
Upper and Lower Bounds for Text

Indexing Data Structures

by

Alexander Golynski

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2007

c©Alexander Golynski 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

(Alexander Golynski)

ii

Abstract

The main goal of this thesis is to investigate the complexity of a variety of problems related

to text indexing and text searching. We present new data structures that can be used as

building blocks for full-text indices which occupies minute space (FM-indexes) and wavelet

trees. These data structures also can be used to represent labeled trees and posting lists.

Labeled trees are applied in XML documents, and posting lists in search engines.

The main emphasis of this thesis is on lower bounds for time-space tradeoffs for the fol-

lowing problems: the rank/select problem, the problem of representing a string of balanced

parentheses, the text retrieval problem, the problem of computing a permutation and its

inverse, and the problem of representing a binary relation. These results are divided in two

groups: lower bounds in the cell probe model and lower bounds in the indexing model.

The cell probe model is the most natural and widely accepted framework for studying

data structures. In this model, we are concerned with the total space used by a data struc-

ture and the total number of accesses (probes) it performs to memory, while computation

is free of charge. The indexing model imposes an additional restriction on the storage:

the object in question must be stored in its raw form together with a small index that

facilitates an efficient implementation of a given set of queries, e.g. finding rank, select,

matching parenthesis, or an occurrence of a given pattern in a given text (for the text

retrieval problem).

We propose a new technique for proving lower bounds in the indexing model and use it

to obtain lower bounds for the rank/select problem and the balanced parentheses problem.

We also improve the existing techniques of Demaine and López-Ortiz using compression

and present stronger lower bounds for the text retrieval problem in the indexing model.

The most important result of this thesis is a new technique for cell probe lower bounds.

We demonstrate its strength by proving new lower bounds for the problem of representing

permutations, the text retrieval problem, and the problem of representing binary relations.

(Previously, there were no non-trivial results known for these problems.) In addition, we

note that the lower bounds for the permutations problem and the binary relations problem

are tight for a wide range of parameters, e.g. the running time of queries, the size and

density of the relation.

iii

Acknowledgments

I am deeply thankful to my supervisors Ian Munro and Prabhakar Ragde for their valuable

guidance, encouragement, patience, and for providing an advice whenever I was seeking it.

They allowed me a great deal of academic freedom in pursuing the topics of my interest,

which made my academic life in Waterloo enjoyable. Professor Alejandro López-Ortiz

supervised me during the first part of my program and his support is greatly appreciated,

discussions with him gave me a broad view of many research fields and topics. I am also

thankful to my coauthors without whom research would be much less fun.

Many thanks to my committee members Faith Ellen, Jérémy Barbay, Timothy Chan,

Ashwin Nayak, Prabhakar Ragde, and Ian Munro for valuable feedback that greatly helped

to improve this thesis. Faith Ellen did tremendous job in thorough reading and providing

criticism that not only led to a better presentation of the existing results, but also inspired

new ones. I am much obliged to Ian Munro, Prabhakar Ragde, and especially to Jérémy

Barbay for their time and dedication to proof-reading drafts of this thesis. I would like to

acknowledge the administrative stuff of the school, and especially Margaret Towell.

My research was supported by NSERC grants of Prabhakar Ragde, Ian Munro, and

Alejandro López-Ortiz; also by scholarships and awards of David R. Cheriton School of

Computer Science, University of Waterloo, and Ontario Graduate Scholarship program.

Thank you!

I also thank my friends Pranab, Marina, Sonia, Michael, Oleg, Denis, Aleh, and others

who made my time in Waterloo wonderful.

Finally, I am very grateful to my mother for her support.

iv

Contents

1 Introduction 1

1.1 Indexing Data Structures . 2

1.2 Non-Indexing Data Structures . 4

1.3 Lower Bounds . 6

1.3.1 Cell Probe Model . 6

1.3.2 Indexing Lower Bounds . 10

1.4 Models and Problems . 12

1.5 Contributions and Outline . 16

2 Upper Bounds 19

2.1 Fully Indexable Dictionaries . 19

2.1.1 Related Work . 20

2.1.2 Contributions . 21

2.1.3 Construction of the Count Index 21

2.1.4 Implementing Rank and Select on Chunks 23

2.1.5 Rank and Select Indices . 25

2.2 Strings and Binary Relations . 27

2.2.1 Preliminaries . 27

2.2.2 Introduction and Related Work . 29

2.2.3 The FM-index and the xbw Transform 33

2.2.4 Technical Results . 36

2.2.5 Applications to Text Indexing and Labeled Trees 46

v

3 Lower Bounds for Binary Vectors in the Indexing Model 50

3.1 Related Work . 55

3.2 Rank Index . 58

3.3 Select Index . 60

3.4 Bounding Lemmas . 61

3.4.1 Related Work and Tools . 62

3.4.2 Bounds for a Binomial Coefficient 63

3.4.3 Bounds for a Product of Binomial Coefficients 64

3.5 Density-Sensitive Rank Index . 67

3.6 Density-Sensitive Select Index . 72

3.7 Balanced Parentheses . 76

4 The Text Searching Problem in the Indexing Bit Probe Model 82

4.1 Introduction . 83

4.2 Permutations . 88

4.3 Text Searching . 94

5 Lower Bounds in the Non-Indexing Model 102

5.1 Introduction . 102

5.2 Compression Lemma . 109

5.3 Applications of the Compression Lemma 114

5.3.1 The PERMS Problem . 114

5.3.2 The TEXTSEARCH Problem . 116

5.3.3 The str acc/str sel Problem . 119

5.3.4 The BINREL Problem . 121

6 Conclusion 124

vi

List of Figures

1.1 Upper bounds for the BINREL problem . 5

2.1 Structure the count index . 23

2.2 The Burrows-Wheeler transform . 28

2.3 Illustration of the split lemma . 37

2.4 An illustration of the permutation lemma 42

2.5 Two splits . 45

3.1 Choices tree and bit vectors . 53

3.2 An example of excess function . 79

5.1 Deleting a cell . 106

6.1 Bounds for bin rank, bin sel, and PARENTHESES Problems 126

6.2 Upper Bounds for the BINREL Problem . 128

6.3 Upper and Lower Bounds for the PERMS Problem 128

6.4 Bounds for the Substring Report and TEXTSEARCH Problems 128

6.5 Cell Probe Lower Bounds . 129

vii

Nomenclature

accessT (i) p consecutive characters of the text T starting at position i, page 15

β forward coverage factor, page 111

β ′ inverse coverage factor, page 111

β, β∗ coverage factor, page 111

bin accB(i), B[i] the value of the bit in position i of B, page 19

bin rankB(b, i) the number of b bits up to and including position i in B, page 13

bin selB(b, x) the position of the x-th b-bit in B, page 14

A[i] indicates whether qi is present (Section 4.3), page 95

C‖ set of remaining cells after step k (Chapter 5), page 110

C′[i] indicates whether the i-th chunk is present (Section 4.3), page 96

D positions of deleted cells (Chapter 5), page 110

Fk set of remaining forward queries after step k (Chapter 5), page 110

Ik set of remaining inverse queries after step k (Chapter 5), page 110

L unary separator sequence of P (Chapter 4), page 89

M array of encoded small permutations (Chapter 5), page 110

viii

P sequence of probed bits or cells (Chapter 4), page 87

Q,Q∗ sets of queries, page 12

R contents of the remaining cells (Chapter 5), page 110

R contents of the undiscovered bits (Section 4.3), page 95

R′ sequence of the bits in absent chunks (Section 4.3), page 96

card(B) cardinality of B, page 51

col nbR(j) the number of 1-bits (cardinality) in the j-th column, page 31

col selR(x, j) the row of the x-th occurrence of 1-bit in the j-th column of R, page 31

COUNT count index, page 22

findmatch(i) the location of the matching parenthesis to the parenthesis at the position

i, page 12

γ number of queries in Q∗, page 51

H set of hard instances, page 52

µdk
permutation stored inM on the k-th step, defines a map between F ′(dk) and I ′(dk)

(Chapter 5), page 111

occT (c) the number of occurrences of character c in T , page 29

π permutation, page 4

π−1 inverse of a permutation, page 4

RANK binary rank index, page 25

ρ the inverse density of a binary matrix, ρ = nm/f , page 31

row nbR(i) the number of 1-bits (cardinality) in the i-th row, page 31

ix

row rankR(i, j) the number of 1-bits in the i-th row of R up to and including column j,

page 30

row rankR(i, j) the number of 1-bits in the j-th column of R up to and including row i,

page 31

row selR(i, x) the column of the x-th occurrence of 1-bit in the i-th row of R, page 30

searchT (X, j) the j-th occurrence of pattern X of length p in T , page 15

SELECT binary select index, page 25

Σ alphabet, page 5

σ size of alphabet, page 5

str accT (i), T [i] the i-th character of T , page 29

str rankT (c, i) the number of occurrences of character c before and including the position

i, page 29

str selT (c, x) the position of x-th occurrence of character c in T , page 29

tab accR(i, j) the element on the intersection of the i-th row and the j-th column, page 31

Υ the information-theoretic minimum to represent an object in question, page 8

a the number of present simulations (Section 4.3), page 96

B binary vector, page 19

b-probe a bit probe that returns value b, where b ∈ {0, 1}, page 51

BW Burrows-Wheeler transform, page 27

C(x) set of hard instances compatible with a leaf x (Chapter 3), page 54

dk deleted cell on step k (Chapter 5), page 110

f the number of 1 entries in a binary matrix (cardinality), page 31

x

F ′(l) set of forward queries q so that q and q−1 use cell l (Chapter 5), page 111

F (l) set of forward queries that use the l-th cell (Chapter 5), page 110

G, G(Q∗) choices tree, page 51

h number of levels in the count index (Section 2.1), page 22

H0 empirical 0-th order entropy, page 29

Hk empirical k-th order entropy, page 29

I ′(l) set of inverse queries q so that q and q−1 use cell l (Chapter 5), page 111

I(l) set of inverse queries that use the l-th cell (Chapter 5), page 110

I, IB index, page 13

k threshold on the number of discovered bits in a chunk (Section 4.3), page 94

L length of text, page 5

lk length of a chunk of level k (Section 2.1), page 22

lk length of the i-th slice in the split lemma (Section 2.2), page 36

m cardinality of a bit vector (Section 2.1 and Chapter 3), page 25

m number of rows in a binary matrix (Section 2.2), page 27

mi cardinality of the i-th block (Chapter 3), page 55

n length of bit vector (Section 2.1 and Chapter 3), page 21

n number of columns in a binary matrix (Section 2.2), page 27

ni length of the i-th block (Chapter 3), page 55

p length of pattern, page 10

xi

P (dk) set of protected cells on step k (Chapter 5), page 110

q, qi query, page 51

q−1 reciprocal query to q (Chapter 5), page 110

r size of the index (space cost) for the indexing model (Chapter 3 and Chapter 4),

redundancy for the non-indexing model (Chapter 5), page 8

S array of bits or cells of a data structure, page 8

SA Suffix array, page 27

T text (binary and general alphabet), page 5

t, t′ running time for upper bounds (Chapter 2), time cost for lower bounds (Chapter 3,

Chapter 4, and Chapter 5), page 8

ta Run time of str acc, page 34

tr Run time of str rank, page 34

ts Run time of str sel, page 34

U U = n− tγ, the total number of unprobed bits (Chapter 3), page 55

ui the number of unprobed bits in the i-th block (Chapter 3), page 55

V the total number of unprobed 1-bits (Chapter 3), page 55

v the number of overlap bits (Section 4.3), page 97

vi the number of unprobed 1-bits in the i-th block (Chapter 3), page 55

w word size, page 12

X pattern, page 10

Y −1 set reciprocal queries to Y (Chapter 5), page 110

xii

yi the number of 1-probes performed on the i-th block (Chapter 3), page 55

z number of removal steps (Chapter 5), page 110

Z(x) set of instances compatible with a leaf x (Chapter 3), page 52

BINREL binary relations problem, page 15

PARENTHESES balanced parentheses problem, page 14

PERMS permutations problem, page 14

TEXTSEARCH binary text search problem, page 15

xiii

Chapter 1

Introduction

The goal of this thesis is to investigate efficient representations of text data, and the

complexity of a variety of problems related to text indexing and text searching. Text

retrieval problems have gained importance in recent years. For example, Google’s index

expanded by a factor of 1000 from 1998 to 2005 (according to the Anna Patterson’s blog

dated June 2007). Their coverage is still growing rapidly: currently (in 2007) they are

estimated to index approximately 50 billion pages, which is a factor of 6 increase over the

8 billion pages in the year 2005. There has been a large body of work devoted to text

retrieval problems. For example, the algorithm of Knuth, Morris, and Pratt [35] (e.g. the

grep utility in UNIX) has complexity O(|T | + |X|) on a text T and a pattern X. This

algorithm uses some precomputation on the pattern, but not on the text. This is, of

course, as well as we can do on an unpreprocessed text. If we expect to perform searches

frequently, it is desirable on reasonable sized texts and essential on large ones to preprocess

the text to permit faster searches. The large scale applications, e.g. Google, take advantage

of the precomputation, e.g. search engines can precompute inverted lists that for each

keyword store the list of web pages that contain this keyword. Common data structures

that are used for text searching problem include suffix trees [11, 22, 30, 39, 52, 54], suffix

arrays [28, 29, 34, 38, 49, 50], FM-indices [14, 15, 16], and wavelet trees [26]. Recent

developments include the results by Golynski et al. [25] and Barbay et al. [3] that can be

used as building blocks in these data structures (see [46] for an up-to-date survey of text

indexing data structures). Such data structures provide various tradeoffs (upper bounds for

1

2 Upper and Lower Bounds for Text Indexing Data Structures

time-space tradeoffs) between the size of the storage and the time to perform text retrieval

operations, such as searching for a pattern. To facilitate further progress in this direction, it

is important to understand the intrinsic limitations (lower bounds for time-space tradeoffs)

imposed on any type of data structure for the problem.

In the first part of this thesis, we will develop several data structures that address

the problem of representing binary vectors, strings, binary relations, and the problem of

indexing and searching in textual data (e.g. XML documents). Our concern is with space-

efficient data structures that allow fast run times for some specified set of data retrieval

operations. More specifically, we are interested in so-called succinct data structures. By

the term “succinct” we informally mean a data structure that uses close to the minimum

amount of space required to represent the combinatorial objects in question while per-

forming the required operations quickly. The ideal would be to represent the objects in

the information-theoretic minimum space and to perform the operations in constant time.

(This, of course, may not be possible.) Our focus is on representing static objects; that is,

the efficient implementation of update operations is not considered. In the second part,

perhaps more significantly, we prove a number of lower bounds on the tradeoffs between

time and space for the problems related to text searching in preprocessed data.

1.1 Indexing Data Structures

We first consider an interesting class of indexing data structures. An indexing data structure

explicitly stores a given object, such as a text string, plus a small index to facilitate the

implementation of retrieval operations. Gál and Miltersen [19] call them systematic data

structures, and call explicit representation verbatim; however we use the term raw form

in this thesis. The notion of raw form is not well defined for some combinatorial objects,

e.g. trees (binary and non-binary) and graphs; however, for others, e.g. texts (binary

and non-binary) and strings of parentheses, there is a canonical way to represent them as

binary vectors.

The first example of such a data structure was given by Jacobson [32], who represented

a binary vector B such that the rank and select operations can be performed efficiently: the

details are given in Jacobson’s PhD thesis [33]. The bin rankB(1, i) operation determines

3

the number of 1-bits up to and including the given position i in B. The bin selB(1, x)

operation determines the position of the x-th 1-bit in B. (bin rank(0, i) and bin sel(0, x)

are defined similarly.) Let us denote the value of the bit in the position i by B[i], the number

of 1-bits in B by occB(1), and the number of 0-bits by occB(0). B can also be considered

as the characteristic vector of a set S ⊂ [|B|]1, such that i ∈ S if B[i] = 1. The number of

1-bits of B equals to the number of elements (cardinality) in S and will be referred to as

the cardinality of B as well. The operations bin rank and bin sel are one sided inverses

of each other in that if x ≤ occB(1) then bin rankB(1, bin selB(1, x)) = x, however

bin selB(1, bin rankB(1, i)) = i for i ≤ |B| holds only in the case if B[i] = 1. A similar

condition holds for 0-bits. Jacobson’s representation stored B directly together with some

relatively small auxiliary structures to make these operations efficient. Such structures are

generally called directories or indices. The time complexities of his implementations of

bin rank and bin sel are both O(lg n). As the output of bin rank and bin sel queries

are lg n bits long, these bounds are optimal to within a constant factor, if we count output

operations as part of time complexity.

Clearly, the rank and select operations can be defined over any alphabet Σ. We call them

str rank and str sel, where str rankT (c, i) returns the number of characters c ∈ Σ in T

up to and including the position i, and the operation str selT (c, x) returns the position

of the x-th character c in T . To these operation, we add the operation str accT (i), which

returns the character in position i of T , also denoted by T [i].

There are three reasons that we use different notation in the binary and non-binary

cases. First, the binary case is particularly important, since it is a building block in

many existing succinct data structures. The case of larger alphabets has a smaller range

of applications that are mostly in the text indexing area. The second reason is that

the existing implementations (including the ones in this thesis) in the binary and the

non-binary case use substantially different techniques. And the third reason is that the

implementation of the operation str acc in the binary case can be efficiently simulated

using just two str rank queries. We can compute str rankT (0, i+1)−str rankT (0, i) and

if this difference is 1 then str accT (i) = 0, otherwise str accT (i) = 1. However, for the

non-binary case, to implement str accT (i), we might need to compute str rankT (c, i +

1We define [n] to be {1, 2, . . . , n}.

4 Upper and Lower Bounds for Text Indexing Data Structures

1)− str rankT (c, i) for |Σ| − 1 characters.

Raman et al. [48] called a data structure that implements bin rank and bin sel a fully

indexable dictionary (FID).

1.2 Non-Indexing Data Structures

For some problems, it is more advantageous to represent the data without the indexing

restriction. Such representations are called non-indexing [23] or non-systematic [19].

A simple and interesting example of such a data structure based on Benes networks [36]

was developed by Munro et al. [44] for representing permutations. The problem of inverting

permutations, PERMS, can be described as follows. We are to represent a permutation on

n elements, and to answer queries π(i) and π−1(i) for given i, 1 ≤ i ≤ n. A natural raw

form representation would be to store n cells of memory of size lg n bits each, so that the

value in the i-th cell is π(i). Hence, determining π(i) is trivial, but finding π−1(i) requires

a scan of the array. An indexing data structure stores this raw form plus some additional

information to facilitate the π−1 queries. (One possibility would be to store both π(i)

and π−1(i) considering the part of the memory that stores π−1(i) as the index. However,

there are much more succinct data structures.) Indeed, such representations do exist, as

was shown by Munro et al. [44]; moreover, they are optimal up to a constant factor under

the indexing model restriction as was proven by Demaine and López-Ortiz [10], Munro et

al. [44], and in Chapter 4 of this thesis. These results can be stated as follows: if t is the time

cost of the π−1 operation, then the size of extra storage should be at least Ω((n lg n)/t)

bits (we state the corresponding theorems more precisely in Chapter 4). However, the

non-indexing data structure based on the Benes networks from Munro et al. [44] performs

better than this lower bound would suggest. Namely, it uses only lg n!+O(n(lg lg n)2/ lg n)

bits of storage (i.e. O(n(lg lg n)2/ lg n) extra bits as compared to the information-theoretic

minimum). It implements both π and π−1 operations in O(lg n/ lg lg n) time. For such

running times, the best known indexing representation uses a factor of Θ(lg n/ lg lg n)

extra bits (i.e. Ω(n lg lg n) bits) than the lower bound suggests.

Based on the representation of permutations, Golynski et al. [25] proposed two encod-

ings of texts on large alphabets: select encoding, and access encoding. We represent a

5

Name Row Column Benes Label Object

row rank lg lg ρ lg lg ρ lg lg ρ
(

lg ρ
lg w

+ 1
)

lg lg ξ lg lg ξ lg lg lg ξ

row sel 1 lg lg ρ
lg lg lg ρ

lg ρ
lg w

1 lg lg ξ

col rank lg lg ρ lg lg ρ lg lg ρ
(

lg ρ
lg w

+ 1
)

lg lg ξ lg lg lg ξ lg lg ξ

col sel
lg lg ρ

lg lg lg ρ
1 lg ρ

lg w
lg lg ξ 1

Space Υ + O
(

Υ lg lg lg ρ
lg lg ρ

)

Υ + O
(

Υ lg lg lg ρ
lg lg ρ

)

Υ + O(f) f(lg ξ + o(lg ξ)) f(lg ξ + o(lg ξ))

Υ = f lg(nm/f)− O(f) is the information-theoretic minimum space to encode an m × n

matrix with f 1-bits in it, ρ = nm/f is the inverse density of R, and ξ = min{m, n}.

Figure 1.1: Upper bounds for the BINREL problem (all running times are asymptotic)

text T of length L = |T | on an alphabet Σ of size σ = |Σ| using L(lg σ + o(lg σ)) bits,

and perform the operations str rank, str sel and str acc in the following asymptotic

running times:

select encoding access encoding

str acc lg lg σ 1

str sel 1 lg lg σ

str rank lg lg σ lg lg σ lg lg lg σ

Later, our encoding was generalized by Barbay et al. [2] to binary relations. We consider

the BINREL problem: represent an m × n binary matrix R containing f 1-bits and im-

plement queries row sel, col sel, row rank, and col rank. row selR(i, x) (respectively,

col selR(x, j)) returns the position of the x-th 1-bit in the i-th row (resp., j-th column) of

R, it returns −1 if the i-th row (respectively, the j-th column) contains fewer than x 1-bits.

row rankR(i, j) (resp., col rankR(i, j)) returns the number of 1-bits in the i-th row (resp.,

j-th column) up to and including the position j (resp., i). We propose two encodings called

label encoding and object encoding. In Section 2.2, we improve the these results by showing

three new representations called row, column and benes encodings. Figure 1.1 shows the

comparison between the results of Barbay et al. [2] and the new results. The new encoding

achieves the succinct space bound Υ+o(Υ) for all values of n, m, and f , while the encoding

of Barbay et al. [3] only achieves this bound in the case where f = o(max{n, m})o(1).

6 Upper and Lower Bounds for Text Indexing Data Structures

1.3 Lower Bounds

In this section, we discuss the limitation of indexing and non-indexing representations in

more detail, and review some related results. We start with the usual cell probe model,

and then introduce the indexing cell probe model and the indexing bit probe model.

1.3.1 Cell Probe Model

In general, little is known about lower bounds for data structures in the cell probe model.

In his influential paper “Should Tables be Sorted?” Yao [57] proposed a computation

model called the cell probe model which is now widely accepted as a framework for proving

lower bounds. In this model, we have an array S of cells, each consisting of w bits. An

algorithm in this model can be viewed as a decision tree. The nodes of the tree are labeled

with “S[i] = ?”, where i is an index into S, i.e. a value from between 1 and |S| inclusively.

The edges are labeled with numbers from 0 to 2w − 1. The time cost of the data structure

is defined as the depth of this tree, and the space cost is defined as the size of the storage,

|S|. This means that the cell probe model is only concerned with the number of cells

accessed and the number of cells stored, while the computation is free, and there are no

restrictions on the way the data is represented. Thus, the lower bounds obtained in this

model will also apply to any other reasonable model of computation, e.g. the RAM model

(but the converse is not true). This model provides an information-theoretic insight into

a problem ignoring the computation issues. Still, proving meaningful lower bounds in this

model is hard even for simple data structural problems.

Yao was the first to consider the static membership problem (i.e. where update op-

erations are not considered), which can be stated as follows: given a set B of m keys,

represent it so that the queries of the form “Is i ∈ B” can be implemented efficiently.

Another important problem is the static predecessor problem. In this problem, we are to

store a set S of m numbers from the universe [n]2, and answer queries of the form “what is

the largest number from S that is smaller than a given value?”. Both the membership and

2We choose the notation n to denote the size of a universe as it was used in some early papers by

Jacobson [32, 45]. We are also aware that other (more recent) papers [24, 48] use the notation m to denote

the size of the universe and n to denote the size of the set.

7

the predecessor problems can also be studied in the dynamic setting where it is possible to

update the set in question, and one wants to implement these updates efficiently. However,

throughout the thesis, we only discuss the static versions, and indeed omit the word static.

The predecessor problem has been studied for over 30 years and is one of the most

interesting problems for studying the lower bounds of classical static data structures. This

problem can be solved by storing the elements of the set in increasing order and using binary

search. The space cost is m and the time cost is lg m. The (now classic) improvement

was given by van Emde Boas et al. [53] in 1977, who showed how to implement queries

in O(lg lg n) time using O(n) space. Ajtai [1] was the first to show that if the storage

size is at most polynomial in the size of the set (i.e. mO(1) words), then any deterministic

algorithm to answer such queries has to perform t = ω(1) word probes in the RAM model

with lg n bit word size. Later, his results were improved: by Miltersen [40] who showed

that t = Ω(
√

lg lg n); by Miltersen, Nisan, Safra and Widgerson [42] who showed that

t = Ω(lg m1/3); and by Beame and Fich [4] who showed that

t = Ω

(

min

{

lg lg n

lg lg lg n
,

√

lg m

lg lg m

})

.

Sen [51] showed that the last bound holds also for randomized data structures. These

bounds are based on communication complexity techniques, and due to their limitations

do not give precise bounds on the space requirements of a data structure. The results

of Beame and Fich [4] and Sen [51] are applicable in the case of polynomial size storage

(they do not make a distinction between polynomial and linear storage size as mentioned

in [47]). The results of Pǎtraşcu and Thorup [47] essentially close the problem by showing

bounds that are optimal up to constant factors for all choices of the parameters: the size

of the set, the size of the universe, and the word size in the RAM model. They are able to

separate between storages of size m1+o(1) and m1+ε for any positive constant ε. Defining

a = lg |S|
m

+ lg w and ℓ = lg n, they showed that the optimal search time (up to constant

8 Upper and Lower Bounds for Text Indexing Data Structures

factors) is:

min







logw n

lg ℓ−lg n
a

lg ℓ
a

lg(a
lg n

· lg ℓ
a)

lg ℓ
a

lg

„

lg ℓ
a

/ lg lg n
a

«

However, even the techniques from Pǎtraşcu and Thorup do not give precise space bounds

in the case where we need to store a set of m = Θ(n) elements; they cannot distinguish

between storages of size smaller than m1+o(1), e.g. they cannot separate storages of sizes

n+O((n lg lg n)/ lg n), 2n, and n lg n. Using a simple bit vector with bin rank and bin sel

functionality, we can solve this problem using n + O(n lg n lg n/ lg n) bits (that is, n/ lg n

cells of memory) in constant time (e.g. using the data structures described in Section 2.1),

while the naive solution that stores all predecessors explicitly uses O(m lg m) words of

space.

Our interest here is in showing lower bounds that are more sensitive, e.g. that can

distinguish between storage sizes below the n1−o(1) barrier. Let Υ be the information-

theoretic minimum to represent an object in question (e.g. Υ = lg
(

n
m

)
if we are to represent

sets of size m from a universe of size n). Let S be the storage, and let |S| = Υ + r be

the size of the storage, where r is called the redundancy. Let t be the running time to

perform the required operations. We are interested in the tradeoff between t and r up to

constant factors, rather than the tradeoff between t and |S|. Intuitively, when r = o(Υ),

the former type of tradeoff is more meaningful. Consider an example of a data structure

that stores a permutation π on n elements, and implements queries π(i) and π−1(i) for

i ∈ [n]. If we store all the answers to these queries explicitly using 2n cells of memory, we

obtain constant running times. However, if we use the data structure of Munro et al. [44],

the space is n + O(n(lg lg n)2/(lg n)2, and the time is O(lg n/ lg lg n). Hence, we cannot

obtain a lower bound on |S| of the form |S| = Ω(f(n, t)) for some function f other than

the trivial |S| = Ω(n), but we can try to obtain a tradeoff of the form r = Ω(g(n, t)) for

some function g.

We are aware of only one cell probe lower bound of this type: Gál and Miltersen [19]

9

showed a lower bound for the problem of evaluating polynomials. In this problem, we are

to represent a polynomial f of given degree d over the field GF (2k), and to answer queries

of type f(i) for given i ∈ GF (2k). Their techniques are “based on the fact that the problem

of polynomial evaluation hides an error correcting code: The strings of query answers for

each possible data (i.e. each polynomial) form the Reed-Solomon code.” [19]. However,

these methods do not extend to the problems that are of interest in this thesis. In fact,

in [19], they stated “We do not know how to prove similar lower bounds for natural storage

and retrieval problems such as Substring Search. However, we get a natural restriction of

the cell probe model by looking at the case of systematic or index structures.” To tackle

with this difficulty, they used the indexing model, which differs from Yao’s cell probe model

in that it restricts the data structure under investigation to be an indexing data structure.

We consider this model and relevant lower bounds in Section 1.3.2.

In Chapter 5, we propose a new technique for proving space sensitive lower bound for

the problem that possess what we call the reciprocal property. To describe this property,

consider the PERMS problem where we have to implement two types of queries: the forward

queries π(i) and the inverse queries π−1(i). Each type describes the object (i.e. permutation

π) completely, and each query is responsible for “its own part” of the object (i.e. a

directed link between i and j for each π(i) = j, if we visualize π as a directed bipartite

graph). Examples of such problems are: the TEXTSEARCH, the problem of implementing

the str sel and str acc operations for texts on arbitrary alphabets (we will define this

problem formally later), the PERMS problem, and the BINREL problem. For the PERMS

problem, using the new technique, we prove lower bounds that are tight up to constant

factors: we show that both the “back pointer” data structure and the data structure based

on the Benes networks given in Munro et al. [44] are optimal even in the non-indexing

model. As was shown in Golynski et al. [25], a lower bound for the PERMS problem implies

a lower bound for the str sel/str acc problem and vice versa. Hence our bounds are

tight for certain parameters of the latter problem as well. We also show a lower bound for

the text search and retrieval problem that can be formulated as follows. Represent a text

T of length L on alphabet Σ of size σ, and answer the queries

• accessT (i), which retrieves a substring of the text of length p at the position i, and

• searchT (X), which finds the location of an occurrence of the given substring X

10 Upper and Lower Bounds for Text Indexing Data Structures

(called pattern) of length p ≤ (lg L)/(lg σ) in T .

Denote the running time of access by t, and the running time of search by t′. In the

cell probe model with the cell size lg L and small enough running times t and t′, we show

a lower bound of the form r ≥ Ω(Υ/(tt′)). In particular, if we wish to implement access

and search in constant time (i.e. t = t′ = O(1)), then the redundancy has to be at least

Ω(Υ).

1.3.2 Indexing Lower Bounds

The indexing model differs from Yao’s cell probe model in that it restricts the data structure

under investigation to be an indexing data structure. Informally, it can be described as

follows. We are given a raw form representation of a combinatorial object free of charge,

that is, it is stored in external memory (e.g. a large database) or provided by the outside

world (e.g. the web graph [55]). We are to develop a small index (e.g. a road map of the

web graph) that helps us to perform a given set of operations (e.g. shortest paths queries

between sites in this graph). Presumably the index is stored “locally” in a relatively fast,

expensive and/or limited memory. Thus, we are charged 1 unit of space for each bit that

is occupied by the index. An algorithm that implements one of the retrieval operations is

charged 1 unit of time for each access to the external raw data, e.g. I/O operation, and

is not charged to access the local index. Finally, we will allow the algorithm to perform

unlimited computation. If we allowed to access the raw data bit by bit, then we call the

model, the indexing bit probe model; and if we can only access the raw data cell by cell

(w bits at once), then we call the model, the the indexing cell probe model. Clearly, any

algorithm with time cost t in the cell probe model can be turned into an algorithm with

time cost tw in the bit probe model. The converse is not true: in general, we can only

claim that an algorithm in the indexing bit probe model with time cost t can be turned

into an algorithm in the cell probe model with time cost t (hence, losing a factor of w).

In this model, we can also raise the question of time versus space tradeoffs. Intuitively,

the more space we allow for the index (up to some limit), the more efficient the retrieval

operations should be. Although this model is unreasonable for any practical implemen-

tation, we will show that certain data structure problems have limitations even in this

11

model, and hence the same limitations hold in more realistic models (e.g. the traditionally

accepted RAM model). In particular, we can prove lower bounds under this very “liberal”

model, while the matching upper bounds do not abuse the freedom.

Such lower bounds have been investigated by Yao [58], Demaine and López-Ortiz [10],

Miltersen [41], Golynski [25], and Golynski et al. [24]. Demaine and López-Ortiz considered

the problem of representing a binary text T of length L so that we can find an occurrence

of a given pattern X of length p = lg L − o(lg L). We call this problem and its variations

the TEXTSEARCH problem. In the indexing bit probe model, they showed that if the space

cost t is at most t = o((lg L)2/ lg lg L), then the time cost is at least r = Ω((L lg L)/t).

We consider their result in more detail in Chapter 3. Gál and Miltersen considered the

following problems:

• the substring search problem, a variation of the TEXTSEARCH problem where we do

not have to report a location where a given pattern occurred in the text (if any),

but only output YES or NO depending on whether the pattern occurred. They only

considered the case where the patterns are of length p = Θ(lg L). They showed that

for a given time cost t, the space cost must be at least r = (L/(t lg L)).

• the prefix sum problem, which is a variation of the problem of implementing bin rank,

where we are only required to report the parity of bin rank(1, ·). They showed that

Θ(n/r) bit probes are necessary and sufficient for this problem.

In [41], Miltersen considered lower bounds for the problems of implementing bin rank

and bin sel. For the problem of implementing the bin sel operation, he showed that

the space cost must be r = Ω(n/t) in the indexing bit probe model. For the problem

of implementing the bin rank operation, he showed that r = Ω(n lg lg n/(t lg n)) in the

indexing cell probe model if the cell size is w = lg n. Later, Golynski [25] improved his

results to the best possible up to constant factors showing that, for implementing either

bin rank or bin sel operation, the index size must be r = Ω((n lg t)/t). This is an

improvement by a factor of lg t (for constant time RAM algorithms, t = O(lg n)) for the

bin sel problem, and a generalization of Miltersen’s result for the bin rank problem from

the more restrictive cell probe model to the less restrictive bit probe model. We also

provide a more sensitive analysis of these problems, namely we consider the case where the

12 Upper and Lower Bounds for Text Indexing Data Structures

bit vectors have a fixed number of 1-bits in them, i.e. fixed cardinality m. A more detailed

comparison, and the proofs of these results are presented in Chapter 3.

In Golynski et al. [24], we considered the balanced parentheses problem: represent a

string of balanced parentheses so that the query findmatch(i) can be implemented for

1 ≤ i ≤ n. The operation findmatch(i) returns the position of the parenthesis matching

the parenthesis at the position i. A raw form representation of a balanced parentheses

string is a bit vector with 0 indicating an opening parenthesis, and 1 indicating a closing

parenthesis. We showed a lower bound for this problem that matches the upper bound by

Geary et al. [20]. Namely, if the time cost of an algorithm is t = O(lg n) then the space

cost must be r = Ω((n lg lg n)/ lg n). We present these results in Section 3.7.

1.4 Models and Problems

Throughout the thesis, we assume that all algorithms are deterministic.

For the implementations in this thesis, we use the word RAM model. This model

allows conditional jumps, indirect addressing, and a set of basic instructions, such as left

and right bit shifts, additions, multiplications, divisions (MOD and DIV operations) on

registers. The size of registers, w, is also called cell size. Typically, we consider the

registers to hold w = lg n bits, where n is the size of the data structure (e.g. the length of

a bit vector). w is chosen so that we can fit a pointer in a register and perform indirect

addressing.

For studying the lower bounds we consider three models in this thesis: the indexing bit

probe model, the indexing cell probe model, and the cell probe model. Let us introduce some

common notation for all the definitions. Let H be the set of combinatorial objects. Let

g(B, x1, x2, . . . , xk) be a function, where B ∈ H and the tuple of parameters (x1, x2, . . . , xk)

belongs to some given domain X . Let Y denote the range of g. The function g defines the

queries that we are to implement on the set of objects H. Namely, we define the set of

queries as

Q = {query (g, B, x1, x2, . . . , xk)|B ∈ H, (x1, x2, . . . , xk) ∈ X}.

To make the notation more intuitive, we will use query g(B, x1, x2, . . . , xk) instead of

13

query (g, B, x1, x2, . . . , xk). We give examples of g, Y and X later in this section together

with the formal problem definitions.

We start by defining the indexing models first.

Definition 1. In the indexing model, we store the object B in raw form together with an

index IB of size r (r is called the space cost). Let us denote by A the algorithm that takes

the input parameters x1, x2, . . . , xk and computes the value of g(B, x1, x2, . . . , xk). We say

that the algorithm A implements the queries from Q. A has access to B, IB, the parameters

x1, x2, . . . , xk, and to unlimited storage for its internal computations. The time cost, t, of

A is defined as the number of bit (or cell) probes A performs on the raw data B in the worst

case. The cell size is denoted by w. A is not charged for any computation it performs, nor

for accessing any of IB, x1, x2, . . . , xk.

In the non-indexing cell probe model, we define

Υ =

⌈
log |H|

w

⌉

to be the information-theoretic minimum space required to represent an object from H.

Let SB denote the storage. SB is an array of |S| = Υ + r cells. We call r the redundancy.

Let A be the algorithm that implements Q on H. In this model, we define the time cost

of A to be the number of cell probes A performs on the storage SB. The space cost of A is

defined to be r.

We now define the problems and clarify the meaning of g, X and Y .

The bin rank problem. The set of objects is

H = {B| B is a bit vector of length n }.

The set of queries is given by a function g that has two parameters: degree b ∈ {0, 1}, and

element i ∈ [n], so that X = {0, 1}× [n]. The range of this function is Y = [n]. The answer

to the “query g(B, b, i)” is the number of b-bits in B up to and including the position i.

We also denote “g(B, b, i)” by “query bin rankB(b, i)”.

14 Upper and Lower Bounds for Text Indexing Data Structures

The density sensitive bin rank problem. The set of objects is given by

H = {B| B is a bit vector of length n with m 1-bits in it},
where m is some fixed parameter. The set of queries is the same as for the bin rank

problem.

The bin sel problem. The set of objects is

H = {B| B is a bit vector of length n }.
The set of queries is given by a function g that has two parameters: degree b ∈ {0, 1},
and element i ∈ [n], so that X = {0, 1} × [n]. The range of this function is Y = [n]. The

answer to the “query g(B, b, i)” is the i-th b-bits in B, and −1 if B contains less than i of

b-bits. We also denote “g(B, b, i)” by “query bin selB(b, i)”.

The density sensitive bin sel problem The set of objects is given by

H = {B| B is a bit vector of length n with m 1-bits in it},
where m is some fixed parameter. The set of queries is the same as for the bin sel problem.

The PARENTHESES problem. The set of objects is

H = {B| B is a sequence of balanced parentheses of length n },
where n is an even integer. The set of queries is given by a function g with one parameter

i, so that X = [n]. The range of this function is Y = [n]. The answer to the “query

g(B, i)” is the position of the parenthesis that matches the parenthesis at position i. We

also denote “g(B, i)” by “query findmatchB(i)”.

The PERMS problem. The set of objects is

H = {π| π is a permutation on n elements }.
The set of queries is given by a function g that has two parameters: degree d ∈ {+1,−1},
and element i ∈ [n], so that X = {+1,−1}× [n]. The range of this function is Y = [n]. The

answer to the “query g(π, d, i)” is πd(i). We denote “g(π, 1, i)” by “query forw permπ(i)”,

and “g(π,−1, i)” by “query inv permπ(i)”.

15

The TEXTSEARCH problem. The set of objects is

H = {T | T is a text of length L on an alphabet Σ of size σ }.

The set of queries is given by a function g that has three parameters x1 ∈ {0, 1}, x2 and

x3, where x1 = 0 indicates an access query and x1 = 1 indicates a search query.

Access query: We are to return the substring of length p that we are to access that starts

at position x2 ∈ [L− p + 1]. The value x3 is not used.

Search query: We are to search for the x3-th occurrence (x3 ∈ [L]) of the pattern x2 ∈ Σp

in the text T and output its position if it exists (−1 otherwise).

The range of g(T, x1, x2, x3) is therefore Y = Σp∪[L−p+1]∪{−1}. We denote “g(T, 0, x2)”

by “query accessT (x2)”, and “g(T, 1, x2, x3)” by “query searchT (x2, x3).

The substring report problem for binary alphabets. The set of objects is

H = {B| B is a bit vector of length L }.

The set of queries is given by a function g that has one parameter X, which is a binary

vector of length p, so that X = {0, 1}p. The range of this function is Y = [L−p+1]∪{−1}.
The answer to the “query g(B, X)” is the position of any of the occurrences of X in B,

and −1 if X does not occur in B. We denote “g(B, X)” by “query searchT (X).

The str acc/str sel problem. This is a special case of the TEXTSEARCH problem,

where the pattern length p equals to 1.

The BINREL problem. The set of objects is

H = {R| R is an m× n binary matrix containing f 1-bits }.

The set of queries is given by a function g with three parameters: x1 ∈ {0, 1}, x2 and x3,

where x1 = 0 indicates that it is a row query and x1 = 1 indicates that it is a column

query.

16 Upper and Lower Bounds for Text Indexing Data Structures

Row query: We are to search the x2-th row for the x3-th 1-bit (x2 ∈ [m] and x3 ∈ [n])

and output its position if it exists (−1 otherwise).

Column query: We are to search the x3-th column for the x2-th 1-bit (x2 ∈ [m] and

x3 ∈ [n]) and output its position if it exists (−1 otherwise).

We denote g(R, 0, x2, x3) by “query row selR(x2, x3)”, and g(T, 1, x2, x3) by “query

col selR(1, x2, x3)”. The range of g(R, x1, x2, x3) is Y = [max{n, m}] ∪ {−1}.

1.5 Contributions and Outline

The thesis is organized as follows.

In Chapter 2, we present new upper bounds. Section 2.1 describes a new data structure

to implement the bin rank and bin sel operations. For any given parameter t ≥ 1, we

use t + 1 consecutive cell probes to the raw form representation of the bit vector, where

the space used for such representation is only

r =
n lg(t lg n)

t lg n
+ O

(
n(lg(t lg n))2

t2(lg n)2

)

.

This data structure is based on the count index (we will define it later in Section 2.1) that

uses (n lg(t lg n))/(t lg n) bits. The remaining parts of the bin rank and bin sel indices

use a factor of (t lg n)/ lg(t lg n) less space than the count index. (We would like to note that

such implementations are also possible for PARENTHESES problem; however, we leave this

discussion outside the scope of this thesis. We refer the reader to [24], where we proposed

a non-indexing implementation of balanced parentheses strings that uses less extra space

than in Section 2.1). Earlier data structures implemented bin rank and bin sel separately

and used different methods for the two implementation, each occupying Θ(n lg lg n/ lg n)

bits. An advantage of our data structure is that it combines the most space-consuming

parts of the indices for bin rank and bin sel in the count index that is shared between the

two. In addition, our data structures can be used for with any number of bit probes t. This

provides greater flexibility, and can be advantageous when we can access the bit vector in

chunks of data larger than one cell, such as blocks on modern hard disk drives, i.e. for

large values of t. We believe that this implementation can be useful for practitioners due

17

to the simplified structure and improved constant of the size of the index as compared to

the work of Raman et al. [48]. (In the indexing model, these data structures are optimal up

to constant factors as shown in Sections 3.2 and 3.3.) Although constants are not explicit

in the representation of [48], they build two separate indexes for bin rank and bin sel,

while we combine and reuse the most space consuming part of these indices, called the

count index (we also discuss this aspect in Chapter 6).

In Section 2.2, we generalize this problem and give a data structure for implementing

bin rank and bin sel operations on the rows and columns of a given binary matrix. This

result subsumes both the data structures by Golynski et al. [25] and Barbay et al. [2].

It also has applications to text searching [25] (we them in Section 2.2.5 in more detail),

intersection algorithms for conjunctive queries [2], and representation of labeled objects [2],

such as labeled trees and XML data. Another advantage of this result is that it compresses

the binary matrix to its information-theoretic bound minimum space (the previous results

could not achieve this compression), and allows constant running times for the selection

operations on rows and columns of matrices with a high density of 1-bits. For more detailed

comparisons, see Figure 1.1.

Chapter 3 is devoted to lower bounds for representing binary vectors in the indexing

model. In Sections 3.2 and 3.3, we show lower bounds for implementing the bin rank and

bin sel operations. These lower bounds match the upper bounds given in Section 2.1. In

Sections 3.5 and 3.6, we generalize the results from Sections 3.2 and 3.3 to the case where

the cardinality m of the bit vector is a parameter, and express our lower bounds in terms

of m. In Section 3.7, we consider the balanced parentheses problem, and show a lower

bound that matches the upper bound of [20].

In Chapter 4, we present an indexing lower bound for the TEXTSEARCH problem. In

Section 4.2, we consider the PERMS problem in the indexing cell probe model. This result

uses ideas similar to those of Demaine and López-Ortiz [10]; however, it introduces a new

compression technique that allows the restrictions of their results to be relaxed significantly.

More specifically, we are able to prove lower bounds for any running time t ≤ n/2 while

the results from [10] and Munro et al. [44] only yield meaningful lower bounds for the case

t = o(lg n/ lg lg n). In Section 4.3, we generalize the results from Section 4.2, and show a

new lower bound on text indexing that is stronger than in [10].

18 Upper and Lower Bounds for Text Indexing Data Structures

In Chapter 5, we prove the main result of this thesis. In Section 5.3.1, we introduce a

new technique for proving lower bounds in the non-indexing cell probe model. Using this

technique, we are able to show tight lower bounds for the PERMS problem. These lower

bounds match the known upper bounds developed by Munro et al. [44] up to constant

factors. Section 5.3.2 shows how to extend these results and prove a lower bound for the

TEXTSEARCH problem in the non-indexing cell probe model. In Section 5.3.4, we show lower

bounds for representing binary relations.

Chapter 2

Upper Bounds

This chapter deals with the problem of the representation of binary vectors, strings and

binary relations. We construct several data structures and illustrate their applications.

2.1 Fully Indexable Dictionaries

In this section, we consider the problem of implementing rank and select operations on

binary vectors. We start with the notion of a fully indexable dictionary:

Definition 2. A fully indexable dictionary (FID) for a vector B is a data structure that

supports the following operations [48]:

• bin accB(i): gives the value of the bit in position i of B;

• bin rankB(b, i): gives the number of b-bits up to and including position i in B. We

define bin rankB(b, 0) = 0 for convenience, and

• bin selB(b, x): gives the position of the x-th b-bit in B. We define bin sel(b, 0) = 0

for convenience.

Fully Indexable Dictionary

These operations can also be defined for general alphabets Σ (that is, for b ∈ Σ);

we consider this case in Section 2.2 in more detail. The techniques in the binary case

19

20 Upper and Lower Bounds for Text Indexing Data Structures

are substantially different from the techniques used in Section 2.2. Also, in the binary

case, bin accB(i) = bin rankB(1, i)− bin rankB(1, i− 1). Therefore, we do not consider

bin acc to be a separate operation for binary vectors and we focus only on implementing

the bin rank and bin sel operations. In addition, bin rankB(0, i) = i− bin rankB(1, i)

so it is enough to implement the bin rank operation for b = 1.

2.1.1 Related Work

These operations were first proposed in the work of Jacobson [32], and implemented

in his PhD thesis [33]. He used the following two-level data structure. He divided

B into pieces of length (lg n)2/ lg lg n. For each piece, he stored the number of 1-bits

prior to the start of the piece using lg n bits. The size of the first level is therefore

n lg n lg lg n/(lg n)2 = n lg lg n/ lg n. Then, he further subdivided each piece into sub-

pieces of length (lg n)/2. For each sub-piece inside a given piece, he stored the number

of 1-bits inside the piece that precede the starting position of the sub-piece using 2 lg lg n

bits. Therefore, the size of the second level is 2n lg lg n/ lg n. The bin rank of a given

position i can be found as follows. First, find the piece and sub-piece to which the given

position belongs to. Then sum the following three values: the number of 1-bits preceding

the piece, the number of 1-bits preceding the sub-piece, and the number of bits from the

beginning of the sub-piece to the given position. The latter number can be found using

a table that tabulates the answers for all possible sub-pieces and positions. The size of

this table is 2(lg n)/2(lg n)/2 lg lg n = O(
√

n lg n lg lg n). Hence, Jacobson’s data structure

occupies O(n lg lg n/ lg n) bits in addition to storing the bit vector B. The running time for

the computation of bin rankB(1, i) is clearly a constant in the word RAM model, though

Jacobson’s concern was that it required O(lg n) bit accesses. A data structure that stores

an object (e.g., in this example, a bit vector) in its raw form plus some extra information

(typically, of size that is lower order term of the original storage) to facilitate the imple-

mentation of some given queries (e.g. bin rank) is called an index. In particular, the data

structure by Jacobson described above is a rank index.

Jacobson also proposed an implementation of bin sel using O(lg n) bit accesses of B

with an index of size o(n), however this accesses were scattered among several words. Clark

and Munro in [8, 43] focused on the lg n-bit word RAM and offered a data structure with

21

only O(1) cell accesses to implement bin sel.

An efficient implementation for the bin sel operation was first proposed by . Their

data structure (called select index) is similar to Jacobson’s; however, it has three levels,

occupies O(n/ lg lg n) bits, and allows implementation of bin sel in constant time. Later

the space bound was improved by Raman et al. [48] to O((n lg lg n)/ lg n). They offered a

data structure that compresses the bit vector and is able to implement the FID operations

in constant time. It occupies B(n, m) + O(n lg lg n/ lg n) bit of space, where m is the

number of 1-bits in the bit vector, and B(n, m) = ⌈lg
(

n
m

)
⌉.

2.1.2 Contributions

In Theorem 1, we propose an index that allows us to implement both bin rank and bin sel

operations in O(t) time with only t+1 cell probes to B, where t is an arbitrary parameter.

Here, we assume that B is stored in memory directly, i.e. the first lg n bits of B are stored

in the first cell, the next lg n bits in the second and so on. A cell probe is an access to one

of these cells, and it is performed in constant time. The size of this index in bits is

r =
n lg(t lg n)

t lg n
+ O

(
n(lg(t lg n))2

t2(lg n)2

)

.

This tradeoff is particularly interesting as in Chapter 3 we will show that the space used by

this data structure is optimal up to a constant factor. That is, the Ω((n lg(t lg n))/(t lg n))

term is unavoidable, though potentially the constant in front of it can be lower than 1.

An advantage of this data structure is that it combines and reuses the most space

consuming part of both rank and select indexes of size of order Θ((n lg(t lg n))/(t lg n)).

Later in the proof we call this part the count index. It is designed so that it can be shared

by both rank and select indexes, and the space occupied by both rank and select indexes

apart from the count index is a lower order term: O(n(lg(t lg n))2/(t lg n)2).

2.1.3 Construction of the Count Index

We proceed by constructing the count index, the part that is shared between both rank

and select indexes. The count index is the asymptotically largest part of both of these

22 Upper and Lower Bounds for Text Indexing Data Structures

indexes. It uses
n lg(t lg n)

t lg n
+ O

(
n(lg(t lg n))2

t2(lg n)2

)

bits, while the remaining parts of the

indices for bin rank and bin sel only occupy O

(
n(lg(t lg n))2

t2(lg n)2

)

bits.

The count index consists of a hierarchy of chunks. At the bottom level, we partition

B into level 1 chunks of equal length l1 = t lg n. The number of 1-bits in a chunk is

called its cardinality. We store the cardinalities of chunks of level 1 in equally spaced fields

of size lg(l1) in a table COUNT1 of size (n lg l1)/l1. The bit vector is padded with extra

0-bits as necessary if the last level 1 chunk is of length less than l1. At the next level,

we group (t lg n)/ lg l1 consecutive level 1 chunks into a level 2 chunk, so that its length

is l2 = l1(t lg n)/ lg l1, We store the cardinalities of the level 2 chunks in equally spaced

fields of size lg l2 in a table COUNT2 of size (n lg l2)/l2. In general, we can define the level

k chunks recursively as the concatenation of (t lg n)/ lg lk−1 consecutive chunks of level

k − 1. The length of level k chunks is denoted by lk. Note that l1 ≤ lk ≤ (t lg n)k so that

lg l1 ≤ lg lk ≤ k lg l1. Also,

lk = lk−1
t lg n

lg lk−1

= Θ

(

lk−1
t lg n

lg l1

)

= Θ (lk−1f) = · · · = Θ
(
l1f

k−1
)
, (2.1)

where f = l1/ lg l1. We store the cardinalities of the level k chunks, k > 1, in a table

COUNTk of size
n lg lk

lk
= O

(
n lg l1
fk−1l1

)

= O

(
r

fk−1

)

.

This construction is illustrated in Figure 2.1. We store h levels of the count index for

some constant h which we will choose later. This construction can also be viewed as a

forest, where the root nodes are the level h chunks, the nodes of depth 2 are the level

h − 1 chunks and so on. The leaves are the level 1 chunks. The children of a level k

chunk are all the level k − 1 chunks that are contained in this chunk. The space used by

the count index is dominated by the table COUNT1 of size (n lg l1)/l1; the rest of the tables

COUNT2, COUNT3, . . . , COUNTh occupy O(n(lg l1)
2/l21) bits. There are lk/lk−1 = (t lg n)/ lg lk−1

chunks of level k − 1 that constitute a given chunk Ck of level k, and for each of those

chunks, the table COUNTk−1 stores lg lk−1 bits. The lengths are chosen so that the total

number of bits that are occupied by Ck+1 in COUNTk is t lg n, so that we can read all those

bits using at most t + 1 consecutive cell probes to the table COUNTk. We might have to use

23

Bit Vector (B)

l1 = t lg n bits (chunk of level 1)

t lg n/lg(t lg n) chunks of level 1lg(t lg n) bits (storing cardinality)

Count index of level 1 (COUNT1)

Count index of level 2 (COUNT2)

l2 = (t lg n)2/ lg(t lg n) bits (chunk of level 2)

Figure 2.1: Structure of the the first two levels of the count index

t + 1 cell probes (not just t), since the bits that we require (t lg n consecutive bits) are not

necessary aligned with the word boundaries and can be spread across t + 1 cells.

2.1.4 Implementing Rank and Select on Chunks

In this section, we show how to implement bin rank and bin sel operations on a level k

chunk in O(kt) time using the tables COUNT1, COUNT2, . . . , COUNTh and word parallelism. To

implement the bin rank operation, we introduce tables RANKk[z, i] where z is a value at

most 2⌊(lg n)/2⌋, and i is such that 0 ≤ i ≤ ⌊(lg n)/2⌋. For k > 1, we treat z as a bit string

composed of yk equally spaced bit fields of size lg lk, where we define

yk =

⌈
lg n

2 lg lk

⌉

.

The value RANKk[z, i] is defined as the sum of the first i fields of z. For k = 1, we define

RANK1[z, i] as the sum of the first i bits in z. To implement bin rankCk+1
(1, i) on a level

k + 1 chunk, Ck+1, for k > 1 we perform the following procedure at most 4t times. Let Ck

be the level k chunk that contains the given position i of Ck+1, and let j be its starting

position, so that

bin rankCk+1
(1, i) = bin rankCk+1

(1, j − 1) + bin rankCk
(1, i− j + 1).

The operation bin rankCk+1
(1, j−1) for j−1 that is divisible by lk and for k > 1 can be im-

plemented using tables COUNTk and RANKk as follows. We retrieve bit strings w1, w2, . . . , wp

24 Upper and Lower Bounds for Text Indexing Data Structures

from COUNTk, each of length at most yk lg lk, that correspond to the cardinalities of all the

level k chunks that precede the position j inside Ck+1. Namely, w1 contains the cardinali-

ties of the first yk chunks, w2 contains the cardinalities of the next yk chunks, and so on.

The last bit string wp contains the cardinalities of the remaining q chunks, 0 ≤ q < y.

Then,

bin rankCk+1
(1, j − 1) = RANKk+1[w1, y] + RANKk+1[w2, y] + . . . + RANKk+1[wp−1, y]

+ RANKk[wp, q]

The operation bin rankC1
(1, i) can be performed similarly. We retrieve t + 1 consecutive

bits from the bit vector B, and split them into bit strings w1, w2, . . . , wp of length at most

⌊(lg n)/2⌋. Then,

bin rankC1
(1, i) = RANK1[w1, ⌊(lg n)/2⌋] + RANK1[w2, ⌊(lg n)/2⌋] + . . .

+ RANK1[wp−1, ⌊(lg n)/2⌋] + RANK1[wp, q].

We can implement the bin sel operation on level k+1 chunks in a similar fashion. First,

let us introduce the tables SELECTk[z, x], where 0 ≤ z ≤ 2⌊(lg n)/2⌋−1 and 0 ≤ x ≤ ⌊(lg n)/2⌋.
The value z is treated as a concatenation of yk fields of lg lk bits each. The element

SELECTk[z, x] stores the minimum value, such that the sum of the first SELECTk[z, x] fields

is at least x, or −1 in the case when the sum of all the fields is smaller than x. In other

words, the x-th 1-bit is contained in the SELECT[z, x]-th level k chunk among the chunks

whose cardinalities are stored in z. Using this table, the operation bin selCk+1
(1, x) can be

performed as follows. We first read the string w1 from COUNTk that contains the cardinalities

of the first yk level k chunks inside Ck+1. If the total cardinality of these chunks, which

equals RANKk[w1, yk], is greater than x, then the x-th 1-bit is located inside one of these

chunks, and the number of this chunk is q = SELECTk[w1, x]. Therefore,

bin selCk+1
(1, x) = bin selCk

(1, x− RANKk[w1, q − 1]) + qlk,

where Ck denotes the q-th level k chunk of Ck+1. If the total cardinality of the first yk

chunks is smaller than x, then we retrieve the cardinalities of the yk + 1-st, yk + 2-nd, . . .,

2yk-th level k chunks from COUNTk, store them in w2, and verify if the required 1-bit is

25

located inside one of them by the same operation. We keep performing this operation until

we find the required chunk. If the chunk is not found, we return −1.

Note that the sizes of the tables RANKk and SELECTk are small compared to B, i.e. at

most O(
√

n(lg n)2) bits.

2.1.5 Rank and Select Indices

Now we can implement the bin rank and bin sel operations using the count index that

we constructed in the previous section and prove the main theorem of Section 2.1.

Theorem 1. Given a binary vector B of size n, the operations bin rank and bin sel can

be supported in the word RAM model with word size lg n bits in O(t) time probing only

t + 1 consecutive words of B and using an index of size

r =
n lg(t lg n)

t lg n
+ O

(
n(lg(t lg n))2

t2(lg n)2

)

bits.

Proof. We will first construct a relatively simple rank index, and then, construct a select

index. To construct the rank index, we use the count index of level h = 3. For the j-

th chunk of level 3, we store the value bin rankB(1, l3j) in a field of size lg n in a table

RANK∗[j]. Thus,

bin rankB(1, i) = bin rankC3
(1, i′) + RANK∗[j]

where the position i in B corresponds to the position i′ of C3, and C3 is the j-th chunk of

level 3 in B, j = ⌊i/l3⌋. The constant h = 3 is chosen so that the table RANK∗ occupies

|RANK∗| = n lg n

l3
= Θ

(
n lg n(lg l1)

2

l31

)

= O

(
n(lg l1)

2

l21

)

(2.2)

bits. That is, the size of RANK∗ is at most the size of COUNT2.

We construct the select index using the count index of level h = 7. We store the

positions of every l3-th occurrence of a 1-bit explicitly, that is, for each 1 ≤ j ≤ m/l3,

SELECT∗[j] = bin selB(1, jl3), where m denotes the cardinality of B. The table SELECT∗

26 Upper and Lower Bounds for Text Indexing Data Structures

occupies (m lg n)/l3 ≤ (n lg n)/l3 = O(n(lg l1)
2/l21) bits by inequality (2.2)1. The region of

B from position bin selB(1, (j − 1)l3) + 1 to position bin selB(1, jl3) is called the j-th

block. The operation bin selB(1, i) can be implemented as follows. Let j = ⌊i/l3⌋, and let

X be the j-th block. By construction X contains the i-th 1-bit of B, so that

bin selB(1, i) = bin selB(1, jl3) + bin selX(1, i− jl3).

It remains to implement bin selX(1, i − jl3). Let us call a block sparse if its length is

at least l7. For sparse blocks, we store the positions of all the 1-bits explicitly in a table

SELECTs. There are at most n/l7 sparse blocks, so that the size of SELECTs is at most2

n

l7
l3 lg n = Θ

(
n lg n(lg l1)

6

l71

l31
(lg l1)2

)

= Θ

(
n(lg l1)

4

l31

lg n

l1

)

= o

(
n

l21

)

bits. We used the facts that l7 = Θ(l71/(lg l1)
6), l3 = Θ(l31/(lg l1)

2), lg n = O(l1), and the

fact that (lg l1)
4/l1 = O(1). Note that choosing h = 6 is not sufficient, since

n

l6
l3 lg n = Θ

(
n lg n(lg l1)

5

l61

l31
(lg l1)2

)

= Θ

(
n(lg l1)

3

l21

lg n

l1

)

= O

(
n(lg l1)

3

l21

)

is by a factor of lg l1 bigger than the requirements of the theorem. To implement the

select operation bin selY (1, x) on the blocks that are not sparse, we will employ the count

index of level 7. Since the length of Y is l7, it is covered by two consecutive level 7

chunks. The answer to the select operation lies either in the first chunk C7 that contains

the starting position of Y , y = bin selB(1, (j − 1)l3) + 1, or the next chunk C ′
7. To see

which is the case, we can compute the cardinality of the intersection of Y and C7, x′ =

bin rankC7
(1, l7)−bin rankC7

(1, y′), and compare it with x, where y′ denotes the starting

position of Y relative to the starting position of C7. If x > x′, then bin selY (1, x) =

bin selC′

7
(1, x − x′), otherwise bin selY (1, x) = bin selC7

(1, x + x′′), where x′′ denotes

the cardinality of C7 \ Y , x′′ = bin rankC7
(1, y′). We described earlier how to support

rank and select operations on chunks of level h = 7, so the theorem follows.

1We chose to store the position of every l3-th occurrence of 1-bits, so that the space occupied by the

SELECT
∗ table satisfied the requirements of Theorem 1.

2The length of the sparse block is chosen such that the size of the table SELECTs satisfies the requirements

of Theorem 1.

27

2.2 Strings and Binary Relations

In this section, we consider generalizations of the rank/select problem to the case of binary

matrices of size m×n and strings of length L over alphabet Σ. We first present some basic

notions (the Burrows-Wheeler transform and empirical entropy) in Section 2.2.1. We then

describe some related results in Section 2.2.2 and Section 2.2.3, and present a data structure

for the rank/select problem on binary matrices in Section 2.2.4. In Section 2.2.5, we show

applications of our data structures to the FM-index, and to the problem of representing

and navigating labeled trees.

2.2.1 Preliminaries

Let T be a text of length L over alphabet Σ of size σ. The Burrows-Wheeler transform [6]

reorders characters in a given string to facilitate compression by the move to front (MTF) [5]

and similar techniques. It can be described as follows. We first append the special character

“#” to the end of the text T . This character is defined to be lexicographically smaller than

any character in Σ. We consider all the suffixes of T (T [1..L + 1], T [2..L + 1], . . . , T [L +

1..L+1]), and sort them in alphabetical order. Suppose T [i1..L+1] < T [i2..L+1] < . . . <

T [iL+1..L + 1]. Consider the string BW = T [i1 − 1] · T [i2 − 1] · . . . · ·T [iL+1 − 1], where “·”
denotes concatenation, and T [0] is defined to be T [0] = T [L + 1] = “#′′ for convenience.

The string BW is called the Burrows-Wheeler transform of T . This transform is reversible;

that is, given BW , we can reconstruct T (as shown in [6]).

The suffix array, SA, of the text T is defined so that SA[j] = ij for j ∈ [L+1]. In other

words, the suffixes SA[1], SA[2], . . . , SA[L + 1] are sorted lexicographically. In particular,

all the suffixes that start with “#”, “a”, “b”, ... “z” appear in consecutive chunks in SA.

We call the group of suffixes that start with a given character c the c-zone. For an example,

see Figure 2.2.

We define the empirical entropy as follows. Let occT (c) be the number of occurrences

of character c in T . We define the empirical probability of c, pc, to be occT (c)/L. Then

the empirical 0-th order entropy is

H0(T) =
∑

c∈Σ

pc lg
1

pc
.

28 Upper and Lower Bounds for Text Indexing Data Structures

Text:

pos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T = a c b a a c c a c b c b b b #

Sorted suffixes:

T [10..15] = #

T [4..15] = aaccacbcbbb#

T [1..15] = acbaaccacbcbbb#

T [8..15] = acbcbbb#

T [5..15] = accacbcbbb#

T [14..15] = b#

T [3..15] = baaccacbcbbb#

T [13..15] = bb#

T [12..15] = bbb#

T [10..15] = bcbbb#

T [7..15] = cacbcbbb#

T [2..15] = cbaaccacbcbbb#

T [11..15] = cbbb#

T [9..15] = cbcbbb#

T [6..15] = ccacbcbbb#

all 5 “b”

2-nd, 3-rd and 4-th “c”

2-nd and 3-rd “a”

Suffix array:

SA = 15
︸︷︷︸

zone

4 1 8 5
︸ ︷︷ ︸

a-zone

14 3 13 12 10
︸ ︷︷ ︸

b-zone

7 2 11 9 6
︸ ︷︷ ︸

c-zone

Burrows-Wheeler Transform:

BW = b
︸︷︷︸

zone

b # c a
︸ ︷︷ ︸

a-zone

b c b c c
︸ ︷︷ ︸

b-zone

c a b a a
︸ ︷︷ ︸

c-zone

Backward search algorithm. Pattern X = acb.

b b # c a b c b c c c a b a a

b b # c a b c b c c c a b a a

b b # c a b c b c c c a b a a

b b # c a b c b c c c a b a a

We have 2 occurrences corresponding to SA[3..4] at posi-
tions SA[3] = 1 and SA[4] = 8

Decoding text before an occurrence. Let i = 4 be a given
index in SA, SA[4] = 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b b # c a b c b c c c a b a a

b b # c a b c b c c c a b a a

b b # c a b c b c c c a b a a

Decoding text after an occurrence. Let i = 13 be a given
index in SA, SA[13] = 11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b b # c a b c b c c c a b a a

b b # c a b c b c c c a b a a

b b # c a b c b c c c a b a a

We are at the 3-nd character of
the c-zone, SA[9] = 12
Output “c”

The 4-th character of the
b-zone, SA[8] = 13
Output “b”

The 1-st character
“c”, SA[11] = 7
Output “c”

The 5-th character “c”, SA[15] = 6
Output “c”

Figure 2.2: The Burrows-Wheeler transform, the backward search algorithm, and the

decoding algorithms.

29

The empirical 0-th order entropy can be generalized to the empirical k-th order entropy

as follows. Consider a pattern X of length k. For the i-th occurrence of X in T , let xi be

the character that follows this occurrence. Let wX be the string x1x2 · xz, where z is the

number of occurrences of X in T . The empirical k-th order entropy, Hk(T), is

Hk(T) =
1

n

∑

X∈Σk

|wX |H0(wX).

The value |T |Hk(T) is a lower bound on the output size of any compressor that encodes

each symbol with a code that only depends on the symbol itself and on the k immediately

preceding symbols [18].

2.2.2 Introduction and Related Work

Motivated by text retrieval problems, Grossi, Gupta and Vitter [26] first considered the

rank/select problem for strings. Given a text T of length L over an alphabet Σ of size

σ, their wavelet tree structure supports the following operations in O(lg σ) time, using

LH0 + o(L) bits:

• str rankT (c, i): finds the number of occurrences of character c up to and including

position i in T ,

• str selT (c, x): finds the position of the x-th occurrence of character c in T , and

• str accT (i): returns the i-th character of T .

We also define occT (c) to be the number of occurrences of c ∈ Σ in the text T , so that

occT (c) = str rankT (c, L).

A wavelet tree is a binary tree at each node v of which, the alphabet is split into two

parts of equal size Σ1 and Σ2. The node stores a bit vector Bv of length L, such that

Bv[i] = 0 if T [i] ∈ Σ1 and Bv[i] = 1 otherwise. For example, if T = abadbcdab, Σ1 = {a, b}
and Σ2 = {c, d}, then Bv = 000101100, where v is the root node of the wavelet tree. The

left subtree of r encodes the string Tl = ababab, and the right subtree encodes Tr = dcd

recursively. The str rank operation corresponds to traversing this tree in a top-down

30 Upper and Lower Bounds for Text Indexing Data Structures

fashion and performing bin rank operations along the way, e.g.

str rankT (a, 5) = str rankTl
(a, bin rankBv

(0, 5)) = str rankTl
(a, 4) = 2.

The str sel operation starts at the leaf that corresponds to a given character and traverses

the tree in a bottom-up fashion performing bin sel operations along the way. In our

example,

str selT (a, 3) = bin selBv
(0, str selTl

(a, 3))

= bin selBv
(0, 5) = 8.

The str acc operation corresponds to traversing the tree in a top-down fashion as follows:

str accT (6) = str accTr
(bin rankBv

(Bv[6], 6)) = str accTr
(2) = “c”

Since the tree depth is O(lg σ), and bin rank, bin sel, and bin acc can be performed in

constant time, the run-times for str rank, str sel and str acc operations are O(lg σ).

Ferragina et al. [17] improved the time to O(1) (using essentially the same space) for

the case of small alphabets, i.e., when σ = polylog(L) using LH0 +O(L lg lg L/ lgσ L) bits.

The idea is to increase the branching factor of wavelet trees from 2 to
√

lg σ, so that in the

case of σ = polylog(L), the tree is of constant depth. Grossi and Sadakane [27] improved

the space for this structure to LHk +O(L lg lg L/ lgσ L) using Lempel-Ziv tries. Their ideas

apply to the more general class of data structures where the text is stored in the raw form.

Our approach here is to represent a given text T on an alphabet of size σ of length L

as a binary matrix R of size σ × L, where R[i, j] = 1 if and only if the j-th position of T

contains the i-th character of the alphabet (so that each column contains only one 1-bit).

The BINREL problem for binary matrices can be defined as follows. Let R be a binary

matrix with m rows and n columns. We say that the i-th row is associated with the j-th

column if R[i, j] = 1. We consider the following operations on R:

• row rankR(i, j): finds the number of 1-bits in the i-th row of R up to and including

column j;

• row selR(i, x): finds the column of the x-th occurrence of a 1-bit in the i-th row of

R; if there are fewer than x occurrences this operation returns ∞.

31

• row nbR(i): returns the number of 1-bits in the i-th row (also called the cardinality

of the i-th row, row nbR(i) = row rank(i, n);

• col rankR(i, j): finds the number of 1-bits in the j-th column of R up to and includ-

ing row i;

• col selR(x, j): finds the row of the x-th occurrence of a 1-bit in the j-th column; if

there are fewer than x occurrences this operation returns ∞.

• col nbR(j): returns the number of 1-bits in the j-th column (also called the cardi-

nality of the j-th column, col nb(j) = col rank(m, j);

• tab accR(i, j): returns the element R[i, j]. Typically, we do not represent the table

explicitly, so that this operation is non-trivial.

Clearly, the three operations for strings str rank, str sel, and str acc can be imple-

mented in a straightforward manner using the operations row rank, row sel, and col sel

respectively. Similarly, the operation occ can be implemented using row nb. Typically,

in the representations that are given in this section, the operations row nb and col nb

can be implemented more efficiently than more general operations row rank and col rank

respectively.

Let f denote the cardinality of R (i.e. the number of 1-bits in R), let ρ = nm/f be

the inverse density of R, and let w be the word size in the RAM model. We make the

assumption that w ≥ max{lg n, lg m}, so that we can store each row and column index in

one register of the RAM. We present three data structures for this problem in Theorem 4.

The row structure supports row sel in O(1) time, col sel in O(lg lg ρ/ lg lg lg ρ) time;

and row rank, col rank, and tab acc in O(lg lg ρ) time.

The column structure supports operations within the same time bounds, but with rows

and columns switched, that is, col sel is supported in O(1) time, and row sel is

supported in O(lg lg ρ lg lg lg ρ) time.

The Benes structure supports both row sel and col sel in O(lg ρ/ lg w) time; and

row rank, col rank, and tab acc in O(lg lg ρ(lg ρ/ lg w + 1)) time. This data struc-

32 Upper and Lower Bounds for Text Indexing Data Structures

ture is based on the Benes networks [36, 44] which will be described later in this

section.

The space required by the row and column structures is at most f lg ρ+O

(

f lg ρ
lg lg lg ρ

lg lg ρ

)

,

while the space for the Benes structure is a little less, f lg ρ + O(f). The Benes structure

has the advantage that, for small values of ρ as compared to w, the run times for the

operations are much less than in the other two data structures: if ρ = wO(1) then both

row sel and col sel can be implemented in O(1) time. The operations row nb and col nb

come “for free” with our encoding, that is, they do not require any additional space, and

the run times for both of them is O(1) for all three data structures. The operation tab acc

is implemented as the difference of the corresponding row rank or col rank operations,

i.e. as either of

tab acc(i, j) = row rank(i, j + 1)− row rank(i, j) (2.3)

tab acc(i, j) = col rank(i + 1, j)− col rank(i, j). (2.4)

Note that in the case of strings (i.e. one 1-bit per column), we can implement tab acc

using col sel(i, 1) and comparing the result to j.

A Benes network is a way of representing a permutation using communication switches.

A switch has two inputs x0 and x1 and two outputs y0 and y1, and can be configured in

two possible ways: (i) to connect x0 with y0 and x1 with y1 or (ii) to connect x0 with y1

and x1 with y0. Such a switch can represent any of the two permutations on two elements.

The Benes network Ben(2x) is a network with 2x inputs and 2x outputs composed of

(2x − 1)2x−1 switches. For x = 1, the Benes network is just one switch. For x > 1, the

Benes network Ben(2x) is constructed recursively using two networks Ben(2x−1) and 2x

switches. The main property of this network is that any possible one-to-one connection

between inputs and outputs (in other words, a bijection between them) can be realized

by configuring the switches. Munro et al. [44] applied Benes networks for the problem of

representing permutations on n elements. They considered implementing the queries π(i)

and π−1(i) efficiently for i ∈ [n], and showed the following result.

33

Theorem 2. [44] The evaluation of an arbitrary permutation π and its inverse can be

supported in the times listed below using ⌈lg n!⌉+ r bits.

Name of data structure π π−1 r

Forward representation O(1) t′ O((n lgn)/t′ + (n lg lg n)/ lg n)

Inverse representation t O(1) O((n lgn)/t + (n lg lg n)/ lg n)

Benes representation O(lg n/ lg w) O(lg n/ lg w) O(n(lg lg n)2/ lg n)

where w is the word size (in bits), and t and t′ are arbitrary positive integer values.

Note that if w = lg n, then the Benes approach takes time lg n/ lg lg n.

We also use the following data structure developed by Willard [56]. He considered the

problem of representing a set of m numbers from a universe of size n, and showed the

following result.

Theorem 3. [56] For a binary vector B of length n and cardinality m, there exists a

data structure (called the y-fast trie) that uses Θ(m lg n) bits and allows one to perform

bin rank queries in O(lg lg n) time in the RAM model.

2.2.3 The FM-index and the xbw Transform

The data structure for storing binary relations has applications to text indexing, e.g. to

FM-index [14, 15, 16], and also can be used to improve the running times of wavelet

trees [26]. Typically, in text indexing applications, the following query types are discussed:

• Existential: Does the pattern occur in the text? (This type corresponds to the

substring search problem.)

• Cardinality: How many times does the pattern occur?

• Listing: Give the positions of each occurrence. (This type corresponds to the sub-

string report problem.)

To this we add another useful operation:

• Context: give the characters immediately after or before a specific occurrence (similar

to what is done in search engines such as Google).

34 Upper and Lower Bounds for Text Indexing Data Structures

We use the notations tr (respectively, ts and ta) for the worst case time complexity of

the str rank (respectively, str sel and str acc) operation. As usual, r denotes the

redundancy of the data structure.

Ferragina et al. [16] showed how to support cardinality queries for a given pattern X

of length p in O(ptr) time, listing queries in O((ta + tr) lg1+ǫ L) time per occurrence, and

retrieving any text substring of length l in O((l + lg1+ǫ L)(ta + tr)) time. They store the

Burrows-Wheeler transform BW of a given text T , and perform str rank, str sel, and

str acc queries on BW directly. The text T is not stored explicitly. Using techniques and

the representation of BW similar to the one described by Ferragina et al. [16], Golynski et

al. [25] showed how to support the context queries.

We first describe the backward search of Ferragina and Manzini [14]. Let X be a given

pattern of length p. They look at pattern X backwards starting at the last character. For

each i, 1 ≤ i ≤ p, they find the maximum interval in the suffix array SA[spi + 1..ep],

such that all the suffixes SA[spi +1], SA[spi +2], . . . , SA[epi] start with the string X[i..p].

Recall that, SA is an array of sorted suffixes so that occurrences of X[i..p] (if there are

any) are grouped together in SA. If there are no occurrences of X[i..p], then they define

sp = ep. The transition from i to i − 1 can be explained as follows. Let c = X[i − 1]

be the next character of X. Consider all the characters c in BW from left to right. By

the definition of the Burrows-Wheeler transform, the j-th character c (denote its position

by xj) precedes the suffix that starts at SA[xj]. On the other hand, we have determined

that the range of suffixes that start with X[i + 1..p] is SA[spi + 1..epi]. Combining these

two conditions gives us that xj ∈ [spi + 1..epi]. In other words, we are only interested

in the characters c that lie inside the interval [spi + 1..epi]. Let l = str rankBW (c, spi)

and u = str rankBW (c, epi), so that there are l characters c that precede the interval, and

u − l characters that are inside it. Hence, the condition xj ∈ [spi + 1..epi] is equivalent

to j ∈ [l + 1..u]. Finally observe that the j-th lexicographically smallest suffix that starts

with c is located in position SA[z + j], where z + 1 is the starting location of the c-zone.

Hence, our new interval spi−1 + 1..epi−1 is z + l + 1..z + u.

More formally, let

Occur := 0 1occT (c1) 0 1occT (c2) 0 . . . 1occT (cσ),

35

where c1, c2, . . . , cσ are the characters from Σ in lexicographical order. (For simplicity, as-

sume that Σ = [σ].) Store Occur with a fully indexable dictionary functionality supported

on it. Their algorithm is as follows:

Algorithm 1 BackwardSearch
sp← 0

ep← L { the current set of suffixes is SA[sp + 1..ep] }
for i = p to 1 by −1 do

c← X[i]

z ← bin rankOccur(1, bin selOccur(0, c)) { z + 1 is the start of the c-zone in the suffix

array }
u← str rankBW (c, ep)

l ← str rankBW (c, sp)

sp← z + l

ep← z + u

At the end of the algorithm, ep − sp is the number of occurrences of X, and the

pattern occurs at positions SA[sp + 1], SA[sp + 2], . . . , SA[ep]. We extend this algorithm

in Section 2.2.5.

Ferragina et al. [13] generalized the Burrows-Wheeler transform for text strings to

the case of labeled trees. The xbw transform of a labeled tree T is a pair xbw(T) =<

Slast, Sα >, such that Slast is a binary vector of length |T | and Sα is a string of length

|T |, where |T | is the sum of the numbers of labels of all the nodes of T . Using this

transform, they support two navigation operations: GetChildren (which lists the children

of a given node) and GetParent (that returns the parent of a given node), and one search

query called SubPathSearch (that searches for a given pattern in all root-to-leaf paths of

the tree). As a building block, they require a data structure that supports the operations

bin rank and bin sel on Slast and the operations str rank, str sel and str acc on Sα

as follows. The operation GetChildren uses one str acc query and one str rank query, the

operation GetParent uses one str sel query, and the operation SubPathSearch uses two

str rank queries. There are two tradeoffs that are mentioned: either (1) one doubles the

information-theoretic minimum space and achieves optimal time for those three operations

36 Upper and Lower Bounds for Text Indexing Data Structures

[13, Theorem 3] (this might not be desirable for large trees); or (2) one uses wavelet trees

[26] with space of nH0 + o(n) bits, but increasing run times of all three operations by a

factor of O(lg σ). We apply our data structures to improve the running times of these

operations in Section 2.2.5.

2.2.4 Technical Results

In this section, we prove four lemmas that will be used to prove the main result of this

section. The first lemma allows us to split the binary matrix into smaller pieces horizontally

and vertically. The second lemma allows to reduce the problem to the rank space. That is,

we can skip the empty rows and columns in binary matrix for a small extra space cost. The

third lemma reduces the problem of implementing row sel and col sel to the problem

of representing permutations, so that we can apply the result of Munro et al. [44]. The

fourth lemma allows to implement row rank and col rank operations using row sel and

col sel for the small extra space cost. The main ingredient of this lemma is the result of

Willard, Theorem 3.

We start by showing the first lemma.

Lemma 1 (Split Lemma). Let R be a binary matrix of size m × n of cardinality f with

m ≤ n. We can decompose R horizontally into q matrices R1, R2, . . . Rq, such that q ≤
4f/m + 1, the cardinality fk of Rk is at most m, and the size of Rk is m× lk, lk ≤ nm/f .

The operations row rank, row sel, col rank, and col sel on R can be reduced to the

operations row rank, row sel, col rank, and col sel on R1, R2, . . . , Rq respectively. This

reduction requires O(1) time overhead per operation, and with space overhead of at most

O(n + f) bits.

Proof. We start by showing that the required decomposition of R exists. We first show

that it is possible to split R into matrices of cardinality at most 2m−1, then we show that

it is possible to decompose such a matrix into at most 3 matrices of cardinality m, and

finally we show how to reduce the operations row rank, row sel, col rank, and col sel.

We split the columns of R into q slices in a greedy fashion from left to right, and traverse

the columns starting from the first column, add the current column to the previously

started slice, if (i) the number of columns of the slice would not exceed ρ = nm/f , (ii) the

37

R1 R2 R3 R4 R5

n

m

lk ≤ nm/p

fk ≤ m

chunks

Figure 2.3: Illustration of the split lemma

cardinality of the slice would not exceed 2m−1. If one of the two conditions is not satisfied,

then we finalize the current slice, and start a new slice with the current column. The

number of slices g1 that we finalized due to condition (i) is at most g1 ≤ n/(nm/f) = f/m.

The cardinality of each column is at most m, so that the slices that are finalized due to

constraint (ii) satisfies m ≤ fk < 2m, and the number of such slices, g2, is at most

g2 ≤ f/m. We can further split such slices into at most three slices, each of cardinality

at most m. For a slice R′, select the largest possible slice R′
l (respectively, R′

r) starting

from on the leftmost (respectively, rightmost) column of R′ which cardinality does not

exceed m in a greedy fashion. If R′
l ∪ R′

r = R′, then R′ can be split into R′
l and R′

r \ R′
l.

Otherwise, the cardinality of R′
l and the next column to left, x, after R′

l exceeds m, and

similarly for Rr and its preceding column y. If x 6= y, then the cardinality of R′ is at

least 2m, which is not possible. Therefore x = y, and R′ can be split into three slices

satisfying the requirements: R′ = R′
l ∪ {x} ∪ R′

r. Hence the total number of slices q is at

most g1 + 3g2 + 1 ≤ f/m + 3f/m + 1 = 4f/m + 1.

Every matrix Rk is further split horizontally into m sub-matrices of size 1 × lk called

slivers, see Figure 2.3. Recall that lk is the number of columns in the k-th slice. Let Card

38 Upper and Lower Bounds for Text Indexing Data Structures

be a bit vector that stores the cardinalities of slivers in unary form in the row-major order,

namely:

Card = 0 1u11 0 1u12 0 . . . 1u1q 0 1u21 0 1u22 0 . . . 1u2q . . . 0 1um1 0 1um2 0 . . . 1umq , (2.5)

where uik is the cardinality of the i-th sliver of the k-th slice. Let Slices be a bit vector

that stores the widths of each slice in unary form from left to right:

Slices = 0 1l1 0 1l2 0 . . . 1lq .

The 1-bits correspond to the columns of R, and the 0-bits correspond to the starting

positions of the slices. Namely, if j is the column number in R then

k = bin rankSlices(0, bin selSlices(1, j)) (2.6)

is the number of the slice where the j-th column belongs to (the number of 0-bits that

precede the j-th 1-bit). Also

j′ = j − bin rankSlices(1, bin selSlices(0, k)) (2.7)

is the column number in Rk corresponding to the j-th column in R (the number of 1-bits

between the staring position of the k-th slice and the j-th 1-bit). We can reduce the column

operations by “re-addressing” the query to the corresponding slice:

col rankR(i, j) = col rankRk
(i, j′)

col selR(x, j) = col rankRk
(x, j′)

To implement row rank(i, j), we first find the position y1 in Card where the description

of the i-th row begins, y1 is the position of the q(i − 1) + 1-st 0-bit separator. Similarly,

we can find y2, the position in Card where the description of the k-th sliver of the i-th row

begins, i.e. y2 is the position of the q(i − 1) + k-th 0-bit separator. Finally, the number

of 1-bits in the i-th row up to position j equals to the number of 1-bits in the first k − 1

slivers of the i-th row plus the number of 1-bits in the k-th sliver that precede position j′.

Hence, the following algorithm implements row rank.

39

Algorithm 2 Row Rank

y1 ← bin selCard(0, (i− 1)q) { start of the row }
y2 ← bin selCard(0, (i− 1)q + k − 1) { start of the slice }
return bin rankCard(1, y2)− bin rankCard(1, y1) + row rankRk

(i, j′)

The query row sel(i, x) can be implemented as follows. We start by finding the posi-

tion, y1, in Card where the description of the i-th row begins. Let y3 be the position of the

1-bit in Card that corresponds to the x-th 1-bit in i-th row. We can find it by skipping

over the 1-bits of Card that correspond to the first i − 1 rows. We can find k, the slice

number to which the x-th 1-bit of i-th row belongs to by subtracting the number of 0-bit

separators in the first i − 1 rows (q(i − 1) of 0-bits total) from the number of separators

prior to the y3-th position. Then we can find position y2 where the description of this block

begins in a fashion similar to the case of the bin rank operation. Next, we subtract the

number of 1-bits in the first k − 1 slivers from x and obtain x′. Thus, the position of the

x-th 1-bit in the i-th row is the position of the x′-th 1-bit in the k-th sliver of the i-th row.

The following algorithm implements row sel.

Algorithm 3 Row Select

y1 ← bin selCard(0, (i− 1)q) { start of the row }
y3 ← bin selCard(1, x + bin rankCard(1, y1)) { x-th 1-bit in the row }
k ← bin rankCard(0, y3)− (i− 1)q { number of the slice }
y2 ← bin selCard(0, (i− 1)q + k − 1) { start of the slice }
x′ ← x− bin rankCard(1, y3)− bin rankCard(1, y2) { the rank inside the slice }
return row selRk

(i, x′)

The total space for the bit vector Card is at most f + mq ≤ 5f . The total space for

the bit vector Slices is at most n + q ≤ 2n. The extra time is at most O(1) if we use a

data structure implementing FID (e.g. from Section 2.1 with parameter t = O(1)), so the

lemma follows.

Definition 3. We call a row, a column of a binary matrix empty if it contains only 0

entries.

40 Upper and Lower Bounds for Text Indexing Data Structures

The following lemma is quite straightforward and allows to reduce the row and column

operations to the rank space. In another words, it allows to delete all empty rows and

columns from the binary matrix, and consider the operations with row and column indices

i′ (respectively, j′) in the range [m′] (respectively, [n′]), where m′ (respectively, n′) is the

number of non-empty rows (respectively, columns).

Lemma 2 (Reduction to Rank Space Lemma). Let R be a binary matrix of size m × n,

and let R′ be R with empty rows and columns removed. Then we can reduce the operations

row rank, row sel, col rank, and col sel on R to the corresponding operations on R′

with O(1) time overhead per operation, and with space overhead of at most O(n + m).

Proof. We can store two binary indicator vectors ER, and EC of the form

ER = Ir
1I

r
2 . . . Ir

m

EC = Ic
1I

c
2 . . . Ic

n,

where Ir
i = 1 (respectively, Ic

j = 1) if the i-th row (respectively, the j-th column) of R

is not empty, otherwise Ir
i = 0 (respectively, Ic

j = 0). The i-th row of R corresponds to

i′-th row of R′ if ER[i] = 1 and i′ = bin rankER(1, i). If the i-th row of R is empty, then it

falls in between the i′-th and i′ + 1-st rows of R′. In a similar fashion, we can introduce

j′ = bin rankEC(1, j).

The row operations can be implemented as follows.

row rankR(i, j) =







0 , if ER[i] = 0

row rankR′(i′, j′) , otherwise

row selR(i, x) =







0 , if x = 0

+∞ , if x > 0 and ER[i] = 0

bin selEC(1, row selR′(i′, x)) , otherwise.

The operations col rank and col sel can be implemented similarly.

Lemma 3 (Permutation Lemma). Let R be an m × n binary matrix of cardinality f .

We can reduce the operations row sel and col sel on R to the operations π and π−1

respectively on a permutation on f elements with O(1) time overhead per operation and

with space overhead of at most O(f + n + m).

41

Proof. Recall that row nb(i) (respectively, col nb(i)) is the number of 1-bits in the i-th

row (column, respectively). Let Rows and Columns be bit vectors that store the values

row nb(i) and respectively col nb(i) in unary:

Rows = 0 1row nb(1) 0 1row nb(2) 0 . . . 1row nb(n) , and

Columns = 0 1col nb(1) 0 1col nb(2) 0 . . . 1col nb(n).

Hence, the 1-bits of R are in one-to-one correspondence with 1-bits in Rows and with 1-bits

in Columns. We use two standard traversal orders of R, row major and column major: in

row major order, we traverse R starting at the top row from left to right, then the second

top row, and so on; in column major order, we start at the leftmost column from top to

bottom, and then traverse the second left column and so on. If we encounter a given 1-bit

at a position (i, j), k-th (respectively, l-th) among all the 1-bits in the row (respectively,

column) major order, then k (respectively, l) is called the row position (respectively, the

column position) of a given occurrence. We define π(k) = l for this occurrence. It is

not hard to see that π is a permutation on f elements; see Figure 2.4 for an example.

We store this permutation using one of the data structures given by Theorem 2. We

can find the position y1 in Rows, where the description of the i-th row of R starts as

y1 = bin sel(0, i) so that k = y1 + x-th position of Rows corresponds to the x-th 1-

bit in the i-th row of R. In turn, the k-th 1-bit in Rows and the l = π(k)-th 1-bit in

Columns correspond to the same 1-bit in R by the definition of π. It remains to find the

y2-th column of R, description of which in Columns contains the l-th 1-bit, it is not hard,

i.e. y2 = bin rankColumns(0, bin selColumns(1, l)). Thus, the operation row sel(i, x) can be

supported as follows:

Algorithm 4 Row Select

{ Precondition: 1 ≤ x ≤ row nb(i) }
k ← bin rankRows(1, bin selRows(0, i) + x) { k is the row position of the occurrence }
l← π(k) { l is the column position of the occurrence }
return bin rankColumns(0, bin selColumns(1, l))

The operation col sel(x, j) can be implemented in a similar fashion to row sel, but

with rows and columns exchanged, and the mapping π replaced by the mapping π−1:

42 Upper and Lower Bounds for Text Indexing Data Structures

Example with m = 6, n = 8, and f = 10:

(1, 5)

(2, 2) (3, 7)

(4, 3)

(5, 1) (6, 6) (7, 9)

(8, 4)

(9, 8)

Empty cells correspond to 0 entries in R, a pair (k, l) correspond to a 1 entry in R, it also

corresponds to the k-th 1-bit in Rows and the l-th 1-bit in Columns.

i 1 2 3 4 5 6 7 8 9

π(i) 5 2 7 3 1 6 9 4 8

Rows = 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1

Columns = 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1

col sel(2, 2) first computes l = bin rankColumns(1, bin selColumns(0, 1) + 2) = 3, then

k = π−1(3) = 4, and finally returns bin rankRows(0, bin selRows(1, 4)) = 2, so that

col sel(2, 2) = 3.

Figure 2.4: An illustration of the permutation lemma

43

Algorithm 5 Column Select

{ Precondition: 1 ≤ x ≤ col nb(j) }
l ← bin rankColumns(1, bin selColumns(0, j) + x) { l is the column position of the occur-

rence }
k ← π−1(k) { k is the row position of the occurrence }
return bin rankRows(0, bin selRows(1, l))

The lemma follows.

Lemma 4 (Rank Lemma). Let R be a binary matrix of size m×n of cardinality f . Assume

that it is stored in a data structure that supports row sel and col rank in times t, and

t′ respectively. Then we can also support the operations row rank and row sel in times

O(lg lg n + t lg z) and O(lg lg m + t′ lg z′) respectively and extra space

O

(
f lg n

z
+

f lg m

z′

)

for arbitrary positive parameters z, z′ > 0.

Proof. Let us choose parameter z > 0. For the i-th row of R, let Fi be the set of column

indices of all the occurrences of 1-bits in the row. Let F ′
i be the set of every z-th element

of F . We call F ′
i a sparsified bit vector, and store it using the y-fast trie data structure

of Willard (Theorem 3) using O(|F ′
i | lg n) = O((|Fi| lg n)/z) bits. row rank on the i-th

row can be implemented as follows: we first compute an approximate rank using Willard’s

y-fast trie for F ′, y = bin rankF ′

i
(j), so that yz ≤ bin rankFi

(j) < (y + 1)z; and then we

employ binary search on this interval using at most lg z row sel(i, ·) queries and comparing

their results to j. The time complexity of row rank is O(lg lg n + t lg z). The extra space

we used is (f lg n)/z (summing over all the rows of R). We can support the col rank

operation in a similar fashion.

Now we can prove the main theorem in this section.

Theorem 4. Let R be an m×n binary matrix of cardinality f . There are three encodings

of R such that the operations row rank, row sel, col rank, and col sel can be supported

44 Upper and Lower Bounds for Text Indexing Data Structures

with the following time and space bounds:

Name Row Column Benes

row rank lg lg ρ lg lg ρ lg lg ρ
(

lg ρ
lg w

+ 1
)

row sel 1 lg lg ρ
lg lg lg ρ

lg ρ
lg w

col rank lg lg ρ lg lg ρ lg lg ρ
(

lg ρ
lg w

+ 1
)

col sel
lg lg ρ

lg lg lg ρ
1 lg ρ

lg w

row nb 1 1 1

col nb 1 1 1

tab acc lg lg ρ lg lg ρ lg lg ρ
(

lg ρ
lg w

+ 1
)

Redundancy O
(

f lg ρ lg lg lg ρ
lg lg ρ

)

O
(

f lg ρ lg lg lg ρ
lg lg ρ

)

O(f)

where ρ = nm/f is the inverse density of R, and redundancy is the space used by the

corresponding data structure (measured in bits) minus the information-theoretic minimum

lg

(
nm

f

)

= f lg

(
nm

f

)

−Θ(f)

for representing a set of cardinality f in a universe of size nm.

Proof. We use Lemma 1 (the Split Lemma) twice: to split our matrix vertically first and

then each of the resulting matrices Rk horizontally. The resulting matrices Rks have sizes

lks × lk, lk ≤ ρ = nm/f , and cardinalities fks ≤ lk. For an example, see Figure 2.5. Note

that the sum of all vertical dimensions of Rks is
∑

k,s lks =
∑

k m = mO(f/m + 1) =

O(f + m), since the number of slices in Lemma 1 is at most 4f/m + 1. The sum of all

horizontal dimensions is
∑

liO(fi/li + 1) = O(
∑

fi) + O(n) = O(f + n). We use lemma 2

to eliminate empty rows and columns from matrices Rks, so that the vertical sizes of new

matrices, l′ks, are at most l′ks ≤ fks ≤ lk ≤ ρ. The extra space used by Lemma 2 is the

sum of cardinalities of Rks plus the sum of horizontal dimensions of Rks plus the sum of

vertical dimensions of Rks, so it is O(f + n + m).

For the rest of the theorem, we assume that Rks has no empty rows and columns, its

size is at most ρ × ρ, and its cardinality is at most ρ. We then implement operations

row sel, col sel, row rank, and col rank using Lemma 3 (the Permutation Lemma) and

45

n

m

l1 ≤ ρ l2 l3 l4 l5

l11 ≤ l1 ≤ ρ

l12

l13

f21 ≤ l2

Figure 2.5: Two splits

Lemma 4 (the Rank Lemma). Summing over all indices k and s, the total extra space for

the Permutation Lemma is at most O(
∑

k,s fks + lk + lks) = O(f) + O(f + n) + O(f + m).

The extra space for the Rank Lemma is at most f lg ρ(1/z + 1/z′). The total extra space

is

f lg ρ







1 +
1

ξ
︸ ︷︷ ︸

Theorem 2

+
1

z
+

1

z′
︸ ︷︷ ︸

Lemma 4







+ O(f + m + n)
︸ ︷︷ ︸

Lemma 1 and Lemma 3

,

where ξ is such that the representation of a permutation using Theorem 2 uses (1 + ξ)

times the information theoretic minimum space, and ρ = (nm)/f . Therefore, the extra

space in Lemma 1 and Lemma 3 is at most O(n + f). The run times for our operations

are as follows.
row rank row sel col rank col sel

lg lg ρ + t lg z t lg lg ρ + t′ lg z′ t′

where t and t′ are the times to implement π and π−1 respectively using Theorem 2. In

particular, if we use the forward or inverse encoding and choose z = z′ = max{t, t′}, so

that ξ = z; and choose z such that z lg z = lg lg ρ, so that z = Θ(lg lg ρ/ lg lg lg ρ), then we

46 Upper and Lower Bounds for Text Indexing Data Structures

obtain the asymptotic run-times as:

Name row rank row sel col rank col sel

Row lg lg ρ 1 lg lg ρ lg lg ρ/ lg lg lg ρ

Column lg lg ρ lg lg ρ/ lg lg lg ρ lg lg ρ 1

The space for both the encodings is f lg ρ + O((f lg ρ lg lg lg ρ)/ lg lg ρ).

For z = z′ = lg ρ, the Benes encoding gives us:

Name row rank row sel col rank col sel

Benes lg lg ρ(lg ρ/ lg lg n + 1) lg ρ/ lg lg n lg lg ρ(lg ρ/ lg lg n + 1) lg ρ/ lg lg n

and the total space is f lg ρ + O(f) bits.

The operations row nb and col nb can be implemented using the bit vector Card that

was constructed in Lemma 1. To implement row nb(i), we can find the positions y1 and y2

where the descriptions of the i-th and i+1-st rows respectively begins in Card, and then find

the number of 1-bits between these positions as follows:

y1 ← bin selCard(0, (i− 1)q + 1) { start of the i-th row }
y2 ← bin selCard(0, iq + 1) { start of the i + 1-st row }
return bin rankCard(1, y2)− bin rankCard(1, y1)

The operation col nb(j) can be implemented similarly using the bit vector Cardk that was

constructed by Lemma 1 for the slice that contains the j-th column. The index of the slice,

k, and the index of the corresponding column inside it, j, can be computed using (2.6) and

(2.7). The operation tab acc can be implemented using either (2.3) or (2.4).

2.2.5 Applications to Text Indexing and Labeled Trees

In this section, we consider applications of data structures supporting the operations

str rank, str sel and str acc on a given text T . As earlier, let us denote their run-

ning times by tr, ts and ta respectively. Let us encode T using a binary matrix R with

m = σ rows and n = L columns with n 1-bits in it: R[c, i] = 1 if T [i] = c. Note that

str rankT (c, i) = row rankR(c, i)

str selT (c, x) = row selR(c, x)

str accT (i) = col selR(i, 1)

47

Hence, we can use Theorem 4 to implement str rank, str sel and str acc.

In our first application, we add more functionality to the backward search algorithm

that we described in Section 2.2.3. For a given occurrence of X in T , we show how to

retrieve the text before and after it. Namely, the goal is: given a position i in SA, find the

position i′ such that SA[i′] = SA[i] ± 1 (“+” sign is for the forward direction in the text,

and “-” is for the backward). The main observation to solve this problem is as follows.

Lemma 5. If BW [i] = c and str rank(c, i) = j, then SA[z + j] = SA[i]− 1, where z + 1

is the starting location of the c-zone in BW .

Proof. Recall that (by the definition of the suffix array) the j-th lexicographically smallest

suffix that starts with c is located in position SA[z + j], where z + 1 is the starting

location of the c-zone. Let i′ = str selBW (c, j) be the position of the j-th character c in

BW . Since all the suffixes are sorted lexicographically in SA, all suffixes that preceded

by a character c are also sorted lexicographically. Hence, the suffix SA[i′] is the j-th

lexicographically smallest out of those that preceded by a character c. It follows that

SA[i′] = SA[z + j]− 1.

To determine the starting locations of the c-zones, we will use the following bit vector

Occur := 0 1occT (c1) 0 1occT (c2) 0 . . . 1occT (cσ),

where c1, c2, . . . , cσ are the characters from Σ in lexicographical order.

Decoding Text Before an Occurrence The following algorithm shows how to decode

the text to the left of SA[i] using str accBW and str rankBW operations only at a cost

of ta + tr per character (this algorithm is similar to the backward search algorithm).

Algorithm 6 DecodeBefore

c← str accBW (i)

j ← str rankBW (c, i)

z ← bin rankOccur(1, bin selOccur(0, c)) + 1 { the c-zone in SA starts at the position

z + 1 }
i′ ← z + j { by Lemma 5, SA[i′] = SA[i]− 1 }
output c, i′ { decoded character and the location i′ }

48 Upper and Lower Bounds for Text Indexing Data Structures

For an example, see Figure 2.2.

Decoding Text After an Occurrence To decode the text before a given occurrence,

we can invert the previous algorithm. We first represent a given position i′ in the form

i′ = z+j, where z is a starting location of some c-zone. Then, we find the position (denote it

by i) of j-th character c in BW using str sel. Since BW [i] = c and str rankBW (c, i) = j,

by Lemma 5, we have that SA[z + j] = SA[i] − 1. Therefore, SA[i] = SA[i′] + 1. Using

Occur, the values of c and j can be found as follows.

c = bin rankOccur(0, bin selOccur(1, i
′ − 1))

j = bin selOccur(1, i− 1)− bin selOccur(0, c)

The following algorithm shows how to decode the text to the right of SA[i] using

str selBW operation only at a cost of ts per character.

Algorithm 7 DecodeAfter

c← bin rankOccur(0, bin selOccur(1, i
′ − 1))

j ← bin selOccur(1, i
′ − 1)− bin selOccur(0, c)

i← str selBW (c, j)

output c, i { decoded character and the location i }

For an example, see Figure 2.2.

We summarize these algorithms by the following.

Theorem 5. Let T be the text of length L on an alphabet of size σ, and ǫ be an arbitrary

positive constant. Let r be the redundancy, and tr, ts, and ta be the times to perform

row rank, row sel, and col sel operations for a binary matrix of size σ×L of cardinality

L as defined by Theorem 4. There is a data structure that allows to perform Counting and

Listing operations on T in times O(ptr), O((ta+tr) lg1+ǫ L), and allows to perform Context

operations in time ts (respectively, ta + tr) for retrieving a character after (respectively,

before) an occurrence.

49

The xbw Transform As a second application of our data structures, we improve the

running times of the navigation and search operations of the xbw transform [13]. Note

that the operations GetChildren, GetParent and SubPathSearch are quite similar to the

algorithms DecodeBefore, DecodeAfter, and BackwardSearch respectively as the following

table shows.

xbw operation text operation string operations

GetChildren DecodeBefore one str rank and one str acc

GetParent DecodeAfter one str sel

SubPathSearch BackwardSearch two str rank

Hence, using the data structure from Section 2.2.4, we can improve the running times of

the two navigation of one search operations of Ferragina et al. [13] by a factor of lg σ/ lg lg σ

comparing to the wavelet trees of Grossi [26], while keeping the space close to the infor-

mation theoretic minimum.

Chapter 3

Lower Bounds for Binary Vectors in

the Indexing Model

In this chapter, we consider some intrinsic limitations of static indexing data structures.

More specifically, we consider problems of the following form: given a bit vector B of length

n, we are to represent it so that a given set of queries Q can be supported efficiently. We

consider the indexing model of computation in this chapter (in Chapter 1, we gave a formal

definition of the indexing model). Recall that the main restriction of this model is that

the representation consists of two parts: the vector B itself in its raw form plus a small

index I the purpose of which is to facilitate an efficient implementation of the queries in

Q. We investigate the question of the relationship between time t and space r for any data

structure that implements rank or select queries under the model described in Definition 1.

Earlier, in Section 2.1, we discussed data structures that implement a fully indexable

dictionary, and presented a data structure that supports bin rank and bin sel queries in

constant time using the original bit vector plus extra r = (n lg t)/t + O(n(lg t)2/t2) bits

of space, where t is the number of bit probes performed on raw data. This result gives

a sufficient condition for the existence of a rank/select data structure. In Sections 3.2,

3.3, 3.5, and 3.6, we consider this problem from a different point of view and give some

necessary conditions for the existence of a rank/select data structure. In particular, we

show that an index of size Ω((n lg lg n)/ lg n) bits is necessary to implement rank or select

queries on a bit vector in constant time. Moreover, we show that it is necessary even if

50

51

we are allowed to use O(lg n) bit probes to raw data, unlimited access to the index, and

unlimited computation resources. In Section 3.7, we show a necessary condition for the

balanced parentheses problem. We show that an index of size r = Ω((n lg t)/t) is necessary

if we require that the operation of finding the matching parenthesis uses at most t probes

to raw data.

The proofs of all these results have the following framework. First, we fix a mapping

between the bit vectors B and the possible indices I, and an algorithm A that implements

a given set of queries Q. We choose a subset of queries Q∗(n, m, t) ⊆ Q, where n is the

length of B, m = card(B) is the cardinality of B (the number of 1-bits in B), and t is the

worst case running time of the algorithm A. We use γ to denote the number of queries in

Q∗.

We construct the choices tree G for Q∗. The choices tree is essentially the decision

tree for the specific set of queries Q∗ that examines the index first. More precisely, the

nodes of the choices tree are labeled with either “I[l]=?” (respectively, “B[l]=?”), where

1 ≤ l ≤ r (respectively, 1 ≤ l ≤ n) the location being inspected in I (respectively, B),

and the two outgoing edges of a node are labeled by 0 or 1 depending on the outcome of

the probe. We call the probe a 0-probe or a 1-probe correspondingly. If the algorithm A

during a simulation performs a probe to the location prescribed by the label of the current

node x and the outcome of this probe is 0, then it moves to x’s left child, and otherwise,

it moves to x’s right child. The first r levels correspond to all possible choices of index:

all the nodes at level d, 1 ≤ d ≤ r, are labeled with “I[d]=?”. We informally say that any

node at the level r + 1 of the choices tree “knows” the contents of the index, IB.

We consider queries from Q∗ one by one in some fixed order, Q∗ = {q1, q2, . . . , qγ}.
To each node at depth r of the tree constructed so far, we attach the decision tree of the

computation that A performs for the query q1. If for query q1 and fixed index I (a node

at the level r + 1 corresponds to a choice of the index), the first location of B that A

probes is l, then at level r + 1 we create a node labeled “B[l]=?” and two outgoing edges

labeled 0 and 1 depending on the outcome of the probe. At each of the two nodes at level

r + 2, we perform the same procedure, and so on. We proceed until all possible branches

of the computation are terminated with an answer for query q1. We informally say that

at the leaves of this tree, the index and the result of the query q1 is “known”. Once the

52 Upper and Lower Bounds for Text Indexing Data Structures

construction is completed for query q1, we proceed with the queries q2, q3, . . . , qγ in that

order. Namely, at each leaf of the resulting tree, we attach the decision tree for query q2,

and so on.

The root-to-leaf paths in this tree are called computation paths. All the bit vectors

that follow the computation path leading to a given leaf x have the property that they

correspond to the same index I, the locations of probed bits and their contents, and also

the results of the queries q1, q2, . . . , qγ are the same for all of these bits vectors. For a node

x, we call a bit vector B compatible with x if: (1) the labels of the first r edges on the root

to the leaf path to x correspond to the index I of B; and (2) the remaining nodes on the

root to the leaf path correspond to the choices made by the computation described above.

In other words, B has the bits corresponding to the labels of the edges on the computation

path to x in the respective positions that correspond to the labels of the nodes on this

computation path. The set of instances compatible with with leaf x is denoted by Z(x).

Informally, we say that at the leaves of the choices tree, the results of all the queries in Q∗

are “known”.

The height of the choices tree is at most r + tγ. To simplify the calculations, we adjust

the tree so that: (i) for every leaf x, the nodes on the computation path to x have distinct

labels (in other words, the computation does not probe the same location twice), and (ii)

all the leaves are at the same depth r + tγ. If we have a tree that violates condition (i),

then consider a location l that is probed twice on the same path. We can remove the nodes

that correspond to the second and later probes on l (i.e. all nodes labeled “B[l]=?” on

the path except the first one), for all the removed nodes, only keeping the branch that

corresponds to the outcome of the first probe to l on the path. We can keep repeating this

procedure until the tree satisfies condition (i). If the tree violates the condition (ii), then

consider a leaf x that has depth less than r + tγ, say r + tγ − z. We perform z arbitrary

probes to B, by picking z unprobed locations, probing them one by one, and creating 2z

leaves at the depth r + tγ. The resulting tree is called a choices tree G(Q∗) for Q∗. See

Figure 3.1 for an example.

Once the choices tree is constructed, we pick a subset H ⊆ {0, 1}n of hard bit vectors.

Informally, H is the set of instances of B for which implementing queries Q is hard. The

notion of hardness only depends on the problem in question, but does not depend on a

53

10

0 10 1 0 1

“I[2]=?”

“I[1]=?”

“I[2]=?”

0

1

1 0 10 1 0 1 0 1

“I[3]=?” “I[3]=?” “I[3]=?” “I[3]=?”

.
r index levels

0

Decision tree
for q1

Decision tree
for q2

0

1

“B[4]=?”

0

“B[4]=?”

0 1

tγ computation levels

answers for q1

pruning node
“B[4]=?”
and 1-branch

0

“B[2]=?”

1

0 1

“B[5]=?”

“B[31]=?”

“B[10]=?”

0 1

“B[42]=?”

fake probe (as-
suming B[42]
has not been
probed on this
computation
path), z = 1

leaves of the choices tree (2r+tγ total)

.

0 1

“B[l]=?”
computation
path

Choices Tree

Blocks

Bit Vector

10 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0

n1 n2 n3 n4 n5

ni mi ui vi yi

Block 1 7 4 3 2 2
Block 2 6 4 5 3 1
Block 3 6 4 4 3 1
Block 4 8 3 2 1 2
Block 5 5 1 3 0 1Example of B ∈ C(x) with n = 32, m = 16, γ = 5, t = 3, and U = 17

x

probed bits unprobed bits

1

Figure 3.1: Choices tree and bit vectors

54 Upper and Lower Bounds for Text Indexing Data Structures

particular data structure (i.e. a mapping between the problem instances B and the indices

IB), and the algorithm A that implements the queries in Q. We will explicitly define the

set H for each problem in this chapter. For a given leaf x, let C(x) = H∩Z(x) be the set

of hard bit vectors that are compatible with x. Since every bit vector is compatible with

exactly one leaf,
∑

x is a leaf

|C(x)| = |H|.

On the other hand, for each B ∈ C(x),

1. the locations and the contents of probed bits are defined by the labels of nodes and

edges respectively on the computation path to x;

2. the answers of the queries of Q are fixed by the outcome of the computation defined

by the computation path to x; and

3. B is hard (B ∈ H).

Based on these three facts only, we will compute an upper bound C∗(x) on the number of

different bit vectors that satisfy them, so that |C(x)| ≤ C∗(x). The method to compute

this upper bound also depends on the problem in question and we will explain it later. The

total number of instances that are compatible with all the leaves is
∑

x C(x) ≤∑x C∗(x),

since each hard instance is compatible with exactly one leaf. It follows that

|H| =
∑

x

|C(x)| ≤
∑

x

C∗(x).

For simple cases, we will use

lg |H| ≤ lg
∑

x

|C∗(x)|

≤ lg(number of leaves in G) + lg(max
x
{C∗(x)})

≤ (r + tγ) + lg(max
x
{C∗(x)}),

and derive a lower bound on the size of the index from this inequality.

The general approach we use to derive an upper bound on C∗(x) is as follows. Consider a

bit vector B ∈ C(x) and split it into γ consecutive blocks of lengths n1(B), n2(B), . . . , nγ(B).

55

This split is such that the values n1(B), n2(B), . . . , nγ(B) only depend on the leaf x, but

not on a particular B in question, so that we can denote them by n1(x), n2(x), . . . , nγ(x).

For the i-th block, we denote by mi(B) its cardinality (i.e. the number of 1-bits in it), by

ui(B) the number of unprobed bits in it, by vi(B) the number of unprobed 1-bits in it, and

by yi(B) the number of 1-probes performed on it (recall, that a 1-probe is a probe that

returns value 1). The values of ui(B) and yi(B) depend only on the set and the contents

of the probed locations. In particular, they do not depend on the choice of B in C(x),

that is, for B1, B2 ∈ C(x), we have that ui(B1) = ui(B2), and yi(B1) = yi(B2) for i ∈ [γ].

We will use the notation ui(x) and yi(x). Note that, in general, the cardinalities of blocks

mi(B) are not determined by the choice of block positions, and clearly they do not depend

on the set of probed locations and their contents. It may happen that mi(B1) 6= mi(B2)

for B1, B2 ∈ C(x) for some x. However, for the particular problems that we consider in

this chapter and for the choices of block locations that we use in the proofs, it turns out

that mi is always a function of a leaf only. In this case, we can use the notation mi(x)

instead of mi(B). Observe that vi(B) = mi(x)− yi(x) so that vi is also a function of the

leaf x only. Later, in this chapter, we fix some leaf x of G, and shorten the notation to

ni, ui, yi, mi, vi (it is understood that they are a function of the leaf x in question). We

denote by U(x) =
∑γ

i=1 ui the total number of unprobed bits, and V (x) =
∑γ

i=1 vi the

total number of unprobed 1-bits. By the construction of the choices tree, U(x) = n− tγ.

For an example, see Figure 3.1.

3.1 Related Work

The problem of deriving the necessary conditions for the existence of the rank/select in-

dexing data structure was first considered by Miltersen [41] who showed that:

• any indexing data structure that implements bin rank queries using t cell probes

requires

2(2r + lg(w + 1))tw ≥ n lg(w + 1),

where w denotes the cell size, t denotes the number of cell probes, and r is the size

of an index (in bits); and

56 Upper and Lower Bounds for Text Indexing Data Structures

• any indexing data structure that implements bin sel queries using t bit probes

requires

3(r + 2)(tw + 1) ≥ n.

We briefly analyze his techniques. To prove the results for the rank data structure, Mil-

tersen splits the bit vector B into n/w blocks of the same size. He only considers the bit

vectors, such that all the blocks are of the form 0j1w−j for some j ∈ [w] (that is, a block

encodes the value j in unary). He further splits blocks into n/(2tw) groups of blocks (that

is, 2t blocks per group), and considers n/(2tw) independent problems. The i-th problem is

to compute the cardinality of the group modulo w + 1. Observe that this set of problems

is equivalent to computing the sum of 2t vectors with n/(2tw) components where each

component is considered modulo w + 1 and encoded in unary in a block. A cell probe

corresponds to revealing one of the components of one of the 2t vectors. Then, he reduces

the latter problem to the problem of computing bin rankB(1, pi) for positions pi = 2twi

for all i, 0 ≤ i ≤ n/(2tw).

For the case (wt)/n = o(1), his bound is

r = Ω

(
n lg(w + 1)

tw

)

. (3.1)

His method gives the optimal trade-off r = Ω(n lg lg n/ lg n) for the case where w = Θ(lg n)

and t = Θ(1). Also, for the case where lg w = Ω(lg t), his bound coincide with the bound

that we obtain in Section 3.2, which is optimal. However, for the case of small w, for

example, for the case w = 1 that corresponds to the indexing bit probe model with t bit

probes, his method gives a bound of Ω(n/t), which is a factor of lg t worse than our bounds

given by Theorem 6.

One can try to generalize Miltersen’s approach to allow O(lg n) bit probes instead

of O(1) word probes. The difficulty is that in the bit probe model, a number j ∈ [w]

represented as 0j1w−j can be recognized using binary search in lg w bit probes, so that

each independent problem of (i) can be solved in O(lg w) bit probes without using an

index. One can also try to “shuffle” bits in this representation to disallow such binary

searches; however, it is not clear whether this method can give a better bound. Another

difficulty in generalizing Miltersen’s approach lies in his reduction from the problem of

57

computing the sum of 2t vectors modulo w + 1. A naive approach to this problem that

stores the resulting vector modulo w+1 using n lg(w+1)/(2tw) bits shows that Miltersen’s

techniques cannot surpass the barrier given by (3.1) asymptotically. We conclude that the

analysis of techniques in [41] is tight, and the bottleneck is in the reduction from the vector

sum problem to the rank problem.

Next, consider the select problem. For this problem, Miltersen’s bound (3.2) is

r = Ω(n/(tw)). (3.2)

We give an argument that techniques from Miltersen [41] cannot be improved from r =

Ω(n/(tw)) to the optimal r = Ω(n lg(tw)/(tw)). In his proof, Miltersen only considered

the bit vectors that have cardinality m = Θ(n/(tw)). However, for such vectors, we can

construct an index of size O(n/(tw)) that lets us to implement bin sel queries in constant

time. Let us divide B into γ = n/(tw) blocks of the same size tw. For the i-th block, we

store its cardinality mi in unary representation in a bit vector Card:

Card = 0 1m1 0 1m2 0 . . . 0 1mγ

of length p + Θ(n/(tw)) = O(n/(tw)). We can implement bin selB(1, x) on B as follows.

First, find in which block the x-th 1-bit is located by:

• selecting the j-th 1-bit in Card that corresponds to the j-th bit in B, denote its

position by z, and

• counting the number of 0-bits before position z will give us the required block number,

denote it by k.

Let z′ be the position of the k-th 0-bit, then there are z−z′ 1-bits between the beginning of

the k-th block and the z-th position. Hence, we can scan the k-th block from left to right

looking for the (z−z′)-th 1-bit in B, and it is the bit in question, the required j-th 1-bit in

B. As it was shown in Chapter 2, we can store bit vector Card using O(|Card|+o(|Card|) =

O(n/(tw)) bits. Hence, an index of size O(n/(tw)) suffices, and it is not possible to show

an asymptotically better bound than (3.2) using Miltersen’s techniques. Also, it follows

that for such bit vectors B, select indexes of size O(n/(tw)) are optimal.

58 Upper and Lower Bounds for Text Indexing Data Structures

Finally, we consider the background of the problem of representing balanced parenthe-

ses. Jacobson [33] was the first to consider this problem. His approach was to store the

position of the matching parenthesis for every n/ lg n-th parenthesis, and hence, the extra

space that he used for the index is Θ(n) bits. Later, Munro and Raman [45] employed

a more sophisticated three level scheme using blocks of sizes Θ((lg n)2), Θ((lg lg n)2) and

Θ(lg lg n). The extra space that they used is Θ(n/ lg lg n) = o(n), so it was the first suc-

cinct data structure for the balanced parentheses problem. Later, Geary et al. [20] used

a two level recursive scheme with blocks of sizes Θ((lg n)2) and Θ(lg n). They were able

to reduce the extra space to Θ(n lg lg n/ lg n) bits. In Section 3.7, we show a lower bound

that matches the bound of Geary et al. up to a constant factor.

3.2 Rank Index

In this subsection, we apply the general framework to the case of bin rank queries, namely

determining the number of 1-bits up to a given position.

Theorem 6. Let B be a bit vector of length n, and

Q = {“query bin rankB(1, i)′′| 1 ≤ i ≤ n}

Let t be the time cost and r be the space cost of implementing Q in the indexing bit probe

model. Then

r = Ω

(
n lg t

t

)

.

Proof. Let the set of simulated queries be Q∗ = {“query bin rankB(1, 3ti)”| 1 ≤ i ≤ γ},
where γ = ⌊n/(3t)⌋. Let H = {0, 1}n be the set of all possible bit vectors.

Fix a leaf x of the choices tree G(Q∗). An upper bound on the number |C(x)| of bit

vectors compatible with x can be derived as follows. We choose the block lengths to be

ni = 3t, so that the i-th block starts at position 1 + 3t(i − 1) and ends at position 3ti.

Clearly, this split does not depend on a choice of B ∈ C(x). Since

{“query bin rankB(1, 3t(i− 1))”, “query bin rankB(1, 3ti)”} ⊆ Q∗,

59

the results of these queries are “known” at the leaf x: namely for any B1, B2 ∈ C(x), we

have

bin rankB1
(1, 3ti) = bin rankB2

(1, 3ti) , and

bin rankB1
(1, 3t(i− 1)) = bin rankB2

(1, 3t(i− 1)).

Therefore, the cardinality of the i-th block,

mi = bin rankB(1, 3ti)− bin rankB(1, 3t(i− 1)),

depends on x only, but not on a particular choice B ∈ C(x) (we define bin rankB(1, 0) = 0

for convenience). Hence, the vi also depend on x only. Thus, the number of bit vectors

compatible with x is

|C(x)| =
(

u1

v1

)(
u2

v2

)

. . .

(
uγ

vγ

)

. (3.3)

We divide both parts of (3.3) by 2U , and obtain

|C(x)|
2U

=

(
u1

v1

)

2u1

(
u2

v2

)

2u2
. . .

(
uγ

vγ

)

2uγ
. (3.4)

To bound the latter expression, we use the estimation for central binomial coefficients,
(
2x
x

)
= O(2x/

√
x) that follows from Stirling’s approximation formula. We obtain,

(
ui

vi

)

2ui
≤
(

ui

ui/2

)

2ui
≤ c√

ui
(3.5)

for some constant c > 0.

We call the i-th block undetermined if it has more than t unprobed bits in it, more

precisely, if ui ≥ t, and determined otherwise. If the i-th block is determined, then ni−ui >

3t− t ≥ 2t probes have been performed on it. Since the total number of bit probes is tγ,

the total number of determined blocks is at most γ/2. Thus, the number of undetermined

blocks, is at least γ/2. Using the inequality
(

ui

vi

)
/2ui ≤ 1 for determined blocks, and (3.5)

for undetermined blocks, we obtain that the product in (3.4) can be bounded by

|C(x)|
2U

≤
(

c√
t

)γ/2

,

60 Upper and Lower Bounds for Text Indexing Data Structures

where U = n− tγ. Summing this bound over all of the 2r+tγ leaves in G(Q∗) yields

2n = |H| =
∑

x is a leaf

|C(x)| ≤ 2r+tγ2n−tγcγ/2t−
γ
4 ≤ 2n2rcγ/2t−

γ
4 . (3.6)

Hence, the theorem follows:

r ≥ γ

4
lg t− γ

2
lg c = Ω

(
n lg t

t

)

.

3.3 Select Index

In this section, we apply a similar technique to show an optimal lower bound for the

problem of finding the position of the i-th 1-bit.

Theorem 7. Let B be a bit vector of length n, and

Q = {“query bin selB(1, i)”| 1 ≤ i ≤ m}

Let t be the time cost and r be the space cost of implementing Q in the indexing bit probe

model. Then r = Ω
(

n lg t
t

)
.

Proof. Essentially, the techniques in this proof are different from the proof of Theorem 6 in

that (i) we have to choose a different set of queries Q∗ to simulate, (ii) it is more convenient

to choose a slightly smaller set hard instances H, so that the queries from Q∗ do not return

−1. More formally, let us choose

H = {B ∈ {0, 1}n| card(B) = ⌈n/2⌉}
Q∗ = {“query bin selB(1, 3ti)”| 1 ≤ i ≤ γ} ,

where γ = ⌊n/(6t)⌋. We construct the choices tree G(Q∗), and fix a leaf x of G. It remains

to compute the number of compatible bit vectors C(x). We split B into γ blocks, such that

the i-th block starts at the position bin selB(1, 3t(i − 1)) + 1 and ends at the position

bin selB(1, 3ti) (we define bin selB(1, 0) = 0 for convenience). This split does not depend

61

on a choice of B in C(x), since the results of the queries “query bin selB(1, 3t(i− 1))”

and “query bin selB(1, 3ti)” are in Q∗. The cardinality mi does not depend on a choice

of B in C(x), since mi = 3t. As in the proof of Theorem 6, we say that the i-th block

is determined if ui < t and undetermined otherwise. If the i-th block is determined, then

ni − ui > mi − t = 2t probes have been performed on it. Since the total number of bit

probes is tγ, then the number of determined blocks is at most γ/2. We use the same

bounds for determined and undetermined blocks, and as with the inequality (3.6) in the

proof of Theorem 6, we obtain
(

n

⌈n/2⌉

)

=
∑

x is a leaf

|C(x)| ≤ 2r+tγcγ/22n−tγt−
γ
4 ≤ 2n2rcγ/2t−

γ
4 ,

since the number of bit vectors that are compatible with all the leaves is |H| =
(

n
⌈n/2⌉

)
.

Thus,

r ≥ lg

(
n

n/2

)

− n +
γ

4
lg t− γ

4
lg c = Ω

(
n lg t

t

)

.

3.4 Bounding Lemmas

In this section, we consider the products of the following form:

X =

(
u1

v1

)(
u2

v2

)

. . .

(
uγ

vγ

)

. (3.7)

The main goal is to obtain good upper bounds for X. Later, the results developed in

this section will be used to derive lower bounds for the size of the rank/select indices in

Section 3.5 and Section 3.6. Define U =
∑

i ui, and V =
∑

i vi. Let u∗ ≤ mini ui, and

v∗ ≤ mini vi be some fixed parameters. In this section, we use the notation ui, vi, U and

V which is similar to Section 3.2 and Section 3.3, however, it is not necessary that, for

example, ui should be the number of unprobed bits in the i-th block for some leaf of the

choices tree. The results that we obtain here hold for abstract values of ui and vi, and the

notational similarity is for convenience of the later use of these results (in Section 10 and

Section 3.6). We prove the results of this section under the assumption that V ≤ U/2,

which will be reflected later in our results in Section 10 and Section 3.6.

62 Upper and Lower Bounds for Text Indexing Data Structures

This section is organized as follows. We first give some basic inequalities in Section 3.4.1.

In Section 3.4.2, we develop some tools for bounding single binomial coefficients. In Sec-

tion 3.4.3, we consider the problem of bounding X, and prove the main results which will

be used later in this chapter. Namely, we consider special cases of this problem

• the case where ui ≥ u∗ for some given parameter u∗ > 0, and

• the case where vi ≥ v∗ for given v∗ > 0.

3.4.1 Related Work and Tools

In this section, we present the necessary tools which we use for bounding binomial coeffi-

cients.

Lemma 6 (Stirling approximation [12]). For n ≥ 1, we have

√
2π <

n!√
n(n/e)n

≤ e.

One of the main tools used in Section 3.4.3 is the inequality between arithmetic and

geometric means.

Theorem 8 (AM-GM inequality [7]). For non-negative values x1, x2, . . . , xn, we have

∏

i

xi ≤
(∑

i xi

n

)n

.

We use this inequality to show the following lemma.

Lemma 7. Let v1, v2, . . . , vγ and u1, u2, . . . , uγ be integers such that 0 < vi < ui. Then

∏

i

(
ui

vi

)vi
(

ui

ui − vi

)ui−vi

≤
(

U

V

)V (
U

U − V

)U−V

,

where U =
∑

i ui and V =
∑

i vi.

63

Proof. We use Theorem 8 for the values

u1

v1
, . . . ,

u1

v1
,

︸ ︷︷ ︸

v1 times

u2

v2
, . . . ,

u2

v2
,

︸ ︷︷ ︸

v2 times

. . .
uγ

vγ
, . . . ,

uγ

vγ
︸ ︷︷ ︸

vγ times

,

so that
∏

i

(
ui

vi

)vi

≤
(∑

i vi · ui

vi∑

i vi

)P

i vi

=

(∑

i ui
∑

i vi

)P

i vi

=

(
U

V

)V

.

In a similar fashion, we use Theorem 8 for the values ui/(ui− vi) each taken ui− vi times,

and obtain

∏

i

(
ui

ui − vi

)ui−vi

≤
(∑

i ui
∑

i ui − vi

)P

i ui−vi

=

(
U

U − V

)U−V

.

Hence, the statement of the lemma follows.

3.4.2 Bounds for a Binomial Coefficient

To estimate binomial coefficients, we use the following theorem.

Theorem 9. For values u and v, such that 0 < v ≤ u/2, we have

1

e
<

(
u
v

)

1√
v

(
u
v

)v (u
u−v

)u−v <
4

5
.

Proof. We start by estimating the value of u!/(u − v)!. To do so, we first show that the

sequence an = n!/(n/e)n is increasing and bn = n!/(n/e)n+1 is decreasing for integers n,

n > 0. Consider

an+1

an

=
(n + 1)!en+1

(n + 1)n+1

nn

n!en
=

e
(
1 + 1

n

)n = e1−n lg(1+1/n) > 1,

since lg(1 + x) < x for x > −1. In a similar fashion, consider

bn+1

bn
=

(n + 1)!en+2

(n + 1)n+2

nn+1

n!en+1
= e

(

1− 1

n + 1

)n+1

= e1+(n+1) lg(1−1/(n+1)) < 1,

64 Upper and Lower Bounds for Text Indexing Data Structures

since lg(1− x) < −x for x < 1. Since au/au−v > 1 and bu/bu−v < 1, we have

u!

(u− v)!
=

auuu

eu

au−v(u−v)u−v

eu−v

>
(u/e)u

((u− v)/e)u−v
=
(u

e

)v
(

u

u− v

)u−v

, and

u!

(u− v)!
=

buuu+1

eu+1

bu−v(u−v)u−v+1

eu−v+1

<
u

u− v

(u/e)u

((u− v)/e)u−v
=

u

u− v

(u

e

)v
(

u

u− v

)u−v

.

We divide both of these inequalities by v!, and use Lemma 6. We obtain

1

e

1√
v

(e

v

)v (u

e

)v
(

u

u− v

)u−v

<

(
u

v

)

<
1√
2π

1√
v

u

u− v

(e

v

)v (u

e

)v
(

u

u− v

)u−v

By the precondition of the theorem, v ≤ u/2, so that u/(u− v) ≤ 2. Also,
√

2π > 5/2, the

statement of the theorem follows.

For the case where we expect many binomial coefficients with vi = 0, we will use the

following simple lemma

Lemma 8. For 0 ≤ v ≤ u, we have

uv <

(
u

v

)

<
(u

v

)v

Proof. The first inequality is obvious, and the second one is folklore, and also easy to

derive: (
u

v

)

=
u!

(u− v)!v!
=

u

v

u− 1

v − 1
. . .

u− v + 1

1
≥
(u

v

)v

.

Here we used the fact that (u− i)/(v − i) ≥ u/v for 0 < i < v, since (u− i)v = uv − iv ≥
uv − iu = u(v − i).

3.4.3 Bounds for a Product of Binomial Coefficients

In this section, we present the results that allow bounding the value of X from (3.7) defined

as

X =

(
u1

v1

)(
u2

v2

)

. . .

(
uγ

vγ

)

.

Recall that U =
∑

i ui, V =
∑

i vi, u∗ ≤ mini ui, and v∗ ≤ mini vi, and V ≤ U/2. First, we

present a simple lemma that follows from Theorem 9 and Lemma 7.

65

Lemma 9. Assume that u∗ ≥ 2 and v∗ ≥ 1, then

X ≤ 2−(γ/2) lg v∗−0.3γ+(lg V)/2

(
U

V

)

.

Proof. We bound each individual binomial coefficient
(

ui

vi

)
in product X using the right part

of the inequality of Theorem 9. Then, the resulting product is bounded using Lemma 7.

Finally using the left part of the inequality of Theorem 9, we obtain a bound involving the

binomial coefficient
(

U
V

)
.

In the case where vi ≤ ui/2, we apply Theorem 9 directly. For the case vi > ui/2, we

first decrease the value of vi to v′
i = ⌊ui/2⌋, and bound

(
ui

vi

)
≤
(

ui

v′i

)
and then apply the

lemma. Note that v′
i ≥ ui/2 ≥ vi/2, and thus, V ′ =

∑

i v
′
i satisfies V/2 ≤ V ′ ≤ V ≤ U/2.

We obtain

(
ui

vi

)

≤
(

ui

v′
i

)

≤ 4

5

1
√

v′
i

(
ui

v′
i

)v′i
(

ui

ui − v′
i

)ui−v′i

We then take the product of these inequalities and apply Lemma 7 to bound the products

of (ui/v
′
i)

v′i and (ui/(ui − v′
i))

ui−v′i . We get

X <
∏

i

4

5
√

v′
i

(
U

V ′

)V ′ (
U

U − V ′

)U−V ′

Then, we apply Theorem 9 to bound X in terms of
(

U
V ′

)
,

X < e
√

V ′
(

U

V ′

)
∏

i

4

5
√

vi

≤ 2−γ/2 lg v∗−0.3γ+(lg V)/2

(
U

V

)

,

since
(

U
V ′

)
≤
(

U
V

)
as V ′ ≤ V ≤ U/2. We estimated lg(4/5) ≤ −0.3 to simplify the

formulas.

Lemma 9 gives a good bound when v∗ can be chosen large enough. This is the case

when all vi are “evenly distributed” among the binomial coefficients. However, in the case

when vi = 1 for some i, we can only choose v∗ = 1, and the bound is weak. To alleviate

this difficulty, we prove two facts that help reduce our problem to the case where all vi are

of the same order. We start by considering the following problem: given that the values

66 Upper and Lower Bounds for Text Indexing Data Structures

of ui are fixed such that ui ≥ u∗, where u∗ is a given parameter such that u∗ ≤ mini{ui},
we wish to maximize the product X. Intuitively, if we vary the values vi, the ones that

maximize X should be proportional to the respective values ui, that is, vi/ui should be

approximately the same (and hence, close to the value of V/U). The next lemma and

corollary formalize this fact.

We call the tuple (v1, v2, . . . , vγ) a local maximum if we cannot increase some vi by 1

and decrease some other vj by 1, so that the right part of (3.10) increases. The following

simple lemma characterizes the local maxima

Lemma 10. At a local maximum,

vj + 1

uj + 1
≥ vi

ui + 1

is satisfied for each pair (i, j), i 6= j.

Proof. At a local maximum, we have the following inequality
(

ui

vi

)(
uj

vj

)

≥
(

ui

vi − 1

)(
uj

vj + 1

)

Dividing both parts by (ui)!
(vi−1)!(ui−vi)!

(uj)!

(vj)!(uj−vj−1)!
, we obtain

1

vi

1

(uj − vj)
≥ 1

(ui − vi + 1)

1

(vj + 1)

From this, we get uivj + ui − vi + vj + 1 ≥ viuj and the lemma follows.

Corollary 1. At a local maximum, for all i, 1 ≤ i ≤ γ, we have
∣
∣
∣
∣

vi

ui
− V

U

∣
∣
∣
∣
<

2

u∗
.

Proof. Fix i 6= j, and apply Lemma 10 for the pair (i, j) and for the pair (j, i). It follows

that
vj

uj + 1
+

1

uj + 1
≥ vi

ui + 1
≥ vj

uj + 1
− 1

ui + 1

Since ui and uj are at least u∗, we have
∣
∣
∣
∣

vi

ui + 1
− vj

uj + 1

∣
∣
∣
∣
≤ 1

u∗ + 1
<

1

u∗

67

Since vi/ui and vj/uj are at most 1,

∣
∣
∣
∣

(
vi

ui + 1
− vj

uj + 1

)

−
(

vi

ui

− vj

uj

)∣
∣
∣
∣
=

∣
∣
∣
∣

vi/ui

ui + 1
− vj/uj

uj + 1

∣
∣
∣
∣
<

1

u∗

Therefore, ∣
∣
∣
∣

vi

ui
− vj

uj

∣
∣
∣
∣
<

2

u∗
.

Finally, we observe that

min

{
v1

u1
, . . . ,

vγ

uγ

}

≤ V

U
≤ max

{
v1

u1
, . . . ,

vγ

uγ

}

and the corollary follows.

Using these facts, we now can establish the following lemma for the case where u∗V/U ≥
3.

Lemma 11. If u∗V/U ≥ 3, then

X ≤ 2−(γ/2) lg(u∗V/U)−0.3γ+(lg V)/2

(
U

V

)

.

Proof. We first maximize X with respect to vi’s for fixed ui’s. At a local maximum,

Corollary 1 gives us the bound

vi

ui
>

V

U
− 2

u∗
>

V

U
− 2V

3U
=

V

3U
,

so that vi > uiV/(3U). Hence, we can apply Lemma 9 with v∗ = uiV/(3U) ≥ u∗V (3U) ≥ 1.

The result follows.

3.5 Density-Sensitive Rank Index

In this section, we consider the problem of implementing the rank queries in the case where

the cardinality m of the bit vector B is fixed. The bounds are then expressed in terms of

both parameters m and n, the length of B. We will use techniques similar to Section 3.2;

however, the calculations are slightly more involved in this case.

68 Upper and Lower Bounds for Text Indexing Data Structures

Theorem 10. Let H be the set of all bit vectors of length n containing m ≤ n/2 1-bits.

To support queries

Q = {“query bin rankB(1, i)”| 1 ≤ i ≤ n}

on vectors from B with the time cost t, we must incur a space cost of

r =







Ω
(

n
t
lg
(

mt
n

))
, if mt

n
= ω(1)

Ω(m) , if mt
n

= Θ(1)

Ω
(
m lg

(
n

mt

))
, if mt

n
= o(1)

Proof. This proof follows the lines similar to the proof of Theorem 6; however, it is a bit

more technically involved. We choose an integer parameter γ ≤ n/(3t), and simulate the

set of queries

Q∗ = {“query bin rankB(1, ik)”| 1 ≤ i ≤ γ},

where k = ⌊n/γ⌋. Accordingly, we split bit vectors B into γ blocks of equal lengths

n1 = n2 = . . . = nγ = k. We define H = {B ∈ {0, 1}n| card(B) = m}. The exact value of

parameter γ is chosen depending on the relationship between mt and n as follows.

1. In the case where mt = ω(n), we will choose γ = n/(3t).

2. For the case mt = Θ(n), we need an additional requirement that γ ≤ m/3, so that

we will choose γ = min{n/(3t), m/3}, we will clarify this requirement later in the

proof.

3. Finally, for the case mt = o(n), we will choose γ =
√

nm/t.

We can verify that, by the definition of γ, the number of probed bits is at most tγ ≤ n/3:

for the first case the number of probed bits is exactly n/3, for the second case it is also at

most n/3, and for the third case it is
√

nmt = o(n) < n/3 as well.

As compared with the proof of Theorem 6, to get a meaningful result, we must be

more careful when bounding C(x). To do so, let us partition all the leaves of the choices

tree G(Q∗) (see the construction of this tree in the introduction to this chapter) into m

groups depending on the total number of 1-probes performed on B on the corresponding

computation path (that is, excluding the first r index levels). Denote by Ly the group of

69

leaves for which we performed exactly y 1-probes on B. We have |Ly| = 2r
(

tγ
y

)
. For each

leaf x ∈ Ly, we bound the number of compatible bit vectors, C(x), by

|C(x)| ≤
(

u1

v1

)(
u2

v2

)

. . .

(
uγ

vγ

)

, (3.8)

where ui is the number of unprobed bits in the i-th blocks, and vi is the number of unprobed

1-bits in the i-th block. By definition, the values ui and vi satisfy

u1 + u2 + . . . + uγ = U (3.9a)

v1 + v2 + . . . + vγ = V, (3.9b)

where U = n− tγ (respectively, V = m− y) is the total number of unprobed bits (respec-

tively, unprobed 1-bits). We will employ the inequalities from Section 3.4 to bound this

product.

We start by combining blocks into larger superblocks as follows. We traverse all the

blocks consecutively from left to right in a greedy fashion. We add blocks to a superblock,

until the total number of unprobed bits in the current superblock is at least k, at which

point we finalize the superblock and start the next one. Since the total number of unprobed

bits ui in the i− th block is less than ui ≤ ni = k, by the construction, the total number

of unprobed bits u∗
i in the i-th superblock satisfies k ≤ u∗

i < 2k. More formally, the i-th

superblock (except, perhaps, the last one) will contain the blocks zi−1 + 1, . . . , zi so that

k ≤ u∗
i = uzi−1+1 + uzi−1+2 + . . . + uzi

< 2k,

where z0 = 0. Let γs be the number of superblocks, then γs ≥ U/(2k), since the number

of unprobed bits in a superblock is at most 2k. Also, U = n − tγ ≥ 2n/3. Thus, γs ≥
n/(3k) = γ/3, so that

γ/3 ≤ γs ≤ γ.

For each superblock, we use the inequality
(

uzi−1+1

vzi−1+1

)(
uzi−1+2

vzi−1+2

)

. . .

(
uzi

vzi

)

≤
(

u∗
i

v∗
i

)

where v∗
i = vzi−1+1 + vzi−1+2 + . . . + vzi

is the total number of unprobed 1-bits in the i-th

superblock. Then (
u1

v1

)(
u2

v2

)

. . .

(
uγ

vγ

)

≤
(

u∗
1

v∗
1

)(
u∗

2

v∗
2

)

. . .

(
u∗

γs

v∗
γs

)

70 Upper and Lower Bounds for Text Indexing Data Structures

Thus, the total number of bit vectors that are compatible with all the leaves,
∑

x |C(x)|,
is at most

P := 2r

min{tγ,m}
∑

y=0

(
tγ

y

)(
u∗

1

v∗
1

)(
u∗

2

v∗
2

)

. . .

(
u∗

γs

v∗
γs

)

We define

X := max
y,v∗1 ,,...v∗γs

(
tγ

y

)(
u∗

1

v∗
1

)(
u∗

2

v∗
2

)

. . .

(
u∗

γs

v∗
γs

)

(3.10)

Hence, P ≤ 2rmX. Lemma 11 can be used to bound (3.10). However, on the other hand,
∑

x |C(x)| = |H| =
(

n
m

)
≤ P . Therefore,

r ≥ lg

((
n
m

)

X

)

− lg m

gives a lower bound on the size of the rank index.

• First, consider the case where mt/n = ω(1). Thus,

m min{tγ, u∗
1, u

∗
2, . . . , u

∗
γs
}

n
≥ mk

n
=

3mt

n
= ω(1),

so that the precondition of Lemma 11 for the product X is satisfied. It follows that,

P ≤ m2r2−γs/2 lg(mt/n)

(
n

m

)

, and

r ≥ −γs

2
lg

(
mt

n

)

−Θ(γs) + Θ(lg m) = Θ

(
n

t
lg

(
mt

n

))

.

• Now consider the case mt/n = Θ(1). We have,

m min{tγ, u∗
1, u

∗
2, . . . , u

∗
γs
}

n
≥ mk

n
=

m

γs
≥ 3,

since we chose γs ≤ γ ≤ m/3 as we chose γ = min{n/(3t), m/3}. Thus, we can apply

Lemma 11 and derive

P ≤ m2r2−Θ(γs)

(
n

m

)

, and

r = Ω(γs) + Θ(lg m) = Ω(m).

71

• Finally, consider the case where mt/n = o(1). We use a slightly different idea than

in the previous two cases. We bound the product
∏

i

(
ui

vi

)
directly by using Lemma 8.

Namely, since

max
i

ui ≤ k =
n

γ
, we have

∏

i

(
ui

vi

)

≤
(

n

γ

)V

≤
(nV

γ

V

)

,

using Lemma 8 again. Thus,
(

tγ

y

)
∏

i

(
ui

vi

)

≤
(

tγ

y

)(
nV
γ

m− y

)

≤
(

tγ + nV
γ

m

)

≤
(

tγ + nm
γ

m

)

,

since V = m− y ≤ m, and tγ + nV
γ
≥
√

nmt = ω(mt) is at least 2m. Finally, we can

bound r by

r ≥ lg

((
n
m

)

(√
nmt
m

)

)

≥ lg





(
n
m

)m

(√
nmt
m

)m



 ≥ m lg

√
n

mt
=

m

2
lg
(n

mt

)

The parameter γ =
√

nm/t was chosen such that the upper part of the last binomial

coefficient is minimized, namely tγ + nm
γ

= 2
√

nmt. Also note that a naive choice

of γ = Θ(n/t) does not give the desired lower bound, since the product of binomial

coefficients (
tγ

m

)
∏

i

(
u1

0

)

≥
(

Θ(n)

m

)m

alone differs from
(

n
m

)
by a factor of 2Θ(m) only. Thus, the best lower bound we can

hope for in this case is only r = Ω(m). Similarly, if we choose γ = Θ(m), then

X ≤
(

tγ

m

)
∏

i

(
ui

vi

)

≤
(

n
m

)

2Θ(m)
,

since each of the binomial coefficients in the product
(

ui

vi

)
“generates” a factor of Θ(1)

in front of
(

n
m

)
according to Theorem 9 and Lemma 9. So we can obtain r = Ω(m)

bound only for this choice of γ as well. It turns out that we need to choose parameter

γ such that γ = ω(m) and γ = o(n/t).

72 Upper and Lower Bounds for Text Indexing Data Structures

3.6 Density-Sensitive Select Index

In this section, we combine the techniques from Section 3.3 and the bounding techniques

of Section 3.5 to show a lower bound for the size of the index required to implement the

select queries in the case where the cardinality m of the bit vector B is fixed. The bounds

are then expressed in terms of both parameters m and n, the length of B.

Theorem 11. Let H be the set of all bit vectors of length n containing m ≤ n/2 1-bits.

To support queries

Q = {“query bin selB(1, i)”| 1 ≤ i ≤ m}

on vector from B with the time cost t, we must incur a space cost of

r =







Ω
(

n
t
lg
(

mt
n

))
, if mt

n
= ω(1)

Ω(m) , if mt
n

= Θ(1)

Ω
(
m lg

(
n

mt

))
, if mt

n
= o(1)

Proof. This proof builds upon proofs of Theorem 7 and Theorem 10, and the bounding

techniques from Section 3.4. As with the proof of Theorem 10, we consider three cases:

where mt = ω(n), mt = Θ(n), and where mt = o(n).

We simulate the set of queries

Q∗ = {“query bin selB(1, ik)”| 1 ≤ i ≤ γ},

where k = ⌊m/γ⌋. Accordingly, we split bit vectors B into γ blocks of equal cardinalities

m1 = m2 = . . . = mγ = k. We define blocks similarly to the proof of Theorem 7.

Namely, the i-th block starts at position bin selB(1, (i − 1)k) + 1 and ends at position

bin selB(1, ik), so that the cardinality of each block (the number 1-bits in it) is exactly

k (recall, that we defined bin selB(b, 0) = 0 for b ∈ {0, 1} for convenience). We set

H = {B ∈ {0, 1}n| card(B) = m}. We choose parameter γ depending on the relationship

between mt and n. In the case where mt = ω(n), we will choose γ = n/(3t). For the

case mt = Θ(n), we need an additional requirement that γ ≤ m/3, so that we will choose

γ = min{n/(3t), m/3}, we will clarify this requirement later in the proof. Finally, for

the case mt = o(n), we will choose γ =
√

nm/t. Note that in all cases, the number of

73

unprobed bits U is n− tγ ≥ 2n/3, so that the average number of unprobed bits per block

is at least (2/3)n/γ (we expect most of the blocks to have at least constant fraction of

unprobed bits).

Also, in a similar fashion to the proof of Theorem 10, we define superblocks. The i-th

superblock (except, perhaps, for the last one) will contain consecutive blocks zi−1+1, . . . , zi,

such that the number of unprobed 1-bits in the i-th superblock

v∗
i = vzi−1+1 + vzi−1+2 + . . . + vzi

satisfies k ≤ v∗
i < 2k. Note that this is always possible, since vi ≤ mi = k. And hence,

γs, the number of superblocks, is at least V/(2k). The number of unprobed bits of i-th

superblock is given by

u∗
i = uzi−1+1 + uzi−1+2 + . . . + uzi

We use inequality (
u1

v1

)(
u2

v2

)

. . .

(
uγ

vγ

)

≤
(

u∗
1

v∗
1

)(
u∗

2

v∗
2

)

. . .

(
u∗

γs

v∗
γs

)

to bound the number of bit vectors compatible with a given leaf. The total number of bit

vectors compatible with all the leaves is then

P = 2r

min{tγ,m}
∑

y=0

(
tγ

y

)(
u∗

1

v∗
1

)(
u∗

2

v∗
2

)

. . .

(
u∗

γs

v∗
γs

)

(3.11)

We can derive a bound on P , P ≤ m2rX, where X is the biggest product of binomial

coefficients in this sum, let us denote it by X. To derive a bound on X, we can, for

example, use Lemma 9. A difference with the proof of Theorem 10 is that we do not need

to “redistribute” the weight of V between vi’s uniformly as it was done in Lemma 10 and

Corollary 1, since we have bounds k ≤ v∗
i < 2k already. To derive a lower bound for r, we

observe that
∑

x |C(x)| = |H| =
(

n
m

)
≤ P . Therefore,

r ≥ lg

((
n
m

)

X

)

− lg m.

• First, we consider the case where mt/n = Ω(1). Recall that we chose the parameter

γ = min{n/(3t), m/3} = Θ(n/t). The goal is to derive a bound on

X =

(
tγ

y

)(
u∗

1

v∗
1

)(
u∗

2

v∗
2

)

. . .

(
u∗

γs

v∗
γs

)

(3.12)

74 Upper and Lower Bounds for Text Indexing Data Structures

subject to constraints

tγ +
∑

i

u∗
i = n,

y +
∑

i

v∗
i = m, and

tγ ≤ n

3

Since there is a bound on v∗
i ’s, namely, v∗

i ≥ k, it seems that we can apply Lemma 9

directly and obtain a bound on X. The caveat is that, if V is too small, then the

number of superblocks γs is small as well, and the bound will turn out to be weak.

This problem did not arise in the proof of Theorem 10, since the bound on γs was

based on the fact that
∑

ui ≥ 2n/3, and we were grouping blocks into superblocks

based on values of ui. However, in this proof, we form superblocks based on vi’s, so

that we need to bound their sum, V =
∑

i vi, from below.

For this purpose, we use the idea that is similar to an idea in the proof of Theorem 10.

Let us vary ui’s and vi’s in order to maximize
(

tγ

y

)
∏

i

(
ui

vi

)

.

As a very rough estimation, we can state the following: since tγ ≤ n/3, we expect

that y will be at most m/3 as well, and so that V = m−y ≥ 2m/3 which is sufficient

for our purposes. More formally, Lemma 10 gives us the following conditions at a

local maximum:

vi + 1

ui + 1
≥ y

tγ + 1
≥ y

n/3 + 1

Thus, for any i ∈ [γ], we have
(n

3
+ 1
)

(vi + 1) ≥ y(ui + 1).

Summing them up, we obtain

V ≥ y
U + γ

n/3 + 1
− γ ≥ (m− V)

2n/3 + 2

n/3 + 1
− m

3
=

5m

3
− 2V,

75

since 2 ≤ γ ≤ m/3. Thus,

V ≥ 5m

9
.

Now, it is easy to derive a bound on the number of superblocks, γs,

γs ≥
V

2k
≥ 5m

18

γ

m
≥ 5γ

18
= Θ

(n

t

)

,

which is sufficient to derive our bounds.

Let us apply Lemma 9 to (3.12). We obtain,

X ≤
(

tγ

m

)

2−(γs/2) lg k−Θ(γs)

(
U

V

)

≤ 2−(γs/2) lg k−Θ(γs)

(
n

m

)

≤ 2−Θ(n/t) lg k−Θ(n/t)+Θ(lg m)

(
n

m

)

.

So that, in the case where mt = ω(n), we obtain

r = Θ

(
n

t
lg

(
mt

n

))

−Θ
(n

t

)

,

since k = m/γ = 3mt/n. In the case where mt = Θ(n), we obtain

r = Θ(m),

since k = m/γ ≥ 3, k = Θ(1).

• It remains to consider the case where mt = o(n). It turns out that this is the easiest

case in the proof of Theorem 10 and Theorem 11. Recall that we defined γ = m in

this case, so that we select all the 1-bits in the bit vector using our queries. Hence,

the number of compatible bit vectors |C(x)| with any leaf x is exactly 1. We can

bound the sum

∑

x

|C(x)| ≤ 2r
m∑

y=0

(
tγ

y

)

≤ m2r

(
tm

m

)

≤ m2r

(
etm

m

)m

= m2r(et)m

≤ m2r(et)m

(
n
m

)

(
n
m

)m ≤ 2r2−m lg(n/(mt))+Θ(m)

(
n

m

)

,

here we used Lemma 8. Thus,

r = Θ
(

m lg
n

mt

)

−Θ(m)

76 Upper and Lower Bounds for Text Indexing Data Structures

Thus, we considered all cases, and obtained the required results.

3.7 Balanced Parentheses

In this section, we consider the problem PARENTHESES. We consider the set of objects B is

all the balanced parentheses of a given length n. We are to implement a set of queries

Q = {“query findmatchB(i)”},

where the query findmatchB(i) returns the position of the matching parenthesis for the

parenthesis at the position i. Since we work in the indexing model, without loss of general-

ity, we can assume that B is stored as a binary vector of length n, where a 0-bit corresponds

to an opening parenthesis and a 1-bit to a closing parenthesis. For a sequence of parenthe-

ses (not necessarily balanced), we define excessB(i) as the difference between the numbers

of opening and closing parentheses in B up to (and including) the given position i. Define

excessB(0) = 0 for convenience. We can represent B via its excess function.

We start by giving some preliminary results. Let us consider a special class N(n, f, l) of

sequences of parentheses of length n that are not necessarily balanced. This class depends

on integer parameters n, f , and l, such that l < min{f, 0}, −n ≤ f ≤ n, and f + n is

even. Intuitively, this class can be described as follows: the excess function starts at 0

and finishes at f and it never crosses the value l. More formally, sequence B in N(n, f, l)

if and only if

• excessB(n) = f , and

• excessB(i) > l for 0 ≤ i ≤ n.

The conditions −n ≤ f ≤ n and f + n ≡ 0 mod 2 are necessary for the class N(n, f, l) to

be not empty, since the function excessB(i) is 0 for i = 0 and it changes exactly by 1 as

i grows by 1. The condition l < min{f, 0} is necessary, since the excess function has to

take values 0 and f .

These sequences will play an important role later in the proof of the theorem that

given a lower bound on the index size of the PARENTHESES problem. We show the following

lemma.

77

Lemma 12 (due to Andre (1887), e.g. see the proof in [12]). For f and l, such that

l < min{f, 0}, −n ≤ f ≤ n, and (f + n)/2 is even,

|N(n, f, l)| =
(

n

(n + f)/2

)

−
(

n

(n + f)/2− l

)

.

Proof. The number of sequences in N(n, f, l) is the number of sequences with the property

excess(n) = f and no restriction on the intermediate points, N(n, f,−∞), minus the

number of sequences with the property that excess(n) = f and excess(i) = l at some

intermediate point i, 0 < i < n. Let M(n, f, l) be the set of sequences that have the

latter property. In other words, N(n, f, l) = N(n, f,−∞)\M(n, f, l). Consider a sequence

B ∈ M(n, f, l) and let i be the first index such that excess(i) = l. Construct a sequence

B′ ∈ N(n, 2l − f,−∞) as follows, B′[k] = B[k] for k ≤ i, and B′[k] = 1 − B[k] (i.e. the

opposite bracket to B[k]) for k > i. Also, for every sequence B′ ∈ N(n, 2l−f,−∞), we can

find the first index j, such that excessB′(j) = l, since 0 > l > 2l − f . We can construct

a sequence B′′ ∈ M(n, f, l) similarly: B′′[k] = B′[k] for k ≤ j, and B′′[k] = 1 − B′[k]

(the opposite parenthesis of B′[k]) for k > i. Note that B′′ = B, and so there is a

one-to-one correspondence between sequences M(n, f, l) and N(n, 2l − f,−∞). Thus,

|N(n, f, l)| = |N(n, f,−∞)| − |N(n, 2l − f,−∞)|. Note that |N(n, f,−∞)| =
(

n
(n+f)/2

)
,

and |N(n, 2l − f,−∞)| =
(

n
(n−f)/2−l

)
.

Let us consider another class N(n, h) of sequences of length n, where h > 0 is an integer

parameter. This class is similar to N(n,−h,−h−1) with an exception that the excessB(i)

function is allowed to reach value −h only when i = n. Clearly, the last position of such

sequences is a closing parenthesis, so that a sequence from N(n, h) is a sequence from

N(n− 1,−h + 1,−h) that is appended with a closing parenthesis. More formally, N(n, h)

is a set of sequences B of length n such that excessB(n) = −h, and excessB(i) > −h

for i, 0 ≤ i < n. We say that B ∈ N(n, h) satisfies the block condition. We will use the

sequences from N(n, h) to build the set of hard instances for the PARENTHESES problem.

We first show the following corollary that gives a lower bound on the number of sequences

in N(n, h).

Corollary 2. If h = O(
√

n) and n + h is even, then the number |N(n, h)| of sequences

78 Upper and Lower Bounds for Text Indexing Data Structures

that satisfy the block condition is

|N(n, h)| = Ω

(
h2n

n3/2

)

.

Proof. Clearly, the last position of B is a closing parenthesis, so that we can apply

lemma 12.

|N(n, h)| = |N(n− 1,−h + 1,−h)| =
(

n− 1

(n− h)/2

)

−
(

n− 1

(n + h)/2

)

=
(n− 1)!

(
n−h

2

)
!
(

n+h
2
− 1
)
!
− (n− 1)!
(

n−h
2
− 1
)
!
(

n+h
2

)
!
=

h

n

(
n

(n + h)/2

)

(3.13)

Equation 3.13 is also known as Bertrand’s ballot theorem [12]. For even values of n, we

can estimate
(

n
(n+h)/2

)

(
n

n/2

) =

(
n
2

)
. . .
(

n
2
− h

2
+ 1
)

(
n
2

+ h
2

)
. . .
(

n
2

+ 1
) =

(

1− h

n + h

)

. . .

(

1− h

n + 2

)

≥
(

1− h

n

)h/2

=

(

1− h

n

)(n/h)(h2/2n)

= (1/e− o(1))h2/2n.

Since h = O(
√

n), we can further bound (3.13) by

h

n
(1/e− o(1))h2/2n

(
n

n/2

)

= Ω

(
h2n

n3/2

)

(1/e− o(1))O(1) = Ω

(
h2n

n3/2

)

,

where we used the bound for the central binomial coefficient
(

n
n/2

)
= Ω(2n/

√
n).

Now we can show the following theorem.

Theorem 12. Let B be a balanced sequence of parentheses of length n. To support Q =

{findmatch(i)| 1 ≤ i ≤ n} queries with time cost t, we must incur space cost r at least

r = Ω((n lg t)/t).

Proof. Let us consider balanced parenthesis strings B of the following form:

• the string starts with hγ opening parentheses;

79

hγ
l

chunks

blocks

n

n1 n2 n3 n4

Upward segments correspond to opening parentheses, downward segments correspond

to closing parentheses, matching parentheses correspond to horizontal lines.

Figure 3.2: An example of excess function for n = 84, l = 9, γ = 4, and h = 3

• the rest of the string is divided into 2γ chunks of length l, l = (n− hγ)/(2γ); and

• the matching parenthesis γi = findmatch(ih + 1) is located in the 2(γ − i)-th chunk

for 0 < i < γ, and findmatch(1) = n.

B = ((. . . (
︸ ︷︷ ︸

hγ

∗ ∗ . . .∗
︸ ︷︷ ︸

l

∗ ∗. . .). . .∗
︸ ︷︷ ︸

l

. . . ∗ ∗. . .). . .∗
︸ ︷︷ ︸

l

∗ ∗. . .∗
︸ ︷︷ ︸

l

∗ ∗ . . . ∗)
︸ ︷︷ ︸

l
︸ ︷︷ ︸

2γ chunks

For an example, see Figure 3.2. Let H denote the corresponding set of bit vectors. Let

Q∗ = {findmatch(ih + 1)| 0 ≤ i < γ}. We construct the choices tree G(Q∗). There is

an important difference in the construction of G: if the query algorithm probes one of the

first hγ locations, then we do not count it as a probe, and do not create a separate node

for it in G. The additional bit probes in the construction of the choices tree (that might

be necessary to ensure that all leaves are at the same depth) can only be performed on the

last n−hγ bits of B, that is, no probes are performed on the first hγ bits (they are fixed).

The result of such probes is always 0 (corresponding to an opening parenthesis) for the bit

vectors in H.

80 Upper and Lower Bounds for Text Indexing Data Structures

We divide B into blocks, so that the first block starts at position hγ + 1 and ends

at position findmatch((γ − 1)h + 1), and the (γ + 1 − i)-th block starts at position

findmatch(ih + 1) + 1 and ends at position findmatch((i− 1)h + 1) for i, 1 ≤ i ≤ γ − 1.

Recall that n1, n2, . . . , nγ denote the lengths of these blocks, and
∑

i ni = n − hγ. The

problem instances were constructed such that we can guarantee that l ≤ ni ≤ 3l for

1 ≤ i ≤ γ. Namely positions findmatch(ih + 1) and findmatch((i + 1)h + 1) belong to

chunks that are 1 chunk away from each other (also recall that chunks are of length l).

Another property of our construction is that the i-th blocks satisfies the block condition

N(ni, h), since the i-th block starts at height (γ − i + 1)h + 1 (see Figure 3.2) and ends at

the height (γ − i)h + 1, and also the excess function never takes the value (γ − i)h + 1

in between these positions (for otherwise, the answer to the query findmatch(γ − i)h + 1)

would lie inside the block, which is impossible by the definition of blocks).

Let Z denote the set of all possible block configurations, that is, Z is the set of tuples

(n1, n2, . . . , nγ), such that there at least one hard problem instance from H, such that

n1, n2, . . . , nγ are the 1-st 2-nd, . . ., γ-th block length respectively for this instance. For

the first block there is at least ⌊l/2⌋ choices for its length n1, since the block has to end

inside the second chunk, and we also have to satisfy the parity condition, i.e. n1 +h has to

be even. In a similar fashion, we can show that for every 1 ≤ i ≤ γ, there are l/2 choices

for ni. Thus,

|Z| ≥
(⌊

l

2

⌋)γ

Using Corollary 2, we can estimate the number of such sequences

|H| =
∑

Z

γ
∏

i=1

|N(ni, h)| =
∑

Z

γ
∏

i=1

Ω

(

2nih

n
3/2
i

)

=
∑

Z
Ω(1)γ 2n−hγhγ

l3γ/2

= 2Θ(γ)

(
l

2

)γ
2n−hγhγ

l3γ/2
= 2Θ(γ)2n−hγ

(
h√
l

)γ

We can choose h =
√

l so that the precondition of Corollary 2 is satisfied. Hence, |H| =
2Θ(γ)2n−hγ.

Now we need to show an upper bound C∗(x) on the number of sequences C(x) com-

patible with any given leaf x of the choices tree G(Q∗). Recall that for the i-th block,

81

ui denotes the number of unprobed locations in it. Also note that the number of closing

parentheses in the i-th block is mi = (ni + h)/2. Note that the values ni and mi for a

given sequence B ∈ C(x) only depend on the leaf x, but not on a particular choice of

B ∈ C(x), so that they are well-defined as a function of leaf x. We can bound the number

of compatible sequences by

C(x) ≤
∏

i

(
ui

vi

)

≤
∏

i

(
ui

ui/2

)

We say that the i-th block is undetermined if ui ≥ l/2, and determined otherwise. For a

determined block, the total number of probes performed on it is at least l/2, since ni ≥ l,

so that the total number of such blocks is at most tγ/(l/2), since tγ is the total number

of probed bits. We choose l = 4t, so that the total number of undetermined blocks is at

least γ/2.

We bound
(

ui

ui/2

)
/2ui ≤ 1 for determined blocks, and we use Theorem 9 for undetermined

blocks, namely
(

ui

ui/2

)

≤ 4

5

2ui

√

ui/2
≤ 8

5

2ui

√
l
.

Thus, the total number of compatible sequences with x is at most
(

8

5

)γ/2
2

P

i ui

(
√

l)γ/2
=

(
8

10

)γ/2
2n−hγ−tγ

(
√

t)γ/2

since
∑

i ui = n− hγ − tγ. The total number of leaves in the choices tree is 2r2tγ , so that

2n−hγ−Θ(γ) ≤ |H| ≤ 2r+tγ

(
8

10

)γ/2

2n−hγ−tγt−
γ
4 ≤ 2n−hγ2r2Θ(γ)t−

γ
4

and hence

r ≥ γ

4
lg t−Θ(γ).

Since we chose l = 4t, and h = 2
√

t, we have to choose γ to satisfy the condition l =

(n− hγ)/(2γ). Namely, we have γ = n/(8t + 2
√

t) ≥ n/(10t), and thus,

r ≥ n

40t
lg t−Θ

(n

t

)

.

Chapter 4

The Text Searching Problem in the

Indexing Bit Probe Model

In this chapter, we consider lower bounds regarding the time-space tradeoff for the problem

of inverting permutations (PERMS) and the problem of searching in binary text strings

(TEXTSEARCH). We first focus on the problem PERMS described as follows: represent a

permutation such that queries {π(i)|1 ≤ i ≤ n} ∪ {π−1(i)|1 ≤ i ≤ n} can be implemented

efficiently. Our second problem, binary TEXTSEARCH, is as follows: Given a binary text

T , we are required to support two sets of queries: accessT (i) returns the contents of p

consecutive characters of the text T starting at position i, and searchT (X, j) returns the

j-th occurrence of a given pattern X of length p in T if it exists (and −1 otherwise). We

use L to denote the length of the text.

We study the PERMS problem in the indexing cell probe model first, and then improve

and generalize the results to the binary TEXTSEARCH problem in the indexing bit probe

model. The indexing bit probe model that we use for the binary TEXTSEARCH problem is

the same as in Chapter 3; however, the techniques are quite different.

This chapter is organized as follows. In Section 4.1, we discuss the related work,

contrast it with our contributions, state the main results of this chapter, and outline the

techniques that are used in the proofs. In Section 4.2, we prove a theorem regarding the

PERMS problem in the indexing cell probe model. In Section 4.3, we prove show a lower

bound for the TEXTSEARCH problem in the indexing bit probe model.

82

83

4.1 Introduction

The first lower bound for the binary TEXTSEARCH problem in the indexing bit probe model

was shown by Demaine and López-Ortiz [9, 10].

Theorem 13 (Demaine and López-Ortiz, Corollary 3.1 of [10]). For the substring report

problem in the indexing model, if p = lg L + o(lg L) and t = o((lg L)2/ lg lg L), then

r = Ω

(
L lg L

t

)

Gal and Miltersen [19] considered a weaker substring search problem that can be for-

mulated as follows: given a binary vector T of length L, and a pattern X of length p,

determine whether X occurs in T . They showed a different tradeoff:

Theorem 14 (Gal and Miltersen, Theorem 3 of [19]). For the substring search problem in

the indexing model, if p = Θ(lg n), then

r = Ω

(
L

t lg L

)

.

For small values of t, the bound of Theorem 13 is always bigger than in Theorem 14.

However, as t reaches Ω((lg L)2/ lg lg L), the techniques from [10] are not strong enough to

yield any meaningful lower bound on the index size, while Theorem 14 still gives a non-

trivial lower bound. Gal and Miltersen posed an interesting question [19]: “Can the two

techniques be combined to yield a better lower bound?”. More precisely, is the limitation

t = o((lg L)2/ lg lg L) essential for the substring search/report problem? We develop a new

compression technique and answer this question affirmatively by showing the following

result:

Theorem 15. For the substring report problem in the indexing bit probe model, if p =

lg L− o(lg L), t = o(
√

L/ lg L), then

r ≥







L
lg L

(D − t)
(
1−Θ

(
1
t

))
, for t ≤ D

2

LD2

4t lg L

(
1−Θ

(
1
D

))
, otherwise,

where D = lg L− lg lg L− 2 lg t.

84 Upper and Lower Bounds for Text Indexing Data Structures

In comparison with Theorem 13, our bound applies to a much wider range of parameters

t, namely

t ≤
√

L

lg L
,

versus

t ≤ lg L

lg lg L
.

In the range of applicability of Theorem 13, our bound is stronger. For example, in the

interesting case where t = c lg L, for a constant c, we obtain the bound

r ≥ L

4c
−Θ

(
L

lg L

)

,

while the bound of Theorem 13 is

r ≥ L
(

1 + 2c− 2
√

c(1 + c)
)

−Θ

(
L lg lg L

lg L

)

.

Our bound is stronger, since for c > 0,

1 + 2c− 2
√

c(1 + c) = 1− 2c(
√

1 + 1/c− 1) = 1− 2c

(

1/c

1 +
√

1 + 1/c

)

=

√

1 + 1/c− 1

1 +
√

1 + 1/c
=

1

c

1
(

1 +
√

1 + 1/c
)2 <

1

4c
.

For the PERMS problems, the first lower bound was shown by Munro, Raman, Raman,

and Rao [44].

Theorem 16. [44, Theorem 6] For the PERMS problem in the indexing cell probe model

with time cost t = o(lg n/ lg lg n), we have the following bound for the space cost:

r ≥ Ω

(
n lg n

t

)

.

85

In fact, they considered a more general permutation powers problem that can be defined

as follows. We are given a permutation on n elements π which must be represented so that

{πk(i)|1 ≤ i ≤ n, k ∈ Z} can be computed efficiently. In [44, Theorem 6], they reduced it

to the PERMS problem (a subcase in which k = ±1) with only n + o(n) extra bits of space.

Thus, the PERMS problem is almost as hard as the original permutation powers problem.

To show Theorem 16, they used the result of Demaine and López-Ortiz (Theorem 13) by

converting cell probes into bit probes. A disadvantage of these results is that the range

of applicability is quite small, t = o(lg n/ lg lg n). It is not unreasonable to have running

times higher than this. For example, an interesting data structure based on Benes networks

proposed by Munro et al. [44] offers very little redundant space in exchange for running

time t = O(lg n/ lg lg n). However, this is not an indexing data structure.

In the following theorem, we show an improvement over [44, Theorem 6], where the

constraint t = o(lg n/ lg lg n) is relaxed to t < n/2.

Theorem 17. For the PERMS problem in the indexing cell probe model with time cost

t < n/2, we have the following bound for the space cost:

r = Ω
(n

t
lg
(n

t

))

.

Similar techniques were used in cryptography by Gennaro and Trevisan [21, Lemma 1].

Although not explicitly claimed in [21], using their techniques it is possible to prove the

following bound on r:

r = Ω
(n

t
lg
(n

t2

))

.

for t = o(
√

n), which is weaker than in Theorem 17. Their techniques can be described as

follows. Their idea was to build a directed graph G on n vertices, such that there is an

edge from i to i′ if and only if “query π−1(i)” probes a location that contains i′. Without

loss of generality, we can assume that after the algorithm probes a cell j that contains the

value i, it terminates with answer j. Also, without loss of generality, we assume that the

algorithms probes the location j to “make sure” that the answer is indeed j. This can only

increase our running time by 1. They employ a greedy algorithm that starts out with the

sets I = [n] and Y = ∅. At each step, it removes the smallest element from I and includes

it into Y . Then it removes all elements i′ from I such that there is an edge from i to i′

86 Upper and Lower Bounds for Text Indexing Data Structures

and repeats the procedure. They argue that it takes at least n/(t + 1) steps before the

greedy terminates. They also show that the permutation π can be encoded using the set

Y , the set X = π−1(Y) and the sequence of probes. Our technique are slightly different:

we encode the sequence of probes P, and the markers L that denote how many probes were

used in the sequence of probes by the current “query π−1(i)”. Advantages of our encoding

compared to Gennaro and Trevisan are:

• we store only one set L in addition to P instead of two sets X and Y , and

• a new technique that allows us to compress P and L.

Yao [58, Theorem 2] also stated a similar lower bound for inverting 1-cycle permutations

and functions [n] 7→ [n] in the randomized case. The proof was omitted from [58] (extended

abstract) and to the best of our knowledge has not appeared. He considered the following

problem in the indexing bit probe model:

“Let N , m be positive integers. Consider the following game to be played by A and B.

There are N boxes with lids BOX1, BOX2, . . . , BOXN each containing a boolean bit. In the

preprocessing stage, Player A will inspect the bits and take notes using an m-bit pad.

Afterwards, Player B will ask Player A a question of the form ”What is in BOXi?”. Before

answering the question, Player A is allowed to consult the m bit pad and take off the lids

of an adaptively chosen sequence of boxes not including BOXi. The puzzle is, what is the

minimum number of boxes A needs to examine in order to find the answer?”

To show a lower bound for this problem, he used an encoding scheme similar to Gennaro

and Trevisan, namely, he simulated queries “what is in BOXi” for i from 1 to n each time

choosing a smallest index of the box that has not been opened by the previous queries.

The difference with the case of permutations is that when we are answering the query

“what is the value of π−1(i)?”, we do not restrict ourselves to probe any of the locations in

memory. In particular, we allow to probe the location j that contains the value i. Allowing

such probes (as it will be seen later in the proof) requires to introduce an additional bit

vector L that is responsible for keeping track of how many probes we performed before

such location j was accessed (if it was probed by the query).

87

Another contribution is a new technique that allows these results to be applied to

the substring report problem and that in conjunction with ideas from Demaine and López-

Ortiz [10] yields a stronger lower bound for the substring report problem, Theorem 15. The

main idea of their techniques is also similar to Yao [58] and Gennaro and Trevisan [21].

They simulate queries that compute π−1(i), each time choosing the smallest i that has not

been discovered so far. The main differences with Gennaro and Trevisan is that they adapt

this scheme for the indexing bit probe model using the following two ideas:

• They encode permutation π using the following bit vector

T = 0 binary⌈lg n⌉(π(1)− 1) 0
︸ ︷︷ ︸

⌈lg n⌉ + 2 bits

11 . . . 1
︸ ︷︷ ︸

⌈lg n⌉ + 1 bits

. . . 0 binary⌈lg n⌉(π(n)− 1) 0
︸ ︷︷ ︸

⌈lg n⌉ + 2 bits

11 . . . 1
︸ ︷︷ ︸

⌈lg n⌉ + 1 bits

.

• They treat the value π(i) as probed if there are at least k bits that are probed out

of the bits that encode π(i), for some integer parameter 0 ≤ k ≤ lg n.

Our contribution is a new compression technique that allows us combine the techniques of

Theorem 17 and these two ideas to obtain Theorem 15.

The general approach of the proofs of Theorem 17 and Theorem 15 is as follows. We

fix a representation of the index I and an algorithm A that computes π−1(i) for given i,

1 ≤ i ≤ n. Based on A and I, we will give an alternative encoding of permutations. For

any fixed π, this new encoding can be described as follows. We “simulate” the algorithm A

on queries q, q ∈ Q = {π−1(1), π−1(2), . . . , π−1(n)} in that order. For a query q, we store

the transcript of probes that A performed to the storage S. Namely, when A probes a bit

or a cell (depending on the problem in question), the result of which cannot be derived

from the probes or simulations performed earlier, we store the contents of the probed bit

or cell in P. We allow two deviations from this general scheme:

• It might happen that it is not “beneficial” for the encoding procedure to perform the

simulation for a query q, in which case we skip it, and call the query q absent. The

other queries are called present. We will clarify the notion of “beneficial” later in the

proof, here it is given for the proof overview purposes.

• While performing the simulation of a present query q, it might happen that it is

not beneficial to continue running it, in which case we terminate this simulation

88 Upper and Lower Bounds for Text Indexing Data Structures

immediately. However we do not remove any probes from P that A has made prior

to its termination.

At the end of all the simulations, we record information that will allow us:

• to decode which queries are present and which are absent; and

• for every bit (or cell, depending on the model) of the vector P, to determine which

of the present queries has performed the corresponding probe. By construction,

every present query q corresponds to a subsequence of consecutive bits (or cells,

respectively), possibly empty, in P.

We also store some extra information, to be described later, that allows us to decode π

entirely. Finally, we calculate the total size of all the parts of this new encoding. The

inequality on the size of index is derived by considering a permutation π that is incom-

pressible in the sense of Kolmogorov [37]. Namely, any encoding of π must use at least

lg n!−O(1) bits. Hence, in particular, our encoding that includes I as a part must use at

least lg n!− O(1) bits. This inequality will imply a lower bound on the size of the index.

4.2 Permutations

In this section, we present a proof of Theorem 17.

Proof. Let us fix the representation of index I, and the query algorithm A. Let t be the

time cost of A, and r be the space cost in bits (size of the index I). For every permutation

π, we perform the simulations of the queries in Q in the order π−1(1), π−1(2), . . . , π−1(n).

In the process of these simulations, we mark some of the cells as discovered.

In particular, (i) if a simulation probes an undiscovered cell, we mark it as discovered;

(ii) if the simulation π−1(i) successfully terminates with answer j, then we mark the cell

S[j] discovered. Recall, that S[j] stores the value of π(j), so that S[j] = i, since π−1(i) = j.

We call S[j] the target cell of π−1(i). Before running the next simulation in the list, say

q = π−1(i), we first check whether its target cell was discovered earlier; if so, then we

call the simulation q absent and skip it (since its result is already known), otherwise we

call it present, and proceed with the execution of the algorithm A on the query q. If the

89

simulation π−1(i) probes its target cell, it is terminated just before such a probe is made,

and we do not store the content of the target cell in P. We still call such a simulation

present and mark the target cell as discovered.

Let gq be the number of cells that were appended to P during the simulation of the

query q. We append 1gq0 to the bit vector L to indicate that the last gq cells were appended

to P by the simulation of q.

The encoding algorithm can be described as follows:

Algorithm 8 Encode Permutation

P is a sequence of cells, initially empty

L is a sequence of bits, initially empty

for all i = 1, 2, . . . , n do

if location π−1(i) is not marked as discovered then

Call simulation i present

Execute A on the query π−1(i)

Let l1, l2, . . . , lz denote the locations of the cells that A inspected in order of its

execution (z ≤ t)

Let j be the target cell (j = π−1(i))

for all f = 1, 2, . . . , z do

if location lf is not marked as discovered then

if lf = j then

{ Probing our target cell. Do not store S[lf] in P }
Break the loop on f { Proceed to the “Append 0 to L” statement }

Append S[lf] to the end of P
Append 1 to the end of L
Mark lf as discovered { Same location is never recorded twice}

Append 0 to the bit vector L
Mark j as discovered

At the end of execution of this encoding algorithm, we compress P and L down to

their information-theoretic minimum. The total length of L is n: whenever we discover a

90 Upper and Lower Bounds for Text Indexing Data Structures

cell, we also append 0 or 1 to L; and at the end all of the simulations, all of the cells are

discovered. The number of 0-bits in L is a, where a is the number of present simulations.

There are at most t probes per a present simulation, and hence, there are at most t + 1

discovered cells for each iteration of the loop on i in the encoding algorithm. Thus, the

number of present simulations, a, is at least n/(t + 1).

Let us count the total possible number of possible sequences P. First note, that the

same value does not appear twice in P, since the encoding algorithm cannot discover the

same cell twice. Let q1, q2, . . . , qa be all the present simulations, where qj corresponds to the

“query π−1(ij)”. Let g1, g2, . . . , ga be the numbers of cells that were used by q1, q2, . . . , qa

respectively, that is,

L = 1g101g20 . . . 1ga0,

where |P | =∑ gi = n− a. Note that by the construction, the value i1 cannot occur in the

first g1 cells of P, since if the encoding algorithm probes the value q1 it immediately exits

the simulation. The total number of possible subsequences P[1..g1] that correspond to the

probes made by the first query q1 is (n − 1)(n − 2) . . . (n − g1), since we can choose the

first element, P[1], from the set [n] \ {i1}; the second element, P[1], can be chosen from

the set [n] \ {i1,P[1]}; and so on. The total number of subsequences P[g1 +1..g1 + g2] that

correspond to the second query q2 is (n − g1 − 2)(n − g1 − 3) . . . (n − g1 − g2 − 1), since

P[g1 + 1] can be chosen from the set [n] \ {i1, i2,P[1],P[2] . . .P[g1]}, the element P[g1 + 1]

can be chosen from the set [n] \ {i1, i2,P[1],P[2] . . .P[g1 + 1]}; and so on. Thus, the total

possible number of sequences P is

M = (n− 1)(n− 2) . . . (n− g1)

(n− g1 − 2)(n− g1 − 3) . . . (n− g1 − g2 − 1)

(n− g1 − g2 − 3)(n− g1 − g2 − 4) . . . (n− g1 − g2 − g3 − 2) . . .

Note that this product consists of n− a distinct factors chosen from the set [n]. In other

words,

M =
n!

∏a
k=1 xk

,

91

where we denote

xk = n− (k − 1)−
k−1∑

j=1

gk,

for k ∈ [a].

Let us describe the compression scheme for sequences P and L. Intuitively, the idea

of this encoding is as follows. Since P can be encoded using lg M = lg n! − ∑k lg xk

bits, we can pack L in the remaining bits as follows. If xk is larger than t, then we can

afford to encode gk using lg t bits, and still “save” the remaining lg xk− lg t bits. However,

if xk is smaller than t, we cannot allow to spend lg t bits for gk. However, recall that

gk = xk − xk−1− 1, so that gk ≤ xk − 1, and we can encode gk using lg xk bits. We did not

manage to save any bits in the former case, but at least we do not lose any.

More formally, for k such that xk > t, we encode gk as a value in the range from 0 to

t, for other k, we encode gk as a value in the range from 0 to xk − 1. The length of the

information-theoretic encoding of L is then

⌈

lg

(

(t + 1)α

a∏

k=α+1

xk

)⌉

.

The length of the information-theoretic encoding of P is ⌈lg M⌉. The total length of the

encodings of L andM together is at most

lg n!− lg

(
∏

k=1

α
xk

t + 1

)

+ 2.

Since xk ≥ n − (k − 1) − (k − 1)t = n − (k − 1)(t + 1), we have that xk ≥ n/2 for

k ≤ n/(2(t + 1)). Therefore,

lg
α∏

k=1

xk

t + 1
≥ lg

n/(2(t+1))
∏

k=1

xk

t + 1
≥ n

2(t + 1)
lg

(
n

2(t + 1)

)

.

We conclude that the length of encoding of P and L is at most

lg n!−Θ
(n

t
lg
(n

t

))

.

92 Upper and Lower Bounds for Text Indexing Data Structures

Now let us show that using A, I, P, and L we can decode π. We run the encoding and

decoding algorithms in parallel in order to justify the correctness of the decoding algorithm.

The decoding algorithm starts with an uninitialized array S of n elements, at the end of

the decoding algorithm, we should obtain S[i] = π(i).

In the loop of the decoding algorithm, we maintain the invariant that S[j] is initialized

with π(j) if and only if π(j) is discovered. In other words, value i is written somewhere

in array S if and only if π−1(i) is marked as discovered. At each step, the decoding

algorithm chooses the smallest value i that has not been written to S. Clearly, this step

corresponds to the step of the encoding algorithm where we choose the first i such that

π−1(i) is not marked as discovered. Next, the decoding algorithm performs the simulation

on q = “query π−1(i)”. It starts by reading g, the number of cells probes that q needs to

perform in order to obtain the answer to q or before the simulation of q probes the target

cell with value i. Then it decodes the sequence N of next g values from the sequence P
that will be fed to the simulation of q. More formally, we decode the sequence of g distinct

values that are chosen from the subset of the values that are currently not written to S and

are different from i. (Recall that, i is never probed during the simulation of q.) Next, it

proceeds with the simulation retrieving the probes from S if possible, and if not, retrieving

the probes from the decoded sequence N . The simulation terminates in two cases: (i)

naturally, if the algorithm A terminates after reading the last probe, or (ii) forcefully,

if the algorithm tries to obtain g + 1-st probe from N . In the latter case, the encoding

algorithm has just made the probe to the target cell and terminated the simulation. Hence,

the decoding algorithm writes the value i in the address of S that is currently requested,

and proceeds to the next simulation. In the former case, the algorithm returned j as the

result of π−1(i), so that the decoding algorithm writes S[j] = i and proceeds to the next

simulation. The decoding algorithm can be also described in pseudo-code:

Algorithm 9 Decode Permutation

Start with an uninitialized storage S

for all i = 1, 2, . . . , n do

if the value i does not occur in S then

{ The simulation i is present }

93

Read g, the number of discovered cells, from L.

Decode the next g cells from the sequence P.

Start simulating A on the input i

When A needs to probe the cell at a location l

if S[l] is initialized then

Provide the value S[l] to the algorithm A

else

Read the next bit b from L
if b = 0 then

{ This probe is made to the target cell}
Initialize S[l] with i

Terminate the simulation and put control back to the beginning of the loop on

i

Initialize S[l] with the next value in the sequence P
Provide the value S[l] to the algorithm A

Keep running the simulation until it stops naturally with an answer j

Initialize S[j] with i

The length of our encoding is |I| plus the size of the encoding of P plus the size of the

encoding of L. There are at least a constant fraction of permutations that have high

Kolmogorov complexity [37] of K = lg n!−O(1), and therefore cannot be described using

less than K bits. Consider such a permutation π. In particular, the length of our encoding

must be

r + lg n!−Θ
(n

t
lg
(n

t

))

≥ lg n!−O(1),

It follows that

r = Ω
(n

t
lg
(n

t

))

.

94 Upper and Lower Bounds for Text Indexing Data Structures

4.3 Text Searching

In this section, we present a proof of Theorem 15. It combines the techniques of the proof

of Theorem 17 and of Demaine and López-Ortiz [10].

Proof. Let A be an algorithm that implements a substring report query on a string of length

L with time cost t and space cost r. We set L = n(2 lg n + 3). Let π be a permutation on

n elements. We will encode π as a text T of length L:

T = 0 binary⌈lg n⌉(π(1)− 1) 0
︸ ︷︷ ︸

⌈lg n⌉ + 2 bits

11 . . . 1
︸ ︷︷ ︸

⌈lg n⌉ + 1 bits

. . . 0 binary⌈lg n⌉(π(n)− 1) 0
︸ ︷︷ ︸

⌈lg n⌉ + 2 bits

11 . . . 1
︸ ︷︷ ︸

⌈lg n⌉ + 1 bits

. (4.1)

The part of T that encodes π(i) − 1 is called the i-th chunk. The bits of T that do not

depend on π are called separators. For each i = 1, 2, . . . , n in that order, we simulate the

following query

qi = search(0 binary⌈lg n⌉(i− 1) 0)

that searches for a pattern X of length p = ⌈lg n⌉+2. The separators of the form 0 1⌈lg n⌉+1 0

ensure that the answer to the query qi is the π−1(i)-th chunk. The pattern X cannot overlap

with two consecutive chunks since binary⌈lg n⌉(i− 1) does not contain 1⌈lg n⌉+1.

In the process of these simulations, we mark some of the bits in T as discovered. Initially,

all the separator bits are marked as discovered. The bits are also marked as discovered in

the following two cases:

• if a simulation probes an undiscovered bit, we mark it as discovered;

• if the simulation qi successfully terminates with an answer (2⌈lg n⌉ + 3)j + 1, then

we mark all the bits in the j + 1-th chunk as discovered. Recall that, in this case,

the j + 1-th chunk encodes i− 1 in binary, so j + 1 = π−1(i).

We call the j + 1-th chunk, the target chunk of qi. Let k ≤ ⌈lg n⌉ be a parameter. We

will choose k later in the proof. Before running the next simulation in the list, say qi, we

first check whether its target chunk has more than k discovered bits; if so, then we call

the simulation qi absent and skip it. We know more than k bits of its target chunk, so it

is not “beneficial” to run qi. Otherwise we call it present, and proceed with the execution

95

of the algorithm A on the query qi. Let A be a binary vector of length n, A[i] = 1 if

the query qi is present. Similarly to the proof of Theorem 15, as the algorithm probes the

locations in the bit vector, we immediately store them in the bit sequence P. However,

if the simulation qi probes a location from its target chunk, it is terminated just before

such probe is made, and we do not store in P the content of the bit at this location. We

still call such a simulation present and mark all the bits in its target chunk as discovered;

we can say (informally) that the last location that A tried to probe while simulating qi

just before it was terminated uniquely identifies the target chunk of qi. Note the bit at a

location l might be marked as discovered twice: once, probed by the simulation of a query

qi, and the second time, when it is a part of the target chunk of another query qj; we call

such locations overlaps. By the construction, there are at most k such bits per query qj

(otherwise, qj is called absent and skipped during simulations).

Let q be the current query, and gq be the number of bits we appended to P when

simulating q (in other words, the number of discovered bits). Then we append 1gq0 to the

bit vector L to indicate that the previous gq bits in L belong to the simulation of the query

q. Finally, we store the contents of all the undiscovered bits from left to right in the bit

vector R.

Algorithm 10 Encode Bit String

P, L, and R are sequences of bits, initially empty

A is a binary vector of length n

for all i = 1, 2, . . . , n do

if the target chunk of qi has at most k probed bits then

{ Simulation i is called present }
Set A[i] to 1

Simulate A on the query qi

Let l1, l2, . . . , lz denote the locations of the bits that A probed in order of its execu-

tion (q ≤ t)

Let (2⌈lg n⌉+ 3)j + 1 be the output of A { the first position of the target chunk of

qi }
for all f = 1, 2, . . . , z do

96 Upper and Lower Bounds for Text Indexing Data Structures

if location lf is not marked as discovered then

if lf belongs to the target chunk then

Terminate the loop on f

Append T [lf] to the end of P
Append 1 to the end of L
Mark lf as probed {The same location is never recorded twice in P}

Append 0 to the end of L
Mark all the bits in the target chunk as discovered { Some of the bits in the target

chunk might have already been marked as discovered, recall that in this case we call

those bits overlaps, and there are at most k such bits }
else

{ Simulation i is called absent }
Set A[i] to 0

We will now compress the bit vectors P, R, L, and A. Let us denote the number of present

simulations by a. We call a chunk present if it is the target chunk of a present simulation,

otherwise call it absent. We introduce an additional bit vector C′ of length n, C′[i] = 1 if

the chunk i is present, and C′[i] = 1 otherwise. In other words, the chunk j is present if

and only if it had at most k discovered bits at the moment when the simulation for the

query qi was about to execute, where i = π(j). We encode all the bits in all the absent

chunks in the bit vector R′ from left to right. Note that these bits are of two types: all

the bits recorded in R, and some of the bits from P. The bit vector C′ can be encoded

using ⌈lg
(

n
a

)
⌉ bits of space. The bit vector R′ can be compressed in a similar fashion to

the proof of Theorem 17, namely, R′ stores the n− a distinct numbers (the contents of all

the chunks are distinct from each other) from {0, 1, . . . , n−1} and hence it can be encoded

using ⌈lg(n!/a!)⌉ bits. Using C′ and R′ we can restore the contents and the locations of

all the absent chunks. Note that storing the bit vector A is no longer necessary, since the

i-th simulation is present if and only if the chunk encoding i− 1 is not among the absent

chunks. Also, we can remove all the bits that are located in the absent chunks from P to

obtain P ′ (since those bits are encoded in R′); respectively, we remove the corresponding

1-bits from L to obtain L′.

97

Since we removed from P all the bits that are in absent chunks, the sequence P ′ consists

of overlap bits only. Denote the number of overlap bits by v = |P ′|. Since in each present

chunk we have at most k overlap bits, it follows that |P ′| ≤ ak. The bit vector L′ consists

of the concatenation of bit vectors 1f ′

i0 for all present queries qi in increasing order of i.

The value f ′
i denotes the number of bits that corresponds to qi in P ′, that is, the bits that

were recorded in P during the simulation of qi, and were not removed from P later (i.e.,

the overlap bits). The length of L′ is |P ′| + a, and a of them are 0-bits. Thus, we can

encode L′ using only ⌈lg
(

ak+a
a

)
⌉ bits of space, we pad L′ with 1-bits as necessary so that

its length is exactly ak +a. Using the index I, the algorithm A, and the bit vectors P ′, R′,

L′, and C′, we can decode the permutation π. The decoding can be described in a fashion

similar to Algorithm 9 as follows:

Algorithm 11 Decode Bit String

Let T be a bit vector of length L = n(2 lg n + 3).

Initialize all the separator positions with corresponding separators

Using R′ and C′, initialize all the absent chunks in T

for all i = 1, 2, . . . , n do

if (i− 1) does not occur as the content of an absent chunk then

{ qi is present }
Simulate A on the query qi

When A needs to probe the bit at a location l in T

if T [l] is initialized then

Provide T [l] to the algorithm A

else

Read the next bit g from L′

if g = 0 then

{This probe is made to an undiscovered location in the target chunk}
Let j be the chunk where l is located

Initialize the bits of the j-th chunk of T with binary⌈lg n⌉(i− 1)

Terminate the simulation and put control back to the beginning of the loop on

i

98 Upper and Lower Bounds for Text Indexing Data Structures

Initialize T [l] with the next bit in the sequence P ′

Provide the value T [l] to the algorithm A

Keep running the simulation until it stops naturally with an answer (2⌈lg n⌉+3)j+1

Initialize the j + 1-st chunk of T with binary⌈lg n⌉(i− 1)

Consider permutations that are hard in Kolmogorov’s sense, i.e. the minimum length of

their descriptions is at least lg n!−O(1). The length of our encoding for such permutations

is then

|I|+ |R′|+ |C′|+ |L′|+ |P ′| ≥ lg(n!)− O(1). (4.2)

Recall that R′ can be encoded using ⌈lg(n!/a!)⌉ bits, C′ can be encoded using ⌈lg
(

n
a

)
⌉ bits,

L′ can be encoded using ⌈lg
(

ak+a
a

)
⌉ bits, and the length of P ′ is at most v. We estimate

all these quantities up to an O(a) additive term:

|I| ≥ ⌈lg(n!)⌉ − ⌈lg(n!/a!)⌉ −
⌈

lg

(
n

a

)⌉

−
⌈

lg

(
ak + a

a

)⌉

− v (4.3)

≥ a lg a− a lg
n

a
− a lg k − v −Θ(a) = a lg

a2

nk
− v −Θ(a). (4.4)

(4.5)

The total number of bits A probed during a present simulations is at most ta; v of these bits

were probed in the present chunks and hence at most ta− v in the absent ones. However,

there are at least (k+1)(n−a) bits probed in the absent chunks by definition of the absent

chunks. Therefore, ta− v ≥ (k + 1)(n− a) ≥ k(n− a).

To bound expression (4.3), we prove the following technical lemma.

Lemma 13. Let n and t be some fixed parameters, such that t = ω(1) and n/t2 = ω(1).

Denote

f(k, a, v) = a lg
a2

nk
− v − ca,

where parameters k, a and v satisfy the constraint

v ≤ min{ak, a(t + k)− nk},

99

and c is a constant. Then

max
k

min
a,v

f(k, a, v) ≥







n
(
lg
(

n
t2

)
− t
) (

1−O
(

1
t

))
, if t < lg(n/t2)

2

n
4t

(
lg
(

n
t2

))2
(

1− O
(

1
lg(n/t2)

))

, otherwise.

Proof. Function f is not hard to minimize. The minimum over v for fixed a is achieved

when v = min{ak, a(t + k)− nk}.
First consider the case where ak ≤ a(t + k)− nk, i.e. where a ≥ nk/t. Then,

f(k, a, ak) = a lg

(
a2

2cnk2k

)

is an increasing function for values of a where f is positive. Since we can control parameter

k, we will choose it such that 2cnk2k ≤ a2 for all a ≥ nk/t. It is equivalent 2k/k ≤ 2−cn/t2.

It suffices to choose k = lg(n/t2), since 2k/k < 2−c2k = 2−cn/t2, since k = ω(1) > 2c. Then,

the minimum equals to

g1(k) =
nk

t
lg

(
nk

t22k

)

−Θ

(
nk

t

)

.

Next, consider the case where a < nk/t, and so v = a(t + k)− nk. We have

f(k, a, a(t + k)− nk) = nk + a

(

lg

(
a2

nk

)

− (k + t)− c

)

.

A local minimum is achieved when

f ′
a(k, a, a(t + k)− nk) = lg

a2

nk
+ 2 lg e− (k + t)− c = 0.

By substituting lg(a2/(nk)) = k + t− 2 lg e− c, we obtain that the value of the minimum

is

g2(k) = nk − 2a lg e < nk −O

(
nk

t

)

.

It remains to find

max
k∈[0,lg(n/t2)]

min{g1(k), g2(k)}.

This maximum can be achieved in the following cases: (i) at a point where g1(k) = g2(k),

(ii) at a local maximum of g1(k), (iii) at a local maximum of g2(k), or (iv) at a boundary

points k = 0 or k = lg(n/t2).

100 Upper and Lower Bounds for Text Indexing Data Structures

(i) g1(k) = g2(k) when t = lg nk
t22k . In this case, we have k − lg k = lg(n/t2)− t, and

g1(k) = g2(k) = nk − O

(
nk

t

)

≥ n
(

lg
(n

t2

)

− t
)

−O

(
nk

t

)

.

Note that this case only applies when t < lg(n/t2). For the case t > lg(n/t2), we

have that g1(k) < g2(k) for all k.

(ii) Local maxima of g1(k) are given by the following condition

g′
1(k) =

n

t

(

lg

(
nk

t22k

)

+ lg e− k

)

= 0.

Thus 2k = lg(enk/t2) ≥ lg(n/t2). Substituting lg
(

nk
t22k

)
= k − lg e, we obtain

g1(k) =
nk2

t
− O

(
nk

t

)

≥ n

4t

(

lg
(n

t2

))2

−O

(
nk

t

)

.

This case applies if g1(k) ≤ g2(k)⇔ k ≤ t⇔ lg(n/t2) ≤ 2t.

(iii) The function g2(k) does not have local maxima.

(iv) At a point k = lg(n/t2), we have that

min{g1(k), g2(k)} = min

{

nk,
nk lg k

t

}

≤ n lg(n/t2) lg lg(n/t2)

t

= o

(
n

t

(

lg
(n

t2

))2
)

,

so that it is smaller than the value in (ii) and should not be considered. In the case

k = 0, we have g1(k) = g2(k) = 0.

Let us compare the values in the case (i) and case (ii). We have

(

lg
(n

t2

)

− t
)

≤
(
lg
(

n
t2

))2

4t
, since

(

lg
(n

t2

)

− 2t
)2

≥ 0.

Hence the value of (ii) is always greater than the value of (i), and they are equal when

t = (lg(n/t2))/2. However, the case (ii) only applies for values t ≥ (lg(n/t2))/2, hence, if

t < (lg(n/t2))/2, we must use the case (i). The lemma follows.

101

We can also reduce the length of the bit vector T by using separators of the form

01z0 instead of 01⌈lg n⌉+10 for some parameter z. In the following, for simplicity of the

presentation, we assume that n is a power of 2. We call a number i ∈ [n] valid if its binary

encoding does not contain 1z anywhere in it. Let Mz
n be the set of all valid numbers. We

choose z = 2 lg lg n, and bound

n′ = |Mz
n| ≥ n− (⌈lg n⌉ − z + 1)2⌈lg n⌉−z ≥ n− 2n lg n

(lg n)2
= n− o(n)

by excluding all the numbers that have a substring 1z starting at position j for all the

positions j = 1, 2, . . . , ⌈lg n⌉−z+1. We will encode a permutation on [n′] elements instead

of n, and simulate queries for valid numbers only; note the set M2 lg lg n
n depends on n only,

so we do not need to encode it explicitly. Inequality (4.2) becomes

|I| ≥ lg(n′!)− lg(n′!/a′!)− lg

(
n′

a′

)

− lg

(
a′k′ + a′

a′

)

− v′,

We apply Lemma 13 to this expression, and obtain

|I| ≥ a′ lg

(
a′2

n′k′

)

− v′ −Θ(a′) ≥







n′(D − t)
(
1− O

(
1
t

))
, if t < D

2

n
4t

D2
(
1− O

(
1
D

))
, otherwise.

(4.6)

Where we denoted D = lg(n′/t2).

The length of the bit vector B′ with short separators is

L′ = n′ lg n + 2n′ lg lg n + 2n′ < n′ lg n′ + 2n′ lg lg n′ + 3n′.

Hence, n′ > L′/ lg L′ and D > lg L′− lg lg L′−2 lg t. Substituting this into (4.6), we obtain

|I| ≥







L′

lg L′
(D − t)

(
1−Θ

(
1
t

))
, for t ≤ D

2

L′D2

4t lg L′

(
1−Θ

(
1
D

))
, otherwise.

The statement of the theorem follows.

Chapter 5

Lower Bounds in the Non-Indexing

Model

In this chapter, we consider lower bounds in the cell probe model. In contrast with the

lower bounds of Munro et al. [44] and Demaine and López-Ortiz [10] and their extensions in

Chapter 4, we make no indexing model assumption about the representation. For example,

in the case of the PERMS problem, we do not assume that the permutation is stored in its

raw form in slow memory together with some extra indexing information in fast memory.

5.1 Introduction

In this section, we define the problems and the notation that will be used throughout this

chapter. We start by introducing notation. Let H be the set of combinatorial objects.

Let Υ =
⌈

log |H|
w

⌉

be the information-theoretic minimum space to represent an object from

H. That is, we need at least Υ cells each of size w bits to identify an object from H
uniquely. For example, in this chapter, we consider several types of combinatorial objects:

permutations π on n elements (|H| = n!), texts T of length L over an alphabet of size σ

(|H| = σL), and binary matrices R of size m× n with f 1-bits (|H| =
(

mn
f

)
).

Let S denote the storage. S is an array of |S| = Υ + r cells. We call r the redundancy.

A storage scheme is an injective mapping Rep from objects H to arrays S. That is, we

only consider deterministic storage schemes Rep (the storage is determined by the object).

102

103

Let Q be the set of queries that are to be implemented on objects H. This set is given

through a function g as follows:

Q = {“query (g, B, x1, x2, . . . , xk)”|B ∈ H, (x1, x2, . . . , xk) ∈ X},

where g is a function g : H × X → Y . That is, g is a function that is defined for any

object B ∈ H and for any set of parameters that belong to some given domain X , the

range of this function is some given set Y . From now on, to ease the notation, we will use

“query g(B, x1, x2, . . . , xk)” instead of “query (g, B, x1, x2, . . . , xk)”.

For example, consider the case of the PERMS problem. The set of objects is H =

{π| π is a permutation on n elements }. The set of queries is given by a function g that

has two parameters: degree d ∈ {+1,−1}, and element i ∈ [n], so that X = {+1,−1}× [n].

The range of this function is Y = [n]. The answer to the query g(π, d, i) is πd(i). We denote

g(π, 1, i) by “query forw permπ(i)”, and g(π,−1, i) by “query inv permπ(i)”.

Consider the case of the TEXTSEARCH problem. The set of objects

H = {T | T is a text of length L on an alphabet Σ of size σ }.

The set of queries is given by a function g that has three parameters x1 ∈ {0, 1}, x2 and

x3, where x1 = 0 indicates an access query and x1 = 1 indicates a search query.

• In the case of an access query, x2 ∈ [L − p + 1] is the position in the substring of

length p that we are to access, and x3 is not used. The answer to the query g(T, 0, x2)

is the substring of T of length p that starts at position x2.

• In the case of a search query, we are to search for the x3-th occurrence of the pattern

x2 in the text T and output its position if it exists and output −1 if it does not exist,

for x2 ∈ Σp and x3 ∈ [L].

The range of g(T, x1, x2, x3) is therefore Y = Σp∪ [L−p+1]∪{−1}. We denote g(T, 0, x2)

by “query accessT (x2)”, and g(T, 1, x2, x3) by “query searchT (x2, x3). In the rest of the

chapter, we denote the search pattern by X instead of x2.

Consider the binary relation problem. The set of objects is

H = {R| R is an m× n binary matrix containing f 1-bits }.

104 Upper and Lower Bounds for Text Indexing Data Structures

The set of queries is given by a function g with three parameters: x1 ∈ {0, 1}, x2 and x3,

where x1 = 0 indicates that it is a row query and x1 = 1 indicates that it is a column

query.

• In the case of a row query, we are to search the x2-th row for the x3-th 1-bit and

output its position if it exists, and −1 if it does not exist, where x2 ∈ [m] and x3 ∈ [n].

• In the case of a column query, we are to search the x3-th column for the x2-th 1-bit

and output its position if it exists, and −1 if it does not exist, where x2 ∈ [m] and

x3 ∈ [n].

We denote g(R, 0, x2, x3) by “query row selR(x2, x3)”, and g(T, 1, x2, x3) by “query

col selR(1, x2, x3)”. The range of g(R, x1, x2, x3) is Y = [max{n, m}] ∪ {−1}.
In these specific examples, and in the general approach to our proof technique, we have

two types of queries: forward queries and inverse queries. This division depends on the

problem in question and is essential for the proofs. For example, for the PERMS problem,

we say that “queries forw permπ(i)” are forward, and “queries inv permπ(i)” are inverse

for i ∈ [n]. For the TEXTSEARCH problem, we say that “queries accessT (i)” are forward

and “queries searchT (X, j)” are inverse. For the binary relation problem, we call ”queries

row selR(i, x)” forward and “queries col selR(x, j)” inverse. Intuitively, the meaning of

forward and inverse queries is that we can reconstruct a given object B ∈ H knowing

only answers to all the forward or all the inverse queries. The forward and inverse queries

describe a combinatorial object from different points of view. For example, a permutation

π on n elements is determined by the values of

forw permπ(1), forw permπ(2), . . . , forw permπ(n)

as well as by the values

inv permπ(1), inv permπ(2), . . . , inv permπ(n)

a text T can be reconstructed using only access or only search queries; and a binary

relation R can be described uniquely by using only row sel or only col sel queries.

Let us fix a combinatorial object B. Depending on B, we fix two sets of queries: a

subset of the forward queries FB ⊂ Q and a subset of the inverse queries IB ⊂ Q so that

105

|FB| = |IB|. We also fix a bijection ηB between these sets. The sets FB and IB and

the bijection ηB will be chosen later depending on the problem in question. We start by

giving some intuition about them. The first property (i) is that the object B is uniquely

determined by either of the two: the set FB (namely, an encoding of the parameters of

every query in FB) and (an encoding of) the values returned by all the queries in FB, or the

set IB and the values returned by all the queries in IB. The correspondence ηB between

forward and inverse queries is such that a forward query q ∈ FB and its counterpart

q′ = η(q) ∈ IB are “responsible for the same part” of the object B. Such a pair q, q′ is

called a reciprocal pair, and q and q′ are called reciprocal (with respect to the object B) to

each other. The second property (ii) is that the object B is uniquely determined by the

sets FB, IB and the mapping ηB.

For example, consider the case of the PERMS problem with a permutation π on n ele-

ments. Define

Fπ = {“query forw perm(i)” | i ∈ [n]},
Iπ = {“query inv perm(i)” | i ∈ [n]},

ηπ(“query forw perm(i)”) = “query inv perm(j)”, where j = π(i).

The queries forw perm(i) and inv perm(j) are reciprocal for π if π(i) = j (or π−1(j) = i).

In the example in Figure 5.1, we have

query forw perm(1) forw perm(2) forw perm(3) forw perm(4)

η(query) inv perm(7) inv perm(5) inv perm(2) inv perm(1)

query forw perm(5) forw perm(6) forw perm(7)

η(query) inv perm(6) inv perm(4) inv perm(3)

Next, consider the case of the TEXTSEARCH problem.

FT = {“query access(ip + 1)”|0 ≤ i < L/p},
IT = {“query search(X, j)”|searchT (X, j) = ip + 1

for some integer i, 0 ≤ i < L/p },
ηT (“query access(ip + 1)”) = “query search(X, j)”,

where searchT (X, j) = ip + 1.

106 Upper and Lower Bounds for Text Indexing Data Structures

query 1 2 3 4 5 6 7 8 9 10 11 12 13
π(1) × × ×
π(2) × × × ×
π(3) × × ×
π(4) × × ×
π(5) × × ×
π(6) × × ×
π(7) × × ×

π−1(1) × × × ×
π−1(2) × × × ×
π−1(3) × × × ×
π−1(4) × × × ×
π−1(5) × × × ×
π−1(6) × × × ×
π−1(7) × × × ×
P (d1) × × × del × × × × ×

Locations that are used by at least β =
⌈

7·3

13/2

⌉

= 4 forward queries or by at least

β′ =
⌈

7·4

13/2

⌉

= 5 inverse queries are discarded (vertical lines).

Let d1 = 5.
The following table describes various sets:

set consists of queries
F (d1) π(1), π(3), π(4)
I(d1) π−1(1), π−1(2), π−1(3), π−1(7)
(F (d1))

−1 π−1(7), π−1(2), π−1(1)
(I(d1))

−1 π(4), π(3), π(7), π(1)
F ′(d1) = F (d1) ∩ (I(d1))

−1 π(1), π(3), π(4)
I ′(d1) = I(d1) ∩ (F (d1))

−1 π−1(1), π−1(2), π−1(7)
Q(d1) = (F (d1))

−1 ∪ (I(d1))
−1 π(1), π(3), π(4), π(7), π−1(1), π−1(2), π−1(7)

µd1
is a mapping between F ′(d1) and I ′(d1), and is as follows

query π(1) π(3) π(4)
µd1

(query) π−1(7) π−1(2) π−1(1)

or if we enumerate the queries in the lexicographical order (increasing order of
paremeter), µd1

is

lexicographical order of query 1 2 3
µd1

(lexicographical order of query) 3 2 1

The set of protected cells, P (d1), is the union of cells that are used by queries in
Q(d1) except for d1, P (d1) = {1, 9}∪{1, 9}∪{4, 6}∪{1, 6, 12}∪{2, 4, 10}∪{1, 9, 11}∪
{2, 9, 10} = {1, 2, 4, 6, 9, 10, 11, 12}

Let π be the following permutation
i 1 2 3 4 5 6 7

π(i) 7 5 2 1 6 4 3

The following table shows an example os a data structure with t = 3 (number of
probes by forward queries), and t′ = 4 (number of probes by inverse queries), where
the cross on the intersection of the row labeled by q and the column labeled by d

means that the query q probes the location d.

Figure 5.1: Deleting a cell

107

The queries access(ip + 1) and search(X, j) are reciprocal if they are “responsible” for

the substring of T from position ip + 1 to position (i + 1)p.

Finally, in the case of the binary relation problem, we define

FR = {“query row sel(i, x)”|1 ≤ i ≤ m, 1 ≤ x ≤ row nb(i)}
IR = {“query col sel(x′, j)”|1 ≤ j ≤ n, 1 ≤ x′ ≤ col nb(i)}
ηR(“query row sel(i, x)”) = “query col sel(x′, j)”,

if row sel(i, x) = j and col sel(x′, j) = i.

The queries row sel(i, x) and col sel(x′, j) are reciprocal if they select the same 1-bit in

R. It turns out that for the proof of the main lemma, this correspondence encapsulates

the important properties of the problems that we are interested in: the PERMS problem,

the TEXTSEARCH problem, and the binary relation problem.

Assume that we have encodings of the sets FB and IB. An encoding of FB (respectively,

IB) is a description of the parameters of every query from FB (respectively, IB). Also

assume that we have answers for queries F∗
B ⊆ FB and I∗B ⊆ IB. And finally assume

that for each query q /∈ F∗
B such that η(q) /∈ I∗B, we know its reciprocal q′ = η(q). If we

can reconstruct the object B using only this information, then we say that the problem

possesses the reciprocal property. More formally,

Definition 4. Consider a problem of representing objects H. We say that the problem

possesses the reciprocal property if for every object B ∈ H, we can find subsets FB ⊆ F ,

IB ⊆ CI, and a bijection ηB between them, such that for any subsets F∗
B ⊆ FB and

I∗B ⊆ IB, the object B is uniquely identified by

• encodings of FB and IB,

• encodings of F∗
B and I∗B,

• the answers to all the queries F∗
B and I∗B, and

• an encoding of the bijection ηB restricted to the set FB \ F∗
B \ η−1(I∗B) (which maps

to the set IB \ I∗B \ η(F∗
B)).

108 Upper and Lower Bounds for Text Indexing Data Structures

Notice that in our three examples, if we know the fact that queries q and q′ are reciprocal

(i.e. q = ηB(q′)) then we actually know the answers to both q and q′ as well. Namely,

for the PERMS problem, if q = “query forw permπ(i)” and q′ = “query inv permπ(j)”

then forw permπ(i) = j and inv permπ(j) = i. For the TEXTSEARCH problem, if q =

“query accessT (ip + 1)” and q′ = “query searchT (X, j)”, then accessT (ip + 1) = X and

searchT (X, j) = ip + 1. For the binary relations problem, if q = “query row selR(i, x)”

and q′ = “query col selR(x′, j)”, then row selR(i, x) = j and col selR(x′, j) = i. Thus,

for our three problems, we can assume that for every reciprocal pair (q, q′), we either know

the answer to q or to q′ (or to both). In particular, for the PERMS problem, we either know

the value of forw permπ(i) or we know some j, such that inv permπ(j) = i, and thus π can

be reconstructed. In the TEXTSEARCH problem, we either know the value of access(ip + 1)

or we know that there is some query q′ = “query search(X, j)” such that the answer to q

is ip+1; in both cases we can reconstruct the substring of T from position ip+1 to position

(i+1)p. For the binary relation problem, we start with a matrix R initialized with 0 entries.

For each query q that we know an answer to, we write a 1-bit to the corresponding entry

in R, e.g. if the answer to the query row sel(i, x) is j, then a 1-bit is written to location

(i, j) of R. Since for every pair of reciprocal queries we know the answer to at least one,

all the f of 1-bits will be written to R, and therefore R is reconstructed correctly. We thus

have the following theorem.

Theorem 18. The PERMS problem, the TEXTSEARCH problem, and the binary relation prob-

lem possess the reciprocal property.

Definition 5. We call a reciprocal problem of representing objects H a (Υ, r, t, t′, γ, w)-

problem, if

• we use the cell probe model with cell size w,

• the worst case storage size is Υ + r cells, where Υ =
⌈

log |H|
w

⌉

,

• r ≥ 0,

• the forward queries are implemented using algorithm A with worst case cell probe

complexity t

109

• the inverse queries are implemented using algorithm A′ with worst case cell probe

complexity t′, and

• the parameter γ is such that γ ≥ |FB| = |IB| for any object B ∈ H.

5.2 Compression Lemma

In this section, we prove the main technical lemma that will be used to prove the results

in this chapter.

Lemma 14. Consider a (Υ, r, t, t′, γ, w)-problem with r = O(Υ). Fix a positive constant

ε, 0 < ε < 1. If the sets FB and IB can be encoded using at most

ε

64

Υ2w

γtt′

bits for any B ∈ H, and if

lg max{t, t′} < (1− ε)w, and (5.1)

min{t, t′} <
ε

16

Υw

γ lg w
(5.2)

then

r ≥ ε

32

Υ2

γtt′
−O(1). (5.3)

Proof. The outline of the proof is as follows: fix a representation Rep of the set of all

objects H. Rep is an injective mapping from the set of all possible objects H to the set of

all possible contents of the memory section S consisting of Υ + r cells. Fix the algorithms

A and A′ that implement the queries F and I, respectively, with cell probe complexities of

t and t′, respectively. In a fashion similar to the proofs of Theorem 15 and Theorem 17, we

consider the set H∗ of incompressible objects in the sense of Kolmogorov’s [37]. For any

fixed object B ∈ H∗, any of its representations must use at least Υ−O(1) cells of memory.

We first outline a technique for compressing storage S for a given B ∈ H using the

algorithms A and A′. Fix an object B. We remove some cells from the encoding S of B; to

compensate for the lost cells, we add enough information so that B can be recovered. The

110 Upper and Lower Bounds for Text Indexing Data Structures

recovery procedure does not have to be efficient. The procedure that removes cells from S is

iterative. It performs several steps: on the k-th step, it removes the cell dk (which is called

deleted) and then it protects some other cells P (dk) (which are called protected) so they

cannot be deleted during the later steps. The cells that are not deleted or protected after

a given step are called remaining and denoted by Ck. We perform the deletion procedure

as long as the number of remaining cells |Ck| is at least Υ/2. Let z denote the total number

of deletion steps.

At each step, we record some informationM that depends on the deleted cell that will

be used later in the decoding phase. The amount of this new information is less than one

cell (i.e. w bits), so that, informally, we “save” some space at each step. After the last

iteration of this procedure, we record the positions, D, of all the cells that were deleted.

Also, we record the contents, R, of all the cells that were not deleted from left to right.

Finally, we will describe the decoding procedure, account for the space used to encode

M,D and R, and conclude with the statement of the lemma as a consequence of this

compression scheme.

Before continuing with the details of the proof, we introduce some notation. For a set

of queries Y , let Y −1 = ηB(Y) denote the set of queries reciprocal to Y . In particular, for

a query q, we denote by (q)−1 = ηB(q) the query that is reciprocal to q. We say that a

cell at location l is used by the query q (respectively, q′) if A (respectively, A′) probes that

location.

Let Ck be the set of indexes of the remaining cells at the k-th step; let Fk (respectively,

Ik) be the sets of available forward (respectively, inverse) queries at the k-th step, that

is, those queries that were not considered at the previous steps. At the first step, C1 =

{1, 2, . . . , Υ + r}, F1 = F , and I1 = I. We maintain the invariant that |Ck| ≥ Υ/2

throughout the loop.

For each k, 1 ≤ k ≤ z, we describe the procedure that removes a cell. Let R(q) be

the set of remaining cells used by q ∈ Fk ∪ Ik; and F (l) (respectively, I(l)) be the set of

queries q ∈ Fk (respectively, q ∈ Ik) that use a given cell l ∈ Ck. Then,
∑

l∈Ck

|F (l)| =
∑

q∈Fk

|R(q)| ≤ t|Fk| ≤ tγ, and (5.4)

∑

l∈Ck

|I(l)| =
∑

q∈Ik

|R(q)| ≤ t′|Ik| ≤ t′γ. (5.5)

111

Therefore, there can be at most |Ck|/2 cells l for which |F (l)| ≥ tγ/(|Ck|/2), otherwise
∑

F (l) > (|Ck|/2)tγ/(|Ck|/2) = tγ, similarly there are at most |Ck|/2 cells l for which

|I(l)| ≥ t′γ/(|Ck|/2). By the loop invariant, |Ck| > Υ/2, so we can find a remaining cell dk

that is used by at most β = tγ/(|Ck|/2) ≤ 4tγ/Υ forward and β ′ = t′γ/(|Ck|/2) ≤ 4t′γ/Υ

inverse queries, that is, |F (dk)| ≤ β, and |I(dk)| ≤ β ′. The value β (respectively, β ′) is

called the forward coverage factor (respectively, the inverse coverage factor).

The cell dk is deleted on the k-th step. Let F ′(dk) = F (dk) ∩ (I(dk))
−1 (respectively,

I ′(dk) = I(dk) ∩ (F (dk))
−1) denote the set of forward (respectively, inverse) queries q that

use the cell dk and for which the reciprocal q−1 also uses cell dk. Let β∗ = min{β, β ′}.
Note that F ′(dk) = (I ′(dk))

−1, and let

gdk
= |F ′(dk)| = |I ′(dk)| ≤ β∗ =

4γ min{t, t′}
Υ

Note that the ηB defines a one-to-one map between F ′(dk) and I ′(dk). We enumerate

the elements of F ′(dk) and I ′(dk) in lexicographic order using labels from [gdk
] (the j-th

element of F ′(dk) corresponds to the label j), and encode this map as a permutation µdk

on the set [gdk
]. For an example, see Figure 5.1.

Let Q(dk) = (F (dk) ∪ I(dk))
−1 be the set of all reciprocal queries to the queries that

use dk. We protect the following set of cells:

P (dk) =
⋃

q∈Q(dk)

R(q) \ {dk}

so they cannot be deleted in the forthcoming steps. The number of protected cells |P (dk)|
is at most

|P (dk)| ≤ t|I(dk)|+ t′|F (dk)| ≤ tβ ′ + t′β ≤ 8γtt′

Υ
,

since Q(dk) contains |I(dk)| forward and |F (dk)| inverse queries. The sets of remaining

cells, and available forward and inverse queries on the next step k + 1 are as follows:

Ck+1 = Ck \ (P (dk) ∪ {dk})
Fk+1 = Fk \ (F (dk) ∪ (I(dk))

−1)

Ik+1 = Ik \ (I(dk) ∪ (F (dk))
−1)

112 Upper and Lower Bounds for Text Indexing Data Structures

Hence,

Ck+1 ≥ |C0| −
k∑

i=1

|P (di)| − k ≥ Υ + r − kt′β − ktβ ′ ≥ Υ− 2kt′β,

since t′β = tβ ′. To maintain our loop invariant (i.e. |Cz| > Υ/2) it suffices to restrict the

number of iterations z such that 2zt′β < Υ/2, or in other words, we can perform at least

z =
Υ

4t′β

steps. After z iterations, the encoding procedure stores the following information:

D - the locations of all the deleted cells D = ∪k{dk} using at most

lg

(
Υ + r

z

)

= lg z

(
O(Υ)

z

)

= z lg(O(Υ)/z) = z lg(t′β) + O(z)

bits.

R - the contents of all the cells (in left to right order) that are not deleted using Υ+ r− z

cells;

M - the permutations µdk
for each deleted cell dk (in left to right order) using z lg(β∗!) ≤

zβ∗ lg β∗ −Θ(zβ∗) bits.

The decoding procedure is as follows. It starts with an uninitialized array S of size

Υ + r. Next, it writes the corresponding values from R (in left to right order) to all the

locations that are not encoded in D. Then, it simulates all the queries from FB and IB.

Note that some of the queries will fail due to the fact that the contents of z cells are

missing. We call a query q recoverable if it fails, but its reciprocal query q−1 does not fail.

Such queries fall into the set F∗
B or I∗B in Definition 4, and we do not have to worry about

them anymore.

For each query q that is not recoverable, we find the first location l where it fails, that

is, l is the first deleted cell that the query algorithm (A or A′) needs to probe in order of

its execution on q. By construction, it is only possible that query q is not recoverable if

and only if q and its reciprocal q−1 fail at the same location. Recall, that once we cause a

113

query to fail by deleting a cell l, we immediately protect its reciprocal. In the case where a

query and its reciprocal fail at the same cell l, we protect all the other cells that are used

by both of them, therefore l can only be the first (and the only) deleted cell that is used

by either of the queries.

Also, by construction, for the cell l, there are gl ≤ β∗ non-recoverable queries. For

each deleted cell d (in left to right order), we list all the indices F ′
d (respectively, I ′

d) of

non-recoverable forward (respectively, inverse) queries that fail at d in the same order that

we used to encode permutation µd (e.g. in increasing order), so that µd defines a map

between F ′
l and I ′

l . Therefore, for each deleted cell d, we can restore the mapping between

the non-recoverable reciprocal pairs of queries that fail at d using the permutations µdk

encoded in M. Hence, we can construct the mapping η∗
B between all the non-recoverable

forward queries and all the non-recoverable inverse queries.

We also define F∗
B (respectively, I∗B) to be the set of all forward (respectively, inverse)

queries that do not fail. Since by the assumption the problem possesses the reciprocal

property, the decoding procedure is complete.

It remains to account for the space our new representation uses. By the assumption,

the encodings for FB and IB occupy at most

ε

64

Υ2w

γtt′
=

ε

4
zw,

bits, since

z =
Υ

4t′β
=

Υ2

16γtt′
(5.6)

Assume that t′ ≥ t so that β∗ = β, the other case is symmetric. Storages D and M and

encodings of FB and IB together occupy at most

z lg(t′β) + O(z) + zβ lg β −Θ(zβ) + (ε/4)zw = z lg t′ + z(β + O(1)) lgβ + O(z lg β)

≤ (1− ε)zw + (ε/4)zw + (ε/4)zw

= (1− ε/2)zw (5.7)

bits, if we require that

lg t′ < (1− ε)w, and (5.8)

β < (ε/4)w/ lgw − O(1), (5.9)

114 Upper and Lower Bounds for Text Indexing Data Structures

since in this case

(β + O(1)) lgβ < (ε/4)(w/ lgw) lgw = (ε/4)w.

Substituting β = (4γt)/Υ into (5.9) we obtain the sufficient condition

4γt

Υ
<

ε

4

w

lg w
,

which follows from condition (5.2). Condition (5.8) is equivalent to condition (5.1). Hence,

the total size of our encoding is bounded by Υ + r − z + (1− ε/2)z cells, which must be

at least Υ− O(1) for incompressible objects B, and thus

r ≥ (ε/2)z − O(1) =
εΥ2

32γtt′
− O(1) (5.10)

using (5.6). The theorem follows.

5.3 Applications of the Compression Lemma

For the three problems that we considered earlier: the PERMS problem, the TEXTSEARCH

problem, and for the binary relations problem, in this section, we show the lower bound

trade-offs between r, t and t′ as the consequences of the compression lemma.

5.3.1 The PERMS Problem

We start with the simplest of the three problems. In the PERMS problem, we have

Fπ = { “query forw permπ(i)”|i ∈ [n]}
Iπ = { “query inv permπ(i)”|i ∈ [n]}.

Therefore, we do not have to encode these sets, so that we can use Lemma 14 to derive

the following theorem.

Theorem 19. For the PERMS problem, if

lg max{t, t′} < (1− ε)w, and (5.11)

min{t, t′} <
ε

16

lg n−Θ(1)

lg w
= O

(
lg n

lg w

)

(5.12)

115

then

rtt′ ≥ ε

32

n(lg n)2 −O(n lg n)

w2
= Ω

(

n

(
lg n

w

)2
)

, (5.13)

where ε is a constant, 0 < ε < 1.

Proof. We have

Υ =

⌈
lg n!

w

⌉

=
n lg n−Θ(n)

w
γ = n

Thus, inequalities (5.2) and (5.13) transform into

min{t, t′} <
ε

16

lg n−Θ(1)

lg w

rtt′ ≥ ε

32

n(lg n)2 −O(n lg n)

w2

In the interesting case where the cell size is w = lg n, we have

Corollary 3. If max{t, t′} < n1−ε, and min{t, t′} < (ε/16) lgn/ lg lg n, then rtt′ ≥
(ε/32)n = Ω(n).

In particular, if we would like to find an algorithm that performs queries π and π−1

in constant time, then we need linear extra space. Also, if we require that our algorithm

implements either π or π−1 in constant time, then we obtain a linear lower bound that

matches (up to a constant factor) the upper bound from Munro et al. [44] that uses “back

pointers”. If we require that our algorithm implements both π and π−1 in Θ(lg n/ lg lg n)

time, then we get a lower bound that matches (up to a constant factor) the upper bound

from Munro et al. [44] that uses Benes networks. Namely, in [44, Theorem 7], they use

O(n(lg lg n)2/(lg n)) extra redundancy bits and cell size w = lg n, while our lower bound

requires at least Ω(n(lg lg n)2/(lg n)2) extra cells.

116 Upper and Lower Bounds for Text Indexing Data Structures

5.3.2 The TEXTSEARCH Problem

Recall that in the TEXTSEARCH problem, we are given the text T of length L on an alphabet

Σ of size σ. We are required to preprocess and store it such that we can efficiently search

for the j-th occurrence of a given pattern X of length p in the text. For the purposes of

proving a lower bound on the size of the storage, we only restrict ourselves to the queries

of the form

FT = {“query access(ip + 1)”|0 ≤ i < L/p}
IT = {“query search(X, j)”|searchT (X, j) = ip + 1}

While the encoding of forward queries is trivial, the encoding of inverse queries is bit

involved. For all possible patterns X of length p on the alphabet Σ, we denote JX to be

the bit vector, such that JX [j] = 1 if searchT (X, j) ≡ 1 mod p, and JX [j] = 0 otherwise.

So that what we need to encode is the set

J = {(X, JX)| all possible patterns X of length p}

Let us order possible patterns X in lexicographic order, trim the trailing zeroes in JX ,

and concatenate the trimmed bit vectors. The resulting bit vector J has exactly L/p

1-bits in it, since there are L/p positions of the form i ≡ 1 mod p. The length of J is

L − p + 1, since there are total L − p + 1 positions that can be answers to the search

queries. Thus, we can encode this bit vector using lg
(

L
L/p

)
bits. We also need to encode

the sequence of cardinalities CX (i.e. the number of 1-bits) of JX for all possible patterns

X. It is a sequence of σp numbers the sum of which is L/p, and hence can be encoded using

lg
(

L/p+σp

L/p

)
bits. The original bit vectors JX can be restored by reading J from left to right

and cutting it in a greedy fashion so that the resulting bit vectors have the cardinalities

from the sequence of CX . Thus, the encoding of J is at most

lg

(
L

L/p

)

+ lg

(
L/p + σp

L/p

)

≤ 2 lg

(
L + L/p

L/p

)

≤ (2L/p) lg(2ep), (5.14)

We assumed that the total possible number of patterns X is not too large, that is

σp ≤ L

117

Also, we used the fact that lg
(

x
y

)
≤ y lg(ex/y). Now we are ready to apply Lemma 14 with

parameters

Υ =

⌈
L lg σ

w

⌉

γ =
L

p

The inequalities (5.2) and (5.3) transform into

min{t, t′} <
ε

16

p lg σ

lg w

rtt′ ≥ ε

32
Lp

(
lg σ

w

)2

By the precondition of the Lemma 14, the size of the encoding of the set IT should be at

most

ε

64

Υ2w

γtt′
.

The sufficient condition is that

2L lg(2ep)

p
≤ ε

64

Lp(lg σ)2

wtt′
,

which is satisfied if

tt′ <
ε

128

(p lg σ)2

w lg(2ep)
. (5.15)

Combining these conditions and condition (5.1), we obtain the following theorem.

Theorem 20. For the TEXTSEARCH problem on texts of length L, alphabets of size σ, and

patterns of length p, if the following conditions are satisfied

p lg σ ≤ lg L, (5.16)

lg max{t, t′} < (1− ε)w, (5.17)

min{t, t′} <
ε

16

p lg σ

lg w
, and (5.18)

tt′ <
ε

128

(p lg σ)2

w lg(2ep)
(5.19)

118 Upper and Lower Bounds for Text Indexing Data Structures

then

rtt′ ≥ ε

32

Lp(lg σ)2

w2

The conditions in Theorem 20 look somewhat complicated; however we can simplify

them in the case where w > (2 lg lg L)/(1 − ε), which not too restrictive since the typical

choice for w is lg L.

Corollary 4. Let ε be a constant, 0 < ε < 1. For the TEXTSEARCH problem, if

p lg σ ≤ lg L, (5.20)

tt′ <
ε

128

(p lg σ)2

w lg(2ep)
, and (5.21)

w >
2

1− ε
lg lg L, (5.22)

then

rtt′ ≥ ε

32

Lp(lg σ)2

w2
.

Proof. Condition (5.21) implies that max{t, t′} < tt′ < lg((p lg σ)2). Thus, using (5.20)

and (5.22), we obtain precondition (5.17) of Theorem 20:

lg max{t, t′} < 2 lg lg L < (1− ε)w.

Condition (5.21) also implies that

min{t, t′} <

√
ε

128 lg(2ep)

p lg σ√
w

,

which is stronger than precondition (5.18) of Theorem 20, since w = Ω(lg lg L) = ω(1).

For the interesting special case of patterns of length p = lg L/ lg σ and word size w =

lg L, we obtain

Corollary 5. Let ε be a constant, 0 < ε < 1. For the TEXTSEARCH problem, if

p = lg L/ lg σ

w = lg L, and

tt′ <
ε

128

lg L

lg(2e lg L)
, (5.23)

119

then

rtt′ ≥ ε

32

L lg σ

lg L
= Ω(Υ).

Proof. Preconditions (5.20) and (5.22) of Corollary 4 are clearly satisfied. Precondi-

tion (5.21) transforms into

tt′ <
ε

128

(p lg σ)2

w lg(2ep)
=

ε

128

(lg L)2

lg L(lg(2e lg L)− lg lg σ)
,

which follows from (5.23) for σ ≥ 2.

It follows that we need at least Ω(Υ) cells (i.e., linear in the information-theoretic

minimum) of extra space to support both access and search queries in constant time for

patterns of size p = lg L/ lg σ in the cell probe model with word size lg L.

5.3.3 The str acc/str sel Problem

Consider the important special case of p = 1. In this case, the access operation cor-

responds to str acc, and the search corresponds to str sel. We can improve our

bound by encoding J more compactly. Namely, the encoding in (5.14) can be bounded

by lg
(

L+σ
σ

)
≤ σ lg L bits in the case p = 1. In other words, it suffices to encode the

number of occurrences occT (c) of each character c ∈ Σ to be able to obtain J , since

searchT (c, j) = str selT (c, j) is in the set IT if and only if j ≤ occT (c). As before, we

require that the size of this encoding is at most

ε

64

Υ2w

γtt′

bits, that is

σ lg L ≤ ε

64

L(lg σ)2

wtt′
,

which is satisfied for

tt′ ≤ ε

64

L(lg σ)2

wσ lg L

Thus, as a corollary of Theorem 20, we obtain

120 Upper and Lower Bounds for Text Indexing Data Structures

Corollary 6. Consider the TEXTSEARCH problem with pattern length p = 1. If

lg max{t, t′} < (1− ε)w, (5.24)

min{t, t′} <
ε

16

lg σ

lg w
, and (5.25)

tt′ <
ε

64

L(lg σ)2

wσ lg L
, (5.26)

then

rtt′ ≥ ε

32

L(lg σ)2

w2

Proof. Precondition (5.16) is clearly satisfied. The condition (5.15) that is needed to satisfy

the precondition of Lemma 14 regarding the encoding of FT and IT reduces to (5.26). The

other preconditions have not changed as compared to Theorem 20.

The condition (5.26) is quite weak as compared to conditions (5.24) and (5.25), since

L is typically much larger than the product wσ. Namely, in the case where w = lg L, and

σ < Lα for some constant 0 < α < ε, from (5.24) and (5.25) we can show that

tt′ = max{t, t′}min{t, t′} < L1−ε εα

16

lg L

lg lg L
.

The right hand side of (5.26) is at least

ε

64

L(lg σ)2

wσ lg L
>

ε

64

L1−α

(lg L)2
>

εα

16

L1−ε lg L

lg lg L
,

since α < ε and the logarithmic in L factors are smaller than Lε−α. We rephrase Corollary 6

in terms of the str acc/str sel problem and obtain the following theorem.

Theorem 21. Consider the str acc/str sel problem with w = lg L, and alphabet of size

σ such that
16 lg lg L

ε
≤ lg σ ≤ α lg L

for some constants ε and α, such that 0 < α < ε < 1. If

max{t, t′} < L1−ε, and (5.27)

min{t, t′} <
ε

16

lg σ

lg lg L
, (5.28)

121

then

rtt′ ≥ ε

32

L(lg σ)2

(lg L)2
.

For the case of σ = Lα, t = 1, and t′ = lg lg σ/ lg lg lg σ the lower bound matches the

upper bound shown in Theorem 4 (Chapter 2) up to constant factors.

5.3.4 The BINREL Problem

In this section, we apply the general Lemma 14 to the problem of representing binary

matrices. Namely, we are to represent m× n matrices R of a given cardinality f , so that

the row sel and the col sel queries can be implemented efficiently. We assume that

m ≤ n without loss of generality (since we can interchange the roles of the rows and

columns). Recall that the sets of forward and inverse queries are as follows

FR = {“query row sel(i, x)”|1 ≤ i ≤ m, 1 ≤ x ≤ row nb(i)}
IR = {“query col sel(x′, j)”|1 ≤ j ≤ n, 1 ≤ x′ ≤ col nb(i)}

so that |F| = |I| = f . Also recall that the queries q = “query row sel(i, x)” and q′ =

“query col sel(x′, j)” are reciprocal if row sel(i, x) = j and col sel(x′, j) = i, i.e. if

they are selecting the same 1-bit entry in R. We showed that this problem possess the

reciprocal property, so that we can apply Lemma 14 with parameters

γ = f, and

Υ =

⌈

lg
(

nm
f

)

w

⌉

>
f

w
lg

nm

f

To encode the sets FR and IR we can store the values of row nb(i) and col nb(j) for each

row i and column j. These values of row nb(i) form a sequence of m numbers, the sum of

which is f , and hence can be stored using lg
(

f+n
n

)
bits. In a similar fashion, we can store

the sequence col nb(j). So the size of encoding of FR and IR is at most

lg

(
f + n

n

)

+ lg

(
f + m

m

)

≤ 2 lg

(
f + n

n

)

< 2n lg
ef

n

122 Upper and Lower Bounds for Text Indexing Data Structures

bits by the assumption that m ≤ n. The precondition of Lemma 14 requires that this

encoding occupies at most

ε

64

Υ2w

γtt′
>

ε

64

f

wtt′

(

lg
nm

f

)2

bits, so it suffices to require

tt′ <
ε

128

f(lg(nm/f))2

wn lg(ef/n)

Combining these conditions, we derive the following theorem.

Theorem 22. Consider the binary relation problem on m× n binary matrices R of cardi-

nality f . If parameters t, t′, n, m, f , and a constant ε, 0 < ε < 1 satisfy

lg max{t, t′} < (1− ε)w,

min{t, t′} <
ε

16

lg(nm/f)

lg w
, and

tt′ <
ε

128

f(lg(nm/f))2

wn lg(ef/n)
,

then

rtt′ ≥ ε

32

f(lg(nm/f))2

w2

In particular, consider the case of matrices of size m ×mα with cardinalities f = mβ

for constants α and β such that 1 < α < β < 1 + α. Also assume that w = lg m. Hence,

Υ =
(1 + α− β)mβ lg m + O(mβ)

lg m
.

We can derive the following corollary.

Corollary 7. For the binary relation problem on m×mα matrices with f = mβ, where α

and β are constants such that 1 < α < β < 1 + α. Let ε also be a constant, 0 < ε < 1. If

max{t, t′} < m1−ε,

min{t, t′} <
ε(1 + α− β)

16

lg m

lg lg m
, and

tt′ <
ε(1 + α− β)

128(β − α)
mβ−α,

123

then

rtt′ ≥ ε(1 + α− β)

32
mβ = Ω(Υ)

In particular, for the case where the constant time operations are needed, the extra

space required to support them is at least linear in Υ, i.e. Ω(Υ) extra cells.

Chapter 6

Conclusion

The main contributions of this thesis are as follows:

• A new technique for proving cell probe lower bounds (Chapter 5) that can be applied

to any problem that possess the reciprocal property. We applied this technique

to the following four data structural problems: PERMS, TEXTSEARCH, BINREL, and

str sel/str acc. To the best of our knowledge, there were no cell probe lower

bounds known for these problems known prior to this work. For the PERMS problem,

we showed a cell probe lower bound that matches all the existing upper bounds.

(The optimality here and later in this chapter is asymptotic, i.e. up to constant

factors in both time and space costs.) For the TEXTSEARCH problem, we showed a cell

probe lower bound that matches existing lower bounds for indexing data structures

(in other words, we removed the indexing assumption). For the BINREL problem, we

showed a cell probe lower bound that matches an upper bound from Chapter 2, and

hence both are optimal.

• A new technique for the indexing bit probe lower bounds (Chapter 3) that is based on

the notion of choices tree. This technique improves upon the work of Miltersen [41]

and provides a uniform framework for the bin rank, bin sel and PARENTHESES prob-

lems. The bounds that we show in Section 3.2, Section 3.3, and Section 3.7 are tight.

We also believe that our density sensitive bounds in Section 3.5 and Section 3.6 are

tight as well, however the matching algorithm exploits the freedom of the indexing

124

125

model (e.g. accesses the index for free).

• A new compression technique (Chapter 4) that allows to prove stronger lower bounds

for the substring report problem. The ideas in Chapter 4 are inspired by the work

of Demaine and Lopez-Ortiz [10]. Similar technique were also presented by Gennaro

and Trevisan [21]; however, ours provides better compression and, as a consequence,

gives stronger bounds.

• A data structure for representing binary matrices (Section 2.2). This data structure

allows to represent the matrix in almost the information-theoretic minimum space,

and the running times are also better than in the existing data structures. This

work is an extension of the papers by Golynski, Munro and Rao [25] that revealed a

connection between str sel/str acc and PERMS problem, and the paper of Barbay,

Golynski, Munro and Rao [2] that generalized the ideas of [25] to the BINREL problem.

• An indexing data structure for bin rank and bin sel problems (Section 2.1). It is

an extension of the paper by Golysnki [23]. Similar data structures were proposed by

Raman, Raman, and Rao [48]. However, our result generalizes them to an arbitrary

number of cell probes (even bit probes), and also combines the most space consuming

parts of bin rank and bin sel indices into an index that we call the count index.

Although we do not have an experimental evidence, we suspect that the part used

by our index should be at most half of the size of the index of [48]. Later, Golyn-

ski, Grossi, Gupta, Raman, and Rao [24] proposed a non-indexing data structure

with much smaller redundancy (approximately a factor of lg n smaller than in Sec-

tion 2.1 and in [48]). It is worth noting that such a data structure is not possible

in the indexing model as it would contradict the lower bounds from Section 3.2 and

Section 3.3.

For the bin rank, bin sel and the PARENTHESES problems, the results of this thesis are

summarized in Figure 6.1. Namely, we showed the first matching upper and lower bounds

for this problem in the indexing bit probe model for arbitrary costs t. We also believe

that our density sensitive lower bound are tight, however the corresponding algorithms use

the freedom of the indexing model. For the case of the bin rank problem, the bounds

126 Upper and Lower Bounds for Text Indexing Data Structures

Operation Upper Old Lower New Lower New Lower Density Sensitive

bin rank n lg t
t

∗
n
t
, in [41] †

n lg t
t

‡ max
{

n
t
lg
(

mt
n

)
, m, m lg

(
n
mt

)} §
bin sel n

t
, in [41]

findmatch
n lg lg n

lg n
, in [20] N/A N/A

∗Presented in Section 2.1.
† The lower bound for the bin rank problem shown by Miltersen [41] in the indexing cell probe model

is r ≥ (n lg(w + 1))/(tw). It is tight in the indexing cell probe model, however, in the indexing bit probe

model, it only amounts to r = Ω(n/t).
‡Section 3.2, Section 3.3, and Section 3.7.
§Section 3.5, Section 3.6.

Figure 6.1: Asymptotic Bounds for bin rank, bin sel and the PARENTHESES Problems.

of Pǎtraşcu and Thorup [47] imply that there is no succinct data structure unless m =

n/(lg n)O(1). Another variation of this problem was studied in Golynski et al. [24], they

proposed new non-indexing data structures that surpass the barrier given by the lower

bounds from Chapter 3. They showed that for the bin rank and bin sel problems, there

are two data structures that use r bits in addition to the information-theoretic lower bound

of lg
(

n
m

)
and implement the operations in constant time:

• for m = n/(lg n)O(1), the use r = O(m(lg lg m)2/ lg m) bits; and

• for m smaller than n/(lg n)O(1), they achieve the redundancy r = O((n lg lg n)/(lg n)2).

For the BINREL problem, Barbay, Golynski, Munro and Rao [2] proposed two encodings

called label encoding and object encoding. In this thesis, we offer three new encodings that

improve the results of Barbay et al.: row encoding, column encoding and Benes encoding.

These five encodings are compared in Figure 6.2. Note that the reduction to rank space

lemma 2 allows to consider the BINREL problem on matrices with no empty rows and

columns, hence the number of 1-bits is f ≥ max{m, n}, where the m (respectively, n) is

the number of non-empty rows (respectively, columns) in a given binary matrix. Therefore,

ρ = nm/f ≤ min{m, n} = ξ. We also note that for the dense matrices, ρ is much smaller

than ξ. For example, in the case f = εmn for some constant ε, 0 < ε < 1, we have

constant running times for operations row sel and col sel, which is impossible to achieve

127

using the representations of Barbay et al. Another advantage of row, column and Benes

encodings is that they are truly succinct data structures for ρ = ω(1), i.e. the redundancy

is o(Υ) cells.

On the other hand, the lower bound from Section 5.3.4 shows us that in the case lg ρ =

Ω(w), the redundancy must be r = Ω(Υ/(wtt′)) cells. For the row encoding, the running

time of row sel is t = O(1) , the running time of col sel is t′ = O(lg lg ρ/ lg lg lg ρ), and

the redundancy is

r = O

(
Υ

w

lg lg lg ρ

lg lg ρ

)

cells; hence, this encoding is optimal under the condition lg ρ = Ω(w). In a similar fashion,

we can see that the column encoding is also optimal up to constant factors. However,

the Benes encoding does not match the lower bound from Section 5.3.4. For the Benes

encoding, t = t′ = O((lg ρ)/(lg w)), and Theorem 22 suggests that

r = Ω

(
f(lg ρ)2

tt′w2

)

= Ω

(
f(lg w)2

w2

)

cells. However, the redundancy of the Benes encoding is O(f/w) cells, i.e. a factor of

w/(lg w)2 larger than one might desire. The use of Benes encoding is justified in the

following cases:

• for very high density matrices, i.e. lg ρ = O(lg w), it gives constant running times

for both row sel and col sel operations; and

• for the applications that perform roughly equal number of row sel and col sel

operations. If the row sel (respectively, col sel) operation is used much more

frequently, it is suggested to use the row (respectively, column) encoding.

For the PERMS problem, Figure 6.3 summarizes and compares our and previous results.

For the substring report problem in the indexing bit probe model, and the TEXTSEARCH

problem in the non-indexing model, Figure 6.5 compares our results with the previous

work. Figure 6.5 summarizes the results of Chapter 5.

128 Upper and Lower Bounds for Text Indexing Data Structures

Name Row Column Benes Label Object

row rank lg lg ρ∗ lg lg ρ lg lg ρ
(

lg ρ
lg w

+ 1
)

lg lg ξ† lg lg ξ lg lg lg ξ

row sel 1 lg lg ρ
lg lg lg ρ

lg ρ
lg w

1 lg lg ξ

col rank lg lg ρ lg lg ρ lg lg ρ
(

lg ρ
lg w

+ 1
)

lg lg ξ lg lg lg ξ lg lg ξ

col sel
lg lg ρ

lg lg lg ρ
1 lg ρ

lg w
lg lg ξ 1

row nb 1 1 1 1 1

col nb 1 1 1 1 1

tab acc lg lg ρ lg lg ρ lg lg ρ
(

lg ρ
lg w

+ 1
)

lg lg ξ lg lg ξ

Space Υ‡ + O
(

Υ lg lg lg ρ
lg lg ρ

)

Υ + O
(

Υ lg lg lg ρ
lg lg ρ

)

Υ + O(f) f(lg ξ + o(lg ξ)) f(lg ξ + o(lg ξ))

∗ρ = nm/f is the inverse density of R.
†ξ = min{m, n}.
‡Υ = f lg(nm/f)−O(f) is the information-theoretic minimum space to encode an m× n matrix with

f 1-bits in it.

Figure 6.2: Asymptotic Upper Bounds for the BINREL Problem.

Model Upper Bounds Lower Bounds

Indexing n lg n
t

, in [31, 44] n lg n
t

, in [58] ∗

Non-indexing
n lg n

t
, in [31, 44] n lg n

tt′
†

n(lg lg n)2

(lg n)
for t = t′ = lg n

lg lg n
, in [44]

∗Also presented in Section 4.2.
†Section 5.3.1.

Figure 6.3: Asymptotic Upper and Lower Bounds for the PERMS Problem.

Model Old Lower Bounds New Lower Bounds

Indexing (substring report) L lg L
t

for t = o
(

(lg L)2

lg lg L

)

, in [10] L lg L
t

for t = o
(√

L
lg L

)
∗

Non-indexing (TEXTSEARCH) N / A L lg L
tt′

†

∗Section 4.3.
†Section 4.3.

Figure 6.4: Asymptotic Lower Bounds for the Substring Report and TEXTSEARCH Problems.

129

Problem Section Asymptotic lower bound for rtt′ Υ ∗

PERMS 5.3.1 Υ lg n
w

n lg n−Θ(n)

TEXTSEARCH 5.3.2 Υp lg σ
w

L lg σ

str sel/str acc 5.3.3 Υ lg σ
w

L lg σ

BINREL 5.3.4 Υ lg ρ
w

† f lg ρ−Θ(f)

∗Information-theoretic minimum space (in cells).
†ρ = mn

f
.

Figure 6.5: Cell Probe Lower Bounds from Chapter 5.

Index

str acc/str sel problem, 15

Backward search algorithm, 35

Benes structure, 31

Column structure, 31

FID, 19

Prefix sum problem, 11

RAM model, 12

Row structure, 31

Static predecessor problem, 6

Substring report problem, 15

Text retrieval queries, 34

130

Bibliography

[1] Miklós Ajtai. A lower bound for finding predecessors in Yao’s cell probe model.

Combinatorica, 8(3):235–247, 1988.

[2] Jérémy Barbay, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Adaptive

searching in succinctly encoded binary relations and tree-structured documents. In

Combinatorial Pattern Matching, pages 24–35, 2006.

[3] Jérémy Barbay, Meng He, J. Ian Munro, and S. Srinivasa Rao. Succinct indexes

for strings, binary relations and multi-labeled trees. In ACM-SIAM Symposium on

Discrete Algorithms, pages 680–689, 2007.

[4] Paul Beame and Faith Fich. Optimal bounds for the predecessor problem and related

problems. Journal of Computer and System Sciences, 65(1):38–72, 2002.

[5] Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, and Victor K. Wei. A locally

adaptive data compression scheme. Communications of the ACM, 29(4):320–330, 1986.

[6] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.

Technical Report 124, Digital Equipment Corporation, 1994.

[7] Augustin-Louis Cauchy. Cours d’analyse de l’Ecole Royale Polytechnique, premier

partie, Analyse algebrique, volume 1. Paris, 1821.

[8] David R. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

131

132 Upper and Lower Bounds for Text Indexing Data Structures

[9] Erik D. Demaine and Alejandro López-Ortiz. A linear lower bound on index size

for text retrieval. In ACM-SIAM Symposium on Discrete Algorithms, pages 289–294,

2001.

[10] Erik D. Demaine and Alejandro López-Ortiz. A linear lower bound on index size for

text retrieval. Journal of Algorithms, 48(1):2–15, 2003.

[11] Martin Farach-Colton. Optimal suffix tree construction with large alphabets. In IEEE

Symposium on Foundations of Computer Science, pages 137–143, 1997.

[12] William Feller. An Introduction to Probability Theory and Its Applications. Wiley,

3rd edition, 1968.

[13] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Struc-

turing labeled trees for optimal succinctness, and beyond. In IEEE Symposium on

Foundations of Computer Science, pages 184–196, 2005.

[14] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applica-

tions. In Proceedings of 41st Annual IEEE Symposium on Foundations of Computer

Science, pages 390–398, 2000.

[15] Paolo Ferragina and Giovanni Manzini. An experimental study of an opportunistic

index. In ACM-SIAM Symposium on Discrete Algorithms, pages 269–278, 2001.

[16] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. An alphabet-

friendly FM-index. In Proceedings of the 11th Symposium on String Processing and

Information Retrieval, pages 150–160, 2004.

[17] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Succinct

representation of sequences. Technical Report TR/DCC-2004-5, Department of Com-

puter Science, University of Chile, August 2004.

[18] Paolo Ferragina and Rossano Venturini. A simple storage scheme for strings achieving

entropy bounds. In ACM-SIAM Symposium on Discrete Algorithms, pages 690–696,

2007.

133

[19] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data struc-

tures. In International Colloquium on Automata, Languages and Programming, pages

332–344, 2003.

[20] Richard F. Geary, Naila Rahman, Rajeev Raman, and Venkatesh Raman. A sim-

ple optimal representation for balanced parentheses. Theoretical Computer Science,

368(3):231–246, 2006.

[21] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryp-

tographic constructions. In IEEE Symposium on Foundations of Computer Science,

pages 305–313, 2000.

[22] Robert Giegerich and Stefan Kurtz. From Ukkonen to McCreight and Weiner: A

unifying view of linear-time suffix tree construction. Algorithmica, 19(3):331–353,

1997.

[23] Alexander Golynski. Optimal lower bounds for rank and select indexes. Theoretical

Computer Science, 387(3):348–359, 2007.

[24] Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev Raman, and S. Srinivasa

Rao. On size of succinct indices. In European Symposium on Algorithms, volume 4698

of Lecture Notes in Computer Science, pages 371–382, 2007.

[25] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations

on large alphabets: a tool for text indexing. In ACM-SIAM Symposium on Discrete

Algorithms, pages 368–373, 2006.

[26] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-

compressed text indexes. In Proceedings of the 14th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 841–850, 2003.

[27] Roberto Grossi and Kunihiko Sadakane. Squeezing succinct data structures into en-

tropy bounds. In ACM-SIAM Symposium on Discrete Algorithms, pages 1230–1239,

2006.

134 Upper and Lower Bounds for Text Indexing Data Structures

[28] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with

applications to text indexing and string matching. In ACM Symposium on Theory of

Computing, pages 397–406, 2000.

[29] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with

applications to text indexing and string matching. SIAM Journal of Computation,

35(2):378–407, 2005.

[30] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. USA: Cambridge University Press, 1997.

[31] M.E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-

mation Theory, 26:401–405, 1980.

[32] G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual

IEEE Symposium on Foundations of Computer Science, pages 549–554, 1989.

[33] Guy Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon Univer-

sity, January 1989.

[34] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction. In

International Colloquium on Automata, Languages and Programming, pages 943–955,

2003.

[35] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching

in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[36] Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Ar-

rays, Trees, Hypercubes. Morgan Kaufmann Publishers, 1991.

[37] P. Vitányi M. Li. An Introduction to Kolmogorov Complexity and its Applications,

2nd edition. Springer-Verlag, New York, 1997.

[38] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string

searches. SIAM Journal on Computing, 22(5):935–948, 1993.

135

[39] Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal

of the ACM, 23(2):262–272, 1976.

[40] Peter Bro Miltersen. Lower bounds for union-split-find related problems on random

access machines. In Symposium on Theory of Computing, pages 625–634, 1994.

[41] Peter Bro Miltersen. Lower bounds on the size of selection and rank indexes. In

Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

11–12, 2005.

[42] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data struc-

tures and asymmetric communication complexity. Journal of Computer and System

Sciences, 57(1):37–49, 1998.

[43] J. Ian Munro. Tables. In 16th Conference on Foundations of Software Technology and

Theoretical Computer Science, pages 37–42, 1996.

[44] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct

representations of permutations. In International Colloquium on Automata, Languages

and Programming, pages 345–356, 2003.

[45] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses

and static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[46] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Computing

Surveys, 39(1):article 2, 2007.

[47] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In

Symposium on Theory of Computing, pages 232–240, 2006.

[48] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionar-

ies with applications to encoding k-ary trees and multisets. In ACM-SIAM Symposium

on Discrete Algorithms, pages 233–242, 2002.

[49] Kunihiko Sadakane. Compressed text databases with efficient query algorithms based

on the compressed suffix array. In International Conference on Algorithms and Com-

putation, pages 410–421, 2000.

136 Upper and Lower Bounds for Text Indexing Data Structures

[50] Kunihiko Sadakane. Succinct representations of lcp information and improvements

in the compressed suffix arrays. In ACM-SIAM Symposium on Discrete Algorithms,

pages 225–232, 2002.

[51] Pranab Sen. Lower bounds for predecessor searching in the cell probe model. In IEEE

Conference on Computational Complexity, pages 73–83, 2003.

[52] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[53] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an

efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[54] P. Weiner. Linear pattern matching algorithms. In IEEE Symposium on Switching

and Automata Theory, pages 1–11, 1973.

[55] Peter Widmayer. Personal communication, 2006.

[56] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space

Theta(n). Information Processing Letters, 17(2), 1983.

[57] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628,

1981.

[58] Andrew Chi-Chih Yao. Coherent functions and program checkers (extended abstract).

In ACM Symposium on Theory of Computing, pages 84–94, 1990.

