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Abstract 

In this thesis, our goal is to achieve customer-specified performance objectives for workloads in a 

database management system (DBMS). Competing workloads in current DBMSs have detrimental 

effects on performance.  Differentiated levels of service become important to ensure that critical work 

takes priority.  

We design a feedback-based admission differentiation framework, which consists of three 

components: workload classifier, workload monitor and adaptive admission controller. The adaptive 

admission controller uses the workload management capabilities of IBM DB2’s Workload Manager 

(WLM) to achieve the performance objectives of the most important workload by applying admission 

control on the rest of the work, which is less important and may or may not have performance 

objectives. The controller uses a feedback-based technique to automatically adjust the admission 

control on the less important work to achieve performance objectives for the important workload. The 

adaptive admission controller is implemented on an instance of DB2 to the test the effectiveness of 

the controller. 
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Chapter 1 

Introduction 

 

Database management systems (DBMS) must accommodate a variety of workloads, which come in 

from different sources, and which may have different service-level objectives. Service-level 

objectives may be time-based, such as a goal to keep the throughput or the response time of a 

workload to be below a certain threshold, or may be hard to quantify, such as a goal to keep the users 

of a database happy and to prevent any aberrant database activity from hampering their day-to-day 

work [1]. Time-based objectives are a standard representation of the performance requirements of the 

workloads and hence, are most commonly known as performance objectives. In essence, a 

performance objective of a workload reflects the workload’s desired resource requirements.  

In a resource constrained environment, achieving the performance objectives of all of the 

workloads may be impossible. Differentiated levels of service become necessary. Our objective in 

this thesis is to design a mechanism which ensures that the performance objectives for the most 

important workload are met, while handling the rest of the work, which is less important and may or 

may not have performance objectives, at the best level possible. For example, if there is a large 

amount of work from a less important application taking up most of the resources in a DBMS, 

deteriorating the performance of a workload from an important application, we can throttle the less 

important application just enough to achieve the performance objective of the  important workload. 

The idea is not to waste scarce system resources on less important work in a DBMS. From here on in 

this thesis, we call the most important workload the primary workload and the other, less important 

workload the secondary workload. 

Admission control is a popular technique used for load control in DBMSs. The load of a workload 

in a system can be regulated by controlling the workload’s admission level, defined as the number of 

queries from that workload that are allowed to execute at any given time. Those queries that are not 

admitted because the workload’s admission level has been reached are placed in a waiting queue so 

that they can be processed at a later time. Therefore, we essentially work on service differentiation 

through admission control, which we will call admission differentiation from here on, to achieve 

performance objectives. In this thesis, we present an architectural framework that applies admission 

control on the secondary workloads so that the primary workload can achieve its performance 
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objective. The framework not only uses admission differentiation to achieve performance objectives 

for a primary workload, but also ensures best-effort service for the secondary workloads.  

Admission control requires accurate calculation of the admission level for the secondary 

workloads. If the admission level is too low, we end up delaying a lot of queries, resulting in an 

underutilized system. If the admission level is too high, we end up admitting too many queries, which 

might result in unfulfilled performance objectives. Therefore, we need an analytical method as 

framework’s decisional underpinning.  

Feedback-based techniques can provide an analytical foundation for achieving a performance 

objective. They use the current performance of the primary workload as feedback to adjust the 

amount of admission control on the secondary workloads. The amount by which the admission 

control level should be adjusted is calculated by using control theory [2]. It enables our framework to 

not only converge onto a performance objective value efficiently but also adapt to unpredictable 

workload changes in the system. Hence, we call the framework feedback-based admission 

differentiation. 

This thesis makes two principal contributions: 

 An architectural framework for feedback-based admission differentiation (Chapter 3). The 

framework achieves performance objectives of a primary workload on an instance of IBM 

DB2. The framework includes a feedback-based control loop that adds to the existing 

workload management capabilities in DB2’s Workload Manager [1]. In the feed-back control 

loop, the current performance of the primary workload is measured and compared to its 

objective, based on which the amount of control on the secondary workload is manipulated at 

regular intervals. 

 An empirical evaluation of the admission controller mechanism (Chapter 4). We test the 

mechanism in different scenarios, in which workloads and performance objectives are varied.  

The rest of the thesis is structured as follows. Chapter 2 presents related work on admission control 

and how it has been used to achieve various performance objectives. Chapter 3 presents an 

architectural framework for feedback-based admission differentiation. We discuss the design and 

implementation of the key functional components involved in the framework that work together to 

achieve performance objectives for the primary workload by applying admission control on the 

secondary workload. Chapter 4 presents a performance analysis of the mechanism. The thesis 
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concludes with an explanation of the lessons learned, suggestions for enhancements and future 

research in this line of work for database management systems. 
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Chapter 2 

Relevant Work 

 

Current research in workload management concentrates on workload performance management. 

Various methods for manipulating the performance of the workloads have been proposed. A query’s 

life in a workload gives us three areas of scope for controlling performance of a workload. The first 

opportunity is to decide whether a new query coming into the system is to be allowed to execute 

immediately or not. Those that are not executed immediately might be delayed (queued) or rejected. 

The second opportunity is to make scheduling decisions for the rejected queries. The third 

opportunity is to control the execution of running queries [3]. These three opportunities have led to a 

significant amount of work, resulting in three important types of resource control in workload 

management: admission control [4-14], query scheduling [8, 9, 13, 15-17] and execution control [18-

21]. Since we use admission control as the resource control technique, we focus on the admission 

control research. 

Admission control has been traditionally used for OLTP workloads to prevent potential problem 

queries from overloading the system. Admission control works by adjusting the multi-programming 

level (MPL), which is the maximum number of queries that are permitted to run concurrently. 

Unfortunately, choosing an MPL is not an easy task. If the MPL is set too high then it leads to 

system overloading and if the MPL is set too low then it leads to system underutilization. Moreover, 

with database systems having to operate in changing workload conditions, the MPL should be 

adaptive. Therefore, it may be difficult for a human system administrator to tune the MPL manually. 

A significant body of work exists on admission control in the form of various feedback-based 

techniques to tune the MPL [4-14]. 

In the rest of this chapter, we present related work on admission control. In Section 2.1, we present 

the work in which admission control was used to control the load of all the workloads running on a 

system. They work on achieving global performance objectives. In Section 2.2, we present the work 

in which admission control has been used to achieve per-class performance objectives. 
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2.1 Load Control 

Most of the early work on feedback-based techniques in applying admission control has focused on 

load control. These techniques aim at achieving an optimal MPL, which is high enough to maximize 

the throughput of the workload in the system and low enough to avoid overloading and performance 

degradation. 

Monkeberg et al [4], Carey et al [5] and Heiss et al [6] focus on interactive transactional workloads. 

Moenkeberg et al [4] measure a performance metric called conflict ratio, which is the ratio of the 

number of locks held by all transactions to the number of locks held by active transactions. If the ratio 

exceeds a critical threshold of 1.3, found experimentally, the admission of new transactions is 

suspended, letting them queue. Otherwise one or more transactions waiting in the queue are admitted. 

Similarly, Carey et al [5] measure the ratio of queued (blocked) transactions to running transactions. 

If the ratio exceeds a threshold of 0.5, the admission of new transactions is suspended. Otherwise, one 

or more transactions are admitted. The work done by Moenkeberg et al [4] and Carey et al [5]  uses 

static thresholds obtained through experiments to determine the amount of admission control to be 

applied. These thresholds may be specific to the test system used to conduct the experiments. 

Unlike Moenkeberg et al and Carey et al, Heiss et al [6] use a more general approach to calculating 

the MPL in the system. They use two heuristic algorithms: incremental steps (IS) and parabolic 

approximation (PA). In the IS algorithm, they start with an arbitrary value for the MPL and then they 

increase the MPL by 1 at regular time intervals and measure transaction throughput. If the throughput 

has increased, then they continue to increase the MPL, or if the throughput has decreased, then they 

decrease the MPL at regular time intervals until the throughput starts to decrease again. In the PA 

algorithm, they use a parabolic function to determine the new MPL. The parabolic function 

approximates the performance in the system using the recent measurements of the performance for 

different MPL values. The maximum of the parabolic function is used as the new MPL. Their 

algorithm is restricted to parabolic performance functions and therefore the algorithm cannot be used 

with performance metrics that do not follow parabolic functions such as query latencies or response 

times which are often used to define service level objectives for workloads in current DBMSs. Their 

goal is to maximize throughput in the system and hence, find the highest possible MPL for the whole 

system that would prevent overloading. In contrast, our goal is to achieve performance objectives for 

a primary workload and hence, find the best possible MPL on the secondary workload. We use 

fundamentals from control theory for calculating the MPL on the secondary workload. 
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Kang et al [7] also use admission control to control the load. They pre-determine the CPU 

utilization of a query and admit it only if its CPU utilization requirement is available in the system to 

service it. Similarly, Elnikety et al [8] also use admission control to provide overload protection for 

web servers by rejecting requests which would overload the server and placing them in a queue. Their 

goal is to see to it that the current CPU utilization does not exceed the system’s capacity. In order to 

admit a query, they pre-estimate the CPU utilization of the query. They add the estimate to the current 

CPU utilization, which is also an aggregated estimate of the CPU utilizations of all the previously 

admitted queries that are running in the system. If the sum is less than the system capacity, then query 

is admitted. Therefore, effectively, they use estimates to admit a query. In contrast, our controller uses 

the primary workload’s current, actual performance to understand the effect of load caused by the 

secondary workload. Based on this feedback, the controller controls the CPU utilization of the 

secondary workload by controlling the secondary workload’s MPL, which determines whether the 

workload’s future, incoming queries can be admitted or not. 

Schroeder [9] uses a combination of queuing theoretic models and feedback-based control to 

determine the optimal MPL for the server. Her approach takes as inputs (from the DBA) the 

maximum allowable thresholds for drop in throughput (from the highest throughput in the system) 

and increase in response time (from the lowest response time in the system) and determines the 

lowest optimal MPL. The queuing theoretic models are used to find a close-to-optimal MPL and then, 

a feedback-based controller compares the current throughput and the current response time with their 

respective thresholds. Based on these comparisons, the controller makes conservative adjustments to 

the determined MPL. Similarly, Kang et al [10] also implement admission control by controlling the 

MPL to control data contention. They measure the system’s data contention in the form of a data 

contention ratio, which is the ratio of the number of locks held by all transactions (blocked and 

active) to the number of locks held by active transactions. Their goal is to achieve a user-specified, 

desired threshold for the data contention ratio. Based on the measured value of the data contention 

ratio and the desired threshold, they use control theory to determine the amount by which the MPL is 

to be tuned. Similarly, we also use fundamentals from control theory to determine the amount by 

which the MPL is to be tuned. However, Kang, Sin and Shin concentrate only on data contention due 

to locking involved between queries running in the system. Our controller approach differs in that our 

framework works with workloads for which CPU contention is the problem. In addition, Kang et al 

cancel admitted transactions that are blocked, waiting for locks, to alter the MPL in the database 

server, but we do not cancel any admitted transactions. 



 

 7 

As explained in the previous chapter, unlike all of the above work, we do not apply admission 

control globally throughout the system to prevent overloads and we do not achieve global 

performance objectives. Instead, we apply admission control on the secondary workloads alone to 

regulate the CPU load caused by them just enough to achieve performance objectives for the primary 

workload. 

 

2.2 Achieving Per-Class Performance Objectives 

There exists a fair amount of work on using admission control to achieve performance objectives for 

individual workloads. The workloads are categorized into workload classes and each class is 

monitored and controlled to achieve its performance objective. 

Brown et al [11] were among the first to work on achieving performance objectives for workload 

classes in a DBMS. They introduced an algorithm called M & M that uses memory allocation and 

MPL to achieve response time objectives for workload classes. They classify queries into workload 

classes according to their performance objectives. Then, they use a set of heuristics to determine the 

MPL and the memory allocation for each workload class. The heuristics filter the search space of 

possible solutions of combinations of the MPL and the memory allocation for a workload. These 

heuristics underappreciate the interdependencies among the workloads. Workloads are dependent on 

one another because they compete for shared resources. For example, if the MPL of a workload is 

increased, this improves the performance of the workload, but it may result in increased response time 

for the other workloads. Brown et al solve this dependency problem by incorporating performance 

feedback along with their heuristics. They measure the response time of a class regularly after a 

certain number of query completions and compare it to the objective. Based on the results of the 

comparison, they tweak the MPL and the memory allocation settings. Our work is different from M & 

M, because we don’t try to logically partition the available resources between various workload 

classes to achieve their performance objectives by performing direct resource allocation. We try to 

achieve performance objectives in an overloaded environment by sharing the available resources 

among the workload classes. Our admission differentiation uses the interdependence of the workload 

classes by using admission control on the secondary workloads to affect the performance of the 

primary workload. 
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The M&M is devoid of any knowledge regarding the business importance of the workloads. Pang 

et al [12] integrate the importance of the workloads into their MPL and memory settings. Pang et al 

classify queries into workload classes based on their importance. Like M&M, the algorithm of Pang 

et al achieve the response time objective of a class by measuring the response time of the class 

regularly after a certain number of query completions and comparing it to the objective. The MPL is 

based on this comparison. The MPL is calculated by using a statistical projection called the miss 

ratio, which is the proportion of queries that fail to complete by their deadlines. If the statistical 

projection fails, they use resource-utilization heuristics. 

Apart from using admission control through MPL, Brown et al [11] and Pang et al [12] use direct 

resource allocation by allocating memory for each workload class in order to achieve the class’s 

performance objective. The advantage of using direct resource allocation is that a finer granularity 

can be achieved in controlling the performance of a workload. However, a disadvantage of this 

approach is that it requires changes to database internals and working at a level that requires operating 

system support. Our approach is different in that we design and implement an admission control 

mechanism that works at a level external to the database engine. The advantage of this approach is 

that it does not depend on changes to the database internals, making portability easier, or knowledge 

of the resource utilization of the workload, making implementation easier. Brown et al and Pang et al 

also test their approach in a simulated environment without experimental validation on a DBMS. 

 

2.2.1 Admission Differentiation 

In current resource-constrained systems, if all workload classes are processed with the same level of 

urgency, then the workloads can compete with each other for shared resources. This can be 

detrimental on the performance of the system as a whole. Achieving performance objectives of all of 

the workload classes may not be possible. One workload class has to be favoured over another 

workload class. Therefore, the importance of the workload classes needs to be considered while 

achieving their performance objectives. 

The following is work done on the use of admission control to provide service differentiation in 

web servers. Bhatti et al [13] perform a part of their service differentiation by performing admission 

control on lower priority requests. Such requests are rejected when the number of higher priority 

requests waiting in the execution queue exceeds a certain threshold, which is determined through 
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experimentation. Rejection is accomplished by closing the connection of the request. Like Bhatti et al, 

we also apply admission control on secondary workloads to prevent our primary workload’s 

performance from being affected due to overload in database management systems. 

Similarly, Abdelzaher et al [14] also combine service differentiation with admission control. They 

achieve a performance objective, capacity utilization, for a high-priority workload class by applying 

admission control on a lower priority workload class to control the MPL. The lower priority requests 

that will exceed the MPL are rejected. They use a combination of proportional and integral control to 

determine the MPL by monitoring the current utilization and comparing it with the objective. Our 

work in this thesis applies admission differentiation in the same way as Abdelzaher et al to workloads 

in database management systems. We achieve response time objectives for the primary workload 

through admission control in the form of controlling the MPL of the secondary workloads. We also 

use fundamentals from control theory in our decision logic to determine the amount by which the 

MPL has to be changed. However, their components that make up the controller require changes to 

the server internals for implementation. Unlike Abdelzaher et al, we work outside the database engine 

and therefore we do not touch the database internals. 

 

2.3 Summary 

In summary, there are three take away concepts from this chapter. 

1. MPL control: All of the above work has implemented admission control by controlling the 

MPL. Many kinds of performance objectives can be achieved by controlling the MPL. Our 

algorithm also controls the MPL of the secondary workloads to achieve the performance 

objectives of the primary workload. 

2. Feedback-based control: All of the above work, except Kang et al [7] and Elnikety et al [8], 

use monitoring as a part of their approach for admission control. They integrate monitored 

information into decision making for calculation of the MPL value. We do the same by 

monitoring the performance of the primary workload to determine the admission control to be 

applied to the secondary workloads.  

3. Decision logic: Most of the work done on admission control, either to provide overload 

protection or to achieve a performance objective, uses predefined heuristics and simple 

mathematical approaches in calculating the amount of admission control to be applied. Like 
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Kang et al [10] and Abdelzaher et al [14], we use fundamentals from control theory in our 

decision making because they have been popularly used for working in dynamic scenarios.   
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Chapter 3 

Design and Implementation 

 

In this chapter, we present the design of an architectural framework for feedback-based admission 

differentiation. Our high-level design goal is to adaptively achieve performance objectives for the 

primary workload. If there are changes in the workloads or the performance objectives, the 

framework’s components should work together to dynamically respond to changes without the 

intervention of the database administrator and achieve performance objectives for the primary 

workload. For implementing the framework, we use IBM DB2 as our database management system. 

Before presenting the framework and its components, we present our performance objective 

specification.  

 

3.1 Performance Objective Metric 

The most commonly used performance metrics for performance objectives are throughput [6, 9] and 

response time [9, 11, 12]. Throughput is usually used for batch workloads. Batch workloads aim at 

maximizing their utilization of the processor so that the workloads finish within a specified time 

interval, known as the batch window. These workloads focus on executing as many queries as 

possible and therefore, it suffices to focus on the number of transactions completed. Response time 

objectives are commonly used for transactional workloads. For our implementation, we use CPU-

bound transactional workloads and therefore, we try to achieve response time objectives.  

Response time of a query is best understood as the time elapsed from the submission of a query to 

its completion of execution. Figure 1 shows the life of a CPU-bound query in the system. In our 

scenario of admission control, response time R of a query includes time spent waiting in a queue 

outside the database engine (if admission control is applied), queuing time 𝑇𝑄, and the time spent 

executing inside the database engine, execution time 𝑇𝐸 .  

𝑅 = 𝑇𝑄 +  𝑇𝐸 

Execution time 𝑇𝐸  of a query includes the time spent receiving CPU resources, CPU service time 

𝑇𝑆, and the time spent waiting for CPU resources, CPU wait time 𝑇𝑤 .  
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𝑇𝐸 = 𝑇𝑆 +  𝑇𝑤  

Therefore,  

𝑅 = 𝑇𝑄 + 𝑇𝑆 +  𝑇𝑤  

 

 

Figure 1: CPU-bound Query's Life 

 

In order to regulate the response time of a workload towards the workload’s performance objective, 

the queuing time or the CPU service time or the CPU wait time of the queries of the workload should 

be controlled. We do not apply admission control on the primary workload and therefore, there is no 

queuing time 𝑇𝑄 for the primary workload. Service time 𝑇𝑆 is the inherent nature of a query and 

therefore, cannot be changed. CPU wait time 𝑇𝑤  is mainly dependent on the CPU resource 

contention. Hence, the focus of our framework narrows down to controlling the CPU wait time 𝑇𝑤  of 

the primary workload by controlling the CPU contention in the system, which is done by applying 

admission control on the secondary workload. 
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Response Time Objective Specification 

In this thesis, we aim at achieving a response time objective for the primary workload. For example, 

average response time of the workload should be 1000 ms. 

 

3.2  Feedback-based Admission Differentiation Architectural Framework 

In this section, we present the components required to perform feedback-based admission 

differentiation and discuss the design and implementation of each component involved. 

 

3.2.1 Framework Components 

Figure 2 shows the architectural framework for feedback-based admission differentiation. The 

framework consists of three components: workload classifier, workload monitor and adaptive 

admission controller. The workload classifier identifies the incoming queries and groups them into 

classes. The purpose of workload classification is to define workloads and assign each incoming 

query to a workload, providing a finer granularity for the workload monitor component and the 

controller. The workload monitor monitors the performance of all the workload classes running in 

DB2. The adaptive admission controller calculates and implements admission control. The controller 

consists of two sub-components: advisor and effector.  

The advisor is given the response time objective. It measures the response time of the primary 

workload regularly through the workload monitor. Using this information, it determines the amount 

of admission control to be applied to the secondary workloads. The effector implements the 

admission control. 

DB2 provides workload management through its tool called Workload Manager (WLM) [21], 

which is the priority and resource manager of DB2. WLM provides comprehensive features for 

classifying the incoming queries, monitoring and controlling the executing workloads within DB2. 

We use WLM’s functionalities to implement all of the components of our framework. 
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Figure 2 Feedback-based Admission Differentiation Framework 

 

3.2.1.1 Workload Classifier Component 

The first step in our framework is workload classification. Workload classification is done by 

identifying the incoming queries and partitioning them into workload classes. Partitioning the 

incoming queries into workload classes not only increases the manageability of the workloads but 

also allows the workload monitor to collect performance information on a per-workload basis and 

allows the admission controller to define distinct control strategies for different workload classes. 

Previous work on achieving performance objectives for workloads implemented workload 

classification based on workload type [11] or based on business importance [12, 13, 14]. In DB2, 

WLM serves as the triage point through which all of the queries coming into DB2 have to pass. The 

first step in WLM is workload classification. WLM identifies an incoming query based on the source 

or the type of the query. After identifying an incoming query, WLM maps the query to a workload 
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class and subsequently, maps all the other queries coming in from the same source or of the same type 

to the same workload class.  

In the implementation of our adaptive admission controller on DB2, for simplicity, we assume that 

there are only two workload classes, primary and secondary. The workload classifier has to be 

configured to identify the primary workload queries and group them into a primary workload class 

and group all other incoming queries into a secondary workload class. Hence, each workload should 

have its own individual workload class so that we can monitor each workload class individually and 

control each workload class uniquely. 

 

3.2.1.2 Workload Monitor Component 

Workload monitor collects the performance information of the workloads. DB2’s WLM provides 

various means of capturing performance information about individual workloads running on the 

system. There are table functions that provide access to real-time information and event monitors to 

capture detailed query information and aggregate information for historical analysis [21]. Statistics 

from an event monitor can be read by resetting the statistics. Statistics can be reset by using a stored 

procedure called WLM_COLLECT_STATS(), which sends the statistics to a set of tables and 

histograms. The statistics can then be viewed by querying the statistics tables and viewing the 

histograms. In contrast, table functions can be used to obtain point-in-time execution information 

without having to reset statistics. 

In the implementation of our adaptive admission controller, we focus on the response time 

information of the primary workload. In order to understand whether the primary workload is meeting 

its response time objective or not, we need to use an event monitor to capture response times 

aggregated over a single control interval, after which the statistics need to be reset so that the next 

control interval can be monitored. We use the event monitor DB2STATISTICS to collect aggregate 

execution information. For obtaining response time information, WLM provides lifetime average and 

execution time average in milliseconds. Lifetime average is the sum of queuing time average (due to 

admission control by WLM) and execution time average. Execution time average is the sum of CPU 

service time and CPU wait time. Therefore, in our implementation, if we want to measure the 

response time average of the primary workload, we use execution time average and if we want to 
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measure the response time average of the secondary workload, we use lifetime average because it 

includes queuing time due to admission control as well.  

The response time average of the primary workload is read by querying for the execution time 

average COORD_ACT_EXEC_TIME_AVG and the response time average of the secondary 

workload is read by querying for the life time average COORD_ACT_LIFETIME_AVG from the 

statistics table SCSTATS_DB2STATISTICS, where the event monitor’s aggregate statistics of all the 

workloads are written to.  

 

3.2.1.3 Adaptive Admission Controller 

The control component is the final and the main part of our framework. Our adaptive admission 

controller implements admission control on the secondary workload in order to achieve a 

performance objective for the primary workload. With our design objective being that the framework 

should be adaptive, our controller uses a feedback control loop that manipulates the CPU load caused 

by the secondary workload. The feedback control loop controls the secondary workload’s admission 

configuration parameter that changes the workload’s MPL by an amount that is just enough to ensure 

that the primary workload is achieving its performance objective. This ensures that the secondary 

workload receives the best service possible, given the primary workload’s objective. 

Before we present the variables and the feedback control loop involved in the controller, we define 

the admission configuration parameter. 

 

3.2.1.3.1 Admission Configuration Parameter 

An admission configuration parameter is a dynamic system parameter that sets the MPL for an 

individual workload. DB2’s WLM offers, for each workload, a concurrency threshold 

CONCURRENCTDBCOORDACTIVITIES that specifies the number of workload queries that can 

run concurrently. In addition, the concurrency threshold is a queuing threshold, which means that the 

queries that are not admitted are placed in a first come first serve (FCFS) queue. We can either choose 

to have no queuing or limit the queue length or have an unbounded queue length.  

For our implementation of the controller, we use the concurrency threshold with an unbounded 

queue length, since we choose to not reject any incoming secondary workload queries. 
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3.2.1.3.2 Feedback Control Loop 

The controller invokes a feedback control loop after every control interval. The feedback control loop 

deals with three variables when the feedback control loop is invoked the ith time:  

1. Response time variable 𝑅(𝑖) is the measured response time average of the primary workload 

during the control interval that just ended. The controller aims at making the response time 

variable match the response time objective.  

2. Response time objective 𝑅𝑆 is the given response time target for the primary workload. The 

difference between the response time objective and the response time variable is error 

𝐸(𝑖) = 𝑅𝑆 − 𝑅(𝑖).  

3. Concurrency threshold (or controller output) variable 𝐶(𝑖) is the controller output value 

calculated by the feedback control loop for the admission configuration parameter. This is the 

concurrency threshold of the secondary workload that will be used for the next control 

interval.  

The feedback control loop takes the following actions:  

1. The advisor obtains the current response time 𝑅(𝑖) of the primary workload from the 

workload monitor and compares it to the response time objective 𝑅𝑆 and calculates the error 

𝐸(𝑖). The control logic is then used to calculate a new value for the concurrency threshold 

variable 𝐶(𝑖).  

2. The effector sets the admission configuration parameter to the new value of concurrency 

threshold variable 𝐶(𝑖).  

Further in this section, we discuss the inputs and the components of the feedback control loop. 

 

Control Interval I 

Control interval defines the window at the end of which the feedback control loop is invoked. The 

control interval can be a time interval [6] or it can be based on a number of queries completed [11, 

12].  

The length of control interval should be chosen carefully. If the control interval is too short, then 

the controller output C(i) may oscillate because there will be significant variance in the measured 
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values of the response time variable 𝑅(𝑖). The variance is due to low number of queries in the control 

interval over which the response time is averaged. If there are more queries, then the variance can be 

reduced. If the control interval is too long, then the controller will take too long to make the response 

time of the primary workload converge onto the given response time objective. The controller will 

adapt to the changes in the workload or changes in the response time objective slowly. Therefore, the 

control interval 𝐼 should be chosen carefully. Chapter 4 further discusses how 𝐼 should be chosen and 

how 𝐼 affects the performance of the controller. 

In our implementation of the controller, we use a control interval based on the number of primary 

workload queries completed. The controller invokes the feedback control loop after a minimum 

number, q, of primary workload queries are completed. In order to obtain information about the 

number of primary workload queries executed, we query point-in-time information from a table 

function after every polling interval 𝑡, which is a time interval, to check whether 𝑞 queries have been 

completed or not. Therefore, the length of each control interval is a multiple of the polling interval 𝑡 

and it may vary. The polling interval t should be smaller than the time taken by q queries to be 

completed and ideally, a factor of the control interval I. If t is too small, then the controller queries the 

table function many times before q queries have been completed which is unnecessary. If t is too big, 

then the controller may query the table function much after q queries have been completed.  

We query point-in-time information for COORD_ACT_COMPLETED_TOTAL, the number of 

queries completed since the last reset, from a table function 

WLM_GET_SERVICE_SUBCLASS_STATS. 

 

 

Figure 3: Feedback control loop timeline and control interval I 
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Control Theory Logic 

The feedback control loop in this framework is designed to use fundamentals from feedback control 

theory [2] as its decision logic. Feedback control theory has been applied extensively in mechanical 

systems [2]. Recently, it has started to become widely used a mathematical foundation for decision 

making in control plans in computing [2, 11, 15]. 

In feedback-based control, depending on how the feedback information is used by the controller, 

different levels of performance can be achieved. The simplest form of feedback-based control is 

proportional control.  If we use proportional control, the concurrency threshold variable 𝐶(𝑖) is 

proportional to the error; 𝐶 𝑖 = 𝐾𝑃 ∗ 𝐸(𝑖) where 𝐾𝑃 is a tunable constant referred to as proportional 

gain [2]. The effective result is to immediately react to the instantaneous error 𝐸(𝑖) to correct it. 

Therefore, the disadvantage of proportional control is that it can react to short, transient disturbances 

by immediately trying to correct it.   

In contrast to proportional control, another form of feedback-based control is integral control. If we 

use integral control, the change in the concurrency threshold variable 𝐶(𝑖) is governed by the error; 

𝐶 𝑖 = 𝐶 𝑖 − 1 + 𝐾𝐼 ∗ 𝐸 𝑖 , where 𝐾𝐼 is a tunable constant [2]. The effective result is to accumulate 

all the errors over time to determine the concurrency threshold. 

𝐶 1 =  𝐶 0 + 𝐾𝐼 ∗ 𝐸 1  

𝐶 2 = 𝐶 1 + 𝐾𝐼 ∗ 𝐸(2) 

⋮ 

𝐶 𝑖 = 𝐶 0 + 𝐾𝐼 ∗ 𝐸 1 + 𝐾𝐼 ∗ 𝐸 2 + ⋯ + 𝐾𝐼 ∗ 𝐸(𝑖) 

𝐶 𝑖 = 𝐶 0 + 𝐾𝐼  𝐸(𝑗)

𝑖

𝑗=1

 

Since integral control acts upon past errors, it tries to respond more to sustained change in response 

time rather than short, transient disturbances in response time. Therefore, with databases workload 

being prone to transient disturbances, we use integral control as our logic in the implementation of the 

controller. 
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In our implementation of the controller, we choose to not completely shut out the secondary 

workload queries from running. Therefore, we use the following to determine the concurrency 

threshold so that we have at least one secondary workload query running in the system at all times. 

𝐶 𝑖 = max   1,  𝐾𝐼   𝐸 𝑗  

𝑖

𝑗=1

 

The integral constant 𝐾𝐼 defines the sensitivity of the controller’s output, i.e. the concurrency 

threshold, to the error. From the integral control equation, 

𝐶 𝑖 = 𝐶 𝑖 − 1 + 𝐾𝐼 ∗ 𝐸(𝑖) 

𝐶 𝑖 − 𝐶 𝑖 − 1 = 𝐾𝐼 ∗ 𝐸(𝑖) 

𝐾𝐼 =
𝐶 𝑖 − 𝐶(𝑖 − 1)

𝐸(𝑖)
 

Therefore, 𝐾𝐼 is the amount by which the controller should manipulate the concurrency threshold 

for a unit error in the response time of the primary workload. 

If 𝐾𝐼 value is too high, then the feedback control loop makes large changes to the concurrency 

threshold variable C(i) for a given error,. This can make the controller aggressive in responding to 

errors, resulting in performance problems of overshoot and oscillation. If 𝐾𝐼 value is too low, then it 

can result in making the feedback control loop too conservative in responding to errors in the 

response time of the primary workload. This results in making the controller less sensitive to changes 

in the system, such as changing workload. Hence, the value integral constant 𝐾𝐼 should be chosen 

carefully. It should be noted that 𝐾𝐼 is specific to the workloads and the system being used. Therefore, 

in our experiments presented in the next chapter, we choose 𝐾𝐼 experimentally, by trying different 

values for 𝐾𝐼 to see how the feedback control loop reacts and tune the value accordingly. In Chapter 

4, we further discuss how controller constant  𝐾𝐼 affect the performance of the controller. 

 

3.2.1.3.3 Adaptive admission controller algorithm 

Algorithm 1 shows how the adaptive admission controller works with the feedback control loop and 

all of the variables defined. The algorithm consists of three steps: sample, calculate and manipulate. 

These three functions constitute the feedback control loop described earlier in this section. The 
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sample step and calculate step make up the advisor sub-component and the manipulate step makes up 

the effector sub-component. 

 

Input: Polling interval 𝑡, Minimum query count 𝑞, Response time objective RS, Integral  constant 𝐾𝐼  

// Initialize number of completed primary workload queries and accumulated error 

𝑛 = 0 and 𝐸 =  0;  

while workloads run do 

   // Ensuring a control interval of a minimum of 𝑞 completed primary workload queries has lapsed 

   while 𝑛 < 𝑞 do 

      // Waiting idle for 𝑡 seconds before the number of completed primary workload queries is polled 

      wait 𝑡; 

     // Reading the number of completed primary workload queries since the last reset 

      𝑛  ⃪ Read COORD_ACT_COMPLETED_TOTAL from WLM_GET_SERVICE_SUBCLASS_STATS; 

   end 

   // 𝑺𝒂𝒎𝒑𝒍𝒆  

   // Measure response time average of primary workload from the statistics table 

   𝑅  ⃪ Read execution time average from SCSTATS_DB2STATISTICS; 

   // 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆  

   // Integrate error to implement integral control 

   𝐸 =  𝐸 + (𝑅𝑆 −  𝑅); 

   // Ensuring that at least one secondary workload query is allowed to run 

   𝐶 =  max(1,  𝐾𝐼 ∗  𝐸); 

   // 𝑴𝒂𝒏𝒊𝒑𝒖𝒍𝒂𝒕𝒆  

   // Half-up round C to integer 

   𝐶 = 𝑟𝑜𝑢𝑛𝑑 𝐶 ;  

   // Update concurrency threshold of secondary workload 

   Set CONCURRENTDBCOORDACTIVITIES to 𝐶;  

   Reset statistics by calling WLM_COLLECT_STATS(); 

end 

Algorithm 1: Adaptive Admission Control 
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Figure 4 shows a block diagram of the controller illustrating the feedback control loop and how all 

the variables are directed, as presented in Algorithm 1. 
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Figure 4: Adaptive Admission Controller’s block diagram 

 

3.3 Summary 

In this chapter, we presented the design and implementation of a feedback-based admission 

differentiation framework. The framework consists of three components: a workload classifier, a 

workload monitor and an adaptive admission controller.  The workload classifier is the starting point 

for the framework. It identifies and groups the incoming queries in the system into workload classes 

for finer monitoring and control. The workload monitor collects execution information for each 

workload individually. The adaptive admission controller uses DB2’s workload management 

capabilities to dynamically change the concurrency threshold on the secondary workload to achieve 

response time objectives for the primary workload. In the implementation of the feedback control 

loop, the controller regularly uses WLM’s statistics tables to read the average response time of the 

primary workload and compares it to the given response time objective to calculate the error. The 

controller integrates the instantaneous errors over time and uses the accumulated error to calculate the 

new admission control value. The controller implements the new admission control value by setting 

the concurrency threshold, provided by WLM, on the secondary workload. 
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Chapter 4 

Experimental Evaluation 

 

In this chapter, we evaluate the effectiveness of the admission controller in adaptively achieving 

response time average objectives. Specifically, we address the following questions in this chapter: 

1. Does admission control on the secondary workload affect the response time for the 

primary workload? 

2. Can the controller achieve response time objectives for a fixed workload? 

3. Can the controller automatically adapt to changes in the response time objective of the 

primary workload? 

4. Can the controller dynamically adapt to changing workload conditions in the system? 

5. How do input parameters such as controller constant KI and control interval I affect the 

performance of the controller? 

6. Will the controller work for workloads consisting of small queries, coming in at a high 

arrival rate? 

All the above questions are addressed experimentally. We designed a set of experiments to show 

effectiveness of the controller in various scenarios. In Section 4.4, we present the results of an 

experiment in which we test whether admission control is an effective choice for affecting the 

response time of the primary workload. Then, we move on to experiments with the controller.  

In the controller experiments, we evaluate the controller’s ability to achieve the response time 

objective with minimal overshoot, minimal oscillation and short convergence time. Each controller 

experiment is conducted by running the test workloads and the controller together for a period of 96 

minutes on an instance of DB2. The controller is given the required response time objective RS, 

controller constant KI, control interval I (shown as the minimum query count q) and polling interval t 

as inputs.  

In Section 4.5, we present the results of controller experiments in which we show the performance 

of the controller on stable workloads with a fixed response time objective. In Section 4.6, we present 

the results of controller experiments in which we test the controller in a scenario in which the 
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response time objective changes halfway through the experiment.  In Section 4.7, we present the 

results of controller experiments in which we test the controller in a scenario in which the workload 

changes halfway through the experiment. In Section 4.8, we present the results of controller 

experiments in which we show how controller constant KI and control interval I affect the 

performance of the controller. In Section 4.9, we present the results of experiments in which we 

examine the feasibility of using our controller’s admission control on workloads consisting of small 

queries, coming in at a high arrival rate. 

Before we address the questions related to the effectiveness of the controller, in Section 4.1, we 

present the experimental system configuration used in the experiments. In Section 4.2, we present the 

synthetic test workloads used in the experiments and in Section 4.3, we test the intensity of the 

workloads to ensure that they will be useful in the experiments for testing the effectiveness of the 

controller.  

 

4.1 Experimental Test Bed 

The database server machine used runs DB2 Version 9.5 on Linux kernel 2.6.5-7.283–smp (x86_64). 

The system consists of four 2.0 GHz 64-bit Dual Core AMD Opteron (tm) processors. Therefore, the 

system has 8 cores. However, the DB2 server’s fixed term license allows a maximum processor 

utilization of 4 cores only. Hence, in our experiments, the DB2 database engine uses 4 CPU cores at 

any given time. The threading degree is 1 thread per core. The system has 8 GB of RAM.  

 

4.2 Database Workload Generator and Test Workloads 

The workloads  used  to  test  the  controller  were  generated  using  a  database  workload 

generator called DWG. DWG is a Java program that generates read-only CPU bound workloads. 

DWG begins by spawning a number of threads, each of which obtains a database connection to the 

DB2 data server, and issues queries through the connections.  DWG generates transactional 

workloads with random query service time (TS) and query inter-arrival time (TA). DWG allows the 

users to specify the distributions that the service times and the inter-arrival times should follow. 

DWG is also capable of generating multiple concurrent workloads, each with a distinct, user-specified 

query service and inter-arrival time distributions. 
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DWG defines and populates a set of tables against which its queries will be issued. A basic query 

that DWG generates is to count the number of rows in the result of a join of many tables in the 

database. In order to produce queries of various service times, variations of the basic query are 

produced by performing a variable number of unions of the query with itself, thereby varying the 

number of joins and the number of rows of the tables being queried. 

DWG allows a user to choose from the following two types of distributions, according to which the 

service times and the inter-arrival times are sampled: 

1. Empirical distribution: DWG allows the user to specify an arbitrary, discrete cumulative 

distribution function as a series of service time or inter-arrival time values and their 

corresponding probabilities that the query service time or the query inter-arrival time is less 

than or equal to the values. In our experiments, we use empirical distribution to simulate 

workloads with deterministic, or fixed, service times or inter-arrival times by specifying a 

probability of 1 for a fixed value to be sampled. 

2. Exponential distribution: DWG can also generate exponentially distributed times with a user-

specified mean value. We use exponential distribution to generate workloads with random, or 

variable, service times or inter-arrival times. 

DWG also allows a user to specify a particular username for each workload so that DWG can 

simulate the workload as if it is coming into the system from the particular username’s terminal. 

DWG makes database connections to the DB2 data server for the queries from each workload with 

the workload’s specified username. Therefore, we specify different usernames for the primary 

workload and the secondary workload. We configure the workload classifier to identify primary 

workload queries coming in from the same user and map them to one workload class and all the other 

queries coming into the system from another user are considered secondary and mapped into another 

workload class. 

We design our test workloads’ service times and inter-arrival times in such a way that when both the 

workloads run together, they overload the system, creating our problem scenario. We use the 

following statistic to ensure high CPU utilization. 

𝐶𝑃𝑈 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑚𝑒𝑎𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒

𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑟-𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒
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We choose the service times and the inter-arrival times of the workloads as shown in Table 1. The 

primary workload, WA, has a service time of 1000 ms and inter-arrival time of 2000 ms. This will 

ensure that the primary workload will keep 0.5 CPUs busy. The secondary workload, WB, has a 

service time of 1000 ms and inter-arrival time of 300 ms. This will ensure that the secondary 

workload will keep 3.33 CPUs busy. When both the workloads run together, they will keep, on 

average, 3.83 CPUs busy.  

We use deterministic (empirical distribution) service times for both the workloads for simplicity in 

interpretation of the results. It should be noted that even with deterministic service time of 1000 ms, 

DWG tries to generate a query with a service that is closest to 1000 ms and therefore, the actual 

service times may vary slightly. Hence, the workloads may have a natural variation in the response 

times.  

We use deterministic inter-arrival time for the primary workload and random (exponential 

distribution) inter-arrival time for the secondary workload to ensure that both the workloads are not 

tightly synchronized. On average, the inter-arrival time of the secondary workload will be 300 ms, but 

during some bursts the inter-arrival time may be lower and during others the inter-arrival time may be 

higher. Therefore, during some bursts, the CPU utilization for the secondary workload, WB, will be 

higher and hence, the total CPU utilization will be greater than 4. The experiment in the next section 

shows whether these CPU-intensive bursts of the test workloads, WA and WB, result in an overloaded 

environment on the whole or not. 

 

Test 

Workloads 

Workload 

Streams 
𝑻𝑺 [value (ms), distribution] 𝑻𝑨 [value (ms), distribution] 

Primary WA 1000, deterministic 2000, deterministic 

Secondary WB 1000, deterministic 300, exponential 

Table 1: Test workloads WA and WB configurations 
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4.3 Experiment 1: Effect of WB on WA 

As explained in Chapter 1, our controller is targeted at achieving performance objectives for the 

primary workload WA in a problem scenario where the secondary workload WB overloads the system 

and competes with WA for CPU resources. Therefore, in order to examine the effect of WB on WA, we 

conducted this characterization experiment. In this experiment, we compare the performance of each 

workload when run in isolation with the performance of the workloads when run together. 

Essentially, we compare the performance of WA when there is no CPU contention with the 

performance of WA in an overloaded system in which there is there is competition for CPU resources. 

In this experiment, we performed three runs with a runtime of 96 minutes each. First, WA is run in 

isolation and the response time average is measured every 30 seconds (for calculation of variance in 

the response time average measurements) over the run. Second, WB is run in isolation and the 

response time average is measured every 30 seconds over the run. Third, WA and WB are run together 

and their response time averages are measured every 30 seconds over the run. The first two runs serve 

as the baseline measure for the third run. The third run is for examining whether the workloads 

together overload the system, which is confirmed by a significant increase in response time averages 

of both the workloads. 

Figure 5 shows the averages of the response time average measurements of all the runs. The 

response time average of WA when run in isolation is nearly 1000 ms with a very low standard 

deviation of 0.7. This is because of using a deterministic service time of 1000 ms for WA, which 

confirms that the response time of WA does not have a significant natural variation. When WA and WB  

are run  together,  we  see  a  significant  deterioration  in  the  performances  of  WA and  WB. Most 

importantly, the response time average of the primary workload WA increased to 14550 ms, which is 

14 times that of WA when run in isolation. This result confirms that the secondary workload WB 

competes for CPU resources with the primary workload WA, thereby deteriorating the response time 

average of the primary workload WA. Therefore, the workloads WA and WB when run together create a 

good test instance of our problem scenario, on which our admission controller mechanism can be 

tested. 
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Figure 5: Baseline is WA and WB when run in isolation. Problem instance is WA and WB when 

run together. The bars show response time averages and error bars show standard deviations in 

the response times. 

 

4.4 Experiment 2: Effectiveness of Admission Control 

Before testing the controller, we must confirm whether admission control is an effective way to 

control the response time of the primary workload WA. Specifically, in this experiment, we determine 

whether adjusting the concurrency threshold is an effective way to control the response time of WA. 

We illustrate how changing the concurrency threshold on the secondary workload WB affects the 

response time average of primary workload WA. 

In this experiment, we run the test workloads with a fixed concurrency threshold value for WB and 

measure the response time average of WA every 30 seconds, and then repeat the experiment for 

different threshold values. The averages of the response time average measurements collected for 

each threshold value, 1 to 9 (chosen arbitrarily), are plotted in Figure 6(a). For each threshold, the 

standard deviation of response time averages is shown as error bars in the figure. For better 

understanding of the trends in the values, we present the response time average values and their 

standard deviation values in Table 2. It is to be noted that the response time average will increase 

further with increase in concurrency threshold beyond the value 9 till the response time average value 

of 14550 ms (obtained in Section 4.3). 

We also show the effect of the concurrency threshold on the throughput of the secondary workload 

WB, in Figure 6(b). The figure shows that the throughput of the secondary workload increases till the 
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value 3.2 and then levels off at the same value. This is because the average CPU utilization of the 

secondary workload, as explained in Section 4.2, is 3.33. With the concurrency threshold being an 

upper bound on the number of concurrent queries that can execute at a time, the secondary workload 

was able to execute only as many queries as the threshold value till it reached its maximum 

concurrency at threshold 4. At concurrency threshold 4 and higher, the secondary workload was able 

to run close to its maximum concurrency of 3.33. 

 

 

Figure 6: Sensitivity to concurrency threshold on WB. (a) shows response time average of WA 

for each concurrency threshold on WB. (b) shows throughput of WB for each concurrency 

threshold on WB. Error bars indicate standard deviation in the measurements at each 

concurrency threshold. 
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Concurrency threshold (C) Response time average Standard deviation (𝝈𝑪) 

1 1058 1.38 

2 1082 6.84 

3 1105 7.46 

4 1682 106.14 

5 1824 135.70 

6 1970 149.55 

7 2231 172.56 

8 2462 189.78 

9 2641 210.31 

Table 2: Response time average and standard deviation of WA for each concurrency threshold 

C from Figure 6(a) 

 

In Figure 6(a), there are two slopes in the trend of the response time averages of WA. The figure 

shows that an increase in concurrency threshold value from 1 to 3 resulted in a barely noticeable 

increase in the response time average of WA. The slope of the (best fit) line is 23. For increase in 

concurrency threshold value from 4 to 9, there was a significant increase in the response time average 

of WA. The slope of the (best fit) line is 225, which is nearly 10 times that of the slope for thresholds 1 

to 3. The following is the explanation for the two distinct trends: 

1. The trend of thresholds 1 to 3 exemplifies a no-CPU-contention environment; the total 

concurrency of both the workloads together in the system is less than 4, which is number of 

CPU cores in the system. Therefore, there is one-to-one mapping between queries and each 

CPU core. Each query will have a dedicated CPU core. Hence, each query will have 

negligible wait time TW. Therefore, the changing concurrency threshold on WB isn`t reflected 

much on the response time average of WA. 

2. The trend of thresholds 4 to 9 exemplifies a CPU-contention environment; the total number 

of concurrent queries of both the workloads together in the system can be more than 4 
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sometimes.  During the bursts in which the inter-arrival time of WB is smaller than 300 ms, 

the queries that exceed the concurrency threshold applied are queued. Hence, as and when the 

number of concurrent WB queries drops below the threshold, there are always queued queries 

ready to run and increase the number of concurrent WB queries to the threshold value. 

Therefore, effectively, there can be threshold number of WB queries running concurrently in 

the system. Hence, there can be many-to-one mapping between queries and each CPU core. 

The queries are multiplexed between the CPU cores through context-switching and 

scheduling. Therefore, with increase in concurrency, there will be significant increase in 

context switches for each query and hence, there will be significant increase in CPU wait 

time TW for each query. Therefore, each unit value change in concurrency threshold on WB 

results in a significant change in the response time average of WA. 

Apart from these two significant trends, there is a steep slope from threshold value 3 to 4. This is 

due to a spike in the response time average of WA at threshold 4. At threshold 4, WB performs at its 

maximum concurrency and therefore, tries to keep more than 3 CPU cores busy, on average. Since 

WA requires at least one CPU core, it faces significant competition from WB for that one CPU core 

because there are only 4 CPU cores in the system. Hence, the response time average of WA increases 

steeply at threshold 4.  

Similar to the significant trends in response time averages of WA, there are two trends for the 

variance in the response time measurements of the primary workload WA (in Table 2). The trend for 

standard deviation 𝜎𝐶  for each concurrency threshold C is as follows: 

1. Thresholds 1 to 3: As it is expected with a stable primary workload with no significant 

natural variation in a no-CPU-contention environment, the figure shows small standard 

deviations for these thresholds. For example, 𝜎1 = 1.38, 𝜎2 = 6.84 and 𝜎3 = 7.46. 

2. Thresholds 4 to 9: The response time average measurements aren’t stable enough because the 

measurements are dominated by the variance brought in due to resource contention, which 

brings in context switching and scheduling overhead. For example, 𝜎4 = 106.14 and 𝜎5  = 

135.70 which are nearly 10 times that of threshold 1. 
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4.5 Controller experiments with stable workload and fixed objective 

The experiments in this section will show the controller’s performance in achieving fixed response 

time objectives on stable workloads. The response time objective to be achieved for WA and the 

workloads’ characteristics remain unchanged during the experiment. The purpose of these 

experiments is to demonstrate the effectiveness of the controller in achieving response time objectives 

for WA. 

In all the controller experiments, we use the response time averages of WA obtained from Figure 

6(a) (shown in Table 3) as objectives in all the evaluation experiments. For example, if a response 

time average objective of 1105 ms is chosen for the controller to achieve, we expect the controller’s 

output to reach concurrency threshold of value 3 and stay on it.  

 

Response time objective (R) Expected concurrency threshold 

1058 1 

1082 2 

1105 3 

1682 4 

1824 5 

Table 3: RS is the response time objectives for WA used in the experiments and expected 

concurrency threshold is the threshold value that is expected to be chosen by the controller. 

 

The controller experiments presented in this section are experiments with a properly tuned 

controller constant KI and a properly tuned control interval I. For each experiment, the controller 

constant KI and control interval I were chosen experimentally, based on trial and error. The tuning of 

these two input parameters of the controller will be discussed further in Section 4.8. For all 

experiments, we used an arbitrary polling interval t of 10 seconds which is small enough to give the 

controller the granularity to poll close to the minimum number of completed primary workload 

queries specified as the control interval I. 
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For each controller experiment, four graphs are presented to show the dynamics of the workloads 

as a function of time: 

 The first graph shows the response time average R(i) of primary workload measured after 

each control interval. We expect the primary workload to achieve its response time objective 

RS with minimal overshoot and oscillation and stabilize on the objective. 

 The second graph shows the controller output C(i), the new, calculated concurrency threshold 

the controller applies on secondary workload after each control interval. We expect it to reach 

the expected concurrency threshold corresponding to the objective shown in Table 3 with 

minimal overshoot and oscillation and stabilize on the threshold.  

 The third graph shows the throughput of secondary workload during each control interval. 

We expect it to increase when the concurrency threshold applied on the secondary workload 

increases and decrease when the concurrency threshold applied on the secondary workload 

decreases. 

 The fourth graph shows the response time average of the secondary workload measured after 

each control interval. We expect it to decrease with an increase in the concurrency threshold 

applied on the secondary workload and increase with a decrease in the concurrency threshold 

applied on the secondary workload. 

 

4.5.1 Controller Experiment 1: RS = 1082, KI = 0.01, I = 20 

In this experiment, we use a response time average objective RS of 1082 ms. The purpose of this 

experiment is to test whether the controller is able to achieve an objective from the no-CPU- 

contention environment. We expect the controller to stabilize on concurrency threshold 2 with 

minimal overshoot and oscillation. 

We perform this experiment with a controller constant KI of value 0.01 and a control interval I of a 

minimum of 20 primary workload queries. Figure 7 shows the results of this experiment. The 

controller output graph (in Figure 7(b)) shows that the controller output C(i) reaches the expected 

concurrency threshold 2 in 280 seconds (7 control steps, each after an interval of 40 seconds) and  as  

a  result,  the response  time  average  R(i) (in Figure 7(a)) also  reaches  the  desired  objective 1082 

ms. The figure shows that the controller understands that if the response time average R(i) of the 
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primary workload is less than the objective RS, then the controller should  increase  the  concurrency  

threshold  on  the  secondary  workload  so  that  more  secondary workload queries can be executed, 

thereby increasing the CPU utilization and consequently, increasing R(i) towards RS. 

The minor oscillations (step downs) in C(i) observed in the controller output graph (in Figure 7(b)) 

are due to variance in the response time average measurements.  This sensitivity can be reduced by 

reducing the controller constant KI. 

Therefore, given proper values for input parameters KI and I, this experiment shows that the 

controller is able to achieve the response time objective RS of value 1082 ms and perform well in a 

no-CPU-contention environment with minimal oscillation. 
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Figure 7: Controller experiment results with inputs RS = 1082ms, KI = 0.01, I = 20 
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4.5.2 Controller Experiment 2: RS = 1682ms, KI = 0.001, I = 40 

In this experiment, we use a response time average objective RS of 1682 ms. The purpose of this 

experiment is to test whether the controller is able to achieve a response time average objective from 

the CPU-contention environment. We expect the controller to stabilize on concurrency threshold 4 

with minimal overshoot and oscillation. 

We perform this experiment with a controller constant KI of value 0.001 and a control interval I of a 

minimum of 40 completed primary workload queries. Figure 8 shows the results of this experiment.  

The controller output graph (Figure 8(b)) shows that the controller output C(i) smoothly climbs to the 

expected threshold 4 in 480 seconds (6 control steps, each after an interval of 80 seconds). 

Correspondingly, the response time average R(i) (in Figure 8(a)) also steadily climbs to the desired 

objective 1682 ms. 

Compared to Controller Experiment 1, a smaller controller constant KI of value 0.001 and a longer 

control interval I of a minimum of 40 completed primary workload queries worked well in this 

experiment because the response time objective 1682 ms belongs to the CPU-contention environment. 

For the CPU-contention environment, as explained in Experiment 2, the (slope of) change in response 

time average of primary workload for a unit change in concurrency threshold on secondary workload 

is higher. This results in larger changes in response time when the controller changes the concurrency 

threshold. Therefore, a smaller controller constant KI compensates for the larger changes in response 

time that the controller makes. In addition, for the CPU-contention environment, the variance in the 

response time averages of the primary workload is higher. Therefore, a longer control interval I 

dampens the variance and allows the controller to stay on the response time objective 1682 ms with 

minimal oscillation. 

Therefore, given appropriate values for input parameters KI and I, this experiment shows that the 

controller is able to achieve the response time objective RS of value 1682 ms and perform well in a 

CPU-contention environment with minimal oscillation.  
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Figure 8: Controller experiment results with inputs: RS = 1682ms, KI = 0.001, I = 40 
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4.5.3 Conclusion 

The experiments  in  this  section  show  that  our  adaptive admission  controller  can  achieve  

response  time  objectives  for  the  primary  workload  by  applying  admission  control  on  the 

secondary workload, provided  that  appropriate values are set for controller constant KI  and 

control interval I. The controller is able to perform well without any performance problems in 

environments without CPU contention in Experiment 1 and with CPU contention in Experiment 2. 

 

4.6 Controller Experiments with Stable Workload and Changing Objective 

In this section, we test our controller in a scenario in which the response time objective changes. In 

these experiments, the response time objective RS of primary workload is changed half-way through 

the experiment. The purpose of these experiments is to show how the controller automatically 

adapts to changes in the response time objective. 

In these experiments, when the response time objective RS changes, it results in significant error 

in the comparison of the measured response time average R(i) of the primary workload and the 

objective RS. Therefore, the  controller calculates and applies a new threshold on the secondary 

workload  and  then  the  response  time  average  of  the  primary  workload  changes accordingly. 

Essentially, the change is initiated by the controller output that consequently directs the running 

response time average towards the objective. 

For experiments in this section, after experimental tuning, we use a controller constant KI of  

value of 0.01 for objectives from the no-CPU-contention environment. We use a KI of value 0.001 

for objectives from the CPU-contention environment. I f we have objectives from both the 

environments, we use a KI value of 0.01/6 which is midway between values 0.01 and 0.001. 

Similarly, we use a control interval I of a  minimum  of  20  primary  workload  queries  for  

objectives   from  a  no-CPU-contention environment and a minimum of 40 primary workload 

queries when there is an objective from a CPU-contention environment involved. 

 

4.6.1 Controller Experiment 3: RS = 1058ms -> 1082ms 

In this experiment, the controller is tested for a response time objective change of a small 

magnitude from 1058 ms to 1082 ms. The challenge for the controller in this experiment is that we 



 

 39 

change from a response time objective corresponding to a lower concurrency threshold to a 

response time objective corresponding to a higher concurrency threshold. Therefore, when the 

objective changes, we expect the controller output to increase from threshold 1, which is the 

expected concurrency threshold for objective 1058 ms, to threshold 2, which is the expected 

concurrency threshold for objective 1082 ms, with minimal overshoot and oscillation. 

We use a controller constant KI  of value 0.01 and a control interval I of a minimum of 20 

primary  workload  queries  because  both  the  objectives  1058 ms  and  1082 ms  correspond  to 

thresholds from the no-CPU-contention environment. 

Figure 9 shows the results of this experiment. The controller output graph (in Figure 9(b)) 

shows that after the objective changes, the controller output C(i) successfully increases from 

threshold 1 to threshold 2. Therefore, the controller understands that if the response time objective of 

WA increases, then it has to increase the concurrency threshold on WB so that more WB queries can 

execute, thereby increasing WB’s CPU utilization and consequently, increasing the response time 

average R(i) of WA (in Figure 9(a)) towards the objective RS. 

The figure shows that the controller successfully achieved both the objectives with minimal 

overshoot and oscillation.  However, the controller output C(i)  took a long time of 480 seconds 

(12 control steps, each after an interval of 40 seconds) to converge onto the expected threshold 2. 

This is because of a transient spike in the response time average of WA at the first control step. 

The spike is due to test workload’s start up disturbance. The controller measured a high response 

time average and as a result, the accumulated error of the controller significantly reduced to 

negative error and continued to be there because it was still achieving the objective of 1058 ms by 

applying the minimum concurrency threshold value of 1 on WB. Therefore, when the objective 

changed, it took a long time for the accumulated error to increase from the negative error and 

accumulate enough positive error for the controller output C(i) to increase up to threshold 2. This 

shows that such transient disturbances in the system can lengthen the convergence time for the 

controller. The convergence time can be decreased by increasing the controller constant KI for the 

controller to take larger control steps or decrease the control interval I for the controller to take more 

control steps per unit time. 

This experiment  shows  that  the  controller  is  able  to  automatically  handle  a  response  time 

objective increase by a small magnitude without any performance problems of overshoot and 

oscillation. 
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Figure 9: Controller experiment results with inputs: RS = 1058ms->1082ms, KI = 0.01, I = 20 
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4.6.2 Controller Experiment 4: RS = 1105ms -> 1058ms 

In this experiment, we tested the controller for a response time objective decrease of a small 

magnitude from 1105 ms to 1058 ms. The challenge for the controller in this experiment is that we 

change from a response time objective corresponding to a higher concurrency threshold to a response 

time objective corresponding to a lower concurrency threshold. Therefore, when the objective 

changes, we expect the controller output to decrease from concurrency threshold 3, which is the 

expected concurrency threshold for objective 1105 ms, to threshold 1, which is the expected 

concurrency threshold for objective 1058 ms. 

Similar to previous experiment, we use a controller constant KI of 0.01 and a control interval I of a 

minimum of 20 primary workload queries in this experiment. 

Figure 10 shows the results of this experiment. The controller output graph (in Figure 10(b)) shows 

that after the objective changes, the controller output C(i) successfully decreases from threshold 3 to 

threshold 1. This shows that the controller understands that if the response time objective of WA 

decreases, then it has to decrease the concurrency threshold on WB so that fewer WB queries execute in 

the system, thereby decreasing WB’s CPU utilization and consequently, decreasing the response time 

average of WA towards the objective RS. 

The figure shows that the controller successfully achieved both of the response time objectives 

without overshoot and oscillation. The controller output graph in the figure shows that before the 

objective changed, the controller output C(i) converged onto the expected threshold 3 in 280 seconds 

(7 control steps, each after an interval of 40 seconds) and after the objective  changed,  the controller 

output converged onto the expected threshold 1 in 120 seconds (3 control steps). Correspondingly, the 

response time average R(i) of WA (in Figure 10(a)) also steadily converged onto the respective 

objective RS. 

This experiment  shows  that  the  controller  is  able  to  dynamically  handle  a  response  time 

objective decrease by a small magnitude without any performance problems. 
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Figure 10: Controller experiment results with inputs: RS = 1105ms->1058ms, KI = 0.01, I = 20 
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4.6.3 Controller Experiment 5: RS = 1824ms -> 1058ms 

In this experiment, we tested the controller for a response time objective change of a large magnitude 

from 1824 ms to 1058 ms. When the objective changes, we expect the controller output to decrease 

from concurrency threshold 5, which is the expected concurrency threshold for objective 1824 ms, to 

concurrency threshold 1, which is the expected concurrency threshold for objective 1058 ms. 

We know that a lower controller constant KI of value 0.001 works for the objective 1824 ms 

because it belongs to the CPU-contention environment. We know that a higher controller constant KI 

of value 0.01 works for the objective 1058 ms because it belongs to the resource-sufficient 

environment. In this experiment, we have both the objectives and therefore, we use a KI of value in 

between 0.01 and 0.001 that works reasonably well for both the objectives. We found a KI of a value 

0.01/6 to work the best. We use a control interval I of a minimum of 40 primary workload queries in 

this experiment. 

Figure 11 shows the results of this experiment. The controller output graph (in Figure 11(b)) shows 

that when the objective decreases by a large magnitude, the controller output C(i) drops and continues 

to drop until the expected threshold 1. This shows that the controller continues to make changes to the 

concurrency threshold as long as there is any error in the comparison of the response time average 

R(i) and the response time objective RS. The controller constantly strives to achieve zero error and 

consequently, it strives to achieve the objective RS. 

The results in the figure shows there were no performance problems of overshoot and oscillation 

due to change in response time objective. The controller successfully achieved both the response time 

objectives. The controller output graph in the figure shows that before the objective changed, the 

controller output C(i) converged onto the expected threshold 5 in 320 seconds (4 control steps, each 

after an interval of 80 seconds). After the objective changed, for objective 1058 ms from the no-CPU-

contention environment, as expected with a smaller control constant KI and a longer control interval I, 

the controller output C(i) took a longer time of 1440 seconds (18 control steps) to converge onto the 

expected threshold 1 in comparison to the previous experiments with objective 1058 ms. 

Correspondingly, the response time average R(i) of WA (in Figure 11(a)) also steadily converged onto 

the respective objective RS. 
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Figure 11: Controller experiment results with inputs: RS = 1824ms->1058ms, KI = 0.01/6, I = 40 
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4.6.4 Conclusion 

All the experiments in this section show that the controller can dynamically handle a change in the 

response time objective RS.  When the objective changes, the controller measures the change 

through the error calculated when comparing the response time average R(i) of the primary  

workload  with  the response  time  objective  RS.   As  a  result,  the  controller  makes appropriate 

changes to the concurrency threshold C(i) on the secondary workload and thereby, regulating the 

number of queries executing in the system so that the response  time average R(i) is directed 

towards the objective RS.  There were no performance problems of overshoot and oscillation due 

to a change in the response time objective during the length of the experiments. 

 

4.7 Controller Experiments with Changing Workloads and Fixed Objective 

In this section, we test the adaptability of controller to a change in workload on the system. In these 

experiments, the workload is changed after every 1/3
rd

 of the experiment. Specifically, we test the 

controller`s ability to adapt to a change in CPU utilization due to change in the total number of 

concurrent queries running in the system.   

We design a workload stream WC to add to the primary workload in these experiments. Note that 

we add the stream to the primary workload and not to the secondary workload because adding a 

stream to the secondary workload will not be useful towards our intention to change the total number 

of concurrent queries running in the system. Any added concurrency to the secondary workload will 

end up queuing due to concurrency threshold, resulting in no increase in the CPU utilization. 

For workload stream WC, we choose a deterministic service time of 1000 ms and a deterministic 

inter-arrival time of 4000 ms. When this workload stream is added after every 1/3
rd

 of the experiment, 

it should add to the CPU utilization on the system by keeping another 0.25 CPUs busy. 

 

Workload Stream 𝑻𝑺 [value (ms), distribution] 𝑻𝑨 [value (ms), distribution] 

WC 1000, deterministic 4000, deterministic 

Table 4: Test workload WC configuration 

 



 

 46 

In these experiments, a change in workload results in change in the response time average R(i) of 

the primary workload and consequently, results in significant error in the comparison of  R(i) and the 

response time objective RS. Due to increased error, the controller output C(i) changes. Contrary to the 

response time objective change experiments, in these experiments, the change is initiated by the 

response time average R(i) of the primary workload that directs the controller output C(i) on the 

secondary workloads.  

In these experiments, since we work with changing workload, we also get to evaluate the controller 

for a response time objective RS that does not correspond exactly to any concurrency threshold. We 

conduct all the experiments with an arbitrarily chosen response time objective of 1105 ms.  

 

4.7.1 Controller Experiment 6: Workload increase 

In this experiment, the workload on the system is increased by a large magnitude after every 1/3
rd

 of 

the experimental runtime. We add workload stream WC to the primary workload WA at the beginning 

of the experiment and after every 32 minutes into the experiment. Therefore, the workloads in the 

three phases of the experiment are shown in Table 5. 

 

Phase Primary workload Secondary workload 

1 WA+WC WB 

2 WA+WC+WC WB 

3 WA+WC+WC+WC WB 

Table 5: Workloads in each phase of Experiment 6 

 

The purpose of this experiment is to study how the controller adapts to workload increases. The 

challenge in this experiment is that we change from a workload with the response time objective 1105 

ms corresponding to a higher concurrency threshold value to a workload with the response time 

objective 1105 ms corresponding to a lower concurrency threshold. Therefore, when the workload 
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increases, we expect the controller output to decrease and converge onto the right concurrency 

threshold corresponding to the objective or toggle between two thresholds, between which the 

objective exists.  

We perform this experiment with a controller constant KI of value 0.01/6 and a control interval I of 

a minimum of 20 primary workload queries. Figure 12 shows the results of this experiment. In Figure 

12(a), in  the  first  phase,  the  response  time  objective 1105 ms corresponds to concurrency 

threshold 2 and therefore, the controller output C(i) (in Figure 12(b)) settles on threshold 1. The 

controller output C(i) converges onto the expected threshold 2 in 460 seconds. In the second phase, 

the objective 1105 ms shifts to corresponding to a concurrency threshold value lying in between 

thresholds 1 and 2 and therefore, C(i) oscillates between the thresholds 1 and 2. In the third phase, the 

objective 1105 ms shifts to corresponding to concurrency threshold 1 and therefore, the controller 

output settles on threshold 1. The effect of the shift due to workload changes can be seen in the 

throughput and the response time graphs of the secondary workload WB too.  

This experiment shows that the controller is able to dynamically adapt to increase in workload, i.e. 

increase in CPU utilization, without any performance problems due to a change in the workload. 
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Figure 12: Controller experiment results with inputs: RS = 1105ms, KI = 0.01/6, I = 20 
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4.7.2 Controller Experiment 7: Workload decrease 

In this experiment, we repeat Controller Experiment 6, but in the reverse direction. The workload on 

the system is decreased by a large magnitude after every 1/3rd of the experimental runtime. We 

remove workload stream WC from the primary workload WA after every 32 minutes into the 

experiment. Therefore, the workloads in the three phases of the experiment are shown in Table 6. 

 

Phase Primary workload Secondary workload 

1 WA+WC+WC+WC WB 

2 WA+WC+WC WB 

3 WA+WC WB 

Table 6: Workloads in each phase of Experiment 7 

 

The purpose of this experiment is to study how the controller adapts to large workload changes. 

The challenge in this experiment is that we change from a workload with the response time objective 

1105 ms corresponding to a lower threshold value to a workload with the response time objective 

1105 ms corresponding to a higher threshold. Therefore, when the workload decreases, we expect the 

controller output to increase without overshoot and oscillation and then converge onto the right 

concurrency threshold corresponding to the objective or toggle between two thresholds, between 

which the objective exists. 

We perform this experiment with the same KI and I values as Controller Experiment 6. We use a 

controller constant KI of value 0.01/6 and a control interval I of a minimum of 20 primary workload 

queries. Figure 13 shows the results of this experiment.  In Figure 13(a), in  the  first  phase,  the  

response  time  objective 1105 ms corresponds to concurrency threshold 1 and therefore, the 

controller output C(i) (in Figure 13(b)) settles on threshold 1. In the second phase, the objective 1105 

ms shifts to corresponding to a concurrency threshold value lying in between thresholds 1 and 2 and 

therefore, C(i) oscillates between the thresholds 1 and 2. In the third phase, the objective 1105 ms 

shifts to corresponding to concurrency threshold 2 and therefore, the controller output settles to 
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threshold 2. The effect of the shift due to workload changes can be seen in the throughput and the 

response time graphs of the secondary workload WB too. 

This experiment shows that the controller is able to dynamically adapt to decrease in workload, i.e. 

decrease in CPU utilization, without any performance problems due to a change in the workload. 
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Figure 13: Controller experiment results with inputs: RS = 1105ms, KI = 0.01/6, I = 20 

 

1000

1100

1200

1300

1400

0 24 48 72 96

R
es

p
o

n
se

 t
im

e 
(m

s)

Time (minutes)
(a) Response time of primary workload WA

Rs R(i)

0

1

2

3

4

5

0 24 48 72 96

N
ew

 t
h

re
sh

o
ld

_W
B

Time (minutes)
(b) Concurrency threshold applied on secondary workload WB

C(i)

0

0.5

1

1.5

2

2.5

0 24 48 72 96

Th
ro

u
gh

p
u

t_
W

B
 

(q
u

er
ie

s/
se

co
n

d
)

Time (minutes)
(c) Throughput of secondary workload WB

0

10000

20000

30000

40000

50000

60000

0 24 48 72 96R
es

p
o

n
se

 t
im

e_
W

B
 (

m
s)

Time (minutes)
(d) Response time of secondary workload WB



 

 52 

4.7.3 Conclusion 

All the experiments in this section show that the controller can dynamically adapt to changes in the 

workload appropriately. When the workload changes, the controller measures the change through the 

response time average R(i) as the response time average of the primary workload changes due to a 

change in CPU utilization in the system. This results in error when the controller compares the 

response time average R(i) with the response time objective RS. As a result, the controller makes 

appropriate changes to the concurrency threshold C(i) on the secondary workload, thereby regulating 

the number of secondary workload queries executing in the system so that response time average R(i) 

of the primary workload is directed towards objective RS. There were no performance problems of 

overshoot and oscillation due to a change in the workload. 

These experiments also show that when a response time objective RS does not correspond to a 

concurrency threshold, the controller toggles between two thresholds, between which the objective 

exists. This results in variant response times for the primary workload without achieving the objective 

but only keeping the overall response time average over a larger interval at the objective RS. 

Moreover, the fact that the concurrency threshold on the secondary workload is applied variably, it 

may not be an attractive behavior of the controller. This shows that the response times of the primary 

workload cannot be achieved at a finer granularity and therefore, workload control through 

concurrency threshold is a coarse form of control. However, it is to be noted that the more secondary 

workload classes there are to control, the more granularity we achieve in controlling the response 

times of the primary workload. 

 

4.8 Controller Parameter Tuning and Discussion 

In this section, we present the controller experiments with poorly tuned input parameters, controller 

constant KI and control interval I. The purpose of these experiments is to show the performance 

problems involved when the controller constant KI and control interval I are poorly set for the 

controller. We then discuss how to go about choosing appropriate values for KI and I by manual 

tuning, based on trial and error. We end this section by giving some pointers to cut down manual 

tuning. 

 



 

 53 

4.8.1 Controller Experiment 8: Performance Problem with Small Controller Constant KI 

We repeated Controller Experiment 1 (in Section 4.5) with smaller controller constant KI of value 

0.001 instead of 0.01. The purpose of this experiment is to show how the controller performs if KI is 

too small. We perform this experiment with a lower KI of value of 0.001 on response time objective 

of 1082 ms from the no-CPU-contention environment. As  explained earlier, we expect a low KI of 

value 0.001 to work, but at  the expense of slowing the controller in converging onto the expected 

concurrency threshold 2. 

Figure 14 shows the results of this experiment. The controller output graph (in Figure 14(b)) 

shows that the controller output C(i) reaches the expected threshold 2 in 3000 seconds (75 control 

steps, each after an interval of 40 seconds), which is nearly 10 times that of Controller 

Experiment 1.  Correspondingly, the response time average R(i) (in Figure 14(a)) also reaches the 

response time objective 1082 ms. The minor oscillations (step-downs) observed in C(i) in 

Experiment 1 are also visibly reduced. 

This result shows that if the controller constant KI is too small, then the controller takes a long time 

to converge on the response time objective RS. The reason is that if we reduce KI by 10 times, the 

controller takes control steps that are 10 times smaller in size. This makes the controller 10 times 

slower in responding to errors. Hence, the convergence time of the controller is increased by 10 times. 

We may increase the convergence time by reducing the control interval I. However, with the low 

arrival rate of the primary workload queries, there can be significant variance in the response time 

measurements of the primary workload and can result in the performance problem of oscillation, 

which we will be discussing about in Section 4.8.3. 
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Figure 14: Controller experiment results with inputs: RS = 1082ms, KI = 0.001, I = 20 
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4.8.2 Controller Experiment 9: Performance Problem with Large Controller Constant 

KI 

We repeated Controller Experiment 2 (in Section 4.5) with a higher controller constant KI of value 

0.01 instead of 0.001. We perform the experiment with a response time objective of 1682 ms and a 

control interval of a minimum of 20 primary workload queries. The purpose of this experiment is to 

show how the controller performs if KI is too big. 

Figure 15 shows the results of this experiment. The controller output graph (in Figure 14(b)) 

shows that the controller output C(i) overshoots the expected concurrency threshold 4 and oscillates 

without converging onto the expected threshold. Correspondingly, the same is observed in the 

response time average R(i) graph of the primary workload where R(i) overshoots the objective and 

oscillates.  

This result shows that if the controller constant KI is too big, then the controller overshoots the 

response time objective RS and oscillates without nearing the objective RS.  The reason is that if we 

increase KI value by 10 times, the controller takes control steps that are 10 times larger in size  

when compared to Controller Experiment 2. This makes the controller 10 times more 

aggressive in responding to errors. 
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Figure 15: Controller experiment results with inputs: RS = 1682ms, KI = 0.01, I = 20 
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4.8.3 Controller Experiment 10: Performance Problem with improper Control Interval I 

We repeat Controller Experiment 2 (in Section 4.5) with a smaller control interval I of a minimum of 

20 primary workload queries instead of a minimum of 40 primary workload queries. We perform the 

experiment with a response time objective of 1682 ms and a controller constant KI of 0.001. The 

purpose of this experiment is to show how the input parameter I affects the performance of the 

controller. 

Figure 16 shows the results of this experiment. The new threshold graph (Figure 16(b)) shows that 

the controller output C(i) smoothly climbs to the expected concurrency threshold 4 in 280 seconds (7 

control steps, each after an interval of 40 seconds), which is half of that of Controller Experiment 2, 

but oscillates largely between concurrency thresholds 3 and 4 and does not stabilize on threshold 4. 

This is due to high variance in the response time measurements at threshold 4. 

This result shows that the number of primary workload queries in a control interval I affect the 

performance of the controller. Provided with a proper controller constant KI, the controller output C(i) 

reaches the expected concurrency threshold without overshoot, but oscillates around the expected 

threshold and does not settle on the threshold. The reason is for this is that if there are fewer queries 

in a control interval I, the controller is more prone to being affected by the variance in the response 

time average measurements. Having more primary workload queries in a control interval I smoothes 

out the variance as the response time average measurements is averaged over more queries. 
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Figure 16: Controller experiment results with inputs: RS = 1682ms, KI = 0.001, I = 20 
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4.8.4 Tuning Controller Constant KI and Control Interval I Experimentally 

Inappropriate values for KI and I can result in performance problems of overshoot, oscillation and 

longer convergence times. Therefore, proper tuning is necessary for KI and I. 

By tuning the parameters KI and I, we are able to control the aggressiveness of the controller. 

Tuning KI changes the size of the control steps taken by the controller to move from one threshold to 

another and therefore, by tuning KI, we are able to control the controller’s sensitivity to error. Tuning 

I changes the number of control decisions per unit time, thereby changing the time span over which 

the response time measurements of the primary workload are averaged and therefore, by tuning I, we 

are able to control the controller’s sensitivity to variance. 

The following is how to deal with a performance problem of overshoot and oscillation by tuning KI 

and I. 

1. If the controller overshoots the response time objective RS, oscillates and does not near the 

objective, as in Controller Experiment 9, then this problem is due to a high KI and therefore, 

KI needs to be decreased. 

2. If the controller converges onto the objective RS but doesn’t stay on RS and oscillates, as in 

Controller Experiment 10, then this problem is due to significant variance in the response 

time measurements of the primary workload and therefore, I needs to be increased to 

minimize variance. 

The performance problem of longer convergence time, where the controller takes a significant 

amount of time to converge onto the objective RS, as in Controller Experiment 8, is due to a low KI 

and therefore, KI needs to be increased. It is to be noted that decreasing I can also increase the 

convergence time. 

 

4.8.5 Choosing Controller Constant KI 

In all the controller experiments in this thesis, we used values for controller constant KI that were 

obtained experimentally, based on trial and error. We used a KI of value 0.01 for response time 

objectives from the no-CPU-contention environment and a KI of value 0.001 for response time 

objectives from the CPU-contention environment. Practically, it is not realistic to perform manual 
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tuning of KI without having any pointers to starts from. Therefore, we discuss some possible ways to 

reduce manual tuning in this section.  

In the previous chapter, we defined the controller constant KI to be the amount by which the 

controller should manipulate the concurrency threshold for a unit amount of error in the response time 

of the primary workload. 

𝐾𝐼 =
𝐶 𝑖 − 𝐶(𝑖 − 1)

𝐸(𝑖)
 

Considering the slopes of trends from the response time curve (in Figure 2(a)) in the workload 

characterization experiment, for response time objectives from the no-CPU-contention environment, 

we know that we want the controller to have the granularity to change the concurrency threshold at 

most by 1 if the error is of value 23 ms. Therefore, we want KI of value 0.04 in no-CPU-contention 

environment.  

𝐾𝐼 =
1

23
= 0.04 

Similarly, for response time objectives from the CPU-contention environment, we know that we 

the controller to change the concurrency threshold by 1 if the error is of value 225 ms. Therefore, we 

want KI of value 0.004 in CPU-contention environment. 

𝐾𝐼 =
1

225
= 0.004 

These values 0.04 and 0.004 for KI are the highest that KI should be in each environment, making 

the controller to adjust for response time error in a single control step, which may result in an 

aggressive controller.  

From the properly tuned controller experiments in Section 4.5, Controller Experiment 1 took 6 

control steps to move from threshold 1 to threshold 2 in the beginning of the experiment in no-CPU-

contention environment. Therefore, the KI value that works well in that experiment should be 0.0067.  

𝐾𝐼 =
0.04

6
= 0.0067 

When this value is rounded off, it is equal to 0.01, which is what we used in Controller Experiment 

1. 
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Similarly, Controller Experiment 2 took 3 control steps to move from threshold 3 to threshold 4 in 

the beginning of the experiment in CPU-contention environment. Therefore, the KI value that works 

well in that experiment should be 0.0013. 

𝐾𝐼 =
0.004

3
= 0.0013 

When this value is rounded off, it is equal to 0.001, which is what we used in Controller 

Experiment 2. 

Hence, the values 0.01 and 0.001 for the controller constant KI that we used, though arrived at 

experimentally, are consistent with the slopes of the response time curve (in Figure 6(a)) in the 

workload characterization experiment. 

 

Model to suggest controller constant KI 

Practically, in order to decide how to set the controller constant KI in a real system, it may not be 

possible for the system administrator to perform the workload characterization to get the slope of the 

response time curve (in Figure 2(a)) of the primary workload. However, the following model can be 

used to suggest a reasonable KI value to start with, which can be tuned later on as per the performance 

of the controller. 

In this section, we present a model that suggests a reasonable controller constant KI value to start 

with, which can be tuned as per the performance of the controller. We use the response time R of a 

single query of the primary workload and the number of processors P in the system to estimate the 

response time of the primary workload when Ctotal concurrent queries are running in the system. If the 

administrator does not know the response time R, then a calibration run can be done in which the 

primary workload is run alone in isolation. The response time average calculated from this run can be 

used as the response time R. If R(Ctotal) represents the response time of the primary workloads with 

Ctotal number of concurrent queries (of all workloads) running in the system, then the following can be 

used to estimate RCtotal. 

𝑅(𝐶𝑡𝑜𝑡𝑎𝑙 ) =  

𝑅 ,  𝐶𝑡𝑜𝑡𝑎𝑙 ≤ 𝑃
𝐶𝑡𝑜𝑡𝑎𝑙

𝑃
𝑅,  𝐶𝑡𝑜𝑡𝑎𝑙 > 𝑃
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In other words, as long there are at most P concurrent queries running in the system, the response 

time of a query does not increase. If the number of concurrent queries running in the system goes 

above P, then the response time of a query increases linearly with the number of concurrent queries. 

For simplicity, we consider only the case in which Ctotal > P. The slope of R(Ctotal) is the 

relationship between the response time and the number of concurrent queries. The slope is 
𝑅

𝑃
 time 

units per query. As explained in the previous chapter, controller constant KI needs to be queries per 

unit time. Therefore, the value that we want for KI is the inverse of the slope of R(Ctotal). 

𝐾𝐼 =
𝑃

𝑅
 

This KI value obtained from the inverse of the slope of R(Ctotal) will result in the controller taking 

large control steps and trying to correct response time error in a single control step, which may result 

in an aggressive controller. Therefore, this KI value should be divided by the number of control steps 

the controller should take before correcting the error entirely. Therefore, if n is an arbitrary number of 

control steps chosen by the administrator, 

𝐾𝐼 =
𝑃

𝑅 ∗ 𝑛
 

In our system, 𝑃 = 4 and for our primary workload, R = 1000 ms. Since we are considering only 

the condition where  𝐶𝑡𝑜𝑡𝑎𝑙 > 𝑃, we are looking at the CPU-contention environment from our 

controller experiments. In our controller experiments, there were 3 control steps in the CPU-

contention environment. Therefore, if we consider 3 control steps, 

𝐾𝐼 =
4

1000 ∗ 3
= 0.0013 

When this value is rounded off, it is equal to 0.001. This KI of value 0.001 is the same as what we 

had used for most of our controller experiments that worked well. Hence, this validates our model.  

In summary, given the response time R of a query of the primary workload and the number of 

processors P in the system, this model can suggest a reasonable value for KI for the administrator to 

start with. This suggested KI value is best when 𝐶𝑡𝑜𝑡𝑎𝑙 > 𝑃. For 𝐶𝑡𝑜𝑡𝑎𝑙 ≤ 𝑃, there still needs to be 

some tuning to find out the best KI value, but at least the administrator knows that the value is bigger 

than the KI value derived from the model because the slope of R(Ctotal) will be small. Therefore, 

though this model suggests a KI value to reduce a lot of manual tuning, there still needs to be some 



 

 63 

tuning required to find the best controller constant KI, which can be done experimentally based on the 

guidelines presented in Section 4.8.4. 

 

4.8.6 Choosing Control interval I 

In all the controller experiments, we used arbitrary values for the control interval I. We had to 

consider variance in tuning the control interval I because the workloads that we used had a low arrival 

rate of queries. In the no-CPU-contention environment, the variance in the response time 

measurements was less and hence, we used a smaller control interval of a minimum of 20 primary 

workload queries. In the CPU-contention environment, the variance in the response time 

measurements was significantly high and in order to smooth out the variance, we used a longer 

control interval I of a minimum of 40 primary workload queries. 

Practically, the control interval I may not require a lot of tuning because most of the transactional 

database workloads in a real system have high arrival rates. Hence, a reasonable control interval can 

be easily chosen by the system administrator and the interval will have a good number of queries and 

therefore there will not be any significant variance in the response time average measurements. The 

same control interval will work for both no-CPU-contention environment and CPU-contention 

environment. We examine the feasibility of using our controller on workloads with higher arrival 

rates in the next section. 

 

4.9 Workloads with Small Inter-Arrival Time and Small Service Time 

Most of the transactional workloads in current DBMSs have a high arrival rate of queries with 

sub-second service times. Therefore, we examine the feasibility of achieving response time 

objectives for workloads with small service time TS and small inter-arrival time TA. 

 

4.9.1 Effectiveness of Controller on Workloads with Higher Arrival Rate 

We use two workload streams WD and WE as shown in Table 7. We use a service time of 200 ms and 

an inter-arrival time of 120 ms for the primary workload WD and the secondary workload WE. 
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Therefore, both the workloads together have a CPU utilization of 3.2. We use random service time 

TS and random inter-arrival time TA. 

 

Test 

Workloads 

Workload 

Streams 
𝑻𝑺 [value (ms), distribution] 𝑻𝑨 [value (ms), distribution] 

Primary WD 200, exponential 120, exponential 

Secondary WE 200, exponential 120, exponential 

Table 7: Test workloads WD and WE configurations 

 

We perform workload characterization as in Experiment 2 of Section 5.4 on workloads WD and WE. 

In this experiment, we determine whether admission control on the secondary workload WE is an 

effective way to control the response time of the primary workload WD. The result of the experiment 

is shown in Figure 16. 

 

 

Figure 17: Sensitivity of response time average of WD to concurrency threshold on WE 
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times that are much longer than 200 ms and inter-arrival times that are much smaller than 120 ms. 

This keeps the system sufficiently overloaded, creating our problem scenario. 

Therefore, with the response time averages of the primary workload WD consistently increasing and 

with a high arrival rate of the queries in WD, our controller should be effective on these workloads. 

Hence, the controller can work with a controller constant KI, which can be derived from our model for 

KI as explained in Section 4.8.5, and a reasonable control interval I. KI can be tuned later on, if 

required, according to the performance of the controller. 

 

4.9.2 Effectiveness of Controller on Workloads with Small Service Time 

We repeat workload characterization as in Experiment 2 with two workload streams WF and WG with 

small, deterministic service times. The workload configurations are shown in Table 8. The workloads 

WF and WG are workloads WA and WB but scaled down to 1/10
th
 of their service times and inter-arrival 

times. We use a service time of 100 ms and an inter-arrival time of 200 ms for the primary workload 

WD. We use a service time of 100 ms and an inter-arrival time of 30 ms for the secondary workload 

WE. Therefore, both the workloads together have a CPU utilization of 3.83. The purpose of using 

these workloads is to particularly see the feasibility of admission control on queries with small, sub-

second service times. The results are shown in Figure 18. 

 

Test 

Workloads 

Workload 

Streams 
𝑻𝑺 [value (ms), distribution] 𝑻𝑨 [value (ms), distribution] 

Primary WF 100, deterministic 200, deterministic 

Secondary WG 100, deterministic 30, exponential 

Table 8: Test workloads WF and WG configurations 

 



 

 66 

 

Figure 18: Sensitivity of response time average of WF to concurrency threshold values on WG 

 

The figure shows that the response time averages of WF are not affected by change in concurrency 

threshold on WG. This is because the queries of the workloads are too short, probably shorter than the 

CPU time slice of the operating system’s scheduler. If we assume that the operating system uses 

round robin (RR) scheduling, with the time slice being too big for the very small queries, the RR 

scheduler will start to perform as a first-come-first-serve (FCFS) scheduler. Therefore, the context 

switches for each query becomes significantly low. Therefore, with increase in concurrency, there is 

negligible increase in context switches for each query and therefore, CPU wait time TW for each query 

will almost remain the same. In conclusion, the response times of these very small queries do not 

increase by increase in the number of concurrent queries in the system. This proves that our 

controller’s concurrency threshold control will not be effective for workloads with very small queries. 

 

4.10 Summary 

In this chapter, based on all the experiments, we can conclude that our admission controller 

has a certain number of advantages and a certain number of disadvantages. 

The following are the advantages of the controller: 

1. The controller is able to keep the response time average of the primary workload at the 

response time objective with minimal performance problems, after careful tuning of input 

parameters: controller constant KI and control interval I. 
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2. The controller, if properly tuned, is able to automatically adjust to changing response time 

objective and changing workload conditions without any performance problems. 

3. The  aggressiveness  and the convergence time of  the  controller  can  be  controlled  by  

controlling  the  controller constant KI  and the control interval I. 

The following are the disadvantages of the controller: 

1. Tuning the controller constant KI and the control interval I may be difficult in practice. 

2. If the number of secondary workload classes to control is less, the controller’s admission 

control can be a coarse form of control to achieve response time objectives. 

3. The controller is not effective for workloads with very small queries because their CPU wait 

time TW is not affected by concurrency threshold. Hence, the controller’s admission control 

does not affect the response times of very small queries. 
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Chapter 5 

Conclusion 

 

In this thesis, we study achieving performance objectives for a primary workload in DBMSs. We 

focus on how to use feedback-based admission differentiation to achieve the performance objectives. 

We use admission control on secondary workloads to achieve objectives for the primary workload. 

The amount of admission control to be applied is decided on the current performance of the primary 

workload and how far it is from the objective. 

We propose a general architectural framework for feedback-based admission differentiation. It 

consists of three components: workload classifier, workload monitor and adaptive admission 

controller. The workload classifier identifies and groups the incoming queries into workloads 

according to their source or type. The workload monitor is concerned with providing feedback about 

the workloads to the adaptive admission controller by continuously collecting performance 

information. The adaptive admission controller calculates and implements admission control on the 

secondary workload. The adaptive admission controller has two sub-components, namely an advisor 

and effector. The advisor reads the performance information of the primary workload, compares the 

information to the workload’s objective and calculates the amount of admission control to be applied 

on the secondary workload. The amount of admission control to be applied is determined by using 

fundamentals from control theory. Effector implements the admission control calculated on the 

secondary workload. 

In order to prove the effectiveness of feedback-based admission differentiation, we implemented all 

the components in a commercial DBMS, DB2. We achieve response time objectives for the primary 

workload by applying admission control in the form of applying a concurrency threshold to the 

secondary workload.  

We show that the adaptive admission controller is able to regulate the response time average of the 

primary workload towards the workload’s response time objective by controlling the concurrency 

threshold on the secondary workload, given an appropriate controller constant KI and control interval 

I.   
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We evaluate the controller in different scenarios in which the response time objective or the 

workload changes. The experiments in which response time objective changes show that the 

controller can achieve both the objectives and handle the change effectively without oscillation. The 

experiments in which workload changes show that the controller can dynamically achieve the 

objective through the workload changes, without oscillation as well. 

We show how controller constant KI and control interval I affect the performance of the controller.  

The experiments show that we can control the aggressiveness of the controller by changing KI and I.  

We also show the feasibility of the using the controller for workloads with a high arrival rate and 

sub-second service times. The experiments showed a limitation of the controller that it is not effective 

on workloads with very small queries because the queries are too small and therefore, the context 

switching for each query does not increase with increase in concurrency in the system. Therefore, the 

controller’s concurrency threshold control on the secondary workload (with small queries) do not 

affect the response times of the primary workload (with very small queries).  

In conclusion, a properly tuned adaptive admission controller is able to achieve response time 

objectives for an important, primary workload by applying concurrency threshold control on the less 

important, secondary workload, as long as the workload do not consist of very small queries. Hence, 

the controller experiments in this thesis show that it is feasible to use feedback-based admission 

differentiation to achieve performance objectives for a primary workload in a DBMS.  

Having shown the effectiveness of the controller, it will be interesting to see the following as future 

work: 

1. Develop a method to auto-tune the controller constant KI. In this thesis, we showed a model 

to derive a value for controller constant KI with the response time R and the number of 

processors P. Though the derived value saves the administrator from a lot of tuning, it may 

still require a bit of tuning to obtain the best KI value. Hence, it is necessary to develop a 

well-defined process to tune KI automatically to avoid any manual tuning. 

2. Enhance our feedback-based admission differentiation framework to achieve per-class 

performance objectives for multiple workload classes. Achieving multiple performance 

objectives is complicated by the interdependence between workload classes. Achieving 

performance objective of one class affects the performance of the other classes. Therefore, we 
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need to develop a well-defined function to manage the objectives of all the workload classes 

collectively. 

3. Improve the objective specification for the architectural framework to include business 

importance of the workload classes. In this thesis, we assumed the business importance of the 

workloads and we designed the architectural framework to allow specifying the performance 

objectives as values. There is no method to specify business importance of a workload class 

which can define how important it is to achieve the objective of the class relative to other 

workload classes. Therefore, integrating importance of workload classes along with their 

performance objectives will be a good improvement to add to the framework. 

4. Test the controller for achieving performance objectives of other metrics. For example, if 

applying concurrency threshold on the secondary workloads affects the throughput of the 

primary workload, then the controller can achieve throughput objectives of the primary 

workload. 

5. Investigate if the controller can be used on a wider range of workloads and not just read-only 

transactional workloads. 
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