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Abstract

Accurate measurement of the gas diffusion coefficient through porous media is of signif-

icant interest to science and engineering applications including mass transfer through soils,

building materials, and fuel cells to name a few. Accurate measurements are necessary for

simulation and optimization of complex systems involving gas transport. The Loschmidt

cell, or closed tube method has been extensively used to measuring the binary gas diffu-

sion coefficient of gas pairs. Recent studies have used a modified Loschmidt cell with an

additional porous sample to measure the effective diffusion coefficient through the porous

sample. The method employs what is called the resistance network method for calculating

the effective diffusion coefficient through the porous sample.

In this study, a one-dimensional simulation was developed to evaluate the accuracy of

the resistance network method with a modified Loschmidt cell. Dimensionless parameters

are shown to be applicable for both the conventional Loschmidt cell as well as the modified

Loschmidt cell with the porous sample. A parametric simulation study was performed to

show that the error relates closely to the ratio of diffusive resistances of the sample and

bulk gas denoted as the resistance ratio, Ω∗. With a simulated experimental duration of

250s, which is typical of experiments in literature, the error was found to be negligible when

Ω∗ < 0.1 but increased dramatically for Ω∗ > 0.1 up to a maximum of approximately 20%

error. The equivalent Fourier number, Foeq, based on the equivalent diffusivity, Deq, was

proposed as an approximate expression for the degree to which the concentration gradient

in the test cell has evolved. It was found that the error has nearly a linear relationship with

Foeq. Since a lower Foeq means a less decayed profile with significant transience remaining,

as Foeq drops, the the error increases. By controlling the simulation test length for different

thickness and diffusivity samples such that Foeq = 12.5, the error was reduced to less than

1% over most of the range of parameters and less than 6% over the full range of parameters

spanning two orders of magnitude for both thickness and diffusivity.

The resistance network method requires the measurement of the sample thickness, a

diffusion length, and two diffusion coefficients using with the modified Loschmidt cell (one

with the porous sample and one without). Analysis found that the equation used for

calculating the effective diffusion coefficient, Deff , through the porous sample inherently

magnifies the relative uncertainty of the measured values in the final calculated value for

Deff . When Ω∗ < 1, the percentage uncertainty in both diffusion coefficient measurements

could potentially be magnified by one or more orders of magnitude. To mitigate uncertainty
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in Deff , Ω∗ must be greater than 1 to ensure that the uncertainty is magnified by no more

than a factor of 2.

This study recommends that modified Loschmidt experiments aim for Ω∗ = 1 and

Foeq = 12.5 to greatly reduce the error and uncertainty in the measurement of Deff .
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Chapter 1

Introduction

Polymer electrolyte membrane fuel cells (PEMFC) are a classification of electrochemical en-

ergy conversion devices that are currently undergoing extensive research and development

in an effort enhance their attractiveness for widespread commercial application. Signif-

icant research is directed towards the optimization of fuel cell materials. An important

component of the materials related research is the ability to accurately measure material

properties.

1.1 Operating Principle of Polymer Electrolyte Mem-

brane Fuel Cells

The PEMFC is an electrochemical device that continuously and directly converts supplied

H2 and O2 into electrical energy. Additionally, heat and water are products of the reaction

that must be continuously removed from the reaction sites. PEMFC’s are distinguished

from other fuel cells by its use of a quasi-solid electrolyte membrane [9]. The major compo-

nents of a PEMFC are the flow channel, bipolar plate, gas diffusion layer (GDL), catalyst

layer (CL), and polymer electrolyte membrane (PEM). Figure 1.1 shows a schematic of

the components related to the flow in a PEMFC. The catalyst layer is either deposited

onto the membrane or the GDL and sandwiched in place to form the membrane electrode

assembly (MEA)[6]. It is inside the MEA where much of the complex gas diffusion, heat

conduction, two phase flow in porous media, electron transport, and ion transport occur.
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The two components of greatest interest to this investigation are the GDL and CL since

those are two porous substances where gas diffusion occurs.
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Figure 1.1: Schematic of PEMFC components related to mass flow[1]

During operation, reactant gases are constantly supplied to the flow channels which

distribute it over the entire MEA. The reactant gases diffuse through the GDL to the

reaction sites within the CL. Figure 1.2 shows a schematic of a single cell as well as the

primary processes involved in the reaction. On the anode side, hydrogen is split into an

electron and a proton at the reaction site. The electrons flow through the external electrical

circuit while the protons move through the membrane. On the cathode side, the oxygen

reduction reaction consumes the oxygen and produces water as a product. Water must be

transported away from the cathode CL and out through the cathode flow channels.

The most common way of expressing fuel cell performance is through a polarization

curve. The curve shows the cell voltage plotted over a range of current densities for a spe-

cific set of constant operating conditions. The current density is the total current measured
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Figure 1.2: Schematic of PEMFC processes during operation [2]

from a running cell divided by the total active area of the fuel cell. Figure 1.3 gives an ex-

ample of a polarization curve. The loss of voltage observed with increasing current density

can be attributed to three types of voltage loss: activation loss (activation polarization),

ohmic loss (ohmic polarization), and concentration loss (concentration polarization)[3, 9].

Activation polarization is seen at low current densities and is due in large part to the

sluggish kinetics of the oxygen reduction reaction (ORR). Ohmic polarization is caused by

the resistance to flow of ions and electrons and is dominant in the intermediate current

densities. The ohmic polarization region has a linear profile. The rapid voltage loss in the

region of high current density is the concentration polarization. This is due to the drop of

concentration of reactants at the reaction site and causes a sharp drop in voltage.

3



Figure 1.3: Fuel cell voltage losses shown on a polarization curve [3]

The concentration polarization arises due to insufficient transport of reactant gases to

the catalyst layer and flooding due to produced water. A significant amount of research

deals with water management and two phase flow in fuel cell porous media. The other side

of the mass transport limitation is the diffusion of gases in porous media. Knowledge and

understanding of gas diffusion performance in fuel cell media is important for the purpose

of simulating fuel cell performance, optimizing operating conditions, and design of fuel cell

porous media.

1.2 Structure of Porous Diffusion Media in Fuel Cells

The CL and GDL are the porous materials used in PEM fuel cells. the CL contains the

reaction sites and is required to transport electrons, ions, and heat in addition to gas

and liquid (in the pores). Aside from gas transport, the GDL is used for electron and

heat transport. The GDL is also used as mechanical support for the CL. In having these

multiple and varied functions, fuel cell porous media have very specific attributes to help

it meet these needs.
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1.2.1 Gas Diffusion Layer Structure

The GDL is particularly important at high current densities and/or low gas flow rates

where blockage by water can potentially dominate voltage losses [10].The ideal GDL serves

the purpose of effectively transporting and dispersing reactant gas to the CL while having

minimal electrical resistance, create good electrical contact with neighbouring regions, and

have appropriate surface wettability to improve water removal [9, 5, 11].

GDL is most commonly a carbon paper made up of planar sheets of randomly oriented

carbon fibres. Multiple sheets are stacked to reach the usual thickness of 200µm to 500µm.

While woven carbon cloths are also an alternative, academic and industrial interest centres

around carbon paper due to cost advantages and ease of fabricating micro-porous layers

(MPL) or CL’s directly onto the substrate [4]. In many GDL’s additives such as poly-

tetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) are added to make

the entire layer more hydrophobic for enhanced water removal. The addition of PTFE

has a dramatic effect on the diffusion through the GDL by changing the pore structure

and reducing the overall porosity. Figure 1.4 shows the structure of typical GDL with and

without hydrophobic treatment.

Figure 1.4: Comparison of surface SEM micrographs of (a) carbon paper impregnated with

20wt.% fluorinated ethylene propylene (FEP) and (b) untreated carbon paper [4]

In some applications, an MPL is added to the side of the GDL in contact with the CL.

The MPL is composed of a carbon powder bonded together with PTFE [12]. It serves

the purpose of increasing electrical contact with the CL, enhancing water transport away
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from the reaction site, and preventing intrusion of the CL into the much larger pores of the

GDL [4, 13, 11]. Figure 1.5 shows a CL, MPL, and GDL layer as well as their approximate

thickness. The GDL and MPL combination is commonly referred to as a double-layer.

Figure 1.5: Schematic of a double-layer GDL in contact with CL and flow field [5]

A large number of experimental and modelling studies have investigated the effect of

GDL and MPL properties on the fuel cell performance [13]. The parameters of porosity,

PTFE (or other additive) content, thickness, and MPL properties are all subject to op-

timization. The accurate measurement of gas diffusion coefficients through these porous

structures would provide valuable information for both experimental and simulation stud-

ies.

1.2.2 Catalyst Layer Structure

Catalyst layers (CL) in the PEMFC are the regions where the two half cell reactions oc-

cur. Typically, platinum catalyst is used to accelerate the reaction to a rate acceptable

for practical applications. CL’s are composed of platinum particles dispersed on a car-

bon particle support, an ionomer (similar or the same as the membrane material) for ion

transport, a binder to hold together the carbon particles, and in some instances a hy-

drophobic additive to enhance liquid transport. Current commercial and experimental

manufacturing methods for the CL include direct casting, decal transfer, screen printing,

spraying, ink jet printing, spray pyrolysis, sputter deposition, and vapour film deposition

[14, 15, 16, 17, 18, 19, 7, 6, 20]. The primary goals of exploring so many methods of
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CL deposition is to optimize structure for increased performance, decrease cost of mate-

rials used (primarily platinum), and reduce the cost of manufacturing. For conventional

methods, the CL is first prepared as a catalyst ink solution or colloid containing the car-

bon supported platinum, a binder, and a solvent [21, 18]. The binder may be either the

ionomer or a hydrophobic treatment such as PTFE [14, 17]. As shown in Figure 1.6, the

CL can be deposited first onto either the GDL or membrane (A-anode and C-cathode).

The membrane covered by CL is called a catalyst coated membrane (CCM).

CGDL PEM AGDL GDL CCM GDL

Anode GDL

Anode CL

PEM

Cathode CL

Cathode GDL

5-layer MEA

Figure 1.6: Schematic of membrane electrode assembly (MEA) fabrication methods [6]

The characteristics of an ideal CL include those of the GDL (effective transport of gas,
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water, and electrons) as well as effective ion transport and maximising the number of three

phase reaction sites [22, 7, 6]. To accomplish all of these goals, the CL structure is both

specific and complex. The CL must be a thin porous active layer containing the maximum

number of reactive sites (ie. three-phase interfaces) where gas, electron, ion, and water

transport all occur. Figure 1.7 shows an idealized representation of what a single Pt-C

particle should look like and illustrating the three phase reaction sites

Figure 1.7: Schematic of three phase interface [7]

The CL represents an extremely complex region on the PEM fuel cell which is under-

going extensive research to improve both performance and cost [19]. The gas transport

properties are one of many related transport properties that must be optimized [15]. It is

important to be able to isolate the effects of manufacturing techniques, material compo-

nent, and structure have on gas diffusivity through the catalyst layer.

1.3 Thesis Objectives and Scope

The literature review will reveal that experimental work on measuring the diffusion co-

efficient of gases through fuel cell porous media is relatively limited. Of the methods

used to measure diffusion coefficients through porous media, significant work has been

performed by researchers at the National Research Council (NRC) located in Vancouver,

British Columbia using a modified version of the Loschmidt cell. This work examines the

parameters and techniques applied to the modified Loschmidt cell with the following aims.
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• Understand the measurement method

• Assess the physical correctness of the method

• Understand the effect of system parameters on accuracy

• Quantify sources of error and uncertainty

• Suggest improvements to the apparatus and method

This thesis makes use of analytical equations, simulations, and experimental work to

fully understand the Loschmidt cell analytical technique.
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Chapter 2

Background

2.1 Theory of Gas Diffusion

Diffusion refers to the net motion of mass in a single phase without mixing (ie. mechanical

or convective mixing). It has been shown by both theory and experiments that diffusion

can be a result of pressure gradients (pressure diffusion), temperature gradients (ther-

mal diffusion), external force fields (forced diffusion), and concentration gradients [23, 24].

The focus will be placed on diffusion as a result of concentration gradients (henceforth

simply referred to as diffusion). As gas molecules move about randomly without a pre-

ferred direction, each species has the tendency to distribute itself evenly throughout the its

container[23, 25]. Since both transfer of heat by conduction and transfer of mass by diffu-

sion are a result of random molecular motion, the quantitative expressions are analogous

to each other [8, 26, 27]. Fick (1855) first applied the equation of heat conduction derived

by Fourier (1822) years earlier to the diffusion of mass [28]. The theory of diffusion states

that the rate of mass transfer through a unit area in an isotropic substance is proportional

to the concentration gradient normal to the area. The statement expressed as an equation

in one-dimensional form is

Fx = −D∂C
∂x

(2.1)

where Fx is the rate of transfer per unit area, C is the concentration of the diffusing

substance, x is Cartesian direction normal to the section, and D is the proportionality

10



constant known as the diffusion coefficient. The differential equation for diffusion in an

isotropic medium can be derived from Equation 2.1 by considering an elemental volume as

depicted in Figure 2.1. The lengths of the edges are 2dx, 2dy, and 2dz. The center of the

element is point P (x, y, z) and has a concentration of C.

Figure 2.1: Elemental volume for diffusion [8]

Using Taylor’s Series and conservation of mass, one can arrive at the following equation

∂C

∂t
+
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

= 0 (2.2)

Equations 2.2 and 2.1 can be combined to obtain

∂C

∂t
= D(

∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2
) (2.3)

or further simplified into vector form to be

∂C

∂t
= ∇ · (D∇C) (2.4)

Equation 2.4 for one-dimensional diffusion assuming that the diffusion coefficient is

constant with respect to concentration can be written as

∂C

∂t
= D

∂2C

∂x2
(2.5)

The above discussion is suitable for dilute mixtures where the diffusing substance has

a much lower concentration than the medium through which it is diffusing. In the case of

a two component gas mixture, the flux of both species must be considered.
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{
F1 = −D12∇C1

F2 = −D21∇C2
(2.6)

where species are labelled with subscripts 1 or 2 and the diffusion coefficient denotes the

diffusion of one species into the other (ie. D12 is the diffusion coefficient of species 1 into

2). In the case where there is no net flux (F1 + F2 = 0) it can be shown that D12 = D21

and C1 +C2 = C. Thus, in the case of binary diffusion with no net flux, only one diffusion

coefficient is needed. In the case where the net flux is not equal to zero, Equation 2.6 can

be defined for a moving coordinate system with velocity F1+F2

C
or rewritten to define D in

a stationary coordinate system. As before, it can be shown that D12 = D21 [8, 23].


F1 = −D12∇C1 + x1F

F2 = −D21∇C2 + x2F

F = F1 + F2

(2.7)

where x is the mole fraction of each component. In the strict sense, binary diffusion with

unequal fluxes cannot occur in a system where both the net flux and pressure gradient are

simultaneously zero. If the net flux is zero, a small pressure gradient must exist to counter

the difference in fluxes. The pressure gradient in diffusing gas mixtures is extremely small

and only measurable in specialized capillary experiments [29]. Thus, it is unnecessary to

include a pressure gradient term in Equation 2.7 since the pressure effects included in the

flux terms. The equations presented are applicable to systems regardless of dependence of

the diffusion coefficient on composition, pressure, or temperature.

The Stephan-Maxwell equations describe multicomponent diffusion based on the diffu-

sion coefficients of binary mixtures [29, 30, 28].

∇xi =
ν∑
j=1

xixj
D′ij

(
Fj
Cj
− Fi
Ci

)
(2.8)

where i and j denote species, ν is the total number of species in the mixture, and D′ij is

the diffusion coefficient which has a dependence on the relationship between species i and

j. The slight difference between Dij and D′ij is due to weak composition dependence and

thus is reasonable to make the approximation that D′ij ≈ Dij [29].
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2.2 Correlations for Gas Diffusivity in Porous Media

Diffusion in pores can occur by the three mechanisms of bulk diffusion, Knudsen diffusion,

and surface diffusion [31]. For the discussion in this thesis, surface diffusion is not consid-

ered. Bulk, ordinary, or Fickian diffusion is discussed in Section 2.1. For Fickian diffusion,

the effective diffusion coefficient through a porous material is related to the volume frac-

tion of void space (porosity φ) and the length fraction of the tortuous flow path to straight

line length (tortuosity τ). The typical case of irregular pore shape and non-constant cross

section leads to constrictions offering greater resistance which is not offset by enlargements

and so the flux tends to be less than that of a uniform pore shape [32].

Under the assumption of Fickian diffusion, there are a large number equations available

to model the effective diffusivity (Deff) through porous networks. The equation below

shows a basic relationship for the effective diffusion coefficient through porous media.

For unconsolidated porous media, tortuosity ranges between 1.5 and 2.0 [32]. In general,

however, tortuosity is not a known value.

Deff =
Dφ

τ
(2.9)

Other correlations for effective gas diffusion through porous media have been proposed

by Bruggeman, Neale and Nader, Tomadakis and Sotirchos, Nam and Kaviany, and Das et

al. [33, 34, 35, 36, 37]. Each of these correlations circumvents tortuosity and attempts to

estimate diffusion coefficient through porous media as a function of only porosity. Zamel

et al. compares the effective diffusion coefficients of several correlations against simulation

and experimental results [38, 39] to find that many correlations are not sufficiently accurate

when used for fuel cell porous media.

Fick’s law fails to fully describe diffusion when gases are very low density, the pores

are very small, or a combination of the two. Knudsen diffusion, which accounts for the

collision of molecules with the pore walls, becomes an important factor in those cases

[28, 32]. The limiting situation for Knudsen diffusion (or flow) is when the mean-free path

of the gas molecules is greater than the diameter of the pores and only collision between

gas molecules and pore walls occur [31]. When neither mechanism is fully dominant, the

effective diffusivity can be found by the combination of Fickian and Knudsen diffusion

coefficients as shown in Equation 2.10 [28, 40].
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1

Deff

=
1

DK,eff

+
1

D12,eff

(2.10)

where DK,eff is the effective Knudsen diffusion coefficient and D12,eff is the effective Fickian

diffusion coefficient. The mean-free path of a gas can be found through Equation 2.11

assuming ideal gas and Maxwellian motion in all directions [41].

l =
kBT√
2Pπσ2

(2.11)

where l is the mean-free path, kB is the Boltzmann constant, T is the absolute temperature,

P is the pressure, and σ is the collision diameter. Using a collision diameters of N2 and

O2, the mean-free path at standard ambient temperature and pressure is approximately

70nm [42]. The pore size of GDL is sufficiently large that Knudsen diffusion is negligible.

Diffusion in the much smaller pores of the MPL or CL must account for both Fickian and

Knudsen diffusion.
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Chapter 3

Literature Review

3.1 Measurement of Effective Gas Diffusion Coeffi-

cient of Porous Media

Several methods can be found in literature for measurement of gas diffusion coefficient

through porous media. Most of the methods discussed are specifically intended for mea-

surement of fuel cell diffusion media. Some of these measurement techniques are in-situ,

making use of the structure and behaviour of the fuel cell to deduce the gas diffusion

coefficient through the porous media.

Baker et al. [43, 44] and others [45, 46] used the method of limiting current in a fuel

cell to determine mass transport resistances. The limiting current method determines

the highest achievable current in the concentration polarization region (where mass flux

limitations are dominant) at various inlet O2 concentrations in an operating fuel cell.

Through a simplified one-dimensional model of the fuel cell, the limiting current is related to

the effective diffusion coefficient of the entire cell. The overall effective diffusion coefficient

can be converted to a total resistance and split into the various contributing resistances

to find the resistance through the GDL. The method uses a low flow rate of inlet gas,

dry gas, and low O2 concentration to minimize pressure gradient in the flow channels

and water production. The contributing resistance can be split apart through parametric

experiments that vary pressures, inlet gas concentration, and material thickness. This

method suffers from trying to discern a single material property in a complex system
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with a variety of uncontrolled variables. The method cannot precisely control or monitor

changing concentrations throughout the cell and require estimates and averages to reach an

estimate. Further, it is noted by Baker et al. as well as Beuscher that the GDL resistance

accounts for approximately 50% or less of the resistance to diffusion observable in this

method [44, 45]. The method also requires a large number of polarization curves over a

huge range of value for several operating conditions to calculate results. Baker et al. do

show that there is good agreement between in-situ limiting current method and ex-situ

effective diffusion coefficient measurements [43].

The method of electrochemical diffusimetry, used by Kramer et al. [47] and others

[48, 49, 50, 51], infers the effective diffusion coefficient through measurement of electro-

chemical impedance. Porous media is submerged in an electrolyte solution while a si-

nusoidal or square waveform of DC current is applied between two electrodes within the

electrolyte solution placed on either side of the sample. Comparison of the response of

tests with and without the sample lead to an inference of the electrochemical impedance

of the sample which is used to calculate a resistance to diffusion and an effective diffusion

coefficient through the porous media. Kramer et al. [47] notes that the results obtained

using this method are in agreement with the results of Baker et al. [43]. Electrochemical

diffusimetry is a relatively quick method of determining the effective diffusion coefficient.

A significant weakness of the method is that in materials where Knudsen diffusion (or any

non-Fickian diffusion) occurs, the analogy is incapable of accurately accounting for the

potential impacts.

LaManna et al. employ a parallel flow mass exchanger to measure the effective dif-

fusion coefficient through fuel cell porous media [52]. The parallel flow mass exchanger

technique works by separating two channels with the porous media to be measured. One

channel flows humidified gas while the other flows dry gas. Theory allows the calculation

of the effective diffusion coefficient from knowing the inlet and outlet humidities of the

two channels. LaManna et al. notes that error is minimized by ensuring minimal pressure

difference between the two channels and accurate humidity measurements [52]. Despite

attempts, the GDL used would be expected to have such high permeability that a nearly

imperceptible pressure difference or unequal pressure drop along the two channels will in-

duce some forced convective transport between the channels. Further, the experiment is

conducted at 25◦C where very little water vapour is held by the air and increases overall

measurement uncertainty. In general, results using parallel flow mass exchangers are in

agreement with electrochemical diffusimetry results by Flückiger et al. [48].
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3.2 The Modified Loschmidt Cell for Measurement

of Effective Gas Diffusion Coefficient of Porous

Media

The Loschmidt cell or closed tube method for measuring binary gas diffusion coefficients

has been modified in several studies for measurement of diffusion coefficient through GDL,

CL, and MPL. The modified Loschmidt cell is an ex-situ technique, which means that

while current literature covers only gas diffusion measurements through fuel cell porous

media, the concept itself can be applied to any form of consolidated porous media.

Modification of the Loschmidt cell to make it capable of measuring the gas diffusivity

through a porous medium was first performed by Rohling et al. [53]. The experiment used

an in-house constructed Loschmidt diffusion apparatus modified to hold a porous sample

near the interface between the two chambers. The porous sample consisted of four GDL

layers stacked for a total thickness of 1.40mm. The concentration of CO2 in a CO2 −O2

binary mixture was measured using the photothermal deflection (PD) technique described

in a previous study [54]. Gas concentration is measured at a point 57.2mm away from the

interface of the two chambers and on the same side as the sample. The distance of the gas

measurement point from the chamber interface is referred to as the diffusion distance. The

study was successful in measuring a binary diffusion coefficient consistent with literature

values for the CO2 −O2 system as well as an effective diffusion coefficient of the porous

sample using equivalent diffusive resistances and a resistance network. This study was the

first study to use the resistance network method for calculating the effective diffusivity of

the sample positioned in a Loschmidt cell. The concept is borrowed from a study by Zhang

et al. [55] where diffusive resistances and the analogy of electrical circuit resistance was

used to develop a one-dimension model for steady-state gas diffusion through a catalytic

monolith. The analogy of electrical resistance for steady-state phenomenon is extensively

used in heat transfer and discussed in depth by Incropera et al. and Yovanovich [25, 56].

With the direct analogy between the diffusion of heat and gas [8, 27], the use of resistances

and resistance networks for steady-state gas diffusion is shown to be valid. In the case of

the modified Loschmidt cell, Rohling et al. offers no specific discussion on the validity of

the resistance network method and subsequent studies using the modified Loschmidt cell

refer to Rohling et al. the use of the resistance network [57, 39, 58, 59].

Astrath et al. used the modified Loschmidt cell to measure gas diffusion through
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stainless steel films with differently shaped holes [57]. As series of photoetched MicroEtch

Screens samples from Tech-Etch Inc. and a stainless steel sample with laser microdrilled

holes from Alase Technologies were tested in the cell. The thickness of the samples ranged

from 0.050mm to 0.506mm with well known hole geometry and dimensions. The diffusion

distance is 19mm while the full apparatus is 355mm [39]. This experiment uses O2 − N2 and

measures gas using an Ocean Optics FOXY-AL300 oxygen probe. The effective diffusion

coefficient of each of the samples was measuring using the modified Loschmidt cell as well

as simulated using an FEM package (ANSYS). With pore sizes approximately three orders

of magnitude greater than the mean free path of the gases, it was concluded that Knudsen

diffusion can be completely ignored. The comparison of the measured and simulated results

showed a difference of between 4% and 36%. The differences are attributed the theoretical

diffusion being a one-dimensional value and the difference between the cross section of

the pores used in calculation compared to the scanning electron microscope (SEM) image

of the actual samples. Missing in the discussion is error associated with the resistance

network and quantitative determination of the magnitude of each source of error.

Using the same apparatus as Astrath et al., Zamel et al. [39] measured the effective

diffusivity of TORAY carbom paper (TPGH-120). The carbon paper is 0.370mm thick and

can have a varying degree of Teflon treatment. The study is divided into two groups. The

first group of measurements looks at the effect of temperature on the effective diffusion

coefficient of an untreated TPGH-120 sample in O2 − N2. The second group of measure-

ments looks at the effect of various degrees of Teflon treatment on the range of 0%− 40%

in humidified gas (O2 − N2 with water vapour on both sides). For the first group, the

diffusivity of the bulk gas and sample were measured from 25◦C to 80◦C. The binary

diffusion coefficient was found to be consistent with the estimate for bulk gas developed

by Fuller et al. [60]. Diffusibility was introduced as the ratio of effective sample diffusiv-

ity and bulk gas diffusivity. The value of diffusibility over the temperature range varied

between 0.252 and 0.281. It was found that the diffusibility does not change significantly

with respect to temperature. For the second group, the diffusibility of the sample was

found to fall dramatically with increasing weight percentage of Teflon treatment. With ad-

ditional porosity measurements, the diffusibility of the sample with respect to porosity was

compared to the results of a number of models. It was found that the models significantly

over-predict diffusibility. The study mentions only that 60 measurements were performed

for each sample and a 95% confidence interval was used for the data. The relatively large

difference in diffusibility measurements in group one was not addressed and calculations of
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experimental error were not performed.

The technique for measuring porous samples was further extended by Shen et al. and

used by Chan et al. to measure thin layers of unconsolidated porous fuel cell material

on a structural porous substrate backing [58, 59]. Shen et al. used a 60µm thick Al2O3

film, referred to as “Anodisc 25”, as a substrate to serve as a backing for fuel cell cathode

catalyst layers (CCL) 6 − 29µm thick. The substrate material was chosen for its well-

defined pore structure, significantly higher effective diffusion coefficient than the CCL, and

having small enough pores to prevent penetration of the CCL into the substrate during

deposition. The measurements used a diffusion distance of 15.95mm and O2 − N2. Due to

the addition of a secondary layer, three measurements were required to find the diffusivity

of the deposited layer, one with no sample, one with only the substrate, and one with a

CCL deposited on the substrate. The measured diffusion coefficient of the catalyst layer

ranges from 1.12 × 10−7m2/s to 1.84 × 10−7m2/s. Shen attributes the large variability

in the measurements to the effect of having a very thin CCL and discusses how a small

change in the measurements has a huge impact on the diffusivity of the CCL through the

use of the resistance network. The pores of the Anodisc 25 and CCL are estimated to be

200nm and 10 − 200nm, respectively. Since the gases involved have a mean free path in

the same order of magnitude, Knudsen effect is expected in the results and is offered as

further reasons the weakness of various models for diffusion in porous media. However,

Shen erroneously makes the assertion that the appearance of Knudsen diffusion causes the

measured diffusivity to be much lower than than the Bruggeman correlation since Zamel

et al. demonstrated that the Bruggeman correlation over-predicts even when there is no

Knudsen diffusion [39]. As with previous studies, Shen et al. do not justify the use of the

resistance network or perform experimental error calculations.

The study by Chan et al. [59] uses the same technique as Shen et al. to measure

the effective diffusion coefficient of a micro-porous layer (MPL) deposited onto a GDL

substrate as well as the effect of PTFE on the effective diffusion coefficient of GDL [59].

The MPL is a layer sometimes applied to the GDL to improve performance through catalyst

layer (CL) localization by preventing intrusion into the GDL and improvement of water

management during operation. As with the measurements performed by Shen et al., the

MPL has sufficiently small pores such that Knudsen diffusion is a factor. The error for

the measurements of effective diffusivity of the sample is calculated to be between 9% and

12% while the error bars shown on figures appear to extend beyond those values.
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A study by Unsworth et al. [61] measured the diffusion coefficient of several untreated

GDL’s from two different manufacturers over a range of temperature. This analysis, unlike

previous studies, used the finite length analytical solution to Fick’s law (rather than infinite

length analytical solution). Also included in the analysis is a discussion of experimental

uncertainty which concluded that experimental uncertainty of 2.30% for basic diffusion

coefficient measurements. Measurements for the effective diffusion coefficient of the GDL

have an uncertainty depending on the ratio of the resistance of the porous sample and the

resistance of the rest of the bulk gas from the center of the apparatus to the oxygen probe

measurement point.

All of the aforementioned studies record a time-concentration profile at the gas con-

centration measurement point. The time-concentration data is transformed into a single

value for diffusivity (for both situations with bulk gas and with a sample) by matching to

an analytical equation derived from Fick’s first law and an appropriate set of boundary

and initial conditions. Most studies use the solution for Fick’s law for an infinite couple

presented by Crank [8]. This solution assumes infinite length for both chambers and is

used as an approximation for diffusion times sufficiently short such that the gas does not

reach the Loschmidt cell boundaries [8, 54]. The limitation is seen in the experimental

times for the studies examined being restricted to between 200s and 300s.
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Chapter 4

Development of Tools for Analysis

4.1 The Conventional and the Modified Loschmidt

Cell

The current study uses an in-house Loschmidt cell as a basis of investigation. The appa-

ratus is bsed on the principles demonstrated by the experimental work of Zamel et al. [39]

and is a modified version of the apparatus described by Chan et al. [59]. A diagram of the

in-house Loschmidt cell is shown in Figure 4.1.

The conventional Loschmidt cell is a long tube divided into two equal volume (8 and

9) chambers by the sliding gate valve (5). An oxygen gas probe (7) is located in the upper

chamber and the distance from the gate valve to the gas probe is also referred to as the

diffusion length, xp. Valves (1-4) are positioned throughout the apparatus to purge and

fill the chambers with O2 and N2. A modified Loschmidt cell includes a sample holder

(6) which holds a thin porous sample between the sliding gate valve and the oxygen gas

probe. The in-house Loschmidt cell has a total length of L = 357mm, diffusion length

of xp = 25.9mm, and an inner diameter of d = 20.6mm. To initialize the cell for an

experimental run, the sliding gate valve is closed (5b), the upper chamber (8) is filled with

dry N2 gas, and the lower chamber (9) is filled with dry O2 gas. Oxygen concentration

is measured by the oxygen gas probe (7) for the duration of the experiment. The time-

concentration data is used the in the data reduction process to find a value for the binary

gas diffusion coefficient based on curve fitting to an analytical solutions for Fick’s law
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Figure 4.1: Schematic of in-house Loschmidt cell with 1 to 4 - gas inlets and outlets; 5 -

sliding gate valve (5a - open gate, 5b - closed gate); 6 - porous sample holder; 7 - location of

oxygen probe ; 8 - upper chamber (initially nitrogen); 9 - lower chamber (initially oxygen)

solved for inter-diffusion of a binary gas pair in a long enclosed tube. The data collection

procedure for the time-concentration data is the same with or without a porous sample

present.

Initialization of the Loschmidt cell creates a stepwise concentration profile that is al-

lowed to change with time once the gate is opened. Figure 4.2a shows an example of the

change of O2 concentration throughout the Loschmidt cell. Figure 4.2b shows a series of

time-concentration profiles for various diffusion coefficients that represent typical data sets

recorded during a Loschmidt cell measurement. Data shown in Figures 4.2a and 4.2b are

found using the analytical solution of Fick’s law for a conventional Loschmidt cell. The

gradual change of shape for changing binary diffusivity coefficients in Figure 4.2b is what

allows the analytical equations to curve fit for the single value of diffusion coefficient.

As discussed in Section 3.2, previous studies used the infinite couple solution to Fick’s

law which assumes an infinite length for the Loschmidt cell tube. The analytical solution
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(a) Concentration profile evolution in a

Loschmidt cell

(b) Example of typical time-concentration

data

Figure 4.2: Visualization of Loschmidt concentration profiles

for the infinite couple as presented by Crank [8] is

C (x, t) = Co,t +
Co,b − Co,t

2
erfc

x

2
√
Dt

(4.1)

with initial conditions

{
C (x > 0) = Co,b
C (x < 0) = Co,t

(4.2)

where the subscript “o” indicates the initial value, subscripts “t” and “b” indicate “top”

and “bottom”, respectively, C is the concentration of the measured gas, D is binary gas

diffusion coefficient, and x and t are the space and time coordinates. By setting x = xp,

Equation 4.1 can be used to approximate the concentration profile with respect to time

to mirror the experimental situation. As a condition for the validity of using Equation

4.1, an additional parameter referred to as the “characteristic time” and denoted as τ is

introduced

τ =
L2

πD
(4.3)

where D is the binary diffusivity coefficient and L is the total length of the apparatus. It

is generally considered that when t < 0.1τ , Equation 4.1 is a valid approximation [8, 54].
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The constraint ensures that only a negligible amount of gas has diffused to the ends of the

Loschmidt cell and thus has minimal impact on the measured concentration. Substitution

of t = 0.1τ into Equation 4.1 shows that the concentration at the ends of the cell have

changed by 3.6% of the initial concentration difference between the two chambers. For a

Loschmidt experiment without a sample, the binary diffusion coefficient, D, in Equation 4.1

is adjusted to fit a concentration profile to the experimental data. For modified Loschmidt

cell experiments with a porous sample, the data reduction is said to give the equivalent

diffusion coefficient, Deq, which represents the combined effect of diffusion through the both

the bulk gas as well as the porous sample. Deq is used in the resistance network method to

calculate the effective diffusion coefficient through the porous sample, Deff . The resistance

network method analyses the space between the sliding gate valve and the oxygen probe

by representing the region as diffusive resistances in series.

Figure 4.3a shows the diffusion distance in a conventional Loschmidt cell represented

as a single diffusive resistance, Rbulk, based on the binary diffusion coefficient of the gas,

Dbulk. Figure 4.3b shows the diffusion distance in the modified Loschmidt cell represented

as either a single equivalent resistance, Req, based on Deq or as a set of in-series resistance

comprised of Rbulk and effective resistance of the porous sample, Reff .

(a) conventional Loschmidt cell (b) modified Loshcmidt cell

Figure 4.3: Schematic of resistance network

The general expression for a diffusive resistance can be written as

R=
∆x

DA
(4.4)
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where ∆x is the distance of diffusion, and A is the cross-sectional area. Heat conduction

is very commonly expressed as thermal resistances which is directly analogous to mass

diffusion [25, 56] and resistances for gas diffusion is also used by Zhang et al. [55]. The

two sets of resistances shown in Figure 4.3b can be written in terms of the distances and

diffusion coefficients in an equation. The expressions of the two resistance networks can

be equated to give

xp
DeqA

=
l

DeffA
+

xp − l
DbulkA

(4.5)

which can be simplified to isolate for Deff

Deff =
l

xp
Deq
− xp−l

Dbulk

(4.6)

The effective diffusion coefficient through the porous sample found using the resistance

network is Deff whereas the true diffusion coefficient through the sample is denoted as

Dsample. In order to find Deff , two measurements must be performed; one without the

porous sample to measure Dbulk and one with the porous sample to measure Deq. Dbulk

is often only measured to verify equipment accuracy while resistance network calculations

will use well established literature values for Dbulk.

4.2 Changes to Loschmidt Cell

The present study makes use of an in-house modified Loschmidt cell used in previously

published experimental work [62]. Before using the apparatus for this study, a significant

number of changes were made to the physical apparatus, experimental procedure, and

data reduction process. The changes significantly increase the capability, accuracy and

operability of the modified Loschmidt cell. A summary of the changes and their impact

are provided.

4.2.1 Change to Experimental Procedure

The initialization of the modified Loschmidt cell apparatus requires filling the upper and

lower chambers with high purity N2 and O2 gas, respectively. In initial stages of experi-
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mentation, it was observed that despite the use of nearly pure gas (over 99.99% purity) to

purge and fill the chambers, the gas concentration measured by the probe after six minutes

would often be less than 99% purity. This was likely due to the two mass flow controllers

having a relatively low flow rate of 100mL/min being unable to effectively purge the two

chambers. The previous experimental procedure was also unable to measure the concen-

tration of the lower chamber following the purge and fill procedure. The assumption of a

concentration for the lower chamber initial concentration introduces a significant amount

of uncertainty in the value of D. Changes were made to the experimental procedure to

alleviate the requirement of extremely long purge times as well as the need to assume an

initial concentration for the lower chamber.

A partial purge to an intermediate concentration, even if it is significantly below 100%

purity, is allowable since it is the initial concentration difference between the two chambers

that is critical rather than the concentration of each individual chamber. The experimental

procedure was modified with the primary goal of using the single oxygen gas probe to

measure the initial concentration of both the upper and lower chambers during system

initialization. The experimental procedure is provided below with Figure 4.4 detailed for

visualization.

Figure 4.4: Schematicc of purge and fill procedure

1. The gate valve is opened and O2 is flowed from the top to the bottom of the Loschmidt
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cell to purge the both chambers

2. O2 flow is stopped, all valves are closed, and O2 concentration measurement is

recorded as the initial concentration of the lower chamber

3. Sliding gate valve is closed to seal the bottom chamber

4. N2 is flowed from the top to the bottom of the upper chamber

5. N2 flow is stopped, all valves are closed, and O2 concentration measurement is

recorded as the initial concentration of the upper chamber

6. Continuous recording of O2 concentrations begin for the time-concentration data

7. The sliding gate valve is opened to begin the experiment

8. After sufficient time has elapsed in the experiment, concentration measurements are

halted and the apparatus is ready to undergo reinitialization

Measuring of both initial concentrations has the added benefit of allowing a much

shorter purge time. As the miscellaneous gas concentration drops below 2%, it takes

significantly longer to increase the purity of the purge. By allowing for a partial purge,

the purge time can be significantly shortened and the number of measurements that can

be recorded per hour is greatly increased. Using typical settings, a single experimental

measurement takes approximately 20 minutes.

4.2.2 Use of Finite Length Analytical Solution

As outlined in Section 3.2, previous studies used the infinite length solution to Fick’s law

(Equation 4.1) as the fitting equation. In order to use the infinite length solution, the

overall time of the experiment is limited so that only a negligible amount of gas reaches

the boundary and has minimal impact on the concentration profile at the oxygen probe

location. With the addition of impermeable boundaries at the ends of the Loschmidt cell,

the boundary conditions can be written as

(
∂C

∂x

)
x=±L

2

= 0 (4.7)
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C

(
−L

2
< x < 0

)
= Co,b (4.8)

C

(
0 < x <

L

2

)
= C0,t (4.9)

The finite length solution can be shown to be

C (x, t) =
Co,b + Co,t

2
− (Co,b − Co,t)

2

π

∞∑
m=0

e−
(2m+1)2π2Dt

L2

2m+ 1
sin

[
(2m+ 1) πx

L

] (4.10)

where the subscript o indicates initial value, subscripts t and b indicate “top” and “bottom”

respectively, C is the gas concentration, and L is the total length of the cell. The terms

of the infinite series can be seen to reduce in value with increasing time, t, and element

number, m. In actual use, the value of Equation 4.10 can only be approximated by calcu-

lating a sufficiently large number of elements such that the sum of the discarded terms of

the infinite series are negligible. The value of each successive element reduces linearly with

the value of m while reducing exponentially with t. This means that a concentration at a

small time will require significantly more elements to approximate than a concentration at

a large time. In general, this study uses 1000 elements to approximate the concentration.

This large number of elements is shown to give sufficiently accurate concentrations for

times as small as 0.1s. Equation 4.10 is significantly more cumbersome to implement than

Equation 4.1 due to the infinite series. However, this study chooses to use the finite length

solution in order to avoid the limitations on the length of the experiment. While several

studies note the existence of a finite length solution, a full derivation was not found. A

derivation is provided in Appendix A.

4.2.3 Addition of Temperature Control

The two chambers of the Loschmidt cell were machined from rectangular blocks of solid

aluminium which has extremely high thermal conductivity. Thus, to add temperature

control to the apparatus, a series of holes were drilled in the remaining bulk material of
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the two chambers and connected to a Thermo Scientific FTE-7 temperature bath using

a parallel flow manifold configuration. The temperature bath is capable of maintaining

temperatures between −15◦C and 80◦C depending on the working fluid used. Along with

the high conductivity of the primarily aluminium construction and parallel flow configu-

ration, the entire apparatus is externally insulated to help promote the highest degree of

temperature uniformity. Figure 4.5 shows a schematic of the assembly.

Figure 4.5: Schematic of thermal bath and manifold configuration

Three thermocouples are mounted on the system. Two thermocouples monitor the

chamber temperatures at the center of the upper and lower chambers while the third is

mounted externally to measure ambient temperature. During experimentation and calibra-

tion procedures, the thermal bath is capable of achieving temperatures in the two chambers

within 0.05◦C of each other.

4.2.4 Oxygen Sensor Accuracy

The oxygen probe in the Loschmidt cell uses a technique known as phase fluorometry to

measure oxygen concentration. The sensor tip is coated with ruthenium which fluroesces

when excited by a 470nm LED source [63]. The fluorescence is quenched during collisions

with oxygen molecules which are diffused into the proprietary ruthenium complex contain-

ing sol-gel tip coating. Oxygen, rather than other molecules in the air, is able to quench

29



the fluorescence because of its triplet molecule [64]. The remaining light is passed back

through the optical fibre to the spectrometer to measure a phase shift, τ . Calibration

involves correlating a series of τ values with corresponding an oxygen concentrations.

This measurement technique effectively measures the partial pressure of oxygen in the

air surrounding the probe tip. As such, the measurements are influenced by both temper-

ature and pressure. The temperature is already precisely controlled through the thermal

bath. The apparatus operates at atmospheric pressure and changes in local weather pat-

terns have been observed to be detrimental to the accuracy of the oxygen concentration

measurements. Furthermore, the manufacturer notes that the oxygen sensor experiences a

sensor drift of 0.01% of full scale for each hour of continuous operation. All of the challenges

were overcome by performing once or twice daily oxygen probe calibrations. This ensures

that the pressure of the calibration and subsequent experiment are negligibly different.

The frequent calibration also renders the sensor drift undetectable.

4.2.5 Automation of Test and Calibration Procedure

In coordination with the changes to the test procedure in Section 4.2.1, the oxygen probe

calibration procedure was also changed. Calibration of the oxygen probe is done by setting

the mass flow controllers (MFC’s) for the N2 and O2 such that a known concentration of

O2 is passing the oxygen gas probe and the τ reading can be recorded. This is repeated

for a series of points from 0% to 100% O2 so that a polynomial fit can be generated for the

concentration-τ relationship to use as a calibration. As noted in Section 4.2.4, calibrations

are specific to a single temperature and pressure. The previous procedure required the

operator to shut down the apparatus, make valve plumbing changes, and manually set

each O2 calibration concentration and record the corresponding τ . In the new arrangement,

both gasses are connected to the top of the upper chamber. The calibration follows the

steps outlined below:

1. The sliding gate valve is closed so seal the upper chamber

2. Both inlet valves at the top of the upper chamber as well as a valve at the bottom

are opened

3. Mass flow controllers are set to flow a known oxygen percentage from the top to the

bottom of the upper chamber
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4. Once the τ value on the oxygen probe reaches steady-state, the τ value is recorded

along with the corresponding oxygen concentration

5. Mass flow controllers are set to flow a new oxygen concentration and step 4 is repeated

until all pre-set oxygen concentration values have a corresponding τ

6. Sliding gate valve is opened and all gas valves are closed

Figure 4.6 shows a schematic of the apparatus during calibration.

Figure 4.6: Schematic of oxygen probe calibration arrangement using mass flow controllers

(MFC’s)

The change of gas inlet and outlet arrangement allows the apparatus to switch between

calibration and experimentation modes without manual intervention. Both the calibration

and experimentation procedure (discussed in Section 4.2.1) are fully automated in Lab-

VIEW. The LabVIEW procedure allows the operator to set calibration and a batch of

experiments to be run sequentially. A typical calibration requires approximately 2 hours

while a single experimental measurement requires 20 minutes. The automation and stream-

lining of the apparatus procedures means that minimal operator involvement is required.

The automated calibration also makes daily calibrations viable and helps to resolve many

issues such as ambient pressure changes and oxygen sensor drift.

4.2.6 Probe Distance Adjustment

The distance between the center of the apparatus (center of the gate valve) and the oxygen

probe is a critical fitting parameter that has a large impact on the value of the diffusion

31



coefficient found through curve fitting. Over the course of making modifications to the

apparatus, the gaskets fitting around the sample were changed and ultimately resulted in

a thicker gasket layer. This led to a small gap remaining between the upper and lower

chambers when the two chambers are clamped together to form a seal. Figure 4.7 illustrates

how the gaskets lead to the gap.

Figure 4.7: Schematic of gap between top and bottom chambers as a result of loading a

sample

During testing, it was found that tests with and without a porous sample require

different gasket configurations. This constantly changing gasket configuration causes a

slight variation the gap width varies depending on the exact clamping pressure applied as

well as the specific porous sample mounted in the cell. The change, while very small, is

significant enough to introduce error into the measurements. To eliminate error stemming

from an inaccurate probe distance, the gap is measured for each new porous sample loaded

into the apparatus and the probe distance is adjusted during the curve fitting process.

4.3 Development of Curve Fitting Algorithm

As a result of the full automation of the experimental procedure, the output format of the

experimental data is also standardized. Table 4.1 lists the values that are recorded for each

experimental run.

The curve fitting uses the two initial concentrations, Co,t and Co,b, and the two corre-

sponding arrays of time and concentration data. The experimental data is fitted to the

32



Table 4.1: Summary of standard output parameters for automated Loschmidt cell tests

Batch Name -

Time Stamp YY/MM/DD/hh/mm

Initial Conc. - Top [%O2 by mole] Co,t
Initial Conc. - Bottom [%O2 by mole] Co,b
Measurement Time Interval [s] t1, t2, t3, . . . , tn
Oxygen Conc. [%O2 by mole] C1, C2, C3, . . . , Cn
Temperature - Top [◦C] T1,t, T2,t, T3,t, . . . , Tn,t
Temperature - Bottom [◦C] T1,b, T2,b, T3,b, . . . , Tn,b

finite length analytical solution to Fick’s law in Equation 4.10 (derived in Appendix A).

Using an initial guess for the diffusion coefficient, an analytically calculated concentra-

tion is found for each point in time of the experimental data. A error is found between

corresponding values of analytical and experimental concentration at each time and are

used to find the root-mean-square (RMS) of the errors for all time intervals. The RMS

error is used in a Newton-Raphson iteration scheme to solve for the value of the diffusion

coefficient which results in the closest fit. The expression used for RMS error is given as

RMS (D) =

{
1

m

m∑
n=1

[C (xp, tn, D)− Cn]2
} 1

2

(4.11)

where m is the total number of experimental points, xp is the oxygen probe location, tn
is the time of the nth measurement, Cn is the nth concentration measurement, and D is

diffusion coefficient. The minimum value for RMS must be found to reach the value of D

that best fits the experimental data. Thus, the Newton-Raphson method is used to find

the root to the first derivative of RMS error (looking for a minima). Since the equation for

RMS error is not differentiable, finite-difference approximations are used to approximate

the first derivative of RMS error

RMS′ (D) ≈ RMS (D + rD)− RMS (D − rD)

2rD
(4.12)

as well as the second derivative of RMS error
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RMS′′ (D) ≈ RMS (D + rD)− 2RMS (D) + RMS (D − rD)

(rD)2 (4.13)

where r is the “perturbance ratio” which is used in favour of a standard finite difference

value. This is done since the magnitude of D is unknown and having the preturbance scale

with D helps promote stability during iteration. Thus, an estimate of the derivative of

RMS error at D requires calculations of RMS error at D − rD, D, and D + rD. A single

step of the Newton-Raphson iteration is

Di+1 = Di − (1− ω)

[
RMS′ (Di)

RMS′′ (Di)

]
(4.14)

and the full approximation expression is

Di+1 ≈ Di − (1− ω)

{
rDi [RMS (Di + rDi)− RMS (Di − rDi)]

2 [RMS (Di + rDi)− 2RMS (Di) + RMS (Di − rDi)]

}
(4.15)

where ω is the relaxation factor used to enhance stability. Equation 4.15 shows that each

Newton-Raphson scheme has the potential to be somewhat computationally expensive

when calculating a large set of experimental data and the finite length solution (Equation

A.16) is using a large number of elements to approximate the infinite series. Convergence

is determined by checking that the value of |Di+1 −Di| is less than 0.1% of Di+1.

Before applying the curve fit algorithm, two key parameters must be determined with

significant accuracy. Since the data logging begins before diffusion is allowed to occur, a

time offset must be applied to shift data so that diffusion begins at t = 0. The value is

especially critical since RMS error is calculated only on the vertical axis and a slight offset

in time (horizontal axis) can greatly skew the converged value for the diffusion coefficient.

Close examination of the concentration measurements early in the experiment where there

is a steep rise in the concentration of oxygen can give a very accuracy estimate of the offset

time. Figure 4.8 shows twenty sets of experimental data with an analytical fitting curve

for the first few seconds of diffusion.

The offset was found to be 36.75s. Due to the automation of the data logging and

gate valve opening, the apparatus operates extremely consistently and thus this offset
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Figure 4.8: Determination of the data log offset time from 20 overlapped experiments

time is used as the standard constant for all experimental curve fitting. The second key

parameter is the distance of the oxygen probe from the center line of the gate valve. The

exact distance is difficult to measure since the probe is a long flexible fibre optic cable

in a thin walled sheath and any attempt at physical measurement causes the probe to

deflect. The exact distance was found by measuring the diffusion coefficient of the O2−N2

binary pair and tuning the probe distance to match well established literature values. The

standard distance with no gap between the two chamber bodies was found to be 25.9mm.

Any measured gap during subsequent testing was added to this value.

4.4 Development of One-Dimensional Loschmidt Sim-

ulation

For a modified Loschmidt cell with a porous sample, there is no analytically derived equa-

tion that is capable of fully encompassing the conditions. Specifically, inclusion of a sam-

ple means that the diffusion coefficient is no longer constant throughout the cell. To

accurately calculate the concentration change with time for a modified Loschmidt cell, a

one-dimensional simulation was developed in MATLAB with the same geometry as the
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physical apparatus available in-house [59]. Making use of the direct analogy between heat

and mass transfer, a large section of the code was borrowed from source code developed

for heat transfer. The simulation is built on a the generic equation for conservation of a

scalar quantity and allows for diffusive transport between control volumes. The simulation

solves the conservation of mass equation using a multigrid solution algorithm. Neumann

boundary conditions were applied at the edge of the calculation domain such that the con-

centration gradient is zero and diffusion of mass is zero. Initial concentrations are set for

the top and bottom chamber based on user inputs. Details regarding the construction and

validation of the heat transfer oriented source code can be found in the documentation for

ME663: Computational Fluid Mechanics [65].

Key features implemented for the simulator include target time stepping for directed

output, adaptive meshing, and control volume mapping. The target time stepping involves

the simulator accepting an array of times which will in turn modulate the time step size

to ensure steps fall exactly at the given times to remove the need for interpolation. This

feature allows the simulator produce data sets to be directly compared to experimental

data and removes error through interpolation. Adaptive meshing is used to correctly

size control volumes with the changing thickness of the porous samples, ensure that the

oxygen probe coincides with the node of a control volume, and ensure that the edges of

the sample are represented as control volume edges. All of the above is done to reduce the

instances where estimations related to simulation have an impact on the accuracy of the

results. Control volume mapping was implemented to reduce the total number of control

volumes strategically in certain regions without negatively impacting the accuracy. The

base parameters for the simulation are based on the physical Loschmidt cell available in

house. Table 4.2 give a summary of the simulation parameters.

The meshing of the calculation domain requires input of five geometric dimensions

for the Loschmidt cell. Figure 4.9 shows a schematic of the dimensions required for the

simulation.

The point x1 is arbitrarily set as zero and indicates the center of both the sliding gate

valve and the entire apparatus. A control volume edge is placed at x1 so that the initial

stepwise concentration can be accurately applied. Between x2 and x3 is the sample. In the

sample region, the control volume size is highly variable to minimize the smearing effect of

control volumes as well as ensure that control volume edges coincide with sample edges. x4

indicates a probe location and is used to ensure that a control volume node coincides with
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Table 4.2: Loschmidt cell and simulation parameters

Gas Pair O2 - N2

Measured Gas O2

Probe Location 25.9mm xp
Apparatus Length 357.0mm ≈ 15xp
Sample Location 6.35mm ≈ 0.25xp
Sample Thickness 5− 10000µm 0.0002xp − 0.4xp
Control Volume Size 0.25mm ≈ 0.01xp
Sample Control Volumes Size 0.125mm ≈ 0.005xp
Time Step Size 0.025s

Figure 4.9: Dimensions required to mesh the computational domain

that point to reduce distortion of the concentration value. The two regions from x0 to x1

and x4 to x5 are where the mapping functions are applied. As the control volumes approach

the edges of the apparatus (x0 and x5), the length of the control volumes increases. The

mapping function reduces the number of control volumes by a factor of three without

significant impact on accuracy.

The presence of a sample in the Loschmidt cell causes there to be a sudden change

in diffusion coefficient between bulk gas and sample control volumes. The source code

uses the properties of both control volumes to calculate the transport between the control

volume nodes. Figure 4.10 shows a schematic of the general one-dimensional scheme for

transport between two control volumes with unequal size and generalized conductivity.

The transport is calculated between the nodes of each control volume along the line
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Figure 4.10: Illustration of transport of properties between two control volumes

connecting them. The source code averages the two conductivities (0.5k1 + 0.5k2). This

method is acceptable when the change in the control volume size or transport properties

is gradual and the mesh is sufficiently refined to make errors negligible. In the case of the

Loschmidt cell with a sample, the step change in diffusion coefficient generates errors that

cannot be efficiently overcome through mesh refinement. A good illustrative example is

when one of the control volumes has a conductivity of zero, the simple averaging scheme

will still allow for flow between the two nodes. To correct this issue, a resistance based

averaging scheme was used where

k =
1

x1

k1
+ x2

k2

(4.16)

The time step and control volume size shown in Table 4.2 have been tested for conver-

gence. For all cases, mesh parameters are run using a bulk gas diffusivity of 2.00×10−5m2/s,

sample diffusivity of 4.00×10−6m2/s, sample thickness of 1000µm, and the geometry given

in Table 4.2. Each case is simulated and the time-concentration data at the probe position

is recorded as an output (imitating a physical experiment output). The output for each

case is put through the curve fitting algorithm to produce a single diffusion coefficient.

The change in the diffusion coefficient is used to evaluate whether a specific parameter has

led to a grid independent solution.

Unless otherwise indicated, the simulation uses the parameters outlined in Table 4.2.

Tables 4.3-4.6 give a summary of the grid independence studies for time step size, control

volume size, sample control volume size, and use of mapping function.

The simulation can also be validated against the analytical equations by simulating

simple binary gas diffusion using a range of diffusivity values and using the curve fitting

algorithm to match for a diffusivity. Table 4.7 shows that the matched diffusivity is the ex-
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Table 4.3: Time step size independence study

Time Step Size [s] Deq[m2/s]

0.2 9.337× 10−6

0.1 9.346× 10−6

0.05 9.351× 10−6

0.025 9.354× 10−6

0.0125 9.355× 10−6

Table 4.4: Control volume size independence study

Control Volume Size [mm] Deq[m2/s]

2 9.348× 10−6

1 9.353× 10−6

0.5 9.354× 10−6

0.25 9.354× 10−6

0.125 9.354× 10−6

Table 4.5: Sample control volume size independence study

Control Volume Size [mm] Deq[m2/s]

0.25 9.354× 10−6

0.125 9.354× 10−6

0.0625 9.354× 10−6

Table 4.6: Mapping function independence study

Without Mapping 9.354× 10−5

With Mapping 9.355× 10−5

act same as input diffusivity and demonstrates that the simulation is capable of accurately

calculating diffusion in the Loschmidt cell.

The time step size and mapping of the control volumes is seen still have some impact

on results but it is judged to be sufficiently small to be acceptable. This compromise is
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Table 4.7: Validation of the simulation against analytical solution

Input Diffusivity [m2/s] Matched Diffusivity [m2/s] Error [%]

5.000× 10−6 4.998× 10−6 −0.03

1.0000× 10−5 1.0000× 10−5 0.00

1.5000× 10−6 1.5001× 10−5 0.00

2.0000× 10−6 1.9997× 10−5 −0.01

2.5000× 10−6 2.4990× 10−5 −0.04

3.0000× 10−6 2.9983× 10−5 −0.06

3.5000× 10−6 3.4976× 10−5 −0.07

4.0000× 10−6 3.9971× 10−5 −0.07

made to dramatically increase the speed of the simulations.

4.4.1 Determination of Error in the Resistance Network Method

The error of the resistance network is determined by substituting the one-dimensional

simulation for the experimental apparatus in the data generation step. The simulation can

be supplied with a set of input parameters to produce sets of data mimicking experimental

data. The simulation outputs are then put through the same data reduction process as

experimental data to find a calculated value of Deff . The calculated Deff can be compared

with the input Dsample to find the error introduced by the resistance network. Figure 4.11 is

a flow chart representing the method that is used to find the error caused by the resistance

network.

Using the process depicted in Figure 4.11 for a range of simulation input parameters will

reveal magnitude and behaviour of the error introduced by using the resistance network

method.
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Figure 4.11: Method used to determining the error resulting from the resistance network

method
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Chapter 5

Results and Discussion

5.1 Resistance Network Discussion

The resistance network used for calculating sample diffusivity for the modified Loschmidt

cell is analogous to the resistance based analysis used in heat transfer. the derivation of

the resistance network in heat transfer makes the assumption of steady-state [25, 56]. The

change in concentration observed in the Loschmidt cell is is governed by one-dimensional

Fick’s law

Jx = −DdC
dx

(5.1)

where Jx is the flux per unit area in the x-direction, D is the gas diffusion coefficient, and C

is the concentration of the diffusing species. As the concentration in the cell changes from

the initial stepwise profile (shown in Figure 4.2a), it is clear that flux in the Loschmidt

cell is variable with respect to time and location. Furthermore, fitting some Deq to the

analytical equation for a Loschmidt test with a porous sample is not strictly valid since it

assumes that the entire calculated region has a diffusivity equal to Deq rather than Dbulk

for most of the cell and Dsample for the porous sample. The finite length analytical solution

to Fick’s law is also elliptical in nature. This means that while the resistance network

is only concerned with the diffusion distance between the center of the cell and the gas

probe, changes to the concentration in any region of the cell can impact the concentration
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(to varying degrees) the rest of the cell. Figure 5.1 gives an example of how an sample

placed outside of the resistance network calculation domain can still impact concentration.

The sample is 1.5mm and has a diffusion coefficient only 1/50th that of the binary gas.

The calculation was performed using the one-dimensional simulation.

Figure 5.1: Demonstration of elliptical behavior where a sample outside of resistance net-

work location still has an impact

Figure 5.1 shows the concentration profile throughout the apparatus after 100s and

300s both showing the impact of the porous sample and the assumed profile when using

an equivalent diffusion coefficient. The figure shows that the porous sample causes the

actual concentration profile to deviate from the assumed equivalent profile throughout the

entire cell. There is also a concentration change through the sample is approximately

proportional to its thickness and the concentration gradient proportional to the sample

diffusion coefficient. The figure helps to demonstrate how the resistance network method

does not completely fit the situation and has the potential to introduce errors into the

value of the diffusion coefficient.

A more appropriate application of the resistance network would be measuring of the

diffusion coefficient through a porous sample within a two bulb apparatus . Figure 5.2
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shows a schematic of the two bulb apparatus with a porous sample inserted in the tube

connecting the two bulbs. With sufficiently large volume on either side, the concentration

profile between the two bulbs can reach steady-state. The two bulb method is is considered

as accurate as the Loschmidt cell but is significantly slower to implement since quasi-steady

state must be reached [29]

Figure 5.2: The two bulb method with a porous sample where the bulbs are sufficiently

large to allow for a steady-state concentration gradient through the connecting tube

The discussion shows that the assumptions of the resistance network does not conform

with the modified Loschmidt cell. It is likely that application of the method will introduce

errors into the measurement for the porous sample effective diffusion coefficient.

5.2 Dimensionless Analysis

Fick’s law in Equation 2.5 can be expressed in generalized dimensionless forms by intro-

ducing dimensionless concentration, θ, distance, x∗, and time, Fo, as follows:

θ =
C − Co,t
Co,b − Co,t

(5.2)

x∗ =
x

xp
(5.3)
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Fo =
Dt

x2
p

(5.4)

where xp is the distance between the gate valve and the oxygen probe (also called the

diffusion distance) and is used as the “characteristic length”. xp was selected rather than

the total length of the apparatus, L, since the concentration profile shape is based on the

location of the gas probe. Substitution of the dimensionless parameters into Fick’s law

results in

∂θ

∂Fo
=

∂2θ

∂ (x∗)2 (5.5)

and the finite length solution to Fick’s law is also expressible in dimensionless terms as

shown

θ (x∗,Fo) =
1

2
− 2

π

∞∑
m=0

e
− (2m+1)2π2Fo

(L∗)2

2m+ 1
sin

[
(2m+ 1) πx∗

L∗

] (5.6)

where L∗ is dimensionless total apparatus length equal to L/xp. Application of the dimen-

sionless parameters causes previously different concentration-time profiles to collapse into

a single characteristic curve.

Dimensionless parameters are very useful in this analysis. In Equation 5.6, when look-

ing at the concentration of gas at the oxygen probe location, x∗ is constant and the only

variable controlling θ is Fo. In terms of a parametric study, rather than investigating the

effects of changing Co,b, Co,t, t, D, and xp only the effect of Fo needs to be investigated. The

form of the dimensionless parameters also show more clearly how each individual variable

impacts the time-concentration data. For dimensionless concentration, θ, the form shows

that the driving force in the diffusion is not absolute concentration difference but rather

the fraction of the maximum concentration difference that initially exists (Co,b − Co,t). Di-

mensionless distance, x∗, reveals that instead of absolute length, it is relative length that

controls the behaviour. Dimensionless time, Fo, reveals that time, space, and transmissiv-

ity (diffusivity) are interrelated. Plotting data from Loschmidt cell test (without a porous

sample) of varying diffusion coefficients on dimensionless axes causes all concentration pro-

files to collapse into a single characteristic curve. The characteristic curve is demonstrated

45



by Figure 5.3 which shows experimental data for Loschmidt cell tests for temperatures

of 25◦C, 50◦C, and 70◦C which correspond to diffusion coefficients of 2.0 × 10−5m2/s,

2.3× 10−5m2/s, and 2.6× 10−5m2/s, respectively.

Figure 5.3: Demonstration of N2 −O2 binary diffusion experiments at 25◦C, 50◦C, and

70◦C collapsing to a single characteristic curve

To extend the analysis to the modified Loschmidt cell, it is proposed that additional

parameters diffusibility, Q, and thickness ratio, l∗, be defined as follows:

Q =
Dsample

Dbulk

(5.7)

l∗ =
l

xp
(5.8)

where Dsample is the true diffusivity of the porous sample as compared to the measured

value determined by the resistance network method, Deff . The additional variables would

be expected to influence concentration profile behaviour such that
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θ = θ (x∗,Fo, Q, l∗) (5.9)

Two additional variables now control the characteristic shape of the concentration pro-

file. The applicability of the two additional parameters can be demonstrated by setting up

a series of cases where individual variables are varied while the value of the new dimension-

less parameters remains constant. Plotting these cases on dimensionless axes should still

result in all curves collapsing into a characteristic curve. Table 5.1 lists the case parameters

for simulation runs such that all dimensionless parameters are constant. Figure 5.4a shows

the data plotted using typical dimensions while Figure 5.4b shows the dimensionless plot.

Table 5.1: Parameters for demonstration of collapsing of curves through dimensionless

parameters

Case No. Dbulk[m2/s] Dsample[m
2/s] l[µm] xp[mm] Ci,b[%O2] Ci,t[%O2]

1 2.0× 10−5 4.0× 10−6 300 25.9 100 0

2 1.0× 10−5 2.0× 10−6 300 25.9 100 0

3 4.0× 10−5 8.0× 10−6 300 25.9 100 0

4 2.0× 10−5 4.0× 10−6 600 51.8 100 0

5 2.0× 10−5 4.0× 10−6 150 12.95 100 0

6 2.0× 10−5 4.0× 10−6 300 25.9 75 0

7 2.0× 10−5 4.0× 10−6 300 25.9 100 25

8 1.0× 10−5 2.0× 10−6 600 51.8 75 25

9 4.0× 10−5 8.0× 10−6 150 12.95 75 25

The collapsing of the curves is also observable with experimental data for Toray60-

Raw and Solvicore Type A GDL. Both GDL’s are approximately 200µm thick and have

diffusibility in the range of 0.35 to 0.44 [61]. Figure 5.5 shows experimental tests for

Toray60-raw and Solvicore Type A GDL’s tested in the same Loschmidt cell at 25◦C,

50◦C, and 70◦C.

Previous experimental research has shown that diffusibility of GDL does not vary with

temperature [39, 61] and thus the situation shown in Figure 5.5 does approximate con-

stant dimensionless parameters. As such, the six concentration profiles at three different

temperatures collapse into one in the same manner as the simulation profiles. The above
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(a) Data plotted on dimensional axes (b) Data plotted on dimensionless axes

Figure 5.4: Demonstration of the applicability of the two new dimensionless variables

Figure 5.5: Dimensionless plots of experimental concentration profiles for Solvicore and

Toray samples at 25◦C, 50◦C, and 70◦C

discussion demonstrates that for a modified Loschmidt cell, when plotting on a θ − Fo

plot, the only variables have an impact on the shape (and that need to be examined) are
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diffusibility, Q, and thickness ratio, l∗.

5.3 Parametric Study of Resistance Network Error

This section presents the results of a parametric study on the accuracy of resistance net-

work using the procedure depicted in Figure 4.11. From these results, the source of the

error is analysed through examination of the impact of the transience in the modified

Loschmidt cell. Transience is examined in terms of unequal flux and gas storage within

the calculation domain for the resistance network. A second parametric study simulation

study with the same points is performed while extending all simulations beyond the time

of greatest transience to show the potential mitigating effects on error. Finally, a gener-

alized uncertainty analysis is performed to show how uncertainty in measured values used

to calculate Deff impact the uncertainty of Deff .

The parametric study on the accuracy of the resistance network method investigates the

effect of the sample diffusivity and the sample thickness. Since it is only the diffusibility

and thickness ratio that control the characteristic curve of the simulation output, the

bulk diffusivity and characteristic length were held constant. Bulk diffusivity was set

as 2.0 × 10−5m2/s (approximately equal to the N2 − O2 diffusion coefficient at standard

temperature and pressure) and a gas probe location of 25.9mm. Each of the experimental

test simulations ran for 250s. Figure 5.6 shows the error associated with the resistance

network plotted for each sample thickness series over a range of sample diffusivities ranging

between 2.0× 10−5 and 1.0× 10−7m2/s.

The resistance ratio, denoted by Ω∗, is defined as

Resistance Ratio = Ω∗ =

(
l

Dsample

)
(
xp−l
Dbulk

) =
l∗

Q (1− l∗)
(5.10)

which represents the relative impact of the porous sample and the surrounding bulk gas on

the value found for Deq. The resistance ratio, Ω∗, provides the most concise correlation to

error of the variables examined. In Figure 5.6, the curves exhibit behaviour in four distinct

regions based on the value of the Ω∗. They are as follows:
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Figure 5.6: Plot of error for various thicknessnes and diffusivities of sample

For Ω∗ < 0.01, there is significant instability in the output due to the extremely small

value of sample resistance. The Deq found through matching is so similar to Dbulk

that the small errors due to artifacts related to the simulation or matching algorithm

that had previously been negligible become detectable. The magnifications of these

small errors is further explained by Section 5.3.2

For 0.01 < Ω∗ < 0.1, the resistance network approximation gives extremely accurate val-

ues for Deq with errors less than 1% such that it is nearly equal to the true value

for Dsample. This is likely due to the relative resistance of the porous sample being

sufficiently small that the concentration-time curve is still nearly the same shape as

a case with no sample. The evolution of concentration in the two chambers is still

nearly symmetrical.

For 0.1 < Ω∗ < 10, as the sample becomes increasingly resistant to diffusion, the resis-

tance network method begins to break down and give very significant errors. The

porous sample is has a sufficiently large fraction of the total resistance such that the

sample of the concentration-time curve has changed measurably. The evolution of

concentration in the two chambers is becoming increasingly asymmetric.

For Ω∗ > 10, as the resistance of the porous sample begins to dominate the overall resis-
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tance, the error of the effective diffusion coefficient become increasingly accurate.

Figure 5.6 shows that the resistance network has the potential to introduce significant

errors into the calculation of Deff . However, if the parameters are chosen correctly, it is

possible to operate in a Ω∗ range that minimizes error originating from application of the

resistance network.

5.3.1 Flux Gradient Analysis

To understand the behaviour of the accuracy predicted for the resistance network method

shown in Section 5.3, the conflict between the Loschmidt cell’s variable flux and the steady-

state assumptions of the resistance network is further examined. The discussion looks

specifically at the dimensionless form of the concentration profile function shown in Equa-

tion 5.6. Taking the derivative of Equation 5.6 with respect to x∗ gives

∂θ

∂x∗
= − 2

L∗

∞∑
m=0

{
e

−(2m+1)2π2Fo

(L∗)2 cos

[
(2m+ 1) πx∗

L∗

]}
(5.11)

where the dimensionless concentration gradient is directly proportional to the flux at a

specific time and location. Equation 5.11 can be integrated with respect to Fo from zero

to Fo to obtain

Fo∫
0

∂θ

∂x∗
dFo =

2

L∗

∞∑
m=0


cos
[

(2m+1)πx∗

L∗

]
[

(2m+1)π
L∗

]2

[
e

−(2m+1)2π2Fo

(L∗)2 − 1

] (5.12)

which is an expression that is proportional to the cumulative flux past a specific point

up until a specific time. The cumulative flux is a useful value since the curve fitting is

performed over a period of time beginning from zero when diffusion is first allowed to

start. Using a value that retains some history of flux visualize the impact of the curve

fitting over a period of time. Figure 5.7a shows a plot of Equation 5.11 at x∗ = 0, the

sliding gate valve, and x∗ = 1, the probe location, over a range of values for Fo. The

two locations coincide with the two edges of the region being calculated for the resistance

network. Figure 5.7b shows a plot of Equation 5.12 with increasing Fo, normalized at
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each time interval based on the maximum cumulative flux at that time. The maximum

cumulative flux always occurs at the sliding gate valve since all oxygen passing into the

upper chamber must first pass through the center of the apparatus. As oxygen moves

further from the center (or the source) it is progressively stored in the volume and the

cumulate flux of later sections gradually reduces.

(a) Comparison of relative flux, ∂θ
∂x∗

(b) Cumulative flux profile over time

Figure 5.7: Comparison of relative flux and cumulative flux within the calculation domain

of the resistance network method

In Figure 5.7a, the initial difference in flux between the two locations is extremely

large. At small times, the concentration profile still closely resembles the initial stepwise

concentration change such that there is an extremely steep gradient near the middle of the

apparatus (x∗ = 0) while the rest of chamber still has nearly zero O2 concentration and thus

a nearly zero concentration gradient. As seen in Figure 4.2a, diffusion eventually brings

the concentration gradient throughout the apparatus within the same order of magnitude.

Beyond a Fourier number of approximately 10, the flux at the two points becomes nearly

equal. When the flux at the inlet and outlet of the resistance network calculation domain

are nearly equal, this indicates that the flux in the entire region of 0 < x∗ < 1 is nearly

constant. Since Figure 5.7b plots the integral of flux at a point, it shows the total flux that

has passed each point if the fitting equation was used to match for a diffusivity. Looking

at Figure 5.7b, if matching for a diffusivity was performed at Fo = 0.1, the impact of

a sample placed at x∗ = 0.8 would be nearly undetectable (between 0.03-0.04) due to

the extremely small amount of cumulative flux through that region. The plot also shows

the straightening of the cumulative flux profile over time. Knowing that the volume per
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unit length of the chamber is constant, a increasing linearity of the cumulative flux profile

indicates that less and less storage of gas will occur. The calculations for the resistance

network make no allowances for the storage of gas over time. This becomes an increasing

accurate assumption once Fo > 10. From Figures 5.7a and 5.7b it can be understood

that at low Fourier numbers, the Loschmidt cell is significantly more transient in terms of

relative flux and storage of gas.

The simulations used for the data in Figure 5.6 were run to 250s of test time, which

approximately follows the procedure of previous experimental work [57, 39, 59, 53, 58] as

well as the experimental data provided throughout this study. For a case with only N2−O2

binary gas diffusion at standard ambient temperature and pressure, 250s would correspond

to Fo = 7.45. When a sample is inserted into the apparatus, the additional resistance causes

the concentration profile to evolve at a reduced rate. Previously, Fo was an expression of

the progress of concentration profile decay. To express progress in the modified Loschmidt

cell with a sample, the “equivalent Fourier number”, Foeq, is introduced and is defined as

Foeq =
Deqt

x2
p

(5.13)

whereDeq is the value obtained from the curve fitting of a Loschmidt cell test with a sample.

For a test with a very thick or low diffusivity sample, Foeq can be significantly less than Fo.

For example a 500µm thick sample with Ds = 1.0× 10−7m2/s has Deq = 4.13× 10−6m2/s.

This reduces the Foeq to 1.54. While Foeq is only an approximation of the degree of

concentration profile decay the reduction of Foeq can be understood as moving the overall

Loschmidt cell test further into the unsteady region where relative flux is unequal (Figure

5.7a) and leaving a significant amount of gas storage is required before reaching a steady

profile (Figure 5.7b). Another effect of a significant difference between Fo and Foeq is

increasing asymmetry between the concentration profile in the upper and lower chambers.

With an increasingly resistive sample (and decreasing Foeq), the upper chamber profile

development is increasing retarded while the lower chamber diffusion progresses unimpeded.

This asymmetry of concentration profile is also not accounted for in the resistance network

method.

The definition for resistance ratio, Ω∗, in Equation 5.10 can be combined with the

definition for equivalent diffusivity, Deq, in Equation 4.5 modified by replacing Deff with

Dsample to give
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xp
Deq

=

(
xp − l
Dbulk

)
(1 + Ω∗) (5.14)

Substituting in the definitions for Fo and Foeq leads to

Foeq

Fo
=

1

(1− l∗) (1 + Ω∗)
(5.15)

Equation 5.15 demonstrates the relationship between the Fourier number ratio and the

resistance ratio. The data points in Figure 5.6 can be replotted on the the Fourier ratio

horizontal axis to give Figure 5.8.

Figure 5.8: Plot of error for all data sets with respect to the relative value between Foeq

and Fo

The Fourier number ratio has caused all of the data to collapse almost completely into

a single curve and shows that the error has a nearly linear relationship with the Fourier

number ratio. The errors at Foeq/Fo = 1 correspond to the error in the region of Ω∗ < 0.01

and the error at Foeq/Fo = 0 correspond to the error in the region of Ω∗ > 10 from Figure

5.6. The preceding discussion reveals that a fairly significant portion of the error observable

for high Ω∗ can be attributed to the relatively low Foeq of the simulation runs. Figure 5.8
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shows that reducing Foeq has a significant impact on the error and requires additional

investigation. For illustrative purposes, a sample of 500µm at diffusion coefficients ranging

from 1.00 × 10−7m2/s to 1.60 × 10−5m2/s was simulated to varying time lengths. The

thickness of 500µm was selected to enhance the effects of the overall sample resistance

from the 100−300µm thickness of typical GDL. Figure 5.9 shows the change of error when

fitting to varying Foeq.

Figure 5.9: The effect of Fourier number on the error of a 500µm thick sample

The results of Figure 5.9 demonstrates that the fitting time has a very significant

impact on the error of the resistance network method. The constantly changing error with

respect to fitting time is a result of the difference in shape between the analytical equation

concentration-time profile and simulation generated time-concentration profile. As the

effect of the sample becomes more pronounced, the shape of the curve deviates more and

results in a greater maximum error. Selection of a Foeq = 12.5 can potentially mitigate a

significant amount of error shown in Figure 5.6. While each of the curves cross the zero

error line at a different value of Foeq, it is notable that all cross at a value greater than

10. This helps to further demonstrate the previous proposition that the error relates to

non-conformity with resistance network assumptions and that after Foeq > 10, the system

becomes significantly closer to steady-state. With the finding that 10 < Foeq < 15 appears

55



to minimize the errors, the same sample diffusion coefficient and thickness simulations

seen in Figure 5.6 are recalculated so that each simulation has a duration to give Foeq =

12.5. Each simulation has an independently determined duration and the simulations with

extremely thick or low diffusion coefficients may take over an order of magnitude more time

to run. Figure 5.10 shows the error associated when the simulations duration is constrained

by Foeq = 12.5.

Figure 5.10: Plot of error for various thicknesses and diffusivities of sample where Foeq =

12.5

As seen in Figure 5.10, controlling of Foeq can help to significantly mitigate the error

resulting from the resistance network. For all values of thickness and diffusivity (except

for 5µm and 10000µm), the error is less than 1%. Even the extreme values of thickness

show a very significant decrease in error. Comparison of the data shown in Figure 5.10

with Figure 5.6 shows that there is a significant reduction of error for Ω∗ > 0.1 while the

effects for Ω∗ < 0.1 are negligible. This coincides with the findings in Figure 5.9 where the

samples with higher diffusivity (and thus lower Ω∗) are least impacted by changing Fo.

Controlling Foeq in actual experimental measurement helps to bring the error of the re-

sistance network down to the same magnitude as the base uncertainty commonly associated

with the Loschmidt cell (approximately 2% for a well executed experiment [29]). The val-

ues of thickness and diffusivity far exceed the range of materials that would be commonly
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encountered for testing. The preceding discussion and results provide evidence of the ap-

plicability of the resistance network method despite the non-conformance of assumptions

and demonstrates the relatively small error when the method is applied correctly.

5.3.2 Magnification of Uncertainty by the Resistance Network

The previous discussion has focused on the error introduced by using the resistance network

method during data reduction for modified Loschmidt cell tests. The effective diffusivity,

Deff , that the resistance network calculates for a porous sample is based on measurements

for xp, l, D, and Deq. Uncertainty from each of these measurements contributes to the

total uncertainty of Deff . Due to the form of Equation 4.6, which describes how to calculate

Deff , there is great potential for magnification of uncertainty of the errors associated with

these parameters.

The combined impact of uncertainty in the measured values on Deff can be generally

expressed as

δDeff =

[
N∑
n=1

(
∂Deff

∂Xn

δXn

)2
] 1

2

(5.16)

where δ is the uncertainty of measured or calculated values, X is a measured value, and N is

the total number of measured values. The analysis can be greatly simplified by looking at a

single measured value uncertainty and its impact on the uncertainty of Deff . Isolation of one

measured variable can also seen as a single measurement uncertainty having a significantly

larger magnitude making all other uncertainties negligible on in the summation in Equation

5.16. When removing all but one uncertainty, Equation 5.16 simplifies to

δDeff =

∣∣∣∣∂Deff

∂Xn

δXn

∣∣∣∣ (5.17)

To aid in understanding, the uncertainties are expressed as a fraction of the full value.

Furthermore, the two uncertainty fractions can be related to each other through the “un-

certainty magnification factor”, η.
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ηXn =

δDeff

Deff

δXn
Xn

=
Xn

Deff

∣∣∣∣∂Deff

∂Xn

∣∣∣∣ (5.18)

the uncertainty magnification factor shows how the relative uncertainty of a measured

value propagates to the calculated value. The partial derivative of the expression for Deff

in Equation 4.6 can be taken with respect to each of the four measured values in the

expression. The dimensionless variables l∗ and Q are employed to simplify and generalize

the results. The function g is used to replace a commonly recurring expression in the

derivations and is defined as

g =
D

Deq

= 1 + l∗
(

1

Qeff

− 1

)
(5.19)

The η’s of the four measured quantities are found to be

ηl = ηxp =
l∗ (g − 1)

Qeff (g − 1 + l∗)2 (5.20)

ηD =
l∗ (1− l∗)

Qeff (g − 1 + l∗)2 (5.21)

ηDeq =
gl∗

Qeff (g − 1 + l∗)2 (5.22)

whereQeff is the effective diffusibility calculated through the resistance network (as opposed

to the true diffusibility Q which does not contain errors associated with the resistance

network). Examination of each of the dimensionless variables reveals the maximum range

of possible values

Qeff = Deff

D
≤ 1:

Diffusibility by definition must be less than 1 (a case where the porous material offers

no impedance to diffusion)

l∗ = l
xp
≤ 1:

Thickness ratio, l∗, is a definition based on the resistance network. The geometry is

such that the characteristic length must be greater than the thickness of the sample

and in general l∗ << 1
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g = D
Deq
≥ 1:

Knowing that Deff ≤ Deq ≤ D means that g ≥ 1
Qeff

The η values can also be plotted with respect to the resistance ratio, Ω∗ to understand

their impact in the context of the previous section. As seen in Equation 5.10, Ω∗ is also

expressible in terms of diffusibility and thickness ratio. Figures 5.11 to 5.13 show plots of

the magnification factor over a range of resistance ratios when the equations are provided

with 0.001 ≥ Qeff ≥ 1 and 0.0002 ≥ l∗ ≥ 0.8. Each of the points in Figures 5.11 to 5.13

represents a discrete Qeff and l∗ point within the range. Maximum Qeff is limited to 1 (equal

to diffusibility of bulk gas) and while the minimum was selected as nearly impermeable

(1/1000 the diffusivity of bulk gas). With a diffusion length of 25.9mm, the l∗ range would

span from the thinnest catalyst layer (5µm) up to 20mm.

Figure 5.11: Uncertainty magnification factor from measurements of sample thickness, ηl,

and characteristic length, ηxp , to Deff

The Ω∗ values for Figure 5.11 are expressed on a logarithmic scale. The figure shows

that ηl (as well as ηxp) is bounded between 0 and 1. This means that at most the uncertainty

of both the sample thickness measurement and the diffusion length measurement have the

same relative impact on Deff . Examination of the numerator in Equation 5.20 show that

ηl → 0 as g → 1. From the expression for g in Equation 5.19, this can be seen to occur
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when Qeff → 1 (or Deff → D). This shows that the effect of uncertainty in the length based

measurements have reduced effect as the porous sample’s diffusion coefficient becomes less

different from the surrounding gas. The figure shows groups of similarly shaped curves

beginning at 0 and ending at 1. Each of the curves corresponds to a single discrete l∗.

Figure 5.12: Uncertainty magnification factor from measurements of bulk diffusivity, ηD,

to Deff

Both the horizontal and vertical axis for ηD in Figure 5.12 are plotted on a logarithmic

scale and shows that the magnification factor is linear on a log-log scale. Unlike Figure

5.11, all data sets in Figure 5.12 are collapsed into a single line regardless of Qeff and l∗.

It also shows that for Ω∗ > 1, the uncertainty is significantly reduced while when Ω∗ < 1,

there is potential for the uncertainty to be magnified by several orders of magnitude.

Figure 5.13 shows that ηDeq has nearly identical behaviour as ηD for Ω∗ > 1. Unlike for

ηD, the minimum value for the ηDeq is 1. This is due to the unique term in the numerator of

Equation 5.22 being g which itself has a minimum value of 1. This is an unfortunate results

as it indicates that any uncertainty in the value for Deq will at best be directly transferred

to Deff and at worst multiplied by several orders of magnitude. This analysis shows that

appropriate design of experimental apparatus is required to avoid such large uncertainty.

A poorly chosen resistance ratio, Ω∗, can result in the uncertainty overshadowing all other

error effects and render the measurements unusable.
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Figure 5.13: Uncertainty magnification factor from measurements of equivalent diffusivity,

ηDeq , to Deff

The thickness and length measurements are inherently less susceptible to uncertainty

and the above discussion has shown that their effects are mitigated when calculating the

effective diffusion coefficient of the porous sample, Deff . On the other hand, uncertainty

for bulk gas diffusion coefficient, D, and the equivalent diffusion coefficient, Deq, measured

by the modified Loschmdit cell are significantly magnified when Ω∗ is low. In many exper-

imental studies, the value for D is measured directly only for verification while the actual

value employed in the calculations are well established literature values for the binary dif-

fusion coefficient. In this way, the primary source of error in most instances are linked to

Deq. Assuming that the Deq dominates the uncertainty, Figure 5.13 shows that a Ω∗ > 1

is desirable to minimize the magnification of uncertainty when calculating Deff .

Some experiments in literature measured the effective diffusion coefficient of a thin layer

deposited on a porous substrate. In this case, measurements must be made for the bulk

gas diffusion coefficient, the equivalent diffusion coefficient of the substrate only, and the

equivalent diffusion coefficient of the substrate and deposited layer. Figure 5.14 shows a

schematic of the resistance network for a situation with a layer deposited on the substrate.

The first step in the resistance network calculations(on the left side of Figure 5.14) is

to find the effective diffusion coefficient of the composite porous media (porous substrate
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Figure 5.14: Schematic of the two step resistance network used to calculate the diffusivity

of a porous layer supported by a substrate

and deposited layer).

Deq,comp =
llayer + lsubstrate

xp
Deq
− xp−llayer−lsubstrate

Dbulk

(5.23)

The second step uses the values of the composite effective diffusion coefficient and the

effective diffusion coefficient of the substrate to find effective diffusion coefficient of the

deposited layer.

Dlayer =
llayer

llayer+lsubstrate

Deq,comp
− lsubstrate

Dsubstrate

(5.24)

where llayer is the thickness of the deposited layer, lsubstrate is the thickness of the sub-

strate, Deq,comp is the equivalent diffusion coefficient measured by the Loschmidt cell for

the composite substrate and deposited layer, Dsubstrate is the calculated effective diffusion

coefficient of the substrate, and Dlayer is the calculated effective diffusion coefficient of the

deposited layer. The steps outlined above show that Deq,comp and Dsubstrate, the values

used to calculate Dlayer, already have uncertainty magnified from the original measure-

ments. These uncertainties are magnified a second time when calculating for Dlayer. Thus

is it even more critical to ensure a resistance ratio of 1 or greater at both stages when

designing the experiment.
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5.3.3 Application to Experimental Studies

Using the above findings, the error contribution of the resistance network can be found for

experimental data obtained using the modified Loschmidt cell. Rohling et al. was the first

to make measurements using a modified Loschmidt cell and measured four stacked GDL

samples in a CO2 − O2 binary mixture [53]. Astrath et al. compared the measured diffu-

sivity through precisely perforated stainless steel films with simulated values to examine

the accuracy of the modified Loschmidt cell [57]. Zamel et al. studied the effect of temper-

ature and additional surface treatment on diffusivity of GDL [39]. Shen et al. measured

diffusivity through various thickness catalyst layers deposited on a porous substrate [58]

while Chan et al. measured the diffusivity of microporous layers deposited onto a GDL

substrate as well as examined the effects of surface treatment [59]. All of the studies used

the infinite length approximation and have experiment lengths of 200− 300s. Figure 5.15

shows the approximation of experimental error from the five studies plotted with respect

to Ω∗.

Figure 5.15: Resistance network error approximation for experimental work in literature

The results summarized in Figure 5.15 show that previous experimental studies have
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resistance ratios ranging between 0.01 and 1. In this range, even without control of Foeq,

the estimated error never exceeds 10%. However, the uncertainty magnification for Deq

(from Section 5.3.2) is in the range between 2 and 100. With 2% uncertainty associated with

a well executed Loschmidt cell diffusivity measurement [29], the approximate uncertainty

in Deff ranges between 200% at Ω∗ = 0.01 and 4% at Ω∗ = 1. This extreme level of

uncertainty is introduced through the calculations of the resistance network and render

many results unusable.

Error and uncertainty can be introduced in three separate ways during measurement

of the effective diffusion coefficient.

1. Concentration measurement over time (in C and t)

2. Fitting of an analytical equation to the C − t curves to obtain Deq

3. Resistance network calculations to obtain Deff

The first two sources of error and uncertainty are usually controlled by using precision

equipment and using appropriate analytical fitting equations. This study shows that the

step of calculating Deff has the potential to introduce a significant error and magnify the

uncertainty to a degree where it overshadows all other effects. In order to optimize the error

and uncertainty introduced by the resistance network method, experimental studies must

target a resistance ratio between 1 and 2 with an overall duration resulting in Foeq = 12.5.

The resistance ratio may be manipulated by either reducing the probe distance, xp, or

increasing the sample thickness, l, by stacking multiple layers.
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Chapter 6

Concluding Remarks

6.1 Conclusions

In this study, a one-dimensional diffusion simulation was developed to accurately calculate

diffusion of gas in a modified Loschmidt cell with a porous sample. Previous studies

involving the modified Loschmidt cell converts the diffusion distances within the cell into

diffusive resistance, known as the resistance network method, to calculate the effective

diffusion coefficient, Deff , of the porous sample. Using the one-dimensional simulation, the

error originating from the resistance network method could be isolated and quantified.

The process in both the conventional and modified Loschmidt cell were investigated

using dimensionless variables. Dimensionless variables revealed that the behaviour of the

conventional Loschmidt cell is dependent only on dimensionless distance, x∗, and dimen-

sionless time, Fo. The modified Loschmidt cell is dependent on the additional variables

of thickness ratio, l∗, and diffusibility, Q. The concentration is expressed as dimensionless

concentration, θ. With the dimensionless distance being constant (since the O2 probe lo-

cation is constant) and the vertical and horizontal axes being θ and Fo, respectively, all

dimensionlessly plotted conventional Loschmidt cell tests collapse into a single character-

istic curve. For the modified Loschmidt cell, tests plotted dimensionlessly also collapse

into a single characteristic curve provided l∗ and Q are constant among the tests. The

analysis allowed the parametric study of variables that influence resistance network error

to examine fewer variables.
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The error due to the resistance network was found to vary with resistance ratio, Ω∗.

At Ω∗ < 0.1, the error for all cases is below 2% and considered negligible. When Ω∗ >

0.1, the error increases dramatically with increasing Ω∗ up to a maximum of about 20%.

Examination of the impact of Fo of the simulation runs and introduction of the equivalent

Fourier number, Foeq, helped to explain and mitigate the error. The analytical fitting

equation and resistance network used in the data reduction process are based on steady-

state assumptions to which the Loschmidt cell does not conform. While Fo is an expression

of “how far along” a conventional Loschmidt cell experiment in terms of diffusion towards

steady-state, the addition of a porous sample in the modified Loschmidt cell is an additional

impedance to the maturation of the concentration profile and requires the introduction of

Foeq as an approximate expression progression towards steady-state. By ensuring that an

experiment has sufficient time length to ensure that Foeq ≈ 12.5 (thus ensuring that the

experiment has nearly reached steady-state), the error of the resistance network is reduced

to approximately 1% for most conditions and less than 6% for extremely thick and resistive

porous samples.

The resistance network involves using two measured diffusion coefficients, a sample

thickness measurement, and the apparatus diffusion length to calculate the effective dif-

fusion coefficient of the porous sample. The uncertainty from the four measured values

all have an impact on the uncertainty of Deff . When looking at relative uncertainties (or

percentage uncertainty), the uncertainty magnification factor, η was introduced to express

how the uncertainty of a single measured value is transferred to Deff . For both the diffusion

length and sample thickness measurements, η was found to be always less than or equal

to 1. The two diffusion coefficient measurements have extremely high η when Ω∗ > 1. For

both diffusion coefficient values, η reduces with increasing Ω∗ with ηD approaching 0 and

ηDeq approaching 1 as Ω∗ →∞. The extremely large value of ηD and ηDeq at low Ω∗ means

a 2% uncertainty in the measured diffusion coefficients (considered the accuracy limit for

a Loschmidt cell) can easily be magnified in Deff by one or two orders of magnitude. To

avoid significant uncertainty, the experiment should be designed to have Ω∗ > 1. Further,

this means that Foeq of the experiment must be controlled to mitigate errors originating

from the resistance network.
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6.2 Recommendations

This thesis looked at the error and uncertainty related to the application of the resistance

network method in the modified Loschmidt cell. The findings of this study can be applied

to the design and construction of modified Loschmidt cell experimental apparatus and

procedures to help mitigate uncertainty and error in the final result. The recommendations

are as follows:

1. The maximum flow rate of the mass flow controllers for the two gases can be signifi-

cantly higher than the 100mL/min used by the in-house apparatus. The higher flow

rate will allow for a faster and higher purity purge for the initialization of the appara-

tus. Further, the calibration of the oxygen probe is based on accurate ratios of gases

rather than accurate absolute flow rates. Therefore, even though higher flow rate

mass flow controllers may have less absolute accuracy and precision, the calibration

will be unaffected as long as percentage accuracy and precision are unchanged.

2. The data reduction procedure should use the finite length analytical solution to

Fick’s law to curve match the experimental results. Use of the finite length solution

allows for an unrestricted duration to the experiment as well as reducing error and

uncertainty in the Loschmidt cell results. Accuracy and precision in the Loschmidt

cell measurement of diffusion coefficients is especially important due to the propensity

for uncertainty to be magnified when applying the resistance network method.

3. The resistance ratio for experiments should be approximately 1. For cases of mea-

surement of the diffusion coefficient of a porous layer deposited on a substrate, the

resistance ratio between the deposited layer and substrate should be approximately

1 while at the same time the resistance ratio between the two separate layers and the

remaining bulk gas should also be approximately 1. There is some difficulty since

the actual diffusion coefficients of the measured substances are unknown however

analytical correlations for diffusion coefficient are sufficiently accurate to give esti-

mates within one order of magnitude. A resistance ratio of 1 helps ensure that the

uncertainty magnification is closer to 1 while the error from the resistance network

method is minimized.

4. The duration of the experiments should be set based on trying to reach Foeq = 12.5.

In order to do so, an estimate must be made for Deff . Proper control of the experiment
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duration can significantly mitigate the error resulting from the use of the resistance

network method.
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Appendix A

Analytical Equation Derivation

A.1 Finite Length Derivation

The analytical equation for the concentration-time profile for the conventional Loschmidt

cell can be derived by applying the appropriate boundary conditions to Fick’s law in one

dimension. Previous studies reference both Crank [8] and Carslaw [27] for the final equation

however neither book presents the derivation or final result for this exact situation. Both

authors do present similar cases and examples of how a solution could be approached.

Beginning with partial differential equation (PDE) describing Fick’s law in one dimen-

sion

∂C

∂t
= D

∂2C

∂x2
(A.1)

With the boundary condition (BC) and initial conditions (IC’s) for the Loschmidt cell

(
∂C

∂x

)
x=±L

2

= 0 (A.2)

C

(
−L

2
< x < 0

)
= Co,b (A.3)
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C

(
0 < x <

L

2

)
= C0,t (A.4)

Applying the method of separation of variables, the function for concentration is as-

sumed to be expressible as the product of two functions each with only one variable

C (x, t) = φ(x)τ(t) (A.5)

Substitution of the assumption of separability into the PDE and boundary condition

yields

1

τD

dτ

dt
=

1

φ

d2φ

dx2
(A.6)

The separation of variables in Equation A.6 causes the left and right sides to be func-

tions with respect to only t and x, respectively. For this to be true for all t and x, the

both sides must equal some constant value, set as k. The PDE can then be expressed as

two ordinary differential equations (ODE’s)

dτ

dt
− kDτ = 0 (A.7)

d2φ

dx2
− kφ = 0 (A.8)

The BC is also expressible in terms of the new functions

(
dφ

dx

)
x=±L

2

= 0 (A.9)

The solution to Equation A.8 is found by examining k = λ2, 0,−λ2 as the three possible

solutions which are summed due to super-positioning

φ (x) =
[
Aeλx −Be−λx

]
+ [Cx+D] + [E cos (λx) + F sin (λx)] (A.10)
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where A through F are unknown constants. Substitution of the BC’s gives a infinite set

of values and eigenfunctions that satisfy the conditions

φm (x) = Fm sin (λmx) +D (A.11)

where the eigenvalues are defined as

λm =
(2m+ 1) π

L
,m = 0, 1, 2, . . . (A.12)

The eigenvalues are then used to solve the time dependent equation of the separation

of variables. The results are

τm = Gme
−(2m+1)π2Dt

L2 (A.13)

This leads to the combined solution of

C (x, t) =
∞∑
m=0

{
Hme

− (2m+1)π2Dt

L2 sin

[
(2m+ 1) πx

L

]
+ Im

}
(A.14)

To apply the initial conditions, the stepwise change in concentration can be expressed

as a square sinusoidal wave. The expressions for a square sinusoid with a maximum value

of Co,b, a minimum value of Co,t, and a frequency of 1
2L

is

C (x) =
Co,b + Co,t

2
+ (Co,b − Co,t)

2

π

∞∑
m=0

sin
[

(2m+1)πx
L

]
2m+ 1

 (A.15)

The very similar form between Equation A.14 and A.15 allows for a very easy substi-

tution and the final solution of

C (x, t) =
Co,b + Co,t

2
+ (Co,b − Co,t)

2

π

∞∑
m=0

e
−(2m+1)π2Dt

L2

2m+ 1
sin

[
(2m+ 1) πx

L

] (A.16)
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