASHRAE, 1993]
Tsa=Tamb+((AlphaW*QradW)/hFilm) ![K}
Qpot=AreaW*Uwall*(Tblg-Tsa) I[kJ/hr]
QredW=Qpot-(AreaW*(1.0/((1.0/Uwall)-(1/hfilm)+(1/hwall_UTC)))*
& (Tblg-Tplen))![kJ/hr]
QE=0.0
EffPV=0.0

IF (PVMode.EQ.1) GO TO 300
IF (QradW.LT.1.0)GO TO 300

EffPV=Effref+(EffT*((Tcol-273.15)-Tref))

C TURN PV OFF ON SURFACES WHERE PV CELLS ARE SHADED
DO i=1,Nb_surf
IF((PVsurf(i).GE.0.5).AND.(PSh(i).GT.0.0)) THEN
PVOn(i)=0
ENDIF
ENDDO

IF (PVMode.EQ.2)THEN
QE=Qsurf(3)*PPV(3)*EffPV*nb_corr

ELSE IF (PVMode.EQ.3)THEN
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IF((PVON(1).LE.0).OR.(PVON(2).LE.0).OR.(PVON(4).LE.0))THEN
C SHADING, TAKE THE MINIMUM OF THE DIFFUSE RADIATION
QE=EffPV*(MIN((QDsurf(3)/(Area(3)*AlphaDcoll(3))),
(QDsurf(1)/(Area(1)*AlphaDcoll(1))),
(QDsurf(2)/(Area(2)*AlphaDcoll(2))),
(QDsurf(4)/(Area(4)*AlphaDcoll(4)))))*
((Nb_corr*Area(3)*PPV(3))+
((Nb_corr-1)*((Area(1)*PPV(1))+(Area(2)*PPV(2))+
(Arca(4)*PPV(4)))))

PR ®

ELSE
C NO SHADING, TAKE THE MINIMUM OF THE TOTAL RADIATION
QE=EffPV*(MIN((QBsurf(3)/(AlphaB(3)*Area(3)))+
(QDsurf(3)/(Area(3)*AlphaDcoll(3))),
((QBsurf(1)/(Area(1)*AlphaB(1)))+
(QDsurf(1)/(Area(1)*AlphaDcoll(1)))),
((QBsurf(2)/(Area(2)*AlphaB(2)))+
(QDsurf(2)/(Area(2)*AlphaDcoll(2)))),
((QBsurf(4)/(Area(4)*AlphaB(4)))+
(QDsurf(4)/(Area(4)*AlphaDcoll(4))))))*
((Nb_corr*Area(3)*PPV(3))+
((Nb_corr-1)*(Area(1)*PPV(1)+Area(2)*PPV(2)+
Area(4)*PPV(4))))

PRI

ENDIF
ENDIF
300 CONTINUE

IF (QradW.GT.1.0)THEN

IF(Qu.GT.1.0)THEN
Effth=(Qu/(AreaW*Qrad W))

ELSE
Qu=0.0
Effth=0.0

ENDIF

IF(Qe.GT.1.0)THEN
Effel=QE/(AreaW*Qrad W)

ELSE
Qe=0.0
Effel=0.0
ENDIF
ELSE
Effth=0.0
Effel=0.0
efthx=0.0
ENDIF
C CONVERT TEMPERATURES FROM CELCIUS TO KELVIN

Tcol=Tcol-273.15
Tplen=Tplen-273.15
Tout=Tout-273.15
Tmix=Tmix-273.15
QU=QU*1000/3600
QE=QE*1000/3600
QredW=QredW*1000/3600
Qabs=Qabs*1000/3600/AreaW

350 CONTINUE
C SET THE OUTPUTS FROM THIS MODEL IN SEQUENTIAL ORDER AND GET OUT

OUT(1)=Tcol !degC
OUT(2)=Tplen !degC
OUT(3)=Tmix ldegC
OUT(4)=Tout ldegC
OUT(5)=GAM 10TO 1
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OUT(6)=1-GAM 10 TO 1
OUT(7)=GAM*MFLOW  !kg/hr
OUT(8)=efthx
OUT(9)=Effth
OUT(10)=Effel
OUT(11)=EffPV
OUT(12)=QU W
OUT(13)=QE 'W
OUT(14)=QredW
OUT(15)=Bypass
OUT(16)=Qabs  !'W/m2

RETURN 1
END SUBROUTINE Type250

sfe e sk sk ke sk sk sk sfe sk sk sk sk sk sk sk skl sk sk sk sk sk sk sk ke sk skl sk sk sie sk sk sk skeske sk sk sk sk sk sk skl sk sk sk sk sk sk stk sk skeske skesk sk sk sk sk stk ske sk sk sk sk sk stk skokoskoskok sk

SUBROUTINE PVTtrcSOLVE (Tcol, Tplen,Qrad_cs,Qrad wc,Twall,

& Qconv_wa,Qwind,Qconv_ca,Qcond wT,Qabs,
& Qu,Tout,efthx,Vs,hwall UTC)
IMPLICIT NONE

C Common variables

COMMON/PVT/a,b,h_trap,d,pitch,length,dist,width
COMMON/PVT/hp,e_back,e_wall,th,Uwall,EffT,EffRef, Tref
COMMON/PVT/PPV,Uwind, Tamb, Tblg, Tsup,hfilm
COMMON/PVT/Flow,Gam,t_trap,ThetaT,Por,rho_amb,visc_amb
COMMON/PVT/AreaW,k_amb,ecol,Trad,L,cp_amb,Area cs
COMMON/PVT/QBsurf,QDsurf,Qsurf,Psh,Area,AlphaB,AlphaDcoll
COMMON/PVT/PVOn,SHCASE,nb_corr,PVMode

C COMMON VARIABLES
DOUBLE PRECISION a,b,h_trap,d,pitch,length,dist,width
DOUBLE PRECISION hp,e_back,e_wall,th,Uwall,EffT,EffRef, Tref
DOUBLE PRECISION PPV,Uwind, Tamb,Tblg, Tsup,hfilm
DOUBLE PRECISION Flow,Gam,t_trap,ThetaT,Por,rho_amb,visc_amb
DOUBLE PRECISION AreaW,k amb,ecol,Trad,L,cp_amb,Area_cs
DOUBLE PRECISION QBsurf,QDsurf,Qsurf,Psh,Area,AlphaB,AlphaDcoll
C SUBROUTINE VARIABLES
DOUBLE PRECISION Tcol,Tplen,Qrad_cs,Qrad wc,Twall
DOUBLE PRECISION Qconv_wa,Qwind,Qconv_ca,Qcond_wT,Qabs
DOUBLE PRECISION Tout,Vs,Qu,efthx,hwall UTC
C INTERNAL VARIALBES
DOUBLE PRECISION SB,PR,Rew,Res,Reb,Reh,ef,eb,eh,dif
DOUBLE PRECISION Ma,Mb,Mx,ResC
DOUBLE PRECISION hconv_wa,Tsur,Twall_in,diflim,kmax,hwind
DOUBLE PRECISION ReL,NuL,Rexc
INTEGER*4 PVOn,SHCASE,nb_corr,PVMode
INTEGER*4 nb_case,nb_surf
INTEGER*4 k,neq,i,j,R,N
INTEGER*4 SPASS
c COMMON VARIABLES DECLARATION
PARAMETER (nb_surf=8,nb_case=5,Neq=8)
DIMENSION QBsurf(Nb_surf),QDsurf(Nb_surf),Qsurf(Nb_surf)
DIMENSION PPV(Nb_surf),Psh(Nb_surf),Area(Nb_surf)
DIMENSION AlphaB(Nb_surf),AlphaDcoll(Nb_surf),PVon(Nb_surf)
DIMENSION L(nb_surf*2),Ma(10,11), Mb(10),Mx(10),ResC(10)

C SETTING CONSTANTS
SB=(5.67¢-8)*3.6 !Stefan-Boltzmann constant [kJ/hrm2K4]
Pr=0.71
diflim=0.01
kmax=100

SPASS=1

150



100 CONTINUE
IF (SPASS.GT.1)GO TO 160

C SET Vs
Vs=(Flow*Gam)/AreaW Im/hr
sk st s o sk s sk sk ot stk stk s sk s sk sk st stk stk sk sk ke st sk e sk sk st stk stk st sk sk sk sk s skl stk sk sk sk sk sk sk sk stoskok stk sk skskok sokok ok ok ko ook
C CALCULATE hconv,wall-air
sk st s o sk s sk sk st stk stk o sk ke sk sk st stk st sk sk sk ke s sk e sk sk st sk stk st sk sk sk sk st skl stk sk sk sk sk sk sk sk sk stskok stk skosk skskok soskok ok ok koo skeokok
C IF NO FLOW, HCONV_WA=0.1 W/M2C Maurer [2004]
IF (Vs.LE.0.01)THEN
hconv_wa=0.36  ![kJ/m2 h C]
GO TO 110
ENDIF

ReL=(tho_amb*((AreaW*Vs)/Area_cs)*0.5*length)/(visc_amb)
Rexc=500000

c Verify if the flow is laminar or if there is transition
IF (ReL.LE.Rexc)THEN
!Laminar
NuL=0.664*(ReL**0.5)*(Pr**0.33333333)
ELSE IF (ReL.GT.Rexc)THEN

!Transition
NuL=((0.037*(ReL**0.8))-871)*(Pr**0.3333333)
ENDIF
hconv_wa=(k_amb*NuL)/length I[kJ/m2 h C]

110 CONTINUE

e e sk sk ke sk sk sk sfe sk ske sk sk sk sk sk skl sk sk sie sk sk sk sk ke sk skl sk sk sie sk sk sk skeske sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeske sk sk ske sk sk sk stk skeosko sk sk sk sk stk skokoskoskok sk

C CALCULATE HEAT EXCHANGER EFFECTIVENESS (Van Decker and Hollands, 2001)
C Assume: Asymptotic region (Boundary layer thickness is invariant)
C Convection at the back comes only from the back of the hole
sk 3k sk ok ok ok sk ok sk ok ok ok sk sk sk ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok ok skosk skok ok ok sk sk sk ok ok skosk skl ok sk skosk ok sk sk ok skok sk ok skok skok ko ook skok sk sk ok sk sk
IF (Vs.GT.0.01)THEN

Rew=Uwind*pitch*rho_amb/visc_amb
Res=Vs*pitch*rho_amb/visc_amb
Reb=Vs*pitch*rho_amb/(visc_amb*Por)
Reh=Vs*D*rho_amb/(visc_amb*Por)

ef=1-(1/(1+((1/Res)*max(17.7,(0.708*(Rew**0.5))))))
eb=1-(1.0/(1+(3.4*(Reb**(-0.3333333333)))))
eh=1-exp((-0.0204*(pitch/D))-(20.62*th/(Reh*D)))
effhx=1-((1-e)*(1-eb)*(1-ch))

ELSE
efthx=1.0
ENDIF
S ook KR R R R R o R R R R R R KRR R
C CALCULATE HWIND
et s s ot s s sk s st s s s s st s s st s s e s st s st s s st s st s s st s s e s st s s s s o s s sk s st sk s st sk s s st st skt s s sk sk st sk sk ot sk st sk sk ko sk sk ok
IF(Vs.GT.(0.01))THEN
C SWIFT SOFTWARE CORRELATION (TO USE)
hwind=MIN((0.02*(Uwind/Vs)),(2.8+(3.0*
& (Uwind/3600)))) I[W/m2K]
C STRL MODEL (FOR SMALL PANEL)
c hwind=6+(4*Uwind/3600)-(76*Vs/3600)
ELSE
hwind=(2.8+(3.0¥%((Uwind)/3600)))  ![W/m2K]
c hwind=6+(4*Uwind/3600)
ENDIF
stk s sk ot s st ok skt sk ok s s st s skt sk o s sk ot s st s sk st sl st s skt sk s sk st st sk s skt s sk sk st sk skt skt s skt skt sk ok stk skofokskokok ok koo ok
C SOLVE SIMULTANEOUS EQUATIONS FOR UNKNOWN TEMPERATURES AND HEAT FLOWS
C [AIX]=[B]
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Tsur=Trad
Twall_in=Tblg
C SET MATRIX Ma
C SET A VALUE OF Tcol AND Twall TO START

Tcol=Tamb+20
Twall=Tamb+10

DO i=1,10
Mx(i)=0.0
DO j=1,11
Ma(i,j)=0.0
ENDDO
ENDDO

C SET EQUATION 1 :efthx
Ma(1,1)=-1.0*efthx
Ma(1,2)=1.0
Ma(1,11)=Tamb*(1.0-effhx)

C SET EQUATION 2:Qrad,col-sur
Ma(2,3)=-1.0
Ma(2,1)=SB*(Tcol+Tsur)*((Tcol**2)+

& (Tsur**2))*(1-Por)*(ecol*AreaW)

Ma(2,11)=SB*(Tcol+Tsur)*((Tcol**2)+(Tsur**2))*
& (1-Por)*Tsur*(ecol*AreaW)

C SET EQUATION 3: Qrad,wall-col

Ma(3,1)=(SB*AreaW*((Twall**2)+(Tcol**2))*
(Twall+Tcol))/
(((1-e_wall)/e_wall)+
((1-e_back)/e_back)+1.0)

SRR

Ma(3,4)=1.0

Ma(3,9)=(-1.0¥*SB*AreaW*((Twall**2)+(Tcol**2))*
(Twall+Tcol))/
(((1-e_wall)/e_wall)+
((1-e_back)/e_back)+1.0)

SRR

C SET EQUATION 4:Qconv,wall-air
Ma(4,5)=1.0
Ma(4,9)=-1.0%hconv_wa*AreaW
Ma(4,2)=hconv_wa*AreaW

C SET EQUATION 5: Qconv,col-amb
Ma(5,6)=1.0
Ma(5,1)=-1.0*hwind*3.6*AreaW
Ma(5,11)=-1.0*hwind*3.6*AreaW*Tamb

C SET EQUATION 6: Qconv,col-air
Ma(6,7)=1.0
Ma(6,2)=-1.0*rtho_amb*Vs*cp_amb*AreaW
Ma(6,11)=-1.0*rho_amb*Vs*cp_amb*AreaW*Tamb

C SET EQUATION 7 :Qabs+Qrad_wc-Qconv_ca-Qwind-Qrad_cs=0
Ma(7,8)=1.0
Ma(7,4)=1.0
Ma(7,7)=-1.0
Ma(7,6)=-1.0
Ma(7,3)=-1.0
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C SET EQUATION 8: Qabs=(1-EffPV)*Qsurf
MA(8,8)=1.0
IF (PvMode.EQ.1)THEN
Ma(8,11)=(Qsurf(5)+Qsurf(6)+Qsurf(7)+Qsurf(8)+

& (Qsurf(3)*Nb_corr)+
& ((Qsurf(1)+Qsurf(2)+Qsurf(4))*(Nb_corr-1)))
ELSE IF (PvMode.EQ.2)THEN
Ma(8,1)=Qsurf(3)*EffT*Nb_corr*PPV(3)
Ma(8,11)=Qsurf(5)+Qsurf(6)+Qsurf(7)+Qsurf(8)+
& ((Qsurf(1)+Qsurf(2)+Qsurf(4))*(Nb_corr-1))+
& (Qsurf(3)*Nb_corr*(1-(PPV(3)*EffRef)+
& (PPV(3)*EffT*(Tref+273.15))))
EISE IF (PvMode.EQ.3)THEN
Ma(8,1)=EffT*((Nb_corr*Qsurf(3)*PPV(3))+
& ((Nb_corr-1)*(Qsurf(1)*PPV(1)+Qsurf(2)*
& PPV(2)+Qsurf(4)*PPV(4))))
Ma(8,11)=Qsurf(5)+Qsurf(6)+Qsurf(7)+Qsurf(8)+
& (Qsurf(1)*(Nb_corr-1)*(1-(PPV(1)*EffRef)+
& (PPV(1)*(Tref+273.15)*EffT)))+
& (Qsurf(2)*(Nb_corr-1)*(1-(PPV(2)*EffRef)+
& (PPV(2)*(Tref+273.15)*EffT)))+
& (Qsurf(4)*(Nb_corr-1)*(1-(PPV(4)*EffRef)+
& (PPV(4)*(Tref+273.15)*EffT)))+
& (Qsurf(3)*Nb_corr*(1-(PPV(3)*EffRef)+
& (PPV(3)*(Tref+273.15)*EffT)))
ENDIF
C SET EQUATION 9: Qconv,wall-air+Qrad,wall-col-Qcond_wall=0
Ma(9,5)=1.0
Ma(9,4)=1.0
Ma(9,10)=-1.0
C SET EQUATION 10:Qcond_wallT

Ma(10,10)=1.0
Ma(10,9)=(1.0/((1.0/Uwall)-(1.0/hfilm)))*AreaW
Ma(10,11)=(1.0/((1.0/Uwall)-(1.0/hfilm)))*AreaW*Twall_in

st st ok et R sk o ot R s sk s ol R s sl s ot ksl ot skl ol ot R sl s ol ek sl s ol ek s s R stk sl s ol stk sl s ok ok sk sk ok ok

C START ITERATION

st s sk et R s o ol R s sk s ot st s sk sk ot st ksl ot ksl ol ot otk sl s ol ek sl s ol ek s s ol ek sl s ol otk sl s ok ok sk sk ok ok
k=0

130 CONTINUE
k=k+1

CALL SOLVEMATRIX(10,Ma,Mx)
Tcol=Mx(1)
Twall=Mx(9)

150 CONTINUE
SPASS=SPASS+1

C RECALCULATE CONFIGURATION FACTORS
160 CONTINUE
DO i=1,10
DOj=1,11
Ma(i,j)=0.0
ENDDO
ENDDO
C SET EQUATION 1 :effhx

Ma(1,1)=-1.0%effhx
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SRR

SRR

R &

& &

Ma(1,2)=1.0
Ma(1,11)=Tamb*(1.0-effhx)

SET EQUATION 2:Qrad,col-sur

Ma(2,3)=-1.0

Ma(2,1)=SB*(Tcol+Tsur)*((Tcol**2)+
(Tsur**2))*(1-Por)*(ecol*AreaW)

Ma(2,11)=SB*(Tcol+Tsur)*((Tcol**2)+(Tsur**2))*
(1-Por)*Tsur*(ecol*AreaW)

SET EQUATION 3: Qrad,wall-col
Ma(3,1)=(SB*AreaW*((Twall**2)+(Tcol**2))*
(Twall+Tcol))/
(((1-e_wall)/e_wall)+
((1-e_back)/e_back)+1.0)
Ma(3,4)=1.0
Ma(3,9)=(-1.0*SB*AreaW*((Twall**2)+(Tcol**2))*
(Twall+Tcol))/
(((1-e_wall)/e_wall)+
((1-e_back)/e_back)+1.0)

SET EQUATION 4:Qconv,wall-air
Ma(4,5)=1.0
Ma(4,9)=-1.0*hconv_wa*AreaW
Ma(4,2)=hconv_wa*AreaW

SET EQUATION 5: Qconv,col-amb
Ma(5,6)=1.0
Ma(5,1)=-1.0*hwind*3.6*AreaW
Ma(5,11)=-1.0*hwind*3.6* AreaW *Tamb

SET EQUATION 6: Qconv,col-air
Ma(6,7)=1.0
Ma(6,2)=-1.0*rho_amb*Vs*cp_amb*AreaW
Ma(6,11)=-1.0*rho_amb*Vs*cp_amb*AreaW *Tamb

SET EQUATION 7 :Qabs+Qrad_wc-Qconv_ca-Qwind-Qrad_cs=0
Ma(7,8)=1.0
Ma(7,4)=1.0
Ma(7,7)=-1.0
Ma(7,6)=-1.0
Ma(7,3)=-1.0

SET EQUATION 8: Qabs=(1-EffPV)*Qsurf
MA(8,8)=1.0
IF (PvMode.EQ.1)THEN
Ma(8,11)=(Qsurf(5)+Qsurf(6)+Qsurf(7)+Qsurf(8)+
(Qsurf(3)*Nb_corr)+
((Qsurf(1)+Qsurf(2)+Qsurf(4))*(Nb_corr-1)))

ELSE IF (PvMode.EQ.2)THEN
Ma(8,1)=Qsurf(3)*EffT*Nb_corr*PPV(3)
Ma(8,11)=Qsurf(5)+Qsurf(6)+Qsurf(7)+Qsurf(8)+

((Qsurf(1)+Qsurf(2)+Qsurf(4))*(Nb_corr-1))+
(Qsurf(3)*Nb_corr*(1-(PPV(3)*EffRef)+
(PPV(3)*EffT*(Tref+273.15))))

EISE IF (PvMode.EQ.3)THEN
Ma(8,1)=EffT*((Nb_corr*Qsurf(3)*PPV(3))+
((Nb_corr-1)*(Qsurf(1)*PPV(1)+Qsurf(2)*
PPV(2)+Qsurf(4)*PPV(4))))
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Ma(8,11)=Qsurf(5)+Qsurf(6)+Qsurf(7)+Qsurf(8)+
&

PR

(Qsurf(1)*(Nb_corr-1)*(1-(PPV(1)*EffRef)+
(PPV(1)*(Tref+273.15)*EffT)))+
(Qsurf(2)*(Nb_corr-1)*(1-(PPV(2)*EffRef)+
(PPV(2)*(Tref+273.15)*EffT)))+
(Qsurf(4)*(Nb_corr-1)*(1-(PPV(4)*EffRef)+
(PPV(4)*(Tref+273.15)*EffT)))+
(Qsurf(3)*Nb_corr*(1-(PPV(3)*EffRef)+
(PPV(3)*(Tref+273.15)*EffT)))

ENDIF

SET EQUATION 9: Qconv,wall-air+Qrad,wall-col-Qcond_wall=0
Ma(9,5)=1.0

Ma(9,4)=1.0

Ma(9,10)=-1.0

SET EQUATION 10:Qcond_wallT

Ma(10,10)=1.0
Ma(10,9)=(1.0/((1.0/Uwall)-(1.0/hfilm)))*AreaW
Ma(10,11)=(1.0/((1.0/Uwall)-(1.0/hfilm)))*AreaW *Twall_in

st st s o f s s ol ek sk s ol e sk sl stttk ke ot sttt stk st s s ot ksl et skt ek sk st stk stk sk stk sk s ok Rk sk sk ok

C

CALCULATE RESIDUAL

st 3k s st s s sfe she s sk sk s sk sk s s s s sfeshe ke sk sk s s sk sk sk s sfe sk sheske sk sk sk s sk sk st st sk s she sk sk s s sk sk sk st sk sfe sk skeske sk sk sk sk sk sk sk st sk sk stk skokokok skok ko

400

DO i=1,10
Mb(i)=0.0
DO j=1,10
Mb(i)=Mb(i)+((Ma(i,j))*(Mx(j)))
ENDDO
ENDDO

dif=0.0
DO i=1,10
ResC(i)=0.0
ResC(i)=Mb(i)-Ma(i,11)
dif=dif+ ABS(ResC(i))
ENDDO

VERIFY IF CONVERGENCE IS OBTAINED
IF NOT, REPEAT NEW Tcol AND Twall
IF (dif.gt.diflim.and.k.1t.kmax) go to 130

CONVERGENCE IS OBTAINED
Tcol=Mx(1)
Tplen=Mx(2)
Qrad_cs=Mx(3)
Qrad_wc=Mx(4)
Qconv_wa=Mx(5)
Qwind=Mx(6)
Qconv_ca=Mx(7)
Qabs=Mx(8)
Twall=Mx(9)
Qcond_wT=Mx(10)

CALCULATE Tout
IF(Vs.GT.0.01)THEN
Tout=Tamb+((Qconv_wa+Qconv_ca)/(tho_amb*Vs*AreaW *cp_amb))
ELSE
Tout=Tamb
ENDIF
Qu=rho_amb*Vs*cp_amb*AreaW*(Tout-Tamb)

CONTINUE
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Tcol=Tcol

Tplen=Tplen

Qrad_cs=Qrad_cs

Qrad_wc=Qrad_wc

Twall=Twall

Qconv_wa=Qconv_wa

Qwind=Qwind

Qconv_ca=Qconv_ca

Qcond_wT=Qcond wT

Qabs=Qabs

Qu=Qu

Tout=Tout

effhx=effhx

Vs=Vs

hwall_UTC=((SB*((Twall**2)+(Tcol**2))*(Twall+Tcol))/
& (((1-e_wall)/e_wall)+((1-e_back)/e_back)+1.0))+hconv_wa
&

RETURN
END

sttt s s o ok sl s ot et s sk ol R R skl ok Rl ot R R sl s ol R Rk s s R R sl s okt Rk sl Rk stk sk ok ok Rk sk R ook oK

C SUBROUTINE CALCULDIM
sttt s o ok s s ot et s sk ol R R ks sl ok Rl ot R R sl s ol R R s R R s sk st Rl sl Rk stk ok ok Rk sk R oRoRoR
SUBROUTINE CALCULDIM(PS,DIST,A,T_TRAP,B,L_END,L)
IMPLICIT NONE
DOUBLE PRECISION PS,L
DOUBLE PRECISION DIST,A,T TRAP,B,L_END
PARAMETER NBSURF=8
DIMENSION PS(NBSURF)
DIMENSION L(NBSURF*2)

L(1)=(dist-a)*(1.0-PS(1))
L(2)=t_trap*(1.0-PS(2))
L3)=b
L(4)=t_trap*(1.0-PS(4))
L(5)=L_end*(1.0-PS(5))
L(6)=t_trap*(1.0-PS(6))
L(7)=L_end*(1.0-PS(7))
L(8)=t_trap*(1.0-PS(8))
L(9)=(dist-a)*PS(1)
L(10)=(dist-a)*PS(1)
L(11)=t_trap*PS(2)
L(12)=t_trap*(PS(4))
L(13)=L_end*PS(5)
L(14)=t_trap*PS(6)
L(15)=L_end*PS(7)
L(16)=t_trap*PS(8)

END
ok S KRS R SRR SR KR SR KR SR KRR KRR KR SRR R R R SR KRR R R R R R R
C SUBROUTINE CALCULSF1

st 3k s o sfe ke sk ke sk s st st she sk ek s s sk sk st sk sfesfe ke sk sk st sk sk sk sheske skl sk sk st st st s sk sk s s sk sk st st sheske ke sk sk sk st skesk skeske sk sk sk sk skeskskoskokok skok skokokok

SUBROUTINE CALCULSF1 (LENGTH1,LENGTH2,ALPHA,F12)
IMPLICIT NONE

DOUBLE PRECISION AF,PLLENGTH1,LENGTH2,F12

DOUBLE PRECISION ALPHA

PI=3.141592654
AF=LENGTH2/LENGTHI
F12=(AF+1-(((AF*AF)+1-(2*AF*(COS(ALPHA))))**0.5))/2

END

3 sk sk sk sk sk sk sk sk ke sk skeske sk sk sk sk skeske sk sk sk sk skeske sk skeske sk sk sk sk skeosk sk sk sk sk sk sk skl sk sk s sk skesk sk ksl sk stk sk skeske sk sk sk sk stk skeokosk sk kok skokoskokok sk skok
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C SUBROUTINE CALCULSF2

stk otk sk ok ok sk ok skt Rk R R sk ks sk ok st Rk ok sk ok s kb sk ok ok
SUBROUTINE CALCULSF2 (LENGTHI,LENGTH2,LENGTH3,ALPHA,F12)
IMPLICIT NONE
DOUBLE PRECISION LENGTHI1,LENGTH2,F12,X,Y,PI
DOUBLE PRECISION LENGTH3,ALPHA
PI=3.141592654

X=((LENGTHI#*2)+((LENGTH3-LENGTH2)**2)-
&  (2*LENGTHI*(LENGTH3-LENGTH2)*COS(ALPHA)))**0.5
Y=((LENGTH1**2)+(LENGTH3**2)-
&  (2*LENGTHI*LENGTH3*COS(ALPHA)))**0.5

F12=(X+LENGTH2-Y)/(2*LENGTHI)

END
st stk s ot et sk s ot s R Rk s s R st s s R st sk ok sk skl R sk s ol et sl skt s Rk st sk ol Rk sl s ol Rtk o ok sk ok
C SUBROUTINE CALCULSF3

st 3k st st s s sfesfe ke sk ke ke s ke s s st st st st sfe sk she s ke ke sk sk sk sk sk st sk sk st sfe sk sheske ke sk sk sk sk sk sk st st st sk shesfeskeskeske skl sk sk sk sk st st sk sk skeskeskoske kol skok kol kok

SUBROUTINE CALCULSF3(LENGTH1,LENGTH2,ALPHA F12)
IMPLICIT NONE

DOUBLE PRECISION LENGTHI1,LENGTH2,F12,X,Y,PI
DOUBLE PRECISION ALPHA,ZETA

P1=3.141592654

X=((LENGTH1#*2)+(LENGTH2**2)-

&  (2*LENGTHI*LENGTH2*COS(ALPHA)))**0.5
ZETA=ASIN((SIN(ALPHA)*LENGTH1)/X)
Y=((LENGTH1**2)+(X**2)-

&  (2*LENGTHI*X*COS(ALPHA-ZETA)))**0.5

F12=((2.0¥X)-Y-LENGTH2)/(2*LENGTH1)

END
oot st s ot et sl st R R R s R stk s ok st sk ok sk skl R sk s ol ek sl skt s R sl sk ol Rk sl s ol Rtk s o Rk sk ok
C SUBROUTINE CALCULSF4

sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk skosk stk sk sk sk sk skosk stk sk stk sk skoskosk sk ik stk sk skoskok sk skosk sk skokok skok sk skok sk stk skok skokok skokok ok skokoskokok sk

SUBROUTINE CALCULSF4(LENGTHI1,LENGTH2,LENGTH3,ALPHA,F12)
IMPLICIT NONE

DOUBLE PRECISION LENGTHI1,LENGTH2,LENGTH3,F12,X,Y,Z,W,PI
DOUBLE PRECISION ALPHA,ZETA

P1=3.141592654

X=((LENGTH2**2)+(LENGTH3**2)-
(2*LENGTH2*LENGTH3*COS(ALPHA)))**0.5
Z=((LENGTH2-LENGTH1)**2)+(LENGTH3**2)-
(2*(LENGTH2-LENGTH1)*(LENGTH3)*COS(ALPHA)))**0.5
ZETA=ASIN((LENGTH2*SIN(ALPHA))/X)
W=((LENGTH2**2)+(X**2)-

&  (2*LENGTH2*X*COS(ALPHA-ZETA)))**0.5
Y=((W**2)+(LENGTH1%*2)-2*W*LENGTH1*COS(PI-ALPHA)))**0.5

F12=(X+Y-W-Z)/(2*LENGTHI1)

END
stk st s ot sl s ot sl e ot ks ol et skl sl ot st sk stk skl et sl s ot ek sl st e s ek sl s ol stk sk s ol stk skl ok ok sk ok
C SUBROUTINE CALCULSF5S

st 3k st st s s sfesfe ke ke ke ke s ke s s sk sk st st sfe sk she s ke ke s sk s sk sk st sk sk st sfe s sheshe ke ke sk sk sk sk sk sk st st st sk shesfeskeskeske skl sk s sk sk st st sk st stk skl skok skok skok ko

SUBROUTINE CALCULSF5(LENGTH1,LENGTH2,LENGTH3,ALPHA F12)
IMPLICIT NONE

DOUBLE PRECISION LENGTH1,LENGTH2,LENGTH3,F12,X,Y,PI
DOUBLE PRECISION ALPHA

P1=3.141592654
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X=((LENGTH2**2)+((LENGTH3-LENGTH1)**2)-

&  (2*LENGTH2*(LENGTH3-LENGTH1)*COS(ALPHA)))**0.5
Y=((LENGTH2**2)+(LENGTH3**2)-

&  (2*LENGTH3*LENGTH2*COS(ALPHA)))**0.5

F12=(X+LENGTHI-Y)/(2*LENGTHI)
END

3t 3k s s sfe he ke sk s s sk s s st s st sheshe ke ke s ke sk sk st st sk sheshe ke sk sk s sk sk st st she sk sheske sk sk sk s sk sk st sk sheskeskeske sk sk s st st stesk sk skeske skl sk sk sk skoskok sokokokoskok

C SUBROUTINE CALCULSF6

stk ot ok sk ok sk kR sk R R sk otk R skl ok Rkt Rk kR R sk kR sk Rk ok
SUBROUTINE CALCULSF6(LENGTH1,LENGTH2,LENGTH3,ALPHA,F12)
IMPLICIT NONE
DOUBLE PRECISION LENGTH1,LENGTH2,LENGTH3,F12,PI
DOUBLE PRECISION ALPHA,X,Y,Z,ZETA
PI=3.141592654

X=((LENGTH3**2)+(LENGTH1#*2)-2*LENGTH3*LENGTH1*
&  COS(ALPHA)))**0.5
Y=((LENGTH3**2)+(LENGTH2**2)-(2*LENGTH3*LENGTH2*
&  COS(ALPHA)))**0.5
ZETA=ASIN((LENGTH!*sin(ALPHA))/X)
Z=((X**2)+(LENGTH2*%2)-(2*X *LENGTH2*
&  COS(ALPHA-ZETA)))**0.5
F12=(X+Y-Z-LENGTH3)/(2*LENGTH]1)
END

st s s s s e ot st st et stk et st sl s sk ek st s sk stk st s s et st st s sl ek ksl stk sl R Rk skl ol R Rk

C SUBROUTINE CALCULSF7
st st s ok ek stk s R Rk sk R R s sk s ot kst s ok ok skl s ok et sk s s R R sk s ot R sk skl R Rl ok Rk sl R R R R R R
SUBROUTINE CALCULSF7(LENGTHI1,LENGTH2,LENGTH3,F12)
IMPLICIT NONE
DOUBLE PRECISION LENGTH1,LENGTH2,LENGTH3,F12
DOUBLE PRECISION ALPHA,X,Y

ALPHA=ATAN(LENGTH3/((LENGTH2-LENGTH1)/2.0))
X=((LENGTH3**2)+((LENGTH2-LENGTH]1)/2.0)**2.0))**0.5

Y=((LENGTH2#*2)+(X**2)-(2*LENGTH2*X *
&  COS(ALPHA)))**0.5

F12=((2.0%Y)-(2.0¥X))/(2*LENGTHI)

END
st sk ek st sk R Rk sk Rk s sk st kst s ok ek skl s ok et skl s s R R sk s R R sk skl R Rk sl R Rk s R R R s R R koK
C SUBROUTINE USED TO SOLVE MATRIX BY THE ELIMINATION METHOD
C SUPPLEMENTED BY A SEARCH FOR THE LARGEST PIVOTAL ELEMENT AT EACH STAGE
C [WRIGHT J.,VISION]
st stk ek st sk s R stk skl R R s sk ot kst s ok ek skl s ol et sk s s R R sk s R R sk skl R R sl kR R R s R R R s R R koK
SUBROUTINE SOLVEMATRIX(N,A,XSOL)

IMPLICIT NONE

INTEGER N

DOUBLE PRECISION A(N,(N+2))
DOUBLE PRECISION XSOL(N)

DOUBLE PRECISION CMAX,TEMP,C,Y,D
DOUBLE PRECISION ABS

INTEGER NM1,NP1,NP2,1J,L,LP,NOS,NI,NJ

NMI1=N-1

NPI1=N+1
NP2=N+2
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DO I=1,N
A(LNP2)=0.0
1 DO 1 J=1,NP1 1 TODO ?
END DO

DO I=1,N
DO J=1,NPI
A(ILNP2)=A(I,NP2)+A(1,])
END DO
END DO
DO L=1,N-1
CMAX=A(L,L)
LP=L+1
NOS=L

DO I=LP,N

IF(ABS(CMAX).LT.ABS(A(L,L))) THEN

CMAX=A(LL)
NOS=I
ENDIF
END DO
| SWAP ROWS
IF (NOS.NE.L) THEN
DO J=1,NP2
TEMP=A(L,J)
A(LJ)=A(NOS,J)
A(NOS,J)=TEMP
END DO
END IF

DO I=LP,N
C=0.0
Y=-A(LLYA(L,L)
DO J=L,NP2
AL =ALI+Y*A(LJ)
END DO
DO J=LNP1
C=C+A(L))
END DO
END DO
END DO
! NOW BACKSUBSTITUTE
XSOL(N)=A(N,NP1)/A(N,N)
DO [=1,NM1
NI=N-I
D=0.0
DO J=1,1
NJ=N+1-J
D=D+A(NLNJ)*XSOL(NJ)
END DO
XSOL(NI)=(A(NLNP1)-D)/A(NI,NI)
END DO

END
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Appendix D

Pressure Drop Calculation

The total pressure drop, AP, needed to be overcome by the fan corresponds

to the summation of the different pressure drops occurring in the flow line.

APT = APcol + APbuoy + APacc + APf,]olen + APf,duct + APf,elbow (D]-)

In Equation D.1, AP,y is the pressure drop through the collector surface, APy,
is the buoyancy pressure drop, AP,.. is the pressure drop due to the acceleration
of the air, and AP} pien ; AP auet and APy gy, Tepresent the friction pressure drop

in the plenum, in the duct and in the elbow, respectively.

The pressure drop through the collector is given by Kutscher (1994) as

VZ
APcol = pavgz = C (DQ)
where the dimensionless variable ( corresponds to
0236 |1 — O ’
¢ =6.82Rej, i (D.3)
o
and Rep is defined as
ViD
Re D = (D4)
OVaug



Assuming the average kinematic viscosity, V4, to be 0.0000159 m?/s, and a collec-
tor of 0.25% porosity with perforations having an equivalent diameter of 0.00079

m, Rep and ¢ at a suction velocity of 0.02 m/s correspond to

0.022 + 0.00079m
RGD =

- = 438.9 (D.5)
0.0025 * 0.0000159 2=

1 —0.0025

2
= 258.3 x 103 D.
0005 } 58.3 x 10 (D.6)

¢ = 6.82(438.9702%) {
Assuming air to be an ideal gas, the air density can be obtained from the ideal gas

law.

P

- — (D.7)

p

In Equation D.7, R is the gas constant for air. Considering a pressure of 101.325
kPa, an ambient temperature of 20°C and a collector outlet temperature of 40°C,
the air density at the average temperature in the plenum can be calculated as

follows using Equation D.7.

101.325 kPa
pav =
" oasT kL (293 £ 313) K
g

= 1.17 kg/m* (D.8)

‘K

Using the results from Equations D.6 and D.8 in Equation D.2, the pressure drop

through the collector can be calculated.

APcol - n

11758 4« (0,021 « 258.3 % 10°
- ~ 65.3Pa (D.9)

The acceleration pressure drop AP,.. is given as

V2
AP, = P Janout S (D.10)

where Vg oue is the air velocity at the fan outlet expressed as

Vmax
Vftm,out: Ad . (Dll)
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The panel has a width of 1.05 m and a length of 2.5 m. Thus, the maximum
volumetric flowrate Vmax corresponds to
: m 3600 s 3

Vinas = 0.02 — » £1.05 m *2.5 m=196 mT (D.12)

Using Equation D.12 in Equation D.13, the air velocity at the outlet of the fan for
a duct with a diameter of 0.152 m is

3
1960 4 1 h

3
7% (0.152m)? S
i

Vfan,out =

Using the result from Equation D.13 in Equation D.10, the acceleration pressure

drop can be obtained.

1.17 kg/m® (3 m/s)?

AP, .. = 5 =5.2 Pa (D.14)
The buoyancy pressure drop is expressed as
— L
APbuoy — (pout pamb) g (D15)

2
Using Equation D.7 to obtain p,,, and p,,.;, APyey can be calculated.

(1.13 — 1.20) kg/m® % 9.8 m/s”* % 2.5 m

A‘Pbuoy = 9

= —0.9 Pa (D.16)

The pressure drop components APj pier, and APy g, of Equation D.1 can both

be obtained with the following general equation.

VZ
AP; = pra;giD:”g (D.17)

where Dy, is the hydraulic diameter. The friction factor, f, is given by the formula
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of Swamee-Jain (Swamee & Jain, 1976) as

. 0.25
o 5.74 € \2
50910(—360.9 + —3.7D)

(D.18)

where € is the surface roughness. For the plenum, the average velocity and hydraulic
diameter correspond to

. m? 1h
v 1 Vi 1 (1909 * 35505 | _ o om
plen,avg 9 Aplen 9 . S

1.05mx*0.14 m

1.05m * 0.14 m
Dhpien = 4 ~0.25
! (2%0.14 m +2 % 1.05 m) o

Taking the roughness of galvanized steel to be 0.09 mm, the plenum friction factor
and total pressure drop can be calculated.

—2

5.74 0.0009 m
Jpten = 0.25 % | logio + = 0.024
! 0.19 m/s+2.5m\*’  3.7%0.25m
0.0000159 m? /s
1.17 kg/m® * (0.1 2
APy pion = 0024 % 2.5 m » LA K8/ QLI M) o) p, (D.19)

2%0.25 m
The roughness of the ABS pipe is 0.03 mm. Thus, the duct friction factor and

frictional losses correspond to

—2

5.74 0.0009
fauer = 0.25 % | logig 5+ - = 0.024
3m/s*0.152mY) =~ 3-7*0152m
0.0000159 m? /s
1.13 kg/m® * (3 2
APpriotuet — 0.024 2.3 pye 13 KM H B WS o (D.20)

2%0.1524 m

The pressure drop due to the elbow is a function of the velocity pressure P, and

is expressed as

v 2
AP =C,P, = 9
f,elbow C(o v C’o (1414>
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For a 90° elbow with a diameter of 0.152 m and a ratio r/d of 1.5, C, corresponds
to 0.14 according to ASHRAE (2005). Thus, APy o is given as

3m/s)’
AP =0.14 =0.7P D.21
f,elbow 0 * ( 1.414 ) 0.7 Pa ( )

Using the results from Equations D.9, D.14, D.16 and D.19 to D.21, the total

pressure drop of the system can be estimated to be 72 Pa.
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Appendix E

Experimental Data

E.1 Weather Data from the Roof Hut

Table E.1 presents the experimental data recorded hourly by the BEG Hut
data logger and used as inputs in the TRNSYS simulations. The wind speed, wind
direction and relative humidity (HR) were measured on the BEG Hut roof and the
building temperature was recorded in the Hut.

Table E.1: Weather data measured by the BEG Hut data logger

Date Time Vwind Wind Direction Thig HR

[h] [m/s] 1 [°c [%]

29/08/2007 8:00 2.952 295.1 19.81 77.37
29/08/2007 9:00 3.609 293.1 20.02 73.20
29/08/2007 10:00 3.715 292.8 20.34 66.60
29/08/2007 11:00 3.584 294.1 20.64 60.58
29/08/2007 12:00 4.109 299.4 20.83 55.71
31/08/2007 7:00 0.687 296.3 20.05 88.80
31/08/2007 8:00 0.705 293.9 20.24 74.49
31/08/2007 9:00 1.486 266.4 20.02 62.79
31/08/2007 10:00 1.890 252.5 20.05 51.77
31/08/2007 11:00 2.466 207.2 20.08 43.93
31/08/2007 12:00 2.863 193.9 20.40 39.43
31/08/2007 13:00 3.082 272.3 20.50 39.69
01/09/2007 7:00 1.425 110.7 20.13 82.90
01/09/2007 8:00 1.930 135.8 20.05 76.09
01/09/2007 9:00 2.112 165.6 20.13 69.17
01/09/2007 10:00 2.118 132.0 20.10 59.72
01/09/2007 11:00 1.982 167.5 20.18 51.70
01/09/2007 12:00 2.152 159.9 20.26 44.28
01/09/2007 13:00 1.885 198.6 20.34 42.72
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Date Time Vywind Wind Direction Toig HR
[h] [m/s] 1 °c1 [%]
02/09/2007 7:00 0.477 170.3 20.13 78.80
02/09/2007 8:00 0.980 257.6 20.29 68.20
02/09/2007 9:00 1.933 283.4 20.13 58.54
02/09/2007 10:00 2.958 305.8 20.18 54.24
02/09/2007 11:00 2.687 314.5 20.13 53.01
02/09/2007 12:00 2.450 304.6 20.13 48.92
02/09/2007 13:00 2.695 286.4 20.18 46.76
06/09/2007 7:00 0.242 184.3 20.24 87.60
06/09/2007 8:00 0.926 232.3 20.29 77.82
06/09/2007 9:00 2.486 281.1 20.18 67.60
06/09/2007 10:00 3.129 284.3 20.34 57.86
06/09/2007 11:00 3.900 288.0 20.24 45.61
06/09/2007 12:00 3.968 289.4 20.00 37.18
06/09/2007 13:00 5.093 296.0 20.13 33.82
06/09/2007 14:00 4.881 296.7 20.26 30.24
08/09/2007 7:00 2.161 320.5 20.05 60.86
08/09/2007 8:00 2.522 323.6 20.08 | 221.80
08/09/2007 9:00 2.038 289.3 20.00 | 402.70
08/09/2007 10:00 2.134 253.2 20.02 | 555.90
08/09/2007 11:00 1.152 269.1 19.89 | 677.90
08/09/2007 12:00 1.291 229.8 19.89 | 745.70
08/09/2007 13:00 1.695 286.3 20.29 | 704.00
02/09/2007 7:00 0.477 170.3 20.13 78.80
02/09/2007 8:00 0.980 257.6 20.29 68.20
02/09/2007 9:00 1.933 283.4 20.13 58.54
02/09/2007 10:00 2.958 305.8 20.18 54.24
02/09/2007 11:00 2.687 314.5 20.13 53.01
02/09/2007 12:00 2.450 304.6 20.13 48.92
02/09/2007 13:00 2.695 286.4 20.18 46.76
06/09/2007 7:00 0.242 184.3 20.24 87.60
06/09/2007 8:00 0.926 232.3 20.29 77.82
06/09/2007 9:00 2.486 281.1 20.18 67.60
06/09/2007 10:00 3.129 284.3 20.34 57.86
06/09/2007 11:00 3.900 288.0 20.24 45.61
06/09/2007 12:00 3.968 289.4 20.00 37.18
06/09/2007 13:00 5.093 296.0 20.13 33.82
06/09/2007 14:00 4.881 296.7 20.26 30.24
08/09/2007 7:00 2.161 320.5 20.05 60.86
08/09/2007 8:00 2.522 323.6 20.08 | 221.80
08/09/2007 9:00 2.038 289.3 20.00 | 402.70
08/09/2007 10:00 2.134 253.2 20.02 | 555.90
08/09/2007 11:00 1.152 269.1 19.89 | 677.90
08/09/2007 12:00 1.291 229.8 19.89 | 745.70
08/09/2007 13:00 1.695 286.3 20.29 | 704.00

E.2 Experimental Data

Tables E.2 to E.7 present the data recorded during the experiment at a time

step of one minutre as well as some calculated values.
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Table E.2:

Experimental Data for August 29

Time TwaII Tcol,1 Tcol,2 Tcol,3 Tcol,4 Tout Tamb GT,coI Flow Rate PeI Q"LI Effth EffPV
[h] | [°c]l [ [°c] | [°c] | [°C] | [°C] | [°C] | [°C] |W/m®]| [m*hrm®] | [W] |[WIm®]| % | %
8:41 26.1 33.3 31.2 37.2 34.4 30.7 23.9 550.0 73.05 1.75 160.8 29.2 4.54
8:42 26.4 33.6 31.4 37.3 34.4 31.1 24.0 550.5 74.05 1.75 171.2 31.1 4.53
8:43 26.5 33.7 31.4 37.5 34.6 31.2 241 555.2 74.24 1.75 172.2 31.0 4.50
8:44 26.7 34.6 32.0 38.6 35.4 31.6 24 .4 559.2 73.55 1.73 173.5 31.0 4.42
8:45 27.0 35.0 32.5 39.1 35.7 32.1 24.5 564.0 73.39 1.75 181.5 32.2 4.41
8:46 27.2 35.2 32.8 39.3 36.0 32.5 24.7 571.8 73.66 1.75 185.1 32.4 4.37
8:47 27.4 35.4 32.8 39.3 35.9 32.6 25.0 572.8 74.03 1.76 183.4 32.0 4.39
8:48 27.6 355 329 39.5 36.1 32.8 25.2 573.7 74.52 1.75 183.2 31.9 4.34
8:49 27.8 35.6 33.3 39.8 36.4 33.0 251 575.6 74.50 1.74 188.8 32.8 4.30
8:50 28.0 35.4 33.1 39.4 36.2 33.0 251 577.9 74.07 1.75 188.0 325 4.31
8:51 28.1 35.3 33.1 39.4 36.3 329 25.2 580.6 74.67 1.75 187.2 32.3 4.29
8:52 28.2 35.5 33.3 39.7 36.6 33.1 25.3 581.4 73.78 1.76 186.2 32.0 4.31
8:53 28.4 36.1 33.8 40.5 37.1 33.5 254 586.8 73.99 1.74 193.9 33.0 4.22
8:54 28.6 36.3 33.7 40.5 37.1 33.7 25.5 588.9 74.37 1.74 196.5 33.4 4.22
8:55 28.7 36.3 33.9 40.4 37.0 33.8 25.4 589.7 74.03 1.75 199.8 33.9 4.23
8:56 28.8 36.1 33.7 40.0 36.8 33.7 25.5 590.8 74.28 1.75 195.8 33.1 4.22
8:57 29.0 36.7 34.2 40.9 375 34.0 25.9 593.3 73.07 1.74 190.7 32.1 4.18
8:58 29.2 36.9 34.3 41.0 37.6 34.2 26.0 595.1 73.71 1.75 195.1 32.8 4.19
8:59 29.3 36.7 34.3 40.9 37.5 34.3 25.9 597.5 74.08 1.74 199.7 33.4 4.16
9:00 29.5 36.7 34.3 40.5 37.3 34.3 25.8 596.5 73.89 1.74 200.8 33.7 415
9:01 29.5 36.5 34.3 40.3 37.2 34.2 26.0 600.9 74.48 1.77 197.9 32.9 4.20
9:02 29.6 36.6 34.3 40.4 37.3 34.2 25.9 601.4 73.77 1.76 196.7 32.7 4.18
9:03 29.9 36.7 34.4 40.3 37.3 34.4 26.1 604.5 73.95 1.76 196.5 325 4.16
9:04 29.8 36.8 34.4 40.5 37.3 34.4 26.1 604.3 73.63 1.75 194.9 32.3 413
9:05 29.9 36.6 34.4 40.3 37.2 34.4 26.1 603.1 74.09 1.75 196.5 32.6 413
9:06 30.0 36.6 34.5 40.3 37.3 34.4 26.1 604.5 74.06 1.75 199.0 32.9 413
9:07 30.2 36.6 34.5 40.5 37.5 34.5 26.1 608.1 74.11 1.77 198.4 32.6 414
9:08 30.2 36.9 34.9 41.0 37.8 34.7 26.2 609.0 73.67 1.74 200.8 33.0 4.09
9:09 30.3 37.2 34.9 41.3 37.9 34.8 26.2 612.1 73.99 1.77 203.9 33.3 411
9:10 30.5 37.2 34.9 41.0 37.8 34.9 26.5 613.8 74.20 1.75 201.1 32.8 4.06
9:11 30.6 37.3 34.9 411 37.9 34.9 26.5 614.7 73.73 1.77 198.0 32.2 411
9:12 30.7 375 35.3 41.5 38.3 35.1 26.5 615.6 73.31 1.76 202.7 32.9 4.08
9:13 30.8 375 35.1 41.4 38.2 35.1 26.5 614.2 73.80 1.76 205.3 33.4 4.09
9:14 30.9 375 34.9 41.0 37.7 35.2 26.6 611.4 73.94 1.78 203.2 33.2 4.15
9:15 30.9 36.9 34.7 40.4 37.4 34.9 26.4 604.9 73.76 1.77 202.5 33.5 417
9:16 31.0 37.0 35.0 40.6 37.6 34.9 26.2 611.5 73.40 1.78 204 .1 33.4 415
9:17 31.0 37.0 34.8 40.4 37.4 34.9 26.2 613.8 73.80 1.77 206.5 33.6 412
9:18 31.1 36.9 35.0 40.6 37.7 34.9 26.4 618.9 73.55 1.75 200.6 32.4 4.03
9:19 31.1 36.8 34.8 40.3 375 34.8 26.4 623.2 73.83 1.75 200.6 32.2 4.00
9:20 31.1 36.5 34.5 39.9 37.2 34.6 26.4 623.3 73.92 1.75 196.5 31.5 4.01
9:21 31.2 36.8 34.8 40.4 37.5 34.7 26.5 625.2 73.48 1.75 194.9 31.2 3.99
9:22 31.3 37.6 35.5 41.6 38.5 35.1 26.8 628.7 72.27 1.76 193.5 30.8 3.99
9:23 31.5 38.1 35.8 42.3 38.9 35.6 26.9 631.4 73.11 1.76 202.9 32.1 3.97
9:24 31.6 38.2 35.6 421 38.7 35.8 27.0 631.5 73.51 1.76 206.0 32.6 3.96
9:25 31.7 38.5 35.8 42.2 38.7 36.0 27.2 632.1 73.05 1.72 204.1 32.3 3.87
9:26 31.8 38.4 36.0 42.2 39.0 36.0 27.5 634.9 73.23 1.73 199.2 31.4 3.88
9:27 31.9 38.6 36.0 42.3 38.9 36.1 27.6 637.8 73.07 1.75 197.9 31.0 3.90
9:28 32.0 38.7 36.1 42.5 39.1 36.2 27.9 637.7 72.28 1.74 190.3 29.8 3.89
9:29 32.2 39.3 36.9 43.7 40.0 36.5 27.9 639.6 72.63 1.73 199.8 31.2 3.86
9:30 32.3 39.0 36.6 43.2 39.5 36.7 27.7 636.5 73.70 1.72 209.6 32.9 3.85
9:31 32.3 38.4 36.0 421 38.9 36.3 27.5 637.7 74.29 1.75 207.7 32.6 3.91
9:32 32.4 38.6 36.3 42.3 39.2 36.3 27.6 639.4 73.69 1.73 204.8 32.0 3.85
9:33 32.5 38.9 36.4 42.8 39.5 36.5 27.8 640.9 73.92 1.75 206.8 32.3 3.90
9:34 32.6 39.2 36.7 43.3 39.8 36.7 28.0 638.8 73.79 1.75 204.3 32.0 3.91
9:35 32.7 39.1 36.8 43.3 39.8 36.8 27.9 641.5 74.03 1.73 209.5 32.7 3.85
9:36 32.7 38.8 36.4 42.9 39.4 36.7 27.7 638.9 74.65 1.75 212.8 33.3 3.90
9:37 32.7 38.1 36.0 42.0 38.9 36.3 27.6 637.3 74.49 1.75 206.2 32.4 3.91
9:38 32.8 38.6 36.4 42.4 39.2 36.3 27.7 637.6 74.10 1.76 205.5 32.2 3.93
9:39 329 38.8 36.5 425 39.2 36.5 27.9 640.9 73.57 1.74 201.1 31.4 3.88
9:40 329 38.8 36.5 425 39.3 36.6 28.0 642.2 75.01 1.75 206.6 32.2 3.88
9:41 33.0 38.7 36.3 42.5 39.1 36.6 28.1 641.9 75.19 1.74 203.3 31.7 3.87
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Time Twall Tcol,1 Tcol,2 Tcol,3 Tcol,4 Tout Tamb GT,col Flow Rate Pel Q“u Effth EffPV
[h [ [°cl [[°cl| [°C] | [°C] | [°C] | [°C] | [°C] |Wim?]| [m*hm?] | (W] [WIm®]] % | %
9:42 33.0 38.6 36.3 42.2 39.0 | 36.5 28.2 639.4 75.42 1.74 201.0 | 31.4 3.89
9:43 33.0 38.3 36.1 41.7 38.7 | 36.4 28.2 636.3 74.94 1.73 195.2 | 30.7 3.87
9:44 33.1 38.6 36.3 42.2 39.1 36.5 28.3 634.4 74.07 1.73 194.1 30.6 3.88
9:45 33.2 38.8 | 36.3 42.2 39.0 | 36.7 | 284 633.4 74.66 1.73 196.5 [ 31.0 | 3.90
9:46 33.2 38.4 36.3 421 391 36.5 28.2 634.4 73.96 1.74 196.1 30.9 3.90
9:47 33.2 38.6 36.4 42.3 39.1 36.5 28.2 632.6 7417 1.72 198.5 | 31.4 3.87
9:48 33.3 38.8 36.6 42.6 39.5 | 36.6 28.3 632.9 73.16 1.73 194.5 | 30.7 3.89
9:49 33.4 38.9 36.6 42.5 394 | 36.7 28.2 631.7 73.76 1.72 2009 | 31.8 3.88
9:50 33.4 39.0 | 36.5 42.5 39.3 | 36.8 | 28.3 637.6 73.40 1.73 1974 [ 31.0 | 3.86
9:51 33.5 394 | 36.6 42.7 39.3 | 37.0 | 286 636.8 73.35 1.73 1951 [ 30.6 | 3.87
9:52 33.6 39.6 | 37.2 43.5 40.0 | 37.2 [ 28.9 638.2 75.19 1.74 199.1 [ 312 | 3.89
9:53 33.7 39.4 37.2 43.4 40.0 | 37.2 28.7 639.1 76.54 1.74 209.2 | 32.7 3.89
9:54 33.8 39.5 37.2 43.6 40.2 37.3 28.7 639.2 76.57 1.73 210.1 32.9 3.85
9:55 33.9 39.5 37.0 43.2 39.8 | 374 29.1 639.1 76.29 1.71 202.3 | 31.7 3.82
9:56 33.9 39.0 | 36.6 42.5 39.3 | 371 28.8 637.9 76.23 1.73 | 201.0 | 31.5 | 3.86
9:57 33.9 38.8 | 36.5 42.1 39.1 | 36.8 | 28.8 639.0 76.72 1.72 198.1 [ 31.0 | 3.84
9:58 33.9 39.0 | 36.8 42.6 395 [ 369 | 29.0 638.8 76.07 1.72 192.5 [ 30.1 3.84
9:59 34.0 39.2 371 42.9 39.8 | 37.2 291 633.3 76.08 1.72 196.9 [ 31.1 3.87
10:00 341 39.2 37.0 42.9 39.9 | 37.2 29.1 634.5 76.53 1.70 196.9 | 31.0 3.83
10:01 341 39.4 37.2 43.1 40.1 37.3 29.2 635.9 75.97 1.69 195.6 | 30.8 3.79
10:02 341 39.5 37.0 42.8 39.7 | 37.4 29.2 630.0 75.96 1.69 198.6 [ 31.5 3.82
10:03 34.2 39.4 37.2 43.0 39.8 | 37.4 29.5 626.0 76.00 1.71 191.2 | 30.5 3.91
10:04 [ 343 39.8 | 374 43.5 402 | 375 [ 29.7 631.2 75.46 1.70 187.0 [ 29.6 | 3.85
10:05 34.4 40.1 37.7 43.9 40.5 | 37.8 30.2 630.0 75.71 1.70 183.1 29.1 3.84
10:06 34.5 40.4 37.8 443 40.6 | 38.0 30.2 630.0 75.64 1.71 187.6 | 29.8 3.87
10:07 34.6 39.9 37.6 43.8 40.3 | 37.9 30.0 624.7 76.69 1.72 193.0 | 30.9 3.93
10:08 34.6 39.9 37.7 44.0 40.6 | 37.7 29.8 626.8 75.57 1.72 192.3 | 30.7 3.91
10:09 34.7 40.1 37.6 44.2 40.6 | 37.9 30.0 625.4 76.14 1.68 192.4 | 30.8 3.84
10:10 [ 346 39.9 | 373 433 39.8 | 37.8 | 29.7 625.9 76.33 1.68 195.0 [ 312 | 3.84
10:11 34.6 39.5 37.5 43.2 399 | 376 29.6 622.1 75.88 1.68 193.0 | 31.0 3.86
10:12 34.7 39.5 37.4 43.2 40.0 | 37.6 29.7 620.0 75.93 1.68 1924 | 31.0 3.87
10:13 34.8 40.1 37.9 441 40.6 | 37.9 30.4 620.3 75.38 1.69 180.4 | 29.1 3.89
10:14 34.9 40.4 38.0 44.2 40.8 | 38.2 30.6 615.8 75.54 1.71 182.5 | 29.6 3.96
10:15 35.0 40.7 38.3 44.8 41.2 | 38.3 30.8 616.7 75.70 1.69 182.2 | 29.5 3.91
10:16 [ 3541 40.8 | 38.2 44.9 411 ] 385 [ 30.7 612.6 75.81 1.69 187.8 [ 30.7 | 3.94
10:17 [ 3541 40.5 | 38.1 44.6 409 | 384 [ 30.7 616.7 76.01 1.69 187.1 [ 30.3 | 3.92
10:18 35.1 40.1 37.7 441 40.5 | 3841 30.4 615.4 76.31 1.69 187.2 | 30.4 3.91
10:19 35.1 40.5 37.8 44.6 41.0 | 381 30.5 615.2 75.41 1.68 182.5 | 29.7 3.91
10:20 35.2 40.6 37.9 44.6 40.9 | 38.3 30.8 609.5 75.41 1.67 179.1 29.4 3.91
10:21 35.2 40.3 | 38.0 44.4 409 | 38.3 | 30.6 610.1 75.89 1.69 183.7 | 30.1 3.96
10:22 [ 353 | 40.7 [ 38.2 44.5 41.0 | 385 [ 30.8 608.2 75.39 1.68 183.8 [ 30.2 | 3.95
10:23 [ 354 | 40.7 [ 383 44.7 4111 385 [ 31.0 606.1 75.75 1.70 180.2 [ 29.7 | 3.99
10:24 35.5 40.8 38.2 44.6 40.8 | 38.6 31.1 602.9 75.92 1.68 180.6 | 30.0 3.98
10:25 354 39.9 37.5 43.3 39.9 | 38.1 30.4 601.9 77.39 1.67 188.8 | 31.4 3.96
10:26 35.4 39.7 37.7 43.4 40.3 | 37.9 30.5 603.6 76.78 1.68 181.7 | 30.1 3.98
10:27 35.4 39.6 37.6 43.3 40.2 | 37.9 30.4 600.4 76.66 1.69 182.4 | 30.4 4.01
10:28 | 35.3 39.6 | 37.6 43.3 40.3 | 37.8 | 304 598.3 75.97 1.69 179.1 [ 29.9 | 4.02
10:29 [ 354 | 40.2 [ 37.8 43.9 40.5 | 381 30.7 598.6 76.83 1.68 180.8 [ 30.2 | 3.99
10:30 35.5 40.2 37.9 441 40.6 | 38.1 30.6 596.8 76.41 1.67 184.0 [ 30.8 3.99
10:31 35.5 40.0 37.9 441 40.6 | 38.2 30.5 595.1 76.56 1.67 188.1 31.6 4.01
10:32 35.5 40.1 37.9 44.0 40.6 | 38.2 30.7 595.0 77.08 1.67 183.9 | 30.9 4.01
10:33 | 35.6 | 40.3 [ 38.1 44.3 40.8 | 38.3 | 30.9 595.5 77.83 1.69 181.7 [ 30.5 | 4.05
10:34 35.6 40.5 38.0 44.4 40.9 | 384 31.0 593.6 76.74 1.67 179.5 | 30.2 4.01
10:35 [ 35.7 | 406 [ 38.2 44.5 40.8 | 385 [ 31.2 591.6 77.06 1.67 178.5 [ 30.2 | 4.03
10:36 35.7 40.2 37.7 43.6 40.2 | 384 31.3 587.1 77.51 1.69 174.3 | 29.7 4.10
10:37 35.7 39.9 37.7 43.3 40.2 | 38.2 31.3 589.1 77.49 1.68 168.0 [ 28.5 4.06
10:38 35.7 40.3 38.1 441 409 | 384 31.4 588.4 76.70 1.66 169.2 | 28.8 4.02
10:39 35.8 40.7 38.4 44.4 411 38.6 31.6 589.5 76.09 1.68 168.2 | 28.5 4.05
10:40 35.9 40.3 38.1 441 40.8 | 38.5 31.3 587.3 77.50 1.68 177.7 | 30.3 4.08
10:41 359 | 403 [ 3841 44.4 41.0 | 384 [ 31.2 584.8 7747 1.67 178.6 [ 30.5 | 4.07
10:42 [ 359 | 406 [ 381 44.6 41.0 | 385 [ 314 584.8 77.18 1.68 174.8 [ 29.9 | 4.09
10:43 35.8 40.1 37.8 43.6 40.3 | 383 31.5 579.6 77.57 1.65 166.8 | 28.8 4.07
10:44 35.8 39.5 37.5 43.0 39.9 | 38.0 311 579.9 77.68 1.68 169.4 | 29.2 4.14
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Time Twall Tcol,1 TcoI,Z Tcol,3 Tcol,4 Tout Tamb GT,coI Flow Rate PeI Q"U Effth EffPV
[h] | [°cl [ [°c1 | [°c] | [°c] | [°C] | [°C1 | [°C] [Wim?]| [m¥hm?] | [W] |[WIm®]| % | %
10:45 35.3 37.5 35.7 40.0 37.4 36.3 32.7 410.5 76.39 1.68 88.1 21.5 5.84
10:46 35.8 39.5 37.4 43.1 40.1 37.9 31.0 576.0 77.08 1.66 167.6 29.1 412
10:47 35.8 39.8 37.6 43.4 40.3 38.0 31.3 572.8 76.41 1.67 162.4 28.4 4.16
10:48 35.8 39.6 375 43.0 39.8 38.0 314 5711 76.98 1.66 161.2 28.2 4.14
10:49 35.8 39.6 37.5 43.1 40.1 37.9 31.3 571.3 77.18 1.66 163.1 28.5 4.14
10:50 35.8 39.9 37.7 43.3 40.2 38.0 314 570.3 76.38 1.63 159.9 28.0 4.07
10:51 35.9 39.9 37.6 431 40.1 38.1 31.6 567.0 76.28 1.64 158.2 27.9 413
10:52 35.9 40.0 37.6 43.2 40.0 38.2 31.7 566.7 76.11 1.64 157.7 27.8 414
10:53 35.9 40.2 37.9 43.7 40.5 38.3 32.1 566.7 75.48 1.65 147.7 26.1 4.15
10:54 36.1 40.5 38.4 44 .4 41.0 38.6 32.5 566.1 75.88 1.64 146.2 25.8 413
10:55 36.1 40.4 38.1 43.9 40.6 38.6 32.0 565.4 76.09 1.63 159.2 28.2 4.12
10:56 36.0 40.0 37.7 43.1 40.0 38.3 31.9 561.1 76.56 1.65 156.4 27.9 4.18
10:57 36.0 39.8 37.7 43.1 40.1 38.1 31.9 557.3 76.37 1.63 151.4 27.2 417
10:58 36.0 39.9 37.9 43.4 40.4 38.2 31.9 552.3 75.99 1.63 152.5 27.6 4.21
10:59 36.0 39.9 37.8 43.4 40.1 38.2 31.7 550.1 76.33 1.62 157.5 28.6 419
11:00 36.0 39.7 37.7 43.2 40.1 38.1 31.6 550.2 76.02 1.62 156.2 28.4 4.20
11:01 36.1 39.9 38.0 43.5 40.4 38.3 32.0 544 .4 75.67 1.61 151.4 27.8 4.21
11:02 36.2 40.1 38.1 43.7 40.5 38.4 32.2 544.5 76.15 1.61 149.5 27.5 4.22
11:03 36.2 40.3 38.2 44 .1 40.7 38.5 32.2 540.9 76.03 1.60 151.0 27.9 4.23
11:04 36.3 40.7 38.4 44.4 41.1 38.7 32.7 540.0 76.06 1.60 145.6 27.0 4.22
11:05 36.4 40.8 38.5 44.3 41.0 38.9 33.1 5371 75.52 1.60 138.7 25.8 4.24
11:06 36.4 40.4 38.2 43.9 40.5 38.7 32.6 534.0 76.26 1.60 146.3 27.4 4.28
11:07 36.3 40.3 38.0 43.9 40.5 38.5 32.7 535.1 76.64 1.62 141.0 26.4 4.31
11:08 36.3 40.6 38.2 44 4 40.8 38.6 33.1 528.7 76.20 1.60 133.6 25.3 4.32
11:09 36.4 40.6 38.2 43.9 40.5 38.8 33.4 528.0 75.73 1.61 128.5 24.3 4.35
11:10 36.4 40.4 38.0 43.8 40.5 38.7 33.5 522.7 75.74 1.60 124.7 23.9 4.37
11:11 36.4 40.3 38.0 43.7 40.4 38.5 33.3 526.1 76.53 1.61 127.7 24.3 4.37
11:12 36.4 40.3 38.0 43.7 40.3 38.6 33.3 524.0 75.81 1.61 125.9 24.0 4.39
11:13 36.4 39.9 37.9 43.2 40.1 38.4 32.9 519.0 76.41 1.60 132.8 25.6 4.41
11:14 36.4 40.2 37.8 43.4 40.1 38.4 33.0 519.1 75.76 1.60 130.3 25.1 4.39
11:15 36.4 39.9 37.7 43.3 40.0 38.3 32.9 516.0 76.10 1.61 129.7 25.1 4.44
11:16 36.3 39.5 37.5 42.8 39.7 38.1 32.5 514.8 75.70 1.60 135.3 26.3 4.42
11:17 36.3 39.6 37.6 43.0 39.9 38.0 32.3 510.4 75.93 1.60 137.8 27.0 4.46
11:18 36.3 39.7 375 43.0 39.8 38.1 325 506.6 76.32 1.59 135.5 26.7 4.47
11:19 36.2 39.3 37.3 42.6 39.5 37.9 325 503.6 77.27 1.60 133.0 26.4 4.53
11:20 36.2 39.7 37.5 43.0 39.8 38.0 32.6 502.6 75.96 1.57 129.5 25.8 4.46
11:21 36.2 39.5 37.2 42.6 39.4 37.9 32.6 501.3 76.78 1.59 130.1 26.0 4.52
11:22 36.2 39.2 37.0 42.0 39.0 37.8 32.7 4951 75.89 1.59 121.8 24.6 4.59
11:23 36.2 39.2 37.1 42.0 39.2 37.7 32.7 498.2 76.44 1.58 122.5 24.6 4.52
11:24 36.2 39.6 37.4 42.5 39.5 37.9 32.9 495.3 75.72 1.60 121.4 24.5 4.60
11:25 36.2 39.3 37.3 421 39.2 37.8 32.7 495.1 76.32 1.57 124.2 25.1 4.51
11:26 36.2 38.9 371 41.7 38.9 37.7 32.7 486.2 76.66 1.57 121.9 25.1 4.60
11:27 36.1 38.7 36.9 41.5 38.9 37.5 32.2 478.2 76.68 1.57 128.3 26.8 4.68
11:28 36.4 38.9 37.2 42.0 39.3 37.6 325 484.4 76.78 1.55 126.6 26.1 4.55
11:29 36.4 39.2 37.3 42.4 39.5 37.8 32.7 480.4 76.53 1.56 124.2 25.9 4.64
11:30 36.4 39.1 37.2 42.0 39.2 37.8 32.7 477.9 76.70 1.56 122.6 25.6 4.65
11:31 36.3 38.7 36.8 41.2 38.5 37.5 32.7 466.6 76.92 1.53 116.7 25.0 4.69
11:32 36.3 38.8 36.8 41.4 38.6 37.5 33.0 461.8 76.66 1.53 108.6 23.5 473
11:33 36.2 38.8 36.8 41.3 38.7 37.5 33.4 464.5 76.92 1.53 99.8 21.5 4.70
11:34 36.3 38.9 36.9 41.5 38.8 37.6 33.0 467.9 76.81 1.53 111.7 23.9 4.66
11:35 36.3 38.9 36.9 41.5 38.8 375 33.0 465.6 76.72 1.54 110.0 23.6 4.71
11:36 36.3 38.9 36.9 41.5 38.8 375 33.0 463.5 76.64 1.55 110.1 23.8 4.77
11:37 36.3 38.9 36.9 41.6 38.8 37.5 33.0 461.9 76.57 1.54 110.1 23.8 4.74
11:38 36.3 38.9 37.0 41.6 38.8 37.5 33.0 460.8 76.57 1.52 110.0 23.9 472
11:39 36.2 38.9 37.0 41.6 38.8 37.5 33.0 460.2 76.50 1.52 109.7 23.8 4.71
11:40 36.2 38.8 36.9 41.6 38.8 37.5 33.0 459.8 76.50 1.51 109.4 23.8 4.70
11:41 36.2 38.8 36.9 41.5 38.7 37.4 33.0 459.1 76.46 1.51 109.1 23.8 4.70
11:42 36.2 38.7 36.9 41.5 38.7 37.4 32.9 458.2 76.45 1.51 109.2 23.8 4.69
11:43 36.1 38.7 36.9 41.6 38.7 37.4 32.9 457.3 76.42 1.52 108.8 23.8 4.73
11:44 36.1 38.7 36.8 41.6 38.7 37.4 33.0 456.4 76.42 1.55 108.0 23.7 4.86
11:45 35.8 38.3 36.3 40.9 38.0 37.1 33.3 440.2 77.06 1.44 95.1 21.6 4.66
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Table E.3: Experimental data for August 31

Time Twan Teol1 Tcol,z Tcol,3 Tco|,4 Tout Tamb GT,coI Flow Rate| P, Q" Effy, Effpy
(h | I°c1 | r°cl | r°cl | [°c1 | I°c] | [°C] | [°C] |Wim?]| [m*hm?] [ (W] [[Wim?]] % %
7:36 16.6 24.5 21.8 28.9 25.2 22.2 13.3 542.6 72.12 1.92 215.8 39.8 5.05
7:37 16.7 24.9 21.8 29.0 25.4 22.3 13.3 548.2 71.77 1.95 2171 39.6 5.06
7:38 16.8 25.3 22.0 28.8 25.6 22.6 13.3 554.2 72.01 1.94 225.8 40.7 4.99
7:39 16.9 25.5 221 29.0 25.7 22.8 13.3 559.4 71.86 1.95 229.6 41.0 4.97
7:40 17.0 25.9 22.4 29.3 26.0 23.1 13.3 564.9 72.08 1.94 234.9 41.6 4.89
7:41 17.2 26.1 22.7 29.5 26.2 23.3 13.3 570.0 71.99 1.92 242.8 42.6 4.81
7:42 17.3 26.3 22.8 29.6 26.3 23.5 13.2 575.2 71.85 1.93 247.5 43.0 4.80
7:43 17.4 26.5 22.8 29.7 26.3 23.6 13.2 580.2 72.19 1.94 250.8 43.2 4.76
7:44 17.6 26.5 22.8 30.1 26.5 23.6 13.3 585.8 71.61 1.95 248.3 42.4 4.74
7:45 17.7 26.8 23.2 30.4 26.9 23.9 13.3 591.1 71.47 1.93 253.3 42.9 4.66
7:46 17.9 26.7 23.2 30.4 26.9 24.0 13.3 596.0 72.29 1.93 256.9 43.1 4.61
7:47 18.0 26.8 23.4 30.9 27.2 241 13.5 600.3 71.54 1.93 251.7 41.9 4.58
7:48 18.2 271 23.6 31.1 27.4 24.3 13.6 604.4 71.16 1.94 254.5 421 4.58
7:49 18.3 27.3 23.9 31.5 27.6 24.5 13.8 608.6 70.83 1.92 252.2 41.4 4.51
7:50 18.5 27.7 24.0 31.7 27.8 24.8 14.0 613.6 70.87 1.92 255.4 41.6 4.46
7:51 18.7 28.1 24.3 31.7 28.0 25.1 14.0 617.3 71.73 1.94 265.2 43.0 4.48
7:52 18.9 28.3 24.4 32.0 28.3 25.3 14.2 623.4 71.48 1.93 263.4 42.3 4.42
7:53 19.1 28.6 24.8 32.3 28.6 25.6 14.3 628.1 71.16 1.92 267.1 42.5 4.36
7:54 19.2 28.8 24.9 32.3 28.6 25.7 14.2 632.0 71.29 1.92 272.5 43.1 4.34
7:55 19.4 28.5 24.9 32.6 28.7 25.6 14.4 635.7 71.93 1.92 267.6 42.1 4.31
7:56 19.6 29.1 25.2 32.9 29.1 26.0 14.6 639.9 71.05 1.94 268.2 41.9 4.33
7:57 19.8 29.1 25.5 33.4 29.3 26.1 14.8 643.9 71.53 1.92 268.7 41.7 4.26
7:58 20.0 28.8 25.4 33.6 29.2 26.1 14.8 646.9 71.96 1.93 268.2 41.5 4.25
7:59 20.1 29.5 25.6 33.8 29.6 26.4 14.9 651.2 70.86 1.91 270.9 41.6 4.19
8:00 20.4 30.0 25.9 33.8 29.7 26.8 15.0 655.1 71.41 1.93 279.6 42.7 4.20
8:01 20.5 30.1 26.0 34.0 30.0 26.9 15.1 658.7 71.81 1.91 281.2 42.7 4.14
8:02 20.7 30.5 26.3 34.1 30.1 27.2 15.0 661.7 72.07 1.91 290.1 43.8 412
8:03 20.9 30.4 26.3 34.2 30.2 27.2 15.1 664.8 71.90 1.90 288.7 43.4 4.08
8:04 21.1 30.7 26.7 34.2 30.2 27.5 15.3 668.1 71.36 1.91 287.3 43.0 4.07
8:05 21.3 30.8 26.6 33.9 30.1 27.6 15.0 671.1 72.10 1.91 298.7 44.5 4.07
8:06 21.4 30.7 26.6 34.2 30.3 27.5 15.0 672.9 72.03 1.89 297.2 44.2 4.01
8:07 21.6 31.1 26.9 34.6 30.7 27.8 15.2 675.0 71.84 1.90 298.7 44.3 4.02
8:08 21.8 31.0 26.9 34.3 30.4 27.9 15.2 678.3 71.34 1.91 297.3 43.8 4.02
8:09 21.9 30.9 26.8 34.4 30.5 27.9 15.4 682.3 72.53 1.90 299.0 43.8 3.98
8:10 22.0 31.3 27.2 34.9 30.9 28.1 15.6 685.0 71.56 1.89 295.8 43.2 3.94
8:11 22.2 31.3 271 35.1 31.0 28.2 15.5 687.0 71.84 1.89 300.9 43.8 3.93
8:12 22.3 31.5 27.4 35.9 31.5 28.3 15.9 690.3 71.56 1.88 293.8 42.6 3.89
8:13 22.5 31.7 27.6 36.4 31.7 28.6 16.2 692.9 71.66 1.89 291.1 42.0 3.89
8:14 22.7 32.3 27.9 36.4 31.8 28.9 16.3 695.3 71.65 1.88 295.8 42.5 3.86
8:15 22.9 32.3 27.9 35.7 31.6 29.0 16.0 698.7 72.33 1.90 309.0 44.2 3.87
8:16 23.0 32.4 28.0 35.9 31.8 29.1 15.9 700.8 71.82 1.89 311.2 44 .4 3.85
8:17 23.2 32.5 28.3 36.6 32.2 29.2 16.3 703.4 72.26 1.88 307.1 43.7 3.81
8:18 23.3 32.0 28.2 36.8 32.1 29.1 16.4 705.6 72.54 1.89 303.1 43.0 3.81
8:19 23.5 32.2 28.2 36.8 32.3 29.2 16.5 707.1 71.51 1.89 298.7 42.2 3.81
8:20 23.6 33.0 28.7 37.2 32.7 29.6 16.7 709.3 71.18 1.87 302.5 42.7 3.77
8:21 23.8 32.6 28.8 37.3 32.9 29.6 16.7 711.2 71.53 1.87 302.6 42.6 3.75
8:22 23.9 33.0 28.7 37.3 32.9 29.8 16.8 714.0 71.91 1.88 307.7 43.1 3.76
8:23 24.0 32.7 28.8 37.4 32.7 29.8 16.8 715.7 71.88 1.87 307.1 42.9 3.73
8:24 24.2 32.7 29.2 37.5 33.1 29.8 16.5 717.6 71.80 1.89 312.0 435 3.76
8:25 24.3 33.7 29.5 37.9 33.6 30.3 16.9 719.8 70.38 1.87 309.3 43.0 3.71
8:26 24.6 33.8 30.0 37.9 33.7 30.6 17.2 721.9 71.12 1.87 311.0 43.1 3.70
8:27 24.7 33.2 30.0 38.2 33.8 30.3 16.9 723.6 71.56 1.87 313.0 43.2 3.69
8:28 24.8 33.2 30.1 38.3 34.0 30.4 16.8 725.4 71.12 1.88 316.1 43.6 3.69
8:29 25.0 33.2 30.2 38.4 34.0 30.5 17.3 728.4 71.15 1.87 306.7 42.1 3.66
8:30 25.1 33.1 29.7 38.4 33.8 30.4 17.2 729.5 71.80 1.87 311.1 42.7 3.66
8:31 25.3 34.2 30.1 38.9 34.3 30.9 17.4 731.3 70.85 1.85 312.5 42.7 3.61
8:32 25.5 34.7 30.3 39.1 34.4 31.4 17.9 733.5 70.65 1.85 309.0 421 3.60
8:33 25.7 34.8 30.4 39.1 34.5 31.5 18.0 734.6 71.15 1.85 312.4 42.5 3.60
8:34 25.8 34.9 30.4 39.3 34.7 31.6 18.3 736.7 73.87 1.84 318.2 43.2 3.57
8:35 26.0 35.0 30.4 39.1 34.6 31.7 18.5 738.9 7414 1.85 317.6 43.0 3.58
8:36 26.2 35.5 30.8 39.5 34.9 32.0 18.7 740.0 73.26 1.84 317.1 42.9 3.54
8:37 26.3 35.3 30.7 39.4 35.0 32.0 18.7 740.8 73.33 1.85 318.2 42.9 3.57
8:38 26.4 35.1 30.5 39.6 35.2 31.9 18.8 742.8 76.14 1.85 325.8 43.9 3.55
8:39 26.6 35.2 31.0 39.9 35.2 32.1 19.0 743.8 75.82 1.84 321.6 43.2 3.563
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Time Twan Tcol,1 Tcol,z Tcol,s Teoa | Tout Tamb GT,coI Flow Rate | P, Q" Effy, Effpy
(h | I°c1 | r°cl | r°el | r°cl | I°cl | [°c] | [°C] |Wim®l| [m¥%hm?®] | [W] |Wim?]| % %
8:40 26.7 34.8 30.6 39.7 35.0 31.9 18.9 745.1 76.63 1.86 324.5 43.6 3.55
8:41 26.8 35.0 30.5 39.2 34.6 31.9 18.6 746.2 75.97 1.87 327.8 43.9 3.58
8:42 26.9 35.5 30.9 39.2 35.1 32.2 18.7 747.7 75.72 1.85 332.4 445 3.52
8:43 27.0 35.1 30.8 39.2 34.9 32.1 18.7 749.4 77.08 1.86 337.1 45.0 3.55
8:44 271 34.7 31.4 39.7 35.3 31.9 18.7 750.3 75.97 1.86 326.5 43.5 3.54
8:45 27.2 34.4 31.1 39.6 35.2 31.8 18.5 752.0 76.29 1.87 331.3 441 3.54
8:46 27.2 34.7 31.0 40.2 35.4 31.9 18.9 753.0 75.95 1.85 322.2 42.8 3.50
8:47 27.5 35.6 31.6 40.9 35.8 32.5 19.4 753.9 75.49 1.84 320.8 42.6 3.49
8:48 27.7 36.2 31.9 40.7 35.9 33.0 19.6 754.8 75.40 1.83 326.6 43.3 3.45
8:49 27.8 36.6 31.8 40.5 35.8 33.2 19.6 754.5 76.09 1.83 334.4 44.3 3.46
8:50 27.9 36.4 31.7 40.6 35.7 33.2 19.8 755.5 76.14 1.83 328.9 43.5 3.46
8:51 28.0 36.5 31.7 40.3 35.6 33.2 19.8 755.8 75.33 1.83 327.9 43.4 3.45
8:52 28.1 36.4 31.7 40.7 36.0 33.2 19.9 757.2 75.66 1.83 325.3 43.0 3.44
8:53 28.3 36.7 32.0 41.0 36.1 33.4 20.0 758.4 75.74 1.83 328.7 43.3 3.45
8:54 28.4 36.4 32.0 40.8 36.0 33.4 20.2 758.8 76.79 1.83 326.7 43.1 3.43
8:55 28.5 36.5 32.2 41.0 36.2 33.4 20.2 759.7 75.76 1.84 323.6 42.6 3.45
8:56 28.6 36.4 32.0 40.7 35.9 33.4 20.3 761.0 75.54 1.84 322.0 42.3 3.45
8:57 28.6 36.8 32.2 41.0 36.3 33.6 20.1 761.5 74.84 1.83 327.5 43.0 3.43
8:58 28.7 36.7 321 40.7 36.3 33.6 20.0 760.6 76.06 1.83 333.8 43.9 3.44
8:59 28.8 371 32.4 411 36.4 33.8 20.2 760.6 74.97 1.83 331.0 43.5 3.43
9:00 29.0 36.9 32.5 41.6 36.5 33.8 20.6 761.3 75.61 1.81 323.0 42.4 3.40
9:01 29.2 37.4 32.8 41.8 36.9 34.2 20.8 762.4 75.26 1.82 325.4 42.7 3.40
9:02 29.3 371 32.9 42.0 37.0 34.1 21.1 763.8 75.45 1.81 318.1 41.6 3.38
9:03 29.4 37.4 329 42.3 37.2 34.3 21.4 764.6 75.55 1.80 315.2 41.2 3.36
9:04 29.5 37.6 329 421 37.0 34.4 21.4 763.8 75.21 1.81 317.2 41.5 3.39
9:05 29.6 37.7 33.0 41.6 36.9 34.5 20.8 762.8 75.20 1.83 332.6 43.6 3.41
9:06 29.7 37.4 33.5 41.5 371 34.4 20.8 762.6 74.78 1.83 328.3 43.0 3.42
9:07 29.7 36.8 32.7 41.5 371 34.0 20.6 762.5 76.26 1.82 329.8 43.3 3.40
9:08 29.9 37.8 33.1 41.8 37.2 34.6 20.8 762.3 74.44 1.81 329.4 43.2 3.38
9:09 30.0 38.1 33.4 41.6 37.3 34.8 20.8 762.0 74.52 1.83 337.1 44.2 3.42
9:10 30.0 37.6 33.2 415 371 34.6 20.9 761.4 75.40 182.97| 332.4 43.7 342.77
9:11 30.1 37.5 33.2 419 37.3 34.5 21.3 760.3 75.33 1.82 322.8 42.5 3.42
9:12 30.2 37.7 33.4 421 37.5 34.8 21.4 759.3 74.85 1.79 323.2 42.6 3.36
9:13 30.4 37.8 33.1 41.5 36.9 34.8 21.2 759.1 75.08 1.81 329.5 43.4 3.41
9:14 30.4 374 329 415 36.8 34.6 21.0 758.0 75.43 1.82 330.5 43.6 3.43
9:15 30.5 37.2 33.4 42.0 37.3 34.6 21.0 756.9 74.92 1.81 328.6 43.4 3.42
9:16 30.5 37.4 33.1 41.8 36.9 34.7 21.3 756.6 74.82 1.81 323.3 42.7 3.41
9:17 30.6 37.7 33.2 41.6 36.8 34.8 21.2 757.6 74.72 1.82 327.7 43.3 3.42
9:18 30.7 37.9 33.4 419 37.2 34.9 21.2 757.1 74.95 1.80 331.1 43.7 3.39
9:19 30.8 38.0 33.5 42.0 37.2 35.0 21.9 757.1 76.03 1.79 321.5 42.5 3.38
9:20 30.9 37.9 33.4 42.0 37.3 35.0 221 756.4 76.43 1.79 316.8 41.9 3.38
9:21 31.1 38.3 33.8 41.9 37.4 35.2 21.9 754.8 76.17 1.80 325.6 43.1 3.40
9:22 31.1 37.8 33.5 419 37.4 35.0 22.2 755.3 76.16 1.79 315.6 41.8 3.39
9:23 31.2 38.0 33.6 42.0 37.2 35.1 22.5 754.6 76.24 1.80 310.5 41.1 3.40
9:24 31.3 38.1 33.7 42.0 37.4 35.2 22.7 754.1 76.09 1.80 307.1 40.7 3.41
9:25 31.3 38.4 33.8 421 37.4 35.4 22.6 754.0 76.02 1.80 313.2 41.5 3.40
9:26 31.4 38.5 34.1 42.4 37.6 35.4 22.7 752.2 75.72 1.79 311.1 41.4 3.40
9:27 31.5 38.4 34.0 42.2 37.6 35.4 22.5 750.4 76.22 1.78 315.7 42.1 3.39
9:28 31.6 38.5 34.0 421 37.5 35.5 22.7 750.1 76.39 1.79 316.2 42.2 3.40
9:29 31.7 38.6 34.0 42.0 37.7 35.6 22.4 750.8 76.10 1.80 323.2 43.0 3.43
9:30 31.7 38.3 33.8 421 37.7 35.5 22.5 749.7 76.33 1.79 319.0 42.6 3.40
9:31 31.7 38.5 34.1 42.3 37.8 35.6 22.7 750.0 75.80 1.78 313.2 41.8 3.38
9:32 31.8 38.4 33.9 41.8 37.5 35.5 22.5 747.3 76.27 1.80 320.2 42.9 3.43
9:33 31.8 38.1 33.8 41.2 37.3 35.3 22.3 745.9 76.10 1.80 320.0 42.9 3.44
9:34 31.8 37.6 33.6 40.6 36.6 35.0 21.8 746.0 76.07 1.82 323.6 43.4 3.48
9:35 31.8 37.5 33.4 41.3 37.0 34.9 221 745.6 75.57 1.80 311.7 41.8 3.44
9:36 31.8 38.0 33.7 40.9 37.0 35.2 22.2 744.5 75.54 1.80 315.0 42.3 3.44
9:37 31.8 37.3 33.3 40.3 36.5 34.9 221 743.1 75.80 1.82 311.6 41.9 3.49
9:38 31.8 37.3 33.3 41.0 36.8 34.8 221 742.4 75.56 1.81 309.3 41.7 3.47
9:39 31.9 37.8 33.7 41.5 371 35.1 22.2 740.7 75.00 1.80 312.6 42.2 3.46
9:40 31.9 36.8 33.6 41.4 37.0 34.7 22.2 742.0 76.59 1.84 308.1 41.5 3.54
9:41 31.8 36.0 33.2 41.0 37.0 34.2 21.7 741.9 77.23 1.85 310.6 41.9 3.57
9:42 31.7 36.2 33.0 411 37.2 34.2 21.9 741.8 75.35 1.81 300.1 40.5 3.49
9:43 31.9 37.8 33.8 41.8 37.7 35.0 22.7 741.3 74.56 1.79 296.3 40.0 3.44
9:44 32.1 38.2 34.1 42.0 37.8 35.4 23.3 739.7 75.09 1.78 292.4 39.5 3.44
9:45 32.2 38.6 34.3 42.0 37.8 35.7 23.3 738.4 75.01 1.79 298.3 40.4 3.46
9:46 32.3 38.3 341 421 37.7 35.6 23.3 737.3 75.39 1.78 296.7 40.3 3.44
9:47 32.3 38.5 34.3 41.7 37.6 35.7 23.4 738.1 74.79 1.80 295.5 40.0 3.47
9:48 32.4 38.3 34.1 415 37.5 35.6 23.2 737.6 75.36 1.81 300.4 40.7 3.51
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Time Twan Tcol,1 Tcol,z Tcol,s Teoa | Tout Tamb GT,coI Flow Rate | P, Q" Effy, Effpy
(h | I°c1 | r°cl | r°el | r°cl | I°cl | [°c] | [°C] |Wim®l| [m¥%hm?®] | [W] |Wim?]| % %
9:49 32.5 38.3 34.2 41.6 37.5 35.6 23.3 735.3 75.40 1.79 299.8 40.8 3.47
9:50 32.4 38.0 34.2 42.0 37.7 35.4 23.4 733.5 76.34 1.79 296.2 40.4 3.49
9:51 32.5 37.8 34.5 42.5 37.8 35.4 23.5 731.4 76.03 1.79 289.6 39.6 3.50
9:52 32.5 37.0 33.4 41.0 36.7 35.0 23.2 730.2 76.98 1.82 292.3 40.0 3.55
9:53 32.5 37.3 33.7 41.5 37.0 35.1 23.5 728.7 75.40 1.81 280.0 38.4 3.54
9:54 32.5 37.1 33.5 411 36.8 34.9 23.4 726.5 7717 1.81 286.1 39.4 3.56
9:55 32.4 36.5 33.4 41.2 36.8 34.6 23.0 725.8 76.79 1.84 287.9 39.7 3.61
9:56 32.4 36.5 33.5 41.4 37.0 34.6 22.9 724.5 77.07 1.84 292.0 40.3 3.62
9:57 32.4 371 33.5 41.6 37.2 34.9 23.2 722.5 75.45 1.80 285.2 39.5 3.55
9:58 32.5 37.5 33.8 42.0 37.4 35.1 23.6 721.3 76.16 1.79 284.0 39.4 3.54
9:59 32.7 38.3 34.3 421 37.6 35.6 23.9 720.2 76.59 1.79 289.0 40.1 3.54
10:00 32.7 37.9 34.0 41.6 37.2 35.5 24.0 718.8 76.54 1.79 284.5 39.6 3.55
10:01 32.7 37.3 33.8 41.8 37.2 35.2 241 716.6 77.41 1.80 274.7 38.3 3.59
10:02 32.7 36.8 33.4 41.6 36.9 34.9 23.7 715.2 77.45 1.80 279.7 39.1 3.59
10:03 32.6 36.6 33.4 41.3 36.8 34.7 23.4 713.2 77.75 1.80 285.3 40.0 3.59
10:04 32.6 36.3 33.5 40.8 36.7 34.6 23.2 712.0 76.39 1.83 281.3 39.5 3.67
10:05 32.6 36.5 33.6 41.2 37.1 34.6 23.3 711.7 75.71 1.81 276.0 38.8 3.63
10:06 32.7 37.4 34.2 42.2 37.9 35.2 24.0 710.5 73.96 1.77 266.4 37.5 3.56
10:07 32.9 38.6 34.5 42.4 38.0 35.8 24.5 708.0 74.00 1.76 269.9 38.1 3.55
10:08 33.1 38.8 34.4 42.4 37.9 36.0 24.5 704.7 75.16 1.78 278.8 39.6 3.60
10:09 33.1 38.4 34.1 41.9 37.5 35.8 24.3 701.3 77.37 1.78 287.3 41.0 3.62
10:10 33.0 37.8 33.9 41.4 37.1 35.5 24.4 700.4 78.60 1.78 281.0 40.1 3.63
10:11 329 36.6 33.3 40.7 36.5 34.9 24.0 700.0 78.55 1.78 276.4 39.5 3.63
10:12 329 371 33.5 40.7 36.6 35.0 23.7 698.6 75.31 1.79 273.2 39.1 3.65
10:13 329 36.7 33.2 40.9 36.8 34.8 23.8 695.8 76.69 1.79 272.8 39.2 3.67
10:14 32.9 37.0 33.3 40.9 36.7 34.9 23.7 694.0 75.96 1.80 274.5 39.6 3.69
10:15 33.0 37.6 33.8 41.7 37.3 35.2 24.3 692.0 75.02 1.77 264.2 38.2 3.66
10:16 33.1 37.8 34.1 41.5 37.3 35.5 24.6 688.9 75.07 1.77 263.7 38.3 3.67
10:17 33.1 37.7 34.2 41.2 37.3 35.4 24.8 686.3 75.19 1.78 256.7 37.4 3.69
10:18 33.1 37.8 34.0 40.7 37.1 35.4 24.7 686.8 75.46 1.78 261.8 38.1 3.70
10:19 33.1 37.6 34.1 40.8 37.2 35.4 24.5 685.0 75.22 1.78 263.1 38.4 3.70
10:20 33.2 37.8 34.1 40.8 37.0 35.4 24.6 682.9 74.46 1.76 258.6 37.9 3.68
10:21 33.1 37.7 34.0 40.6 37.0 35.3 24.6 680.6 74.81 1.77 258.8 38.0 3.72
10:22 33.1 37.4 33.9 40.7 37.0 35.2 24.7 678.9 75.25 1.78 256.5 37.8 3.74
10:23 33.2 37.3 33.8 41.0 36.8 35.3 24.8 676.0 75.64 1.78 255.5 37.8 3.75
10:24 33.1 37.1 33.6 41.0 37.0 35.1 24.2 674.6 75.44 1.77 262.8 39.0 3.73
10:25 33.2 37.9 34.1 41.4 37.5 35.5 24.7 672.7 74.45 1.75 258.1 38.4 3.71
10:26 33.3 38.0 34.2 41.2 37.2 35.6 25.1 669.2 74.59 1.77 253.8 37.9 3.77
10:27 33.2 371 33.6 40.7 36.5 35.1 25.3 666.8 76.23 1.77 240.9 36.1 3.78
10:28 33.2 37.3 33.8 41.3 37.0 35.2 25.4 666.9 74.54 1.77 233.8 35.1 3.78
10:29 33.3 37.8 33.9 411 36.9 35.5 25.3 665.2 75.02 1.76 246.2 37.0 3.77
10:30 33.2 37.1 33.6 40.9 36.6 35.1 25.1 662.7 76.06 1.78 247.0 37.3 3.83
10:31 33.3 37.6 33.9 41.0 37.1 35.4 25.0 661.1 74.38 1.77 249.9 37.8 3.82
10:32 33.3 37.3 33.6 40.0 36.4 35.1 24.5 658.9 75.21 1.77 257.2 39.0 3.83
10:33 33.2 36.8 33.4 40.1 36.4 34.9 24.3 655.7 75.63 1.77 257.3 39.2 3.85
10:34 33.3 37.6 34.0 41.4 37.3 35.3 25.2 653.6 74.65 1.75 241.8 37.0 3.82
10:35 33.2 36.8 33.7 411 36.8 35.1 24.8 651.1 74.91 1.76 247.0 37.9 3.86
10:36 33.2 36.4 33.2 40.2 36.4 34.7 24.7 649.7 76.24 1.76 245.9 37.9 3.87
10:37 33.2 37.2 33.8 41.0 37.1 35.1 25.3 647.5 73.90 1.75 234.6 36.2 3.85
10:38 33.3 37.6 33.9 40.6 36.9 35.3 25.3 644.6 75.03 1.75 242.4 37.6 3.87
10:39 33.4 371 33.8 40.0 36.4 35.2 25.4 643.6 75.70 1.75 239.1 371 3.88
10:40 33.2 35.9 33.3 39.6 35.9 34.4 25.2 640.8 76.70 1.78 226.8 35.4 3.97
10:41 33.2 35.8 33.0 39.7 36.0 34.2 25.1 638.4 75.47 1.77 223.0 34.9 3.95
10:42 33.2 36.4 33.1 39.5 35.9 34.5 25.0 635.1 74.04 1.76 227.1 35.8 3.96
10:43 33.2 36.7 33.2 40.2 36.3 34.7 25.4 633.2 73.20 1.74 221.2 34.9 3.92
10:44 33.2 37.0 33.5 40.1 36.2 34.9 25.3 630.9 73.95 1.74 228.3 36.2 3.94
10:45 33.2 36.7 33.2 39.9 36.1 34.7 25.4 627.0 74.61 1.75 225.3 35.9 3.98
10:46 33.2 36.1 33.1 39.7 36.0 34.4 25.3 623.3 76.79 1.75 225.3 36.1 3.99
10:47 33.1 35.5 33.0 39.5 35.8 34.0 25.0 621.5 76.06 1.76 222.6 35.8 4.03
10:48 33.1 36.0 33.1 40.2 36.1 34.3 25.4 619.7 75.29 1.75 215.8 34.8 4.03
10:49 33.0 35.4 32.6 39.1 35.2 34.0 24.8 615.9 75.46 1.75 223.6 36.3 4.05
10:50 329 35.1 32.5 39.3 35.5 33.7 24.9 615.3 75.30 1.76 214.6 34.9 4.07
10:51 32.8 34.4 32.1 38.4 34.8 33.3 24.5 613.8 76.44 1.79 217.9 35.5 4.16
10:52 32.7 34.2 31.9 38.1 34.7 33.2 24.3 611.4 75.88 1.79 219.2 35.8 4.18
10:53 32.5 33.0 31.0 36.6 33.6 32.4 23.8 607.9 76.93 1.82 213.7 35.2 4.28
10:54 32.3 32.8 30.9 36.5 33.7 32.1 23.5 606.3 75.90 1.81 212.3 35.0 4.27
10:55 32.3 33.9 31.5 37.7 34.5 32.7 24.2 605.1 73.84 1.78 204.8 33.8 4.20
10:56 32.5 35.1 32.3 38.5 35.1 33.4 24.9 604.1 73.56 1.72 201.1 33.3 4.06
10:57 32.5 35.4 32.5 38.9 35.4 33.6 25.4 602.0 74.15 1.74 196.1 32.6 4.13
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Time Twan Tcol,1 Tcol,z Tcol,s Teoa | Tout Tamb GT,coI Flow Rate | P, Q" Effy, Effpy
(h | I°c1 | r°cl | r°el | r°cl | I°cl | [°c] | [°C] |Wim®l| [m¥%hm?®] | [W] |Wim?]| % %
10:58 32.5 35.4 325 39.0 35.5 33.7 25.7 599.4 75.34 1.74 195.8 32.7 413
10:59 32.7 36.0 32.8 39.4 35.7 34.1 25.8 595.9 75.46 1.75 203.1 34.1 4.19
11:00 32.7 35.9 32.7 39.2 35.4 34.1 25.8 591.6 76.04 1.73 202.9 34.3 4.18
11:01 32.6 35.3 32.4 39.0 35.2 33.7 25.6 589.7 76.13 1.72 198.2 33.6 4.16
11:02 32.5 33.7 31.3 37.5 33.8 32.8 24.9 585.9 78.05 1.76 200.0 34.1 4.28
11:03 32.3 32.9 30.9 36.7 33.6 32.1 24.2 583.5 77.29 1.78 199.9 34.3 4.36
11:04 32.2 33.2 31.0 36.8 33.8 32.2 241 581.8 76.71 1.76 202.8 34.9 4.30
11:05 32.1 32.8 30.8 36.5 33.4 32.0 23.9 579.0 76.69 1.77 201.8 34.9 4.37
11:06 32.1 33.6 31.4 37.1 34.1 32.3 24.6 577.1 75.78 1.76 190.4 33.0 4.35
11:07 32.1 33.5 31.4 37.2 34.0 32.4 24.8 574.4 76.35 1.78 189.6 33.0 4.41
11:08 32.1 33.3 31.3 37.0 33.9 32.3 24.7 572.0 77.13 1.75 190.2 33.3 4.36
11:09 32.0 33.2 31.2 37.0 33.9 32.3 24.6 569.1 76.22 1.76 189.8 33.3 4.42
11:10 31.9 32.4 30.5 36.0 33.1 31.7 24.2 565.5 76.50 1.76 187.9 33.2 4.43
11:11 31.8 33.2 31.1 36.7 33.8 32.0 24.4 562.4 74.72 1.73 185.2 32.9 4.38
11:12 31.9 34.0 31.5 37.3 34.1 32.5 25.3 558.9 75.02 1.74 175.1 31.3 4.44
11:13 32.0 34.7 31.9 37.7 34.5 32.9 25.7 555.0 73.99 1.72 172.0 31.0 4.42
11:14 32.1 34.9 31.9 37.4 34.4 33.1 25.7 553.8 74.48 1.70 177.8 32.1 4.39
11:15 32.1 34.6 31.8 36.7 34.0 32.9 25.5 551.5 74.68 1.72 178.8 32.4 4.45
11:16 32.1 34.4 31.7 36.9 34.0 32.9 25.7 550.0 75.58 1.71 176.6 32.1 4.43
11:17 32.1 34.0 31.5 37.3 341 32.7 25.7 547.5 75.55 1.72 170.3 31.1 4.47
11:18 32.0 33.8 31.6 37.5 34.2 32.6 25.9 545.2 75.97 1.71 164.5 30.2 4.46
11:19 31.9 33.6 31.4 37.3 33.9 32.5 25.7 541.4 75.47 1.71 166.7 30.8 4.51
11:20 31.9 33.9 31.3 37.4 33.9 32.6 25.5 538.0 74.51 1.70 171.9 32.0 4,52
11:21 31.8 33.2 30.8 36.4 33.1 32.2 251 532.9 75.50 1.70 172.3 32.3 4.56
11:22 31.8 33.4 30.9 36.6 33.2 32.2 25.5 530.6 75.01 1.70 162.9 30.7 4.58
11:23 31.7 33.7 31.2 37.1 33.7 32.3 26.2 528.5 73.96 1.70 146.5 27.7 4.60
11:24 31.7 34.0 31.3 37.1 33.6 32.4 26.5 525.1 74.10 1.69 143.8 27.4 4.60
11:25 31.7 33.9 31.2 36.3 33.2 32.5 26.0 520.8 74.79 1.70 156.6 30.1 4.64
11:26 31.7 33.8 31.1 36.5 33.6 32.4 25.8 517.5 74.78 1.70 160.2 31.0 4.70
11:27 31.8 33.9 31.1 36.8 33.8 32.4 25.9 514.5 75.16 1.67 158.3 30.8 4.64
11:28 31.7 329 30.8 36.3 33.2 31.9 25.6 512.0 75.95 1.71 157.5 30.8 4.75
11:29 31.5 32.1 30.1 35.5 32.4 31.4 24.8 510.1 76.17 1.71 162.3 31.8 4.78
11:30 31.4 32.3 30.1 35.5 32.5 31.3 24.9 507.5 75.77 1.70 158.0 31.1 4.78
11:31 31.3 32.3 30.2 35.6 32.6 31.4 25.2 504.1 74.51 1.71 150.8 29.9 4.83
11:32 31.4 32.7 30.5 36.0 32.9 31.7 25.5 501.8 74.20 1.69 149.1 29.7 4.81
11:33 31.2 31.4 29.5 34.7 31.7 31.0 24.9 497.8 76.43 1.72 152.8 30.7 4,93
11:34 30.9 30.0 28.4 33.0 30.5 29.9 241 493.5 76.49 1.74 146.3 29.6 5.02
11:35 30.9 30.7 29.0 33.8 31.4 30.1 24.5 490.7 74.74 1.71 137.4 28.0 4.97
11:36 30.9 31.7 29.5 34.5 31.9 30.6 25.0 488.1 73.95 1.69 137.5 28.2 4.95
11:37 30.9 32.0 29.7 34.8 32.0 30.9 25.3 484.6 74.18 1.66 136.6 28.2 4.90
11:38 30.9 31.8 29.7 34.7 31.9 30.9 25.2 481.3 74.87 1.67 139.2 28.9 4,95
11:39 30.8 31.4 29.5 34.4 31.7 30.7 24.9 478.8 74.74 1.67 140.9 29.4 4.98
11:40 30.8 31.0 29.3 34.1 31.3 30.5 24.7 476.0 75.09 1.66 141.1 29.6 4.98
11:41 30.5 29.6 28.1 32.5 30.1 29.5 241 472.2 75.59 1.69 132.8 28.1 5.10
11:42 30.4 29.9 28.5 33.1 30.6 29.5 24.2 469.4 74.01 1.66 128.0 27.3 5.04
11:43 30.4 31.0 29.1 34.3 31.4 30.1 24.9 465.6 73.51 1.63 125.3 26.9 5.00
11:44 30.5 319 29.7 34.8 32.0 30.7 25.5 463.2 73.46 1.62 124.7 26.9 4,99
11:45 30.5 31.6 29.6 35.0 321 30.7 25.7 459.8 74.53 1.61 122.5 26.6 5.00
11:46 30.5 31.0 29.2 34.2 31.4 30.4 25.3 456.6 75.26 1.65 124 .1 27.2 5.14
11:47 30.5 31.1 29.2 34.2 31.6 30.3 25.5 454.2 75.51 1.61 119.3 26.3 5.07
11:48 30.4 30.1 28.4 33.0 30.2 29.7 24.8 449.2 76.03 1.67 122.9 27.4 5.30
11:49 30.2 29.7 28.1 32.4 30.2 29.3 24.5 445.2 75.07 1.65 118.6 26.6 5.28
11:50 30.1 30.2 28.4 32.9 30.6 29.6 24.8 442.6 74.86 1.62 117.1 26.5 5.21
11:51 30.1 30.4 28.8 33.5 31.0 29.7 25.1 440.0 74.72 1.60 113.7 25.8 5.17
11:52 30.1 30.6 28.9 33.5 30.9 29.9 25.4 437.3 74.40 1.59 109.7 25.1 5.20
11:53 30.1 30.4 28.7 33.3 30.8 29.8 25.4 434.7 74.53 1.58 108.5 25.0 5.19
11:54 30.2 31.5 29.4 34.2 31.6 30.4 26.3 431.2 73.65 1.56 100.4 23.3 5.15
11:55 30.2 31.2 29.1 33.9 31.0 30.3 26.5 424.3 74.40 1.56 93.2 22.0 5.24
11:56 30.2 31.1 29.0 33.7 30.9 30.1 26.6 420.0 74.75 1.55 87.6 20.9 5.28
11:57 30.1 31.1 29.0 33.5 30.8 30.1 26.3 418.5 74.02 1.56 92.4 221 5.31
11:58 30.1 31.2 29.0 33.3 30.9 30.1 26.0 415.2 74.56 1.54 100.7 24.2 5.30
11:59 30.1 30.9 28.8 33.0 30.6 29.9 25.8 392.7 74.68 1.54 100.5 25.6 5.60
12:00 29.9 29.6 27.8 31.9 29.3 29.2 25.4 372.2 76.45 1.56 95.1 25.6 5.99
12:01 29.7 28.7 27.2 31.2 28.8 28.5 24.6 406.2 76.71 1.57 99.0 24 .4 5.52
12:02 29.5 27.8 26.5 30.1 28.0 27.9 23.9 400.8 76.19 1.57 101.2 25.3 5.58
12:03 29.4 28.5 27.0 31.0 28.9 28.1 241 398.7 74.36 1.52 100.1 25.1 5.44
12:04 29.4 29.7 27.9 32.3 29.8 28.9 25.1 396.3 74.18 1.51 92.5 23.3 5.43
12:05 29.5 30.2 28.5 32.9 30.2 29.3 25.5 393.0 73.51 1.49 92.6 23.6 5.40
12:06 29.6 30.9 28.9 33.0 30.6 29.8 26.3 389.8 73.29 1.47 83.5 21.4 5.37
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Time Twan Teoln Teoz | Teols | Teoa | Tout Tamb | Grco | Flow Rate| P Q" Effy, Effpy
(h | [°cl | [°c1 | [°€] | [°C] | [°C] | [°C] | [°C] |[Wim?]| [m*hm?] | (W] |Wim?]| % %
12:07 29.7 31.2 29.1 33.8 31.0 30.0 27.0 384.3 73.47 1.46 72.6 18.9 5.42
12:08 29.8 31.5 29.2 34.0 31.2 30.2 27.4 382.1 74.31 1.44 68.1 17.8 5.39
12:09 29.8 31.4 29.0 33.7 30.8 30.3 27.1 324.6 74.44 1.43 76.6 23.6 6.29
12:10 29.6 29.6 27.2 30.8 27.9 29.0 25.6 285.8 75.95 1.45 86.2 30.2 7.24
12:11 29.4 30.0 27.9 31.7 29.4 29.0 26.0 372.8 74.46 1.45 73.3 19.6 5.53
12:12 29.5 30.4 28.2 32.3 29.8 29.3 26.2 368.6 74.11 1.43 75.3 20.4 5.54
12:13 29.4 29.9 27.8 31.6 29.3 29.1 25.8 364.8 74.86 1.43 79.3 21.7 5.59
12:14 29.3 29.4 27.6 31.4 29.0 28.8 25.7 362.5 75.20 1.45 77.5 21.4 5.69
12:15 29.2 28.6 27.2 30.8 28.7 28.4 25.2 363.8 74.97 1.44 78.7 21.6 5.66
12:16 29.1 29.5 27.6 31.5 29.2 28.7 25.6 359.8 73.37 1.42 74.7 20.8 5.61
12:17 29.1 29.7 27.8 31.5 29.4 28.9 25.9 350.2 74.18 1.40 72.6 20.7 5.72
12:18 29.0 29.1 27.3 31.0 28.9 28.5 25.8 348.3 74.29 1.38 66.6 19.1 5.66
12:19 29.0 29.3 27.5 31.4 29.1 28.6 25.7 327.1 74.13 1.36 69.4 21.2 5.94
12:20 29.0 29.4 27.4 31.2 28.9 28.6 25.9 336.5 74.63 1.36 67.6 20.1 5.78
12:21 28.9 29.4 27.4 31.2 28.9 28.6 25.9 331.9 74.46 1.35 65.5 19.7 5.80
12:22 28.9 28.9 271 30.9 28.6 28.3 26.0 328.5 74.74 1.34 56.1 17.1 5.82
12:23 28.8 29.1 271 30.8 28.5 28.4 26.2 324.5 73.77 1.31 53.4 16.5 5.77
12:24 28.7 28.8 27.0 30.6 28.4 28.2 25.9 322.9 74.73 1.31 57.0 17.7 5.77
12:25 28.6 28.1 26.5 30.2 28.0 27.7 25.3 319.2 75.45 1.31 60.9 19.1 5.86
12:26 28.4 27.4 26.0 29.4 27.3 27.3 24.8 314.8 76.27 1.31 63.9 20.3 5.93
12:27 28.2 26.4 25.1 28.2 26.3 26.6 23.8 310.5 76.49 1.31 69.7 22.5 6.04
12:28 28.1 26.3 25.0 28.0 26.3 26.3 23.5 306.6 75.91 1.29 71.5 23.3 5.99
12:29 27.9 25.3 24.2 26.7 25.2 25.7 23.1 302.0 76.24 1.31 67.3 22.3 6.18
12:30 27.8 26.2 25.1 28.0 26.4 26.1 23.9 299.4 73.89 1.26 53.9 18.0 5.98
12:31 27.8 27.3 25.7 29.2 271 26.8 25.0 296.2 72.94 1.23 44.2 14.9 5.92
12:32 27.9 27.9 26.2 29.9 27.7 27.2 25.6 293.8 72.95 1.22 39.1 13.3 5.90
12:33 27.9 27.8 26.2 29.9 27.6 27.4 25.7 291.0 74.26 1.21 40.5 13.9 5.91
12:34 27.8 27.2 25.8 29.2 27.2 27.0 25.3 286.7 74.41 1.20 42.4 14.8 5.98
12:35 27.7 26.7 25.4 28.5 26.5 26.7 24.8 281.1 74.38 1.20 47.2 16.8 6.11
12:36 27.6 26.4 25.1 28.2 26.3 26.4 24.5 276.7 73.97 1.18 45.0 16.3 6.11
12:37 27.5 26.3 25.1 28.1 26.3 26.2 24.3 272.7 74.35 1.16 47.5 17.4 6.09
12:38 27.6 27.2 25.8 29.2 27.1 26.8 25.2 269.6 72.70 1.13 38.4 14.3 6.00
12:39 27.7 27.9 26.2 29.5 27.5 27.2 25.6 265.9 72.28 1.12 38.0 14.3 5.98
12:40 27.8 28.3 26.5 29.9 27.9 27.5 26.3 262.5 72.78 1.10 30.9 11.8 5.96
12:41 27.7 28.1 26.2 29.4 27.4 27.4 26.3 257.8 72.92 1.09 25.9 10.0 6.02
12:42 27.6 27.5 25.8 28.8 26.9 27.0 25.9 253.8 72.58 1.09 26.6 10.5 6.12
12:43 27.6 27.6 26.1 28.8 271 27.0 26.1 253.0 72.67 1.07 21.2 8.4 6.05
12:44 27.6 27.5 25.9 28.9 271 27.0 26.1 251.1 72.22 1.07 20.0 8.0 6.08
12:45 27.6 27.4 25.8 28.8 26.9 26.9 26.0 248.6 72.84 1.06 23.1 9.3 6.10
12:46 27.5 27.3 25.7 28.5 26.8 26.8 25.8 243.9 72.79 1.04 24.5 10.1 6.07
12:47 27.4 26.7 25.2 27.8 26.1 26.4 25.3 238.4 73.52 1.03 26.2 11.0 6.17
12:48 27.3 26.9 25.3 28.0 26.3 26.4 25.6 236.2 73.14 1.02 20.2 8.6 6.18
12:49 27.3 26.6 25.1 27.8 26.0 26.2 25.7 232.6 73.59 1.02 13.2 5.7 6.24
12:50 27.2 26.2 24.8 27.4 25.7 26.0 25.4 228.3 73.57 1.00 14.2 6.2 6.23
12:51 27.2 26.5 25.1 27.8 26.0 26.1 25.6 225.6 73.88 0.98 12.9 57 6.21
12:52 271 26.3 24.9 27.7 25.9 26.0 25.6 222.0 74.87 0.97 10.8 4.9 6.26
12:53 27.0 26.0 24.7 27.4 25.7 25.8 25.3 218.9 73.96 0.97 11.4 5.2 6.33
12:54 27.0 26.6 25.1 27.9 26.1 26.2 25.9 216.1 73.57 0.95 6.6 3.1 6.26
12:55 27.0 26.4 24.9 27.7 25.9 26.1 25.8 213.5 74.14 0.95 6.9 3.2 6.33
12:56 26.9 25.9 24.5 27.3 25.4 25.7 25.5 209.2 74.73 0.94 5.0 2.4 6.42
12:57 26.7 25.6 241 26.8 24.9 25.4 25.0 201.5 75.16 0.91 10.8 54 6.46
12:58 26.6 25.5 241 26.5 24.9 25.3 25.0 194.8 74.43 0.89 8.7 4.4 6.51
12:59 26.6 25.4 241 26.5 24.9 25.2 25.2 189.2 74.73 0.86 1.9 1.0 6.50
13:00 26.5 25.3 24.0 26.5 24.9 25.1 25.2 184.6 73.41 0.85 -0.6 -0.3 6.58
Table E.4: Experimental data for September 1
Time | Twan | Teo1 | Teoz | Teols | Teos | Tout | Tamo | Greor |Flow Rate| Py Q", | Effy, | Effpy
[h | [°c] | €l | [°C] | [°c] | [°C] | [°C] | [°C] | Wim®]| [m*hm?] | (W] |[(WIm]| % | %
7:32 13.1 16.4 15.4 18.2 17.0 15.6 11.8 339.0 81.60 1.81 108.3 31.9 7.63
7:33 13.3 17.7 16.6 20.1 18.7 16.5 11.9 355.9 80.49 1.82 127.2 35.7 7.28
7:34 134 17.9 16.7 20.2 18.5 16.8 12.0 283.9 81.73 1.83 135.6 47.8 9.12
7:35 13.4 17.2 16.1 19.2 17.9 16.3 12.0 368.6 82.19 1.86 121.8 33.0 7.19
7:36 13.6 18.4 17.2 21.0 19.6 171 12.3 423.7 80.06 1.86 131.8 31.1 6.26
7:37 13.8 19.2 17.8 22.1 20.4 17.8 12.3 406.8 80.05 1.84 149.3 36.7 6.44
7:38 14.0 19.6 18.1 22.5 20.7 18.1 12.4 428.0 80.93 1.85 159.1 37.2 6.18
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Time Twall Tcol,1 TcoI,Z Tcol,s Tcol,4 Tout Tamb GT,CO| Flow Rate Pel Q"u Effth EffPV
h | el | rel | rel | e | rel | rel | el | wim? | mihm? | w [ Wim?| % | %
7:39 14.2 201 18.4 231 21.2 18.5 12.5 4449 81.03 1.87 166.1 37.3 6.00
7:40 14.4 20.5 18.8 23.7 21.6 18.8 12.6 457.6 80.74 1.88 171.9 37.6 5.85
741 14.6 20.9 191 24.2 22.2 19.2 12.8 470.3 80.64 1.89 176.1 37.4 5.72
7:42 14.8 213 19.5 246 22.3 19.5 12.9 4746 80.53 1.90 181.2 38.2 5.70
7:43 15.0 212 194 24.3 222 19.5 131 483.1 81.92 1.91 179.6 37.2 5.65
7:44 15.2 216 19.7 24.8 226 19.8 13.3 4915 81.40 1.91 180.7 36.8 5.53
7:45 15.3 216 19.7 24.9 226 19.9 13.3 500.0 81.82 1.93 183.6 36.7 5.51
7:46 15.5 21.7 19.9 251 22.8 20.1 13.3 504.2 81.07 1.92 187.6 37.2 5.44
7:47 15.7 22.0 20.1 254 231 20.3 13.3 512.7 80.75 1.93 192.2 37.5 5.36
7:48 15.8 225 20.5 26.0 23.7 20.6 13.3 521.2 81.23 1.92 201.4 38.6 5.26
7:49 16.0 231 20.9 26.7 24.2 21.0 13.4 525.4 80.55 1.91 209.8 39.9 5.18
7:50 16.2 23.7 214 27.5 24.7 21.5 13.6 525.4 80.27 1.90 2153 41.0 5.16
7:51 16.5 235 213 27.2 245 21.6 13.7 529.7 81.09 1.93 216.3 40.8 5.20
7:52 16.6 23.8 217 277 24.9 21.7 13.6 533.9 80.54 1.91 220.7 41.3 5.09
7:53 16.8 243 22.0 28.3 253 22.1 13.6 538.1 80.25 1.90 231.0 42.9 5.03
7:54 17.0 245 222 28.4 255 22.3 13.8 542.4 81.30 1.90 234.4 43.2 5.00
7:55 17.2 245 222 28.4 25.6 22.4 13.9 550.8 80.73 1.91 233.3 42.3 4.95
7:56 17.4 24.8 225 28.8 25.8 227 13.7 555.1 80.59 1.91 2425 43.7 4.91
7:57 17.5 24.8 225 28.6 25.8 227 13.8 563.6 80.61 1.91 241.9 42.9 4.84
7:58 17.7 25.0 227 28.8 26.0 229 13.9 576.3 81.06 1.95 2456 42.6 4.82
7:59 17.8 25.3 22.8 29.2 26.4 2341 14.0 580.5 80.31 1.94 244.8 42.2 4.76
8:00 18.0 25.3 23.0 29.3 26.4 23.2 141 580.5 80.35 1.93 246.9 42.5 4.75
8:01 18.3 25.7 23.3 29.8 26.8 235 14.2 589.0 80.63 1.94 252.2 42.8 4.70
8:02 18.4 25.6 23.3 29.5 26.6 23.6 14.3 589.0 81.45 1.96 254.7 43.2 4.76
8:03 18.5 251 22.8 28.8 26.0 23.3 14.5 589.0 81.18 1.95 240.4 40.8 4.73
8:04 18.6 253 22.8 29.0 26.3 23.3 14.4 593.2 81.56 1.95 2427 40.9 4.68
8:05 18.8 25.8 234 29.7 26.9 237 14.4 597.5 80.26 1.96 249.8 41.8 4.67
8:06 18.9 25.7 235 29.6 26.8 237 14.5 601.7 81.09 1.97 250.7 417 4.66
8:07 19.0 25.8 235 29.7 27.0 23.8 14.7 605.9 81.10 1.96 248.8 411 4.61
8:08 19.2 26.4 23.8 30.5 27.6 242 14.5 614.4 80.81 1.95 262.5 42.7 4.53
8:09 19.4 26.8 23.8 30.6 275 244 14.4 614.4 80.47 1.93 2714 44.2 4.48
8:10 19.6 27.3 243 31.3 281 24.8 14.7 614.4 80.17 1.91 2714 44.2 4.42
8:11 19.8 27.6 249 31.7 28.3 25.2 15.2 614.4 80.88 1.94 269.7 43.9 4.50
8:12 19.9 26.9 244 30.9 27.8 24.8 15.1 622.9 80.98 1.94 263.0 42.2 4.44
8:13 20.0 27.3 244 31.5 281 25.0 15.1 627.1 80.62 1.92 266.3 42.5 4.38
8:14 20.2 27.6 249 31.8 28.3 253 15.2 627.1 81.70 1.93 275.9 44.0 4.38
8:15 204 27.6 249 31.8 28.5 253 15.2 635.6 81.52 1.95 2755 43.3 4.38
8:16 20.5 275 24.8 31.6 284 253 15.5 635.6 81.52 1.96 268.7 423 4.39
8:17 20.6 27.7 25.0 32.0 28.8 254 15.5 639.8 80.74 1.93 267.9 41.9 4.29
8:18 20.7 28.4 252 32.5 291 25.8 15.7 644.1 80.44 1.92 271.9 42.2 4.25
8:19 20.9 28.5 257 32.8 294 26.1 15.7 648.3 80.50 1.91 277.6 42.8 4.21
8:20 211 291 257 33.3 29.8 26.4 15.9 652.5 80.18 1.89 278.9 42.7 4.13
8:21 21.3 29.5 26.4 34.0 30.2 26.8 16.0 652.5 80.90 1.91 290.4 44.5 4.17
8:22 21.4 29.0 259 33.2 29.8 26.5 15.8 656.8 82.26 1.93 294.9 44.9 4.19
8:23 21.5 28.9 255 32.9 29.5 26.5 15.6 661.0 82.04 1.92 297.2 45.0 4.14
8:24 21.6 28.8 256 33.2 29.4 26.5 15.4 661.0 81.63 1.91 301.5 45.6 4.12
8:25 21.8 291 257 33.3 29.6 26.6 15.3 665.3 81.66 1.90 308.3 46.3 4.08
8:26 21.9 29.0 26.0 33.3 29.6 26.7 15.3 669.5 81.89 1.95 309.8 46.3 4.16
8:27 21.9 28.8 25.8 33.1 29.6 26.6 15.6 669.5 82.48 1.94 303.6 45.4 4.13
8:28 22.0 294 257 33.2 29.8 26.8 15.5 673.7 81.32 1.92 307.3 45.6 4.08
8:29 22.2 30.1 26.4 33.7 30.2 27.3 15.6 678.0 80.83 1.93 312.2 46.1 4.05
8:30 22.4 30.0 26.8 34.5 30.7 27.4 16.0 678.0 81.28 1.91 308.9 45.6 4.01
8:31 22.6 30.3 271 34.9 31.1 27.7 16.5 682.2 81.34 1.92 301.4 44.2 4.02
8:32 22.7 29.8 26.9 34.4 30.8 27.5 16.4 682.2 82.11 1.93 302.2 44.3 4.04
8:33 22.7 29.3 26.5 33.8 30.2 27.2 16.5 682.2 82.64 1.94 292.6 42.9 4.06
8:34 22.8 29.2 26.4 33.5 30.2 271 16.3 682.2 82.01 1.93 295.7 43.3 4.04
8:35 22.9 29.3 26.5 33.7 30.3 27.2 16.2 682.2 81.82 1.95 299.0 43.8 4.08
8:36 23.0 294 26.3 33.6 30.3 27.2 16.2 686.4 81.22 1.94 297.3 43.3 4.04
8:37 23.1 30.0 26.7 34.1 30.7 27.6 16.4 686.4 80.92 1.92 300.7 43.8 3.99
8:38 23.2 29.8 26.6 34.0 30.3 27.6 16.1 690.7 81.53 1.94 311.3 45.1 4.01
8:39 23.2 294 26.4 33.8 30.3 27.3 15.7 690.7 81.66 1.94 314.3 45.5 4.01
8:40 23.3 29.7 26.4 34.0 30.3 27.5 15.8 690.7 81.49 1.93 314.0 45.5 3.99
8.41 23.5 30.3 26.7 34.4 30.6 27.9 16.0 699.2 81.19 1.92 317.8 45.5 3.92
8:42 23.7 30.7 27.3 34.6 30.9 28.2 16.3 699.2 81.29 1.92 321.1 45.9 3.93
8:43 23.8 30.5 27.3 34.8 31.2 28.2 16.5 699.2 81.90 1.94 318.6 45.6 3.95
8:44 23.9 30.9 271 35.0 31.2 28.3 16.5 703.4 81.31 1.91 318.9 45.3 3.86
8:45 24.0 31.1 276 35.3 31.5 28.5 16.6 703.4 81.36 1.92 320.5 45.6 3.90
8:46 24.2 31.1 27.9 35.6 31.7 28.6 16.6 703.4 80.99 1.91 320.8 45.6 3.87
8:47 243 30.9 27.9 35.5 31.8 28.7 17.0 707.6 81.82 1.93 315.1 44.5 3.90
8:48 243 30.1 274 34.5 31.1 28.2 17.2 707.6 82.52 1.96 301.0 42.5 3.95
8:49 244 30.4 27.6 34.8 31.4 28.3 17.0 711.9 81.53 1.94 304.9 42.8 3.89

175




Time Twall Tcol,1 TcoI,Z Tcol,s Tcol,4 Tout Tamb GT,CO| Flow Rate Pel Q"u Effth EffPV
h | el | rel | rel | e | rel | rel | el | wim? | mihm? | w [ Wim?| % | %
8:50 24.5 30.5 27.8 34.8 31.5 28.5 17.2 711.9 81.57 1.95 304.6 42.8 3.90
8:51 24.6 30.6 27.9 35.0 31.7 28.6 17.0 716.1 81.38 1.93 311.1 43.4 3.85
8:52 24.7 30.6 277 35.0 31.8 28.6 17.4 716.1 82.21 1.94 303.9 42.4 3.87
8:53 24.7 311 28.1 35.7 32.1 28.8 17.4 711.9 81.04 1.93 306.1 43.0 3.87
8:54 24.9 30.9 28.0 35.5 31.8 28.8 17.6 716.1 81.66 1.96 304.1 42.5 3.90
8:55 24.9 30.4 275 34.8 31.4 28.5 17.5 716.1 82.58 1.96 299.7 41.8 3.90
8:56 24.9 30.9 27.8 35.5 32.0 28.7 17.4 716.1 81.82 1.91 306.5 42.8 3.81
8:57 25.0 31.3 28.2 35.8 32.2 28.9 171 720.3 81.27 1.94 316.8 44.0 3.83
8:58 252 31.5 28.1 36.0 32.2 29.1 17.3 720.3 81.53 1.92 318.9 44.3 3.80
8:59 25.3 31.6 28.1 36.0 32.2 29.1 17.2 720.3 81.13 1.91 318.7 44.2 3.78
9:00 25.4 31.6 277 35.8 31.8 29.3 17.2 720.3 81.16 1.91 323.2 44.9 3.78
9.01 25.4 31.8 277 35.8 31.7 29.3 17.3 724.6 81.58 1.91 321.9 44.4 3.75
9.02 25.5 32.4 28.3 36.5 32.3 29.6 17.5 724.6 81.05 1.87 323.2 44.6 3.68
9:03 25.7 32.4 28.1 35.9 31.8 29.8 17.4 724.6 81.92 1.90 334.0 46.1 3.74
9.04 25.7 31.5 276 34.9 31.2 29.3 17.0 720.3 83.21 1.91 335.7 46.6 3.79
9.05 25.6 30.9 27.3 34.5 31.1 28.9 16.9 724.6 82.28 1.94 325.1 44.9 3.82
9.06 25.7 32.2 284 36.1 32.8 29.4 17.4 724.6 80.60 1.88 321.3 44.3 3.70
9:07 25.9 32.2 28.4 36.2 32.6 29.7 17.5 728.8 82.10 1.90 329.4 45.2 3.72
9:08 25.9 31.9 28.0 35.9 32.0 29.6 174 728.8 81.66 1.92 326.7 44.8 3.76
9:09 26.0 32.0 27.9 35.5 31.8 29.6 174 724.6 81.86 1.92 328.1 45.3 3.77
9:10 26.0 31.6 27.8 35.2 31.7 294 17.2 724.6 82.62 1.92 332.5 45.9 3.79
9:11 26.1 31.8 28.4 36.3 32.6 29.5 17.3 733.1 81.22 1.90 326.7 44.6 3.70
9:12 26.2 32.2 28.7 37.0 32.9 29.9 17.5 728.8 81.33 1.90 331.2 45.4 3.72
9:13 26.4 32.8 29.2 37.4 33.4 30.2 17.7 733.1 80.79 1.88 330.3 45.1 3.65
9:14 26.4 32.7 29.3 37.4 33.3 30.3 18.1 733.1 81.43 1.87 325.4 44.4 3.64
9:15 26.6 32.6 29.3 37.5 33.3 30.4 18.4 733.1 81.47 1.89 322.9 441 3.68
9:16 26.6 32.5 28.9 371 32.9 30.3 18.1 7331 82.06 1.89 328.9 44.9 3.68
9:17 26.7 32.7 29.0 37.2 32.9 30.4 18.0 733.1 81.48 1.90 333.1 45.4 3.69
9:18 26.8 32.8 29.2 37.5 33.3 304 18.3 7331 81.69 1.90 326.4 44.5 3.70
9:19 26.9 324 29.0 37.2 33.2 30.3 18.1 7331 82.06 1.90 330.8 451 3.70
9:20 26.9 32.7 29.0 37.1 33.2 30.4 18.0 728.8 81.06 1.92 330.4 45.3 3.75
9:21 27.0 32.7 29.3 36.9 32.9 30.5 18.2 728.8 81.70 1.90 330.5 45.3 3.72
9:22 27.0 32.3 29.3 37.0 33.2 30.4 18.3 728.8 81.67 1.89 323.8 44.4 3.70
9:23 27.2 33.2 29.9 37.9 34.0 30.9 19.0 728.8 80.56 1.85 312.3 42.8 3.63
9:24 274 34.4 30.7 38.8 34.6 31.5 19.6 733.1 80.12 1.85 312.8 42.7 3.59
9:25 275 34.2 30.5 38.6 34.7 31.6 19.9 737.3 80.96 1.86 310.7 421 3.60
9:26 27.6 34.3 30.2 38.0 34.3 31.7 19.7 733.1 81.60 1.90 320.3 43.7 3.70
9:27 27.6 33.2 294 37.4 33.3 31.1 19.2 733.1 82.69 1.88 323.8 44.2 3.66
9:28 27.7 33.3 30.0 37.8 33.7 31.0 191 733.1 81.64 1.88 320.8 43.8 3.66
9:29 27.8 33.9 30.8 38.7 34.8 31.4 19.2 737.3 80.71 1.87 322.6 43.8 3.63
9:30 28.0 34.1 31.1 38.8 35.0 31.8 19.6 737.3 81.01 1.88 322.9 43.8 3.65
9:31 28.0 33.4 30.6 38.0 34.5 31.4 19.8 737.3 81.73 1.90 310.4 421 3.67
9:32 28.0 33.6 30.5 38.3 34.8 31.4 20.1 733.1 81.32 1.89 300.8 41.0 3.68
9:33 28.1 33.8 30.8 38.6 34.8 31.6 204 728.8 81.59 1.87 299.2 41.0 3.67
9:34 28.2 33.8 30.1 38.1 34.2 31.5 20.0 728.8 81.56 1.87 306.9 42.1 3.67
9:35 28.3 34.1 30.4 38.7 34.7 31.7 19.9 728.8 80.78 1.85 311.5 42.7 3.62
9:36 28.3 33.9 30.4 38.5 34.5 31.7 19.8 728.8 81.81 1.88 317.6 43.6 3.67
9:37 28.4 33.7 30.5 38.4 34.3 31.6 19.8 724.6 81.79 1.88 315.4 43.5 3.69
9:38 28.3 32.9 29.9 37.4 33.7 31.2 20.1 728.8 82.91 1.93 300.9 41.3 3.77
9:39 28.3 324 29.5 36.9 33.5 30.8 20.3 733.1 82.81 1.91 285.4 38.9 3.72
9:40 28.3 32.8 29.8 37.3 33.8 30.9 20.0 728.8 82.02 1.89 293.1 40.2 3.70
9:41 28.4 334 30.3 38.1 34.2 31.4 20.0 728.8 80.91 1.87 300.6 41.2 3.67
9:42 28.5 33.2 30.2 37.7 34.0 31.4 20.5 728.8 81.74 1.91 292.1 40.1 3.73
9:43 28.4 33.0 30.1 37.4 34.0 31.2 20.8 724.6 82.70 1.90 280.9 38.8 3.75
9:44 28.4 32.8 29.7 37.4 33.9 31.1 20.3 724.6 81.85 1.89 287.8 39.7 3.71
9:45 28.5 33.6 30.6 38.3 34.6 31.4 20.3 724.6 80.93 1.86 295.3 40.8 3.67
9:46 28.7 34.6 31.2 39.3 35.4 32.1 20.8 724.6 80.68 1.85 296.7 40.9 3.64
9:47 28.8 34.7 31.0 39.3 35.1 32.3 20.9 724.6 81.37 1.86 304.0 42.0 3.67
9:48 28.8 34.2 30.3 38.4 34.3 32.0 20.5 724.6 81.89 1.84 308.5 42.6 3.63
9:49 28.9 34.4 30.9 39.0 34.8 32.1 20.8 724.6 81.30 1.86 299.8 414 3.65
9:50 29.0 34.9 316 39.9 35.5 32.4 214 724.6 80.36 1.82 288.1 39.8 3.58
9:51 29.2 35.4 31.8 40.1 35.9 32.8 21.7 724.6 81.48 1.82 292.6 40.4 3.58
9:52 29.3 35.4 315 40.0 35.6 32.8 21.8 720.3 81.92 1.82 293.8 40.8 3.61
9:53 29.3 34.9 314 39.6 35.3 32.7 215 720.3 81.67 1.82 299.2 41.5 3.61
9:54 29.4 35.2 31.2 39.2 35.1 32.8 211 716.1 80.66 1.84 305.7 42.7 3.67
9:55 29.5 35.6 316 39.2 35.8 33.0 214 711.9 80.71 1.83 305.4 42.9 3.67
9:56 29.5 35.1 31.0 38.6 35.0 32.8 21.2 711.9 80.86 1.84 304.6 42.8 3.68
9.57 29.6 35.2 31.2 39.2 35.4 32.8 213 711.9 81.91 1.85 306.6 43.1 3.70
9:58 29.6 35.2 31.3 39.6 354 32.8 21.6 707.6 81.91 1.82 298.6 42.2 3.68
9:59 29.6 34.2 30.4 38.6 34.3 324 21.2 707.6 83.24 1.83 302.8 42.8 3.70
10:00 29.5 34.3 30.7 38.8 34.4 32.2 211 707.6 82.17 1.84 298.8 42.2 3.70
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Time Twall Tcol,1 TcoI,Z Tcol,s Tcol,4 Tout Tamb GT,CO| Flow Rate Pel Q"u Effth EffPV
h | el | rel | rel | e | rel | rel | el | wim? | mihm? | w [ Wim?| % | %
10:01 29.5 34.6 30.9 39.0 34.9 32.4 21.0 707.6 81.38 1.82 302.4 42.7 3.68
10:02 29.7 34.8 30.7 38.6 34.5 32.6 21.0 707.6 81.85 1.85 310.4 43.9 3.72
10:03 29.6 33.7 30.6 38.0 34.1 32.0 21.0 703.4 82.53 1.88 298.9 42.5 3.81
10:04 29.5 34.0 30.5 38.1 34.2 32.0 20.9 703.4 81.90 1.86 297.5 42.3 3.77
10:05 29.8 35.3 31.7 39.6 35.5 32.8 21.7 703.4 80.04 1.80 288.4 41.0 3.66
10:06 29.8 34.9 30.8 38.8 34.8 32.7 21.8 699.2 82.08 1.81 291.3 417 3.69
10:07 29.9 35.6 315 39.5 35.3 33.0 222 699.2 80.71 1.80 284.1 40.6 3.68
10:08 30.0 36.1 31.7 40.0 35.7 33.4 22.7 699.2 81.02 1.79 280.6 40.1 3.66
10:09 30.1 35.4 311 39.3 34.8 33.1 223 699.2 82.60 1.84 288.8 41.3 3.75
10:10 29.9 34.0 30.9 38.3 34.3 32.3 21.7 694.9 83.01 1.86 286.3 41.2 3.83
10:11 29.9 33.9 311 38.2 34.6 32.2 21.8 694.9 82.16 1.86 279.7 40.3 3.82
10:12 29.9 33.4 30.5 37.7 34.1 31.9 214 694.9 82.08 1.85 282.4 40.6 3.80
10:13 29.9 34.0 311 38.1 34.6 32.2 21.8 690.7 82.35 1.86 278.5 40.3 3.85
10:14 29.9 34.2 314 38.5 34.9 32.3 219 690.7 80.95 1.85 274.5 39.7 3.81
10:15 30.1 34.7 31.8 39.2 35.5 32.7 225 690.7 81.26 1.81 271.2 39.3 3.75
10:16 30.0 33.7 30.8 38.0 34.4 32.2 224 686.4 83.20 1.84 267.7 39.0 3.81
10:17 30.0 33.6 30.5 38.0 34.2 32.1 21.8 686.4 82.12 1.83 274.4 40.0 3.81
10:18 30.0 34.3 311 38.8 34.8 32.4 21.9 686.4 81.18 1.83 2781 40.5 3.79
10:19 30.1 34.1 31.0 38.7 34.7 32.4 21.6 682.2 81.80 1.84 287.1 421 3.85
10:20 30.1 34.2 311 38.7 34.6 32.4 21.6 682.2 80.56 1.84 285.2 41.8 3.84
10:21 30.1 34.3 31.5 38.7 35.0 32.5 21.9 682.2 81.00 1.83 280.5 411 3.83
10:22 30.2 33.9 311 38.3 34.7 32.4 223 678.0 82.62 1.85 272.0 40.1 3.89
10:23 30.0 334 30.6 37.9 34.2 321 21.9 678.0 82.12 1.85 273.3 40.3 3.89
10:24 30.1 33.8 30.7 38.2 34.5 32.1 21.8 673.7 81.30 1.82 2724 40.4 3.86
10:25 30.2 34.4 30.9 38.8 34.7 32.5 222 673.7 81.41 1.81 2721 40.4 3.84
10:26 30.3 354 31.2 39.0 34.9 32.9 22.5 669.5 80.70 1.79 2741 40.9 3.81
10:27 30.4 35.6 31.8 39.3 35.2 33.2 22.8 669.5 81.59 1.81 274.3 41.0 3.85
10:28 30.5 35.2 31.5 38.9 35.0 33.0 22.8 665.3 81.96 1.82 273.0 41.0 3.90
10:29 30.4 34.1 31.0 38.1 34.5 32.4 221 665.3 83.03 1.84 2774 417 3.94
10:30 30.4 34.0 31.2 38.2 34.6 32.3 22.3 665.3 82.38 1.83 268.1 40.3 3.91
10:31 30.3 33.4 30.4 37.6 34.0 32.0 224 665.3 82.51 1.85 257.4 38.7 3.96
10:32 30.3 34.0 30.8 38.2 34.5 32.2 225 665.3 81.33 1.82 256.5 38.5 3.91
10:33 30.4 34.2 31.0 38.5 34.8 32.4 229 661.0 81.81 1.82 253.2 38.3 3.92
10:34 30.4 34.0 30.9 38.3 34.5 32.3 228 661.0 81.98 1.80 254.9 38.6 3.88
10:35 30.4 33.9 30.6 38.3 34.2 32.3 226 656.8 82.19 1.82 259.3 39.5 3.94
10:36 30.3 33.8 30.3 37.8 33.8 32.2 225 656.8 82.77 1.80 262.1 39.9 3.91
10:37 30.3 34.7 30.8 38.5 34.5 32.5 23.0 652.5 80.80 1.80 2521 38.6 3.94
10:38 30.4 34.9 30.9 38.5 34.4 32.8 229 652.5 81.69 1.81 261.9 40.1 3.95
10:39 30.4 33.9 30.3 37.3 33.6 32.2 223 648.3 82.79 1.85 267.8 41.3 4.07
10:40 30.3 33.3 29.9 36.5 33.1 31.8 221 644.1 82.47 1.83 262.8 40.8 4.05
10:41 30.2 32.9 29.8 36.5 33.0 31.6 221 644.1 82.00 1.81 254.8 39.6 4.02
10:42 30.2 33.3 304 37.3 33.7 31.8 223 644.1 80.80 1.82 250.9 39.0 4.03
10:43 30.2 32.9 30.5 37.1 33.6 31.7 223 639.8 82.02 1.82 251.8 39.4 4.07
10:44 30.1 32.8 30.0 36.9 33.3 31.5 221 639.8 81.36 1.82 252.3 39.4 4.05
10:45 30.1 33.3 29.9 37.0 33.2 31.7 221 635.6 80.99 1.82 255.0 40.1 4.09
10:46 30.1 33.3 30.4 37.3 33.5 31.8 226 635.6 81.24 1.81 2458 38.7 4.07
10:47 30.1 32.5 30.0 36.3 33.0 31.4 224 631.4 81.96 1.84 2421 38.4 4.15
10:48 30.1 32.9 29.8 36.5 33.1 31.5 223 6314 81.56 1.82 246.8 39.1 4.10
10:49 30.1 33.3 30.5 37.3 33.8 31.8 226 627.1 80.81 1.82 2425 38.7 4.15
10:50 30.2 33.1 30.4 37.2 33.6 31.7 224 627.1 81.20 1.81 247.7 39.5 4.11
10:51 30.1 32.9 29.6 36.4 33.1 31.5 223 622.9 81.55 1.82 2457 39.5 4.17
10:52 30.1 33.5 30.5 37.6 34.0 31.7 22.7 622.9 81.21 1.81 2416 38.8 4.14
10:53 30.2 33.5 30.4 37.5 33.8 31.9 23.0 618.6 80.85 1.79 237.4 38.4 4.13
10:54 30.2 33.2 30.4 37.2 33.4 31.8 229 614.4 81.44 1.78 237.4 38.6 4.14
10:55 30.2 33.0 30.2 36.8 33.1 31.6 225 614.4 81.79 1.80 2431 39.6 4.19
10:56 30.2 33.7 30.6 37.6 33.9 31.9 233 610.2 80.64 1.77 226.5 371 4.15
10:57 30.3 34.5 30.9 37.6 34.1 32.4 23.7 610.2 80.55 1.76 227.3 37.2 4.12
10:58 30.4 34.2 31.2 37.9 34.1 32.3 24.0 605.9 80.53 1.76 218.6 36.1 4.13
10:59 30.4 34.1 314 38.1 34.6 32.4 244 605.9 80.97 1.77 212.3 35.0 4.17
11:00 30.4 33.7 30.5 37.3 33.7 32.2 241 601.7 81.95 1.77 217.7 36.2 4.20
11:01 30.3 32.7 29.8 36.5 32.9 31.6 23.2 597.5 82.42 1.80 228.8 38.3 4.30
11:02 30.1 32.3 294 36.0 32.6 31.2 225 597.5 81.89 1.79 233.0 39.0 4.27
11:03 30.1 32.9 29.9 36.6 33.1 31.4 229 593.2 80.90 1.78 2243 37.8 4.27
11:04 30.2 33.0 30.5 36.9 33.3 31.6 235 593.2 80.75 1.78 2144 36.1 4.29
11:.05 30.2 33.2 30.6 37.4 33.8 31.7 23.8 589.0 81.19 1.77 209.9 35.6 4.28
11.06 30.2 33.0 30.5 37.2 33.5 31.6 23.8 589.0 81.59 1.77 208.3 35.4 4.28
11:.07 30.1 32.2 29.8 36.0 32.8 31.3 23.2 584.7 82.93 1.80 217.7 37.2 4.39
11.08 30.1 32.3 29.7 36.1 32.8 31.1 231 580.5 81.66 1.79 215.8 37.2 4.39
11:09 30.2 33.2 30.4 37.2 33.6 31.5 23.7 580.5 80.95 1.77 207.3 35.7 4.34
11:10 30.3 33.3 30.5 37.5 33.8 31.8 241 576.3 81.63 1.76 206.2 35.8 4.35
11:11 30.3 33.6 30.8 37.6 33.7 31.9 24.2 572.0 80.64 1.76 202.8 35.5 4.38
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Time Twall Tcol,1 TcoI,Z Tcol,s Tcol,4 Tout Tamb GT,CO| Flow Rate Pel Q"u Effth EffPV
h | el | rel | rel | e | rel | rel | el | wim? | mihm? | w [ Wim?| % | %
11:12 30.2 32.3 29.8 35.9 32.4 31.3 23.9 572.0 82.95 1.78 203.1 35.5 4.45
11:13 30.0 31.5 29.2 34.8 32.0 30.7 23.7 567.8 81.96 1.78 187.0 32.9 4.47
11:14 30.0 31.8 294 35.5 32.5 30.8 23.6 567.8 82.39 1.78 194.5 34.3 4.47
11:15 30.0 32.4 29.9 36.4 33.2 31.0 24.0 563.6 81.23 1.74 187.3 33.2 4.41
11:16 30.1 32.7 29.8 36.2 32.9 31.4 241 559.3 81.73 1.74 193.9 34.7 4.44
11:17 30.1 32.6 29.9 36.1 32.7 31.3 24.0 559.3 80.89 1.75 193.0 34.5 4.47
11:18 30.0 32.0 29.6 35.5 32.4 30.9 241 555.1 82.02 1.76 183.0 33.0 4.53
11:19 29.9 31.6 29.3 35.0 32.1 30.6 243 550.8 81.74 1.77 170.7 31.0 4.59
11:20 29.9 31.4 29.2 34.8 31.8 30.5 243 546.6 81.71 1.78 166.7 30.5 4.64
11:21 29.7 30.7 28.7 34.1 31.3 30.1 23.8 546.6 82.01 1.78 1711 31.3 4.64
11:22 29.7 31.4 29.1 34.9 31.9 30.5 23.7 542.4 80.87 1.74 178.6 32.9 4.58
11:23 29.8 32.0 291 35.3 32.0 30.8 23.6 542.4 80.95 1.74 189.5 34.9 4.56
11:24 29.8 32.3 29.5 35.6 32.2 30.9 23.7 538.1 81.40 1.73 192.8 35.8 4.58
11:25 29.8 32.2 29.8 35.9 32.5 30.8 23.8 533.9 80.96 1.74 186.8 35.0 4.65
11:26 29.9 32.9 30.0 36.4 33.0 31.3 241 529.7 80.26 1.72 188.1 35.5 4.63
11:27 30.0 33.6 30.6 37.2 33.8 31.7 25.7 529.7 80.80 1.67 160.5 30.3 4.50
11:28 30.1 33.7 311 37.7 34.0 32.0 26.0 525.4 81.69 1.67 160.0 30.5 4.55
11:29 30.2 33.8 30.7 37.0 33.8 32.0 25.6 525.4 81.90 1.67 170.8 325 4.54
11:30 30.1 32.6 29.6 35.7 32.5 31.4 24.8 521.2 82.76 1.71 176.8 33.9 4.69
11:31 30.0 31.6 28.8 34.7 31.6 30.6 23.9 516.9 82.95 1.74 181.8 35.2 4.80
11:32 29.8 30.9 28.3 34.1 31.0 30.2 23.5 512.7 82.64 1.72 182.7 35.6 4.79
11:33 29.7 30.9 28.7 34.0 30.9 30.0 23.5 512.7 81.35 1.75 172.7 33.7 4.87
11:34 29.7 31.3 29.2 34.8 31.7 30.3 24.0 512.7 80.82 1.68 167.4 32.7 4.68
11:35 29.7 32.0 29.3 35.6 32.1 30.7 245 508.5 80.72 1.69 163.0 321 4.74
11:36 29.7 31.4 28.7 34.8 31.2 30.4 23.9 504.2 82.29 1.70 175.8 34.9 4.82
11:37 29.6 31.5 28.6 34.4 31.3 30.3 23.5 500.0 82.05 1.67 183.7 36.7 478
11:38 29.6 321 29.3 35.2 32.0 30.6 241 495.8 80.29 1.67 170.9 34.5 4.80
11:39 29.6 31.5 29.0 34.8 31.5 30.5 24.2 491.5 81.48 1.66 166.3 33.8 4.81
11:40 29.6 31.6 29.2 34.8 31.6 30.4 245 487.3 81.46 1.68 157.5 32.3 4.92
11:41 29.5 30.7 28.6 33.9 30.9 30.0 243 487.3 82.17 1.71 154.7 31.7 5.00
11:42 29.3 29.8 28.0 32.8 30.2 294 24.2 483.1 82.42 1.68 140.0 29.0 4.97
11:43 29.2 30.1 28.2 33.1 30.4 294 242 483.1 81.61 1.68 140.2 29.0 4.96
11:44 29.2 30.3 28.3 33.5 30.7 295 241 478.8 81.44 1.66 145.0 30.3 4.93
11:45 29.3 31.2 28.8 34.3 31.5 30.0 24.7 4746 81.17 1.67 141.3 29.8 5.00
11:46 29.3 31.2 28.8 34.4 31.3 30.1 253 470.3 82.22 1.65 131.7 28.0 5.00
11:47 29.2 30.4 28.3 33.5 30.7 29.6 24.8 466.1 82.70 1.63 1324 284 4.98
11:48 29.2 30.8 28.7 33.9 31.0 29.8 249 466.1 81.73 1.63 131.9 28.3 4.99
11:49 29.2 30.7 28.2 33.8 30.8 29.8 24.7 461.9 82.11 1.70 136.0 29.5 5.26
11:50 29.1 30.7 28.2 33.7 30.5 29.7 246 461.9 81.68 1.63 136.2 29.5 5.05
11:51 29.1 30.9 27.8 33.4 30.1 29.7 244 457.6 81.48 1.65 142.5 311 5.14
11:52 29.1 30.6 27.8 33.5 30.5 29.5 246 453.4 82.45 1.59 132.7 29.3 5.01
11:53 29.1 31.0 28.1 34.0 30.6 29.7 25.2 449.2 81.48 1.61 119.7 26.7 5.10
11:54 29.1 31.2 28.4 34.1 30.8 29.9 25.7 444.9 81.53 1.59 112.8 253 5.09
11:55 29.1 30.9 28.5 33.9 30.8 29.9 25.8 440.7 81.75 1.58 110.3 25.0 5.13
11:56 29.0 30.3 281 33.1 30.1 29.6 255 436.4 82.47 1.59 109.3 25.0 5.20
11.57 28.9 29.2 27.3 31.8 29.3 28.8 24.7 436.4 83.09 1.62 113.1 259 5.29
11:58 28.8 29.2 274 321 29.6 28.7 245 432.2 82.25 1.60 116.1 26.9 5.27
11:59 28.7 29.6 27.5 32.5 29.9 28.9 245 428.0 81.68 1.59 119.8 28.0 5.31
12:00 28.7 29.9 277 32.8 29.9 29.0 24.8 428.0 81.72 1.57 113.9 26.6 524
12:01 28.8 30.3 27.8 33.4 30.3 29.3 254 423.7 81.37 1.56 103.1 24.3 524
12:02 28.9 31.1 28.3 33.8 30.8 29.7 25.6 423.7 81.49 1.55 1117 26.4 522
12:03 28.8 30.1 277 32.9 29.9 29.3 251 419.5 83.23 1.55 116.7 27.8 5.28
12:04 28.7 29.8 27.6 32.7 29.7 29.0 249 415.3 82.33 1.56 1114 26.8 5.35
12:.05 28.6 294 27.3 32.2 29.2 28.8 24.8 411.0 83.28 1.55 1101 26.8 5.38
12:.06 28.4 28.7 26.8 31.3 28.7 28.3 241 406.8 82.75 1.55 115.0 28.3 5.45
12:07 28.3 28.8 26.8 31.2 28.7 28.2 24.2 406.8 81.50 1.54 109.0 26.8 5.40
12:08 28.4 29.5 275 32.2 29.4 28.7 251 402.5 81.41 1.54 95.3 23.7 5.46
12:09 28.3 28.7 26.9 31.2 28.8 28.3 249 398.3 82.13 1.54 93.5 23.5 5.50
12:10 28.3 291 271 31.8 29.3 28.4 25.0 398.3 81.55 1.52 915 23.0 5.44
1211 28.3 29.5 274 324 29.5 28.7 255 394.1 81.41 1.49 84.2 214 5.41
12:12 28.3 28.7 26.9 314 28.7 28.3 251 389.8 83.34 1.51 88.6 22.7 5.52
12:13 28.2 28.5 26.7 31.2 28.5 28.0 24.9 385.6 82.06 1.50 86.2 22.3 5.54
12:14 28.2 294 27.2 32.1 29.3 28.5 25.7 381.4 81.17 147 75.2 19.7 5.52
12:15 28.3 30.0 277 32.9 29.9 29.0 26.6 377.1 81.49 1.45 64.6 171 5.49
12:16 28.4 30.1 27.9 33.0 30.0 29.1 271 372.9 81.32 1.45 52.6 141 5.53
12:17 28.4 30.2 27.8 32.7 29.9 29.2 27.2 368.6 81.15 1.44 52.8 14.3 5.58
12:18 28.5 30.3 27.8 32.3 29.8 29.2 26.9 364.4 81.36 1.45 62.5 17.2 5.66
12:19 28.4 29.7 27.3 31.9 29.1 28.8 26.8 360.2 82.07 1.42 54.0 15.0 5.63
12:20 28.2 28.8 26.6 311 284 28.3 26.4 355.9 82.73 1.43 52.0 14.6 5.72
12:21 28.1 28.5 26.5 30.9 28.2 28.0 25.8 355.9 82.46 1.41 61.5 17.3 5.67
12:22 28.0 28.4 26.6 30.9 28.3 27.9 255 351.7 82.02 1.41 65.0 18.5 5.70
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Time TwaII Tcol,1 Tcol,z Tcol,3 Tcol,4 Tout Tamb GT,coI Flow Rate Pel Q“u Effth EffPV
) | [°C1 | [’C] | [’C] | [°C] | [°C] | [°C] | [°C] | [W/m?] | [m*hm?] | [W] |IW/m?]| % %
12:23 27.9 28.3 26.4 30.8 28.2 27.8 25.6 347.5 81.99 1.40 60.9 17.5 5.73
12:24 28.0 28.7 26.6 31.2 28.5 281 25.6 347.5 81.45 1.38 65.6 18.9 5.65
12:25 28.0 29.0 26.6 311 28.4 28.2 25.5 343.2 81.90 1.37 72.9 213 5.71
12:26 27.9 28.4 26.2 30.7 28.0 27.9 25.3 339.0 82.22 1.39 70.3 20.7 5.83
12:27 27.8 28.1 26.1 30.4 27.7 27.6 24.9 339.0 82.56 1.37 75.9 224 5.78
12:28 27.8 28.0 26.2 30.3 27.8 27.6 24.8 334.7 81.92 1.38 73.9 221 5.87
12:29 27.7 27.5 25.7 29.6 273 27.3 24.7 330.5 82.66 1.38 711 21.5 5.94
12:30 27.5 26.7 25.2 28.6 26.6 26.7 242 330.5 82.92 1.38 69.2 21.0 5.95
12:31 274 26.8 25.3 28.7 26.8 26.7 24.2 326.3 82.50 1.36 67.0 20.5 5.93
12:32 273 27.0 25.4 29.0 271 26.8 24.4 322.0 81.92 1.33 64.3 20.0 5.88
12:33 27.2 26.6 24.9 28.4 26.4 26.5 24.0 313.6 82.85 1.33 68.4 21.8 6.06
12:34 271 26.4 24.7 28.3 26.3 26.2 23.8 309.3 82.17 1.32 66.0 213 6.07
12:35 27.0 27.0 25.0 29.2 26.8 26.4 24.4 309.3 81.21 1.28 55.4 17.9 5.92
12:36 271 27.2 25.2 294 26.9 26.7 25.0 305.1 81.48 1.27 43.7 14.3 5.95
12:37 27.0 27.6 254 29.5 271 26.9 25.0 300.8 81.73 1.26 50.8 16.9 5.98
12:38 271 274 25.3 29.3 27.2 26.8 24.4 296.6 81.91 1.26 63.8 215 6.04
12:39 271 27.5 25.3 29.5 27.2 26.9 24.8 292.4 81.74 1.21 56.0 19.2 5.91
12:40 27.0 273 25.3 29.3 26.9 26.7 25.0 292.4 82.31 1.24 471 16.1 6.03
12:41 27.0 271 25.1 28.7 26.6 26.6 24.4 288.1 81.46 1.25 59.4 20.6 6.17
12:42 26.9 26.7 24.8 28.0 26.1 26.2 234 220.3 81.97 1.19 76.8 34.8 7.70
12:43 26.7 254 23.6 26.3 243 254 22.7 194.9 82.94 1.25 74.8 38.4 9.14
12:44 26.6 25.6 242 27.0 252 254 234 245.8 81.95 1.25 54.5 222 7.23
12:45 26.5 25.4 241 26.7 25.1 25.3 23.6 283.9 81.91 1.23 47.6 16.8 6.20
12:46 26.5 25.9 24.6 27.5 25.9 25.7 24.0 279.7 81.01 1.21 45.4 16.2 6.19
12:47 26.4 25.9 24.5 27.5 25.7 25.7 241 275.4 81.82 1.20 42.3 15.4 6.19
12:48 26.4 25.8 24.4 274 25.6 25.6 23.9 271.2 81.40 1.17 46.5 17.1 6.16
12:49 26.3 25.4 23.9 26.9 25.2 25.3 23.9 266.9 82.52 1.17 39.2 14.7 6.23
12:50 26.2 25.3 23.9 26.9 251 25.2 23.8 266.9 82.30 1.17 38.5 14.4 6.24
12:51 26.1 25.1 23.7 26.5 24.9 25.1 23.8 266.9 82.06 1.19 34.6 13.0 6.34

Table E.5: Experimental data for September 2

Time Twall Tcol,1 Tcol,z Tcol,3 Tcol,4 Tout Tamb GT,col Flow Rate Pel Q"u Effth EffPV
] | [°Cl | [°Cl | [°C] | [°C] | [°C] | [°C] | [°C] | Wim’] | [m/hm®]| [W] |Wim’] % %
7:33 14.2 20.5 18.5 23.7 21.2 18.6 11.9 416.6 70.73 1.81 162.7 391 6.20
7:34 14.5 20.8 191 24.3 21.7 19.0 11.9 421.7 71.14 1.81 171.7 40.7 6.12
7:35 14.7 21.0 19.3 244 22.0 19.2 11.9 4311 71.33 1.82 177.9 413 6.03
7:36 14.8 211 19.0 24.5 221 19.3 12.0 441.6 70.76 1.83 175.7 39.8 5.92
7:37 14.9 21.6 19.2 24.8 222 19.5 12.1 449.6 71.10 1.84 180.2 40.1 5.83
7:38 15.1 21.8 19.5 25.2 22.6 19.8 12.2 454.4 70.71 1.84 182.9 40.3 5.79
7:39 15.2 22.2 19.5 25.6 22.8 20.0 12.4 458.7 70.64 1.84 183.1 39.9 5.72
7:40 15.4 22.9 19.8 26.0 23.2 20.4 12.7 466.6 71.01 1.84 184.3 39.5 5.63
741 15.6 23.0 20.2 26.4 235 20.6 12.9 475.5 70.71 1.85 184.6 38.8 5.56
7:42 15.8 23.3 20.3 26.7 23.6 20.9 13.0 483.4 70.67 1.86 188.8 391 5.50
7:43 16.0 23.5 20.7 27.2 24.0 21.1 1341 492.6 71.26 1.87 195.1 39.6 5.42
7:44 16.2 23.7 21.0 274 243 214 13.1 499.3 70.93 1.87 198.1 39.7 5.35
7:45 16.3 241 20.9 27.7 24.5 21.6 13.2 504.9 70.45 1.86 199.3 39.5 5.25
7:46 16.5 249 215 28.0 24.9 221 13.3 509.3 70.13 1.87 208.0 40.8 5.25
7:47 16.7 24.7 21.5 28.2 251 22.2 135 511.7 70.32 1.87 2071 40.5 5.21
7:48 17.0 24.9 219 28.7 253 224 13.6 517.5 70.55 1.87 208.6 40.3 5.15
7:49 171 25.1 22.0 29.0 25.5 22.6 13.7 522.5 70.35 1.86 209.3 40.1 5.09
7:50 17.3 25.6 221 29.2 25.8 22.9 13.8 527.6 70.13 1.87 2134 40.4 5.06
7:51 17.5 26.0 223 29.2 25.9 23.2 14.0 5314 71.37 1.87 218.9 41.2 5.03
7:52 17.7 25.9 22.4 29.4 26.0 23.2 14.2 534.4 72.67 1.87 220.5 41.3 4.98
7:53 17.8 26.0 224 29.8 26.2 23.3 14.3 538.8 71.63 1.88 2171 40.3 4.98
7:54 18.0 26.2 22.7 30.0 26.4 23.5 14.4 544.6 71.58 1.87 218.2 401 4.91
7:55 18.2 26.5 231 30.4 26.7 23.8 14.6 549.4 71.71 1.88 2211 40.3 4.88
7:56 18.4 26.5 23.4 30.6 26.9 23.9 14.7 550.8 71.67 1.87 221.7 40.2 4.84
7:57 18.7 26.7 234 30.9 271 24.2 14.8 553.7 72.06 1.87 226.5 40.9 4.81
7:58 18.8 26.8 23.6 31.0 27.2 24.3 15.0 559.8 72.45 1.87 226.2 40.4 4.77
7:59 19.0 274 237 30.8 275 24.6 15.0 565.6 71.70 1.88 229.1 40.5 4.74
8:00 19.2 27.6 23.9 311 27.6 248 15.2 5723 72.07 1.88 230.8 40.3 4.69
8:01 19.4 27.8 24.2 31.6 27.8 24.9 15.3 577.3 72.02 1.87 231.5 401 4.62
8:02 19.7 27.9 248 32.0 281 25.2 15.5 579.9 71.96 1.88 234.3 40.4 4.63
8:03 19.8 27.9 24.4 31.9 28.1 25.2 154 580.3 72.01 1.87 234.4 40.4 4.60
8:04 19.9 28.4 244 321 28.3 254 15.6 581.8 71.58 1.87 234.7 40.3 4.58
8:05 20.1 28.6 24.6 32.0 28.4 25.6 15.6 586.9 72.21 1.87 241.5 411 4.55
8:06 20.3 29.3 254 31.9 28.7 26.1 15.5 591.9 70.84 1.89 250.6 42.3 4.56
8:07 20.5 29.2 25.4 31.7 28.8 26.2 15.2 594.7 72.28 1.89 263.7 44.3 4.54
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Time Twall Tcol,1 Tcol,z Tcol,3 Tl:ol,4 Tout Tamh GT,coI Flow Rate Pel Q"u Effth EﬁPV
[h | I°c1 | °cl | I°c] | [°cl | [°c] | [°c1 | [°C1 | Wim?] | [m*hm?]| (W] |Wim’]] % %
8:08 20.7 29.3 25.6 31.9 29.0 26.3 15.3 596.1 71.91 1.88 | 262.7 44.1 4.51
8:09 20.8 29.5 25.7 31.8 29.1 26.4 15.4 599.9 71.38 1.89 | 2626 43.8 4.50
8:10 21.0 29.5 25.9 31.7 29.2 26.5 15.3 602.2 71.89 1.89 268.0 445 4.49
8:11 21.1 29.4 26.0 31.6 292 | 266 | 153 605.0 72.08 1.90 [ 2703 44.7 4.48
8:12 21.0 29.3 26.1 31.6 29.2 26.6 15.2 605.0 72.02 1.89 272.7 45.1 4.47
8:13 212 29.5 26.2 31.7 29.5 26.7 15.3 608.1 71.76 1.89 | 2729 44.9 4.44
8:14 21.3 29.6 26.2 32.0 29.5 26.8 15.4 612.0 72.16 1.89 273.8 44.7 4.41
8:15 214 29.6 26.2 32.0 29.6 26.8 15.4 619.3 72.04 1.91 2731 441 4.40
8:16 21.5 29.7 26.1 32.6 29.8 26.9 15.7 627.7 71.91 1.90 266.6 42.5 4.31
8:17 21.7 30.0 26.4 32.8 29.9 271 15.7 628.5 72.47 1.90 273.6 43.5 4.30
8:18 21.9 30.2 26.7 32.8 30.2 27.3 15.8 630.0 71.55 1.90 274.4 43.6 4.31
8:19 22.0 30.1 26.9 32.6 30.3 27.4 15.6 630.5 71.62 1.90 280.3 44.5 4.29
8:20 22.2 30.5 27.2 32.9 30.5 27.7 15.7 633.4 71.97 1.90 284.5 44.9 4.27
8:21 22.3 30.7 27.4 33.1 30.7 27.9 15.8 636.1 71.51 1.89 284.9 44.8 4.25
8:22 22.4 30.5 27.2 32.9 30.6 27.8 15.9 638.4 71.69 1.89 282.2 44.2 4.22
8:23 22.6 30.7 27.5 33.1 30.7 28.0 15.8 639.8 71.36 1.89 286.9 44.8 4.22
8:24 22.8 30.6 27.6 33.0 30.9 28.1 15.8 642.8 71.51 1.91 290.9 45.3 4.23
8:25 23.0 31.1 27.9 33.4 31.2 28.3 15.8 646.5 71.54 1.90 294.7 45.6 4.18
8:26 23.1 31.4 28.1 33.7 31.4 28.5 16.0 649.5 71.00 1.89 294 .4 45.3 4.14
8:27 23.3 31.6 28.2 33.8 31.5 28.7 16.2 652.1 71.84 1.89 297 1 45.6 4.14
8:28 23.5 31.8 28.5 34.1 31.8 28.9 16.5 653.4 71.38 1.89 292.0 447 413
8:29 23.6 31.9 28.4 34.7 32.1 29.0 16.8 654.4 71.03 1.88 287.5 43.9 4.09
8:30 23.7 32.3 28.4 35.3 32.2 29.2 17.0 656.2 71.98 1.87 289.5 441 4.06
8:31 23.9 32.6 28.6 35.8 32.4 29.4 17.2 658.1 71.45 1.86 288.0 43.8 4.03
8:32 24.0 32.6 28.8 36.0 32.5 29.6 17.4 661.9 72.28 1.86 290.7 43.9 4.01
8:33 24.2 32.8 29.1 35.8 32.6 29.8 17.4 664.4 71.37 1.86 289.5 43.6 4.00
8:34 24.3 32.7 28.8 35.9 32.8 29.7 17.5 666.6 72.58 1.86 290.9 43.6 3.98
8:35 24.4 32.8 28.9 36.3 32.8 29.8 17.7 668.4 71.73 1.86 285.3 42.7 3.96
8:36 24.7 33.2 29.4 36.0 32.8 30.1 17.6 669.4 71.55 1.88 292.9 43.8 4.00
8:37 24.8 33.3 29.5 36.0 33.1 30.2 17.7 672.1 71.77 1.87 295.9 44.0 3.96
8:38 25.0 33.6 29.7 36.1 33.3 30.4 17.8 674.0 71.76 1.87 297.4 441 3.96
8:39 25.1 33.8 29.8 36.5 33.6 30.5 17.9 675.3 72.83 1.86 303.0 44.9 3.93
8:40 25.3 33.9 30.0 36.6 33.6 30.7 18.0 676.6 72.98 1.87 303.4 44.8 3.93
8:41 25.4 34.0 29.9 37.0 33.7 30.8 18.3 676.3 7417 1.85 304.9 45.1 3.90
8:42 25.6 34.1 30.2 36.8 33.8 31.0 18.5 674.2 73.63 1.86 301.0 44.7 3.94
8:43 25.8 34.2 30.2 36.8 33.8 31.0 18.5 672.5 74.16 1.86 303.6 45.1 3.94
8:44 25.9 34.2 30.3 36.9 33.9 31.1 18.7 669.7 74.06 1.85 301.3 45.0 3.93
8:45 26.0 34.0 30.2 36.8 33.7 31.1 18.7 663.2 74.50 1.86 301.8 455 4.00
8:46 26.1 34.1 30.2 36.6 33.6 31.1 18.6 665.1 74.18 1.85 302.9 45.5 3.96
8:47 26.2 34.0 30.3 36.4 33.5 31.1 18.6 667.3 75.23 1.87 307.3 46.0 3.99
8:48 26.3 33.8 30.1 36.2 33.5 31.0 18.5 669.4 75.04 1.86 306.4 45.8 3.95
8:49 26.4 33.9 30.1 36.6 33.6 31.0 18.7 674.0 75.63 1.86 305.8 45.4 3.93
8:50 26.5 34.2 30.4 37.2 34.1 31.3 18.9 677.9 74.84 1.85 303.1 44.7 3.88
8:51 26.6 34.5 30.9 37.1 34.3 31.6 19.1 686.3 74.74 1.86 305.7 44.5 3.87
8:52 26.8 34.6 31.0 371 34.6 31.7 19.1 691.4 75.25 1.87 310.8 44.9 3.85
8:53 26.9 34.5 31.1 36.9 34.6 31.7 19.0 693.9 74.96 1.86 312.3 45.0 3.83
8:54 27.0 34.8 31.2 37.4 34.8 319 19.0 692.8 75.02 1.85 314.2 45.4 3.82
8:55 271 35.1 31.4 37.8 35.0 32.0 19.4 695.3 74.50 1.84 307.0 44.2 3.77
8:56 27.3 35.4 31.5 38.4 35.2 32.3 19.6 694.3 74.52 1.84 307.5 44.3 3.78
8:57 27.5 35.6 31.8 38.2 35.3 325 19.8 696.0 74.98 1.84 310.2 44.6 3.78
8:58 27.5 34.8 31.4 37.3 35.0 32.2 19.6 698.6 74.88 1.85 308.0 441 3.77
8:59 27.6 35.6 31.9 38.4 35.7 32.6 19.9 703.0 73.91 1.84 304.5 43.3 3.73
9:00 27.8 35.8 32.1 38.9 36.0 32.8 20.1 706.3 73.49 1.84 303.5 43.0 3.72
9:01 27.9 36.0 32.5 38.7 36.1 33.0 20.3 707.7 74.15 1.85 307.6 43.5 3.72
9:02 28.1 35.5 32.2 38.2 35.9 329 20.1 708.1 74.22 1.86 310.2 43.8 3.74
9:03 28.1 35.6 32.2 38.5 36.2 32.9 20.3 709.4 73.52 1.84 302.3 42.6 3.71
9:04 28.2 36.0 32.3 39.2 36.3 33.1 20.5 710.6 73.71 1.83 302.7 42.6 3.67
9:05 28.3 36.0 32.3 39.9 36.4 33.2 20.9 710.7 75.45 1.83 301.8 42.5 3.67
9:06 28.5 36.5 32.7 40.2 36.7 33.5 21.1 711.3 74.45 1.82 301.8 42.4 3.66
9:07 28.7 37.0 33.1 40.0 36.8 33.8 21.2 713.6 74.74 1.82 306.2 42.9 3.64
9:08 28.8 37.0 32.9 40.2 37.0 33.8 21.6 714.8 75.54 1.81 300.9 421 3.61
9:09 29.0 37.2 33.3 39.9 37.0 341 215 715.2 74.85 1.82 306.5 42.8 3.63
9:10 29.1 37.0 33.1 40.1 37.0 34.0 21.6 715.2 75.45 1.83 301.4 421 3.64
9:11 29.1 37.2 33.5 40.0 36.9 34.1 21.9 715.0 74.88 1.83 296.8 41.5 3.64
9:12 29.3 36.9 33.3 39.7 37.0 34.1 215 715.4 75.56 1.83 307.3 42.9 3.65
9:13 29.3 36.1 32.8 39.6 36.6 33.6 21.8 7141 76.33 1.83 293.1 41.0 3.66
9:14 29.4 36.7 33.1 40.0 36.8 33.9 22.1 712.4 75.65 1.83 290.0 40.7 3.66
9:15 29.6 37.0 33.4 39.8 37.0 34.2 22.0 710.8 75.70 1.83 300.0 42.2 3.67
9:16 29.7 36.9 33.7 40.6 37.5 34.1 22.4 712.0 75.84 1.81 287.7 40.4 3.63
9:17 29.8 37.2 33.9 41.2 37.7 34.4 22.8 714.0 75.48 1.81 285.1 39.9 3.62
9:18 30.0 37.8 34.0 41.0 37.8 34.8 22.7 713.7 75.75 1.81 295.7 41.4 3.61
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Time Twall Tcol,1 Tcol,2 Tcol,3 Tcol,4 Tout Tamb GT,coI Flow Rate Pel Q"u Effth EffPV
[h | I°c1 | el | I°cl | I°c1 | [°c1 | [°C] | [°C] | Wim’] | [m*hm®| [W] [[Wim’] % %
9:19 30.0 37.6 33.9 40.8 37.8 34.7 22.7 713.0 75.96 1.80 294.8 41.3 3.60
9:20 30.1 37.0 33.4 39.6 37.1 34.5 22.2 710.4 76.56 1.84 304.3 42.8 3.69
9:21 30.2 36.9 33.9 40.4 375 34.4 22.6 710.6 75.43 1.81 288.5 40.6 3.63
9:22 30.3 37.0 34.3 41.2 37.6 34.6 23.0 710.9 75.64 1.82 282.6 39.8 3.65
9:23 30.4 371 34.1 41.1 37.6 34.6 23.3 711.1 76.52 1.81 279.6 39.3 3.64
9:24 30.4 371 33.6 40.6 37.4 34.6 23.3 709.4 76.37 1.83 280.4 39.5 3.67
9:25 30.6 37.5 34.1 41.0 37.5 34.8 23.5 708.0 76.21 1.80 278.8 39.4 3.62
9:26 30.6 37.2 33.9 41.0 37.6 34.7 23.5 707.6 76.73 1.80 279.1 39.4 3.63
9:27 30.7 37.1 33.7 40.3 37.2 34.6 23.2 707.4 76.64 1.81 282.1 39.9 3.64
9:28 30.7 36.7 33.2 39.6 36.6 34.2 22.9 705.3 77.02 1.83 282.9 40.1 3.70
9:29 30.7 36.3 33.1 39.6 36.7 34.0 22.6 704.2 76.76 1.83 283.3 40.2 3.72
9:30 30.7 36.1 32.7 38.9 36.2 33.8 22.3 702.8 76.88 1.85 287.7 40.9 3.76
9:31 30.7 36.2 33.0 39.4 36.4 33.9 22.4 701.6 76.03 1.82 282.0 40.2 3.70
9:32 30.8 36.3 33.0 39.6 36.6 33.9 22.7 700.9 76.32 1.83 279.2 39.8 3.73
9:33 30.8 36.6 33.8 40.5 37.1 34.2 23.2 699.4 75.67 1.83 270.8 38.7 3.72
9:34 30.9 36.4 33.6 40.3 37.0 34.1 23.4 700.0 76.27 1.80 264.7 37.8 3.67
9:35 30.9 36.8 34.2 40.9 37.3 34.5 24.0 699.7 75.57 1.81 258.0 36.9 3.68
9:36 31.0 37.0 34.0 40.6 37.3 34.6 24.1 699.1 75.59 1.82 257.2 36.8 3.72
9:37 31.0 36.3 33.0 39.2 36.5 34.2 23.1 696.4 76.51 1.84 275.0 39.5 3.76
9:38 31.0 36.1 32.9 38.5 36.1 34.0 22.8 694.5 76.09 1.84 276.3 39.8 3.78
9:39 31.0 36.0 33.0 38.8 36.2 33.8 23.0 696.4 76.06 1.82 267.8 38.5 3.73
9:40 31.1 36.7 33.9 40.4 37.3 34.4 23.9 699.3 74.62 1.82 253.9 36.3 3.71
9:41 31.2 37.0 34.2 41.0 37.3 34.7 24.2 699.4 75.88 1.81 256.3 36.6 3.70
9:42 31.3 36.9 34.1 40.8 37.3 34.7 24 .4 698.1 75.71 1.80 250.3 35.9 3.68
9:43 31.3 36.8 33.9 40.7 37.2 34.6 24.8 695.9 76.27 1.81 241.7 34.7 3.72
9:44 31.3 36.8 34.0 40.7 37.3 34.6 24.6 694.8 75.55 1.80 243.7 35.1 3.70
9:45 31.4 36.4 33.8 40.2 36.7 34.4 24.6 693.2 76.02 1.82 241.7 34.9 3.75
9:46 31.3 36.0 33.3 39.5 36.5 34.0 24.5 693.4 76.11 1.83 233.3 33.7 3.77
9:47 31.3 36.6 33.9 40.4 37.2 34.4 24 .4 695.6 74.88 1.81 243.4 35.0 3.70
9:48 31.5 37.0 34.3 40.8 37.3 34.7 24.5 696.4 74.93 1.80 248.8 35.7 3.68
9:49 31.6 371 34.4 41.1 37.6 34.9 24.7 694.7 75.23 1.80 248.7 35.8 3.70
9:50 31.7 37.4 34.6 41.4 37.9 35.1 25.0 692.8 74.84 1.77 244.6 35.3 3.65
9:51 31.7 37.5 34.3 40.9 37.4 35.1 24.7 689.9 74.93 1.79 253.0 36.7 3.71
9:52 31.7 37.0 34.3 40.9 37.3 34.9 24.5 688.4 75.83 1.81 254 .4 37.0 3.76
9:53 31.8 36.8 34.2 40.9 37.3 34.8 24.4 687.4 75.58 1.79 254.3 37.0 3.71
9:54 31.8 37.0 34.3 41.1 37.6 34.9 24.2 686.5 75.24 1.80 259.3 37.8 3.73
9:55 31.9 37.3 34.7 41.2 37.8 35.2 24.8 687.5 75.47 1.78 251.3 36.6 3.70
9:56 32.0 37.2 34.4 41.3 37.7 35.2 25.1 688.8 75.22 1.79 243.6 35.4 3.71
9:57 32.3 38.1 34.7 41.6 38.1 35.6 25.2 687.7 74.91 1.79 252.0 36.6 3.71
9:58 32.5 38.5 35.5 42.7 38.9 36.0 25.7 686.8 75.51 1.78 250.1 36.4 3.70
9:59 32.6 38.9 35.1 42.5 38.7 36.2 25.7 685.0 75.98 1.77 256.2 37.4 3.68
10:00 32.7 38.8 35.1 41.6 38.4 36.2 25.5 683.8 75.73 1.78 260.4 38.1 3.71
10:01 32.7 38.6 35.3 42.3 38.8 36.2 25.7 683.8 75.85 1.78 256.1 37.5 3.71
10:02 32.8 38.8 35.5 42.7 38.8 36.3 26.3 684.8 76.09 1.77 245.8 35.9 3.69
10:03 32.9 38.3 35.0 41.8 38.4 36.0 26.3 684.5 76.18 1.77 239.5 35.0 3.68
10:04 32.9 38.3 34.8 41.3 38.1 35.9 25.7 680.9 76.10 1.78 250.4 36.8 3.74
10:05 32.9 38.3 35.0 41.4 38.2 36.0 26.0 679.8 75.32 1.78 242.0 35.6 3.75
10:06 32.9 38.2 34.9 41.7 38.1 35.9 26.2 677.5 75.99 1.78 237.7 35.1 3.75
10:07 33.0 38.3 34.8 41.5 37.9 35.9 25.9 674.3 76.11 1.78 244 1 36.2 3.76
10:08 33.0 37.9 35.1 41.2 37.9 35.8 26.1 672.6 76.47 1.80 237.9 35.4 3.82
10:09 33.0 38.1 35.0 41.4 38.0 35.9 26.6 673.2 75.51 1.78 226.9 33.7 3.78
10:10 33.1 38.5 35.4 42.1 38.6 36.2 27.0 671.3 75.12 1.77 222.2 33.1 3.76
10:11 33.2 38.7 35.6 421 38.6 36.4 27.2 669.7 75.59 1.76 224.8 33.6 3.75
10:12 33.2 38.3 35.5 42.0 38.4 36.2 27.2 670.7 76.27 1.77 220.6 32.9 3.77
10:13 33.2 38.1 35.5 42.0 38.4 36.0 26.9 670.7 76.34 1.79 224.7 33.5 3.81
10:14 33.3 38.2 35.6 421 38.4 36.1 26.9 668.6 75.99 1.78 225.2 33.7 3.79
10:15 33.2 37.5 35.0 41.3 37.8 35.7 27.0 667.7 76.64 1.78 214.6 32.1 3.80
10:16 33.2 37.5 34.9 41.1 37.7 35.6 26.9 665.9 75.76 1.78 213.4 32.1 3.80
10:17 33.2 37.4 35.0 41.1 37.8 35.6 26.8 666.8 75.75 1.78 214.4 32.2 3.81
10:18 33.2 37.5 35.1 41.2 37.8 35.7 27.0 668.4 76.07 1.77 214.7 32.1 3.77
10:19 33.3 37.8 35.4 41.6 38.2 35.8 26.9 666.1 75.79 1.77 219.4 32.9 3.79
10:20 33.3 37.6 34.9 41.3 37.7 35.7 26.9 661.9 76.28 1.76 217.3 32.8 3.79
10:21 33.3 379 35.2 41.5 38.0 35.9 27.2 660.4 75.23 1.76 211.3 32.0 3.80
10:22 33.3 37.6 35.1 41.2 37.6 35.7 27.1 657.8 75.67 1.77 209.8 31.9 3.83
10:23 33.2 37.0 34.5 40.7 37.2 35.3 26.9 656.4 76.92 1.78 207.6 31.6 3.86
10:24 33.1 36.5 34.1 39.9 36.7 35.0 26.6 654.2 76.32 1.80 205.4 31.4 3.92
10:25 33.1 36.9 34.3 40.5 37.2 35.1 26.7 651.6 75.58 1.76 205.9 31.6 3.85
10:26 33.2 37.3 34.5 40.6 37.3 35.3 26.6 648.6 76.04 1.76 215.0 33.2 3.88
10:27 33.2 36.8 33.9 39.8 36.8 35.0 26.0 645.5 75.95 1.78 223.1 34.6 3.93
10:28 33.2 37.3 34.5 40.5 37.3 35.4 26.2 644.6 74.92 1.76 2221 34.5 3.89
10:29 33.3 37.5 35.0 41.1 37.8 35.6 26.7 645.0 75.56 1.76 215.9 33.5 3.90
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Time Twall Tcol,1 Tcol,2 Tcol,3 Tcol,4 Tout Tamb GT,coI Flow Rate Pel Q"u Effth EffPV
[h | I°c1 | el | I°cl | I°c1 | [°c1 | [°C] | [°C] | Wim’] | [m*hm®| [W] [[Wim’] % %
10:30 33.3 37.3 34.9 40.8 37.5 35.5 26.8 643.8 75.74 1.77 212.6 33.0 3.92
10:31 33.2 36.6 34.5 39.9 37.0 35.1 26.8 643.9 75.12 1.78 202.4 31.4 3.93
10:32 33.2 36.8 34.6 40.1 37.2 35.2 26.9 644.5 75.55 1.76 204.4 31.7 3.89
10:33 33.1 37.0 34.7 40.5 37.5 35.3 27.1 643.1 74.99 1.75 197.4 30.7 3.88
10:34 33.1 37.8 35.3 41.5 38.1 35.7 27.5 639.9 74.74 1.75 197.0 30.8 3.90
10:35 33.1 37.5 35.1 41.3 37.7 35.6 27.3 635.7 75.27 1.74 202.3 31.8 3.90
10:36 33.1 37.2 34.8 40.7 37.3 35.4 27.2 634.0 75.66 1.77 201.7 31.8 3.98
10:37 33.1 36.9 34.5 40.2 371 35.2 27.3 633.6 75.43 1.75 193.5 30.5 3.95
10:38 33.1 37.0 34.5 40.4 37.2 35.3 27.4 632.3 75.24 1.76 191.7 30.3 3.97
10:39 33.1 36.9 34.1 40.1 36.8 35.2 271 628.5 75.52 1.76 197.9 31.5 3.99
10:40 33.2 37.4 34.6 41.2 37.7 35.4 27.4 623.2 74.53 1.71 191.5 30.7 3.92
10:41 33.3 38.0 35.3 41.8 38.1 35.8 28.0 621.9 74.32 1.72 186.6 30.0 3.94
10:42 33.4 38.2 35.4 41.9 38.2 36.1 28.2 619.9 74.25 1.73 187.7 30.3 3.98
10:43 33.4 37.7 35.0 41.1 37.5 35.9 28.1 617.3 75.55 1.74 190.6 30.9 4.02
10:44 33.4 37.2 34.9 40.7 37.4 35.6 27.5 615.6 75.63 1.75 198.0 32.2 4.06
10:45 33.3 36.8 34.2 40.1 36.8 35.3 27.2 614.3 75.86 1.75 196.2 31.9 4.05
10:46 33.2 36.5 33.8 39.6 36.4 35.0 27.3 613.3 75.90 1.74 190.0 31.0 4.06
10:47 33.2 36.9 34.1 39.7 36.5 35.1 271 610.0 74.67 1.72 192.6 31.6 4.02
10:48 33.2 36.6 34.1 39.6 36.5 35.0 27.4 605.8 75.41 1.70 185.3 30.6 4.00
10:49 33.2 36.6 34.0 39.6 36.5 35.0 27.5 603.2 75.09 1.74 182.4 30.2 4.12
10:50 33.2 36.4 34.0 39.4 36.4 34.9 27.7 602.6 74.60 1.76 1741 28.9 4.16
10:51 33.2 36.7 34.4 40.1 37.1 35.1 27.8 600.9 74.77 1.74 176.8 29.4 412
10:52 33.3 371 34.7 40.5 37.2 35.3 28.0 598.1 74.84 1.72 176.9 29.6 4.10
10:53 33.4 37.3 35.0 41.0 37.6 35.6 28.2 595.9 74.93 1.71 178.6 30.0 4.09
10:54 33.4 37.4 34.6 41.2 37.6 35.5 28.4 592.7 75.52 1.70 172.5 29.1 4.09
10:55 33.4 37.5 34.4 40.8 371 35.6 28.2 589.5 75.28 1.71 178.8 30.3 413
10:56 33.4 37.6 34.3 40.7 37.3 35.6 28.2 586.0 75.24 1.70 180.2 30.8 4.13
10:57 33.6 38.2 34.8 41.1 37.6 36.0 28.5 583.9 74.30 1.70 180.6 30.9 4.15
10:58 33.6 379 34.6 40.8 37.2 35.9 28.6 582.2 76.41 1.70 181.1 31.1 4.16
10:59 33.6 37.4 34.3 40.4 36.8 35.6 28.8 580.5 76.93 1.69 168.5 29.0 4.16
11:00 33.4 36.8 33.9 40.2 36.6 35.2 28.5 577.0 77.44 1.71 167.0 28.9 4.22
11:01 33.5 36.7 34.0 39.9 36.4 35.1 28.3 573.2 76.04 1.71 167.4 29.2 4.25
11:02 33.4 36.2 34.0 39.4 36.2 34.8 27.9 569.8 76.75 1.71 172.4 30.3 4.27
11:03 33.3 35.7 33.6 38.8 35.9 34.5 27.5 566.4 76.96 1.71 173.3 30.6 4.31
11:04 33.3 35.7 33.1 38.4 35.5 34.4 271 563.5 76.47 1.72 180.6 32.1 4.35
11:05 33.2 35.6 33.0 38.2 35.6 34.2 26.7 560.6 76.25 1.71 185.4 33.1 4.36
11:06 33.2 36.1 33.9 39.3 36.3 34.6 27.6 557.5 75.37 1.70 170.7 30.6 4.35
11:07 33.3 36.7 34.1 40.2 36.8 35.0 28.0 555.9 75.61 1.67 170.1 30.6 4.29
11:08 33.3 36.7 34.1 39.9 36.4 35.0 28.3 553.3 75.92 1.69 164.3 29.7 4.37
11:09 33.3 35.9 33.6 38.9 35.8 34.6 28.1 550.2 76.81 1.69 162.0 29.5 4.39
11:10 33.2 36.2 33.6 39.5 36.2 34.7 28.1 547.7 76.80 1.68 162.8 29.7 4.38
11:11 33.2 36.3 33.3 39.0 35.6 34.7 27.9 545.4 75.47 1.68 164.9 30.2 4.40
11:12 33.2 36.0 33.0 38.7 35.3 34.5 27.9 543.2 75.46 1.68 162.0 29.8 4.40
11:13 33.2 36.4 33.5 39.2 35.8 34.6 28.0 541.7 75.39 1.67 162.8 30.0 4.41
11:14 33.2 36.2 33.5 39.4 36.0 34.7 28.1 539.3 75.83 1.67 160.9 29.8 4.42
11:15 33.2 36.7 33.8 39.9 36.4 35.0 28.3 535.6 75.30 1.66 162.6 30.4 4.41
11:16 33.3 36.6 34.2 40.1 36.7 35.0 29.0 531.7 75.79 1.64 146.5 27.6 4.41
11:17 33.2 36.2 33.9 39.7 36.3 34.8 28.7 525.6 76.07 1.65 149.6 28.5 4.47
11:18 33.2 36.0 33.8 39.3 35.9 34.6 28.6 523.5 76.22 1.66 148.8 28.4 4.53
11:19 33.2 35.5 33.3 38.6 35.5 34.3 28.3 516.7 76.70 1.66 149.2 28.9 4.57
11:20 33.1 35.2 33.0 38.4 35.3 34.0 28.0 513.8 76.01 1.66 148.1 28.8 4.62
11:21 33.1 35.3 33.2 38.2 35.3 341 28.0 510.7 75.73 1.66 149.3 29.2 4.65
11:22 33.0 35.3 33.1 38.2 35.3 34.1 28.4 508.2 75.56 1.65 139.9 27.5 4.63
11:23 33.0 35.3 33.0 37.9 35.0 34.1 28.6 506.7 76.58 1.65 134.7 26.6 4.63
11:24 329 35.2 33.0 38.1 35.1 34.0 28.7 504.4 75.90 1.63 129.3 25.6 4.61
11:25 33.0 35.4 33.3 38.6 35.5 34.1 28.4 501.4 76.10 1.63 141.7 28.3 4.65
11:26 33.0 35.5 33.2 38.7 35.5 34.2 28.5 497.9 75.75 1.63 138.7 27.9 4.67
11:27 33.0 35.3 33.1 38.4 35.3 34.0 28.2 495.9 75.90 1.65 144.7 29.2 4.74
11:28 32.9 35.2 33.0 38.0 35.1 33.9 28.5 493.2 76.43 1.64 135.3 27.4 4.73
11:29 329 34.9 32.7 37.4 34.6 33.7 28.4 489.7 76.42 1.64 131.7 26.9 4.77
11:30 32.9 35.0 32.8 37.9 35.1 33.8 28.3 488.2 76.37 1.63 137.1 28.1 4.75
11:31 32.9 35.3 32.5 37.8 34.8 33.8 27.9 485.9 76.42 1.63 146.2 30.1 4.79
11:32 32.8 349 32.1 371 34.4 33.6 27.5 482.4 76.50 1.63 150.9 31.3 4.83
11:33 32.8 34.8 32.3 37.2 34.6 33.5 27.4 479.7 75.91 1.63 152.3 31.7 4.84
11:34 32.7 34.7 32.5 37.4 34.7 33.5 27.8 478.8 76.29 1.62 141.1 29.5 4.82
11:35 32.6 34.3 32.3 37.0 34.2 33.3 28.0 A477.2 76.05 1.63 130.8 27.4 4.87
11:36 32.6 34.2 32.3 371 34.3 33.2 27.9 475.8 75.95 1.62 129.1 271 4.85
11:37 32.6 34.4 32.3 37.0 34.2 33.2 28.1 472.7 76.08 1.61 127.2 26.9 4.86
11:38 32.5 33.7 31.8 36.5 33.8 32.9 28.0 467.1 76.32 1.61 121.0 25.9 4.92
11:39 32.5 341 31.8 36.8 34.1 33.0 28.1 462.2 75.92 1.60 119.2 25.8 4.95
11:40 32.5 34.1 32.1 36.9 34.0 33.0 28.2 461.2 76.29 1.61 119.0 25.8 4.98
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Time Twall Tcol,1 Tcol,2 Tcol,3 Tcol,4 Tout Tamb GT,coI Flow Rate Pel Q"u Effth EffPV
[h | I°c1 | el | I°cl | I°c1 | [°c1 | [°C] | [°C] | Wim’] | [m*hm®| [W] [[Wim’] % %
11:41 324 34.0 31.8 36.8 34.0 32.9 28.1 461.1 76.37 1.61 121.6 26.4 4.97
11:42 32.4 34.2 32.0 37.0 34.2 33.1 28.6 458.7 75.84 1.59 111.0 24.2 4.95
11:43 32.4 34.4 32.0 371 34.1 33.2 28.7 456.3 77.14 1.59 112.2 24.6 4.98
11:44 32.3 34.3 32.0 36.8 34.0 33.1 28.8 452.6 75.47 1.59 107.1 23.7 5.01
11:45 32.4 34.2 32.1 36.9 34.1 33.1 28.7 450.5 75.91 1.59 109.0 24.2 5.03
11:46 32.3 341 31.8 36.5 33.7 33.0 28.8 449.2 75.76 1.59 102.0 22.7 5.05
11:47 32.4 34.2 32.1 36.8 34.0 33.1 29.2 448.0 76.16 1.57 97.2 21.7 4.99
11:48 32.4 34.6 32.5 37.3 34.4 33.3 29.4 447.0 76.01 1.57 95.0 21.3 4.99
11:49 324 34.3 32.3 37.2 34.3 33.2 29.3 443.2 75.79 1.56 95.9 21.6 5.02
11:50 32.3 33.9 31.8 36.7 33.7 32.9 28.9 440.3 76.11 1.56 99.9 22.7 5.06
11:51 32.3 34.0 31.8 36.4 33.6 329 28.7 436.5 76.29 1.56 103.9 23.8 5.10
11:52 32.2 33.8 31.6 36.0 33.4 32.8 28.6 433.9 76.42 1.56 103.2 23.8 5.12
11:53 32.2 33.7 31.6 36.0 33.4 32.7 29.0 431.0 76.07 1.54 92.2 21.4 5.08
11:54 32.2 33.9 31.6 36.3 33.6 32.8 29.1 428.2 76.27 1.52 91.5 21.4 5.08
11:55 32.2 33.9 31.6 36.3 33.5 32.8 29.1 424.8 75.76 1.52 90.1 21.2 5.12
11:56 32.1 33.9 31.9 36.3 33.6 32.8 29.2 422.7 75.42 1.51 87.6 20.7 5.11
11:57 32.2 34.1 31.8 36.6 33.8 32.9 29.2 420.9 75.88 1.52 92.1 21.9 5.16
11:58 32.1 34.2 31.7 36.6 33.8 32.9 29.0 419.9 76.19 1.54 96.0 22.9 5.22
11:59 32.1 341 31.7 36.5 33.6 32.8 29.2 422.3 75.84 1.54 90.3 21.4 5.19
12:00 32.0 33.5 31.0 35.5 32.8 32.4 28.4 420.4 77.08 1.50 101.6 24.2 5.09
12:01 32.0 33.2 31.0 35.3 32.8 32.2 28.2 406.8 75.92 1.50 98.3 24.2 5.25
12:02 32.0 33.5 31.4 35.8 33.1 324 28.8 412.7 75.17 1.563 89.6 21.7 5.28
12:03 32.0 33.7 31.9 36.4 33.7 32.7 29.2 410.0 75.35 1.49 84.7 20.7 5.20
12:04 32.0 33.7 31.5 36.3 33.7 32.6 29.2 423.8 75.93 1.48 86.3 20.4 4.98
12:05 32.0 34.1 31.6 36.7 33.7 32.9 29.3 398.0 75.86 1.42 87.1 21.9 5.10
12:06 32.0 34.0 31.7 36.4 33.6 32.8 29.3 404.1 75.27 1.46 85.5 21.2 5.15
12:07 32.0 33.6 31.5 35.9 33.0 32.6 29.2 368.0 76.26 1.52 85.3 23.2 5.89
12:08 31.8 32.7 30.9 35.1 32.4 32.0 28.8 382.9 76.11 1.43 80.6 21.0 5.32
12:09 31.7 32.4 30.6 34.6 32.0 31.8 28.6 363.4 76.78 1.44 79.9 22.0 5.66
12:10 31.7 32.5 30.5 34.5 32.0 31.8 28.6 357.4 75.86 1.41 79.7 22.3 5.61
12:11 31.6 31.9 29.8 33.7 31.4 31.3 28.0 355.2 76.52 1.40 82.2 23.1 5.61
12:12 31.5 32.3 30.6 34.6 32.2 31.5 28.2 369.6 75.30 1.44 83.1 22.5 5.55
12:13 31.5 32.4 30.3 34.5 32.1 31.5 27.8 368.1 75.53 1.43 90.8 24.7 5.55
12:14 31.5 325 30.7 34.9 32.3 31.7 28.1 360.5 74.95 1.41 86.5 24.0 5.60
12:15 31.4 32.0 30.1 33.7 31.2 31.3 28.2 318.2 76.47 1.35 78.7 24.7 6.06
12:16 31.2 31.5 29.8 33.4 31.1 31.0 28.3 343.9 76.43 1.42 66.9 19.5 5.87
12:17 31.2 319 30.1 34.4 31.9 31.2 29.1 352.5 75.65 1.38 51.7 14.7 5.60
12:18 31.3 32.5 30.4 34.8 32.2 31.5 29.2 348.4 75.28 1.38 57.4 16.5 5.64
12:19 31.3 32.5 30.6 34.9 32.2 31.6 29.4 344.8 75.68 1.38 56.1 16.3 5.70
12:20 31.3 32.5 30.5 35.0 32.3 31.6 29.2 341.5 75.45 1.36 59.1 17.3 5.69
12:21 31.2 31.9 29.8 34.2 31.5 31.2 28.8 337.7 76.69 1.36 60.9 18.0 5.75
12:22 31.0 31.5 29.7 33.7 31.2 30.9 28.4 333.8 76.14 1.36 62.0 18.6 5.82
12:23 31.1 31.7 30.1 34.0 31.7 31.1 28.5 331.1 75.43 1.34 62.0 18.7 5.77
12:24 31.0 31.7 29.6 33.4 30.9 30.9 28.4 325.9 75.98 1.33 62.9 19.3 5.84
12:25 31.0 31.6 29.8 33.6 31.2 30.8 28.4 322.9 75.87 1.32 61.5 19.0 5.82
12:26 31.0 31.8 30.0 34.0 31.6 31.0 28.8 320.2 75.15 1.30 54.7 171 577
12:27 31.0 31.9 30.1 34.0 31.6 31.2 29.1 317.5 75.39 1.29 49.8 15.7 5.79
12:28 30.9 31.5 29.6 33.2 30.9 30.8 28.8 313.4 76.35 1.29 49.7 15.9 5.89
12:29 30.8 31.2 29.6 32.9 30.8 30.6 29.0 311.3 76.17 1.28 41.5 13.3 5.87
12:30 30.8 31.0 29.5 33.1 30.9 30.5 28.8 309.7 76.64 1.28 42.7 13.8 5.89
12:31 30.7 30.9 29.4 32.9 30.7 30.5 28.6 306.0 75.75 1.27 47.8 15.6 5.92
12:32 30.7 31.0 29.5 329 30.8 30.5 28.7 301.9 76.07 1.24 45.2 15.0 5.88
12:33 30.6 31.0 29.4 32.7 30.6 30.5 28.9 297.2 75.63 12.38 38.9 13.1 59.42
12:34 30.6 30.9 29.2 32.7 30.5 30.4 28.9 293.5 75.80 1.22 36.7 12.5 5.95
12:35 30.4 30.6 28.9 32.4 30.3 30.1 28.7 289.0 76.09 1.21 36.0 12.5 5.98
12:36 30.4 30.6 28.7 32.3 30.1 30.0 28.5 284.8 75.83 1.20 39.3 13.8 6.01
12:37 30.4 30.5 28.7 32.2 30.0 29.9 28.3 280.7 75.91 1.18 40.3 14.4 6.01
12:38 30.3 30.2 28.4 31.9 29.7 29.7 28.4 277.0 75.85 1.18 32.2 11.6 6.08
12:39 30.2 30.4 28.6 32.1 30.0 29.8 28.5 273.5 75.32 1.16 32.3 11.8 6.06
12:40 30.2 30.3 28.6 32.0 29.8 29.8 29.0 269.5 75.75 1.15 19.5 7.2 6.09
12:41 30.1 30.2 28.4 32.1 29.7 29.7 29.2 266.6 75.83 1.14 12.1 4.6 6.09
12:42 30.1 30.3 28.4 32.3 29.7 29.8 29.1 263.3 75.87 1.13 16.9 6.4 6.11
12:43 30.1 30.2 28.4 31.8 29.5 29.7 28.6 260.3 75.83 1.12 26.1 10.0 6.15
12:44 30.0 30.2 28.5 31.8 29.7 29.6 29.2 258.0 76.25 1.11 10.1 3.9 6.14
12:45 30.0 30.0 28.3 31.9 29.6 29.5 29.5 254.7 75.59 1.09 1.9 0.8 6.13
12:46 29.9 29.9 28.2 31.7 29.4 29.5 29.3 251.4 76.37 1.09 4.5 1.8 6.17
12:47 29.8 29.7 28.1 31.3 29.1 29.3 28.9 248.6 76.18 1.08 10.1 4.1 6.22
12:48 29.7 29.5 28.1 31.2 29.3 29.2 28.6 246.7 75.82 1.08 14.8 6.0 6.23
12:49 29.7 29.8 28.3 31.4 29.5 29.4 28.9 243.8 76.23 1.07 12.4 5.1 6.28
12:50 29.8 29.8 28.4 31.4 29.5 29.4 29.1 240.0 75.97 1.06 8.4 3.5 6.30
12:51 29.8 29.8 28.4 31.4 29.5 29.4 29.0 236.4 75.89 1.05 10.6 4.5 6.36
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Time Twall Tcol,1 Tcol,z Tcol,3 Tcol,4 Tout Tamb GT,coI Flow Rate Pel Q"u Eff!h EffPV
] | [I°c] | [’c1 | [°c] | [°C] | [°c] | [°C] | [°C] | W/m?]|[m%hm?]| [W] |[Wim’] % %
12:52 29.7 30.0 28.5 31.5 29.6 29.5 29.3 232.0 75.77 1.02 4.3 1.8 6.30
1253 | 297 29.7 28.2 31.1 29.1 293 | 294 226.6 76.05 1.01 2.3 -1.0 6.36
12:54 29.6 29.2 27.5 30.5 28.5 28.9 28.8 222.7 76.99 1.00 1.4 0.6 6.42
12:55 29.4 28.8 27.0 30.2 28.0 28.5 28.2 220.3 76.59 1.00 6.8 3.1 6.45
12:56 29.4 28.9 27.3 30.4 28.3 28.6 28.2 218.4 76.31 1.00 10.0 4.6 6.54
1257 | 294 288 | 271 30.1 280 | 285 | 27.9 2154 75.79 0.99 13.1 6.1 6.58
12:58 29.3 29.1 27.7 30.6 28.7 28.7 28.5 213.8 74.68 0.98 4.7 2.2 6.52
Table E.6: Experimental data for September 6

Time | Tyan Tcol,1 TcoI,Z Tcol,3 Tcol,4 Tamb G col P, | Effpy

[h] | [°Cl| [°c] | [°C] | [°C] | [°C] | [°C] [Wim?]| [W] | %

7:34 | 155 | 231 | 241 | 233 | 264 | 154 | 2423 | 1.19 | 6.99

7:35 | 158 | 236 | 247 | 239 | 271 | 154 | 2504 | 1.23 [ 7.00

7:36 | 160 | 24.0 | 251 | 244 | 276 | 157 | 256.8 | 1.25 | 6.93

7:37 | 163 | 245 | 257 | 249 | 281 | 158 | 2634 | 1.26 | 6.80

7:38 | 165 | 249 | 260 | 253 | 285 | 159 | 2695 | 1.28 | 6.77

7:39 | 167 | 253 | 264 | 255 | 289 | 159 | 2765 | 1.29 | 6.66

7:40 | 170 | 258 | 270 | 2641 | 295 | 159 | 2833 | 1.30 | 6.54

7:41 | 172 | 264 | 276 | 265 | 301 | 158 | 2881 | 1.31 | 6.51

7:42 | 174 | 269 | 279 | 271 | 308 | 158 | 2947 | 1.33 | 6.44

7:43 | 177 | 273 | 285 | 276 | 313 | 158 | 3019 | 1.35 | 6.38

7:44 | 179 | 278 | 289 | 279 | 317 | 160 | 3086 | 1.36 | 6.27

7:45 | 182 | 282 | 295 | 285 | 323 | 161 | 3152 | 1.37 | 6.18

7:46 | 185 | 287 | 30.0 | 29.0 | 329 | 163 | 3224 | 1.38 | 6.10

7:47 | 188 | 291 | 305 | 295 | 333 | 163 | 3288 | 1.39 | 6.04

7:48 | 191 | 295 | 30.7 | 29.7 | 333 | 163 | 3345 | 1.41 | 6.00

7:49 | 193 | 298 | 312 | 30.0 | 340 | 164 | 339.8 | 144 | 6.02

7:50 | 197 | 304 | 317 | 30.7 | 346 | 167 | 3447 | 143 | 591

7:51 | 19.8 | 30.8 | 321 | 30.8 | 349 | 168 | 3504 | 1.44 | 585

7:52 | 201 | 311 | 324 | 312 | 352 | 167 | 3573 | 146 | 5.82

753 | 203 | 313 | 327 | 314 | 354 | 169 | 3641 | 147 | 5.74

7:54 | 207 | 319 | 332 | 320 | 360 | 17.0 | 371.8 | 147 | 566

7:55 | 209 | 323 | 335 | 324 | 364 | 170 | 3773 | 147 | 557

756 | 211 | 326 | 341 | 327 | 369 | 172 | 3839 | 1.49 | 553

757 | 214 | 33.0 | 344 | 333 | 374 | 174 | 3884 | 1.48 | 544

758 | 217 | 335 | 348 | 340 | 379 | 175 | 3943 | 149 | 538

7:59 | 220 | 340 | 355 | 343 | 382 | 176 | 4015 | 150 | 5.35

800 | 222 | 344 | 358 | 345 | 386 | 179 | 4038 | 151 | 533

801 | 225 | 346 | 36.0 | 347 | 389 | 182 | 4076 | 1.50 | 5.23

802 | 228 | 349 | 365 | 351 | 391 | 183 | 4118 | 152 | 5.26

803 | 231 | 351 | 365 | 353 | 393 | 186 | 417.0 | 151 | 5.18

804 | 233 | 353 | 36.8 | 355 | 395 | 188 | 4211 | 151 | 5.12

805 | 235 | 356 | 37.0 | 359 | 398 | 188 | 4247 | 153 | 5.14

806 | 238 | 358 | 375 | 36.2 | 40.0 | 191 | 4285 | 153 | 5.10

807 | 240 | 360 | 375 | 362 | 401 | 19.3 | 4317 | 1.54 | 5.10

808 | 242 | 361 | 37.8 | 364 | 404 | 193 | 4364 | 152 | 4.98

809 | 245 | 365 | 379 | 366 | 407 | 193 | 4405 | 1.54 | 4.99

810 | 247 | 368 | 382 | 36.7 | 409 | 196 | 4452 | 1.54 | 4.93

811 | 250 | 371 | 385 | 37.2 | 414 | 197 | 4498 | 1.54 | 4.88

812 | 252 | 373 | 389 | 374 | 414 | 200 | 4538 | 1.54 | 4.85

813 | 254 | 376 | 39.2 | 379 | 419 | 201 | 459.3 | 1.54 | 4.79

814 | 257 | 380 | 39.7 | 385 | 425 | 204 | 4642 | 154 | 4.74

815 | 259 | 383 | 40.0 | 387 | 429 | 203 | 4681 | 1.54 | 4.68

816 | 262 | 387 | 403 | 389 | 432 | 203 | 4722 | 155 | 4.67

817 | 264 | 391 | 405 | 394 | 434 | 206 | 4766 | 1.55 | 4.63
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Time | Tyan | Teol1 | Teot2 | Teo3 | Teoa | Tamb | Grcol P, | Effpy
[h] | [°c1 | [°c] | [°c] | [°cl | [°C] | [°C] |Wim®]| W1 | %
8:18 26.7 39.1 40.8 39.3 43.4 20.8 481.9 1.55 4.60
8:19 26.9 39.4 41.0 39.5 43.8 21.1 485.7 1.55 4.55
8:20 27.1 39.9 41.5 40.2 44.4 21.3 490.1 1.54 4.48
8:21 27.5 40.4 421 40.8 44.9 21.2 491.8 1.52 4.41
8:22 27.8 40.9 42.7 41.1 45.5 21.3 494.2 1.53 4.41
8:23 28.1 414 42.9 41.5 45.9 214 495.7 1.53 4.40
8:24 28.4 41.6 43.2 41.6 45.7 21.3 498.5 1.53 4.38
8:25 28.6 41.8 43.4 41.7 45.9 21.3 504.2 1.53 4.33
8:26 28.8 42.0 43.7 42.0 46.3 21.4 508.4 1.53 4.30
8:27 29.1 42.3 43.9 42.7 46.8 21.5 511.0 1.52 4.23
8:28 29.4 42.7 44.2 42.9 46.8 21.8 514.5 1.53 4.23
8:29 29.6 42.7 44 .4 42.9 471 22.1 516.2 1.53 | 4.22
8:30 29.9 43.0 447 43.3 47 .4 22.0 520.5 1.54 4.22
8:31 30.1 43.1 44.7 43.0 471 21.8 521.9 1.53 | 4.18
8:32 30.3 434 44.8 43.2 471 21.8 523.8 1.53 4.16
8:33 30.6 43.3 44.9 43.4 47.2 21.8 526.1 1.53 4.15
8:34 30.8 43.8 454 43.6 47.7 221 528.6 1.52 4.11
8:35 31.0 441 45.7 441 48.1 22.4 530.8 1.51 4.07
8:36 31.3 44.5 46.1 44.5 48.4 22.5 535.8 1.52 4.04
8:37 31.6 44.8 46.4 44.7 48.8 22.7 538.7 1.51 4.00
8:38 31.8 45.1 46.7 45.1 49.3 23.0 541.2 1.50 | 3.95
8:39 32.1 45.7 47.3 45.5 49.7 23.1 542.3 1.50 3.93
8:40 32.3 46.0 47.7 45.9 50.2 23.5 545.9 149 | 3.90
8:41 32.6 46.1 47.5 45.8 49.9 23.9 548.7 1.52 3.96
8:42 32.7 45.5 47.1 45.2 49.1 24.2 552.8 1.53 | 3.96
8:43 32.9 457 47 .4 45.6 49.6 24.6 556.0 1.52 3.89
8:44 33.1 46.1 47.6 45.9 49.7 24.9 558.9 1.56 3.97
8:45 33.2 45.5 46.8 454 48.9 24.3 558.7 1.55 3.96
8:46 33.4 45.5 46.8 45.4 49.1 24.7 560.5 1.54 3.93
8:47 33.5 45.5 46.9 45.3 49.1 24.8 561.3 1.53 3.88
8:48 33.7 46.4 47.9 46.1 50.2 25.3 565.1 1.51 3.80
8:49 34.0 46.7 48.3 46.5 50.3 25.4 568.6 1.52 | 3.82
8:50 34.2 46.9 48.6 46.4 50.4 25.2 567.9 1.51 3.79
8:51 34.4 47.0 48.7 46.7 50.6 25.5 568.9 1.52 | 3.81
8:52 34.5 47.0 48.7 46.9 50.7 25.5 572.1 1.52 3.79
8:53 34.6 46.5 47.9 46.3 494 24.8 572.2 1.55 3.86
8:54 34.7 46.4 47.7 46.0 494 25.1 572.3 1.55 3.87
8:55 34.9 46.1 47.7 46.3 49.4 25.3 575.4 1.54 3.81
8:56 35.0 47.0 48.4 46.9 50.6 25.8 579.0 1.53 | 3.78
8:57 35.2 471 48.6 47.0 50.5 26.2 580.8 1.54 3.78
8:58 35.4 47 .4 49.0 47 .4 51.3 26.0 581.4 1.51 3.70
8:59 35.6 47.8 49.4 47.7 51.5 25.9 582.2 1.51 3.70
9:00 35.8 48.3 49.9 48.0 51.9 26.3 584.8 1.52 | 3.70
9:01 36.0 48.3 49.7 47.9 51.4 26.7 587.1 1.51 3.67
9:02 36.1 47.8 49.3 47.5 50.6 26.4 588.1 1.60 | 3.89
9:03 36.1 46.4 47.4 46.1 48.9 25.3 589.4 1.59 3.85
9:04 36.2 46.8 48.3 46.9 50.7 25.8 592.9 1.53 3.69
9:05 36.5 48.1 49.8 48.3 52.2 26.4 595.2 1.49 3.58
9:06 36.8 48.9 50.5 49.0 52.5 26.6 595.5 1.51 3.61
9:07 37.0 49.0 50.6 49.0 52.6 26.9 596.8 1.52 | 3.62
9:08 37.1 48.8 50.2 48.6 51.9 271 596.5 1.52 3.62
9:09 37.2 48.8 50.5 48.5 51.8 27.2 598.2 1.52 | 3.63
9:10 37.4 49.2 50.7 48.8 52.2 27.5 600.9 1.54 3.65
9:11 37.5 48.9 50.4 48.8 51.9 27.5 601.8 1.55 | 3.67
9:12 37.7 494 50.9 491 52.5 27.3 604.3 1.54 3.63
9:13 37.9 49.2 50.8 49.0 52.1 27.4 606.3 1.52 | 3.58
9:14 38.1 49.9 51.5 49.6 53.3 27.7 608.0 1.51 3.55
9:15 38.2 49.8 51.5 49.7 53.2 27.8 609.7 1.51 3.54
9:16 38.4 49.8 51.3 49.8 53.2 27.7 610.9 1.52 3.54
9:17 38.5 49.9 51.6 49.9 53.3 27.6 611.3 1.52 3.54
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Time | Twan | Teol1 | Teol2 | Teol3 | Teotd | Tamb | Gricol P | Effey
[h] | [°cl| [°c] | [°c] | [°C] | [°C] | [°C] [Wim*]| W] | %
9:18 38.7 50.2 51.8 50.1 53.6 27.6 613.9 1.52 3.54
9:19 38.9 50.5 51.8 50.7 53.6 27.7 613.1 1.50 3.49
9:20 38.9 49.3 50.6 494 52.2 28.0 613.0 1.53 3.57
9:21 38.9 48.6 49.9 48.8 51.5 28.3 613.7 1.54 3.59
9:22 38.9 48.9 50.2 49.1 51.7 28.5 614.9 1.56 3.61
9:23 39.0 49.2 50.5 49.2 52.0 28.3 615.4 1.54 3.58
9:24 39.1 49.3 50.7 49.4 52.5 28.2 616.8 1.52 3.52
9:25 39.3 50.1 51.7 49.9 53.2 28.5 618.5 1.52 3.51
9:26 39.5 50.4 51.8 50.6 53.6 28.8 619.1 1.53 3.53
9:27 39.6 50.4 51.8 50.6 53.6 28.8 618.4 1.52 | 3.50
9:28 39.8 50.8 52.4 50.7 53.5 28.6 619.4 1.49 3.44
9:29 40.0 51.5 53.0 51.5 54.3 28.6 617.7 1.49 3.43
9:30 40.3 52.1 53.8 51.9 55.2 28.9 619.7 1.46 3.37
9:31 40.5 52.4 54.3 52.2 55.7 29.1 619.3 1.46 3.37
9:32 40.7 52.2 54.1 52.3 55.3 28.8 620.2 1.49 3.42
9:33 40.8 52.6 54.2 52.8 56.1 29.0 619.7 1.45 3.34
9:34 41.1 53.2 54.8 53.2 56.3 29.5 619.9 1.47 3.37
9:35 41.2 52.7 54.5 52.9 55.5 29.1 619.9 1.47 3.39
9:36 41.3 52.0 53.5 52.2 55.0 28.6 619.4 1.53 3.52
9:37 41.4 52.1 53.8 52.3 55.1 28.8 618.5 1.50 3.45
9:38 41.5 51.9 53.5 52.2 54.8 28.5 617.7 1.49 3.43
9:39 41.5 51.6 53.2 51.6 54.3 28.4 618.4 1.50 3.45
9:40 41.6 51.3 52.8 51.3 53.7 28.0 619.3 1.53 3.52
9:41 41.6 51.3 52.8 51.6 54.1 27.8 619.7 1.52 3.50
9:42 41.8 51.5 53.0 52.0 54.6 28.4 619.8 1.49 3.43
9:43 41.9 52.0 53.5 52.1 55.1 29.2 620.3 1.48 3.41
9:44 42.0 51.6 53.0 51.8 54.0 28.7 621.1 1.52 3.49
9:45 42.0 51.3 52.9 51.9 54.6 29.1 620.4 1.50 3.45
9:46 42.0 50.2 51.3 50.2 51.8 27.9 618.0 1.55 3.57
9:47 41.9 49.6 50.8 50.1 52.4 27.7 616.8 1.55 3.58
9:48 42.0 50.7 51.9 51.3 54.0 28.6 619.1 1.52 3.50
9:49 421 50.5 51.6 51.0 53.1 28.9 618.1 1.53 3.53
9:50 42.0 49.7 50.9 50.0 52.2 29.4 616.7 1.53 3.53
9:51 42.0 49.8 51.2 50.2 52.5 29.6 618.5 1.53 3.53
9:52 421 50.5 52.0 50.7 52.7 29.7 618.6 1.52 3.50
9:53 42.3 50.8 52.3 51.0 53.5 29.8 617.6 1.51 3.49
9:54 42.3 50.5 52.1 50.5 53.2 30.1 617.4 1.55 3.59
9:55 42.5 51.7 53.1 51.8 54.7 30.1 617.7 1.47 3.40
9:56 42.7 52.8 54.3 52.8 55.6 30.7 618.1 1.48 3.41
9:57 42.9 53.4 54.8 53.6 56.5 30.7 617.9 1.45 3.34
9:58 43.1 53.4 54.7 53.6 56.0 30.3 616.3 1.48 3.43
9:59 43.1 52.6 54.1 52.7 55.0 29.7 613.8 1.49 3.47
10:00 | 43.2 52.5 54.0 52.4 54.9 30.2 613.5 1.49 3.46
10:01 43.3 52.5 54.0 52.7 55.0 30.4 611.6 1.49 3.47
10:02 | 434 52.7 54.2 52.7 55.1 30.3 611.6 1.48 3.44
10:03 | 43.5 52.8 54.1 53.1 55.3 30.5 609.7 1.48 | 3.46
10:04 | 43.5 52.2 53.4 52.4 54.6 30.4 609.5 1.50 3.51
10:05 | 43.5 52.3 53.7 52.4 54.7 30.4 611.9 1.49 3.48
10:06 | 43.6 52.5 53.9 52.6 54.5 30.4 611.1 1.50 3.50
10:07 | 43.6 51.9 52.9 52.1 54.0 29.5 609.2 1.53 3.59
10:08 | 43.6 50.5 51.7 50.9 52.7 29.2 609.2 1.52 3.57
10:09 | 43.5 50.2 51.5 50.7 52.3 29.0 610.6 1.54 | 3.60
10:10 | 43.5 50.3 51.6 50.8 52.3 29.2 610.5 1.55 3.62
10:11 43.4 50.1 51.1 50.6 52.4 29.5 611.5 1.52 3.56
10:12 | 434 50.2 51.4 50.8 53.0 30.4 610.8 1.54 3.61
10:13 | 435 51.2 52.3 51.7 53.6 30.5 606.5 1.51 3.56
10:14 | 43.6 52.0 53.1 52.3 54.1 30.8 606.1 1.49 3.51
10:15 | 43.8 52.3 53.5 52.5 54.2 31.2 605.5 1.48 3.48
10:16 | 43.9 52.6 53.8 52.6 54.5 31.5 605.9 1.47 3.46
10:17 | 44.0 52.7 54.0 53.0 54.7 31.8 607.7 1.46 3.42
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Time Twall Tcol,1 Tcol,2 Tcol,3 Tcol,4 Tamb GT,col PeI Eﬂ"PV
[h] | [°C1| [°C] | [°C] | [°C] | [°C] | [°C] |W/m’]| [W] | %
10:18 | 44.0 51.8 52.8 52.0 53.2 30.3 605.8 1.50 | 3.54
10:19 | 4441 52.2 53.4 52.6 54.8 30.8 604.7 1.48 | 3.48
10:20 | 44.3 53.3 54.8 53.9 56.3 31.7 603.0 1.45 | 3.43
10:21 | 444 53.4 54.9 54.0 56.1 32.0 602.5 1.46 | 3.46
10:22 | 44.6 53.8 55.2 54.0 56.0 32.3 601.0 1.46 | 3.45
10:23 | 44.7 53.7 54.8 54.0 55.5 31.8 601.3 1.49 3.52
10:24 | 44.7 53.6 54.9 54.0 55.7 31.4 598.7 146 | 3.47
10:25 | 44.8 53.6 54.9 54.0 55.8 31.7 598.4 145 | 3.47
10:26 | 44.9 54.0 55.1 53.8 55.7 32.5 596.9 1.46 | 3.48
10:27 | 4541 54.4 55.6 54.3 56.2 32.8 596.0 144 | 3.44
10:28 | 45.2 54.2 55.5 54.0 55.9 32.9 592.4 142 | 3.41
10:29 | 45.2 53.2 54.4 53.1 55.0 32.7 589.7 144 | 3.48
10:30 | 45.2 53.0 54.3 53.2 54.6 31.9 588.1 1.52 | 3.68
10:31 | 4541 52.5 53.5 52.9 54.5 31.2 588.7 148 | 3.58
10:32 | 45.2 53.0 54.0 53.4 54.7 31.3 588.6 1.47 | 3.57
10:33 | 45.2 52.4 53.6 52.8 54.1 31.1 587.6 1.48 | 3.59
10:34 | 45.2 52.3 53.6 52.5 53.8 31.1 585.0 1.50 | 3.66
10:35 | 45.2 51.7 52.7 52.0 53.0 30.5 580.3 1.50 | 3.69
10:36 | 45.1 50.5 51.3 51.2 52.5 29.8 576.6 1.51 3.73
10:37 | 4541 50.9 52.0 51.9 53.8 30.8 574.7 149 | 3.70
10:38 | 45.0 50.5 51.8 51.4 53.4 31.4 571.8 149 | 3.72
10:39 | 45.0 50.7 51.8 51.6 53.3 31.5 570.9 1.52 | 3.79
10:40 | 45.0 513 52.5 52.0 53.7 31.6 570.0 148 | 3.7
10:41 | 45.2 52.3 53.5 53.0 54.6 31.8 565.8 1.45 | 3.66
10:42 | 454 53.3 54.6 53.6 55.5 32.6 563.9 142 | 3.58
10:43 | 45.5 53.4 54.5 53.6 55.2 32.9 560.4 145 | 3.68
10:44 | 45.5 52.3 53.1 52.3 54.0 32.8 560.5 148 | 3.77
10:45 | 454 514 52.5 52.0 53.2 32.7 557.0 1.47 | 3.76
10:46 | 454 51.6 52.5 52.0 53.4 32.2 556.6 1.47 | 3.76
10:47 | 454 51.7 52.6 52.1 53.6 32.5 557.9 144 | 3.69
10:48 | 45.4 52.1 53.3 52.5 53.9 324 557.8 1.45 3.70
10:49 | 45.5 51.7 52.7 51.8 53.3 31.9 555.8 1.49 3.82
10:50 | 45.3 49.9 50.4 49.9 51.6 32.5 552.4 1.51 3.90
10:51 | 45.2 49.9 50.7 50.3 51.6 32.5 551.0 1.48 | 3.83
10:52 | 45.2 50.0 50.3 49.9 51.6 32.6 548.1 1.51 3.93
10:53 | 45.0 49.2 49.6 49.5 50.9 32.7 545.7 1.51 3.94
10:54 | 45.0 49.9 50.5 50.5 51.4 32.1 545.6 1.48 | 3.86
10:55 | 45.1 50.0 50.8 50.6 51.0 31.7 544.5 148 | 3.87
10:56 | 45.1 50.6 515 51.1 51.9 31.7 546.1 148 | 3.86
10:57 | 45.2 51.2 52.3 51.5 52.8 32.2 545.8 145 | 3.78
10:58 | 45.3 51.6 52.6 52.2 53.1 31.9 542.1 1.45 | 3.81
10:59 | 45.3 51.4 52.2 52.1 52.8 32.1 540.9 1.45 | 3.81
11:00 | 454 51.5 52.5 52.2 53.3 33.1 538.8 144 | 3.82
11:01 | 45.3 50.7 51.3 51.3 52.5 33.6 539.2 146 | 3.87
11:02 | 45.2 49.5 50.0 49.6 51.2 33.2 536.9 1.48 | 3.93
11:03 | 4541 49.6 50.1 49.9 51.2 33.1 532.5 149 | 3.98
11:04 | 4541 49.5 50.3 49.9 51.2 33.2 530.8 1.48 | 3.98
11:05 | 4541 50.5 513 51.0 52.0 33.2 529.1 1.46 | 3.93
11:06 | 45.3 513 52.2 51.9 52.8 33.5 526.8 1.43 | 3.86
11:07 | 45.3 51.1 52.2 51.5 52.4 33.6 526.1 1.44 3.91
11:08 | 45.3 50.9 51.9 51.2 52.2 33.7 525.3 1.46 | 3.96
11:09 | 454 51.1 52.2 51.2 52.4 33.8 522.7 144 | 3.92
11:10 | 454 50.8 51.9 51.1 52.2 33.7 5211 144 | 3.94
11:11 | 454 51.1 52.2 51.3 52.4 33.7 519.3 144 | 3.95
11:12 | 454 51.5 52.5 51.7 52.9 34.0 519.4 142 | 3.91
11:13 | 45.5 51.0 51.8 51.2 52.5 34.0 515.7 143 | 3.94
11:14 | 45.5 51.2 52.0 51.6 52.5 34.1 516.1 1.44 3.98
11:15 | 45.5 50.8 517 51.5 52.1 34.2 513.8 143 | 3.96
11:16 | 45.5 51.0 51.7 51.4 52.2 33.9 509.8 1.41 3.94
11:17 | 45.5 50.3 51.1 50.7 51.3 33.6 506.4 1.43 | 4.03
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Time | Twan | Teol1 | Teol2 | Teol3 | Teotd | Tamb | Grcol P | Effpy
[h] | [°cl| [°c]l | [°c] | [°c] | [°c] | [°C] [Wim®]| W] | %
11:18 | 454 49.8 50.5 50.0 50.6 33.1 501.7 1.43 4.05
11:19 | 454 49.8 50.5 49.8 51.0 33.3 504.7 1.44 4.07
11:20 | 45.3 49.9 50.7 50.3 51.0 33.2 501.0 1.44 4.10
11:21 45.3 49.1 49.4 49.2 50.3 32.7 497.6 145 | 4.14
11:22 | 451 47.5 47.9 471 48.7 33.1 495.1 1.48 4.27
11:23 | 451 48.3 49.0 48.5 49.1 33.3 493.0 145 | 4.18
11:24 | 45.0 48.2 48.5 47.8 49.3 33.2 489.8 1.47 4.28
11:25 | 44.9 47.9 48.7 48.1 49.5 33.2 486.0 1.44 4.23
11:26 | 44.9 48.8 49.7 49.3 50.4 33.3 484.3 1.42 417
11:27 | 45.0 48.8 49.2 48.8 50.0 33.7 483.1 1.42 4.19
11:28 | 44.8 47.4 47.5 46.8 48.5 33.5 481.0 1.46 4.33
11:29 | 447 471 47.4 47.2 48.3 33.0 481.4 1.46 4.33
11:30 | 44.6 47.2 47.7 47 .4 48.8 33.4 478.5 145 | 4.33
11:31 44.5 47.3 47.7 47.4 49.0 33.5 473.7 1.43 4.30
11:32 | 445 47.5 48.0 48.1 48.8 33.2 472.9 1.46 4.40
11:33 | 44.4 46.8 47.0 46.8 48.1 33.0 469.8 1.46 4.44
11:34 | 444 46.7 47.3 471 48.2 33.2 468.8 145 | 4.42
11:35 | 444 47.4 47.9 48.2 48.7 33.1 466.5 1.44 4.41
11:36 | 44.3 47.3 47.7 48.1 48.9 33.1 464.2 1.44 4.42
11:37 | 444 47.4 48.0 48.4 48.8 32.7 462.7 1.43 4.42
11:38 | 44.4 47.3 47.3 47.6 49.0 33.3 461.8 1.43 4.41
11:39 | 441 46.1 46.2 45.5 47.8 33.8 459.9 1.43 4.45
11:40 | 441 46.9 47.3 47.2 48.1 34.1 457.0 1.42 4.43
11:41 44.2 47.6 48.4 48.1 48.9 34.5 452.7 1.40 4.42
11:42 | 44.2 47.9 48.4 48.0 48.7 34.4 449.5 1.39 4.42
11:43 | 44.2 47.0 47.3 47.5 47.3 33.0 445.6 145 | 4.63
11:44 441 46.4 46.6 47.0 47.5 32.7 444 4 1.43 4.58
11:45 | 44.0 46.6 471 47 .4 48.1 33.5 440.6 1.42 4.59
11:46 | 44.1 47.0 47.7 47.6 48.2 33.9 439.2 1.39 4.50
11:47 | 441 471 47.6 47.3 48.3 34.2 438.4 1.40 4.54
11:48 | 441 47.5 48.2 48.0 48.7 34.3 436.7 1.38 4.50
11:49 | 441 47.6 47.9 47.5 48.5 34.6 435.0 1.37 4.50
11:50 | 44.0 46.9 47.3 46.9 47.7 34.9 432.7 1.38 4.56
11:51 44.0 47.4 48.0 47.7 48.3 34.9 430.3 1.37 4.54
11:52 | 441 47.4 47.9 47.9 47.9 34.3 426.4 1.39 4.65
11:53 | 44.0 46.6 47.0 471 47.7 33.9 423.5 1.38 4.64
11:54 | 44.0 46.9 47.4 47.5 48.1 34.1 421.2 1.35 | 4.58
11:55 | 43.9 46.4 46.9 471 47.8 33.9 417.4 1.37 4.67
11:56 43.8 45.9 45.8 45.7 471 34.0 412.6 1.37 4.74
11:57 | 43.7 45.3 45.2 45.4 46.3 34.4 410.2 1.36 4.73
11:58 | 43.6 45.5 46.0 46.2 46.8 34.1 404.9 1.36 4.78
11:59 | 43.6 46.1 46.5 471 471 33.7 402.0 1.35 | 4.80
12:00 | 43.7 46.4 46.8 47 .4 47.6 33.9 401.0 1.33 4.74
12:01 43.7 46.8 47.2 47.6 47.7 34.1 397.9 1.35 | 4.82
12:02 | 43.7 46.5 46.9 47.3 47.4 33.7 3954 1.33 4.81
12:03 | 43.7 46.1 46.6 47.0 46.7 33.6 393.1 1.33 4.83
12:04 | 43.7 46.2 46.6 471 47.2 33.9 389.6 1.32 4.83
12:05 | 43.6 46.1 46.2 46.9 47.0 34.3 387.0 1.32 4.87
12:06 | 43.6 45.6 46.0 46.1 46.4 34.0 382.5 1.32 4.91
12:07 | 435 45.6 46.1 46.4 46.5 34.1 378.1 1.30 4.92
12:08 | 435 45.6 46.0 46.1 46.5 34.5 377.2 1.29 4.89
12:09 | 43.4 45.3 45.6 45.7 46.0 34.8 375.1 1.29 4.91
12:10 | 43.3 44.6 44.9 45.3 45.4 34.7 371.4 1.29 4.97
12:11 43.2 44.8 45.2 45.3 45.6 34.5 367.6 1.28 4.98
12:12 | 43.2 45.0 45.2 454 455 34.4 364.3 1.27 4.99
12:13 | 431 44.2 447 45.0 449 34.0 360.8 1.28 5.06
12:14 | 43.0 43.5 43.8 44.2 441 33.6 357.2 1.29 5.14
12:15 | 43.0 43.9 44.3 44.5 44.5 33.8 354.1 1.28 5.14
12:16 | 42.9 44.2 44.6 45.2 45.3 34.6 352.6 1.25 5.04
12:17 | 43.0 45.3 45.6 46.1 45.8 34.5 348.6 1.23 5.04
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Time | Ty Tcol,1 Tcol,z Tcol,3 Tcol,4 Tamb | Grcal P, | Effpy

(h | el | [°cl | [°c] | [°c1 | [°c] | [°C] [Wim?1| W] | %

1218 | 42.9 | 443 | 441 | 444 | 448 | 344 | 3439 [ 125 ] 517

1219 | 42.8 | 438 | 439 | 444 | 445 | 347 | 3399 | 123 | 5.17

1220 | 427 | 437 | 437 | 440 | 443 | 346 | 3357 [ 1.23 | 5.21

1221 | 42.8 | 440 | 442 | 447 | 445 | 346 | 3340 | 122 | 5.21

1222 | 427 | 436 | 438 | 442 | 444 | 347 | 3328 [ 122 ]| 524

1223 | 425 | 43.0 | 433 | 440 | 438 | 346 | 329.0 | 1.21 | 5.23

1224 | 426 | 437 | 439 | 443 | 437 | 344 | 3251 [ 119 ] 524

12225 | 425 | 432 | 432 | 436 | 430 | 336 | 3211 | 1.21 | 5.37

1226 | 424 | 419 | 422 | 426 | 421 | 3341 3169 | 1.21 [ 545

1227 | 422 | 417 | 420 | 426 | 427 | 334 | 3149 | 1.20 | 5.42

1228 | 422 | 425 | 430 | 438 | 436 | 338 | 3117 [ 117 | 5.37

1229 | 422 | 42,6 | 429 | 439 | 433 | 333 | 309.6 | 1.19 | 5.47

12:30 | 422 | 425 | 428 | 438 | 435 | 340 | 3071 | 1.16 | 5.40

1231 | 421 | 424 | 429 | 437 | 434 | 345 | 303.8 | 1.15 | 5.40

1232 | 421 | 431 | 433 | 439 | 434 | 349 | 301.0 [ 1.14 | 5.40

12:33 | 42.0 | 42.8 | 430 | 435 | 426 | 343 | 2973 | 1.15 | 550

1234 | 42.0 | 42.0 | 423 | 429 | 421 | 338 | 2941 [ 114 | 553

1235 | 41.9 | 42.0 | 422 | 428 | 419 | 333 | 2903 | 1.15 | 5.63

12:36 | 41.8 | 409 | 410 | 419 | 406 | 325 | 2850 [ 1.14 | 573

1237 | 416 | 399 | 402 | 407 | 403 | 327 | 2811 | 1.11 | 5.62

12:38 | 414 | 40.0 | 406 | 412 | 409 | 336 | 2774 | 1.09 | 5.63

1239 | 414 | 409 | 412 | 421 | 412 | 336 | 2754 | 1.10 | 5.70

1240 | 413 | 407 | 410 | 416 | 412 | 340 | 2723 | 1.08 | 5.66

12241 | 412 | 39.9 | 406 | 411 | 406 | 336 | 2675 | 1.08 | 5.75

1242 | 411 | 402 | 407 | 413 | 407 | 336 | 2656 | 1.07 | 574

12243 | 411 | 405 | 409 | 415 | 409 | 336 | 2631 | 1.07 | 5.79

1244 | 411 ] 406 | 409 | 417 | 410 | 337 | 2605 [ 1.04 | 571

12:45 | 41.0 | 403 | 407 | 414 | 406 | 342 | 2565 | 1.04 | 577

1246 | 41.0 | 406 | 408 | 416 | 411 | 341 | 2553 | 1.03 | 574

12247 | 410 | 414 | 417 | 425 | 416 | 346 | 2525 | 1.01 | 5.70

1248 | 41.0 | 421 | 423 | 429 | 419 | 353 | 2498 | 1.00 | 5.72

12249 | 411 | 423 | 425 | 428 | 420 | 357 | 2496 | 1.00 | 5.70

1250 | 41.0 | 418 | 420 | 422 | 413 | 356 | 2462 | 1.00 | 577

12:51 | 409 | 412 | 412 | 411 | 408 | 355 | 240.6 | 0.98 | 5.82

12:52 | 407 | 40.0 | 40.0 | 396 | 39.4 | 350 | 2359 | 0.99 | 5.98

12:53 | 40.6 | 39.9 | 40.1 | 405 | 395 | 344 | 2345 | 0.98 | 5.96

12:54 | 40.6 | 39.8 | 40.1 | 406 | 39.3 | 341 | 2295 [ 0.97 | 6.03

12:55 | 405 | 395 | 39.6 | 401 | 388 | 333 | 2249 | 0.97 | 6.15

12:56 | 405 | 39.6 | 39.8 | 405 | 39.4 | 335 | 2249 | 0.96 | 6.06

12:57 | 405 | 395 | 39.7 | 406 | 391 | 334 | 2205 | 0.96 | 6.19

12:58 | 401 | 381 | 384 | 386 | 382 | 335 | 2185 | 0.96 | 6.25

12:59 | 401 | 381 | 385 | 389 | 379 | 331 | 216.0 | 0.96 | 6.31

13:00 | 39.9 | 383 | 386 | 386 | 382 | 335 | 211.8 | 0.93 | 6.29

Table E.7: Experimental data for September 8

Time | Ty Tcol,1 Tcol,2 Tcol,3 Tcol,4 Tout | Tamo GT,coI Flow Rate| P, Q", | Effy, | Effpy
[h] | I°C] | [°C1 | [°C] | [°C] | [°C] | [°C] | [°C] | [W/m’]| [m°hm?] | (W] [[Wim’] % | %
735 | 17.9 | 236 | 221 | 248 | 240 | 214 | 151 | 37041 51.32 167 | 109.3 | 295 | 643
7:36 | 181 | 240 | 224 | 254 | 244 | 21.7 | 152 | 381.0 51.06 169 | 1115 | 293 | 6.32
737 | 18.3 | 243 | 227 | 256 | 246 | 220 | 153 | 3855 51.39 1.70 | 116.3 | 302 | 6.30
738 | 184 | 247 | 230 | 259 | 250 | 22.3 | 153 | 3944 51.15 1.71 | 1209 | 30.7 | 6.18
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Time Twall Tcol,1 TcoI,Z Tcol,3 Tcol,4 Tnut Tamb GT,CO| Flow Rate Pel Q"u Effth EffPV
[h | [I°c] | [°c] | I°c1 | [°c1 | °c1 | [°C] | [°C] | Wim]| [m*hm?®] | (W] [Wim®] % | %
7:39 18.6 24.8 23.1 26.4 251 22.5 15.4 399.5 51.66 1.70 122.2 30.6 6.08
7:40 18.7 25.0 23.2 26.4 25.3 22.7 15.4 406.1 51.54 1.73 124.5 30.7 6.07
7:41 18.9 25.2 23.4 26.4 25.3 22.9 15.5 414.2 51.64 1.73 128.5 31.0 5.97
7:42 19.0 25.3 23.4 26.7 25.4 23.0 15.6 422.8 53.57 1.76 132.4 31.3 5.95
7:43 19.2 25.4 23.5 26.8 25.5 23.2 15.6 428.5 53.51 1.75 135.4 31.6 5.83
7:44 19.3 25.7 23.7 27.0 25.7 23.3 15.6 433.2 53.90 1.78 138.8 32.0 5.86
7:45 19.4 25.8 23.9 27.2 26.0 23.5 15.7 441.3 53.32 1.77 138.7 31.4 5.73
7:46 19.5 26.1 241 27.5 26.4 23.7 15.7 450.2 53.42 1.79 141.7 31.5 5.66
7:47 19.7 26.9 24.8 28.4 271 24.2 15.9 457.7 52.47 1.78 144.9 31.7 5.55
7:48 19.9 27.4 25.2 28.8 27.5 24.6 16.0 465.3 53.12 1.79 152.4 32.8 5.48
7:49 20.1 27.7 25.5 29.5 27.8 24.9 16.1 472.5 53.18 1.78 155.0 32.8 5.38
7:50 20.2 27.5 25.2 28.8 27.3 249 16.0 477.9 54.71 1.81 161.7 33.8 5.40
7:51 20.4 27.9 25.5 29.3 27.8 25.1 16.0 483.7 54.17 1.81 163.0 33.7 5.34
7:52 20.6 28.1 25.7 29.6 28.0 25.3 16.1 487.9 54.10 1.80 165.7 34.0 5.26
7:53 20.7 28.3 25.8 29.9 28.1 25.4 16.1 493.3 54.26 1.79 167.5 33.9 517
7:54 20.8 28.7 26.2 30.5 28.7 25.7 16.3 500.4 54.17 1.79 169.7 33.9 5.10
7:55 21.0 28.7 26.4 30.9 28.9 25.8 16.4 507.1 54.70 1.76 170.8 33.7 4.95
7:56 21.2 28.9 26.6 31.2 29.0 26.0 16.6 514.5 53.83 1.75 168.3 32.7 4.86
7:57 21.3 29.4 27.0 32.0 29.6 26.2 16.8 521.3 53.98 1.81 168.0 32.2 4.96
7:58 214 29.4 27.0 31.8 29.6 26.5 16.9 528.0 54.25 1.82 172.7 32.7 4.93
7:59 21.6 30.0 27.3 31.9 30.0 26.8 16.8 535.5 53.73 1.81 177.0 33.0 4.82
8:00 21.8 30.4 27.6 32.0 30.2 271 16.9 543.2 53.32 1.84 179.9 33.1 4.82
8:01 22.0 30.7 28.0 32.3 30.5 27.4 17.0 549.6 53.23 1.82 182.9 33.3 473
8:02 22.2 30.5 28.0 32.7 30.6 27.4 171 551.9 54.15 1.85 184.7 33.5 477
8:03 22.4 30.8 28.2 32.8 30.7 27.6 171 554.7 53.92 1.84 186.2 33.6 4.74
8:04 22.5 30.6 28.1 329 30.7 27.6 17.3 560.3 54.86 1.83 187.1 33.4 4.65
8:05 22.7 31.2 28.4 33.4 31.2 27.9 17.4 563.6 54.25 1.81 187.0 33.2 4.58
8:06 22.8 31.7 28.7 33.5 31.4 28.3 175 566.9 54.37 1.81 191.9 33.9 4.57
8:07 23.0 31.5 28.6 33.1 31.3 28.3 17.5 575.1 54.51 1.84 192.5 33.5 4.56
8:08 23.1 31.6 28.7 33.4 31.4 28.4 175 582.8 54.60 1.83 194.9 33.4 4.47
8:09 23.3 32.3 29.2 34.0 32.0 28.7 17.6 586.8 54.39 1.82 199.1 33.9 4.43
8:10 23.5 32.6 29.5 34.6 32.3 29.1 17.7 590.8 54.12 1.83 201.0 34.0 4.41
8:11 23.6 32.6 29.5 34.7 32.3 29.1 17.8 595.8 54.65 1.85 202.6 34.0 4.43
8:12 23.8 32.8 29.7 34.2 32.2 29.3 17.7 598.8 54.09 1.85 204.7 34.2 4.41
8:13 23.9 32.7 29.7 34.0 32.2 29.3 17.5 602.6 53.74 1.83 207.0 34.4 4.34
8:14 241 32.8 30.0 34.3 32.6 29.4 17.6 606.7 53.49 1.84 207.4 34.2 4.33
8:15 24.2 33.2 30.2 34.6 32.8 29.7 17.6 611.8 53.76 1.85 211.8 34.6 4.32
8:16 24.3 32.8 30.1 34.7 32.6 29.6 17.7 617.3 54.24 1.84 211.0 34.2 4.24
8:17 24.5 33.0 30.1 34.8 32.7 29.7 17.8 625.0 53.97 1.84 209.2 33.5 4.20
8:18 24.7 33.6 30.4 35.3 334 30.0 18.1 628.9 54.03 1.82 210.8 33.5 414
8:19 24.9 33.7 30.6 35.4 33.1 30.3 18.1 629.5 53.67 1.87 213.2 33.9 4.23
8:20 25.0 33.1 30.2 34.6 32.5 30.0 17.9 627.0 54.48 1.87 215.7 34.4 4.26
8:21 25.1 33.6 30.5 35.0 33.0 30.2 18.0 630.7 53.62 1.83 212.8 33.7 4.14
8:22 25.2 33.2 30.4 34.8 32.7 30.1 18.0 634.8 53.84 1.85 212.0 33.4 415
8:23 25.2 33.5 30.6 35.0 33.0 30.1 18.0 638.1 54.09 1.82 215.3 33.7 4.07
8:24 25.4 33.8 30.8 35.3 334 30.4 18.1 640.5 53.57 1.84 215.3 33.6 4.10
8:25 25.5 33.9 30.8 35.3 33.5 30.5 18.0 641.3 53.40 1.84 217.2 33.9 4.10
8:26 25.7 34.2 31.2 35.7 33.8 30.7 18.1 644.4 53.09 1.82 217.4 33.7 4.02
8:27 25.8 34.7 31.6 36.0 34.3 31.0 18.3 649.1 52.62 1.92 218.5 33.7 4.21
8:28 25.9 34.7 31.7 36.2 34.2 31.1 18.3 652.9 53.04 1.84 221.7 34.0 4.01
8:29 26.0 34.4 31.5 36.2 34.2 31.0 18.4 656.9 53.00 1.85 218.7 33.3 4.01
8:30 26.1 33.9 31.2 35.5 33.7 30.9 18.2 658.0 53.38 1.85 220.7 33.5 4.01
8:31 26.2 34.0 31.3 35.5 33.8 30.8 18.2 661.4 53.40 1.84 220.3 33.3 3.98
8:32 26.3 34.0 31.4 35.4 33.9 30.9 18.2 665.1 52.72 1.86 218.2 32.8 3.99
8:33 26.4 34.4 31.7 36.0 34.5 31.1 18.3 668.4 52.80 1.84 220.3 33.0 3.93
8:34 26.7 35.2 32.2 36.8 34.9 31.6 18.5 670.6 53.77 1.83 228.5 34.1 3.89
8:35 26.8 35.1 32.2 36.8 34.8 31.7 18.6 672.4 54.03 1.83 231.0 34.4 3.88
8:36 26.8 35.0 32.1 36.8 34.9 31.6 18.6 675.5 54.25 1.85 228.8 33.9 3.91
8:37 27.0 35.5 32.3 37.2 35.3 31.8 18.8 678.6 53.63 1.83 226.7 33.4 3.85
8:38 27.2 36.4 33.1 38.1 36.1 324 19.1 681.4 53.64 1.83 230.9 33.9 3.83
8:39 27.4 35.9 329 37.6 35.5 32.4 19.2 684.1 57.21 1.83 2449 35.8 3.81
8:40 27.5 36.0 33.0 37.9 35.9 324 19.2 688.8 53.82 1.84 230.4 33.5 3.80
8:41 27.6 36.5 33.2 38.2 36.1 32.7 19.4 693.2 53.48 1.82 231.2 33.3 3.75
8:42 27.7 36.8 33.5 39.4 36.8 32.9 19.5 695.7 53.42 1.80 232.8 33.5 3.68
8:43 28.0 37.8 34.1 40.1 37.3 33.5 20.0 697.0 52.98 1.79 232.2 33.3 3.67
8:44 28.2 37.6 34.0 39.5 37.0 33.6 20.1 698.0 54.48 1.81 238.7 34.2 3.70
8:45 28.3 37.6 34.2 39.7 37.3 33.7 20.2 700.9 54.45 1.79 237.9 33.9 3.64




Time Twall Tcol,1 TcoI,Z Tcol,3 Tcol,4 Tnut Tamb GT,CO| Flow Rate Pel Q"u Effth EffPV
[h | [I°c] | [°c] | I°c1 | [°c1 | [°c1 | [°c] | [°C] | Wim]| [m*hm?] | (W] [Wim®] % | %
8:46 28.4 371 34.1 39.7 37.0 33.6 20.2 702.8 54.31 1.82 2341 33.3 3.70
8:47 28.6 36.9 33.7 38.8 36.2 33.5 19.9 704.5 54.62 1.83 239.1 33.9 3.71
8:48 28.6 36.5 33.3 38.4 36.0 33.2 19.7 706.3 55.22 1.83 241.3 34.2 3.70
8:49 28.7 36.4 33.6 39.0 36.4 33.2 19.7 708.3 55.49 1.83 241.6 34.1 3.69
8:50 28.7 35.7 33.0 38.5 35.9 32.9 19.5 709.4 55.31 1.84 240.6 33.9 3.71
8:51 28.7 36.4 33.2 38.5 36.1 33.1 19.5 711.6 54.80 1.83 241.2 33.9 3.68
8:52 28.9 371 34.0 39.8 37.1 33.5 19.9 714.7 54.70 1.80 241.5 33.8 3.60
8:53 29.1 37.8 34.5 40.2 37.4 34.1 20.0 717.1 54.08 1.80 245.7 34.3 3.58
8:54 29.4 38.0 34.7 40.3 37.6 34.4 20.4 717.3 54.80 1.80 247.2 34.5 3.58
8:55 29.6 38.0 34.8 40.4 37.7 345 20.7 720.5 55.17 1.80 245.2 34.0 3.57
8:56 29.7 38.3 34.7 40.5 37.9 34.7 20.7 720.8 54.97 1.83 247 .4 34.3 3.63
8:57 29.8 38.4 34.7 40.2 37.8 34.7 20.4 721.6 5473 1.82 251.6 34.9 3.60
8:58 29.7 38.7 35.0 40.6 38.2 34.8 20.4 722.4 54.65 1.80 252.0 34.9 3.56
8:59 29.8 38.7 35.0 40.9 38.1 34.9 20.7 7241 54.89 1.80 249.9 34.5 3.54
9:00 29.9 38.1 34.4 40.0 37.1 34.6 20.6 724.7 56.39 1.82 255.2 35.2 3.58
9:01 29.9 37.6 34.2 39.1 36.8 34.3 20.3 723.7 55.99 1.83 253.6 35.0 3.60
9:02 30.0 37.3 34.1 38.9 36.6 34.1 20.1 725.8 55.98 1.82 253.5 34.9 3.58
9:03 30.0 37.7 34.3 39.4 37.0 34.3 20.1 727.7 55.01 1.81 251.8 34.6 3.54
9:04 30.1 38.4 35.0 40.7 37.9 34.7 20.6 729.0 55.13 1.80 248.8 34.1 3.53
9:05 30.2 38.3 35.0 40.8 38.0 34.8 21.1 730.5 55.22 1.80 2429 33.3 3.52
9:06 30.3 38.6 34.9 40.8 38.0 35.0 21.1 731.5 55.18 1.81 245.9 33.6 3.53
9:07 30.5 38.6 349 40.6 37.9 35.0 21.2 732.3 54.66 1.81 243.8 33.3 3.53
9:08 30.6 39.1 35.4 41.2 38.5 35.3 21.3 733.0 54.51 1.79 245.7 33.5 3.48
9:09 30.8 39.2 35.5 41.3 38.6 35.5 21.3 733.3 55.13 1.78 250.6 34.2 3.47
9:10 30.9 39.0 35.6 41.4 38.6 35.5 21.2 733.3 55.17 1.80 252.7 34.5 3.50
9:11 31.0 39.2 35.7 41.2 38.7 35.5 21.1 733.9 54 .81 1.78 254.0 34.6 3.46
9:12 31.1 39.1 35.7 41.8 38.7 35.6 21.3 733.8 55.53 1.80 255.1 34.8 3.49
9:13 31.2 39.1 35.5 41.4 38.3 35.6 21.3 733.8 55.22 1.81 253.8 34.6 3.52
9:14 31.2 39.0 35.4 41.6 38.5 35.5 21.1 733.8 55.58 1.80 256.9 35.0 3.49
9:15 31.3 39.3 35.6 41.3 38.6 35.7 21.1 733.1 55.14 1.79 257.9 35.2 3.49
9:16 31.4 39.3 35.7 40.9 38.5 35.7 21.4 733.0 54.87 1.79 252.9 34.5 3.49
9:17 31.5 39.5 35.9 41.3 38.6 35.9 21.5 731.5 54.76 1.78 253.2 34.6 3.48
9:18 31.7 39.8 36.1 41.6 39.1 36.1 21.4 732.5 54.46 1.80 256.1 35.0 3.50
9:19 31.8 40.0 36.4 42.0 39.3 36.2 21.7 732.7 54.50 1.77 254 1 34.7 3.44
9:20 31.8 39.2 35.4 40.3 37.8 35.9 21.3 732.5 56.63 1.81 264.2 36.1 3.53
9:21 31.8 38.9 35.6 40.2 38.1 35.6 21.4 732.6 55.24 1.80 251.9 34.4 3.50
9:22 31.9 38.9 35.7 40.7 38.5 35.8 21.4 732.8 55.00 1.79 252.5 34.5 3.49
9:23 32.0 39.9 36.4 42.0 39.3 36.2 21.7 733.3 54.83 1.77 254.8 34.7 3.44
9:24 32.0 38.9 35.6 41.7 38.7 36.0 21.7 732.4 56.13 1.80 258.2 35.3 3.50
9:25 32.1 39.2 35.7 41.8 38.9 35.9 21.9 732.2 55.25 1.78 248.4 33.9 3.47
9:26 32.2 39.8 36.1 41.7 38.8 36.3 22.0 731.6 54.91 1.79 250.8 34.3 3.48
9:27 32.3 39.2 35.8 41.1 38.2 36.1 21.8 729.7 56.29 1.79 257.3 35.3 3.51
9:28 32.2 38.5 35.4 40.7 38.2 35.7 21.8 729.1 55.61 1.79 247.8 34.0 3.50
9:29 32.4 39.3 35.9 41.1 38.6 36.0 21.9 729.5 54.74 1.78 247.8 34.0 3.48
9:30 32.4 38.5 35.3 40.7 38.0 35.8 21.4 728.4 56.88 1.82 262.5 36.0 3.57
9:31 32.4 38.4 35.5 41.3 38.5 35.6 21.8 728.9 56.72 1.79 250.3 34.3 3.50
9:32 32.5 39.3 35.9 41.7 38.8 36.1 22.3 728.6 55.53 1.80 245.4 33.7 3.53
9:33 32.5 38.3 35.4 41.3 38.1 35.8 21.8 727.3 56.46 1.81 252.4 34.7 3.55
9:34 32.5 38.3 35.7 41.7 38.5 35.7 21.7 727.2 55.65 1.79 249.5 34.3 3.50
9:35 32.5 38.6 35.9 421 38.6 35.9 219 726.4 56.66 1.79 253.7 34.9 3.51
9:36 32.5 38.7 35.8 41.8 38.5 35.9 22.1 726.2 56.03 1.78 246.6 34.0 3.49
9:37 32.6 38.9 35.5 40.9 38.1 35.9 22.0 725.2 56.11 1.82 249.7 34.4 3.58
9:38 32.7 39.1 35.7 41.2 38.7 36.0 21.9 724.3 55.44 1.79 249.3 34.4 3.52
9:39 32.8 39.7 36.3 42.1 39.5 36.3 22.3 723.8 54.59 1.77 2447 33.8 3.48
9:40 32.9 39.7 36.3 425 39.4 36.5 22.7 723.6 55.93 1.76 246.7 34.1 3.47
9:41 32.9 39.6 36.2 42.3 39.2 36.5 225 722.4 55.08 1.77 246.7 34.1 3.49
9:42 33.0 39.2 35.6 41.6 38.8 36.3 22.2 721.9 56.17 1.78 254.3 35.2 3.52
9:43 33.0 39.4 35.9 41.9 39.1 36.4 22.3 721.0 55.67 1.77 250.3 34.7 3.51
9:44 33.1 40.3 36.7 42.7 39.8 36.8 22.8 720.7 53.72 1.75 240.2 33.3 3.46
9:45 33.2 40.5 36.9 42.5 39.6 37.0 23.0 719.8 54.08 1.76 2417 33.6 3.49
9:46 33.2 39.5 36.2 41.8 38.7 36.5 23.0 718.6 55.84 1.77 240.8 33.5 3.51
9:47 33.3 39.7 36.4 42.2 39.2 36.5 23.2 717.7 54 .61 1.77 232.7 32.4 3.51
9:48 33.4 40.5 37.0 429 39.9 37.0 23.4 717.3 54.23 1.74 234.7 32.7 3.46
9:49 33.5 41.2 37.4 43.9 40.3 37.4 23.9 716.1 53.55 1.73 230.0 32.1 3.46
9:50 33.6 41.0 37.1 43.7 39.9 37.4 241 714.5 54.94 1.74 233.9 32.7 3.47
9:51 33.6 40.6 36.9 43.3 39.8 37.2 23.8 714.0 54.52 1.74 232.8 32.6 3.48
9:52 33.6 39.5 36.4 42.6 38.9 36.9 23.1 711.7 55.69 1.80 2447 34.4 3.61

191




Time Twall Tcol,1 Tcol,z Tcol,3 TcoI,A Tout Tamb GT,coI Flow Rate Pel Q“u Effth EffPV
] | [°Cl | [’C1| [°C] | [°C] | [°C] | [°C] | [°C] | [W/m?]| [m*/hm®] | (W] [[Wim?*] % %
9:53 33.5 38.6 36.0 421 38.6 36.3 225 710.9 55.96 1.78 | 2459 | 346 3.57
9:54 33.5 38.7 35.9 41.7 38.7 36.2 22,5 7101 54.75 1.77 | 241.0 | 339 3.55
9:55 33.6 394 36.5 423 39.3 | 36.5 | 23.1 708.8 53.59 1.77 | 2295 | 324 3.55
9:56 33.7 39.7 36.8 42.4 39.7 36.7 23.5 708.5 53.70 1.75 | 228.1 32.2 3.52
9:57 33.8 40.6 37.2 42.7 40.0 37.2 23.7 707.3 53.39 1.74 | 229.2 | 324 3.50
9:58 33.9 404 36.9 42.2 39.4 37.2 234 705.4 54.48 1.77 | 239.7 | 34.0 3.58
9:59 33.9 401 36.7 41.9 39.1 37.0 234 703.2 54.68 1.76 | 237.6 | 33.8 3.56

10:00 33.9 40.0 36.7 42.4 39.4 37.0 23.6 701.0 54.32 1.75 | 231.9 | 33.1 3.55
10:01 34.1 40.9 37.5 43.3 402 | 375 | 23.8 700.5 53.34 1.73 | 2329 | 333 3.562
10:02 34.2 40.7 371 42.5 39.4 375 23.7 699.2 54.65 1.73 | 2402 | 343 3.53
10:03 34.2 40.6 37.3 42.6 39.8 375 23.9 698.0 53.99 1.73 | 2331 334 3.54
10:04 34.3 40.5 371 42.0 39.3 374 23.8 695.3 54.39 1.74 | 235.9 | 33.9 3.58
10:05 34.2 39.9 36.7 42.1 39.0 371 23.8 694.5 54.86 1.75 | 233.1 33.6 3.58
10:06 34.3 40.0 36.7 42.2 39.2 371 23.9 692.8 54.22 1.75 | 228.7 | 33.0 3.60
10:07 34.3 40.5 37.1 42.5 39.4 374 24.0 692.2 54.11 1.74 | 230.0 | 33.2 3.59
10:08 34.3 40.2 36.9 42.6 39.1 372 | 242 690.7 55.00 1.74 | 228.5 | 331 3.59
10:09 344 40.4 371 43.3 39.8 37.3 24.4 689.8 54.09 1.74 | 222.7 | 323 3.60
10:10 34.5 40.7 37.2 43.0 39.7 37.6 243 688.8 53.89 1.73 | 228.6 | 33.2 3.59
10:11 34.5 39.6 36.6 42.2 39.1 37.2 23.8 687.5 56.12 1.76 | 239.5 | 34.8 3.64
10:12 344 39.5 36.8 43.0 39.5 37.0 23.9 686.6 54.95 1.74 | 2294 | 334 3.62
10:13 344 39.5 37.0 43.1 39.6 36.9 24.0 685.5 54.09 1.76 | 222.0 | 324 3.65
10:14 34.3 38.8 36.5 42.6 39.1 36.7 | 234 683.8 54.89 1.78 | 2327 | 34.0 3.72
10:15 34.3 37.9 35.8 41.6 38.1 36.3 | 2341 681.5 55.41 1.80 | 234.8 | 345 3.77
10:16 341 36.7 34.7 40.3 37.2 355 22.5 678.8 55.85 1.81 2339 | 345 3.81
10:17 34.0 36.5 34.6 40.3 37.3 35.2 22.6 677.3 54.94 1.81 221.8 | 327 3.81
10:18 33.9 36.3 34.5 40.1 371 35.0 22.6 676.0 55.54 1.82 | 222.0 | 32.8 3.83
10:19 33.7 35.8 341 39.6 36.6 34.7 22.3 674.5 55.34 1.86 | 219.5 | 325 3.93
10:20 33.6 34.8 33.3 38.6 35.8 | 341 221 672.8 55.14 1.88 | 2134 | 317 3.98
10:21 33.4 34.6 33.2 38.4 357 | 339 [ 218 671.5 54.39 1.88 | 2116 | 315 3.98
10:22 334 36.0 33.8 39.5 36.9 34.3 22.6 670.6 53.73 1.81 203.9 | 304 3.86
10:23 33.6 37.8 35.2 40.9 38.2 35.3 23.3 669.6 52.57 1.77 | 202.9 | 30.3 3.78
10:24 33.8 39.2 36.1 41.7 38.8 36.2 24.2 668.4 52.37 1.72 | 200.6 | 30.0 3.67
10:25 34.0 39.8 36.5 42.1 39.1 36.7 24.9 666.9 53.24 1.74 | 2004 | 30.0 3.73
10:26 34.2 40.4 37.0 42.6 39.5 371 251 665.3 53.16 1.72 | 204.6 | 30.7 3.68
10:27 34.3 40.7 37.3 434 401 374 | 256 664.3 54.00 1.69 | 204.1 | 307 3.63
10:28 345 40.7 371 43.5 40.0 37.5 25.7 662.7 55.19 172 | 2075 | 313 3.70
10:29 344 39.2 36.1 41.9 38.5 36.8 24.6 661.0 56.05 1.77 | 218.2 | 33.0 3.83
10:30 344 391 36.0 42.3 38.2 36.6 24.9 660.4 54.83 1.73 | 205.2 | 31.1 3.73
10:31 34.3 38.4 35.8 41.7 38.2 36.3 24.7 657.3 55.57 1.76 | 206.8 | 31.5 3.83
10:32 34.3 39.0 36.0 41.7 38.5 36.5 24.9 653.8 54.67 1.73 | 2029 | 31.0 3.77
10:33 34.4 39.3 36.2 417 38.6 | 36.6 [ 25.0 651.3 54.17 1.73 | 200.8 | 30.8 3.79
10:34 34.5 39.8 37.0 421 39.2 | 37.0 | 254 649.8 53.72 1.71 199.2 | 30.7 3.76
10:35 34.5 39.7 36.5 41.5 38.6 37.0 25.3 647.5 54.57 1.73 | 2048 | 31.6 3.80
10:36 34.5 39.3 36.2 41.1 38.3 36.8 25.2 645.1 55.01 1.75 | 205.0 | 31.8 3.86
10:37 34.5 394 36.3 41.7 38.1 36.8 25.3 643.1 54.64 1.71 2005 | 31.2 3.78
10:38 34.6 39.7 36.5 41.7 38.5 37.0 25.7 641.0 54.79 1.71 197.0 [ 30.7 3.81
10:39 34.6 39.7 36.5 41.4 38.4 37.0 25.7 638.3 54.18 1.73 1954 [ 30.6 3.87
10:40 34.5 38.8 35.8 40.2 374 | 365 [ 252 635.2 54.08 1.75 | 196.1 | 30.9 3.92
10:41 34.5 38.7 35.8 40.3 376 | 364 [ 250 633.0 53.49 1.75 | 194.7 | 30.8 3.93
10:42 34.5 38.5 35.7 40.2 37.5 36.3 24.9 630.6 54.05 1.75 196.5 [ 31.2 3.96
10:43 34.5 38.5 35.8 40.0 37.6 36.2 25.0 629.0 53.22 1.74 1914 | 304 3.94
10:44 34.5 38.7 36.0 40.1 38.0 36.4 25.0 627.0 53.24 1.73 1929 [ 30.8 3.95
10:45 34.6 39.1 36.4 40.7 38.4 36.6 25.3 625.1 53.09 1.70 192.1 30.7 3.89
10:46 34.5 38.9 36.2 40.7 38.2 | 36.6 | 25.1 622.5 53.86 1.71 197.0 | 316 3.92
10:47 34.6 39.2 36.2 40.9 38.3 | 36.6 [ 253 620.3 53.19 172 | 193.1 | 3141 3.94
10:48 34.7 39.5 36.5 41.8 38.5 36.8 25.6 618.9 53.14 1.68 190.0 [ 30.7 3.88
10:49 34.7 39.6 36.6 41.8 38.6 36.9 25.9 616.7 54.70 1.69 1914 [ 31.0 3.91
10:50 34.7 391 36.1 41.2 37.8 36.7 25.9 614.7 54.77 1.70 188.5 [ 30.7 3.93
10:51 34.7 38.7 35.6 40.5 37.6 36.5 25.8 612.1 55.76 1.71 190.6 | 311 3.99
10:52 34.7 38.8 35.9 40.8 38.0 36.5 26.0 610.3 54.55 1.69 182.1 [ 29.8 3.94
10:53 34.7 39.0 36.1 41.2 379 | 36.6 | 264 608.3 54.97 170 | 179.8 | 29.6 3.98
10:54 34.6 37.9 354 40.2 37.5 36.0 25.7 605.3 56.64 1.71 186.9 [ 30.9 4.03
10:55 344 36.6 34.7 39.6 36.6 354 24.9 603.3 56.24 1.75 189.8 [ 31.5 4.13
10:56 34.2 354 33.8 38.5 35.8 34.7 241 601.2 55.96 1.74 190.1 31.6 4.14
10:57 34.2 36.8 34.5 39.5 36.7 351 24.8 598.4 55.02 1.73 182.2 | 304 4.12
10:58 34.2 36.9 34.6 39.9 36.6 35.2 24.8 595.9 54.43 1.73 182.1 30.6 4.14
10:59 34.2 37.3 34.7 40.1 36.7 | 354 [ 248 593.3 54.59 170 | 1859 | 313 4.09
11:00 34.3 38.3 35.4 40.3 36.8 | 359 [ 252 590.0 54.87 169 | 1884 | 319 4.08
11:01 344 39.0 35.7 40.4 38.0 36.3 25.4 587.2 54.40 1.69 190.6 | 32.5 4.10
11:02 34.5 38.9 35.7 39.9 37.2 36.4 25.7 584.4 54.74 1.66 188.2 | 32.2 4.06
11:03 34.5 38.7 35.7 39.5 37.3 36.3 25.9 581.6 56.03 1.67 186.9 | 321 4.10




Time Twall Tcol,1 TcoI,Z Tcol,3 Tcol,4 Tout Tamb GT,coI Flow Rate Pel Q"u Eff(h EffPV
[h | [°c] | [°c] | I°c1 | [°c1 | °cl | [°c1 | [°C] [ Wim®]| [m*hm®] | W] [Wim®] % | %
12:00 32.9 33.9 32.3 36.7 34.0 33.0 27.3 403.0 54.58 1.46 100.2 24.9 5.17
12:01 32.9 34.0 32.2 36.7 33.8 33.0 27.8 399.4 55.17 1.46 93.3 23.4 5.22
12:02 32.8 33.7 32.0 36.4 33.7 32.9 27.7 396.3 55.08 1.47 92.5 23.3 5.28
12:03 32.7 33.1 31.3 35.7 32.8 325 27.0 392.1 55.83 1.46 99.6 25.4 5.32
12:04 32.5 32.6 30.7 35.0 32.3 32.1 26.5 387.6 55.47 1.45 100.5 25.9 5.34
12:05 32.5 33.4 31.1 35.4 32.9 32.4 26.5 383.7 55.16 1.43 105.8 27.6 5.33
12:06 32.5 33.9 31.6 35.9 33.2 32.6 26.9 379.9 54.50 1.41 100.9 26.6 5.28
12:07 32.5 34.0 31.5 35.7 33.1 32.8 26.9 376.0 54.89 1.40 104.5 27.8 5.30
12:08 32.5 33.9 31.5 35.9 33.2 32.7 27.3 373.0 55.05 1.39 96.1 25.8 5.30
12:09 32.5 33.5 31.4 35.6 32.9 32.6 27.4 369.5 55.09 1.39 91.6 24.8 5.36
12:10 32.4 33.1 31.1 35.6 33.0 32.3 27.3 366.8 55.38 1.37 88.5 24 .1 5.33
12:11 32.5 341 31.9 36.1 33.5 32.7 28.1 364.0 53.83 1.36 80.9 22.2 5.31
12:12 32.5 34.0 31.9 35.7 33.2 32.8 28.7 360.4 55.24 1.35 73.4 20.4 5.32
12:13 32.4 33.5 31.3 35.3 32.6 32.5 28.6 356.4 55.15 1.35 71.0 19.9 5.40
12:14 32.2 32.6 30.7 34.8 32.1 32.0 27.9 352.4 55.65 1.35 73.6 20.9 5.46
12:15 32.1 32.2 30.4 347 32.0 31.7 27.3 349.2 55.80 1.34 78.5 22.5 5.48
12:16 32.0 32.1 30.3 34.6 31.9 31.6 27.3 342.5 54.74 1.32 76.2 22.2 5.50
12:17 32.0 32.8 30.7 35.0 32.3 31.8 27.7 342.7 54.84 1.32 74.0 21.6 5.51
12:18 32.0 33.1 30.9 35.3 32.7 32.0 28.4 339.8 54.39 1.31 64.0 18.8 5.49
12:19 32.1 33.4 31.2 35.2 32.8 32.2 28.6 335.6 54.37 1.30 63.8 19.0 5.51
12:20 32.0 33.2 30.9 34.8 32.3 32.1 27.8 333.0 55.03 1.28 76.1 229 5.46
12:21 32.0 32.7 30.5 34.6 31.9 31.9 27.6 311.7 54.73 1.26 76.3 24.5 5.75
12:22 31.8 31.7 29.9 33.7 31.1 31.3 26.8 313.8 56.14 1.27 81.4 25.9 5.76
12:23 31.6 31.1 29.5 33.3 30.8 30.9 26.4 319.9 55.05 1.26 80.4 25.1 5.61
12:24 31.5 31.2 29.5 33.4 31.0 30.8 26.6 317.6 54.73 1.25 73.8 23.2 5.61
12:25 31.5 31.6 29.6 33.7 31.2 30.9 27.2 313.4 54.62 1.23 66.1 21.1 5.59
12:26 31.5 31.8 29.6 34.0 31.4 31.0 27.5 307.2 54.54 1.21 61.3 19.9 5.64
12:27 31.5 32.2 30.1 34.3 31.8 31.2 28.3 300.5 54.54 1.19 52.0 17.3 5.63
12:28 31.5 32.8 30.6 34.6 32.2 31.6 29.0 293.8 54.26 1.17 46.6 15.9 5.67
12:29 31.6 33.0 30.8 34.7 32.2 31.8 29.1 284.0 54.60 1.12 48.2 17.0 5.65
12:30 31.6 32.9 30.9 34.4 32.2 31.8 29.4 293.7 54.46 1.16 43.1 14.7 5.62
12:31 31.6 32.7 30.6 34.4 31.9 31.7 29.8 289.8 54.83 1.14 34.4 11.9 5.60
12:32 31.5 32.4 30.3 34.2 31.5 31.5 29.4 285.3 55.24 1.13 38.5 13.5 5.66
12:33 31.4 31.4 29.5 33.3 30.6 31.0 28.8 280.5 55.86 1.13 41.2 14.7 5.76
12:34 31.2 30.8 29.0 32.6 30.1 30.5 27.5 277.0 55.97 1.11 55.3 20.0 5.71
12:35 31.1 30.9 29.1 32.6 30.2 30.4 27.2 273.9 55.23 1.11 57.9 21.1 5.78
12:36 31.0 30.8 28.9 325 30.1 30.4 27.4 249.4 55.61 1.03 54.5 21.9 5.88
12:37 30.9 30.0 28.3 31.6 29.0 30.0 26.8 239.0 55.97 1.01 58.0 24.3 6.05
12:38 30.7 29.4 27.9 30.7 28.4 29.5 26.3 243.0 55.48 9.97 57.6 23.7 58.54
12:39 30.5 28.9 27.5 30.2 28.3 29.1 26.1 251.0 55.46 1.06 53.6 21.4 6.02
12:40 30.3 28.7 27.4 30.1 28.3 28.9 26.0 251.5 55.00 1.05 52.6 20.9 5.97
12:41 30.2 28.3 27.0 29.8 27.9 28.7 25.8 251.8 55.40 1.07 53.1 21.1 6.03
12:42 30.0 28.0 26.9 29.6 27.9 28.4 25.7 248.6 55.23 1.05 48.9 19.7 6.03
12:43 30.0 28.3 27.2 29.9 28.2 28.5 26.0 244.9 55.08 1.02 45.6 18.6 5.96
12:44 29.9 28.7 27.3 30.2 28.3 28.6 26.2 241.6 54.91 1.01 43.5 18.0 5.96
12:45 29.9 28.9 27.3 30.4 28.3 28.7 26.5 238.0 54.50 0.99 39.3 16.5 5.94
12:46 29.8 28.7 27.2 30.2 28.0 28.6 26.1 233.9 54.48 0.98 46.0 19.7 5.99
12:47 29.7 28.9 27.5 30.5 28.4 28.7 26.5 230.9 54.03 9.66 39.2 17.0 59.69
12:48 29.8 29.3 27.8 30.9 28.7 28.9 27.3 227.5 53.89 0.95 28.3 12.4 5.94
12:49 29.7 29.5 27.6 30.7 28.6 29.0 26.9 220.5 53.77 0.92 37.4 17.0 5.98
12:50 29.7 29.6 27.7 30.9 28.7 29.1 27.3 219.2 54.17 0.92 32.2 14.7 5.98
12:51 29.8 29.9 28.1 314 29.3 29.3 28.1 216.7 53.42 0.92 20.0 9.2 6.04
12:52 29.8 30.1 28.2 31.5 29.4 29.4 28.6 212.7 53.37 0.89 14.6 6.9 5.97
12:53 29.8 30.2 28.5 314 29.5 29.6 28.9 209.9 54.18 0.88 11.8 5.6 6.01
12:54 29.9 30.1 28.4 31.2 29.4 29.6 28.8 206.1 53.61 0.88 14.2 6.9 6.10
12:55 29.7 29.4 27.8 30.6 28.7 29.2 28.5 202.4 54.45 8.67 12.0 59 61.07
12:56 29.6 29.1 27.5 30.5 28.4 28.9 28.4 199.0 54.90 0.86 8.8 4.4 6.19
12:57 29.5 28.8 27.2 30.2 28.1 28.6 28.3 195.5 54.08 0.85 5.9 3.0 6.23
12:58 29.5 29.1 27.6 30.4 28.4 28.8 28.8 189.3 54.31 0.84 0.0 0.0 6.29
12:59 29.4 28.6 271 29.8 27.8 28.5 28.2 179.2 54.61 0.80 57 3.2 6.39
13:00 29.3 27.9 26.6 29.0 27.2 28.2 271 178.1 55.12 0.79 18.3 10.3 6.35
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Appendix F

Uncertainty Analysis

F.1 Introduction

The uncertainty of a measured quantity v, u,, is due to both bias and precision
errors. The bias error, ep,s, refers to the accuracy and calibration error of the
instrument while the precision error, €p,ecision, i related to the repeatability of the

measurement.

[ME

_ 2 2
Uy = + (ebias + eprecision)

This experiment was performed outdoors and only a limited amount of time was
available to take measurements. Thus, it was not possible to get the same weather
conditions several times and repeat the measurements of the variables to evaluate
the precision error. Consequently, only the bias error was considered in the calcu-
lation of the uncertainty. The uncertainty for the bias error can be calculated using
the method developed by Kline and McClintock (1953) that states that if R is a

linear function of n independent normally distributed variables known as v;

R= R(?Jl, V2, U3, .’En)

the uncertainty of R, 6 R, is related to the uncertainties of each variable i, dv; with
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the following function, known as the second-power equation.

8_R§ 2_|_ 8_R5 2_|_ + a_R(S ’”
avl V1 81}2 (%) 8Un Un

This section presents a sample calculation of the uncertainty analysis on a set of

Sp = (F.1)

measured variables as well as their impact on the uncertainty of the calculated
quantities.

F.2 Measured Quantities

The measured quantities used in the sample calculation of the uncertainty analy-
sis are shown in Table F'.1.

Table F.1: Values of the measured variables used in the uncertainty analysis

Variable | Value | Variable Value
Towall 34.3°C | L 2.49 m

Tomb 19.2°C | W 1.05 m

Teor 1 40.2°C | Lpy 102.5 mm
Teor2 36.9°C | Wpy 17.1 mm
Tcol,3 42500 Pamb 101826 kPa
Teoia 39.3°C | Vv, 2.58 V

Tt 37.2°C | Vgr. 1.62V

Vey 1.037 V | Vgan 0.168 V

F.2.1 PV Cells Dimensions

The width and length of the PV cells bits were stated by the manufacturer to
have a tolerance of £1 mm. Thus, the uncertainty on the PV cells width (Wpy)
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and length (Lpy) are given as

5LPV 1 mm

= £t—=40.01 F.2
(SWPV . 1 mm .
T = T rmm = 000 (F.3)

F.2.2 Panel Dimensions

The width and length of the collector were measured with a measuring tape.
Taking the error on these measurements to be half of the smallest division of the

measuring tape, the uncertainties on the collector width and length correspond to

oL 0.0005 m

ow 0.0005 m
= 47— 4. F.
W 1.05 m 0-000 (F.5)

F.2.3 Barometric Pressure

The barometric pressure was taken from the measurements recorded at the
Waterloo Weather Station with a Setra 270 pressure transducer. The accuracy of
this instrument was £0.2 mb (Waterloo Weather Station, 2007) and the uncertainty

of the ambient pressure corresponds to

0 Pymp = 20 Pa

or

6Pamb . 20 Pa
P,... 101826 Pa

= 40.002 (F.6)

F.2.4 Voltage Measurements

The voltage across the PV module was measured with a Fluke 29 multimeter
with an accuracy of £0.3% while the voltage across the shunt resistance was read

from a Omega HHM26 multimeter. The accuracy of this meter in the range of
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2.5 V was stated to be £ (0.25% * Reading + 1 digit) and its resolution was 100

uV. With this information, the uncertainties on the voltage measurements can be

written as
%
™ — 40.003 (F.7)
VPV
§Vish +(0.0025 % 0.168 V + 0.0001V)
Vieh 0.168 V 0-003 (F-8)

F.2.5 Shunt Resistance

The shunt resistance had a value of 0.152 and an accuracy of +5%. Therefore,

its uncertainty is given as

6Rsh
Rsh

= +0.05 (F.9)

F.2.6 Irradiance on the East Wall

The total irradiance on the east wall, Gr .., Was obtained from the voltage
output of a Eppley pyranometer model 8-48 amplified by a USEA amplifier set to a
gain of 200. The voltage signal recorded by the data logger, Vg, ., was converted

in solar radiation units using the following relation.

VGT,col [V]
200 * 11.8 % 10-6[V/Wm 7]

GT,col =

By expressing the uncertainty on the irradiation measurement as the root-sum-

square combination of each individual error, the following can be written.

(5VPYR>2 + (6VAMP>2 + <5VGT,001>2 ’ (F.lO)
Veyr Vamp VGT,col

In Equation F.10, 6Vpy g, 6Vayp, and 6V, ., are the uncertainties of the pyra-

6GT,col
GT,col

nometer, amplifier and data logger, respectively. The pyranometer was linear to
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within £1%. Therefore 6Vpy f is given as

oVpyr

VPYR

— +0.01 (F.11)

From the data logger specifications, the accuracy of the voltage output is given as

Ver.g =T (0.0001 * Ve o +0.00002 % Range) (F.12)
The range selected for the irradiance measurement was -2.5 V to 2.5 V. Using

Equation F.12, the uncertainty of Vg,. , corresponds to

0.00002 x5 V
1.63 V

— ==+ (0.0001 + ) = 40.000161 (F.13)

The amplifier had an output offset voltage of +3 mV. Thus, its uncertainty is given

asS
Vanp _ 0003V

Vayp 163V

— 40.00185 (F.14)

Using the results of Equations F.11, F.13 and F.14 into Equation F.10, the total
uncertainty on the irradiation measurement corresponds to

5GT,COZ
GYT,col

1
2

= % [(0.01)* + (0.00185)* + (0.000161)*]* = £0.01 (F.15)

F.2.7 Standard Volumetric Flowrate Measurement

The standard air volumetric flowrate in the duct, Vstd, was measured with the
Sierra 620S insertion mass flowmeter and transmitted as a DC voltage signal to the
Personal Daq/56. The volumetric flowrate at standard conditions was calculated

from the data logger voltage output, V;,, with the following relation

V,, [V] * 155 SCFM

Vstd - 5V

The uncertainty on the volumetric flowrate can be expressed as the root-sum-square
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combination of each individual error. In this case, the voltage signal of the flowmeter

was the same than the voltage output of the data logger. Therefore, 8V grq is given

Vs 2+ oV, 2
v, v,

where 6V}, and 6V}, are the uncertainties of the flowmeter and the data logger,

as
1
2

é“/std o

Vstd

+

(F.16)

respectively. From the calibration certificate, the accuracy of the flowmeter corre-

sponds to

6Vin = £ (0.01  Full Scale Voltage Output + 0.005 * V;,) (F.17)

The full scale voltage of the flowmeter was 5 V according to the flowmeter calibra-
tion certificate. Therefore, from Equation F.17, the uncertainty on the flowmeter

measurement can be written as

0.01 % 5+ 0.005 * V. . . .
Ven _ v oy (001%5 400055258 _ oo
v, v, 2.58
(F.18)

From the data logger specifications, the accuracy of the voltage output is given by

6V, =« (0.0001  V;, 4 0.00002 * Range) (F.19)

The range selected for the irradiance measurement was -5 V to 5 V. Using Equation

F.19, the uncertainty of V;, can be expressed as

0.00002 « 10 V
2.8V

(5VV—:E 0.0001 +
V. ‘

) = 40.00018 (F.20)
\4

Using the results of Equations F.18 and F.20 into Equation F.16, the total uncer-

tainty on the volumetric flowrate measurement corresponds to

5vstd

Vstd

= £+ [(0.024)% + (0.00018)*]* = £0.024 (F.21)

199



F.2.8 Temperature Measurements

The temperature measurements were done using Omega type T thermocouples
with an accuracy of £1°C. For the data logger, the cold junction calibration error
and the accuracy for the measurement of type T thermocouples were stated to
be £0.5°C and +0.4°C, respectively. Therefore, the uncertainty of the measured

temperatures are given as

1
6T = £[140.5°+0.4%]2 = +1.2°C
6Twall == 5Tamb == 6Tout == 6Tcol,1 = +1.2°C (F22)
é‘,-Z—'col,Q = 6Tcol,3 = 6Tcol,4 = +1.2°C

F.3 Calculated Quantities

Table F.2 presents the values of the variables calculated with the measured

quantities listed in the previous section.

Table F.2: Values of the calculated variables used in the uncertainty analysis

Variable | Value | Variable Value
Apy 0.07m? | p 1.14 kg/m?
Acolproj | 2:61 m? | Vo 83.8 ACFM
P, 1L74W |V 54.55 m? /h-m?
Trise 18.1°C | m 162.31 kg/h
Trisep 19.4 °C Q; 313.6 W/m?
Npy 3.6 % | ny 45.7%

1 1.68 A

F.3.1 PV Cells Area
The total area of the PV cells was calculated with the following equation.
Apy =40 x Wpy Lpy
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Using Equation F.1, the uncertainty on the PV cells area can be expressed as

dApy ® (9Apy i
( oy 5va) + ( Lo 6LPV> (F.23)

0Apy =+

Simplifying Equation F.23, the following relation is obtained.

1
SWey\?  (6Lpy\?|®
( PV> + ( PV) (F.24)
Wpy Lpy
Substituting Equations F.2 and F.3 into Equation F.24, the uncertainty on the PV

cells area can be calculated.

0Apy
Apy

O Apy
=4
Apy

N

= %+ [(0.06)* + (0.01)?]

— 40.06 (F.25)

F.3.2 Collector Projected Area

The collector projected area was obtained with the following equation.

Acol,proj = WL

The uncertainty on the calculation of the projected area can consequently be ex-

pressed as

6Acol,p7“oj ==+

8Acol,p7’oj 2 aAAcol,p?“oj ik
( i 5W> + 31 oL (F.26)

Simplifying Equation F.26, a new expression for 6 A.q; pro; can be obtained.

@] e

Using the results of Equations F.4 and F.5 into Equation F.27, 6 Ay pro; can be

6Acol,proj -4

Acol,proj
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calculated. sA 1
2colprol — 4 [(0.0002)* + (0.0005)2]F = +0.0005 (F.28)

Acol,proj

F.3.3 Maximum Electrical Power

From Ohms law, the current in the circuit is given as

VRrsh
J—
Rsh

—1
= VRshRSh

Therefore, the uncertainty associated with the calculation of the current corre-

sponds to
1
ol ? ol 21"
ol =+ OVrs ——OR; F.29
<8VRsh R h) * <8Rsh h> ( )
Simplifying Equation F.29, the uncertainty on the current becomes
2 273
8T §Vien —0Ra\" |
= — 4 F.30
7 (VRsh)+(Rsh> (F-40)

Substituting the results from Equations F.8 and F.9 into Equation F.30, the un-

certainty on the current can be calculated.

ol 2 2
T = + [(0.003) + (—0.05) }

N[

= 40.05 (F.31)

From Ohms law, the electrical power generated by the PV cells is expressed as

P, = 1Vpy

Thus, the uncertainty on the maximum electrical power is
OP, > (0P, \*|®
oV o1 F.32
<avpv PV> - ( a1 (F.32)
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Re-arranging Equation F.32; the uncertainty on the power becomes

G D] e

Using the results from Equations F.7 and F.31, 6 P.; corresponds to

é‘Pel
P, el

==+

6Pel
Pel

[V

= %+ [(0.003)* + (0.05)*]* = £0.05 (F.34)

F.3.4 Air Temperature Rise

The air temperature rise is given as
Trise = Lout — Tamb

The uncertainty on T, can be obtained from

aTm’se 2 aTrise 2
T. T,
( aTout o out) + <8Tamb6 amb>

1
2

5T ise = + (F.35)

Re-arranging Equation F.35,

6Trise

=+
Trise

6Tout 2 _6Tamb i
F.
(Tfrise ) * ( Trise ) ( 36)

Replacing the known variables in Equation F.36, 67}, can be calculated.

8T ise 1.22C\? [-12°C\?
=+ +
Tise 18.1°C 18.1°C

1
2

= 0.094 (F.37)
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F.3.5 Upper Panel Temperature Rise

The upper panel temperature rise is given as
Trise,b - Tup,avg - Tamb

where T, 40q 18 the average temperature measured on the upper panel. The uncer-

tainty for T}.scp is given as

N|=

é‘,-Z—;"ise,b ==x

aTrise 2 aTm’se 2
( L 5Tup7m,g) + ( ’b(STamb> (F.38)

aT'up,cw g a7111711)

Simplifying Equation F.38,

6Trise,b

==
Trise,b

1

6Tup avg ? _6Tamb i
D,avg F.39
( Trise,b ) * ( Trise,b ( )

Replacing the variables of Equation F.39 with their respective values, the uncer-

tainty of 07}, corresponds to
Tyises _ | (12°C 2 =R 2
Trises 19.4°C 19.4°C

F.3.6 PV Cells Efficiency

(SIS

= £0.087

The PV cells efficiency is calculated with the following expression.

N
PV C;(T,col APV

Therefore, the uncertainty on the PV cells efficiency can be expressed as

on 2 on 2 an 2
PV PV P PV A
(8GT,COZ 5GT,col> + ( ap@l 6 el) + (aAPV 6 PV)

1
2
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Simplifying Equation F.40,

~8Gre\"  (6Pa\? [ —6Apv |’
(o) ~(E) + ()| o
G col Pe Apv
Substituting the results from Equations F.15, F.34 and F.25 into Equation F.41, the

uncertainty associated with the calculation of the PV cells efficiency corresponds

=

onpy
Npv

==+

to
o 1
TV, — 4 [(=0.01)? + (0.05) + (—0.06)%] 2
Npv

= +0.08

F.3.7 Air Density

The density of air is calculated with the following expression.

P, amb

p= RTout

Taking R to be a constant, the uncertainty on p is given as

1

5ot | (22 5p. )+ (2241, 5 (F.42)
P = ) Pamb amb aTout out .
Simplifying F.42,
6[) (6Pamb) ? < 6Tout ) 2|
—=x|(—=— ) + |- F.43
P Pamb Tout ( )
Using Equations F.6 and F.22, the uncertainty of p corresponds to
Sp 20\’ 12\?|?
— ==t || == - = +0.03 F.44
p [(101826) + ( 37.2) ( )
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F.3.8 Actual Volumetric Flowrate

The actual volumetric flowrate is obtained from the standard volumetric flowrate

with the relation

. . Pstd‘| [Tact ]
Vac - Vs * F.45
' td |iPact Tstd ( )

In the flowmeter calibration certificate, it is stated that P,y = 14.7 psia and Tyq =
530°R. It has been shown that taking the temperature of the air at the probe
insertion point to be equal to the air temperature measured at the collector outlet
is a valid assumption, therefore T, = T,,;. Taking the pressure in the duct to be

the same as the ambient pressure, Equation F.45 can be re-written as

: : Pstd ‘| |iTout‘|
Vac = Vs * =
! i [Pamb Tstd

and the uncertainty on the actual volumetric flowrate can be expressed as

. 2 . 2 . 2 %
5Vact ==+ (aVact 5Vstd> + <avact 6Pamb) + (avact 6T0ut> (F46)

avstd 8Pamb aT‘out

Simplifying Equation F.46, the uncertainty of V get corresponds to

: . 2 3
OV e 5V §Pums\”> [ 8Tout\’

Toct |2 4 ( ”) - (—t> (F.47)
Vact Vstd Pamb Tout
Substituting the results from Equations F.21, F.6 and F.22 into Equation F.47,

20 Pa \? 1.2°C \?
024)2 + [ ———
(0.024)" + (101826 Pa> + (37.2 oo)

1
2

= 4003  (FA8)

6Vact
Vact

==+
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F.3.9 Volumetric Flowrate per Unit Area
The volumetric flowrate per unit of collector projected area is calculated as

follows

0.028317 [m?/min] , 60 min 1
CFM hr Aol proj [mQ]

V = Vact [CFM] *

Thus, the uncertainty on 1% corresponds to

. 2 . 212
(SV =+ 8‘/ 6Vact + a—véAcol,proj (F49)
8Vact a14col,proj
Simplifying Equation F.49, the following is obtained.
1
5V Vo \* (8Acotpoi\2|
2t . act + ( col,prog) (F50)
V Vact Acol,proj

Using Equations F.48 and F.28 into Equation F.50, §V can be calculated.

% = + [(0.03) + (0.0005)?]

1
2

= +0.03

F.3.10 Mass Flowrate

The mass flowrate of the air in the duct is given as

. 3 . .
i = Vo [CFM] 0.028317 [m®/min] 60 min § [E]

CFM *Th

m3

The uncertainty on m can therefore be expressed as

or Pk
=+ || Vo | + (—mép) (F.51)
a‘/aci& ap
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Simplifying Equation F.51, ém corresponds to

| N e
OO Y L I (@) (F.52)
m Vact P

Using the results from Equations F.48 and F.44 into Equation F.52, the following

is obtained. 5
2 1 [(0.03) + (0.03)7]

m

(NI

= 40.04 (F.53)

F.3.11 Thermal Output

The thermal output is given as

o mcy (Tout - Tamb) o meTrise

Q. =

Acol,proj Acol,proj

Taking ¢, to be a constant and equal to 1005 J/kgK, the uncertainty of Qu can be

expressed as

1
. 2 27 2

. 2 .
0Q., . . 0Q, 0Q,
0Q, =+ L6 LT ise —— Aol proj F.54
Qu ( am m) * <8Trise > * <aAcol,proj Lproj ( )
Simplifying Equation F.54, 5Qu corresponds to

om 2 5Trise 2 _61400[ proj %
. O colproj F.55
< m ) " < Trise ) " < ACOLPTOJ' ) ( )

Using Equations F.53 and F.37 into Equation F.55, the uncertainty of Qu can be

208



calculated.

69; = £ [(0.04)* + (0.094)* + (—0.0005)2}% = +0.1 (F.56)
Qu
F.3.12 Thermal Efficiency
The collector thermal efficiency is given as
mcp (Towt — Tamp) Q. Qu

Nen = = =
CTYT,colAAcol ,proj G(T,col Acol ,proj GT,col

Therefore, the uncertainty of 7,; corresponds to

. 2 2 %
Ny, =+ %562’; + (%mml) (F.57)
aQ; aC7YT,col

Equation F.57 can be simplified into

2 ) 1
Oy | [SQu) (—_6GT’“’Z) (F.58)
Ntn Q;; G(T,col

Substituting Equations F.56, F.15 and F.28 into Equation F.58, the uncertainty on
the thermal efficiency can be obtained.

NI

% — 4+ [(0.1)® + (=0.01)%]* = £0.1
th
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Appendix G

Radiation Converter Component
Fortran Code

SUBROUTINE TYPE202 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*)
C**********************************************************************
C Object: 202
C Simulation Studio Model: Type202
C
C TRNSYS Subroutine, RADIATION CONVERTER
C
C This subroutine 'untilts' radiation data measured on the
C tilted surface to the horizontal surface value
C needed for input into the TRNSY'S radiation processor.

C
C Original component developed by Ann L. Barrett, 1987
C Modified by Veronique Delisle, 2007

C skksk

C *** Model Parameters

C sksksk

C n=Day number for beginning simulation - [0;366]
C Latitude - [-Inf;+Inf]

C Collector Slope - [-Inf;+Inf]

C Ground reflectance - [0;1]

C Time shift - [-Inf;+Inf]

C Surface azimuth angle - [-Inf;+Inf]

C sk

C *** Model Inputs

C sk

C Total radiation on the tilted surface - [-Inf;+Inf]
C Civil time - [-Inf;+Inf]

C Advanced Time? Yes=1, No=0

C sk

C *** Model Outputs

C sk

C Horizontal surface total radiation - [-Inf;+Inf]
C Horizontal surface diffuse radiation - [-Inf;+Inf]

C Horizontal surface beam radiation - [-Inf;+Inf]

C Zenith angle - [-Inf;+Inf]
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Tilted beam radiation - [-Inf;+Inf]

Tilted diffuse radiation - [-Inf;+Inf]

Tilted Ground reflected radiation - [-Inf;+Inf]

Solar incidence angle on the tilted surface - [-Inf;+Inf]
Solar azimuth angle - [-Inf;+Inf]

[oNoNoNoNe!

C TRNSYS acess functions (allow to acess TIME etc.)

USE TrnsysConstants

USE TrnsysFunctions
C**********************************************************************
C REQUIRED BY THE MULTI-DLL VERSION OF TRNSYS

'DECSATTRIBUTES DLLEXPORT :: TYPE202 !SET THE CORRECT TYPE NUMBER HERE
C**********************************************************************
C TRNSYS DECLARATIONS

IMPLICIT NONE

DOUBLE PRECISION XIN,0UT,TIME,PAR,STORED,T,DTDT
INTEGER*4 INFO(15)
INTEGER*4 NP,N,NOUT,ND
INTEGER*4 NPAR,NIN,NDER
INTEGER*4 TUNIT,ITYPE,ICNTRL,NSTORED,LUW
CHARACTER*3 OCHECK
CHARACTER*3 YCHECK
C**********************************************************************
C USER DECLARATIONS - SET THE MAXIMUM NUMBER OF PARAMETERS C  (NP), INPUTS (NI),
C OUTPUTS (NOUT), AND DERIVATIVES (ND) THAT MAY BE SUPPLIED FOR C  THIS TYPE
PARAMETER (NP=6,NI=3 NOUT=9,ND=0,NSTORED=0)
C**********************************************************************
C REQUIRED TRNSYS DIMENSIONS
DIMENSION XIN(NI),0UT(NOUT),PAR(NP),Y CHECK(NI),OCHECK(NOUT),
1 STORED(NSTORED),T(ND),DTDT(ND)
INTEGER NITEMS

Crssksrsssksoksofoksdodkdokokdokskokoskskokskoskok ok sk okl sokokokokokokokskok kol skokokskokokokokokokokokokkok ok skok

C ADD DECLARATIONS AND DEFINITIONS FOR THE USER-VARIABLES C HERE

C PARAMETERS
DOUBLE PRECISION DAY,LAT,BETA,RHO,SHIFT,GAMSURF

C INPUTS
INTEGER*4 ADVTIME
DOUBLE PRECISION GtT,CIVILT

C OUTPUT
DOUBLE PRECISION GtH,GDH,GBH,THETAZ,GBT,GDT,GGT,THETA

C OTHER VARIABLES
DOUBLE PRECISION TIMEO,TFINAL,DELT
DOUBLE PRECISION DEC,COSTH,COSTHZ
DOUBLE PRECISION RB,KT,GtT2,B.E
DOUBLE PRECISION SOLTIME,W,W2,GOH,DEL
DOUBLE PRECISION CHECK,DELHOLD
DOUBLE PRECISION LOW_KT, HIGH_KT, OLD_KT
DOUBLE PRECISION C1,C2,C3,GAMSP,GAMS,SINGAMSP,
DOUBLE PRECISION PI, COSWEW,WEW
INTEGER*4 J

C COMMON VARIABLES
COMMON IUNIT,ITYPE,LUW

C DATA STATEMENTS
DATA PI/3.1415927/
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C TRNSYS FUNCTIONS
TIMEO=getSimulationStartTime()
TFINAL=getSimulationStopTime()
DELT=getSimulationTimeStep()

C SET THE VERSION INFORMATION FOR TRNSYS
IF(INFO(7).EQ.-2) THEN
INFO(12)=16
RETURN 1
ENDIF
C**********************************************************************
C DO ALL THE VERY LAST CALL OF THE SIMULATION MANIPULATIONS HERE
IF (INFO(8).EQ.-1) THEN
RETURN 1
ENDIF
C**********************************************************************
C PERFORM ANY 'AFTER-ITERATION' MANIPULATIONS THAT ARE REQUIRED HERE
C e.g. save variables to storage array for the next timestep

IF (INFO(13).GT.0) THEN
NITEMS=0
C STORED(1)=... (if NITEMS > 0)
C CALL setStorageVars(STORED,NITEMS,INFO)
RETURN 1
ENDIF

C**********************************************************************

C DO ALL THE VERY FIRST CALL OF THE SIMULATION MANIPULATIONS HERE
IF (INFO(7).EQ.-1) THEN

TUNIT=INFO(1)
ITYPE=INFO(2)

C  SET SOME INFO ARRAY VARIABLES TO TELL THE TRNSYS ENGINE HOW THIS TYPE IS TO WORK
INFO(6)=NOUT
INFO(9)=1
INFO(10)=0  ISTORAGE FOR VERSION 16 HAS BEEN CHANGED

C THE TRNSYS INPUT FILE
CALL TYPECK(1,INFO,NI,NP,ND)

RETURN 1
ENDIF
(Ot etk ok ok ok ok ok o o sl el skl sk ok ok ok s s sk o sl sk ok o ok o ok ok ok
C DO ALL OF THE INITIAL TIMESTEP MANIPULATIONS HERE - THERE ARE NO ITERATIONS AT THE
INTIAL TIME
IF (TIME .LT.(TIMEO+DELT/2.D0)) THEN

C  SET THE UNIT NUMBER FOR FUTURE CALLS
TUNIT=INFO(1)
ITYPE=INFO(2)
C SET PARAMETERS AND CONVERT ANGLES TO RADIANS

DAY =PAR(1)

LAT = PAR(2)

BETA = PAR(3)

RHO =PAR(4)

SHIFT = PAR(5)
GAMSURF=PAR(6)

LAT = LAT*PI/180.0

BETA = BETA*PI/180.0
GAMSURF=GAMSURF*PI/180.0
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RETURN 1
ENDIF

C  RE-READ IN THE VALUES OF THE PARAMETERS IN SEQUENTIAL ORDER
IF(INFO(1).NE.IUNIT) THEN

c RESET THE UNIT NUMBER
TUNIT=INFO(1)
ITYPE=INFO(2)

DAY = PAR(1)

LAT = PAR(2)

BETA = PAR(3)

RHO = PAR(4)

SHIFT = PAR(5)
GAMSURF=PAR(6)

LAT = LAT*PI/180.0
BETA = BETA*P1/180.0
GAMSURF=GAMSURF*P1/180.0
ENDIF
C SET INPUTS

GtT = XIN(1)
CIVILT=XIN(2)
ADVTIME=XIN(3)

DEL=0.0
CHECK=0.0
DELHOLD=0.0
C**********************************************************************
C CALCULATE SOLAR ANGLES AND EXTRATERRESTRIAL RADIATION
C [Duffie and Beckman, 1991]
C**********************************************************************
DEC=23.45*SIN(360*(284+DAY)*P1/365/180)*P1/180 'RAD
B =360*DAY-81)/364*P1/180 RAD
E=(9.87*SIN(2.*B)-7.53*COS(B)-1.5*SIN(B))/60. 'HR

IF(ADVTIME.GE.1)THEN
SOLTIME=CIVILT-1.0+(SHIFT/15.0)+E

ELSE
SOLTIME=CIVILT+(SHIFT/15.0)+E
ENDIF
(Ot ekt ok ok ok ok kot ok kot ok ks e o sl sl sl sl sk Rk kR Rk ok
C FOR SMALL TIME STEP HOUR ANGLE IS TAKEN AT THE SOLAR TIME

C  OF THE ACTUAL TIME
C**********************************************************************
W = (SOLTIME-12.0)*15.0*P1/180.0 IRAD
GOH=1367*3.6*(1.0+(0.033*COS(DAY *2.0*PI/365)))*

&  (COS(LAT)*COS(DEC)*COS(W)+SIN(LAT)*SIN(DEC))
C**********************************************************************
C CALCULATE SOLAR POSITION ANGLES AND RB
C**********************************************************************

COSTH=SIN(DEC)*SIN(LAT)*COS(BETA)-

& SIN(DEC)*COS(LAT)*SIN(BETA)*COS(GAMSURF)+

&  COS(DEC)*COS(LAT)*COS(BETA)*COS(W)+

&  COS(DEC)*SIN(LAT)*SIN(BETA)*COS(GAMSURF)*COS(W)+

&  COS(DEC)*SIN(BETA)*SIN(GAMSURF)*SIN(W)

THETA=ACOS(COSTH)*180./P1 !DEG

COSTHZ=COS(LAT)*COS(DEC)*COS(W)+SIN(LAT)*SIN(DEC)
THETAZ=ACOS(COSTHZ)*180./P IDEG
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RB=COSTH/COSTHZ
C**********************************************************************
C CALCULATE SOLAR AZIMUTH ANGLE WITH THE FORMULATION OF
C Braun and Mitchell [1983]
C**********************************************************************

SINGAMSP=SIN(W)*COS(DEC)/SIN(THETAZ*P1/180.0)
GAMSP=ASIN(SINGAMSP)*180./PI IDEG
COSWEW=TAN(DEC)/TAN(LAT)
WEW=ACOS(COSWEW) |RAD

TF((ABS(W).LT.WEW).OR.(ABS(COSWEW).GT.1))THEN
Cl=1

ELSE
Cl=1

ENDIF

IF (LAT*(LAT-DEC)).GE.0) THEN
Cc2=1

ELSE
C2=-1

ENDIF

IF(W.GE.0) THEN
C3=1
ELSE
C3=-1
ENDIF
GAMS=(C1*C2*GAMSP)+(C3*0.5%180*(1-(C1*C2)))
C**********************************************************************

C EXIT FOR LOW RADIATION, THE CORRECTION IS NEGLIGIBLE

o ]

IF(GOH.LT.10.) THEN

GtH=GtT
GOTO 60
ENDIF
C**********************************************************************
C EXIT IF THERE IS NO MEASURED RADIATION
C**********************************************************************
IF (GtT.LE.0.) THEN
GtH = GtT
GOTO 60
ENDIF
C**********************************************************************
C SOLVE FO KT
C BEGIN WITH AN ITITIAL GUESS FOR KT OF 0.5 AND GTH=KT*GOH
C ASSUME INSTANTANEOUS RADIATION CORRESPONDS TO THE
C RADIATION AVERAGED HOURLY
C**********************************************************************
7=0
DEL=0.0
LOW_KT=0.0
HIGH_KT=1.0
KT =(LOW_KT+HIGH _KT)/2.0
C BEGIN THE MAIN ITERATION LOOP
20 CONTINUE
J=I+1
GtH=KT*GOH
C**********************************************************************
C USE THE Erbs CORRELATION TO CALCULATE THE HORIZONTAL
C  DIFFUSE COMPONENT
C CALCULATE CORRESPONDING HORIZONTAL BEAM RADIATION
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ok ]

IF(KT.GT.0.8) THEN
GdH=.165*GtH
ELSE IF(KT.GT.0.22) THEN
GdH=GtH*(.9511-.1604*K T+4.388*KT*K T-16.638*(KT**3)
& +12.336%(KT**4))
ELSE
GdH=GtH*(1.-.09*KT)
ENDIF

GbH=GtH-GdH
(C stttk koot o ok ok s e s e e e e el sl sl sk ok ok o ok o stk s ks s s s e ok
C OBTAIN A NEW TOTAL TILTED RADIATION AND COMPARE WITH THE
C INPUT GtT , FIND KT USING THE BISSECTION METHOD

C**********************************************************************

GtT2=GbH*RB+GdH*(1.+COS(BETA))/2. +RHO*GtH*(1.-COS(BETA))/2.

IF(GtT2.LT.GtT)THEN
LOW_KT=KT
ELSE
HIGH_KT=KT
ENDIF

OLD_KT=KT
KT=(LOW_KT+HIGH_KT)/2.0
DEL=ABS(G{T2-GtT)

C CONTINUE ITERATIONS
C CALCULATE A NEW GTH WITH THE NEW KT
IF(DEL.GT.0.5.AND.J.LT.300)GO TO 20
C TOO MANY ITERATIONS
IF(J.GE.200) GOTO 40
C CONVERGENCE IS OBTAINED
IF (DEL.LT.1.) GOTO 60
C EXIT ITERATION IF KT=1, CLEAR DAY
25 GtH=GOH
GOTO 60
C

40 WRITE(LUW,*)'Radiation converter error at time=', TIME
WRITE(LUW,*)'Too many iterations'
GtH=GtT
GOTO 60

50 WRITE (LUW,*)'Radiation converter error at time =',TIME
WRITE (LUW,*)'No Convergence'
GtH = GtT
GOTO 60

C
60 CONTINUE

GBT=GbH*RB
GDT=GdH*((1+COS(BETA))/2.0)
GGT=GtH*RHO*((1-COS(BETA))/2.0)

IF(GDH.LT.0)THEN
GDH=0
ENDIF
IF(GtH.LT.0)THEN
GtH=0
ENDIF

IF(GBH.LT.0)THEN
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GBH=0
ENDIF

IF(GBT.LT.0)THEN
GBT=0
ENDIF

IF(GdT.LT.0)THEN
GdT=0
ENDIF

IF(GgT.LT.0)THEN
GgT=0
ENDIF

Set OUTPUTS
OUT(1)=GtH
OUT(2)=GDH
OUT(3)=GBH
OUT(4)=THETAZ
OUT(5)=GBT
OUT(6)=GDT
OUT(7)=GGT
OUT(8)=THETA
OUT(9)=GamS

RETURN 1
END
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