Analysis of a Threshold Strategy in a Discrete-time Sparre Andersen Model
by

Ana Maria Mera

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirements for the degree of
Master of Mathematics
in

Actuarial Science

Waterloo, Ontario, Canada, 2007

(©Ana Maria Mera 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

il

Abstract

In this thesis, it is shown that the application of a threshold on the surplus level
of a particular discrete-time delayed Sparre Andersen insurance risk model results
in a process that can be analyzed as a doubly infinite Markov chain with finite
blocks. Two fundamental cases, encompassing all possible values of the surplus
level at the time of the first claim, are explored in detail. Matrix analytic methods
are employed to establish a computational algorithm for each case. The resulting
procedures are then used to calculate the probability distributions associated with
fundamental ruin-related quantities of interest, such as the time of ruin, the surplus
immediately prior to ruin, and the deficit at ruin. The ordinary Sparre Andersen
model, an important special case of the general model, with varying threshold levels

is considered in a numerical illustration.

il

Acknowledgements

I would like to thank my supervisor, Steve Drekic, for his valuable input. Also, I want to
thank Mary Lou Dufton for her assistance and Mary Hardy for her support. This work
has been assisted by the Natural Sciences and Engineering Research Council of Canada.

I would like to thank my friends, Margareta Ackerman and Matei Zaharia, for their
advice along the way. Also, thank you Mom, Dad, Andrei, Lelia, Radun, and Kevin - I
hope to give back to you all that you have given to me.

Mother Mary, I owe you everything. Bubu, thanks for watching over me.

v

Contents
1 Notation and Preliminaries
2 Formulation of the Model

3 Computational Procedure
3.1 Case l: u+ oy + ca(k —
32 Case2: u+tck—-—1<7

4 Numerical Example
5 References

6 Appendix

xk)—lzZ

12
14
15

19

33

34

1 Notation and Preliminaries

In this thesis, a particular threshold strategy on the delayed Sparre Andersen (i.e. renewal
risk) insurance risk model in discrete time is considered. The following definitions are im-
plications of this model. First of all, the number of claims process {IV; : t =0,1,2,...}
is assumed to be a modified discrete-time renewal process with independent positive in-
terclaim times {Wy, Wy, W3, ...}, where W is the duration from time 0 until the first
claim occurs and W;, i = 2,3,4,... , is the time between the (i — 1)-th and i-th claims.
Secondly, it is assumed that {Wsy, W3, Wy, ...} is an independent and identically dis-
tributed (iid) sequence of positive random variables with common probability mass fun-
tion (pmf) a; = Pr{W; = j}, j = 1,2,3,...,n,, and corresponding survival function
A =Pr{W; > j} =1- {3:1 ar. In this thesis, it is assumed that n, < oo (i.e. the
interclaim time distribution of W;, ¢ = 2,3,4,... , has finite support).

In the ordinary Sparre Andersen model (a special case of the delayed Sparre Andersen
model), it is assumed that a claim occurs at time 0, so that I has the same distribution as
the ordinary interclaim times {Wy, W3, Wy, ...}, But if W is not a “full” interclaim time,
asymptotically in time, the limiting distribution of this forward recurrence time is defined
by thepmfa; = A;_1/> 12 Ak—1, 7 =1,2,3,...,n, (e.g. see Karlin and Taylor [1975, pp.
192-193]). This leads to another important special case of the delayed Sparre Andersen
model; namely the stationary Sparre Andersen model, in which W; has pmf a; rather
than a;. However, to accommodate all possible specifications of the Sparre Andersen
model, it is assumed in this thesis that W) has a more general pmf r; = Pr{WW; = j},
Jj=12,3,...,n,, where n, < co. By appropriate choice of r;, it is obvious that both the
ordinary and stationary Sparre Andersen models are special cases of this more general
(delayed Sparre Andersen) risk model.

In this analysis, U; represents the amount of surplus at the end of time interval [t—1,),
at which point the premiums and claims corresponding to this time interval have been
paid (out). This thesis analyzes the application of a threshold level Z € Z* on the amount
of surplus, affecting the amount of premium being received at any given point in time.
It is assumed that the delayed Sparre Andersen insurance risk model of interest in this

thesis has premiums that are collected at the rate of p; € Z* at time ¢, t = 0,1,2,.. .,

o ifU < Z,
pt:{ ! ¢ (1.1)

where

Cy if Ut Z Z,

with ¢; > ¢o. Beginning with an initial reserve u € {0,1,2,...}, the insurer’s surplus at

time ¢ is given by
t—1 Ny
Uy=u+» pi—» Y t=012..., (1.2)
i=0 i=1

where p; is determined using (1.1). Individual claim amounts {Y7,Y5, Y3, ...} are as-
sumed to form an iid sequence of positive random variables with common pmf «;,
Jj =1,2,3,...,m,, and corresponding survival function A; = 1 — Zizl ay. However,
unlike the interclaim time distributions defined above, the claim amount distribution can
be either of finite or infinite support (i.e. m, < 00).

The premium c¢; below the threshold is chosen to be greater than ¢, for practical
reasons, as Z is assumed to be determined by the insurer as the level at which there is a
sufficiently ample amount of surplus allowing for the payout of dividends to shareholders.
Subsequently, during this period of time, premiums are being received as dividends are
simultaneously being paid out. This renders the overall intake of the insurer to be less
than the amount of pure premium. Thus, when the insurer’s funds reach a surplus level
of Z, there is a decrease in the “premium” being received by the insurer.

At any given time point, the usual convention that premiums are collected first (i.e.
at the beginning of the time interval) before any claims are paid (i.e. at the end of the
time interval) is adopted. That is, premiums for the time interval [t — 1,¢) are received
at (t—1)" at rate p,_1, and any claims are paid out at ¢t~. The time of ruin, T, is defined
as T =min{t € Z"|U; < 0} with T = o0 if U; > 0V t € Z". If ruin does occur, |Ur| is
defined as the deficit at ruin and Uy = Ur_; + pr_1 as the surplus immediately prior
to ruin. Clearly, T' = oo if m, < min{cy, Z + ¢3}. However, if m, > min{c;, Z + ¢},
then |Ur| € {1,2,3,...,mq —min{cy, Z + co}} and Upr_ € {min{c;, Z + ¢}, min{c;, Z +
e} +1,...,my — 1}. Throughout the remainder of the thesis, it is assumed that m, >
min{cy, Z + 2 }.

2 Formulation of the Model

Adopting the same notation used in the original formulation of a computational algo-
rithm for the delayed Sparre Andersen model without a threshold (see Alfa and Drekic
[2007] for details), the interclaim time distribution defined by the pmf a; must first be
considered. This pertains to an arbitrary W;, « = 2,3,4,..., denoted by W. Letting
7= Pr{W>jW>j—-1} = A;/JA;1,j = 1,2,3,...,n,, it can be immediately seen
that = Ay and 7,, = 0. The n, X n, probability transition matrix for the surviving

waiting times to the next claim occurrence is then defined as

On O -+ 0
00 =» - 0
S=1: : (2.1)
0 -+ 0 7py
0 --- 0 0
Also, defining the 1 x n, row vector e; = (1,0,0,...,0), and letting the n, x 1 column

vector of absorption probabilities (to claim occurrence) be
1-— 1

1—7'2

1 - Tna—l
1

it can be shown that (e.g. see Alfa [2004])
a; = elsj_ls, j =]., 2, 3, ey Mg

The above formula also holds true for j > n, since it can be easily verified that S7~! = O,,,
(i.e. an n, X n, matrix of zeros) for j > n,. Alfa [2004] refers to this as the “elapsed
time” representation of the pmf a;.

In what follows, the delayed Sparre Andersen model (described in the introduction)
will be set up as a two-dimensional Markov chain conditional on certain assumptions. The
purpose of this is to allow for the formulation of a model that represents the transition
process of the amount of surplus, U;, under discussion, in matrix form. In order to
construct such a process, Wi must be isolated in the sense that W is fixed to be k, where
ke{l,2,3,...,n,.}. Assuming that Wy =k, L; (i.e. the second dimension of this Markov

3

chain) is defined as the “elapsed interclaim time” (at time ¢, ¢t = k, k+1,k+2,...) since the
occurrence of the most recent claim. For this specified range of ¢, the bivariate stochastic

process (U, L;), which possesses the following Markovian relationship, is considered:

(Ut + pt, Ly + 1) if there is no claim at time (¢ 4+ 1),

(Us+p — Y, 1) if there is a claim of amount Y at time (¢t + 1)~.
(2.2)

Since it has been assumed that a claim occurred at time k, L, = 1. The state space for this
Markov chain, denoted by A, is then given by A = {(Uy, L;) : Uy € Z; Ly = 1,2,3,...,n,}.

The Uy component is referred to as the level of the process (corresponding to the amount of

(Ut-i-la Lt+1) = {

surplus) and the L; component is referred to as the phase of the process. Upon occurrence
of the first claim, the delayed process reverts to the ordinary process (having interclaim
time distribution defined by the pmf a;). Hence, if W; = k, the probability transition
matrix P associated with this two-dimensional Markov chain for t = k,k+ 1,k + 2, ...

is given by

(¢2)

g
1—=%¢r
e=tg
£ 1o
vt

S Y
11—z g

—7—To
—Z q

71D
€7 g

¢CtZ7z

1+
Nwm
ﬂ|NUm
et
el

—To
zg
—7_To

7

71D
—Z g

1+Z

atiog
g
S
HIHUm.
g-Tog

H.TNIGm.

Nlﬂum
P, Y
-z fe}

e+
m+mom
T+
e
=T

—T1o
ctz el
1+Z— Gm

15
2=7d

| /A

[69)
7+ m
(&)
&+ m

NnTmum.

T_Lom
o
q

m.TNIHom.
N.TNIGMN

15
1+Z el

¢C—Z

18+ 7 g
mo+Nm
14847
e=To+zgg

e-+zg

v
ﬁlﬁum.
N\Gm

N+mo+Nm
H+mo+Nm
mu._.Nm
HIG._.Nm

Z— G+Nm

H+Hbm
Hum.
ﬁ\ﬁum

e+etzgg

cHotzeg

1+8+7
G.TNm

- G+Nm

15
Z+ m
H.Tﬁom.

o

q

¢tz
1+Z

| /A
c—7Z

where
O, itieZ,
B; = S if i =0, (2.4)
(sey)o; ifieZr.
So, for example, the transition “U; = —1 — Uyy; = —17 has block element B, which
contains the transition probabilities corresponding to this mapping. The reasoning for
block element B, is as follows. At a surplus level of “ — 1”7 at time ¢~, a premium of
py = ¢ is certain to be received. Hence, to arrive at the same surplus level of “ — 1”7 at
the next time unit (¢t 4+ 1)~, a claim of size ¢; must occur to neutralize the premium just
received. Thus, the size of the claim required for this transition to occur determines the
value of 7 in B;. Hence, B, is obtained. Furthermore, the components of the matrix B,,
govern the “L; — L;y1” process. Note that this is a doubly infinite Markov chain with
finite blocks of size n, (e.g. see Grassmann [2000]). Also, since a; =0V i > my, B; = O,,
if 7 > my, and this will aid in simplifying the formulation of an algorithm based on this
model.
For the computation of ruin-related quantities of interest, it is useful to partition the

state space A into two state spaces, namely
Ay ={(i,7):1=0,1,2,... ;7=1,2,...,n,}
and
Ao ={(i,j):i=—-1,-2,-3,... ;7 =1,2,...,n4}.

Two matrices, defined as C' and D where C' : Ay — Ay and D : Ay — Ay, correspond to
mapping “non-ruined” states of the system to “non-ruined” states and “ruined” states,

respectively. As a result, the two matrices C' and D look as follows:

1+%g
g
H\mom
(e
£ Tog
w\ﬂom
4= Togr

Nlﬂom
HINIGm
N\N\Sm

c+Zz

c+iog
T+8ogg
wgr
=8¢
z—Tog
e— Sm
wlﬁom

g+
e
T+
S
1-Togr
N\Gm
= Togr

vt
g+
+aog
I+egr
g
=g
e—Tog

G+iog
g
g+oog
et
T+ log
g
I=Tog

H.TNIGm ctz— Gm et+z— Gm V+Z— Gm

NIGm
ﬂ\N\Gm

I+Z

I.NIGm
N\Gm
A

N+NIGm

~+N\Gm

| /A

e+z—Tog

N+N\Sm

¢ — 7

~+mu+Nm
@+
ﬂlmo._.Nm
m\mu+Nm
mIG.TNm
= G._.Nm

mIG.TNm

.
1-Togr
e—Togg

(4

N+N0+Nm
H.TNQ.TNm
wtzg
H\mu+Nm
NIG.TNm
£=1o+zgg

v—To+zg

g
g
1—Tog
T

e+etzg
etz
1+%+7 q
@tz
- G+Nm
c— Mtz q

e—Totzg

cHiog

T+ 1o
tog
0

ct+Zz
ct+7
1+Z

| /A
¢— 7
€E—Z

pue

—1 -2 -3

0 BCH-I BC1+2 BC1+3
Bcl+2 BCl+3 B(31+4

2 Bcl+3 BC1+4 BC1+5

Z —3| Bzyei—2 Bziei-1 Bzie

Z =21 Bzie,1 Bzie, Bziew (2.6)
Z =11 Bzye, Bziyet1 Bzies2
Z Bziest1 Bzicst2 Bziests
Z+ 1| Bzycy42 Bziewrs Bzicyya

Z 42| Bzierts Bzicrs Bzicyts

Z+3| Bziesta Bzier+s Bzierte

In this thesis, two fundamental cases are considered, encompassing all possible values
of the surplus level at the time of the first claim. These cases essentially correspond to the
differing values of the initial (i.e. at time k) probability vector of the states in Ay, b,
which will be considered separately for each situation in the next section. Matrix analytic
methods will then be used to establish a computational algorithm for each scenario. The
algorithms that will be derived serve the ultimate purpose of calculating the probability
distributions associated with fundamental ruin-related quantities of interest.

The general notation necessary for all further computations will now be specified.

First of all, let

0 ifu> 2,

max{i € {1,2,...,t}lu+ (i —1) < Z} ifu<Z

Secondly, define the function f,(t) = u + ¢1t + ca(n — t). Then, the aforementioned b®
is generalized to be
b(k) = (osz(xk)el, osz(xk)_lel, Oéfk(xk)_zel, ...,00e1, (1€, 0, 07 .. .), (28)

where 0 denotes the 1 x n, row vector of zeros. The i-th level of b* is given by the
1 X ng row vector ay, (z,)—i€1 for each i € Qp = {0,1,2,..., fi(xx) — 1}. Furthermore, two

additional row vectors are needed, namely

k k k n
g = (g, 9", 9%, ..) =bPC" n=0,1,2,... (2.9)

8

and

A = (Y RS, B) =g D=bWC D, n=1,2,3,... . (2.10)

n,—1» n, n—

Note that g%’“) contains the probabilities of being in the various “non-ruined” states at
time k£ + n (i.e. after claims have been paid out for the time period [k +n — 1,k + n))
without having visited a “ruined” state during the previous n — 1 transitions, given that
U, € Q according to the probability vector b*). In a similar fashion, h;k) contains the
probabilities of being in the various “ruined” states for the first time at time k + n, given
that U, € Q according to the probability vector b*). Note that the probability of being

in ruined state “ — j” is governed by the vector hff)_j = (hgf)_ﬂ, hgf)—j,% ce h'Elk:)_jyna) with
the third subscript component representing the value of Ly, € {1,2,...,n,}. However,

(%)

upon further reflection, it must be the case that h, ", = 0 for ¢ # 1, as ruin can only

occur at claim instants, which, in this case, implies L., = 1 with probability 1. Thus, it
(k)

TL,—j
Al = (64)(w),0,0,...,0), where ¢0)(u) = Pr{T =k +n,|Ur| = j | Uy € }. Con-

sequently, as in the analysis with no threshold on the surplus level, the following result is

immediately follows that the structure of the 1 x n, row vector h is simply given by

obtained:
dj() = hy) e, (2.11)

n7‘7

where €] denotes the transpose of e;.

Similar probabilistic reasoning can be applied to obtain a representation for wq(fl) j(u) =
Pr{T =k+n,Ur_ =1i,|Ur| =7 | Up € Q}. In order for ruin to occur at time k+n with
a surplus prior to ruin equal to 7, (i) none of the previous n — 1 transitions must have
included a visit to any state in Ay, and (ii) the surplus level at time k+4mn—1 must be equal
t0 i —pPryn_1. Note that py.,_1 represents the corresponding premium for the time interval
[k+n—1,k+n), which is received at (k+n—1)". The quantity corresponding to points (i)
and (ii) is the 1 x n, row vector gg?l,i—pmn_f At the next time unit (i.e. time (k+n)~),
a claim must necessarily occur but not before a premium of pg.,_1 is first collected,
thereby raising the surplus level to i. Since s contains the absorption probabilities (to
claim occurrence) from the n, possible phase states, and the claim causing ruin must be

of size i 4+ j in order to ensure that the deficit at ruin is equal to j, it follows that

k k
Y w) =g\, s (2.12)

If min{ey, Z + c2} = ¢4, equation (2.12) simplifies to give
(k)

Bnlii—c; S Xitj ifi:Cl,Cl—l-].,...,Z—i-CQ—]_,
1/17(1]?27](11) = (gfzkjl,ifcl + gflkjl,if@) S ai+j 1f Z = Z + Co, Z + (&) + 1’ B} Z + 1 —]-7
g ., 8 Qi fi=Z4c,Z+c+1,... my—1.
(2.13)
Conversely, if min{cy, Z + 2} = Z + ¢9, equation (2.12) simplifies to give
gg?l,iquai-f-j ifi:Z+CQ,Z+CQ+1,...,Cl—]_,
k -
7707(11)3(“) = (gilk—)l,i—cl + gg{_)u—q) sy fi=ce0+1,...,Z2+c —1,
g,Elk_)lji_QSOéiij ifz':Z—l—cl,Z—l—cl—i—l,...,ma—l.
(2.14)

The justification of (2.13) and (2.14) is as follows. If ¢; is less than Z + ¢q, the only
way of reaching a surplus level of i = ¢;,¢1+1, ..., Z+cy—1 (prior to ruin) is by receiving
a premium of ¢; since ¢ — ¢y (for the specified i) would result in a surplus level below Z,
where ¢, is not applicable. Next, for i = Z 4+ ¢y, Z +co+1,...,Z + c; — 1, there are two
ways of reaching this surplus level. Note that subtracting ¢y from ¢ in this range results
in a surplus level greater than or equal to Z, and that reducing each of these i’s by ¢;
yields a value less than Z. Hence, both of these premiums are plausible here. Lastly, for
1=Z4+c,Z+cq,...,mq— 1, decreasing this surplus level by ¢, results in a value greater
than Z (as desired), but reducing it by ¢; also has the same impact, thus eliminating this
premium option. The justification when ¢, is greater than Z + ¢ mirrors the analysis
above.

expressions

Recall that in the analysis up to this point, it has been assumed that W, = k, where k €
{1,2,3,...,n,}. Conditioning on the value of W yields, by the Law of Total Probability,

the following two expressions:

On,j(u) = Zrk¢ik_)k7j(u), n=n,+1,n.+2,n +3,... (2.15)
k=1
and .
Ynii(u) = Zrkw&)k’m(u), n=n,+1n-+2,n.+3,.... (2.16)
k=1
In order for T' = n when n = 1,2,...,n,, the only possible ways of ruin occurring are:

(i) the first claim, which causes ruin, occurs at time n, or (ii) the first claim, which does
not cause ruin, occurs at some time k € {1,2,3,...,n— 1}, and ruin subsequently occurs

n — k time units later. Now, combining the outcomes for n = 1,2,...,n, with those for

10

n=mn,+ 1,n.+2,n.+3,... (and recalling that r, = 0V n > n,), the expression for

¢n,j(u) becomes

min{n—1,n,}

k
gbn,j (U) = Z Tk¢512k7j (u) + TnQf, ()47 T € Z+' (217>
k=1

Additionally, for v, ;(u), when n < n, and component (i) above is considered, i must

equal f,(z,) for ruin to occur in this manner. Hence,

min{n—1,n,}

k
¢n,i,j (u) = Z erpg)k,i,j(u) + 5i7fn(xn)rnafn(xn)+j7 n e Z+, (218>
k=1

where 0; 4, (z,) denotes the Kronecker delta function of ¢ and f,(z,) (i.e. 0 f,(z,) = 1 if
i = fn(x,) and 0 otherwise). To obtain wy, ;(u) for fixed i € {min{cy, Z + co}, min{ey, Z +
o} +1,...,my — 1}, summing (2.18) from j = 1 to m, — @ yields

min{n—1,n,} Mo —i Ma—1
k
w”ﬂ: (u) = Z Tk w'l(l—)k;,z,] (U) + 5i7fn($n)rn Z Oéfn(xn)"l‘j
k=1 7j=1 7j=1

min{n—1,n,}

k
:AZ Z rk(gfl_)k_lai_pnfl S) _'_ 5z,fn(zn)rn (Afn(xn)_Afn(iﬂn)"Fma—l) 7n E Z+(219>
k=1

where (2.12) was used to establish the last equality. Clearly, Ay, (z,)+m.—i = 0 in the

above formula for wy, ;(u) if m, = co.

11

3 Computational Procedure

As in the determination of the minimum and maximum values for the deficit at ruin and
surplus prior to ruin random variables in Section 1, the quantities min{c;, Z + ¢, } and
max{cy, Z + ¢} play a significant role in the derivation of the computational procedure,

in combination with the form of the probability transition matrix P defined by (2.3). To

obtain a general algorithm for computing g;kl) for all 7, and consequently, for gﬁf), the

crucial identity g\ = gflk_)lC for n € Z*, which can be inferred from (2.9), is used. Since

gék) — b contains zeros from a certain level onwards (i.e. level fi(z4)), along with the

fact that the block elements, B;, of the C' matrix eventually become zero matrices, it can

(k)

be concluded that g’ will contain zeros from a certain level onwards. This particular

level, which is later determined on a case-by-case basis, will generally be denoted by I(n).
(k)

n_1 contains zeros onwards. Applying

That is, {(n — 1) represents the level from which g
these useful facts, the following basic equation is obtained for any i € {0,1,2,...,7 —
L,Z,Z+1,...,l(n)—1}:

Zgn 1,5] 1+C1+ Z gn 1,5 J i+eo. (31)

However, since B; = O,,, for i € Z~ as per (2.4), (3.1) becomes (for the same range of i)

Z-1 l(n—1)—1
k
g’ELz - Z g;)l,]BJ —itc1 + Z gSL)l,ij—H-CQ‘ (32>
j=max{0,i—c1} j=max{Zi—ca}

Next breaking (3.2) into cases determined by the value of i, the following computational
procedure is constructed:
Fori e {0,1,2,...,min{cy, Z + co} — 1},

Zgn 1,5 JZ+01+ Z gn 1,5]’H‘C2
For i € {min{cy, Z + co},min{cy, Z + o} + 1, ... ,max{c1, Z + co} — 1},

(Z-1
Z] =i—c1 ggL)lj Jj—itecl +Z n)lijfiJrCQ
if max{ci,Z + 2} =7 + ¢y,

Z—1
Z] =0 g7(7,)1j Jj— H‘CI_I_Z] =i— 02 g’ﬂ)ljB] —i+tc2
if max{ci,Z + 2} = 1.

12

For i € {max{c, Z + co},max{c1, Z + o} + 1,...,Z +¢; — 1},

gnz_ § :gn 1,5 J Z+Cl+ E , gn 1,5 J it+co-

Jj=i—c1 Jj=i—c2
Forie{Z+ca,Z+a+1L,Z+c+2,...,0l(n)—1},

l(n—1)—1

gnz_ E: gn 1,5]ZJch

j=i—co

the section where the specific case requiring these restrictions arises.

Substituting (2.4) into the above equations, the following general recursive procedure

for computing the 1 x n, row vector ggk), n € Z*, can then be constructed:

Let i € {0,1,2,...,min{cy, Z + c2} — 1}. Then:

Z-1 I(n—1)—1
k k k
g;,,z) = Z aj*i+c1g£z—)1,js + Z aj*iJrngSz—)l,jSv 07 07 cee 70 . (33>
=0 j=Z

Let i € {min{cy, Z + o}, min{cy, Z + o} + 1,...,max{cy, Z + c2} — 1}. Then:
k) Z-1 n—1)-1 k
giz 10— 015 + (Zg =t—c1+1 a] H‘Clgn 1 js + Z - aj—’H‘ng?(l—)l,jsv O’ 07 s 7())

if max{cl, Z + CQ} =7+ Co,

k Z—1 n—1)—1 k
gng)l,ichS + (Z =0 a] H—Clgn 1]3 + Z] =i— c)2+1 aj—i+c2gq(121,js7 07 O’ ce >0>
if max{ci,Z + 2} = 1.

\

(3.4)
Let ¢ € {max{ci, Z + co},max{c1, Z+ o} +1,...,Z +¢; — 1}. Then:
Z-1 l(n—1)—1
k k k
ggm) - g7(7, 14— cls+gn 1,0— CQS+ Z aj—i+clg7(121,js + Z aj—i+029§zjl,jsa 0,0,... 70
j=i—ci1+1 j=t—ca+1
(3.5)
Letie{Z+c,Z+a+1,Z+c+2,...,l(n)—1}. Then:
l(n—1)—1
k k k
9V =g S+ Y gl ;8.0,0,...0] . (3.6)
j=i—ca+1

The details pertaining to the values of I[(n — 1) and I(n) in the above-deduced algorithm

are specified in what follows.

13

3.1 Casel: u+tcrpt+celk—x)—1>27

For Wi = k and u + cyxp + co(k — xx) — 1 > Z, it is possible that x; can take on
any value in the set {0,1,...,k}. The initial (i.e. starting at time k) probability row
vector corresponding to the states in A; is given by g(()k) = b® as defined generally in
(2.8). Note that the i-th level of gék) is given by the 1 x n, row vector ay, (z,)—i€1 for
each i € O = {0,1,2,..., fe(xx) — 1}. Moreover, gék) contains zeros from level fi(zy)
onwards. Hence, [(0) = fi(xg).

In the computation of ggk) given by (2.9), C' is pre-multiplied by the row vector g(()k).

Since g(()k) contains zeros from level fi(xy) onwards, and it might be possible to obtain a
higher value than fy,q(zx) —1 (i.e. the maximum level with no drop below the threshold)
if the surplus had fallen below Z at time k, then gained c;, and so reached a bounded

level of Z + ¢; — 1 at time k£ + 1, it is deduced that ggk) has the form

B = (g g, g (k) (k) 0.0,..)

g, 91,0:91,1:91,20 - - > 1 max{ Z+cr, frop1 (01)} -2 I max{ Z+er, fipr (1) 17 K

Hence, I(1) = max{Z + ¢1, fr+1(zx)}. From n > 1 onwards, since at any future point the

surplus could possibly fall below Z, the above argument can be carried out inductively to

obtain
k (k) (k) (k) (k) (k)
g7(1) = (gn 09In1:9n2 9y smax{ fxin(zr),Z+c1+ea(n—1)}— 29y max{ fyin(Tk),Z+c1+c2(n—1)}—17 0,0,...).

This implies {(n) = max{ fxin(2k), Z + c1 + c2(n — 1) }.
Thus, in this first case considered, gflkl) for all ¢ (and, consequently, ggf)) can be derived

by applying the final general recursion (i.e. equations (3.3) through (3.6)) where

U+ cxy + ok —x if n =0,
I(n) = 12, + eo(k = i) , (3.1.1)
max{u+ cizp + c2(k+n—x), Z +c1+c(n—1)} ifneZt,
starting with g(()l? = Qutcrzptes(b—ap)—j€1, J = 0,1,2, ... u+ oy + co(k —xp) — 1.
In addition, since, gflkfnax{fk(mk) Zier—c}it = OVl =con,con+1,con+2,... it can
be seen from (2.4), (2.6), and (2.10) that for n € Z*
Z4ec1—1 max{ fr4n(zk),Z+c1+c2(n—1)}—1
k
Z gn 1,4—c1 J‘M + Z ga(l)lé CQBj-i‘f
l=cq {=Z+4+ca
Z4c1—1 max{ fx4n(zk),Z+c1+c2(n—1)}—1
k k
= Z Oéj+gg,2_)1’£_cls + Z aHgg?(@_)M_cQs, 0,0,...,0
l=cy {=Z+ca
(3.1.2)

14

Hence, substituting (3.1.2) into (2.11) immediately yields

Z+c1—1 max{ fr1n(zx),Z+c1+c2(n—1)} -1

k k
z : aj+€g$l—)1,é—cls+ z : Oéj+£g;_)17g_c28~ (313>
l=cy l=Z+co

Finally, (3.1.3) can then be substituted into (2.17) to obtain a form for ¢, ;(u).

3.2 Case2: utak—-1<Z7

For this case, suppose that x;, = k such that u+ iz +ea(k—xp)—1 =u+ck—1< Z, or
equivalently, u+c1k < Z. Define [x] to be the smallest nonnegative integer greater than or
equal to z. Because a premium of ¢, cannot be received until level Z is at least achieved,

it is essential to find the point at which the threshold level Z is reached (i.e. the point

Z—(u+cik)+1

at which u + c1k — 1+ ¢17 = Z). Solving this equation for i, one obtains ¢ = o

Hence, assuming that W; = k, the elapsed time after k£ at which a premium of ¢y would
begin to be received, ¢}, is thus t; = [%ﬁkm] Note that t; > 1.
With z;, = k, it readily follows that (2.8) simplifies to give

(k)
9o = (au+01kelu Oytc k—1€1, Ayte k—2€1, - - ., A2€7, (11 €7, 07 07 c) (321>

Note that the i-th level of gék) is given by the 1 x n, row vector a, . r_.€1 for each
i€ Q =1{0,1,2,...,u+ cik — 1}. Moreover, gék) contains zeros from level u + ¢k
onwards. Hence, [(0) = u + ¢, k.

For the first time following k, a premium of ¢; is sure to be received at time k* as the
threshold level has not yet been reached (recalling that ¢; > 1). Even in the minimal case
that ¢; = 1, the effect of the new premium will first have an impact at time (k+ 1)*. As
a result, ggk) contains zeros from level u + ¢ (k + 1) onwards, which is ¢; levels further

than that in g(()k) = b®. Thus, ggk) can be written in the form

k) _ (k) (k) (k) (k) (k)
g (gl ngl 1791)29t 7gl,u+cl(k+1)f2’ gn,u+c1(k+1)fl’ 07 07 c)

Continuing this process inductively, it can be established that ggﬁ) contains zeros from

level u + ¢;(k 4+ n) onwards for n = 1,2,...,t;, so that
k (k) (k) (k) (k) (k)
g;) (gnOagnlvgn27-.-,gnu+01(k+n) 27gnu+cl(k+n) 1,0 O,)

Thus, [(n) = u+cy(k+n) forn =0,1,2,...,t;. This particular case of n < ¢} necessitates

additional restrictions on the upper limits of both ¢ and some of the summation terms

15

(k)

present in the general recursive procedure for g, ; given by equations (3.3) through (3.6).

Specifically, in the general recursive formula, restrictions on the bounds for ¢ in g,(fz) and
(k)

n,t

this case. Since ¢ is defined such that u + 1k —14c¢tf > Z andu+ck—1+en < Z
for n < ¢, then I[(n — 1) =1 = u+ ¢;(k+n —1) — 1 (i.e. the ultimate upper limit

on the upper bound of the sum term that would otherwise be Z —1in g, ; are induced by

on the sum terms in the general recursion) is certain to be less than Z (or less than
or equal to Z — 1) for n = 1,2,...,t;. However, for n > t;, this is not the case as
Iln —1) —1 > Z. This implies that all second summation terms in equations (3.3)
through (3.6) are empty. The expressions for g;kz) for all cases of ¢ are now examined
to determine where the restrictions specified above are further applicable. For the first
case of 7 € {0,1,2,...,min{min{c;, Z + c2},1(n)} — 1}, the first term that would for all
other cases have an upper bound of Z — 1 becomes I(n — 1) — 1. For the second range of
i € {min{cy, Z + o}, min{cy, Z + o} + 1,...,min{max{cy, Z + c»},1(n)} — 1}, there are
two cases to consider. If max{cy, Z + co} = Z + ¢, then the above restriction must again
be incorporated in the first sum, so its upper bound becomes [(n —1) — 1. However, when
max{cy, Z + c2} = ¢, the threshold level on surplus will be surpassed at or before the
first claim at any time k € {1,2,3,...,n,} with probability 1, and this is a contradiction
to the assumption underlying Case 2. Hence, it is impossible for max{c;, Z +c2} = ¢;. In
the third case of i € {max{c;, Z+co}, max{c;, Z+co}+1,... ,min{Z+cy,l(n)} — 1}, the
adjusted upper bound of {(n—1)—1 must again be added to the first summation term. The
last case of i € {Z+c1, Z+c1+1,...,1(n)—1} is dropped since max{Z+c;—1,l(n)—1} =
Z+c—1lforn=12,...1.

Hence, the general recursive formula which incorporates the above simplifying consid-
erations becomes the following:
Let i € {0,1,2,...,¢; — 1}. Then:

utcy (k+n—1)—1

k k
gil»z = Z aj*iJrclggL_)l’jS, 0, O, R ,0
j=0

Leti € {c1,c1+ 1,1+ 2,...,u+ci(k+n)—1}. Then:

utcy(k+n—1)—1

k k k
97(1,2 = ggL_)LZ'_qS + Z Ozj,iJrClg,(@_)Ljs, 0,0,...,0
j=t—c1+1

In the analysis of n = t; +1,¢; +2,t;+3, .. ., gigll is first looked at in isolation. At time

k+t; + 1, the threshold level has been crossed, giving rise to a possible maximum surplus

16

value of Z—1+¢;. Asaresult, gggll contains zeros from level max{u-+cy (k+t;)+ce, Z+c1}

(k)

onwards. Thus, g can be written succinctly in the form

ty+1
k) _ (q®) (K) (F) (K) (k)
th‘H - (tr4+1,00 gtz+17lagtz+172, ce >gtz+1,max{fk+t;;+1(k—i—tz),Z—l-cl}—Q7 gtz+17max{fk+tl’;+1(k+t:)7z+cl}—1’ 0, 0; ..)

Hence, I(t; + 1) = max{ fys11(k + 1), Z + c1}. Now, since at any point after n = ¢}
the surplus could fall below level Z, it is readily established that g%k) contains zeros from
level max{ frin(k+1t5),Z + c1 + ca(n —t; — 1)} onwards for n = t; + 1,5 + 2,t5 + 3, .. .,

so that
(k) _ (k) (k) (k) (k) (k)
g, = (gn,07 9n1:9n2: - - - 7gn,max{fk+n(k—f—t;g),Z—f—cl—I—cz(n—tz—1)}—27 gn,max{fk_,_n(k-‘rt;;),Z+01+C2(n—t2—1)}—1’ 0,0

Thus, for n > ¢}, l(n) = max{fiin(k +t}),Z + c1 + c2(n — t; — 1)}. Hence, in the

(k) (k)

second (and final) case considered, g,; for all i (and, consequently, g»~) can be derived

by applying the general recursion (i.e. equations (3.3) through (3.6)) where

I(n) u+ci(k+n) ifn=0,1,2,...,%;,
n)=
max{u+c(k+t;) +ca(n—=1;), Z+c1+cn—t; — 1)} ifn=t,+1,¢ +2,¢;+3,....
(3.2.2)
starting with g(()’f} = Qutek—j€1,] =0,1,2, ... ;u+cik— 1.
For n =1,2,...,t;, it is observed that since ggfi“lkﬁ =0V {=cn,cin+1,cn+
2,..., it follows from (2.4), (2.6), and (2.10) that
utci(k+n)—1 utci (k+n)—1
k k k
h;7)—j = Z giz—)l,ﬁ—clBj‘M = Z aj+fg$1—)1,l—clsv 0,0,...,0]. (323>
{=c1 {=cq

Hence, substituting (3.2.3) into (2.11) immediately yields

ut-ci (k+n)—1

k k
c;SiLg(u) = Z anggh)LHls. (3.2.4)
l=cq
For n = tk +1, tk +2, tk: +3,. gn,max{u+cl(k—&—t;;)—CQtZ,Z-l-cl—cz(l+t};)}+€ =0V (i= oM, Col +
1,con 4+ 2,... , and so it follows from (2.4), (2.6), and (2.10) that
Z4e1—1 max{ fr4n(k+t}),Z+c1+ca(n—1—t5)} -1
k k k
hfl,)fj = Z gflf)l,ffcl Bjio+ Z ggzl,echBjJré
{=cq V=Z+co
Z+c1—1 maX{fk+n(k+tz)7Z+C1+C2(nflftz;)}fl
k k
= Z ajJrggq(l_)M_qs + Z aj+@gq(l_)1’€_028, 0,0,...,0
f=cy {=Z+ca

17

Hence, substituting (3.2.5) into (2.11) immediately yields

Z+e1—1 max{ fin(k+t}),Z+c1+ca(n—1-13)}-1

k k k

O\ (u) = > g oS+ > g 1o S (3.2.6)
l=c1 V=7 +co

Finally, (3.2.4) and (3.2.6) can be substituted into (2.17) to obtain a form for ¢, ;(u).

18

4 Numerical Example

In this section, the application of the proposed algorithm is illustrated with a numerical
example. The example chosen to apply the computational algorithm developed in this
thesis is intended to demonstrate that for the ordinary model (i.e. 7, = aj for k =
1,2,3,...), the higher the premium rate the lower the probability of ruin, and similarly,
the higher the threshold level the lower the probability of ruin. Specifically, the ordinary
interclaim times have pmf

j (4.1)

[(0.075)(0.925) " if j =1,2,3,...,n, — 1,
(0.925)"~1 if j = n,.

In other words, the pmf (4.1) is that of a truncated geometric distribution with all the
probability mass on {n,,n, + 1,n, + 2,...} assigned to the support value n,. Clearly,
Z?il a; = 1. Moreover, as n, becomes larger, the closer {aj}?il approximates this
particular geometric distribution having mean 40/3 ~ 13.333. For this example, n, = 100

so that a,, = 0.00044. Let the individual claim amount distribution be given by the pmf
o= G(j—1) = Gj), j €L, (4.2)

where G(z) = (1 + x/30)™*, x > 0, is the survival function of a Pareto distribution
with mean 10. Note that m, = oo, which implies that |Ur| is distributed on Z* and
Ur— € {min{c1, Z + co}, min{c1, Z + o} + 1, min{c;, Z + 2} +2,.. . }.

Tables 1 to 4 display the values (rounded to 5 significant figures) of

n—1 xT Yy
Upoy() = PriT <n,Ur_ <a,|Up| <y | Up=u}l =) > Y ;u)

¢=1 j=min{c1,Z+c2} j=1

(4.3)
for a discrete-time risk process with 4 = 50, and varying combinations of ¢;, ¢, and Z,
having the above interclaim time and claim amount distributions. The values in Tables
1 to 4 were generated by first implementing the general recursive procedure drawn out
in Section 3 using Microsoft Visual C++ (Version 6.0), and then summing the trivariate
probabilities computed via (2.13), (2.14), and (2.18). The four tables containing the values
of U, ., (50) correspond numerically to the following four different scenarios of premium

rate combinations:
(1) ey =2and ¢ = 1;
(2) ¢4 =3 and ¢y = 1;

19

(3)
(4)

c; =3 and cp = 2;

¢y =4 and ¢y = 2.

Within each table, the key is as follows:

(1)
(2)
(3)
(4)

threshold level Z = 20;
threshold level Z = 40;
threshold level Z = 60;

threshold level Z = 80.

The following observations are made concerning the results in Tables 1 to 4:

()

When ¢; = 2 and ¢ = 1 (i.e. Scenario (1)), for every combination of z, y, n, and Z,
the value of W,, , ,(50) is greater than that resulting from Scenario (2) where ¢; = 3
and ¢ = 1. This is to be expected as the probability of ruin increases as the value
of the premium below the threshold level decreases. This observation is also true
when comparing ruin probabilities for Scenario (3) where ¢; = 3 and ¢ = 2 and

Scenario (4) where ¢; =4 and ¢y = 2.

Under all scenarios, for set values of n, x, and y, the value of ¥,, , ,(50) decreases as
the size of the threshold level increases. The reason for this is that, in each scenario,
co is chosen to be less than c¢;. Hence, the higher the threshold value, the longer
that a higher premium is being received, and subsequently, the lower the probability

of ruin.

Note that the percentage decrease in the probability of ruin when going from, say
threshold level Z = 20 to Z = 40, is always greater for set values of x, y, and n,
in Scenario (2) than in Scenario (1) as the difference between ¢; and ¢y is greater.
This is true of the percentage decrease in the ruin probability when comparing any
threshold level to a higher one. The same holds true when comparing Scenario (3)
to Scenario (4). Also, when analyzing Scenario (2) and Scenario (3), where the value
of ¢5 changes as opposed to ¢;, the same changes are observed. That is, for identical
values of n, x, and y, the greater the difference between ¢; and ¢y, the greater the

decrease in the probability of ruin as the threshold level is increased.

20

Table 1 — Values of VU, , ,(50) corresponding to Scenario (1)

(a) z =10
n = 50 n = 100 n = 250
0.0026025 0.0045832 0.0075309
0.0021084 0.0034356 0.0053669
0.001468 0.0022639 0.0034135
0.0011555 0.0016296 0.0022992
0.0036767 0.0064757 0.010641
0.0029782 0.0048534 0.007582
0.0020735 0.0031979 0.0048219
0.0016322 0.0023019 0.0032476
0.0040674 0.0071643 0.011773
0.0032944 0.0053691 0.0083877
0.0022936 0.0035375 0.005334
0.0018054 0.002564 0.0035925

Table 1 — Values of VU, , ,(50) corresponding to Scenario (1)

(b) x =25
n = 50 n = 100 n = 250
0.0097188 0.017569 0.029132
0.0063468 0.01045 0.016347
0.0043531 0.0067598 0.010182
0.0034271 0.0048448 0.0068063
0.014632 0.026475 0.043915
0.0094552 0.015574 0.024363
0.006481 0.010067 0.015162
0.0051023 0.0072136 0.010132
0.016822 0.030453 0.050522
0.010799 0.017791 0.027831
0.0073991 0.011494 0.017312
0.0058251 0.0082357 0.011567

Table 1 — Values of VU, , ,(50) corresponding to Scenario (1)

(¢) =150

n = 50 n = 100 n = 250

y=10 (1) 0.020066 0.036394 0.060197
(2) 0.014524 0.023815 0.036866
(3) 0.0082123 0.012639 0.018808
(4) 0.006431 0.0089691 0.012393
y=25 (1) 0032016 0.058061 0.096001

(1)

(2) 0.023354 0.038283 0.059217
(3) 0.01209 0.019976 0.029695
(4) 0.010168 0.014164 0.019542

y=>50 (1) 0.038396 0.069611 0.11506
(2) 0.02821 0.046231 0.071472
(3) 0.015503 0.023826 0.03539
(4) 0.012131 0.016883 0.023268

23

Table 2 — Values of V,, , ,(50) corresponding to Scenario (2)

24

(a) z =10
n = 50 n = 100 n = 250

y=10 (1) 0.001427 0.0024736 0.0040444
(2) 0.0010474 0.0016559 0.0025506

(3) 0.00060651 0.00091592 0.0013801

(4) 0.00040534 0.0005642 0.00080792

y=25 (1) 0.0020215 0.0035044 0.0057298
2) 0.0014835 0.0023454 0.0036126
0.00085893 0.0012971 0.0019545

0.00057403 0.00079899 0.0011441

0.0022394 0.0038822 0.0063477

0.0016433 0.002598 0.0040017

0.00095136 0.0014367 0.0021648

0.00063579 0.00088495 0.0012672

Table 2 — Values of V,, , ,(50) corresponding to Scenario (2)

(b) x =25
n = 50 n = 100 n = 250
0.0072794 0.012946 0.021346
0.0035266 0.0055993 0.0086089
0.0019846 0.0029998 0.0045016
0.001318 0.0018268 0.0025962
0.011084 0.019725 0.032533
0.0052756 0.0083773 0.012879
0.0029658 0.0044829 0.0067262
0.0019691 0.0027289 0.003877
0.012829 0.022842 0.037679
0.0060393 0.0095907 0.014744
0.0033929 0.0051286 0.0076943
0.0022524 0.0031212 0.0044336

Table 2 — Values of V,, , ,(50) corresponding to Scenario (2)

(¢) =150

n = 50 n = 100 n = 250
0.018038 0.032474 0.053591
0.010708 0.016924 0.025652
0.0040137 0.0059966 0.0088687
0.002624 0.0035677 0.0049648
0.029145 0.052476 0.086581
0.017556 0.027742 0.042016
0.0063912 0.0095397 0.014092
0.0041731 0.005665 0.0078693
0.035232 0.06343 0.10463
0.021499 0.033967 0.051415
0.0076607 0.011427 0.016865
0.0049975 0.0067764 0.0094013

(a) z =10

Table 3 — Values of VU, , ,(50) corresponding to Scenario (3)

n = 50

n = 100

n = 150

0.00058146
0.00052314
0.00040973
0.00034644

0.00082356
0.00074092
0.00058027
0.00049063

0.00091224
0.00082068
0.00064271
0.00054343

27

0.00069206
0.00061361
0.00047638

0.0003944

0.00098023
0.00086905
0.00067465
0.00055855

0.0010858
0.0009626
0.00074726
0.00061865

0.00072053
0.00063714
0.00049425
0.00040765

0.0010205
0.00090237
0.00069996
0.00057732

0.0011304
0.00099951
0.00077529
0.00063944

Table 3 — Values of VU, , ,(50) corresponding to Scenario (3)

(b) x =25
n = 50 n = 100 n = 150
0.0021687 0.0025867 0.0026911
0.0017347 0.0020343 0.0021101
0.001343 0.0015598 0.0016164
0.0011342 0.0012884 0.0013298
0.0032612 0.00389 0.0040468
0.0025936 0.0030413 0.0031545
0.002007 0.0023309 0.0024153
0.0016949 0.0019252 0.001987
0.0037455 0.0044679 0.0046479
0.002968 0.0034803 0.0036098
0.0022961 0.0026666 0.0027631
0.001939 0.0022023 0.002273

Table 3 — Values of VU, , ,(50) corresponding to Scenario (3)

(¢) =150

n = 50 n = 100 n = 150
0.0051004 0.006061 0.00629
0.0039945 0.0046369 0.0047917
0.0027074 0.0031148 0.0032169
0.002282 0.0025652 0.0026384
0.0082025 0.009744 0.01011
0.0064303 0.0074589 0.0077058
0.0043101 0.0049548 0.0051159
0.0036323 0.0040797 0.0041948
0.0098941 0.01175 0.01219
0.0077703 0.0090085 0.0093049
0.0051653 0.0059346 0.0061263
0.0043525 0.0048857 0.0050225

(a) z =10

Table 4 — Values of VU,, , ,(50) corresponding to Scenario (4)

n = 50

n = 100

n = 150

0.00035685
0.00030415
0.00020934
0.00015574

0.00050675
0.00043188
0.00029724
0.00022113

0.00056205
0.00047899
0.00032964
0.00024523

30

0.00017674

0.00035392

0.00024223
0.0004229

0.00060054
0.00050254
0.00034392
0.00025093

0.00066608
0.00055735
0.00038142
0.00027829

0.00044001
0.00036703
0.00025132
0.00018289

0.00062483
0.00052115
0.00035683
0.00025966

0.00069302
0.00057799
0.00039573
0.00028796

Table 4 — Values of VU,, , ,(50) corresponding to Scenario (4)

(b) x =25

n = 50 n = 100 n = 150

(1) 0.0016479 0.0019536 0.0020301
(2) 0.0011105 0.0012891 0.0013348
(3) 0.00074915 0.00086406 0.00089501
(4) 0.00055477 0.00062682 0.00064739

(1) 0.0024981 0.0029615 0.0030775
(2) 0.0016656 0.0019332 0.0020017
(3) 0.0011228 0.0012949 0.0013412
(4) 0.00083135 0.00093916 0.00096993

(1) 0.0028833 0.0034182 0.003552
(2) 0.0019094 0.002216 0.0022945
(3) 0.0012866 0.0014837 0.0015367
(4) 0.00095255 0.001076 ~ 0.0011112

31

Table 4 — Values of VU,, , ,(50) corresponding to Scenario (4)

(¢) =150
n = 50 n = 100 n = 150
0.0046033 0.0054422 0.0056415
0.0030205 0.0034586 0.0035646
0.0015689 0.0017894 0.0018466
0.0011531 0.0012866 0.0013233
0.0074799 0.0088405 0.0091628
0.0049229 0.0056322 0.0058031
0.002507 0.0028569 0.0029472
0.0018416 0.0020527 0.0021106
0.0090825 0.010732 0.011122
0.0060012 0.0068618 0.0070686
0.0030114 0.0034297 0.0035374
0.0022112 0.002463 0.002532

5 References

Alfa, A. S. and Drekic, S. (2007). “Algorithmic analysis of the Sparre Andersen model
in discrete time.” ASTIN Bulletin 37, in press.

Alfa, A. S. (2004). “Markov chain representations of discrete distributions applied to
queueing models.” Computers & Operations Research 31, 2365-2385.

Grassmann, W. K. (2000). Computational Probability, Kluwer Academic Publishers,

Boston.

Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd edition,

Academic Press, New York.

33

6 Appendix

The following is the code used to implement the computational algorithm. It outputs the

results in the tables of the numerical example.

// ThesisResults.cpp : Defines the entry point for the console
application.

//

#include "stdafx.h"

int _tmain(int argc, _TCHAR* argv[])
{
return O;

b

#include <iostream>
#include <math.h>
#include <ctime>
#include <string>

using namespace std;

//instantiate global variables that are unchanging through the program
int u;

int w;

int Z;

int ci;

int c2;

int minBound;

int maxBound;

//define all vectors that are used later
double * el;

double * s;

double *x S;

double * gnMaxBound(int k, int n, int j);
double * gnZ(int k, int n, int j);

34

double * gFinal(int k, int n, int i);

//ALWAYS CHANGE PARAMETERS

// [n-2] [50+c1(96+n)] [w]

//set 3-d matrix parameters initially to save memory
double * storage[248] [742] [100];

double * last;

//file to write to as go through program

FILEx file;

//calculates probability of certain waiting time
double amtwt(int i)
{

if (i<w)

{

return .075*%pow(.925,(i-1));

}
return pow(.925,w-1);

//function that takes minimum of 2 values
double min (int a,int b)
{
if (a<b)
return a;
return b;
}
//function that takes maximum of 2 values
double max (int a,int b)
{
if (a > b)
return a;
return b;

b

//initializing all pointer arrays and counters

35

void initialize(int n)

{

minBound

maxBound

min(cl, Z+c2);

max(cl, Z+c2);

S = new double * [w];

rows

for(int y=0;y<w;y++)
S[yl=new double [w];

row

//initializing matrix S

for(int i=0;i<w;i++)

{

for(int q=0;q<w;g++)

{

if (g==i+1)
S[i] [q]=.925;

else

S[i] [q]=0;

// dynamic allocation of pointer array for

// dynamic allocation of columns for each

//initializing default entry in storage matrix

last = new double [w];

for (int a=0; a<w;a++)

{

last[a]=5;

}

//initializing el

el = new double [w];

el1[0]=1;

for (int h=1; h<w; h++)

{

36

el [h]=0;

}

//initializing s

s = new double [w];

for(int d=0; d<(w-1); d++)

{
s[d]=.075;

}

s[w-1]=1;

//inputting last as default entry in storage matrix

for(int 1=0;1 < (n-2);1++)

{
for(int p=0;p < utcl*(w+n-4);p++)
{
for(int t=0;t < min(n-2,w); t++)
{
storage[1] [p] [t]=last;
}
}
}
}

//function that writes (final) elements of storage matrix to a file
void writeToFile(int n)

{
//FILEx f = fopen(filename.c_str(), "wb");

int start=0;
if (n > (w+3))

start=n- (w+3) ;

for(int l=start;1l<(n-2);1++)
{

37

for(int m=0;m < utcl*(w+n-4) ;m++)
{
for(int a=0;a<min(n-2,w); a++)
{
int wasEmpty;
if (storage[1l] [m] [a] [0] == 5)

{

wasEmpty = 1;

fwrite(&wasEmpty, 1, sizeof(int), file);
}

else

{

wasEmpty = O;

fwrite(&wasEmpty, 1, sizeof(int), file);

furite(storage[l] [m] [a], 100, sizeof(double), file);

//cout << "Wrote non-empty stuff at " << 1 << " " <K<K m <K< " " <K a
<< endl;

X

+
//fclose(f);
}

//function reads and inputs elements into storage matrix from file
written to
void readFromFile(string filename)

{
FILEx f = fopen(filename.c_str(), "rb");
int u,n,w;
fread(&u, 1, sizeof(int), f);

fread(&n, 1, sizeof(int), f);
fread(&w, 1, sizeof(int), f);

38

//cout << "Reading " << filename << " with u=" << u << ", n=" <<'n <<
", w=" << k << endl;

int start=0;

/xif (n >= (w+3))

start=n-w-3;x*/

for(int l=start;1l< (n-2);1++)

{
for(int m=0;m<u+cl*(w+n-4) ;m++)
{
for(int a=0;a<min(n-2,w); a++)
{

int wasEmpty;
fread(&wasEmpty, 1, sizeof(int), f);

if (wasEmpty == 0)

{

//cout << "Found non-empty stuff at " << 1 << " " K<m<K" "< a

<< endl;
storage[1l] [m] [a] = new double[100];
fread(storage([1] [m] [a], 100, sizeof(double), f);
}

}
fclose(f);
}
//function multiplies a vector by a scalar and returns a "new"
resulting vector
double * vecScaMult(double vec[],double scalar)
{
double * res=new doublel[w];
for(int i=0;i<w;i++)
{
res[i]=vec[i] *scalar;

¥

39

return res;

}

//multiplies a vector by a matrix (using shortcut) and returns a "new"
vector

double * vecMatMult(double vec[],double * mat[])

{
double * res= new double [w];
res[0] = 0O;
for(int i=1; i<w;i++)
{
res[i]=vec[i-1]*mat[i-1] [i];
}
return res;

}

//dot product of 2 vectors
double vecMult(double vecl[],double vec2[])
{ double prob =0;
for (int i=0;i<w;i++)
{
prob+=vecl[i]*vec2[i];
}
return prob;
}
//this function does operations on vectors (adding the first to the
second,
//which is returned) instead of creating new one
void vecAdd(double vecl[],double vec2[])
{
for (int i=0;i<w;i++)
{
vec2[i]l=vec1[i]+vec2[i];
}
}
//two vectors are added together, and returned as a "new" vector
double * vecAdd2(double vecl[],double vec2[])

40

{
double * add = new double [w];
for (int i=0; i< w; i++)
{
add[i] = vecl[i]+vec2[i];
}
return add;
}
//survival function of a Pareto distribution having mean 10
double pa(double j)
{
return pow((double) (1.0+j/30.0),-4.0);
}
//claim amount pdf
double amtcl(double i)
{
if (i>0)
{
return (pa(i-1)-pa(i));
}
return O;
}
//ensure this is pos (another version of claim amount pdf)

/*double amtcl(double i)

{
double check=0;
if (i>0)
{
check = (pa(i-1)-pa(i));
}

if (check>=0 && check <=1)
return check;

return O;

I/

//Kronecker delta function

41

double delta(int a,int b)
{

if (a==b)

{

return 1;

}

return O;
}
//obtains x_t required for 1(n)
int getX (int t)
{

if (u >= Z) return O;
for (int i=t; i > 0;i--)
{

if (utci*x(i-1) < 2)

return i;
}

return -1;

}

//obtains highest "i" value in g(n,k,i) for which the latter is not
zero
int limit (int k,int n)
{
int xk = getX(k);
int limitgl = u+cl*xk+c2*(k-xk);
if (limitgl > Z)
{
if (mn > 0)
return max(limitgl+c2*n,Z+cl+c2*(n-1)) ;
return limitgl;

¥

int tkStar = (int) ceil((double) ((Z-(u+clxk)+1)/c1));
if (n <= tkStar)

42

{
return utcl*(k+n);
}
return max(u+cl*(k+tkStar)+c2*(n-tkStar) ,Z+cl+c2*(n-1-tkStar));
}
//obtains g(n=0,k,1i)
double * gO(int k,int j)
{
//don’t use "new" to free up storage space
int xk = getX(k);
double * prob;
prob=vecScaMult (el,amtcl (u+cl*xk+c2* (k-xk)-j));
storage[0] [j] [k-1]=prob;
return prob;
}
//function for i=0,1,....,min(minBound,1(n))-1, returns g(n>0,k,i)
double *gnMinBound(int k,int n,int i)
{
//resulting g(n,k,i) vector that takes up memory space and is place in
storage
double * ana=new double [w];
for(int b=0;b<w;b++)
{
anal[b]=0;
}
int 1limKNlessl = limit(k,n-1);
//int 1imKN = limit(k,n);
//points to g(n-1,k,j) term to be used in first sum, changes with each
iteration
double * bob;
for(int j=0; j < min(Z,limKNlessl);j++)
{
if (storage[n-11[j] [k-11[0]!=5)
{
bob=storage [n-1] [j] [k-1];

43

+
else if(n==1)

{

bob=g0(k, j) ;

}

else if (j < min(minBound,limKNless1))
{

bob=gnMinBound (k,n-1,3);

}

else if (j< min(maxBound,limKNless1))
{

bob=gnMaxBound (k,n-1,3);

}

else if (j< min(Z+cl,limKNlessl))

{

bob=gnZ(k,n-1,3);

}

else

{

bob=gFinal (k,n-1,j);

}

//vecMult does not create new storage space
ana[0]+=amtcl(j-i+cl)*vecMult (bob,s);
}
//points to g(n-1,k,j) term to be used in second sum, changes with
each iteration
double * dad;
for(int j=Z; j< limKNless1;j++)
{
if (storage[n-1][j] [k-11[0]!=5)
{
dad=storage [n-1] [j] [k-1];
}
else if(n==1)

44

{
dad=g0(k,j);
}
else if(j < min(minBound,limKNless1))
{
dad=gnMinBound (k,n-1,j);
}
else if (j < min(maxBound,limKNless1))
{
dad=gnMaxBound (k,n-1,j);
}
else if (j < min(Z+cl,limKNlessl))
{
dad=gnZ(k,n-1,j);
}
else
{
dad=gFinal (k,n-1,3j);
}
//added to first entry in vector that holds this g(n,k,i)
ana[0]+=amtcl(j-i+c2)*vecMult(dad,s) ;
}
//store corresp to i, which now varies

storage[n] [i] [k-1]=ana;

return ana;
}
//returns and stores value of g(k,n,i) for
i=minBound,min(maxBound,1(n))-1
double * gnMaxBound(int k,int n,int i)
{

int 1limKNlessl = limit(k,n-1);

//int 1limKNlessl = limit(k,n);

//code for case with maximum bound = Z+c2

45

if (maxBound == (Z+c2))

{

//points to component required for first term (that is,
g(n-1,k,i-c1))

double * first;

if (storage[n-1] [i-c1] [k-1] [0] !=5)

{
first=storage[n-1] [i-c1] [k-1];
}
else if(n==1)
{
first=g0(k,i-cl);
}
else if (i < min(minBound,limKNless1)+c1)
{
first=gnMinBound(k,n-1,i-c1);
}
else if (i < min(maxBound,limKNless1)+c1)
{
first=gnMaxBound(k,n-1,i-c1);
}
else if (i < min(Z+c1,limKNlessl)+cl)
{
first = gnZ(k,n-1,i-cl);
}
else
{
first = gFinal(k,n-1,i-cl);
}

//points to first term, that is, g(n-1,k,i-c1)*S
double * sec;

sec=vecMatMult (first,S);

//creates "new" memory space for this g(n,k,i) in storage matrix,

46

which cannot be deleted
double * ana = new double[w];
for(int b=0;b<w;b++)
{
ana[b]=0;
}

//points to g(k,n-1,j) for each iteration in first sum
double * bob;
for(int j=(i-c1+1);j < min(Z,limKNless1);j++)
{
if (storage [n-1] [j] [k-1] [0] I=5)

{

bob=storage [n-1] [j] [k-1];

+

else if(n==1)

{

bob=g0(k, j);

+

else if(j < min(minBound,limKNless1))
{

bob=gnMinBound (k,n-1,j);

}

else if (j < min(maxBound,limKNless1))
{

bob=gnMaxBound (k,n-1,j);

+

else if (j < min(Z+cl,limKNlessl))
{

bob=gnZ(k,n-1,j);

}

else

{

bob=gFinal(k,n-1,7j);

}

47

//obtains contribution of first sum to first entry in the resulting
vector

ana[0]+=amtcl(j-i+cl)*vecMult (bob,s);

+

//.points to g(k,n-1,i) for each iteration in second sum
double * dad;
for(int j=Z; j< limKNlessl;j++)

{

if (storage[n-1] [j] [k-1] [0] !=5)
{

dad=storage[n-1][j] [k-11;
}
else if(n==1)
{

dad=g0(k,j);
}
else if(j < min(minBound,limKNless1))
{

dad=gnMinBound(k,n-1,3j);
}

else if (j < min(maxBound,limKNless1))
{

dad=gnMaxBound (k,n-1,3j);

}

else if (j < min(Z+cl,limKNless1))
{

dad=gnZ(k,n-1,j);

}

else

{

dad=gFinal (k,n-1,j);

}

48

//obtains contribution of second sum to first entry in resulting
vector

ana[0]+=amtcl(j-i+c2)*vecMult(dad,s);

+

vecAdd(ana,sec); //modify sec which points to new space
//"ana" can be deleted as "sec" is required for storage
delete[] ana;

storage[n] [i1] [k-1]=sec;

return sec;

3

//code for case with maximum bound = cl

//points to g(n-1,k,i-c2) in first term
double * first;

if (storage[n-1] [i-c2] [k-1][0]!=5)

{
first=storage[n-1] [i-c2] [k-1];
}
else if(n==1)
{
first=g0(k,i-c2);
}
else if (i < min(minBound,limKNless1)+c2)
{
first=gnMinBound(k,n-1,i-c2);
}
else if (i < min(maxBound,limKNless1)+c2)
{
first=gnMaxBound(k,n-1,i-c2);
}
else if (i < min(Z+c1,limKNlessl)+c2)
{

first = gnZ(k,n-1,i-c2);

49

else

{
first = gFinal(k,n-1,i-c2);
+

//points to first term, that is g(k,n-1,i-c2)*S
double * sec;

sec=vecMatMult(first,S);

//vector that holds values of second term in g(k,n,i)
double * ana = new double[w];
for(int b=0;b<w;b++)
{
ana[b]=0;
}

//points to g(k,n-1,j) for each iteration in first sum
double * bob;
for(int j = 0;j < Z;j++)

{

if (storage[n-1] [j] [k-1] [0] !=5)
{

bob=storage [n-1] [j] [k-1];

}

else if(n==1)

{

bob=g0(k, j) ;

+

else if(j < min(minBound,limKNless1))
{

bob=gnMinBound (k,n-1,j);

+

else if (j < min(maxBound,limKNless1))
{

50

bob=gnMaxBound (k,n-1,j);

}

else if (j < min(Z+c1l,limKNless1))
{

bob=gnZ(k,n-1,7j);

}

else

{

bob=gFinal(k,n-1,j);

}

//adds contribution of each component in first sum to vector
corresponding to second term
ana[0]+=amtcl(j-i+cl)*vecMult (bob,s);
X

//points to each g(k,n-1,j) for each iteration in second sum of
second term

double * dad;

for(int j = (i-c2+1); j< limKNlessl;j++)

{
if (storage[n-1] [j] [k-1] [0] !=5)
{
dad=storage[n-1][j] [k-1];
}
else if(n==1)
{
dad=g0(k,j);
+
else if(j < min(minBound,limKNless1))
{
dad=gnMinBound (k,n-1,3j);
+
else if (j < min(maxBound,limKNless1))
{

o1

dad=gnMaxBound (k,n-1,j);

}

else if (j < min(Z+c1l,limKNless1))
{

dad=gnZ(k,n-1,j);

}

else

{

dad=gFinal(k,n-1,j);

}

//each component of second sum is added to first entry of
//vector holding second term values
ana[0]+=amtcl(j-i+c2)*vecMult(dad,s);
+
vecAdd(ana,sec); //modify sec which points to new space
//"ana" can be deleted as it created "new" space and is no longer
required
delete[] ana;
storage[n] [1] [k-1]=sec;
return sec;
+
//returns and stores value of g(k,n,i) for
i=maxBound, ...min(Z+c1,1(n))-1
double * gnZ(int k,int n,int i)
{
int 1imKNlessl = limit(k,n-1);
//int 1limKNlessl = limit(k,n);
//points to g(k,n-1,i-cl) in first term of g(k,n,i)
double * first;
if (storage[n-1] [i-c1] [k-1] [0] !=5)
{
first=storage[n-1] [i-c1] [k-1];
}
else if(n==1)

D2

{
first=g0(k,i-cl);
}
else if (i < min(minBound,limKNlessl)+c1)
{
first=gnMinBound(k,n-1,i-c1);
}

else if (i < min(maxBound,limKNlessl)+c1)
{

first=gnMaxBound(k,n-1,i-c1);

}

else if (i < min(Z+c1,1imKNlessl)+cl)

{

first

3

else

gnZ(k,n-1,i-c1);

first = gFinal(k,n-1,i-cl);

//points to first term of g(k,n,i)
double * sec;

sec=vecMatMult (first,S);

//points to g(k,n-1,i-cl) in second term of g(k,n,i)
double * third;

if (storage[n-1] [i-c2] [k-1] [0] !=5)

{

third=storage[n-1] [i-c2] [k-1];

}

else if(n==1)

{

third=g0(k,i-c2);

}

else if (i < min(minBound,limKNless1)+c2)

53

{
third=gnMinBound (k,n-1,i-c2);

}
else if (i < min(maxBound,limKNlessl)+c2)
{
third=gnMaxBound(k,n-1,i-c2);
}
else if (i < min(Z+c1,1imKNlessl)+c2)
{
third = gnZ(k,n-1,i-c2);
}
else
{
third = gFinal(k,n-1,i-c2);
}

//points to second term of g(k,n,i)
double * fou;
fou=vecMatMult (third,S);
vecAdd(fou,sec); //modify sec which points to new space
//’fou’ obtained from ’vecMatMult’ created new space, that is no
longer needed
delete[] fou;
//creates new space to hold vector that is third term of g(k,n,i)
double * ana = new double[w];
for(int b=0;b<w;b++)
{
ana[b]=0;
}

//points to g(k,n-1,j) on each iteration of first sum in third term
double * bob;
for(int j = (i-c1+1);j < min(Z,limKNlessl);j++)
{
if (storage[n-1][j] [k-1] [0]!=5)
{

o4

bob=storage [n-1] [j] [k-11;

}

else if(n==1)

{

bob=g0(k, j) ;

}

else if(j < min(minBound,limKNless1))
{

bob=gnMinBound (k,n-1,3j);

}

else if (j < min(maxBound,limKNless1))
{

bob=gnMaxBound (k,n-1,3);

}

else if (j < min(Z+cl,limKNlessl))
{

bob=gnZ(k,n-1,3);

}

else

{

bob=gFinal (k,n-1,j);

}

//add contribution of first sum to first entry of vector (of third
term) on each iteration

ana[0]+=amtcl(j-i+cl)*vecMult (bob,s);

}

//points to g(k,n-1,j) on each iteration of second sum in third term
double * dad;
for(int j = (i-c2+1); j< limKNlessl;j++)
{
if (storage[n-11[j] [k-11[0]!=5)
{
dad=storage[n-1] [j] [k-1];

55

}
else if(n==1)

{
dad=g0(k, j) ;
}
else if(j < min(minBound,limKNless1))
{
dad=gnMinBound (k,n-1,j);
}
else if (j < min(maxBound,limKNlessl))
{
dad=gnMaxBound (k,n-1,j);
}
else if (j < min(Z+cl,limKNless1))
{
dad=gnZ(k,n-1,j);
}
else
{
dad=gFinal (k,n-1,3j);
}

//adds contribution of each compnent in second sum of third term
ana[0]+=amtcl(j-i+c2)*vecMult(dad,s);
b

vecAdd(ana,sec); //modify sec which points to new space
//"ana" which created "new" memory space can now be deleted
delete[] ana;

storage[n] [1] [k-1]=sec;

return sec;

}
//returns and stores g(k,n,i) for i=Z+cl,...,1(n)-1

double * gFinal(int k, int n, int i)

26

{

int 1limKNless1l = limit(k,n-1);

//int 1imKNlessl = limit(k,n);

//points to g(k,n-1,i-c2) of first term
double * first;

if (storage[n-1] [i-c2] [k-1] [0] !=5)

{
first=storage[n-1] [i-c2] [k-1];
}
else if(n==1)
{
first=g0(k,i-c2);
}
else if (i < min(minBound,limKNless1)+c2)
{
first=gnMinBound(k,n-1,i-c2);
}
else if (i < min(maxBound,limKNless1)+c2)
{
first=gnMaxBound(k,n-1,i-c2);
}
else if (i < min(Z+c1,l1imKNlessl)+c2)
{
first = gnZ(k,n-1,i-c2);
}
else
{
first = gFinal(k,n-1,i-c2);
}

//points to first term of g(k,n,i)
double * sec;

sec=vecMatMult (first,S);

//creates "new" memory space for vector that is second term

57

double * ana = new doublel[w];
for(int b=0;b<w;b++)
{
ana[b]=0;
}

//points to g(k,n,j) in each iteration of sum in second term
double * dad;
for(int j = (i-c2+1); j < limKNlessl;j++)

{
if (storage[n-1][j] [k-1] [0] !=5)
{
dad=storage [n-1] [j] [k-1];
}
else if(n==1)
{
dad=g0(k, j);
}
else if(j < min(minBound,limKNless1))
{
dad=gnMinBound (k,n-1,j);
}
else if (j < min(maxBound,limKNless1))
{
dad=gnMaxBound (k,n-1,j);
}
else if (j < min(Z+cl,limKNlessl))
{
dad=gnZ(k,n-1,j);
}
else
{
dad=gFinal (k,n-1,3j);
}

//adds each component of sum to first entry in vector for second term

o8

ana[0]+=amtcl(j-i+c2)*vecMult(dad,s);
}
vecAdd(ana,sec); //modify sec which points to new space
//"ana" must be deleted as it created "new" memory space that is no
longer needed
delete[] ana;
storage[n] [1] [k-1]=sec;
return sec;
}
//computes psi(k,n,k,i,j(u)) for which there are 3 possibilities
//depending on the minimum bound
double psi(int k,int n,int i,int j)
{
int 1imKNlessl = limit(k,n-1);
//int 1limKNless1 = limit(k,n);

if (minBound == c1)

{

if (i < maxBound) //i=cl,....Z+c2-1
{

int 1=i-ci;

//checks storage matrix in case the g(k,n-1,1) required has already
been computed
if (n==1)
{
if (storage[0] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storagel[0] [1] [k-1],s);
return amtcl(i+j)*vecMult(g0O(k,1),s);
}
if (1 < min(minBound,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnMinBound(k,n-1,1),s);

59

}
if (1 < min(maxBound,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnMaxBound(k,n-1,1),s);
}
if (1 < min(Z+c1,limKNlessl))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnZ(k,n-1,1),s);
}
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gFinal(k,n-1,1),s);
}

else if (i < Z+cl) //i=Z+c2,...,Z+cl-1
{

int 1=i-ci;

int m=i-c2;

double * termil;

double * term?2;

//checks storage matrix in case the g(k,n-1,1) required has already
been computed
if (n==1)
{
if (storage[n-1] [1] [k-1] [0] !=5)
terml = storage[n-1][1] [k-1];

else

terml g0(k,1);

if (storage[n-1] [m] [k-1] [0] !'=5)

60

term2 = storage[n-1] [m] [k-1];
else
term2 = g0(k,m);

//’corr’ term required as terml & term2 cannot be overridden
//since they point to element in storage matrix
double * corr;
corr=vecAdd2(terml,term?) ;
double hold = amtcl(i+j)*vecMult(corr,s);
//’CORR’ no longer needed as ’hold’ stores result;
delete[] corr;
return hold;
}
if(1 < min(minBound,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
terml = storage[n-1][1] [k-1];
else
terml = gnMinBound(k,n-1,1);
}
else if (1 < min(maxBound,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
terml = storage[n-1][1] [k-1];
else
terml = gnMaxBound(k,n-1,1);
+
else if (1 < min(Z+c1,limKNlessl))
{
if (storage[n-1] [1] [k-1] [0] !=5)
terml = storage[n-1][1] [k-1];
else
terml = gnZ(k,n-1,1);
//terml = gnZ(k,n-1,1); (previous way of obtaining terml - less

efficient)

61

}

else

{
if (storage[n-1] [1] [k-1] [0] !=5)
terml = storage[n-1][1] [k-1];
else
terml = gFinal(k,n-1,1);
//terml = gFinal(k,n-1,1);

}

if(m < min(minBound,limKNless1))
{
if (storage[n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];
else
term2 = gnMinBound(k,n-1,m);
}
else if (m < min(maxBound,limKNless1))
{
if (storage [n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];
else
term2 = gnMaxBound(k,n-1,m);
}
else if (m < min(Z+c1l,limKNlessl))
{
if (storage[n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];
else
term2 = gnZ(k,n-1,m);
}
else
{
if (storage[n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];

62

else
term2 = gFinal(k,n-1,m);
+
double * corr;
//’corr’ required as neither terml not term2 can be overridden
corr=vecAdd2(terml,term2);
//’hold’ needed temporarily so ’corr’, which pointed to new memory
space can be deleted
double hold = amtcl(i+j)*vecMult(corr,s);
deletel[] corr;

return hold;

+
else //i=Z+cl,...infinity
{

int 1=i-c2;

if (n==1)

{

if (storage[0] [1] [k-1] [0] !=5)

return amtcl(i+j)*vecMult(storage[0] [1] [k-1],s);
return amtcl(i+j)*vecMult(g0O(k,1),s);
}
if(1 < min(minBound,limKNless1))
{

if (storage[n-1] [1] [k-1] [0] !=5)

return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnMinBound(k,n-1,1),s);
}
if (1 < min(maxBound,limKNless1))

{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);

return amtcl(i+j)*vecMult(gnMaxBound(k,n-1,1),s);

+
if (1 < min(Z+c1,limKNlessl))

63

{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnZ(k,n-1,1),s);
}
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gFinal(k,n-1,1),s);
}
}
//case of minimum bound = Z+c2
if (i < maxBound) //i=Z+c2,...cl-1
{

int 1=i-c2;
//checks storage matrix in case the g(k,n-1,1) required has already
been computed
if (n==1)
{
if (storage[0] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storagel[0][1] [k-1],s);
return amtcl(i+j)*vecMult(g0O(k,1),s);
}
if (1 < min(minBound,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnMinBound(k,n-1,1),s);
}
if (1 < min(maxBound,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnMaxBound(k,n-1,1),s);
}

64

if (1 < min(Z+c1,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnZ(k,n-1,1),s);
}
if (storage[n-1][1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gFinal(k,n-1,1),s);
}

else if (i < Z+cl) //i=cl,...Z+cl-1
{
int 1=i-ci;
int m=i-c2;
double * termil;
double * term?2;
//checks storage matrix in case the g(k,n-1,1) required has already
been computed
if (n==1)
{
if (storage[n-1] [1] [k-1] [0] !=5)
terml = storage[n-1][1] [k-1];
else

terml = g0(k,1);

if (storage[n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];

else

term2 = g0(k,m);

double * corr;

//’corr’ points to new space created by vecAdd2
corr=vecAdd2(terml,term2);

double hold = amtcl(i+j)*vecMult(corr,s);

65

//new space created by vecAdd2 is no longer needed

delete[] corr;

return hold;
}
if (1 < min(minBound,limKNless1))
{

if (storage[n-1] [1] [k-1] [0] !=5)

terml = storage[n-1][1] [k-1];

else

terml = gnMinBound(k,n-1,1);
}
else if (1 < min(maxBound,limKNless1))
{

if (storage[n-1] [1] [k-1] [0] !=5)

terml = storagel[n-1][1] [k-1];

else

terml = gnMaxBound(k,n-1,1);

}

else if (1 < min(Z+c1,limKNlessl))

{
if (storage[n-1] [1] [k-1] [0] !=5)
terml = storage[n-1][1] [k-1];
else
terml = gnZ(k,n-1,1);
//terml = gnZ(k,n-1,1);

}

else

{
if (storage[n-1] [1] [k-1] [0] !=5)
terml = storage[n-1][1] [k-1];
else
terml = gFinal(k,n-1,1);
//terml = gFinal(k,n-1,1);

}

66

if(m < min(minBound,limKNless1))
{
if (storage [n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];
else
term2 = gnMinBound(k,n-1,m);
}
else if (m < min(maxBound,limKNless1))
{
if (storage[n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];
else
term2 = gnMaxBound(k,n-1,m);
}
else if (m < min(Z+c1,limKNlessl))
{
if (storage[n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];
else
term2 = gnZ(k,n-1,m);
}
else
{
if (storage[n-1] [m] [k-1] [0] !=5)
term2 = storage[n-1] [m] [k-1];
else
term2 = gFinal(k,n-1,m);
}
double * corr;
//’new’ vector must be created to hold sum of terml & term2
corr=vecAdd2(terml,term?) ;
double hold = amtcl(i+j)*vecMult(corr,s);
//’new’ vector, ’corr’, no longer needed so deleted

delete[] corr;

67

return hold;

}
else //i=Z+cl,....infinity
{

int 1=i-c2;

//checks storage matrix in case the g(k,n-1,1) required has already
been computed
if (n==1)
{
if (storage[0] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storagel[0] [1] [k-1],s);
return amtcl(i+j)*vecMult(g0O(k,1),s);
}

if (1 < min(minBound,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnMinBound(k,n-1,1),s);
}

if (1 < min(maxBound,limKNless1))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnMaxBound(k,n-1,1),s);
}

if (1 < min(Z+c1,limKNlessl))
{
if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gnZ(k,n-1,1),s);
+

68

if (storage[n-1] [1] [k-1] [0] !=5)
return amtcl(i+j)*vecMult(storage[n-1][1] [k-1],s);
return amtcl(i+j)*vecMult(gFinal(k,n-1,1),s);
}
}
//computes psi(n,i,j(u))
double psiO(int n,int i,int j)

{
double prob=0;
if (n>1)
{
for(int a=min(n-1,w);a>0;a--)
{
prob+=amtwt (a)*psi(a,n-a,i,j);
}

//so g’s calculated in increasing order- more efficient

}

if (n<=w) //since first claim must occur before the max. waiting time
{

int xn = getX(n);

int secIndex = u+cl*xn+c2*(n-xn);

return prob+amtwt (n)*amtcl(secIndex+j)*delta(i,secIndex);

}

return prob;

+

//used to write to file while deleting elements
void specialWriteAndDelete(int nChange)

{

//done in ’psicdf’ , hence ’file’ is opened & closed outside of this
method

for(int m=0;m<(u+cl*(nChange+min(nChange-1,w)-1)) ;m++)

69

{
for(int a=0;a<min(nChange-1,w); a++)
{
int wasEmpty;

if (storage [nChange] [m] [a] [0] == B)

{

wasEmpty = 1;

fwrite(&wasEmpty, 1, sizeof(int), file);
}

else
{
wasEmpty = 0;
furite(&wasEmpty, 1, sizeof(int), file);
furite(storage[nChange] [m] [a], 100, sizeof(double), file);
delete[] storage[nChange] [m] [a];
}
}
}
}
//used only to delete (while in ’psicdf’)
void specialDel(int n)
{
for(int m=0;m<(u+cl*(n+min(n-1,w)-1)) ;m++)
{
for(int a=0;a<min(n-1,w); a++)
{
if (storage[n] [m] [a] [0] !=5)
delete[] storage([n] [m] [a];

//test deletion
//storage[n] [m] [a]=0;

70

//computes the sum of psi(l,i,j(u)) for 1=1,...n-1, i=minBound,...x,
j=1,...y

double psicdf(int n,int x,int y)

{

//prob. T<n,i<=x,j<=y

double prob=0;

for (int a=1;a<n;a++)

{

for(int b = minBound;b<(x+1) ;b++)
{

for(int d=1;d<(y+1);d++)

{

prob += psiO(a,b,d);

}

}

//deletes as goes along elements no longer needed
if (a>=(w+3))
{
//of 2 functions below, use first when writing elements to file,
//and second when only deleting
//specialWriteAndDelete (a-w-3);
specialDel (a-w-3);
}
}
return prob;
}
//delete elements not yet deleted at end of program
void deletSto(int n)
{

int start=0;

//in case below, change starting point to account for elements already

deleted throughout

71

if (n > (w+3))
start=n-w-3;
for(int l=start;l < (n-2);1++)
{
for(int m=0;m<(u+c1*(l+min(1l-1,w)-1)) ;m++)
{
for (int a=0;a<min(l-1,w); a++)
{
if (storage[1] [m] [a] [0] !=5)
delete[] storagel[l][m] [a];

//removes S

for(int a=0;a<w;a++)

{

delete S[al;
}

delete[] S;

//removes s

deletel] s;

//removes el;

delete[] eil;

delete[] last;
+
//starts program and console window where parameters are set by user
void main()

{

int n,x,y;

char o;

for (;)

//for(int a=1;a<b;a++)
{

cout << "Please enter the amount of surplus: ";

72

cin >> u;

cout << "\nPlease enter n:";

cin >> n;

cout << "\nPlease enter x:";

cin >> x;

cout << "\nPlease enter y:";

cin >> y;

cout << "\nPlease enter the max waiting time:";

cin >> w;

cout << "\nPlease enter value of the boundary on surplus:";

cin >> Z;

cout << "\nPlease enter amount of premium below the boundary:";
cin >> ci1;

cout << "\nPlease enter amount of premium above the boundary:";
cin >> c2;

cout << "..... calculating....\n"<<endl;

cout.precision(5L);

//initialize storage matrix

initialize(n);

//write elements into storage matrix

//readFromFile ("mem21z20n100.dat"); //need to fix file from
//which reading before run program

//cout << "finished reading in" << endl;

//cout << storagel[0] [1] [1] [0] << endl;

//cout << storage[40][5] [30] [0] << endl;

//cout << storage[10] [4] [3][0] << endl;

clock_t start = clock();

//open ’file’ to which write during program, also needs to be set
before running program

/*file = fopen("mem21z20n250.dat", "wb");

furite(&u, 1, sizeof(int), file);

fwrite(&n, 1, sizeof(int), file);

furite(&w, 1, sizeof(int), file);*/

73

cout << psicdf(n,x,y)<<endl<<endl;
cout << "Took " << (clock()-start)/double(CLK_TCK)/60 <<"

min'"<<endl<<endl;

//write to file remaining elements not written through
’specialWriteAndDelete’

//writeToFile(n);

//global variable ’file’ now closing

//fclose(file);

//delete elements in storage matrix not yet deleted

//deletSto(n);

cout << "\nTo continue enter y, or to quit enter q:";
cin >> o;

if (o == ’q’ || o == Q)

break;

+

74

