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ABSTRACT 

The performance of 223 Grade 4 children, with Average overall IQ and no disability 

(ND), or reading disability (RD), or math disability (MD), or reading/math disability (RD+MD), 

was compared on theoretically-derived  factors measuring specific cognitive processes 

underlying reading and math achievement.  The processes included automatic 

visual/orthographic and visual/math fact retrieval, working memory span, phonological and 

algorithmic processing, and IQ (e.g., verbal/nonverbal reasoning).  Good readers and good 

mathematicians (ND group) showed solid performance across all tasks.  Compared to the ND 

group, achievement and cognitive profiles of single disability (RD and MD), and RD+MD were 

elucidated.  Structural equation models (SEM) for the entire sample confirmed a theoretically-

derived  four factor READ model and a four factor MATH model, both with identical Working 

Memory Span and IQ factors.  Two other READ model factors were Automatic (RAN/Words) 

and Phonological Processing.  Two additional MATH model factors were Automatic 

(RAN/Facts) and Algorithmic Processing.  Based on the cognitive and functional neurobiological 

literatures, these models supported a systems view of the unique and collaborative relations 

among the automatic, processing, working memory, and IQ cognitive processes underlying 

reading and math achievement.  Through regression analyses, the specific factors from both the 

READ and MATH models predicted each group’s reading and math achievement.  Regression 

results enhanced our understanding of what factors/cognitive processes (strong or weak) 

contribute to good or poor reading and math achievement.  Findings that automatic RAN/Words 

and RAN/Facts both predict fluent math fact retrieval for all groups suggest potential overlap in 

basic automatic visual/orthographic and visual/fact routes.  Possible overlap in these automatic 

processes was also seen in the weakest RD+MD group for word reading.    
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INTRODUCTION 

Learning disabilities in reading and math impact the lives of many individuals.  Lyon 

(1996) documented that 80% of learning disability (LD) diagnoses are later revealed to be 

reading disabilities (RD).  With regards to the prevalence of the various LDs, Snowling 

(2000) reported that 5 % of school-aged children have reading disabilities (RDs), or dyslexia,  

and Geary (2004) documented that 5 - 8 % of children have an arithmetic disability (AD) 

(i.e., math disability [MD]). Comorbid reading and math disabilities (RD+MD) are also 

frequently documented.  It has been reported that 40-60% of children with primary RDs have 

comorbid MDs (Badian, 1982; Geary, 1993) and 17% of children with primary MD have a 

comorbid RD (Gross-Tsur et al., 1996).  Badian (1999) assessed reading and arithmetic 

achievement in 1,075 children from Kindergarten up to the end of Grade 7 or 8.  

Approximately 2.3% of this population had a MD, 6.6% had a RD, and 3.4% had a comorbid 

RD+MD.  Less research has been reported for children with MD or comorbid RD+MD, than 

for children with RD only (Badian, 1999; Geary, Hoard & Hamson, 1999).  

The literature on children with single RDs or MDs documents several different 

cognitive processing deficits.  The present research focuses on the major processing deficits 

that appear to overlap and that account for much word reading and math calculation 

difficulties.  These include automaticity (i.e., accuracy and rate for word reading or math 

facts), processing (i.e., phonological or algorithmic), and working memory span (i.e., the 

ability to hold verbal/phonological and visual information online for further manipulation).  

The little research that does exist on children with comorbid RD+MD suggests that they have 

a more severe combination of the underlying single RD and MD deficits.  In the current 

study the cognitive profiles of children with average overall IQ and no disability (ND), single 
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RD or MD, and comorbid RD+MD are investigated to further understand the unique and 

possibly shared cognitive deficits in single and comorbid disability groups.  Assessing the 

unique and shared underlying cognitive processing deficit(s) associated with reading, math, 

or comorbid reading/math disabilities may help to guide diagnoses and special education 

programming.    

Cognitive Processes in Reading 

Specific deficits in cognitive processes are discussed in the reading literature as 

contributors to RDs. These include deficits in automatic visual/orthographic retrieval and 

phonological processing. We refer to visual/orthographic retrieval as the automaticity (i.e., 

accuracy and fluency) with which one can rapidly name text-based information (e.g., Rapid 

Automatized Naming (RAN) for letters and digits) and read whole words without needing to 

rely on phonological decoding processes. Phonological processing refers to the application of 

phonological awareness skills when using grapheme-phoneme conversion and blending to 

‘figure out’ or decode an unfamiliar word.  

Neuropsychological research originally focused on apparent visual-verbal 

disconnections in brain injured individuals who exhibited deficits in RAN speed (Denckla & 

Rudel, 1976).  Neuropsychologists later proposed two possible routes to reading. More 

specifically, individuals with brain damage affecting the visual-orthographic route had 

deficits in whole word reading with seemingly intact phonological processing (i.e., surface 

dyslexia); whereas individuals with brain damage affecting the phonological decoding routes 

showed the opposite pattern with intact whole word reading and deficits in phonological 

processing (i.e., phonological dyslexics) (Castles & Coltheart, 1993; Coltheart, Curtis, 

Atkins, & Haller, 1993; Coltheart, Castle, Perry, Langdon, & Ziegler, 2001).  While later 
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research did not reliably support a mutually exclusive dual route model, considerable 

cognitive, developmental, and neuroimaging research supported the relative independence 

and collaboration of these two access routes in word reading.  These results suggested 

another possible area of deficit for children with RD, namely the visual/orthographic-

phonological connection.   

Seemingly the visual/orthographic-phonological connection would require a cognitive 

work space (i.e., working memory) in order to pool together familiar and unfamiliar word 

parts in order to apply phonological processing skills to read a new or unfamiliar word.  A 

boom in research into the frontal lobe systems, associated working memory span (i.e., 

holding and manipulating information in verbal or visual working memory for further 

manipulation), and executive function led to investigation into the contribution of working 

memory to reading (Bradley & Bryant, 198; Gathercole, Willis & Baddeley, 1991; Hansen & 

Bowey, 1994; Leather & Henry, 1994; McDougall, Hulme, Ellis & Monk, 1994; Rohl & 

Pratt, 1995).  Research investigating the degree of independence and collaboration of the 

visual/orthographic and phonological processing routes, and working memory span’s 

integrative role in the visual/orthographic-phonological connection, is summarized below.   

Automatic Visual/Orthographic Route 

The visual/orthographic processing component of reading has been researched less 

than the phonological processing component (Bell, McCallum, & Cox, 2003.  However, 

research findings do show that deficits with visual orthography characterize some of the RD 

population (Bell & Worthington, 2002; Hultquist, 1997). The ‘cross-modal’ hypothesis or 

‘paired associate learning deficit’ (Plaza & Cohen, 2005) suggests that some children with 

RDs have deficits in associating verbal labels with visual stimuli that may be independent of 
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any phonological awareness problems (Mayringer & Wimmer, 2000; Windfuhr & Snowling, 

2001; Plaza & Cohen, 2005)  

Based on RAN findings, Denckla & Rudel (1976) proposed a ‘visual-verbal 

disconnection syndrome’ in which weak automatic retrieval of names, via visual-verbal 

association, was faulty in brain injured and dyslexic (i.e., RD) children.  Wolf et al., (2000, 

2002) proposed a temporal sequence of cognitive processes associated with rapid naming, 

including: 1) perceptual recognition; 2) lexical processes: word retrieval, and 3) motor 

processes: articulation.  Deficits in rapid naming were not found to be associated with 

difficulties in articulation rate, short-term memory, or visual scanning (Bowers, Steffy & 

Tate, 1988; Obregon, 1994; Wimmer, 1993).  Core weakness in children with RD appears to 

be with the second part of the process, namely the lexical access needed to automatically 

name letters (RAN: L), digits (RAN: D), and words from long-term memory (see Bowers & 

Ishaik, 2003).   

A deficit in naming is strongly related to the inability to quickly retrieve words based 

solely on their visual form/orthography (Wolf, Bally, & Morris, 1986) and is a good 

predictor of weak reading accuracy and poor reading comprehension (e.g., Bowers & Wolf, 

1993; Wolf, 1991; Wolf & Bowers, 1999; Wolf, Bowers & Biddle, 2000; Young & Bowers 

1995).  A reliable relation between reading fluency and rapid automatized naming tasks (e.g., 

RAN) has also been demonstrated (Levy, Abello, & Lysynchuk, 1997).  Poor readers are 

generally slower than average readers when reading words in isolation (e.g., Ehri & Wilce, 

1983) and experience difficulty reading irregular/exception words (Lovett, 1987; Manis & 

Morrison, 1985; Seidenberg, Bruck, & Backman, 1985).  Mayringer and Wimmer (2000) 

suggested that the slow speed with which they read impedes their access to the orthographic 
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form of words. Furthermore, reading irregular or exception words in English (e.g., Lovett, 

1987) forces lexical access through a visual/orthographic route, as these words cannot 

accurately be sounded out in their entirety using English language grapheme-phoneme 

conversion rules (e.g., ‘yacht’ ‘have’).  Since many poor readers cannot access this route in 

an efficient manner, this helps account for the difficulties they experience reading 

irregular/exception words. 

Pseudowords are nonwords that contain high frequency spelling patterns in written 

English and are designed to test phonological decoding, separate from visual/orthographic 

skill.  Booth, Perfetti, MacWhinney, and Hunt (2000) showed that rapid auditory perception 

accounted for unique variance in pseudoword reading and not in irregular words, while rapid 

visual perception accounted for variance in irregular words and not in pseudowords.  Manis 

et al. (2000) assessed the amount of variance RAN letters and phonological awareness 

accounted for when predicting irregular and pseudoword reading.  They found that while 

both processes were important predictors of both types of word reading, RAN letters 

accounted for more unique variance in irregular than in pseudoword tasks, and that 

phonological awareness accounted for more unique variance in pseudoword than in irregular 

word tasks.  In terms of pathways, this suggests that reading irregular and pseudowords both 

require access to visual/orthographic and phonological processing routes, with the 

visual/orthographic route being accessed more for irregular words and the phonological 

processing route for pseudowords. 

Phonological Processing: Awareness and Decoding 

Phonological awareness, or recognizing the sounds of language, is an important 

component of phonological processing (Siegel, 2003). Phoneme awareness develops as 
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reading skill progresses (Vandervelden & Siegel, 1995).  Phonological awareness tests 

typically assess the ability to identify individual phonemes in spoken words and/or nonwords 

and then manipulate these phonemes by adding, removing, substituting, and/or moving a 

sound to create a new word.  Other phonological awareness tests include identifying rhymes 

and reading nonwords.  Deficits in phonological awareness are found to be a major 

contributor to reading failure (e.g., Bradley & Bryant, 1983; Fletcher et. al., 1994; Mann, 

1984; Shankweiler et al., 1995; Siegel, 2003; Stanovich & Siegel, 1994).  Poor readers show 

weaker phonological awareness as exemplified by their difficulties segmenting and deleting 

phonemes from words (Pratt & Brady, 1988).  Compared to age-matched average readers, 

many poor readers demonstrate weaker phonological awareness on sound categorization 

tasks (Bradley & Bryant, 1983).  These tasks also discriminate poor readers from younger 

reading-matched controls (e.g., Duncan & Johnston, 1999; Fawcett & Nicholson, 1995).  

Bruck (1992) matched children with RD with both age- and reading-matched controls and 

found that the RD group performed the lowest among these groups on a phoneme deletion 

task.   

Core deficits in children with RD are regularly found in their phonological awareness 

and phonological processing skills (Brady & Shankweiler, 1991; Catts, 1989, 1996; Fletcher 

et al., 1994; Stanovich & Siegel, 1994; Wagner & Torgeson, 1987; Wolf & Bowers, 1999).  

Within the context of word reading tasks, phonological processing is related to the ability to 

apply grapheme-phoneme correspondences to accurately decode parts of a word in order to 

blend and read the whole word form.  Deficits in phonological processing are associated with 

difficulties in learning to read (Fawcett, 2001; Hulme et. Al., 2005; Share, 1995; Snowling, 

2000; for reviews).  There is consensus that phonological processing, in the English 
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language, uniquely predicts reading achievement in good and poor readers (Adams, 1990; 

Badian, 1998; Ball & Blachman, 1991; Floorman, Francis, Shaywitz, Shaywitz, & Fletcher, 

1997; Wagner & Torgeson, 1987).  Research also shows that RD children have deficits in 

pseudoword reading, highlighting weaker phonological decoding skills (Bruck, 1988; Siegel 

& Ryan, 1988; Waters, Bruck, & Seidenberg, 1985).   

The Orthographic--Phonological Processing Connection 

A dissociation between word retrieval that relies mostly on visual/orthographic route 

(e.g., yacht), and pseudoword retrieval that depends heavily on the phonological processing 

system (e.g., manta) may appear independent; however, cognitive, developmental, and 

neuropsychological research along with results from effective remediation (Lovett et al., 

2000a; Lovett, Steinbach, & Frijters, 2000b) suggest a dynamic integration and feedback 

loop whereby the orthographic/visual and phonological routes work in partnership. Gough 

and Juel (1991) reported a correlation of .55 between reading pseudowords and real words, 

and Siegel and Ryan (1988) reported a correlation of .86.   

In the initial stages of reading acquisition, letter knowledge is pertinent.  Letters each 

have their own sound correspondences and are in effect pseudowords--or novel phonemic 

units (Share & Stanovich, 1995).  The sequential processing involved in grapheme-phoneme 

conversion leads to an increase in orthographic representation (Adams, 1990; Ehri, 1992).  

However, deficits in either the orthographic or phonological systems have been shown to be 

strongly associated with difficulty storing and retrieving sight words and learning different 

grapheme-phoneme combinations (Gathercole & Baddeley, 1989, 1990a, 1990b).   

Visual/orthographic and phonological processing both contribute significantly and 

reciprocally to reading accuracy and decoding success (e.g., Bryant, MacLean, Bradley, & 
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Crossland, 1990; de Jong & Van der Leij, 1999), even when the influence of IQ and memory 

are controlled (Bradley & Bryant, 1985).  As children acquire phonological processing skills 

(e.g., awareness and decoding), more complex orthographic structures can be decoded.  With 

further consolidation between visual orthographic-phonological connections, whole words 

can be read more automatically or fluently (Ehri & Wilce, 1083; Share, 1995, 1999; Stuart & 

Masterson, 1992). 

The amount of variance that is associated with naming via a visual/orthographic route 

versus a phonological processing route, and the impact of deficits in one or both routes on 

word reading have been the focus of many studies.  At various ages, RAN (a representative 

of the visual/orthographic route) has consistently been found to contribute unique variance to 

reading, over and above phonological awareness (Bowers, Steffy, & Swanson, 1986; 

Schatschneider, Carlson, Francis, Foorman, & Fletcher, 2000; Wolf, 1999).  Wolf and 

colleagues have defined ‘double deficit’ subgroups, with deficits in both naming speed and 

phonological awareness, and these included the most severely reading disabled (Wolf, 1999; 

2002; Wolf, Bowers, & Biddle, 2000; for review, see Bowers & Ishaik, 2003).  Lovett (1987) 

compared rate disabled and accuracy disabled groups; she found that the rate disabled readers 

had deficits in RAN alone, while the accuracy disabled group demonstrated both RAN and 

phonological awareness deficits.   

Which route is employed also depends on who is reading--good or poor readers? 

young or mature individuals?  Bowers (1993) showed RAN to be highly related to the speed 

of reading text in both poor and good readers’, above and beyond any relation to 

phonological awareness.  Research shows that poor readers reading is best predicted by their 

performance on RAN and phonological awareness tasks, while good readers rely on more 
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advanced phonological decoding strategies (e.g., McBride-Chang & Manis, 1996; Meyer, 

Wood, Hart, & Felton, 1998).  Looking at the development of the visual/orthographic-

phonological connection, Backman and colleagues (1984) found early readers to use an 

orthographic route for high-frequency words while learning grapheme-phoneme patterns.  

Wagner et al. (1994, 1997) found that RAN contributed significant unique variance to the 

reading performance of children in Kindergarten up to the end of Grade 2, while 

phonological awareness also contributed variance to the reading performance of older 

children, up to the end of Grade 4.   

Studies comparing phonological and orthographic awareness (e.g., tasks requiring the 

choice of the correct spelling) in ND and RD children suggested that children with RDs 

showed relatively better developed orthographic awareness and deficits in phonological 

processing and working memory (see Siegel, 2003 for review). While these findings have 

been used to suggest that children with RDs have an intact visual/orthographic route, it is 

noteworthy that these studies used higher frequency spelling patterns on orthographic 

awareness tasks.  This finding may have over-interpreted to suggest that the poor readers 

may have had intact orthographic awareness that they relied on, but these tests did not require 

knowledge of more advanced orthographic patterns (e.g., lower frequency, and 

irregular/exception words).  Siegel (2003) reviewed orthographic and phonological 

processing deficits in early and poor readers.  Both early and poor readers experienced 

difficulty matching the visual form of a pseudoword that they heard and reading orthographic 

spellings with multiple phonemes (e.g., ‘ose’), vowels, consonant blends, exception words, 

low frequency regular words, pseudowords as the number of syllables increased, and high 

frequency words but not their matching pseudoword (e.g., ‘ran’ versus ‘han’) (for review, 
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see Siegel 2003).  It appears that poor readers do not have complete failure of the 

visual/orthographic route, but rather a less developed route that is less capable of 

automatically retrieving more complex orthographic and phonemic patterns. Furthermore, 

their phonological processing route may also be underdeveloped or impaired and 

characterized by limitations in working memory capacity.      

In addition to which route is relied on more in RDs and whether it is one or both, 

temporal sequencing of information also impacts how automatically/rapidly a word is read.  

Breznitz (2002) linked the temporal, visual-verbal, and cross-modal hypotheses, proposing 

that discrimination and identification are faster via the visual than auditory route.  Breznitz 

posits that speed-of-processing deficits affect the connection between the visual and 

phonological routes that underlie reading deficits (Breznitz, 2002).  Others argue that 

automaticity of the orthographic-phonological system is critical to an adult reader’s rapid 

word naming, as noted to be housed in the Visual Word Form Area (VWFA) in the left 

ventral-posterior neural system of the brain (Cohen et al., 2002; Lukatela & Turvey, 1994; 

Perfetti & Bell, 1991; McCandliss, Cohen, & Dehaene, 2003).  When unfamiliar words are 

encountered, the two systems work together using automatic orthographic recognition (e.g., 

sight words) for familiar parts of the word, and phonological processing strategies, to help 

the unfamiliar become familiar.  It is proposed that the working memory span (i.e., the ability 

to manipulate information using verbal rehearsal and/or visualization) is employed to hold 

the automatic/familiar and unfamiliar online long enough so that phonological processing can 

occur.  
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The Visual/Orthographic-Phonological Connection and the Integrative Role of Working 

Memory 

 Working memory has been defined as a system of limited capacity for storing and 

manipulating temporary information that is held in short-term memory (McLean & Hitch, 

1999). The phonological loop, visual sketch pad, and executive system of Baddeley and 

Hitch’s (1974) working memory model appear to all be important in the acquisition of 

reading (Bull, Johnston, & Roy, 1999; Heathcote, 1994; Logie & Baddeley, 1987; Logie, 

Gilhooly, & Wynn, 1994).  According to Baddeley and Hitch’s working memory model, 

short-term memory storage can be provided by one of two slave systems: 1) the 

articulatory/phonological loop or 2) the visual-spatial sketchpad.  The phonological loop 

supports the verbal rehearsal processes involved in articulation and phonological 

manipulation (Logie & Baddeley, 1987).  The visual-spatial sketchpad supports manipulation 

of the orthographic or visual component of phonemes (Heathcote, 1994).  Finally, the 

executive system allocates attention and coordinates the order of the necessary operations 

(Bull et al., 1999).   

  Citing many studies, Plaza and Cohen (2003) proposed that phonological processing 

not only involves phonological awareness of the speech sound structure of the language, but 

also retrieval of phonological information from long-term memory, and phonological 

encoding of information into working memory (Bryant, Nunes, & Bindman, 1998; Crain, 

Shankweiler, Macaruso, & BarShalom, 1990; Gathercole & Baddeley, 1990; Morris et al., 

1998; Snowling, Hulme, & Goulandris, 1994; Wagner, Torgeson, & Rashotte, 1994).  There 

is also evidence that the pattern of variance accounted for in reading achievement by rapid 

naming, phonological awareness, and verbal-working memory changes across the 
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developmental span (De Jong & van der Leij, 1999; Wagner, Torgeson & Rashotte, 1994; 

Wagner et al., 1997).   

Many studies have supported the collective contribution of phonological awareness 

and verbal-working memory to reading achievement (Bradley & Bryant, 198; Gathercole, 

Willis & Baddeley, 1991; Hansen & Bowey, 1994; Leather & Henry, 1994; McDougall, 

Hulme, Ellis & Monk, 1994; Rohl & Pratt, 1995).  Snowling et al. (1996) followed a group 

of 20 phonological dyslexics (mean age = 9.67 years) and a group of reading-matched 

controls and found that the RD children with mainly phonological deficits (i.e., phonological 

dyslexics) performed more poorly on both phonological processing and verbal short-term 

memory tasks (Fowler, 1991; Snowling et al., 1994).  Research also shows that poor readers 

exhibit a reduced working memory span for verbal material (e.g., letters, digits, word strings, 

and phonological processing) (Baddeley, 1986; Holligan & Johnston, 1988; Rapala & Brady, 

1990).  

Phonological processing deficits have been further associated with poorer 

performance on working memory digit span tasks, phonological awareness and phonological 

(working) memory tasks (e.g., Brady & Shankweiler, 1991; Gough, Ehri, & Treiman, 1992; 

Stanovich, 1991, 1994; Wagner & Torgeson, 1987).  It has been proposed that working 

memory and phonological awareness develop in parallel (Naslund & Schneider, 1996).  

Remedial training of phonological awareness deficits enhances performance on phonological 

awareness tasks and working memory processes (Brady, Fowler, Stone, & Winbury, 1994; 

Ellis, 1990).  Further evidence that phonological awareness and working memory tasks are 

highly related is found in research that working memory tasks do not contribute unique 
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variance in reading beyond that contributed by phonological awareness (DeJong & van der 

Leij, 1999).    

In the present study, it is proposed that when a sight word is familiar (e.g., ‘cat’ or 

‘pill’) it can be read automatically, in its entirety, through a visual/orthographic-route.   If an 

unfamiliar word (e.g., ‘caterpillar’) requires reading, the executive system employs working 

memory span as an integration system that holds (through verbal rehearsal and/or 

visualization) the automatically familiar sight words ( e.g., ‘cat’ and ‘pill’) and unfamiliar 

phonemes (e.g., ‘er’ and ‘ar’), in their appropriate sequence, so that phonological processing 

of the larger words elements can occur simultaneously.  Thus, when unfamiliar words are 

encountered, the two systems can work together in a dynamic partnership by holding already 

fluent orthographic patterns (e.g., sight words) and graphemes online in working memory to 

employ phonological processing strategies to integrate information from the two routes.   

Functional Neurobiological Processes Underlying Cognitive Processes in Reading 

A recent body of fMRI research is summarized to demonstrate the similarities in 

automatic/visual retrieval, phonological processing, working memory, and executive 

neurological systems that potentially ‘room with’, or are neighbours with, each other in 

functional neurobiological systems in the learning brain.  Research using functional magnetic 

resonance imaging (fMRI) to investigate reading development and RD report congruent 

findings on the neural architecture in ventral areas associated with automatic/orthographic 

processing, frontal regions associated with phonological processing, and dorsal regions 

associated with the orthographic/ phonological integration systems in reading (for reviews, 

see Eden & Zeffiro, 1998; Pugh, Mencl, Jenner, et al., 2000; Sandak, Mencl, Frost, & Pugh, 

2004; Sarkari et al., 2002; Shaywitz & Shaywitz, 2003). 
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 For example, Logan’s (1988, 1997) word analysis system consists of two parts: an 1) 

automatic rapid whole word (i.e., orthographic) system that has been related to activation of 

the ventral-posterior neural system, including the left hemisphere middle 

occipitotemporal/fusiform area, and greater left (than right) lateral extrastriate activation 

(Pugh et al., 1996), termed the Visual Word Form Area (VWFA) (Cohen et al., 2002; 

McCandliss, Cohen, & Dehaene, 2003) and OT skill zone by Sandak (2004); and a 2) 

phonological processing, and sub-lexical speech system, that processes word parts more 

slowly and has been associated with activation in the frontal neural system, including the 

inferior frontal gyrus (IFG) (e.g., Demone et al., 1992; Zattore, Evans, Meyer, & Gjedde, 

1992) and the dorsal posterior regions of the inferior frontal cortex (IFC) (Poldrack et al., 

1999).  A third dorsal temporoparietal posterior system has been associated with integrating 

orthographic and phonological processing (Price et al., 2000; Pugh et al., 2000; Booth et al., 

2004).  It includes the angular gyrus (ANG), supramarginal gyrus (SMG), posterior superior 

temporal gyrus (PSTG) or Wernicke’s area (Misra, Katzir, Wolf, & Poldrack, 2004) and 

inferior parietal lobule (IPL). Increasing fMRI evidence during specific reading tasks 

supports this triple system model (for review see, Pugh et al., 2005).   

Cognitive Processes in Math  

 Specific deficits in cognitive processes are discussed in the math literature as 

contributors to MDs. These include deficits in visual/math fact retrieval and algorithmic 

processing. The present study proposes that automatic (i.e., accurate and fluent) visual/math-

fact retrieval occurs when an answer to a math fact (e.g., 2 + 2 = 4) is directly retrieved, 

without needing to apply algorithmic processing. Algorithmic processing refers to the 
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manipulation of unknown parts of math facts, and the application of calculation rules and 

procedures, in order to solve the whole algorithm.  

 Early neuropsychological research into the etiology of MD (called dyscalculia in the 

neuropsychological literature) reported a potential dissociation between arithmetic facts (e.g., 

6 + 6) and arithmetic procedures (i.e., algorithmic processing).  McCloskey and colleagues 

(McCloskey, 1992; McCloskey, Caramazza & Basili, 1985) developed a hierarchical model 

that suggested two distinct processes: 1) Number processing, and 2) Calculation. It has been 

proposed that deficits in either of these systems can result in a dyscalculia for number 

processing (Pesenti, Thioux, Seron & De Volder, 2000), retrieval of arithmetic facts (Pesenti 

et al. 2000) and/or calculation procedures (Temple, 1989, 1991; 1992; 1994).   Geary (2004) 

later suggested that a semantic memory math disability was reflected by inaccurate and 

variable response times for math fact retrieval, while a procedural math disability resulted in 

procedural errors in calculations (e.g. errors in carrying or borrowing).  At the time, Geary 

(2004) reported that the relation between a procedural math disability and a reading disability 

was unclear.   

 Similar to the reading research outlined above, research on math processing has 

suggested a visual/math fact retrieval route, an algorithmic processing route, and connection 

between the two routes.  The relative independence and collaboration of these two access 

routes to solving math calculations is explored in the current research study.  The present 

study will extrapolate from research in the reading domain into research in the math domain, 

to explore the possible similarities between proposed automatic visual/orthographic and 

automatic visual/math fact retrieval routes (i.e., the phonological and algorithmic processing 

routes, and the integrative role of working memory in both).  
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Automatic Visual/Fact Route 

Compared to the reading domain, less literature exists on arithmetic development.  

Speeded tasks that appear related to math achievement in children include counting rate (i.e., 

articulation) and rapid naming of digits (e.g., RAN digits) (Denckla & Rudel, 1976; Wolf, 

1991).  Geary (2004) cited many studies in which children with MD had significantly weaker 

automatic retrieval of basic math facts (Barrouillet et al., 1997; Bull & Johnston, 1997; 

Garnett & Fleischner, 1983; Geary, 1993; Geary & Brown, 1991; Geary et al., 1987; Jordan 

& Montani, 1997; Ostad, 1997).  Hitch and McAuley (1991) suggested that children with 

MD showed a lack of automaticity in retrieving numbers and number combinations from 

long-term memory.     

After controlling for reading ability in 7-year olds, Bull and Johnston (1997) found 

that arithmetic ability was best predicted by processing speed via a visual route (e.g., visual 

number matching task) with no other cognitive process contributing to further unique 

variance.  These authors suggested that a general speed-of-processing deficit might underlie 

children’s difficulties with automatizing basic arithmetic facts.  They also reported a 

significant correlation between math and reading achievement (r =  .67) (Bull & Johnston, 

1997).   

In the present work, it is hypothesized that similar to deficits in the automaticity of 

the visual/orthographic naming route in children with RD, children with MD present with a 

deficit in accessing the visual form of numbers and automatically retrieving their associated 

answer (e.g., 1 + 1 = 2; 2 + 2 = 4).  While Geary termed the retrieval of automatic math facts 

a phonetic-semantic memory system, here it is proposed that the automatic visual-

(orthographic or fact) system reads the word, or answer to the fact, automatically as a whole, 
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prior to the semantic relation (i.e., the meaning of the word or fact) to the answer being 

accessed. This study focuses on the automatic visual/fact route for math fact retrieval, and 

not on a phonetic-semantic one.  The role of semantics (i.e., meaning) of words and facts is a 

large issue beyond the scope of the current study.   

Algorithmic Processing and Working Memory 

In the reading literature, phonological processing (i.e., awareness and decoding) was 

investigated at length prior to recent research on working memory.  In the math literature, the 

role of algorithmic processing and working memory were investigated concurrently and, 

hence, are discussed together in this section.   

In the math domain, working memory has been strongly associated with arithmetic 

tasks such as counting procedures, solving simple addition facts, and working through more 

difficult word problems (Adams & Hitch, 1997; Geary, 1990; Geary & Widaman, 1992; 

Logie, Gilhooly, & Wynn, 1994).  Klein and Bisanz (2000) reported that preschoolers’ 

accuracy on simple addition and subtraction problems was strongly associated with the 

number of units that the child had to hold in working memory.  It has been reported that 

children with arithmetic difficulties demonstrate a deficit in holding numbers in short-term 

memory on tasks such as Digit Span Forwards (WISC-III) and Counting Span (Siegel & 

Ryan, 1989).  Bull and Johnston (1997) reported that short-term memory and verbal working 

memory predict Grade 3 and 4 children’s ability to solve multi-digit algorithms.  Thus, 

working memory deficits can also impair multistage computation (e.g., 253 + 528 + 124 + 

351) (Geary, 1993).   

Working memory deficiencies have consistently been shown to be associated with 

MDs (Geary 1990, 1993, 2004).  Children with MD have significant working memory 
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weaknesses, as seen in their trouble maintaining information in the articulatory or visual-

spatial working memory systems ( Hitch & McAuley, 1991; McLean & Hitch, 1999; Siegel 

& Ryan, 1989; Swanson, 1993).  In the MD population, Geary (2004) suggested that using 

finger counting as a memory aide, instead of direct retrieval, could be associated with 

working memory difficulties.  Hitch and McAuley (1991) showed that children with MDs 

had a deficit on long-term memory tests but demonstrated good articulation rate. Poor 

working memory resources have, in turn, been proposed to lead to poor representation of 

arithmetic facts in long-term memory (Geary 1990; Geary, Bow-Thomas, & Yao, 1992; see 

review by Geary, 2004) 

 Geary and his colleagues have argued that differences in performance between ability 

and disability groups on ‘sequential’ mental addition problems (e.g., 2 + 4 + 5 + 7 =) parallel 

differences in working memory (Geary, 1996; Geary, Bow-Thomas, Yao, 1992; Geary & 

Brown, 1991).  They suggest that differences in working memory resources may be the 

reason for differences on many arithmetic calculations, including counting knowledge, 

counting strategies, and deficits in retrieval strategies for automatic number facts (e.g., 

addition).  Thus, children with a competent working memory system should show a higher 

level of automatization of facts, as has been evidenced by a quicker and more accurate level 

of retrieval from memory (Janssen et al., 1999).   

It has been proposed that these children do not develop long-term memory 

representations for automatic number facts because the information that is necessary to do so 

does not stay in working memory long enough to be consolidated. However, if this was the 

case, ability-matched controls should perform better on all working memory tasks in 

comparison to arithmetic disabled children, and this is not the case (McLean & Hitch, 1999).   
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To help explain this, we propose that deficits in one or both of the automatic visual/fact 

retrieval routes and in working memory span can negatively impact performance on 

arithmetic calculations.  For example, to solve 2 + 4 + 7 =, first the automatic math fact (e.g., 

2 + 4 = 6) could be retrieved from long-term memory via a visual/fact route, and held in 

working memory (either verbally and/or visually-depending on the child) in order to apply 

more advanced algorithmic processing strategies (e.g., 6 + 7 = ‘ I know 5 + 5 = 10 + 3 = 13’) 

to solve unfamiliar (i.e., less automatic) sequential math problems.        

McLean and Hitch (1999) suggested that the consistent finding of no difficulties with 

the manipulation of phonemes in the phonological loop, but significant deficits in Digit Span 

in children with MD, is suggestive of a specific deficit remembering numerical stimuli. In 

other words, a short-term memory problem that, in turn, stunts working memory is 

suggested.   

The Visual/Math Fact-Algorithmic Processing Connection and the Integrative Role of 

Working Memory 

Similar to high frequency letter-sound patterns to read whole words and increase 

automaticity, the faster that one retrieves basic math facts (e.g., addition facts such as 2 + 2 = 

4), the faster one can complete an addition algorithm (e.g., 23 + 23 = automatic 3 + 3 = 6 and 

2  + 2 = 4).  Kail (1992) maintained that retrieving facts quickly and automatically frees up 

processing/memory resources and allows for more advanced operations to occur (e.g., 

algorithms like 423 + 8423).  In support of this hypothesis, children demonstrated a strong 

association between their ability to recall automatic facts for an operation (i.e., simple 

addition) and their ability to perform algorithmic calculations for that same operation (Case, 

Kurland, & Goldberg, 1982).  
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When a fact or word is unfamiliar, the visual-naming system automatically identifies 

what it can, while the advanced processing system (phonological or algorithmic) identifies 

unknown parts. The two then pull together what they know ‘online’ into working memory 

using either a verbal rehearsal (i.e., phonological loop) or a visualization strategy (i.e., visual-

spatial sketchpad) to ultimately integrate what they know.  This should be an efficient system 

in good readers and good mathematicians, a system that works toward enhancing their 

knowledge of new words and facts and increasing their automatic access through a visual 

route. Geary’s Response Time (RT) studies showed that good second grade mathematicians 

used a more advanced counting-on strategy (e.g., 3 + 4 = ‘4,5,6,7’), while poor Grade 3 

mathematicians used a less advanced strategy of counting--all (e.g., 3 + 4 = ‘1,2,3,4,5,6,7’).  

Geary (2004) reported a similar pattern when children with MD solved subtraction facts (e.g., 

Ostad, 2000).  Geary (2004) outlined two additional strategies that came after counting on.  

These were retrieval, where the answer to the whole fact was retrieved automatically (e.g., 3  

+ 4 = ‘7’), and decomposition, where part of the sum was retrieved, followed by counting-on 

(e.g., 3 + 4 = ‘3 + 3 = 6 plus 1  = 7’).   

It is proposed that, similar to the orthographic-phonological connection in reading, a 

more advanced algorithmic processing strategy can be used as facts become consolidated in a 

good mathematician (i.e., the association between the math fact and the answer is 

strengthened).  In the reading domain, when words are unfamiliar to an individual with RD, 

the individual appears to resort to a basic visual/orthographic route and uses less advanced 

phonological processing strategies (Siegel, 2003).  Consistently, when facts are unfamiliar to 

individuals with MD, a less efficient strategy is used.  Geary (2004; 1994) referred to these 

less efficient strategies as ‘backup’ strategies (e.g., counting all).  More advanced strategies 
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are associated with higher performance on math achievement tests (Geary, 2004; Siegler, 

1988) and reading achievement tests.   

Similar to children with RD who exhibit more errors and less fluency in word 

reading, Geary, Hamson and Hoard (2000) found that first grade children with MDs 

demonstrated significantly more errors (in retrieval and when counting-on) and more 

variability in their RT.  Much like the progress from phonological decoding to consolidating 

the name of the whole word in orthographic store for fast retrieval in good readers, normal 

mathematicians showed progress from verbal counting to automatic retrieval, with faster 

retrieval times across Grades 1-2. RD and MD children did not show such advancement 

(Geary et al. 1991).   

In the reading domain, a similar ‘additive’ system involving the visual/orthographic-

phonological connection appears to be capitalized upon by empirically-supported reading 

remediation programs. For example, Lovett et al.’s (2000a) PHAST Reading program  

enhances sight word automaticity and phonological processing skills, and teaches 

metacognitive word identification strategies.  As a student’s visual/orthographic store 

increases in automaticity, and they learn metacognitive strategies to employ phonological 

processing skills, the orthographic/visual-phonological connection can collaborate to 

facilitate accurate decoding of more unfamiliar words (e.g., Lovett et al., 2000a).  

Functional Neurobiological Systems Underlying Cognitive Processes in Math 

Functional neuro-imaging research shows that the fusiform gyrus is the perceptual 

processor for numbers and stores the visual forms (Rickard et al., 2000; Zago et al., 2001).  

This is also part of the automatic ventral system for reading. Similar to the storage and 

retrieval of automatic orthographic information, a left-hemisphere network associated with 
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storage and retrieval of automatic math facts has been identified (Dehaene & Cohen, 1997).  

The left ANG and SMG appear associated with automatic multiplication, but not with less 

automatic subtraction tasks (Lee, 2000).  The prefrontal cortex appears associated with 

automaticity of math tasks (Menon et al., 2000b).  Left parietal lesions are also implicated in 

the retrieval of arithmetical facts. (Mayer et. al. (2003).  The left ANG is active during more 

exact calculation for well-practiced math facts such as multiplication (DeHaene et al., 1999; 

Stanescu-Cosson et al., 2000).  Delazer et al. (2003) found that ‘trained’ (i.e., automatic) 

multiplication problems were associated with greater activation in the left ANG, while less 

automatic or ‘untrained’ multiplication problems activated the left IPS and IFG.  Taking the 

fMRI findings from the reading and math literature, there appears to be some potential 

overlap in areas associated with integrating word reading with phonological processes and 

with integrating math fact retrieval with algorithmic processes. 

Geary (2004) has suggested that the procedural math disability subtype (e.g., 

characterized by procedural errors in calculations (such as errors in carrying or borrowing) 

appeared related to left-hemisphere systems.  Geary (2004) reported that the relation between 

(e.g., underlying deficits in) a procedural math disability and a reading disability was unclear.  

In the inferior parietal lobe, the SMG, ANG, and IPS are activated during arithmetic 

processing (Zago & Tzourio-Mazoyer, 2002; Dehaene et al., 2003).  A bilateral inferior 

parietal network is dedicated to the mental manipulation of numerical quantities (Dehaene & 

Cohen, 1993).  More laboured number processing is associated with activation of fronto-

temporal regions, and calculation procedures are associated with activation of parietal cortex 

(Dehaene et al., 1999, 2003).  Based on this evidence, there appears to be a possible overlap 

between phonological processing and algorithmic processing regions.   
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With respect to the role of working memory, the superior frontal gyri (SFG) and 

MFG appear to be involved with executive processes associated with working memory and 

online mental calculations (Zago et al., 2001).  Right frontal cortex damage is related to 

executive difficulties (e.g., monitoring and implementing multi-step problem-solving) in 

solving math calculations (Luria, 1980; Temple, 1991) and many other learning difficulties.  

Significant correlations between oral calculation and verbal working memory, and between 

written calculation and visuospatial working memory, have been reported (Mayer et al., 

2003). The SMG appears related to working memory, and storing parts of the solutions (Zago 

& Tzourio-Mazoyer, 2002).    

Lee and Kang (2002) found that a phonological dual task suppresses oral 

multiplication but not subtraction facts, and vice-versa for visuo-spatial dual tasks; this 

suggests that oral multiplication may be associated with the phonological loop (e.g., 

verbalization of multiplication facts), and subtraction with the visuo-spatial sketchpad (e.g., 

visualization of mental calculations).  This makes sense given that multiplication facts 

provide more opportunity than subtraction for retrieval of automatic facts (e.g., 3 x 3 = 6).  

Left inferior parietal cortex has been claimed to be the site of the verbal short-term store, yet 

imaging studies report activation of a homologous right-hemisphere region in verbal working 

memory (Ravizza,  Behrmann, & Fiez, 2005).  Left ventral prefrontal cortex (PFC) appears 

to support preferentially verbal WM, and right dorsal PFC appears to support preferentially 

spatial WM. (Walter et. al., 2003.)   

Cognitive Deficits in Comorbid RD+MD 

Geary (1993) suggested that the retrieval of automatic math facts is dependent on a 

phonetic-semantic memory system and, therefore, should share the same resources as the 
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retrieval of words from long-term memory.  This deficit in retrieval seen in single RD for 

words, and in MD for facts, could help explain this occurrence of comorbid RD+MD.  As 

was suggested earlier, in the present study, it is proposed that an automatic visual-

(orthographic or fact) system allows a word to be read in its entirety or the answer to a math 

fact to be reached, prior to phonological or algorithmic processing, or the semantic relation 

(i.e., meaning) to the word or answer being accessed.  A deficit in automatic visual routes 

that directly accesses the name of an entire word or the answer to a math fact appears to 

characterize RD and MD groups; this suggests that RD+MD groups would have difficulty 

automatically retrieving both via a visual/orthographic and visual/fact route.   

Evidence in support of this hypothesis includes reports of children with RD+MD 

performing poorly on tasks (i.e. RAN digits) that require the quick access of visual-verbal 

information (Denckla & Rudel 1976; Fawcett & Nicolson, 1994; Gathercole & Adams, 

1994). Ackerman and Dykman (1995) suggested that a core weakness in children with RD or 

MD is processing speed, and that children with both arithmetic and reading disabilities are 

particularly impaired in this set of cognitive processes.  Geary et al. (1999) assessed grade 

one children with MD, RD, and RD+MD, and results suggested that RD or RD+MD 

participants had slower speed of retrieval for familiar words relative to a normal group of 

grade one children.  In addition, the RD+MD and MD groups committed more memory 

retrieval errors in automatic retrieval of arithmetic facts (Geary et al., 1991; Geary et al., 

1999).  Thus, weaker processing speed affected each group’s ability to retrieve specific 

information differently.   

Hitch and McAuley (1991) suggested that the children with MD had a domain-

specific working memory deficit (e.g., with numbers), while the RD+MD group had a 
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general working memory impairment (e.g., with numbers and letters).  Consistent with this 

hypothesis, Siegel and Ryan (1982) administered a counting span task and a sentence span 

task (adapted from Daneman & Carpenter, 1980) to a group of children with specific 

arithmetic disabilities, and found that they were impaired on counting span but not on 

sentence span.  In contrast, the reading disabled group was found to be impaired on both 

tasks.  Mental arithmetic (i.e., solving unfamiliar algorithms) has also been found to be 

particularly difficult for RD and RD+MD groups (Ackerman et al., 1986; Ackerman & 

Dykman, 1995).   

Fletcher, Morris, and Lyon (2003) found that RD+MD children had more severe 

phonological awareness and working memory difficulties relative to single RD and MD 

groups.  Leather and Henry (1994) found that, after controlling for verbal working memory, 

phonological awareness contributed to both reading and arithmetic achievement in a Grade 2 

sample.  However, phonological awareness accounted for a larger percentage of unique 

variance in word decoding than in arithmetic, suggesting that phonological awareness is 

more specific to reading than arithmetic achievement (Leather & Henry, 1994).   

Ackerman and Dykman (1995) contrasted an RD and an RD+MD at two age levels, 

8-12 years old and 12-17 years old.  In both age ranges, the RD+MD group were 

significantly poorer on tasks of phonological skill, working memory, and naming speed.  As 

with children with reading disabilities, Ackerman and Dykman suggested that RD+MD 

children also fall increasingly farther behind across development, and that this group displays 

a more pronounced ‘Matthew Effect’ (‘the rich get richer and the poor get poorer’) 

(Stanovich, 1986).   
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Current Study 

The evidence reviewed above suggests that RD children have potential cognitive 

deficits in their visual automatic/orthographic retrieval of RAN and sight words, 

phonological processing, and working memory span.  It also implies that MD children have 

potential cognitive deficits in their visual automatic/math fact retrieval for math facts, 

algorithmic processing, and working memory span.  Previous research suggests that a 

combination of cognitive processing deficits exists in RD+MD children, with potential 

weaknesses in their automatic visual/orthographic and automatic visual/math fact retrieval, 

phonological processing and algorithmic processing, and in their working memory span.   

To validate the nature, type, and extent of deficits in single and comorbid disability 

groups, Part I of the current study assesses the similarities and differences in Grade 4 

students’ performance on tasks measuring specific cognitive processes associated with 

reading and/or math disabilities.  These include: automatic visual/orthographic and 

visual/fact routes (e.g., RAN, words, and math facts), working memory span, phonological 

processing, algorithmic processing, and verbal/nonverbal reasoning in ND, RD, MD, and 

RD+MD subgroups.   

In Part II of this study, Structural Equation Models (SEMs) for the entire sample are 

designed to explore the unique and shared variance of theoretically-derived factors 

representing the key cognitive processes suggested to underlie reading and math 

achievement.  These processes include automatic retrieval (visual/orthographic and 

visual/fact), processing (phonological and algorithmic), and working memory span factors.  

Given that psychological assessments for reading and math learning disabilities often start 

with administration of an IQ test to obtain an estimate of expressive vocabulary, verbal and 
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nonverbal/reasoning, and visual-spatial analysis, a fourth IQ factor (i.e., verbal/nonverbal 

reasoning) is also designed into the SEM to explore its relation to the other three factors (e.g., 

automatic, processing, and working memory span).   

To account for potentially different reading and math processes, a theoretically-

derived four factor READ SEM and four factor MATH SEM were assessed through 

confirmatory factor analysis.  Both models have two factors that are identified using identical 

measures.  These are Working Memory Span (e.g., digit and letter span) and IQ (e.g., 

vocabulary, verbal and nonverbal reasoning, and visual-spatial analysis).  The other two 

READ model factors represent the visual/orthographic route called Automatic (e.g., 

RAN/Words), and Phonological Processing.  The other two MATH model factors represent 

the visual/fact route called Automatic (RAN/facts), and Algorithmic Processing.  The READ 

and MATH models are designed to explore the validity and the unique variance of each 

factor along with the shared variance between each of the factors (i.e., intercorrelations).     

Based on cognitive and functional neurobiological research on the cognitive 

processing deficits associated with reading and/or math disabilities, a systems analysis was 

run using these READ and MATH SEM models.  Within each of the READ and MATH 

systems (i.e., models), it was proposed that the automaticity factor represents common 

cognitive (and functional neurobiological) processes underlying reading and math 

achievement that requires the ability to rapidly identify the sound or name associated with 

visual information (e.g., familiar letters, digits, words, and math facts).  When these words 

and facts are unfamiliar, or not automatically identifiable as a whole, more advanced 

‘strategy-based processes’ must ‘kick in.’ These advanced processes are represented by the 
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phonological processing (awareness and decoding) factor, the algorithmic (calculation and 

procedure) processing factor, and the verbal/nonverbal reasoning factor.   

Significant intercorrelations between these factors would represent how these four 

cognitive processes work in partnership.  Theoretically, it is proposed that efficient readers 

and mathematicians increase word reading and math calculation efficiency by first retrieving 

the part of the word or fact that has already been automatically identified.  Then they must 

employ working memory span, utilizing verbal rehearsal and/or visualization to keep the 

familiar and currently unfamiliar parts, ‘online’ in a working order.  The more automatically 

information is identified (e.g., immediately reading a whole word form, or identifying the 

solution to a math fact), the more capacity the working memory system has for higher 

processing loads.  The capacity of verbal and visual working memory span places limits on 

the amount the higher order processes can simultaneously keep online to ‘work on.’ Good 

readers and good mathematicians’ strong phonological or algorithmic processing and IQ 

reasoning ability are proposed to enhance this system’s accuracy.   

Should the READ and MATH SEM models be validated, showing best fit and 

significant unique (i.e., significant latent variables) and significant shared variance (i.e., 

intercorrelations), findings would support this proposed system.  That is, the findings would 

be compatible with the speculation that the automatic, processing, working memory, and 

verbal/nonverbal fluid reasoning within the proposed READ and MATH systems work 

uniquely and in collaboration to try to increase the storage capacity, accuracy, fluency, and 

overall efficiency of the system.   

In Part III of the study, the theoretically-derived  composites from the READ and 

MATH factors were entered into separate stepwise regression equations to predict reading 
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achievement (e.g., word reading and decoding), and math achievement (e.g., fluency, 

calculation and problem-solving).  This allowed for further exploration into what specific 

cognitive processes might predict age-appropriate or below-age performance on reading and 

math achievement tests for each of the ND, RD, MD, and RD+MD groups.  This could help 

to elucidate the strong or weak cognitive processes that these groups rely on when reading 

words, decoding, solving simple math facts, or solving math calculations and math problems.   

Finally, by entering in READ composites to predict math achievement tests and 

MATH composites to predict reading achievement tests, potential overlap in automatic-

visual routes for words and math facts (e.g., good automatic math fact retrieval predicts good 

automatic word reading or visa versa) could be explored.  This statistical exploration was 

motivated by amalgamating findings from previous research suggesting overlap in strong 

automatic visual/orthographic and visual/fact routes in good readers and mathematicians, and 

overlap in automatic visual/orthographic and visual/fact route deficits in RD+MD samples.  

It was also motivated by the separate fMRI research showing potentially similar functional 

neurobiological pathways in reading and math (for review, see Fletcher, Lyon, Fuchs, and 

Barnes (2007)).  This method also allows for further exploration into possible overlap in 

phonological and algorithmic processing, and the unique or collaborative contribution of 

working memory span and verbal/nonverbal reasoning to good or poor reading and/or math 

achievement.     

METHOD 

Participants 

A total of 240 Grade 4 students from schools in the Waterloo Region District School 

Board (WRDSB), Waterloo Catholic District School Board (WCDSB), and the Toronto 
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Catholic District School Board (TCDSB), were initially screened for: 1) IQ using the 

Wechsler Abbreviated Sale of Intelligence (WASI) VIQ (Vocabulary and Similarities 

subtests), and PIQ (Matrix Reasoning and Block Design); and 2) Reading and Arithmetic 

skill level using the Woodcock-Johnson Tests of Achievement, Third Edition, Form B (WJ-

III, Achievement, Form B (Woodcock & Johnson, 1989)) subtests including: Letter-Word 

Identification (LWID), Word Attack (WA), and Calculation (Calc.).   

Pre-determined cut-off criteria were used to select the current sample.  First, students 

were selected if their WASI VIQ and/or PIQ fell within the average range (25th-74th 

percentile).  From these selected students, four groups were created based on their WJ-III, 

Achievement, Form B, scores on LWID, WA, and Calc.  These groups were: 1) ND (Good 

Read/Good Math) with standard scores ≥ 85 on LWID, WA, and Calc.; 2) RD (Poor 

Read/Good Math) with standard scores  ≤ 85 on WA and/or LWID, and standard scores of  ≥ 

85 on Calculation; 3) MD (Good Read/Poor Math) with standard scores of ≥ 85 on WA 

and/or LWID, and standard scores of ≤ 85 on Calculation; and 4) RD+MD (Poor Read/Poor 

Math) with standard scores  ≤ 85 on WA and/or LWID, and standard scores of ≤ 85 on 

Calculation.  

Ethics approval for this study was given by the University of Waterloo Ethics 

Department and by The Hospital for Sick Children Research Ethics Board (REB).  Students 

in the four groups underwent two more testing sessions for dependent measures; with at least 

a two week interval between sessions.  Parental consent was obtained for all sessions, and all 

children participated on a voluntary basis.  All children were fluent English speakers and had 

no reported history of serious medical conditions or head injury. 
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Session 1: Screening Tests and Measures 

Intelligence (IQ)  

 Wechsler Abbreviated Scale of Intelligence (WASI).   The four-subtest form results in 

a Full Scale Intelligence Quotient (FSIQ) comprised of two indices: 1) Verbal IQ (VIQ), and 

2) Performance IQ (PIQ) scores.  The VIQ score is comprised of two subtests, including: 1) 

Vocabulary, requiring expressive vocabulary to provide the definitions of words, and 2) 

Similarities, requiring verbal reasoning to find the similarity between two items or concepts.  

The PIQ is also estimated by two subtests: 1) Matrix Reasoning, for measuring nonverbal 

reasoning abilities to identify patterns in series of two-dimensional matrices, and 2) Block 

Design, for measuring visual-spatial and fine-motor manipulation and integration (mental 

and manual rotation) of three-dimensional blocks to recreate two-dimensional designs.  Raw 

scores for each subtest were transformed into T scores based on age.  FSIQ, VIQ, and PIQ 

were calculated using these T scores. Next, T scores were converted to standard scores, 

which were used in the current analyses.   

Reading and Math Skill Assessment, WJ-III, Achievement Tests, Form B 

Letter-word identification (LWID).   This is a standardized measure of isolated letter 

and real word (e.g., investigate) reading accuracy.  Words increase in difficulty across the 

test, and testing is discontinued after six consecutive errors.  Raw accuracy scores were 

transformed into standard scores based on age.  Standard scores were used to assign children 

to one of the four groups.  Raw and standard scores were both used in the current analyses.  

Word attack (WA).  This is a standardized measure of nonword decoding accuracy.  

Children are asked to read nonsense words, such as ‘nat’ or ‘snirk’, containing high 

frequency English language phonemes, and their response is assessed against a correct 
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pronunciation provided by WJ-III. Items increase in difficulty across the test, and testing is 

discontinued after six consecutive errors.  Raw accuracy scores are then transformed into 

standard scores based on age.  Standard scores were used to assign children to one of the four 

groups.  Raw and standard scores were used in the current analyses.  

Calculation (Calc.). This is a standardized measure of the ability to use a pencil and 

paper to accurately solve single and multidigit algorithms requiring addition, subtraction, 

multiplication, and division operations (e.g., 1 + 2 =).  Items increase in difficulty across the 

test, and testing is discontinued after six consecutive errors.  Raw accuracy scores were then 

transformed into standard scores based on age.  Standard scores were used to assign children 

to one of the four groups.  Raw and standard scores were used in the current analyses.  

Applied Problems (App. Prob.).   This task was administered during the screening 

session and used for later analyses.  It was not used as a screening tool.  This is a 

standardized measure of the ability to solve aurally administered ‘practical’ math problems 

(e.g., ‘Four people have $3.00 each.  How much do they have in total?’).  Children were 

offered the use of a pencil and paper, should they wish to use it.  Items increase in difficulty 

across the test, and testing was discontinued after six consecutive errors.  Raw accuracy 

scores were then transformed into standard scores based on age.  Raw and standard scores 

were used in the current analyses.  

Session Two and Three: Tests Administered to Each of the Four Groups 

Executive Function/Reasoning Tasks 

Planning (WJ- III Cognitive Battery, Form B) (Woodcock, McGrew, & Mather, 

2001).  A series of mazes, increasing in difficulty, were presented one at a time to each child.  

Each maze has a start point and the child is asked to plan towards the maze’s exit.  It required 
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planning in advance toward a series of ‘exits’ or goals.  The task is discontinued after three 

consecutive errors.  Raw and standard scores were used in the current analyses. 

Concept Formation  (WJ- III Cognitive Battery, Form B) (Woodcock, McGrew, & 

Mather, 2001).   Each child was asked to figure out missing pieces in a selection of puzzles.  

Conceptual inferences and reasoning are required to select the correct answer.  This test is 

discontinued after six errors. The task finishes after three consecutive errors.  Raw and 

standard scores were used in the current analyses. 

Measures of Automatic Retrieval  

Rapid Automatized Naming Tests for Letters (RAN:L).   The RAN:L requires speeded 

naming of a continuous array of letters. To ensure that children were familiar with the letters, 

they are first asked to identify the five letters on a sheet of paper.  On this task, the child is 

presented with a display of 50 letters (the five letters in mixed order) and asked to say each 

letter out loud as quickly as possible, reading from left-to-right, without making mistakes.  

The letter matrix is made up of five rows with ten letters presented on each row. Time to 

name the items on each trial was recorded in milliseconds, using a stopwatch, along with any 

errors that the child made (e.g., skipped digits, substitutions, reversals). The total time, total 

correct, and number of letters read correctly per second were used in the current analyses. 

The format for the test is adapted from that used by Denckla & Rudel (1974).   

Rapid Automatized Naming tests for Digits (RAN:D).  The RAN:D is identical in 

administration to the RAN:L except that five digits are used instead of five letters.  The total 

time, total correct, and number of digits read correctly per second were used in the current 

analyses. 
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Word Reading 

 Exception word list (Lovett, 1987).  This is a list of 108 exception words of (high, 

medium, and low frequency) containing exceptional or irregular spelling patterns.  To a good 

reader, these patterns require use of a visual/orthographic-naming route to read as they are 

difficult, in part, to phonetically decode (e.g., island).  The list was presented in the same 

random order to each of the children.  The child was asked to read as many of the words from 

the list, trying their best to read correctly and as quickly as possible.  If they had tried their 

best and did not know the answer, they were instructed to say ‘skip.’   It is an experimental 

(i.e., unstandardized) measure and total correct, total time, and total words read correctly per 

second were used in the current analyses.  

Benchmark key word list (Gaskins et. al., 1986; 1988).  This is a list of 120 regular 

words containing the highest frequency spelling patterns in the English language.  To a good 

reader, these words become more easy to read through a visual/orthographic-naming route as 

they require minimal, if any, phonological decoding.  The list was presented in the same 

random order to each of the children.  The child is asked to read as many of the words from 

the list, trying their best to read correctly and as quickly as possible.  If they had tried their 

best and did not know the answer, they were instructed to say ‘skip.’  This is an 

unstandardized measure and total correct, total time, and total words read correctly per 

second were used in the current analyses.  

Automatic Math Fact Retrieval 

 Math fluency (M. Fl).  This is a standardized measure from the WJ-III, Achievement, 

Form B.  Each child is shown a series of basic single-digit addition, subtraction, and 

multiplication problems and asked to use a pencil and paper to quickly and accurately 
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complete as many as possible until the examiner says ‘stop’ (after three minutes).  Raw 

accuracy scores were transformed into standard scores based on age.  Standard scores, total 

correct, total time (180 seconds), and number of correct facts per second were used in the 

current analyses.  

Math facts (Evans, 2008).  Similar to the Benchmark and Exception word lists, on the 

following math fact calculations, the child is asked to say their answer to each math fact out 

loud, as correctly and as quickly as possible, trying their very best.  They were also told that 

they could say, ‘skip’ if they have given their best try, and were really stumped on a question.  

Compared to Math Fluency, this is an oral task and it is an experimental (i.e., unstandardized 

measure).  Total time, and total correct were recorded along with   ‘Automatic’ correct 

answers given in less than or equal to one second, and ‘processed/working memory’ correct 

answers that took longer than one second.  Total time, total correct, total correct per second, 

‘automatic’ and ‘processed/working memory’ were used in these analyses.  For each of the 

following addition, subtraction, multiplication, and division calculations two sets of scores 

are obtained for an ‘easy’ and a ‘difficult’ set of number facts. 

i. Addition facts (Easy and Difficult):  Two sets of horizontal number calculations (easy 

and difficult) are presented separately on a sheet of paper for the child to complete 

orally.  The easy set includes 35 addition calculations whose sum was less than 10 

(e.g., 4+5) and the difficult set includes 30 addition calculations whose was greater 

than ten and less than 21 (e.g., 9+7).   

ii. Subtraction facts (Easy and Difficult):  Two sets of horizontal number calculations 

(easy and difficult) are presented on two separate sheets of paper for the child to 

complete orally.  The easy set includes 35 subtraction calculations whose answer was 
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less than 10 (e.g., 10-1) and the difficult set includes 30 subtraction calculations 

whose answer was greater than ten and less than 19 (e.g., 19-2).   

iii. Multiplication facts (Easy and Difficult):  Two sets of horizontal number calculations 

(easy and difficult) are presented on two separate sheets of paper for the child to 

complete orally.  The easy set included 22 multiplication calculations in which at 

least one factor was less than or equal to 5 (e.g., 3x7) and the difficult set included 24 

multiplication calculations in which both factors were greater than six and less than or 

equal to 11 (e.g., 8x9).   

iv. Division facts (Easy and Difficult):  Two sets of horizontal division calculations (easy 

and difficult) are presented on two separate sheets of paper for the child to complete 

orally.  The easy set included 22 division calculations in which the divisor was less 

than or equal to 5 (e.g., 20 ÷4), and the difficult set included 24 division in which the 

divisor fell between 6 and 11 (e.g., 40÷8).  

Working Memory Span 

Digits Forwards (Wechsler Intelligence Scale for Children- Third Edition (WISC-

III)).  Children are read a series (from one to nine) of single digits (e.g., 2, 5) one at a time (1 

second each).  The child is then asked to recall the series of digits in the exact order that 

he/she heard them. There are eight levels; level one contains two digits and one more digit is 

added for each level, so that the eighth level has nine digits.  Each level has two trials.  This 

task is discontinued if the child answers incorrectly to both trials at one level.  Standard and 

raw scores were used in the current analyses. 

Digits Backwards (WISC-III).   Children are read a series of numbers and are asked to 

recall them in the reverse order (e.g., given ‘2, 5’, the correct answer was ‘5, 2’). There are 
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seven levels; level one contains two digits and one more digit is added for each level so that 

the seventh level has eight digits.  Each level has two trials.  This task is discontinued if the 

child answers incorrectly to both trials at one level.  Standard and raw scores are used in the 

current analyses. 

Letters Forwards and Backwards.  Digits Span from the WISC-III uses digits from 1-

9.   To create a ‘letter’ version, each digit was assigned a consonant starting at the beginning 

of the alphabet (i.e., 1-b, 2-c, 3-d, 4-f, 5-g, 6-h, 7-j, 8-k, 9-l). Vowels were not used.  Each of 

the digit strings for digits forward and backward were replaced by their corresponding letter.  

The tasks were administered in an identical fashion to Digit Span from the WISC-III as 

outlined above. 

Letters Forwards.   Each child is read a series of single letters (e.g., d, c) one at a time 

(1 second each).  The child is then asked to recall the series of letters in the exact order that 

he/she heard them. There are eight levels; level one contains two letters and one more letter 

is added for each level so that the eighth level has nine letters.  Each level has two trials.  

This task is discontinued if the child answers incorrectly to both trials at one level.  Standard 

and raw scores are used in these analyses. 

Letters Backward.   Children are read a series of letters and are asked to recall them in 

the reverse order (e.g., given ‘d, c’, the correct answer was ‘c, d’). There are seven levels; 

level one contains two letters and one more letter is added for each level so that the seventh 

level has eight letters.  Each level has two trials.  This task is discontinued if the child 

answers incorrectly to both trials at one level.  Standard and raw scores are used in these 

analyses. 
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Phonological Processing 

Elision subtest.   A standardized subtest from the Comprehensive Test of 

Phonological Awareness (CTOPP) (Wagner, Torgeson, & Rashotte, 1999) that measures 

awareness of the sound structure of English words by assessing the ease by which an 

individual can say a word, then segment, delete, and re-blend sounds to create a new word.  

For example, the child is asked to say ‘bold’ and after repeating ‘bold,’ is asked, ‘Now say 

bold without saying /b/.’  The correct response is ‘old.’ This task is highly correlated to 

phonological ‘working’ memory tasks as the child must hold the sound parts in working 

memory in order to carry it out.  Raw scores were converted to standard scores using age. 

Raw and standard scores were used in the current analyses.  

Nonword Repetition subtest (CTOPP) (Wagner, Torgeson, & Rashotte, 1999). A 20-

item subtest that measures phonological ‘working’ memory or a child’s ability to code 

phonemes from nonwords (containing high frequency phonemes) and temporarily store them 

in phonological ‘working’ memory in order to repeat them correctly.  The child listens to a 

series of audiocassette-recorded separate sounds and is asked to ‘put them together to make a 

nonword.’  For example, the child was asked, ‘What word do these sounds make: nim-by?’  

The correct answer is the nonword ‘nimby.’ Raw scores were converted to standard scores 

using age. Raw and standard scores were used in the current analyses.  

Algorithmic Processing 

Canadian KeyMath-Revised-Addition Subtest.   Each child is asked to solve paper and 

pencil multi-digit addition algorithms.  The task is discontinued after three consecutive 

errors.  Raw accuracy scores are then transformed into standard scores based on age.  Raw 

and standard scores were used in the current analyses. 
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 Canadian KeyMath-Revised: Subtraction Subtest.  Each child is asked to solve paper 

and pencil multi-digit subtraction problems.  The task finishes after three consecutive errors. 

Standard scores were both used to assign children in one of the four groups.  Raw and 

standard scores were used in the current analyses. 

Canadian KeyMath-Revised: Multiplication Subtest.   Each child is asked to solve 

paper and pencil multi-digit multiplication problems.  The task finishes after three 

consecutive errors. Standard scores were used to assign children in one of the four groups.  

Raw and standard scores were used in the current analyses. 

Canadian KeyMath-Revised: Division Subtest.  Each child is asked to solve paper and 

pencil multi-digit division problems.  The task is discontinued after three consecutive errors. 

Raw and standard scores were used in the current analyses. 
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PART I 

Procedure 

Comparing Group Means 

First, an ANOVA was run to assess for significant differences between and within 

groups on each variable.  Next, three a priori orthogonal contrasts were examined: 1) No 

Disability (ND) compared to all three disability groups (reading (RD), math (MD), and 

reading/math (RD+MD)); 2) RD+MD group compared to the two single Disability groups 

(RD and MD), and 3) RD group compared to the MD group.   These contrasts are outlined on 

Table 1.  To further specify significant differences between individual groups, Bonferroni 

post-hoc analyses were run and evaluated at a significance level of .02, to reduce Type 1 

Error.   Standard scores were used when available.  If unavailable, raw scores were used. 

Table 1. 

Description of Planned Comparisons  

 
Planned Comparison ND (N=72) RD (N=36) MD (N=65) RD+MD (N=50)

1. ND vs. RD,  

MD & RD+MD 

 

3 

 

-1 

 

-1 

 

-1 

2. RD & MD  

vs. RD+MD 

0 1 1 -2 

3. RD vs. MD 0 1 -1 0 
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Results 

Descriptive Statistics 

For each of the four groups (ND, RD, MD, and RD+MD) age, sex, and handedness are 

summarized in Table 2.  The total sample included 223 children.  

Table 2. 

Description of Age, Sex, and Handedness for the Four Groups  

 ND (N=72) RD (N=36) MD (N=65) RD+MD (N=50) 

Descriptive Mean SD Mean SD Mean SD Mean SD 

Age         9.72 .71     10.06 1.03     10.21 1.21   10.98    1.59 

Male  29  22  31  23  

Female  43  14  32  26  

Right Handed 62  30  57  43  

Left Handed 10  6   8   7  

Age in years and months at first test session. 
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WASI  IQ 

Table 3.  

Mean Performance and Standard Deviations for the Four Groups on the WASI Verbal IQ 

(Vocabulary and Similarities), Performance IQ (Matrix Reasoning and Block Design, and 

‘Executive’ Tests – Concept Formation and Planning  

 ND (N=72) RD (N=36) MD (N=65) RD+MD (N=60) 

 Mean SD Mean SD Mean SD Mean    SD 

Verbal IQ 106.08 11.93 95.42 10.44 100.18 10.72 88.74 9.42

Vocabulary 105.67 13.59 94.38 9.54 97.42 11.43 86.20 10.40

Similarities 105.84 12.28 96.38 13.82 103.00 11.97 90.85 12.79

Performance IQ 100.17 9.56 98.19 9.84 98.08 12.14 89.94 12.16

Matrix Reasoning 101.38 9.95 98.71 11.84 97.44 13.08 86.71 15.31

Block Design 99.38 13.29 98.33 13.81 99.12 14.91 93.82 13.08

Concept Formation 101.80 10.13 95.40 9.03 96.05 9.09 89.02 9.57

Planning 109.42 6.57 108.89 8.95 107.12 9.52 106.00 9.21
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Verbal IQ 
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Figure 1. Mean group standard scores for WASI VIQ, Vocabulary, and Similarities. 

Each group’s VIQ scores are seen in Table 3 and in Figure 1.  ANOVA comparisons 

showed significant differences between all four groups’ VIQ scores (F(3,222) = 26.817, 

p<.01).  Assuming equal variance, planned comparisons showed the ND group to have 

significantly higher VIQ than the three disability groups (t(219) = 7.23, p < .01).  Planned 

comparisons did not show significant differences between the RD and MD group (t(219) =  

-2.12).  The RD and MD group had significantly higher VIQ than the RD+MD group (t(219) 

= 4.77, p < .01).  Bonferroni tests specified that the MD group had significantly higher VIQ 

than the RD+MD group (p < .01).  

Vocabulary.  Each group’s mean standard scores are seen in Table 3 and Figure 1.  

ANOVA comparison showed significant differences between all four groups Vocabulary 

standard scores (F(3,222) = 28.00, p < .01).  Assuming equal variance, planned comparisons 

showed the ND group had a significantly higher Vocabulary score than the other three groups 

(t(219) = 7.69, p < .01).  The two single disability groups did not significantly differ from 
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each other (t(219) = -1.25).  Both had a significantly higher Vocabulary than the RD+MD 

group (t(219) = 4.72, p<.01).  Bonferroni tests confirmed this (MD vs. RD+MD group p < 

.01, and RD vs. RD+MD group p = .01). 

Similarities.  Each group’s mean standard scores are seen in Table 3 and Figure 1.  

ANOVA comparison showed significant differences between all four groups’ Similarities 

standard scores (F(3,222) = 16.28, p < .01).  Assuming equal variance, planned comparisons 

showed the ND group had significantly higher Similarities than the other three groups (t(219) 

= 5.02, p < .01).  Bonferroni tests specified that the ND group had significantly higher 

Similarities scores than the RD (p = .002) and the RD+MD groups (p < .01), with no 

significant difference between the ND and MD groups (p = 1.0).  The MD group had a 

significantly higher score than the RD group (t(219) = -2.54, p<.01).  Bonferroni tests 

showed that the MD group had a significantly higher Similarities score than the RD+MD 

group (p < .01) and the RD and RD+MD groups were not significantly different. 
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WASI Performance IQ (Matrix Reasoning and Block Design Subtests):  

 

85

90

95

100

105

110

115

ND RD MD RDMD
Group

St
an

da
rd

 S
co

re
PIQ
MatrixReasoning
BlockDesign

 

 

 

 

 

 

 
 
Figure 2.   Mean standard scores on WASI PIQ, Matrix Reasoning, and Block Design. 

PIQ.  Each group’s mean standard scores are seen in Table 3 and Figure 2.  ANOVA 

comparison showed significant differences between all four groups PIQ scores (F(3,222) = 

9.18, p < .01).  Assuming equal variance, planned comparisons showed the ND group to have 

significantly higher PIQ than the three disability groups (t(219) = 2.99, p<.003). Bonferroni 

tests specified that the main significant difference was between the ND group and the 

RD+MD group (p < .01).  The RD group did not significantly differ from the MD group, and 

both single disability groups had significantly higher PIQ than the RD+MD group (t(219) = 

0.51, p < .01). 

Matrix Reasoning. Each group’s mean standard score is seen in Table 3 and Figure 2.  

ANOVA comparison showed significant differences between all four groups’ (F(3,222) = 

14.29, p < .01).  Assuming equal variance, planned comparisons showed the ND group had a 

significantly higher Matrix Reasoning score than the other three groups (t(219) = 3.91, p < 

.01).  Bonferroni tests specified that the main significant difference existed between the ND 
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and RD+MD group (p < .01).  While the two single disability groups did not significantly 

differ from each other, both had a significantly higher Matrix Reasoning score than the 

RD+MD group(t(219) = 5.17, p < .01).   

Block Design.  Each group’s mean standard score is seen in Table 3 and Figure 2.  

ANOVA comparison showed no significant differences between all four groups.    

Executive Function Tasks: Concept Formation and Planning 

Subtests
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Figure 3.  Mean standard scores on WJ-III cognitive Concept Formation (Concept Form.) 

and Planning subtests. 

Concept Formation.  Each group’s mean standard score is seen in Table 3 and Figure 

3.  Initial ANOVA comparison showed significant differences between groups’ standard 

scores (F(3,211) = 17.19, p < .01).  Assuming equal variance, planned comparisons showed 

the ND group had significantly higher standard scores than all three disability groups (t(211) 

= 5.93, p < .01).  Bonferroni tests confirmed this (RD group p = .006; MD group p = .004, 
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and RD+MD group p < .01). The RD and MD groups did not have significantly different 

scores and they both had significantly higher scores than the RD+MD group (t(211) = 3.93, p 

< .01).   

Planning.  Each group’s mean standard score is seen in Table 3 and Figure 3.  

ANOVA comparison did not show significant differences between groups’ standard scores. 

Comparing Nonverbal Reasoning (Matrix Reasoning and Concept Formation) versus Visual 

Spatial Ability (Block Design and Planning) 
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Figure 4. Mean standard scores on WASI Matrix Reasoning (Matrix Reason.) and WJ-III 

Concept Formation (ConceptForm.). 
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Figure 5.  Mean standard scores on WASI Block Design and WJ-III Planning. 

As seen in Figure 4 the RD+MD group showed relatively weaker conceptual 

reasoning ability on Matrix Reasoning and Concept Formation then the ND, RD, and MD 

groups.   All groups demonstrated solidly Average visual-spatial and graphomotor ability on 

Block Design and Planning (as seen in Figure 5). 
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Reading and Math Skills 

Table 4. 

Mean Performance and Standard Deviations for the Four Groups on Letter Word 

Identification (LWID), Word Attack (WA), Calculation, Applied Problems, and Math Fluency   

WJ-III subtest ND (N=72) RD (N=36) MD (N=65) RD+MD(N=60)

 Mean SD Mean SD Mean SD Mean SD

LWID r.s. 51.96 5.11 42.53 5.1 52.83 6.36 42.12 6.55

LWID st.s. 102.04 7.15 86.67 6.50 100.98 8.42 81.60 8.06

WA r.s. 21.56 4.3 11.75 4.48 21.74 4.73 11.98 5.55

WA st.s. 102.24 6.48 87.97 5.17 101.63 7.65 84.84 9.57

Read Composite st.s. 102.25 6.72 86.83 4.90 101.34 8.22 82.72 7.98

Calculation r.s. 15.99 2.49 16.22 2.54 11.86 2.90 13.37 3.20

Calculation st.s. 97.04 5.13 95.11 4.55 80.86 8.12 80.85 8.09

Applied Problems r.s. 35.46 3.46 34.28 3.10 33.00 3.87 31.9 4.42

Applied Problems st.s. 104.62 6.89 98.97 6.61 95.11 9.68 88.08 7.84

Math Fluency r.s. 54.96 16.75 46.99 13.30 46.56 14.91 47.84 16.73

Math Fluency st.s. 94.92 11.98 85.25 8.95 84.07 11.59 79.84 8.85

Calculation Comp. st.s. 96.69 6.51 92.22 4.39 80.87 8.02 78.56 10.41

Broad Math Comp. st.s. 100.48 5.72 95.53 4.20 87.95 7.02 83.28 7.57

r.s. = raw score; st.s. = standard score 
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Standardized Reading Measures: WJ-III Achievement, Letter-Word Identification (LWID) 

and Word Attack (WA) 
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Figure 6.  Mean standard scores on WJ-III Letter-Word Identification (LWID) and Word 

Attack (WA) 

Letter Word Identification. Each group’s mean standard score can be seen in Table 4 

and Figure 6.  ANOVA comparisons showed significant differences between groups 

(F(3,222) = 98.79, p < .01).  Assuming equal variance, planned comparisons showed the ND 

group to have significantly higher LWID than the three disability groups (t(219) = 11.11, p < 

.01).  Bonferroni tests confirmed the ND group to have significantly higher LWID than the 

RD and RD+MD group (both at p=.000) with no significant difference between the  MD and 

ND group.  The MD group had significantly higher LWID than the RD group (t(219) = -

9.007, p < .000), and Bonferroni tests showed that MD group had higher LWID than the 
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RD+MD group (p < .01).  Bonferroni tests showed that the RD group had higher LWID than 

the RD+MD group (p = .016).     

Word Attack.  Each group’s mean standard score can be seen in Table 4 and Figure 6.  

Initial ANOVA comparisons showed significant differences between groups (F(3,222) = 

80.48, p < .01). Assuming equal variance, planned comparisons showed the ND group to 

have significantly higher WA than the three disability groups (t(219) = 9.98, p < .01).  

Bonferroni tests confirmed that the ND group had significantly higher WA than the RD and 

RD+MD group (p < .01) with no significant difference between the MD and ND group.  The 

MD group had significantly higher WA than the RD group (t(219) = -8.82, p < .000).  

Bonferroni tests showed no significant difference between the RD and RD+MD group (p = 

.334). 

Standardized Math Measures: Calculation(Calc.), Applied Problems (App. Prob.) and Math 

Fluency (Mfl.) 

ANOVA comparisons showed significant differences between groups’ standard 

scores on App. Prob.(F(3,222) = 44.70, p < .01), Calc. (F(3,221) = 97.99, p < .01), and MFl. 

(F(3,222) = 22.19, p < .01).   
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Figure 7.  Mean standard scores on WJ-III Calculation (Calc.), Applied Problems (App. 

Prob.), and Math Fluency (MFl.) 

Applied Problems.  Each group’s mean standard score can be seen in Table 4 and 

Figure 7. Assuming equal variance, planned comparisons showed the ND group to have 

significantly higher scores on App. Prob. (t(219) = 9.17, p < .01), than the three disability 

groups.  Bonferroni tests confirmed that the ND group had higher scores than the RD (p = 

.004), MD and RD+MD group (p < .01).  Both single disability groups had significantly 

higher App. Prob. (t(219) = 6.40, p < .01) than the RD+MD group, as confirmed by 

Bonferroni tests (p < .01). 

Calculation. Each group’s mean standard score can be seen in Table 4 and Figure 7. 

Assuming equal variance, planned comparisons showed the ND group to have significantly 

higher scores on Calc. (t(218) = 11.66, p < .01) than the three disability groups.  Bonferroni 
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tests specified that the ND group had significantly higher Calculation than the MD and 

RD+MD group (p=.000) but not the RD group.  The RD group had significantly higher Calc. 

(t(218) = 10.12, p < .01) than the MD group.  Bonferroni tests showed no significant 

difference between the MD and RD+MD group (p < .01). 

 Math Fact Fluency. Each group’s mean standard score can be seen in Table 4 and 

Figure 7. Assuming equal variance, planned comparisons showed the ND group to have 

significantly higher scores on MFl. (t(219) = 7.61, p < .01) than the three disability groups.  

Bonferroni tests confirmed this.  The RD and MD groups had similarly weak performance on 

MFl.  Both single disability groups had significantly better performance on MFl. (t(219) = 

2.55, p<.011) than the RD+MD group.   

RAN Digits (RAN:D) and RAN Letters (RAN:L) 

Table 5. 

Mean performance and standard deviations for the four groups on RAN:D and RAN:L  

Test ND (N=72) RD (N=36) MD (N=65) RD+MD(N=60) 

 Mean SD Mean SD Mean SD Mean SD

RAN:D Total Time  52.24 10.87 58.58 12.70 50.43 9.66 55.56 19.91

RAN:D Total Correct 99.49 .92 99.36 1.27 99.45 .97 99.28 1.97

RAN:D per sec. 1.97 .37 1.77 .39 2.04 .44 1.93 .51

RAN: L Total Time  49.56 9.63 54.58 12.13 47.12 8.89 53.64 13.64

RAN: L Total Correct 99.01 2.49 97.94 4.4 99.12 1.80 99.06 1.94

RAN: L per sec. 2.06 .4 1.87 .44 2.16 .43 1.93 .41
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Figure 8.  Mean RAN Digits and Letters total time. 
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Figure 9.  Mean RAN Digits and Letters total correct per sec. 
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RAN Letters.   Each groups’ mean total time, mean total correct and mean correct per 

sec. scores can be seen in Table 5.  Figure 8 shows mean total time, and Figure 9 

demonstrates mean total correct per sec.  Assuming equal variance, planned comparisons 

showed the RD group to have significantly less accurate letter naming than the MD group 

(t(219)= -2.16, p< .03).  Initial ANOVA comparisons showed significant differences between 

all four groups’ RAN Letters total time (F(3,222) = 5.35, p<.01), and RAN Letters per 

second (per sec.) (F(3,222) = 5.01, p<.002).  Using Bonferroni tests, no difference was seen 

between the ND and MD groups’ total time and letters per sec., or between the RD and 

RD+MD groups’ total time and letters per sec.  Assuming equal variance, planned 

comparisons showed the RD group required significantly more total time to name Letters 

(t(219) = 3.30, p<.01)  than the MD group.  Weaker accuracy and need for more time (p < 

.007) both appeared to contribute to the RD group having significantly fewer letters per sec. 

than the MD group (p<.005).  The need for more time (p< .01) appeared to contribute to the 

RD+MD group having significantly fewer letters per sec. than the MD group (p<.02).   

RAN Digits.  Each group’s mean total time, mean total correct, and mean correct per 

sec. scores can be seen in Table 5.  Figure 8 shows mean total time, and Figure 9 

demonstrates mean total correct per sec.  Initial ANOVA comparisons did not show group 

differences on digit naming accuracy.  Initial ANOVA comparisons showed significant 

differences between all four groups RAN Digits total time (F(3,222) = 3.46, p<.02) and RAN 

digits per sec. (F(3,219) = 3.36, p< .02).  Using Bonferroni tests, no difference was seen 

between the ND and MD groups’ total time and digits per sec. or between the RD and 

RD+MD groups total time and letters per sec. Assuming equal variance, planned 

comparisons showed the RD group required significantly more total time to name Digits 
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(t(219) = 2.92, p<.004) than the MD group.  The RD group had significantly fewer Digits per 

sec. than the MD group (t(219) = -30.86, p<.002).  No other significant differences were 

reported. 

Reading Fluency 

Table 6. 

Mean Performance and Standard Deviations for the Four Groups Total Accuracy, Time, and 

per sec.(Accuracy/Time) on Benchmark Sight Word List and Exception Words  

 ND (N=72) RD (N=36) MD (N=65) RD+MD(N=50)

 Mean SD Mean SD Mean SD Mean SD

Benchmark Accuracy  117.10    3.26 106.92 11.72 117.22  3.32 102.92 18.61

Benchmark Time    83.86  16.48 127.50 67.43  87.66 25.47 113.41 53.08

Benchmark per sec.     1.45      .31 1.00     .39   1.44     .37     1.05     .39

Exception Accuracy    85.52  9.04 66.75 15.60  85.89 10.22   64.00 19.49

Exception Total Time 101.47  26.31 147.47 86.66 110.98 44.01 143.08 77.38

Exception per sec.       .91      .29       .55     .25       .88     .31       .54     .26
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Figure 10.  Total correct for Benchmark (total 120) and Exception words (total 108). 
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  Figure 11.  Mean total time on benchmark and exception word lists. 
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Reading Fluency: Accuracy, Time, and Words per sec. (Benchmark Word List, and 

Exception Word List).  All scores can be seen in Table 6.  Total time is seen in Figure 10 and 

mean words per sec. are seen in Figure 11.  The Benchmark Word List contains 120 words 

and the Exception word list contains 108 words.   

Benchmark Accuracy, Total Time, and Words per sec.  Initial ANOVA comparison 

showed significant differences between all four groups’ Benchmark accuracy (F(3,221) = 

27.24, p < .01), total time (F(3,221) = 13.14, p < .01), and words per sec. (F(3,221) = 23.34, 

p < .01).  Assuming equal variance, planned comparisons showed the ND group to have 

significantly higher Benchmark accuracy (t(218) = 5.44, p < .01), lower total time (i.e., 

faster) (t(218) = -4.39, p < .01), and more words per sec. (t(218) = 5.57, p < .01) than the 

three disability groups.   

Benchmark Accuracy. Bonferroni tests showed no significant differences between the 

ND and MD groups’ good accuracy levels and no difference between the RD and RD+MD 

groups weaker accuracy levels.  Bonferroni tests showed the ND and MD group had 

significantly higher Benchmark accuracy than the RD (p < .01 for both) and RD+MD group 

(p < .01 for both).   

Benchmark Total Time. Bonferroni tests showed no significant differences between 

the ND and MD groups’ faster total time and the RD and RD+MD groups’ slower total time.  

Bonferroni tests showed the ND and MD group had significantly faster Benchmark total 

times than the RD (p < .01 for both) and RD+MD group (p < .01, and p < .01, respectively).   

Benchmark Words per sec. Bonferroni tests showed no significant differences 

between the ND and MD groups’ words per sec. and the RD and RD+MD group’s accuracy 
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levels.  Bonferroni tests showed the ND and MD group had significantly higher Benchmark 

words per sec. than the RD (p < .01 for both) and RD+MD group (p < .01 for both).   

Exception Words Accuracy, Total Time, and Words per sec.  Initial ANOVA 

comparison showed significant differences between all four groups Exception accuracy 

(F(3,221) = 41.23, p < .01), total time (F(3,221) = 8.35, p < .011), and words per second (per 

sec.) (F(3,221) = 26.35, p < .01).  Assuming equal variance, planned comparisons showed the 

ND group to have significantly higher Exception word accuracy (t(218) = 6.85, p < .01), 

lower total time (t(218) = -3.88, p < .01), and more words per sec. (t(218) = 6.09, p < .01) 

than the three disability groups.  Overall results for Accuracy, Total Time and Words per sec. 

paralleled the results of the Benchmark test. 

Exception Words Accuracy. Bonferroni tests showed no significant differences 

between the ND and MD groups accuracy levels and the RD and RD+MD groups’ accuracy 

levels.  Bonferroni tests showed the ND and MD group had significantly higher Exception 

Word accuracy than the RD (p < .01 for both) and RD+MD group (p < .01 for both).   

Exception Words Total Time. Bonferroni tests showed no significant differences 

between the ND and MD groups’ total time and the RD and RD+MD groups’ total time.  

Bonferroni tests showed the ND and MD group had significantly faster Exception Word total 

times than the RD (ND p < .01; MD p < .05) and RD+MD group (ND p < .01, and MD p < 

.05, respectively).   

Exception Words per sec. Bonferroni tests showed no significant differences between 

the ND and MD groups words per sec. and the RD and RD+MD group’s accuracy levels.  

Bonferroni tests showed the ND and MD group had significantly higher Exception Words 

per sec. than the RD (p < .01 for both) and RD+MD group (p < .01 for both).   
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Math Fluency and Math Facts 

Table 7. 

Mean Performance and Standard Deviations for the Four Groups on Experimental Easy and 

Difficult Math Facts: Addition, Subtraction, Multiplication, and Division 

Correct per sec.  ND (N=72) RD (N=36) MD (N=65) RD+MD (N=50) 

 Mean SD Mean SD Mean SD Mean SD 

Math Fluency      .31   .09     .26  .07     .26  .08  .27 .09 

Add Easy Facts      .53     .17     .49  .13     .47  .19 .42 .19 

Add Diff. Facts  .25 .01 .23 .08 .21 .09 .19 .10 

Subtract Easy Facts  .37 .13 .36 .14 .32 .15 .31 .16 

Subtract Diff. Facts  .25 .11 .24 .12 .20 .13 .18 .12 

Multiply Easy Facts  .32 .15 .28 .11 .25 .11 .30 .26 

Multiply Diff. Facts  .23 .12 .22 .10 .18 .11 .24 .21 

Divide Easy Facts   .23  .13   .23 .11  .19 .09 .20 .12 

Divide Diff. Facts   .20 .15  .18 .10  .14 .09 .17 .14 

 

WJ-III Math Fluency. The WJ-III Math Fluency task has a 3 minute (180 second) 

time limit.  Accuracy scores were calculated by taking the total correct within the specified 

time limit.  Facts per sec. were calculated by dividing the total correct by 180 seconds.  Initial 

ANOVA comparisons showed significant differences between the four groups total accuracy 

scores (F(3, 222) = 4.15, p<.007), and facts per sec. (F(3,222) = 4.15, p<.007).  Assuming 

equal variance, planned comparisons showed the ND group could solve significantly more 

facts accurately (t (219) = 3.45, p<.01) and produced more accurate facts per sec. (t(219) = 
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3.45, p<.01) than the three disability groups.  The three disability groups did not have 

significantly different total accuracy or facts per sec. scores, but all appeared similarly 

weaker than the ND group.  Bonferroni tests, at the .02 level, showed the ND group to have 

significantly higher accuracy and facts per sec. (both p = .012).  The RD, MD, and RD+MD 

groups appeared similarly weak in their mean facts per sec. 
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Figure 12.  Mean correct facts per sec. on WJ-III Math Fluency 
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Unstandardized Easy and Difficult Addition Facts 

Easy Addition Facts.   
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Figure 13.  Mean facts per sec. on easy addition (Add Easy) and difficult addition (Add 

Diff.) facts 

ANOVA comparisons showed significant differences between the four groups total 

accuracy scores for Easy Addition accuracy (F(3, 222) = 3.84, p<.01), total time (F(3, 222) = 

4.44, p<.005), and facts per second (per sec.) (F(3,222) = 3.84, p<.01).  Assuming equal 

variance, planned comparisons showed the ND group could solve significantly more easy 

addition facts accurately (t (219) = 2.37 p<.05) and more quickly (t(219) = -2.81, p<.01),  

producing more accurate facts per sec. (t(219) = 2.77, p<.01) than the three disability groups.  

The RD and MD groups did not significantly differ from each other in accuracy, speed or 

facts per sec.  The RD and MD groups solved significantly more facts than the RD+MD 
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groups (t(219) = 2.24, p<.03).  Further Bonferroni tests, at the .02 level, showed the ND 

group to have significantly more easy add facts per sec. than the RD+MD group (p<.01). 

Difficult Addition Facts. Initial ANOVA comparisons showed significant differences 

between the 4 groups total accuracy scores for Difficult Addition accuracy (F(3, 220) = 3.73, 

p<.01), total time (F(3, 220) = 3.2, p<.03), and facts per second (per sec.) (F(3,220) = 5.79, 

p<.01).  Assuming equal variance, planned comparisons showed the ND group could solve 

significantly more difficult addition facts accurately (t (217) = 2.4 p<.02), but not more 

quickly (t(217) = -1.84), producing more accurate facts per sec. (t(217) = 3.33, p<.01) than 

the three disability groups.  The RD and MD groups did not significantly differ from each 

other in accuracy, speed, or facts per sec.  While the RD and MD groups were not more 

accurate than the RD+MD group (t(219) = 1.33) the RD and MD groups were significantly 

faster than the RD+MD group (t(219) = -2.42, p<.02), and solved more difficult addition 

facts per sec. than the RD+MD group (t(217) = 2.11, p <.04).  Further Bonferroni tests, at the 

.02 level, showed the ND group to have significantly more easy add facts per sec. than the 

RD+MD group (p<.01). 
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Unstandardized Easy and Difficult Subtraction Facts 
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Figure 14.  Mean facts per sec. on easy subtraction (Sub. Easy) and difficult subtraction 

(Sub. Diff.) facts 

Easy Subtraction Facts.  ANOVA comparisons showed significant differences 

between the four groups total accuracy scores for Easy Subtraction total time (F(3, 221) = 

2.96, p<.04), and facts per second (per sec.) (F(3,221) = 2.61, p<.06).  Assuming equal 

variance, planned comparisons showed the ND group could solve significantly more easy 

subtraction facts accurately (t (218) = 2.24 p<.03) and more quickly (t (218) = -2.16 p<.03); 

producing more accurate facts per sec. (t(218) = 2.21, p<.03) than the three disability groups.  

Planned comparisons showed that the ND group produced more automatic easy subtraction 

facts (e.g. total correct in < 1 second) than the three disability groups (t(218) = 1.99, p<.05).  

The RD and MD groups did not significantly differ from each other in accuracy, speed or 
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facts per sec.  No significant differences were found between the single disability and the 

RD+MD group for easy subtraction facts.   

Difficult Subtraction Facts. Initial ANOVA comparisons showed significant 

differences between the four groups accuracy for Difficult Subtraction facts (F(3, 220) = 

7.29, p < .01), and facts per sec. (F(3,220) = 4.83, p<.01).  Assuming equal variance, planned 

comparisons showed the ND group could solve significantly more difficult subtraction facts 

accurately (t (217) = 3.63 p < .01), but not more quickly (t(217) = -.776); producing more 

accurate facts per sec. (t(217) = 2.86, p<.01) than the three disability groups.  Bonferroni 

tests, at the .02 level, specified that the ND group had more accurate answers than the MD 

group (p = .02) and the RD+MD group (p<.01).  Bonferroni tests, at the .02 level, specified 

that the ND group produced more accurate answers to difficult subtraction facts requiring 

processing/working memory (e.g. total correct in > 1 second) than the RD+MD group 

(p<.01).  The RD group had more accurate answers than the RD+MD group (p = .05).  The 

ND group had more difficult subtraction answers per sec. than the RD+MD group (p<.01).  

The RD and MD groups did not significantly differ from each other in accuracy, speed or 

facts per sec.  The RD and MD groups were more accurate than the RD+MD group (t(217) = 

2.54, p<.01) but they did not differ in time or number of correct facts per sec.   
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Unstandardized Easy and Difficult Multiplication Facts 
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Figure 15.  Mean facts per sec. on easy multiplication (Mult. Easy) and difficult 

multiplication (Mult. Diff.) facts. 

Easy Multiplication Facts.  ANOVA comparisons showed significant differences 

between the four groups total accuracy scores for Easy Multiplication (F(3, 219) = 5.05, 

p<.01), and facts per second (per sec.) (F(3,219) = 2.50, p<.06), but not for total time.  

Assuming equal variance, planned comparisons showed the ND group could solve 

significantly more easy multiplication facts accurately (t (216) = 3.27 p<.01) but not more 

quickly; producing more accurate facts per sec. (t(216) = 1.96, p<.05) than the three 

disability groups.  Bonferroni tests, at the .02 level, showed that the ND group produce more 

accurate easy multiplication facts than the MD group (p<.01) and the RD+MD group 

(p<.01).  The ND group produced more easy multiplication facts per sec. than the MD group 
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(p<.05) and more easy multiplication facts requiring processing/working memory (e.g. total 

correct in > 1 second) than the RD+MD group (p<.01). 

The RD and MD groups did not significantly differ from each other in accuracy, 

speed or facts per sec.  No significant differences were found between the single disability 

and the RD+MD group for easy multiplication facts. All appeared similarly weaker.    

Difficult Multiplication Facts. Initial ANOVA comparisons showed significant 

differences between the four groups accuracy for difficult multiplication facts (F(3, 213) = 

7.56, p < .01), and just reached significance for total time (F(3, 213) = 2.65, p<.05).  

Assuming equal variance, initial planned comparisons showed the ND group could solve 

significantly more difficult multiplication facts accurately (t (216 = 3.27 p<.01), but not more 

quickly (t(216) = .321); producing more accurate facts per sec. than the three disability 

groups (t(216) = 1.96, p<.05). Planned comparisons showed no significant difference 

between the RD, MD, and RD+MD groups’ accuracy, speed, or facts per sec.   

Planned comparison showed that the ND group produced more accurate automatic 

easy multiplication facts (e.g. total correct in < 1 second) than the three disability groups 

(t(216) = 1.93, p<.05). Planned comparison also showed that the ND group produced 

significantly more accurate answers to difficult multiplication facts requiring 

processing/working memory (e.g. total correct in > 1 second) than the three disability groups 

(t(210) = 3.16, p<.01).  Bonferroni tests, at the .02 level, specified that the ND group solved 

more difficult multiplication facts requiring processing/working memory than the RD+MD 

group (p<.01). 

An initial planned comparison showed that the RD group solved more difficult 

multiplication facts accurately (< 1 sec) than the MD group t (210) = 2.73, p<.01).  Initial 
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planned comparisons comparing RD and MD to the RD+MD group showed the two single 

disability groups produced significantly more accurate answers to difficult multiplication 

facts requiring processing/working memory (e.g. total correct in > 1 second) than the 

RD+MD group (t(210) = 2.37, p<.02).      

Division Facts Easy and Difficult.  Given that this sample of students was mainly in 

Grade 4, division was just being taught; division is more of an Ontario Math Curriculum 

focus in Grade 5.  Thus, the the number of children in each group who could complete the 

easy division facts dropped significantly (ND = 42/72, RD = 25/36, MD = 36/65, and 

RD+MD = 30/50).  The sample size dropped further for the difficult division facts (ND = 

37/72, RD = 22/36, MD = 31/65, and RD+MD = 25/50).  For this study the multiplication 

facts were used as the highest level of math fact comparison. 
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Working Memory Span, Phonological Processing, and Algorithmic Processing. 

Table 8. 

Mean Performance and Standard Deviations for the Four Groups on the WISC-III Digit 

Span Task, and Experimental Letter Span Task 

Test ND (N=72) RD (N=36) MD (N=65) RD+MD 

(N=50) 

 Mean SD Mean SD Mean SD Mean SD

Digit Span Forward 7.72 1.53 6.61 1.13 7.45 1.71 6.24 1.20

Digit Span Backward 4.67 1.23 4.08 1.16 4.18 1.18 3.46 1.20

Digit Span Total 12.39 2.15 10.69 1.64 11.63 2.30 9.7 1.82

Digit Span Scaled Score 9.13 2.25 7.25 1.75 7.91 2.11 5.74 1.52

Letter Span Forward 6.65 1.42 5.31 1.17 6.09 1.29 5.32 1.13

Letter Span Backward 3.49 1.22 2.92 .91 3.28 1.08 2.72 1.14

Letter Span Total  10.15 2.04 8.22 1.38 9.38 1.85 7.98 1.82
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Digit and Letter Span 
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Figure 16.  Mean Total Correct on WISC-III Digit Forward, Digit Backward (Digit Back.), 

and Digit Total. 

ANOVA comparisons showed differences between the four groups scores for Digits 

Forward total (F(3,222) = 12.64, p < .01), Digits Backwards total (F(3,222) = 10.02, p < .01), 

and Digit Span total (F(3,222) = 18.53, p < .01).  Assuming equal variance, planned 

comparisons showed the ND to have significantly higher digits forward total (t(219) = 4.52, p 

< .01), digits backward total (t(219) = 4.37, p < .01), and digit span total (t(219) = 5.78, p < 

.01).  Bonferroni tests specified that the ND group had significantly higher Digit Span 

standard scores than the RD group (p < .01), the MD group p = .003, and the RD+MD group 

(p < .01).  Using total correct, Bonferroni tests at the .02 level, specified that the ND group 
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recalled more digits forward than the RD group (p<.01), and the RD+MD group (p < .01).  

The ND and MD group did not appear to differ.  No specified differences in Digits 

Backwards were found.  The ND group had a significantly higher Digit Span Total than the 

RD group (p < .01), and the RD+MD group (p < .01).   

In terms of standard scores, the RD and MD group did not significantly differ and the 

RD group and the MD group, both higher standard score than the RD+MD group (p < .01).  

Initial planned comparison showed that the MD group had significantly higher digits forward 

total (t(219) = -2.75, p<.01), and digit span total (t(219) = -2.20, p<.03) than the RD group.  

The MD and RD group were similar on digits backwards total.  Planned comparisons showed 

the single disability groups to have significantly higher digits forward total (t(219) = 3.07, p 

< .01), digits backward total (t(219) = 3.20, p<.01), and digit span total (t(219) = 4.07, p < 

.01) then the RD+MD group.  Bonferroni tests, at the .02 level, specified that the MD group 

had a higher Digit Span Total than the RD+MD group (p < .01).   
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Figure 17.  Mean Total Correct on Letter Forward, Letter Backward (Letter Back.), and 

Letter Total. 

ANOVA comparisons showed differences between the four groups scores for Letters 

Forward (F(3,221) = 14.51, p < .01), Letters Backwards (F(3,220) = 5.53, p<.01), and Letter 

Span (F(3,220) = 17.13, p < .01).  Assuming equal variance, planned comparisons showed 

the ND to have significantly higher letters forward (t(219) = 5.82, p < .01), letters backward 

(t(219) = 3.21, p<.01), and letter span (t(219) = 6.08, p < .01).  Bonferroni tests specified that 

the ND group produced more letters forward than the RD and the RD+MD group (p < .01); 

more letters backwards than the RD+MD group (p<.01), and had a higher letter total than the 

RD and RD+MD group (p < .01).   
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Planned comparisons showed that similar to the WISC-IV digit span results the MD 

group had significantly higher letters forwards (t(219) = -2.95, p<.01) and significantly 

higher letter span (t(219) = -3.01, p<.01) than the RD group.  Comparable to digit span, 

planned comparisons showed the RD and MD groups to have significantly higher letter span 

(t(219) = 4.07, p < .01) than the RD+MD group.   Also, similar to digit span, the MD and RD 

group were similar on letters backwards.  Bonferroni tests specified that the MD group 

produced more letters forward than the RD (p<.01) and the RD+MD group (p = .01).  The 

MD group produced more letters backwards (p<.05).  In terms of letter span total, Bonferroni 

tests specified that the MD group had a higher total than the RD group (p<.01) and the 

RD+MD group p < .01 

Phonological Processing 

Table 9. 

Mean Total and Scaled Scores and Standard Deviations for the Four Groups on 

Phonological Processing Sutbstests: Elision and Nonword Repetition from the CTOPP  

CTOPP Test ND (N=72) RD (N=36) MD (N=65) RD+MD(N=50) 

 Mean SD Mean SD Mean SD Mean SD 

Elision Total  15.4 3.46 11 4.15 14.48 4.07 9.48 4.19 

Elision Scaled Score 10.43 2.33 7.44 2.41 9.63 2.43 6.26 2.33 

Nonword Repetition 

Total 

8.32 2.40 7.00 2.81 8.55 3.17 6.68 2.57 

Nonword Repetition 

Scaled Score   

7.58 1.83 6.57 2.40 7.68 2.43 6.06 1.95 
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Figure 18.  Scaled scores for CTOPP Elision and Nonword Repetition (Nonword). 

Elision scaled scores. ANOVA comparisons showed differences between the four 

groups scores for Elision standard scores (F(3,222) = 36.99, p < .01).  Assuming equal 

variance, planned comparisons showed the ND to have significantly higher Elision (t(219) = 

7.73, p < .01) than the three disability groups. Bonferroni, at the p = .02 level, specified that 

the ND group scored higher than the RD and the RD+MD group (p < .01) for both but not the 

MD group.  Planned comparisons showed that the MD group had significantly higher Elision 

(t(219) = -4.44, p < .01) than the RD group.  The Bonferroni test specified that the MD group 

had a higher standard score then the RD group and the RD+MD group both at (p < .01), and 

the RD group had a higher scaled score than the RD+MD group (p < .01).     

Nonword Repetition Standard Scores: ANOVA comparisons showed differences between the 

four groups scores for Nonword Repetition (F(3,220) = 7.58, p < .01).  Assuming equal 
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variance, planned comparisons showed the ND to have significantly higher Nonword 

Repetition (t(217) = 2.62, p<.01) than the three disability groups.   Bonferroni, at the .02 

level, specified that the ND group had a higher standard score then the RD+MD group (p = 

.01).  Planned comparisons showed the MD group had significantly higher Nonword 

Repetition (t(217) = -2.49, p<.02) than the RD group.  Planned comparisons showed that 

together the single disability groups showed significantly higher Nonword Repetition (t(217) 

= 2.86, p<.01)  then the RD+MD group.  The Bonferroni test confirmed that the MD group 

performed better than the RD+MD group and similar to the RD group. 

Algorithmic Processing 

Table 10. 

Mean Scaled Score Performance and Standard Deviations for the four groups on the 

KeyMath-Revised Operations Subtests: Addition, Subtraction, Multiplication, and Division  

KeyMath-R Test ND (N=72) RD (N=36) MD (N=65) RD+MD(N=50)

 Mean SD Mean SD Mean SD Mean SD 

Addition  10.01 2.30 8.97 2.59 7.52 2.87 6.56 2.61

Subtraction 9.52 2.53 8.34 2.53 6.78 2.71 5.16 1.48

Multiplication  9.31 2.20 8.57 2.42 7.32 2.54 6.00 2.05

Division  11.66 2.27 10.40 2.34 8.58 3.02 7.00 2.95
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Figure 19. Mean Total Correct on KeyMath-Revised Operations: Addition, Subtraction, 

Multiplication, and Division. 

Addition. Table 10 and Figure 19 show mean scaled scores on Addition.  ANOVA 

comparisons showed differences between the four groups standard scores for Addition 

algorithms (F(3,221) = 20.54, p < .01).  Assuming equal variance, planned comparisons 

showed the ND group scored significantly higher than the three disability groups (t(218) = 

6.18, p < .01).   Bonferroni tests, at the .02 level, specified that the ND group scored 

significantly higher than the MD and the RD+MD group (p < .01), with no significant 

difference between the ND and RD groups.  Planned comparisons demonstrated that the RD 

group scored significantly higher than the MD (t(218) = 2.69, p<.01).  Bonferroni tests 
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confirmed that the RD group had higher standard scores than the MD group (p<.05).  The RD 

group had higher scores than the RD+MD group p < .01.  The MD and RD+<D groups had 

similarly weak scores. 

Subtraction. Table 10 and Figure 19 show mean scaled scores on Subtraction.  

ANOVA comparisons showed differences between the four groups standard scores for 

Subtraction algorithms (F(3,220) = 36.23, p < .01).  Assuming equal variance, planned 

comparisons showed the ND group scored significantly higher than the three disability 

groups (t(217) = 7.93, p < .01).   Bonferroni tests specified that the ND group scored 

significantly higher than the MD and the RD+MD group p < .01, with no significant 

difference between the ND and RD group.  Planned comparisons demonstrated that the RD 

group scored significantly higher than the MD (t(217) = 3.14, p<.01).  Bonferroni tests 

confirmed that the RD group had higher standard scores than the MD group (p <.01), and the 

RD+MD group (p < .01).  The MD and RD+MD groups both showed weak performance on 

addition algorithms.  On subtraction algorithms the MD group were weaker than the ND and 

RD group but stronger than the RD+MD group (p<.01). 

Multiplication. Table 10 and Figure 19 show mean scaled scores on Multiplication.  

ANOVA comparisons showed differences between the four groups standard scores for 

Multiplication algorithms (F(3,220) = 22.44, p < .01).  Assuming equal variance, planned 

comparisons showed the ND group scored significantly higher than the three disability 

groups (t(217) = 5.99, p < .01).   Bonferroni tests, at the .02 level, specified that the ND 

group scored significantly higher than the MD and the RD+MD group (p < .01), with no 

significant difference to the RD group.  Planned comparisons demonstrated that the RD 

group scored significantly higher than the MD (t(217) = 2.58, p<.01).  Bonferroni tests 
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confirmed that the RD group had higher standard scores than the MD group (p<.01), and the 

RD+MD group (p < .01).  The RD+MD group were weaker than the ND, RD, and the MD 

group (p<.01). 

Division. Table 10 and Figure 19 show mean scaled scores on Division  ANOVA 

comparisons showed differences between the four groups standard scores for Division 

algorithms (F(3,220) = 33.85, p < .01).  Assuming equal variance, planned comparisons 

showed the ND group scored significantly higher than the three disability groups (t(217) = 

7.70, p < .01).   Bonferroni tests, at the .02 level, specified that the ND group scored 

significantly higher than the RD (p<.01), MD and the RD+MD group (p < .01).  Planned 

comparisons demonstrated that the RD group scored significantly higher than the MD (t(217) 

= 2.58, p < .01).  Bonferroni tests confirmed that the RD group had higher standard scores 

than the MD group (p<.01), and the RD+MD group (p < .01).  The RD+MD group 

performed more poorly than the ND and RD group (p < .01) and the MD group (p<.01). 

Discussion 

WASI IQ and Executive Function 

The first purpose of the present research was to investigate the type and extent of 

cognitive processing deficits in single (RD and MD) and comorbid (RD+MD) learning 

disability groups on tasks measuring IQ, ‘executive’ function, automatic processes (e.g., 

RAN, words, and math facts), working memory span, phonological processing, and 

algorithmic processing.   

While the present study selected students with average overall ‘VIQ/PIQ’ (i.e., 

expressive vocabulary, verbal/nonverbal reasoning, and visual-spatial ability) and 

significantly weaker performance on reading and math achievement tests, it is acknowledged 
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that a discrepancy of any nature needs empirical support to explicate underlying cognitive 

processing deficit(s) involved in reading, math, or comorbid reading/math disabilities.  In the 

current study, each group was assessed on ‘IQ’ and ‘executive function’ tests measuring 

visual-spatial analysis (e.g., Block Design and Planning), expressive Vocabulary, verbal 

reasoning (e.g., Similarities), and nonverbal reasoning (e.g., Matrix Reasoning and Concept 

Formation). 

On tests of visual-spatial analysis, the performance of all groups fell within age-level 

expectations, and no significant differences were found.  The ND group had higher 

expressive Vocabulary and verbal and nonverbal reasoning than both poor reader groups (RD 

and RD+MD).  Single disability groups (RD and MD) had similar expressive Vocabulary 

with it being significantly better than that of the comorbid group (RD+MD).  The good 

readers (ND and MD) were equivalent in their good verbal reasoning which was significantly 

stronger than that of the poor readers (RD and RD+MD).  In terms of ‘executive’ nonverbal 

reasoning (i.e., Matrix Reasoning and Concept Formation), the ND, RD, and MD groups 

were significantly better than the comorbid RD+MD group.   

Reading and Math Achievement 

Using age-based norms, the WJ-III Tests of Achievement classify average age-level 

expectations as standard scores falling within the 90 to 110 range.  On LWID and WA 

scores, the good readers (ND and MD) demonstrated reading skills superior to the poor 

readers (RD and RD+MD).  By age norms, the good readers’ mean performances fell solidly 

within age norm expectations.  The poor readers’ mean performances fell below age norm 

expectations.   

 - 79 - 



As defined by their Calculation scores, good mathematicians (ND and RD) exhibited 

superior math skills to the poor mathematicians (MD and RD+MD).  By age norms, the good 

mathematicians’ mean performances fell solidly within age norm expectations.  The poor 

mathematicians’ mean performances fell well below age norm expectations, both groups 

being very weak in math Calculation.  Poor mathematicians (MD and RD+MD) were defined 

as being significantly weaker solely on their Calculation performance alone, and Applied 

Problems and Math Fluency subtests were used as dependant measures. 

On Applied Problems, the ND, RD, and MD groups’ mean scores fell within age 

level expectations, with the RD+MD group falling just below age level expectations on 

Applied Problems.  While this pattern might be expected given the reading and math 

weaknesses of the comorbid group, two other issues with Applied Problems should be noted.  

Relative to skill level demands of the Ontario Math Curriculum, the Applied Problems test 

appeared to overestimate the children’s performance.  One feature of the test that could have 

facilitated age level performance is that children were provided with visual aids and a pencil 

and paper, with no stated time limit, to figure out each problem.  Visual aids and time are 

both tools that psychologists recommend to help enhance math learning for children with a 

math learning disability.  In addition to potentially inflated scores, all groups may have 

benefited from specific accommodations offered on this task (e.g., visual aids, and pen and 

rough paper with no time limit) that could add potential confounds when used as a diagnostic 

measure.   

The third math achievement test that was administered was the Math Fluency test.  

Statistically, the ND group met age level expectations and had significantly higher scores on 

Math Fluency than the three disability groups.  While all disability groups’ performance fell 
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below age level expectations, the comorbid RD+MD group performed more poorly on this 

test than the single disability groups.  In the context of the present study, Math Fluency is 

considered to be a partial test of the automatic visual/fact route in that the responses were 

written.  This automatic visual/fact route appeared well developed in the ND group.   

In contrast, when the disability groups had to solve basic facts, their answers may not 

have always been automatically retrieved.  For example, if the ND group saw 2 + 2, the 

visual/fact route might automatically retrieve 4, whereas the RD, MD, and RD+MD children 

could be employing some level of breaking down the fact and/or using their fingers as visual 

working memory aids to help retrieve the fact (Geary, 2004).  These children may be 

employing a ‘backup’ strategy (Geary, 2004) to inadvertently reduce working memory load.  

It cannot be ruled out that the three disability groups may have been adversely affected by 

some level of written output weaknesses much like a poor reader with weak sight word 

retrieval (i.e., retrieval of common spelling patterns) also exhibits difficulty with spelling.  

Deficits in written output were not addressed in this study and would require further 

investigation. 

In screening, the poor mathematicians were defined on the basis of weak Calculation 

scores, not on Applied Problems or Math Fluency performance.  It would be predicted that an 

RD, MD, and RD+MD group initially defined using Math Fluency measures alone (or a 

combination of scores on math achievement tests) could have a different profile of math 

achievement and cognitive strengths and weaknesses.  Definitional criteria for the present 

groups should be taken into consideration when interpreting the results, and generalization of 

results beyond this sample is not warranted until further data are collected.   
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Automatic Retrieval Profiles for Each Group 

Overall, the good readers and good mathematicians (ND group) showed strong 

automaticity in the accurate and speedy retrieval of: RAN digits and letters, Benchmark (high 

frequency) and Exception words, Math Fluency, and math facts (addition, subtraction, and 

multiplication).  The ND group showed solid automaticity for all reading and math tasks.  In 

terms of the single disability groups, the good readers and poor mathematicians (MD group) 

were just as strong as the ND group on the reading tasks including automatic (i.e., accurate 

and speedy) retrieval of: RAN letters and digits, and Benchmark (high frequency) and 

Exception words.  Compared to the ND group, the MD group demonstrated unique cognitive 

processing deficits in their less accurate and slower automatic retrieval of all math facts (easy 

and difficult addition, subtraction, and multiplication) and Math Fluency.  

Compared to all other groups, the RD group was less accurate on RAN letters (a 

difference of approximately 1 letter).  Relative to the good readers (ND and MD groups), the 

poor readers (RD and RD+MD) showed a deficit in automatic visual/orthographic processing 

characterized by significantly slower speed of RAN letter and digit retrieval.  This finding is 

consistent with much research on slow naming speed in poor readers (for review, see Bowers 

& Ishaik, 2003; Wolf & Bowers, 1999) and with research that generally showed that rapid 

naming of digits is related to math achievement (e.g., RAN digits) (Denckla & Rudel, 1976; 

Wolf, 1991).   

The poor readers (RD and RD+MD) also exhibited weaker automatic 

visual/orthographic retrieval with less accurate and slower retrieval of Benchmark high 

frequency and Exception words relative to the good readers (ND and MD). This cross-

validates research showing that poor readers are generally slower than average readers when 
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reading words in isolation (e.g., Ehri & Wilce, 1983) and experience difficulty reading 

irregular/exception words (Lovett, 1987; Manis & Morrison, 1985; Seidenberg, Bruck, & 

Backman, 1985).   

Planned comparisons and Bonferroni testing confirmed that all disability groups were 

weak on their automatic visual/fact retrieval as seen in their slower Math Fluency, with the 

comorbid group being the slowest.  Geary (2004) suggested that a deficit in math fact 

retrieval may be a diagnostic feature of MD, but such a deficit may not always be seen across 

all operations (e.g., deficit in multiplication retrieval and normal subtraction retrieval).  In the 

Ontario curriculum, facts are taught in the following order: addition, subtraction, 

multiplication, and division.  It is logical to learn facts in this order because multiplication 

has a root in addition (e.g., 4 + 4 + 4 = 12 and 3 x 4 = 12).  It is also easier to comprehend 

division when multiplication facts are known (e.g., ‘2 groups of 3 equals 6’ or 2 x 3 = 6 and 

‘2 groups of 3 go into 6’ or 6/3 = 2).  Addition facts and multiplication facts are more easily 

retrieved through an automatic visual/fact route as they tend to be facts that are more easily 

‘drilled’ and memorized.  Subtraction requires counting backwards and facility with addition 

facts; division requires facility with multiplication facts.  Both subtraction and division 

appear to make more demands on working memory processes.   

Current results showed that the ND group was more accurate and quicker than the 

three disability groups on easy and difficult addition facts, easy and difficult subtraction 

facts, and difficult multiplication facts.  The ND group produced more accurate ‘automatic’ 

(<1sec) easy subtraction, and difficult multiplication, and more accurate ‘working memory 

processing’ (>1sec) of difficult subtraction facts, and easy and difficult multiplication facts, 

than all three disability groups.  Overall the ND group had a much more efficient automatic 
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visual/fact store and retrieval rate than all disability groups.  They were also more accurate 

on difficult facts that required more algorithmic and working memory processing.   

The good reader/poor mathematicians (MD group) did not show deficits in the 

automatic visual/orthographic route but they did show weak automatic visual/fact deficits 

(Math Fluency and all math facts).  This is consistent with many studies in which children 

with MD had significantly weaker automatic retrieval of basic math facts (Bull & Johnston, 

1997; Garnett & Fleischner, 1983; Geary, 1993; Geary & Brown, 1991; Geary et al., 1987; 

Jordan & Montani, 1997; Ostad, 1997).  Notably, the automatic visual/fact deficits were 

specific in this MD group in that the ‘automatic visual deficit’ did not appear to overlap into 

an automatic visual/orthographic deficit for word reading.   

The current results revealed that the RD group were just as weak in Math Fluency and 

just as weak in accuracy for specific math facts (e.g., easy multiplication, and difficult 

subtraction facts requiring working memory processing) as the MD group.  This suggests 

some overlap in visual/orthographic word and visual/fact retrieval for the RD group - beyond 

having their weakness on the RAN task.    

The current study found the comorbid RD+MD group exhibited a weak automatic 

visual/orthographic route equivalent to that of the RD group, and that they had a much 

weaker automatic visual/fact route (for easy and difficult addition, difficult subtraction facts, 

and on Math Fluency) than both of the single disability groups (RD and MD).  Similar to the 

RD group, the comorbid RD+MD group showed deficits in their visual/orthographic route 

with more severe deficits in their visual/fact deficit routes than both single disability groups.   

Taken together, these findings suggest that the RD+MD group might have a generally faulty 
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automatic visual route (e.g., visual/orthographic and visual/fact routes).  This speculation 

requires additional examination and validation through future research.         

Working Memory Span Profiles for Each Group 

The good readers (ND and MD) exhibited better developed letter span than the poor 

readers (RD and RD+MD).  The ND group had more digit span capacity than both of the 

single disability groups, who had similarly weak digit span.  It is notable that the poor readers 

had weak span for both letters and digits.  This result is compatible with research showing 

that poor readers exhibit a reduced working memory span for verbal material (e.g., letters and 

digits) (Baddeley, 1986; Holligan & Johnston, 1988; Rapala & Brady, 1990).   While 

working memory deficiencies have consistently been shown to be associated with MDs 

(Geary 1990, 1993, 2004), the present study found that the poor mathematician MD group 

had weaker digit span and good letter span.  The comorbid RD+MD group had similarly 

weak letter span as the RD poor readers and weaker digit span than both of the single RD and 

MD groups.  

 In the present study, the two single disability groups produced significantly more 

accurate answers to difficult multiplication facts requiring processing/working memory (e.g. 

total correct in > 1 second) than the RD+MD group.  This finding might be attributed to the 

comorbid group having weaker working memory span than the two single disability groups.  

Phonological Processing Profiles for Each Group 

The good readers (ND and MD) had significantly higher Elision and Nonword 

Repetition performance than the poor readers (RD and RD+MD), with both groups of poor 

readers showing deficits in phonological processing.  In this sample, phonological deficits 

appear unique to poor readers (RD and RD+MD) and were not observed in the single MD 
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group.  This finding cross-validates research showing that ddeficits in phonological 

awareness are found to be a specific and major contributor to reading failure (e.g., Bradley & 

Bryant, 1983; Fletcher et. al., 1994; Mann, 1984; Shankweiler et al., 1995; Siegel, 2003; 

Stanovich & Siegel, 1994).   

Algorithmic Processing Profiles for Each Group 

The good mathematicians’ (ND and RD) initial performance on Calculation was 

superior to the poor mathematicians’ (MD and RD+MD) performance.  On algorithmic 

processing measures, the good mathematicians showed significantly better accuracy scores 

on the addition, subtraction, and multiplication algorithms (i.e., operations) than the poor 

mathematicians (MD and RD+MD).  Thus, algorithmic processing, as defined in this study, 

appeared to be a unique deficit of poor mathematicians (MD and RD+MD).   

In this study, the single MD and comorbid RD+MD poor mathematicians both had 

weak algorithmic processing on addition algorithms only.  The comorbid RD+MD group was 

weaker than the MD group on subtraction, multiplication, and division algorithms than the 

single MD group.  For this age group, division algorithms are considered a challenge.  The 

ND group met this challenge and was significantly more accurate on the division algorithms 

than all disability groups.  The RD group was relatively more accurate on division algorithms 

than the poor mathematicians (MD and RD+MD groups).   
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PART II 

Procedure 

Structural Equation Models (SEMs) 

Apriori Factors/Composites in the Four Factor READ and MATH Models 

Based on the cognitive and functional neurobiological literature on the cognitive 

processing deficits associated with reading and/or math disabilities, a systems analysis was 

run using the READ and MATH SEM models.  Within each of the READ and MATH 

systems, it was proposed that the automaticity factor represents common cognitive (and 

functional neurobiological) processes underlying reading and math acquisition, processes that 

require the ability to rapidly identify the sound or name associated with visual information 

(e.g., familiar letters, digits, words, and math facts).  When words and facts are unfamiliar, or 

not automatically identifiable as a whole, more advanced ‘strategy-based processes’ must 

‘kick in.’ These advanced processes are represented by the phonological processing 

(awareness and decoding) factor, the algorithmic (calculation and procedure) processing 

factor, and the verbal/nonverbal reasoning factor.   

Significant intercorrelations between these factors may represent how these four 

cognitive processes work in partnership.  Theoretically, it was proposed that efficient readers 

and mathematicians increase word reading and math calculation efficiency by first retrieving 

the part of the word or fact that has been automatically identified.  Then they must employ 

working memory span, utilizing verbal rehearsal and/or visualization to keep the familiar and 

now unfamiliar parts, ‘online’ in a working order.  The more automatically information is 

identified (e.g., immediately reading a whole word form, or identifying the solution to a math 

fact), the more capacity the working memory system has for higher processing loads.  The 
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capacity of verbal and visual working memory span places limits on the amount of 

information the higher order processes can simultaneously keep online to ‘work on.’ Good 

readers’ and/or good mathematicians’ strong phonological or algorithmic processing, and 

solid IQ reasoning abilities are proposed to enhance this systems accuracy.   

Following this line of reasoning, two four factor models, the READ Model and the 

MATH Model, were tested.  Each model included four factors: 1. Automatic (RAN and 

words or facts), 2. Working Memory Span (digits and letters), 3. Phonological or 

Algorithmic Processing, and 4. WASI IQ.  Using the entire sample (N = 221), these two 

models were initially assessed for best fit and, if necessary, other models with more or fewer 

factors were also assessed to see if they generated a better fit for the current data.  Using the 

best fit models for reading and math, the amount of unique and shared variance for each of 

the four factors was investigated.  The amount of variance contributed by each task to its’ 

assigned factor (e.g., RAN digits to Automatic) was also established.  Raw scores were used 

for all SEM analyses.   

The Four Factor READ Model (as seen in Figure 20) is itemized as follows:  
 
1. Automatic/Words - a common underlying cognitive process in reading that allows rapid 

identification of familiar symbols through an automatic visual/orthographic route 

includes: letter names (e.g. as in RAN), high frequency Benchmark keywords, and 

orthographic patterns that cannot be phonetically ‘sounded out’ in their entirety (e.g., 

Exception words). 

2. Phonological Processing – when a whole word can not be read automatically, 

phonological processing must be employed to break words into familiar and unfamiliar 

phonemes in order to figure out the whole word.  Phonological processing includes: a) 
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phonological knowledge or awareness (e.g., CTOPP’s Elision task) and b) ‘phonological’ 

working memory (e.g., Nonword Repetition).  Phonological processing employs working 

memory strategies (e.g., rehearsal and/or visualization) to break down words into 

appropriate grapheme units, apply the correct phoneme sound(s), and blend the sounds 

(according to phonological rules). 

3. Working Memory Span– online capacity is commonly measured on the WISC-III (now 

WISC-IV) using the Digit Span task.  A structurally similar Letter Span task was also 

used.  To increase accuracy and maximize span length, the working memory system must 

employ a verbal rehearsal and/or visualization strategy to hold the digits and letters 

online while they are repeated forwards or backwards.  This system is employed by 

phonological processing and verbal/nonverbal reasoning to hold the familiar and 

unfamiliar information online in order to figure out the answer.   

4. VIQ and PIQ (WASI) – included expressive Vocabulary, Verbal Reasoning (e.g., 

Similarities), nonverbal reasoning (e.g., Matrix Reasoning), and visual-spatial 

organization (e.g., Block Design).   
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Figure 20. Four Factor READ Model.  
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The Four Factor MATH Model (as seen in Figure 21)itemized as follows: 

1. Automatic/Math Facts - a common underlying cognitive process in math that through an 

automatic visual/fact route allows rapid identification of familiar symbols such as: digit 

names (as in RAN), and final answers to high frequency math facts (WJ-III Math 

Fluency), and Evans (2008) Easy and Difficult Math Facts. 

2. Algorithmic Processing – when the answer to a math fact or calculation can not be 

automatically retrieved, algorithmic processing must be employed to break unfamiliar 

facts or calculations into familiar and unfamiliar parts in order to figure out the answer.  

Algorithmic processing includes: a) algorithmic or calculation knowledge and b) 

‘algorithmic’ working memory (e.g., used in KeyMath Operations ).  Both must be 

employed to break down more difficult facts and calculations into appropriate chunks, 

and to put them together (according to algorithmic rules) online in working memory – 

using verbal rehearsal and/or visualization span.   

3. Working Memory Span– online capacity is commonly measured on the WISC-III (now 

WISC-IV) using the Digit Span task.  A structurally similar Letter Span task was also 

used.  Working memory span is employed when math facts and calculations are not 

retrieved automatically and the familiar and unfamiliar must be held online in order to 

figure out the answer. 

4. VIQ and PIQ (WASI) – included Expressive Vocabulary, Verbal Reasoning (e.g., 

Similarities), Nonverbal reasoning (e.g., Matrix Reasoning), and visual-spatial 

organization (e.g., Block Design).   
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Results 

To test the validity of each model, a maximum likelihood confirmatory factor 

analysis was performed.  Models were assessed for both goodness of fit and parsimony.  For 

each model, the null model was the independent model in which unobserved variables were 

assumed to be uncorrelated.  The null model was estimated by AMOS 6 using the same 

sample data as the proposed model.  The fit of the proposed models was assessed using fit 

indices to see if they were superior to the null model.  To test each model, the following fit 

indices were assessed: comparative fit index (CFI), Tucker and Lewis’ (1973) index of fit 

(TLI), Browne and Cudeck’s (1993) root mean square error of approximation (RMSEA), and 

PCLOSE.  Each fit indices had different criterion to indicate reasonable fit, including: 1) CFI 

values of greater than approximately .90 indicated reasonably good fit (Hu & Bentler, 1999), 

2) TLI value of .80 to 1.00 values close to 1 indicated very good fit; 3) RMSEA value less 

then ≤ .05 suggested close approximate fit relative to the degrees of freedom; between .05 

and .08 indicated reasonable error of approximation, and ≥ .10 suggested poor fit (Browne & 

Cudeck, 1993), and 4) a nonsignificant PCLOSE value.     

To evaluate the fit of different models, the parsimony indices were evaluated.  They 

adjusted for model complexity (i.e., they prefer simpler models) (Kline, 2005).   To assess 

parsimony, the parsimony-adjusted normed fit-index (PNFI) (James, Mulaik, & Brett, 1982) 

was used in the present study.  To investigate the predictive fit of the data, the Akaike 

information criteria (AIC) (Anderson, Burnham, & Thompson, 2000) was also assessed.  

This index investigated hypothetical samples of similar size that were randomly taken from 

the study’s data sample.  It also measures parsimony because it prefers less complex models 

(Kline, 2005).  When comparing two models for best fit and parsimony (e.g., the four factor 
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versus five factor READ or MATH models), the model with the lower AIC typically has the 

better fit and is more parsimonious (Kline, 2005).  The critical difference between two 

models’ chi-squares was also assessed.  If the critical difference was significant, the model 

with the larger degrees of freedom would be considered ‘overidentified’ in comparison to the 

model with the lower degrees of freedom (Kline, 2005).  Thus, the underidentified model 

would be accepted to best fit the data (Raykov & Marcoulides, 2000).       

Confirmation of the READ Model.  A four and five factor READ model are shown in 

Figures 22 and 23.  A four and five factor MATH model are shown in Figure 24 and 25.   

The factors or composites (e.g., Automatic) are represented by the ovals.  The values on the 

double-headed arrows at the right of the figure show the correlations among the composites.  

The values on the single-headed arrows from the composites to each of the subtests 

(represented by rectangles) show the regression weights.  The regression weights show the 

amount of each subtest’s variance that is common with the other subtests attached to the 

same composite.  The values on the top right corner of each rectangle/subtest show the 

squared multiple correlation or the amount of variance that the individual subtest contributes 

to the factor.  The e values in the small ovals at the left of the figure, with a single-headed 

arrow pointing toward each subtest, are set to one, assuming that the unique and systemic 

variance for each subtest was equal.  According to specified modification indices, to improve 

the model fit, errors (e.g., e3 and e4, and e12 and e13) are connected using a double-headed 

arrow.  The values on these two arrows show the correlation between the unique and 

systemic variance of the two subtests (e.g., method variance). 

The results of the confirmatory factor analysis demonstrated that the design of the 

four composites (seen in Figure 22) was supported by the current data (N = 211 and chi-
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square = 69.083, df=46, p=.015).  All regression weights, and factor covariances were 

significant (p < .01).  The goodness-of-fit indices were good: CFI = .981, TLI = .973, 

RMSEA = .049, PCLOSE = .506, ns. We can conclude that the subtests were appropriately 

chosen for each factor/composite and that that composites are valid indicators of 1)  

Automatic Words, 2) Phonological Processing, 3) Working Memory Span, and 4) WASI 

VIQ/PIQ. 

A five factor model (seen in Figure 23), separating RAN from Automatic Words 

(Benchmark word list and Exception word list per sec.) was also assessed (N = 211 and chi-

square = 69.083, df=46, p=.015).  All regression weights, and factor covariances were highly 

significant (p < .01) (chi-square = 69.083, df (corrected for nonidentifiability) = 43, p=.021).  

All regression weights, and factor covariances were significant (p < .01). While the model 

also had good fit (CFI = .983, TLI = .974, RMSEA = .048, PCLOSE = .524, ns), the critical 

difference between the four and five factor model Chi-square’s were not significant and the 

correlation between RAN and Automatic Words was highly significant (r = .95, p < .01).  For 

the four factor model, the parsimony indices were lower: AIC = 157.09, BCC = 162.9, PCFI 

= .68, PNI = .66 than for the five factor model: AIC = 159.93, BCC = 166.27, PCFI = .64, 

PNI = .62.  With these results and the smaller sample sizes (particularly the RD group), later 

hierarchical regression analyses were run using the more parsimonious four factor model.   

Other nested models were assessed, including: 1) a five factor model, separating VIQ 

from PIQ, and 2) a three factor model combining Working Memory (Digit & Letter Span) 

with Phonological Processing.  The Four Factor READ Model (combining and separating 

RAN and Automatic Sight Words) remained the best fit in terms of goodness of fit and 

parsimony indices.   
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Figure 22.  Confirmatory factor analysis of four factor READ model. 
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Figure 23.  Confirmatory factor analysis of five factor READ model. 
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Confirmation of the MATH Model.  Results of the factor analysis confirmed that the 

design of the four composites for the MATH model (as seen in Figure 24) was supported by 

the current data (N = 208, chi-square = 146.337, df=95, p < .01).  All regression weights and 

factor covariances were significant (p < .01). The goodness-of-fit indices were good (CFI = 

.968, TLI = .959, RMSEA = .051, PCLOSE = .439, ns). We can conclude that the subtests 

were appropriately chosen for each composite and that the composites are valid indicators of 

Automatic Facts, Algorithm Processing, Working Memory Span, and WASI VIQ/PIQ. 

A five factor model, separating RAN from Automatic Facts (Easy and Diff Addition 

and Subtraction facts per sec.) was also assessed (as seen in Figure 25) (N = 208, chi-square 

= 140.741, df=92, p < .01).  All regression weights, and factor covariances were significant 

(p < .01) (note: the correlation between RAN and IQ was significant at p = .011).  While the 

five factor model also had good fit (CFI = .969, TLI = .960, RMSEA = .051, PCLOSE = 

.460, ns), the Chi Square critical difference was not significant and the correlation between 

RAN and Automatic Words was highly significant (r = .48, p < .01).  For the four factor 

model, the parsimony indices were quite similar (AIC = 228.34, BCC = 235.67, PCFI = .77, 

PNI = .72) relative to the five factor model (AIC = 228.74, BCC = 236.61, PCFI = .74 PNI = 

.70).  With these results and the smaller sample sizes (particularly for the RD group), later 

hierarchical regression analyses were run using the more parsimonious four factor model.   

Other nested models were assessed, including: 1) a five factor model, separating VIQ 

from PIQ, and 2) a three factor model combining Working Memory (Digit & Letter Span) 

with Algorithm Processing.  The Four and Five Factor Math Models (combing and separating 

RAN and Math Facts) remained the best fit in terms of goodness of fit and parsimony 

indices.   
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Figure 24.  Confirmatory factor analysis for four factor MATH model. 
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Figure 25.  Confirmatory factor analysis for five factor MATH model. 
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Table 11.  

Intercorrelations of Composites of Four Factor READ Model (N = 211) 

Composite Automatic 

RAN/Words

Working 

Memory Span 

Phonological 

Processing  

VIQ & 

PIQ 

Automatic  (RAN/Words) -- .44** .65** .56** 

Working Memory Span   -- .85** .45* 

Phonological Processing    -- .69** 

VIQ/PIQ     -- 

** significant at p < .01 

 

Table 12.  

Intercorrelations of Composites of Four Factor MATH Model for Entire Sample (N = 221) 

Composite Automatic  

RAN/Facts 

Working  

Memory Span 

Algorithm 

Processing  

VIQ & 

PIQ 

Automatic (RAN/Facts)    -- .41** .77** .61** 

Working Memory Span  

 
 

-- .37** .54** 

Algorithmic Processing  

 

  -- .81** 

VIQ/PIQ    -- 

** significant at p < .01 
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Discussion 

The second part of the present study was exploratory, and assessed two Structural 

Equation Models (SEMs) for the entire sample of participants.  Unfortunately, the N in each 

group was not large enough to run the SEMs separately for each group.  The results best 

support a four factor READ model: 1) Automatic RAN/words (RAN letters, RAN digits, 

Exception and Benchmark words per sec.), 2) Working Memory Span (Digit and Letter 

Span), 3) Phonological Processing (Elision and Nonword Repetition), and 4) 

Verbal/Nonverbal reasoning, with factors representing significantly unique variance and 

significant intercorrelations with each other.  The results also best supported a four factor 

MATH model: 1) Automatic RAN/math facts (RAN letters, RAN digits, and easy/difficult 

addition and subtraction facts per sec.), 2) Working Memory Span (Digit and Letter Span), 3) 

Algorithmic Processing (KeyMath-R Operations: Addition, Subtraction, Multiplication, and 

Division), and 4) Verbal/Nonverbal reasoning.  Within each model, there was a strong 

representation for each of the underlying cognitive processes proposed. The unique 

contributions of all of the measures to their specified factor/composite were highly 

significant, as were the unique and shared variances between the four composites.    

Notably, the Working Memory Span and Verbal/Nonverbal reasoning factors used 

the same measures for both models.  Comparing the READ and MATH models, the 

correlations between Working Memory Span and automatic RAN/Words and automatic 

RAN/Facts were r = .44 and r = .41, respectively.  The correlation between automatic 

RAN/Words and Phonological Processing was r = .65.  The correlation between automatic 

RAN/Facts and Algorithmic Processing was r = .77.  These findings support the hypothesis 

that Phonological Processing relied on the automatic visual/orthographic retrieval route (e.g., 
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automatic RAN/Words), and Algorithmic Processing relied on the automatic visual/fact 

retrieval route (e.g., automatic RAN/Facts).  The correlations between working memory span 

and phonological processing, and working memory span and algorithmic processing were r = 

.86 and r = .37, respectively.  This raises the question as to whether working memory span 

contributes differently to phonological and algorithmic processing.  This question requires 

further investigation.  

The findings from the READ and MATH models also support the hypothesis that 

verbal/nonverbal reasoning works in partnership with automatic visual/orthographic and 

visual/fact routes, working memory span, and phonological and algorithmic processes.  The 

correlations between verbal/nonverbal reasoning and automatic RAN/ Words and RAN/Facts 

were r = .56 and r = .61, respectively.  The correlations between working memory span and 

verbal/nonverbal reasoning were r = .45 and r = .54, respectively.  The correlations between 

verbal/nonverbal reasoning and phonological processing and algorithmic processing were r = 

.69 and r = .81.  Whether cognitive processes, such as verbal/nonverbal reasoning, contribute 

differently to phonological and algorithmic processing requires further investigation. 

The four factor READ and MATH SEM models were validated, showing best fit and 

significant unique (i.e., significant latent variables) and significant shared variance (i.e., 

intercorrelations in Table 11 and 12).  These findings support the proposed READ and 

MATH system framework; the theoretically-derived automatic processing, working memory, 

and verbal/nonverbal fluid reasoning factors within the READ and MATH systems work 

uniquely and in collaboration.  It is proposed that this significant collaboration among all 

partners/factors involves an attempt of the system to increase the storage capacity, accuracy, 

fluency, and overall efficiency of the system.   
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PART III 

Procedure 

Predicting Achievement with the READ and MATH Factors for Each Group   

For each of the four groups, each of the WJ-III achievement tests (LWID, WA, 

Calculation, Applied Problems, and Math Fluency) were used as predicted variables and the 

four composites from the Reading and then the Math structural equation models were entered 

separately into stepwise regression equations (e.g., with LWID as the predictor variable for 

the READ model composites: LWID = Automatic RAN/ Words + Phonological Processing + 

Working Memory Span + WASI IQ; and using the MATH model composites: LWID = 

Automatic RAN/ Facts + Algorithmic Processing + Working Memory Span + WASI IQ).   

This method was designed to test the main hypothesis that the underlying cognitive processes 

of automatic (RAN/ and words or facts), phonological or algorithmic processing, working 

memory span and IQ are employed, both uniquely and in partnership, to read words and 

solve math calculations that are familiar and those that are unfamiliar.  Thus, one or more of 

the READ model or MATH model cognitive process/composite(s) was anticipated to predict 

a significant amount of variance in each of the WJ-III reading and math predictor variables.  

It was anticipated that the amount of variance accounted for by each composite (i.e., 

cognitive process) would vary in its predictability, depending on each group’s achievement 

(i.e., ceiling level) on the WJ-III test that was being predicted, and depending on each 

group’s cognitive strengths and weaknesses. 

Results 

Results of the regression analyses for each achievement test are shown below.    
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Table 13.   

Stepwise Multiple Regression Analyses Predicting Letter Word Identification (LWID) using 

the Four Latent Measures from the READ and MATH Structural Equation Models (SEM) 

SEM Group Model R² R² Change F p df 

READ ND  

N=71 

1: Automatic 

(RAN/Words) 

2: WASI VIQ/PIQ 

  .32 

 

.39 

.32 

 

.07 

33.05 

 

22.40 

.000 

 

.000 

1,70 

 

2,69 

 RD  

N=35 

1: Automatic 

(RAN/Words) 

.58 .58 46.67 .000 1,34 

 MD  

N=64 

1: Phonological Processing 

2: Automatic 

(RAN/Words) 

.40 

.44 

.40 

.04 

41.79 

24.36 

.000 

.000 

1,63 

2,62 

 RD+MD  

N=49 

1: Automatic 

(RAN/Words) 

2: Phonological Processing 

.67 

 

.76 

.67 

 

.09 

95.67 

 

73.28 

.000 

 

.000 

1,48 

 

2,47 

MATH  ND  

N=71 

1: Algorithmic Processing .39 .39 45.45 .000 1,70 

 RD N=35 -------------------     1,34 

 MD  

N=64 

1: Working Memory 

Span  

.18 .18 13.51 .000 1,63 

 RD+MD  

N=49 

1: Automatic (RAN/Facts) 

2: Working Memory Span  

.52 

.56 

.52 

.04 

51.52 

29.96 

.000 

.000 

1,48 

2,47 
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READ model predicting LWID.   As seen in Table 13, within the ND group the 

Automatic composite accounted for 32% of the variance when predicting LWID with the 

WASI VIQ/PIQ accounting for 7% more for a total of 39%.   For the RD group, the 

Automatic composite accounted for 58% of the variance when predicting LWID 

performance.  For the MD group, the Phonological Processing Composite accounted for 40% 

of the variance when predicting LWID with the Automatic composite accounting for another 

4% for a total of 44%.  For the RD+MD group, the Automatic composite accounted for 67% 

of the variance of LWID, with the Working Memory composite contributing 9% more, for a 

total of 76%. 

MATH model predicting LWID.  As seen in Table 13, within the ND group, the 

Algorithmic Processing composite accounted for 39% of the variance when predicting 

LWID.  For the RD group, none of the four math composites (Automatic, Algorithmic 

Processing, Working Memory, or WASI) predicted LWID.  For the MD group, the Working 

Memory Composite accounted for 18% of the variance when predicting LWID.  For the 

RD+MD group, the Automatic composite accounted for 52% of the variance of LWID, with 

the Working Memory composite contributing 4% more, for a total of 56%. 
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Table 14. 

Stepwise Multiple Regression Analyses for Word Attack using the Four Latent Measures 

from the READ and MATH Structural Equation Models (SEM) 

SEM Group Model R²  R² Change F p df 

READ ND  

N=71 

1: Phonological Processing .23 .23 20.47 .000 1,70

 RD  

N=35 

1: Automatic 

(RAN & Words) 

.31 .31 14.95 .000 1,34

 MD  

N=64 

1: Automatic 

(RAN & Words) 

.33 .33 31.22 .000 1,63

 RD+MD  

N=49 

1: Phonological Processing .52 .52 52.39 .000 1,48

MATH  ND  

N=71 

1: WASI VIQ/PIQ .13 .13 10.35 .002 1,70

 
RD  

N=35 

1: Algorithmic Processing .11 .11 4.33 .05 1,34

 
MD  

N=64 

1: Automatic (RAN & Facts) .19 .19 14.45 .000 1,63

 
RD+MD 

N=49 

1: Working Memory Span 

(Digit & Letter Span) 

.32 .32 22.57 .000 1,48
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READ model Predicting WA.   As seen in Table 14, within the ND group, the 

Phonological Processing composite accounted for 23% of the variance when predicting WA.  

For the RD group, the Automatic/Words composite accounted for 31% of the variance when 

predicting WA performance.  For the MD group, the Automatic Composite accounted for 

33% of the variances when predicting WA.  For the RD+MD, the Phonological Processing 

composite accounted for 52% of the variance when predicting WA. 

MATH model predicting WA.  As seen in Table 14, within the ND group, the WASI 

VIQ/PIQ composite accounted for 13% of the variance when predicting WA.  For the RD 

group, the Algorithmic Processing accounted for 11% of the variance when predicting WA.  

For the MD group, the Automatic composite accounted for 19% of the variance when 

predicting WA.  For the RD+MD group, the Working Memory composite accounted for 32% 

of the variance when predicting WA.   
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Table 15. 

Stepwise Multiple Regression Analyses for Math Fluency using the Four Latent Measures 

from the READ and MATH Structural Equation Models (SEM) 

Model Group Model R² R² Change F p df 

READ ND  

N=71 

1: Automatic (RAN/Words) .37 .37 41.51 .000 1,70

 RD  

N=35 

1: Automatic (RAN/Words) .44 .44 27.21 .000 1,34

 MD  

N=64 

1: Automatic (RAN/Words) .37 .37 36.98 .000 1,63

 RD+MD  

N=49 

1: Automatic (RAN/Words) 

2: Phonological Processing 

.50 

.57

.50 

.07 

48.22 

31.59 

.000

.000

1,48 

2,47

MATH  ND  

N=71 

1: Automatic (RAN/Facts) .66 .66 138.35 .000 1,70

 RD  

N=35 

1: Automatic (RAN/Facts) 

2: Working Memory 

(Digit & Letter Span) 

.47 

 

.55

.47 

 

.08 

30.27 

 

5.8 

.000

 

.000

1,34 

 

2,33

 MD  

N=64 

1: Automatic (RAN/Facts) .56 .56 78.86 .000 1,63

 RD+MD  

N=49 

1: Automatic (RAN/Facts) .83 .83 239.05 .000 1,48
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READ model predicting Math Fluency. As seen in Table 15, within the ND group, the 

Automatic (RAN/words) composite accounted for 37% of the variance when predicting Math 

Fluency.  For the RD group, the Automatic (RAN/words) composite accounted for 44% of 

the variance when predicting Math Fluency.  For the MD group, the Automatic (RAN/words) 

composite accounted for 37% of the variance when predicting Math Fluency.  For the 

RD+MD, the Automatic (RAN/words) composite accounted for 50% of the variance, and 

Phonological Processing accounted for an additional 7% of the variance when predicting 

Math Fluency. 

 MATH model predicting Math Fluency.  As seen in Table 15, within the ND group, 

the Automatic (RAN/facts) composite accounted for 66% of the variance when predicting 

Math Fluency.  For the RD group, the Automatic (RAN/facts) composite accounted for 47% 

of the variance, with Working Memory accounting for an additional 8%; for a total of 55% 

when predicting Math Fluency.  For the MD group, the Automatic (RAN/facts) composite 

accounted for 56% of the variance when predicting Math Fluency.  For the RD+MD group, 

the Automatic (RAN/facts) composite accounted for 83% of the variance when predicting 

Math Fluency. 
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Table 16. 

Stepwise Multiple Regression Analyses for Calculation using the Four Latent Measures from the 

READ and MATH Structural Equation Models (SEM) 

SEM Group Model R² R² Change F p df 

READ ND  

N=71 

1: WASI VIQ/PIQ  

2: Automatic 

(RAN & Words) 

.30

 

.37

.30 

 

.07 

30.62 

 

20.39 

.000 

 

.000 

1,70 

 

2,69 

 RD N=35 -------------------    .000 1,34 

 MD  

N=64 

1: WASI VIQ/PIQ  .18 .18 13.80 .000 1,63 

 RD+MD  

N=49 

1: WASI VIQ/PIQ 

2: Automatic 

(RAN & Words) 

.27

.35

.27 

.08 

17.63 

12.28 

.000 

.000 

1,48 

2,47 

MATH  ND  

N=71 

1: Algorithmic Processing .61 .61 107.08 .000 1,70 

 RD N=35 1: Algorithmic Processing .60 .60 50.19 .000 1,34 

 MD N=64 1: WASI VIQ/PIQ .22 .22 17.65 .000 1,63 

 RD+MD  

N=49 

1: Algorithmic Processing 

2: WASI VIQ/PIQ  

3: Automatic 

(RAN & Facts) 

.58

.64

.68

.58 

.07 

.04 

67.42 

43.89 

34.44 

.000 

.000 

.000 

1,48 

2,47 

3,46 
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READ model predicting Calculation.  As seen in Table 16, within the ND group, the 

WASI VIQ/PIQ composite accounted for 30% of the variance with the Automatic composite 

accounting for a further 7% for a total of 37% when predicting Calculation.  For the RD 

group, none of the 4 READ composites predicted the RD groups’ scores on Calculation.  For 

the MD group, the WASI VIQ/PIQ composite accounted for 18% of the variance when 

predicting Calculation. For the RD+MD group, the WASI VIQ/PIQ composite accounted for 

27% of the variance, with another 8% being accounted for by the Automatic composite, for a 

total of 35% when predicting Calculation. 

MATH model predicting Calculation.  As seen in Table 16, within the ND group, the 

Algorithmic Processing composite accounted for 61% of the variance when predicting 

Calculation.  For the RD group, the Algorithmic Processing accounted for 60% of the 

variance when predicting Calculation.  For the MD group, the WASI VIQ/PIQ composite 

accounted for 22% of the variance when predicting Calculation.  For the RD+MD group, the 

Algorithmic Processing composite accounted for 58% of the variance, with the WASI 

VIQ/PIQ composite predicting an additional 7%, and Automatic a final 4%, for a total of 

68% of the variance. 
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Table 17. 

Stepwise Multiple Regression Analyses for Applied Problems using the Four Latent Measures 

from the READ and MATH Structural Equation Models (SEM) 

SEM Group Model R² R² Change F p df 

READ ND  

N=71 

1: WASI VIQ/PIQ .34 .34 36.17 .000 1,70 

 RD  

N=35 

1: WASI VIQ/PIQ .22 .22 9.30 .000 1,34 

 MD  

N=64 

1: WASI VIQ/PIQ .43 .43 46.77 .000 1,63 

 RD+MD  

N=49 

1: WASI VIQ/PIQ 

2: Automatic 

(RAN & Words) 

.55 

.63 

.55 

.07 

61.31 

40.23 

.000 

.000 

1,48 

2,47 

MATH  ND  

N=71 

1: WASI VIQ/PIQ 

2: Algorithmic 

Processing 

.65 

.68 

.65 

.03 

130.62 

72.38 

.000 

.000 

1,70 

2,69 

 RD  

N=35 

1: Algorithm 

Processing 

.34 .34 17.25 .000 1,34 

 MD  

N=64 

1: WASI VIQ/PIQ .45 .45 52.35 .000 1,63 

 RD+MD  

N=49 

1:WASI VIQ/PIQ 

2: Automatic (RAN & 

Facts) 

.69 

.74 

.69 

.05 

108.09 

66.19 

.000 

.000 

1,48 

2,47 
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READ model predicting Applied Problems.   As seen in Table 17, within the ND 

group, the WASI VIQ/PIQ composite accounted for 34% of the variance when predicting 

Applied Problems.  For the RD group, the WASI VIQ/PIQ composite accounted for 22% of 

the variance when predicting Applied Problems.  For the MD group, the WASI VIQ/PIQ 

Composite accounted for 43% of the variance when predicting Applied Problems.  For the 

RD+MD group, the WASI VIQ/PIQ composite accounted for 55% of the variance, with 

another 7% being accounted for by the Automatic composite, for a total of 63% when 

predicting Applied Problems.  

MATH model predicting Applied Problems.  As seen in Table 17, for the ND group, 

the WASI VIQ/PIQ composite accounted for 65% of the variance when predicting Applied 

Problems, with the Algorithmic Processing composite accounting for an additional 3%, for a 

total of 68%.  For the RD group, the Algorithmic Processing composite accounted for 34% of 

the variance when predicting Applied Problems.  For the MD group, the WASI VIQ/PIQ 

composite accounted for 45% of the variance when predicting Applied Problems.  For the 

RD+MD group, the WASI VIQ/PIQ composite accounted for 69% of the variance, with the 

Automatic composite predicting an additional 5%, for a total of 74% of the variance 

accounted for. 

Discussion 

In the third part of the present research, it was hoped that each achievement task 

could be drawn on the right of each SEM model as a predictor variable, with arrows coming 

from each composite, in order to measure the unique and shared variance that the composites 

in each of the READ and MATH models contributed when predicting each of the two 

reading achievement tasks (e.g., LWID and WA) and each of the three math achievement 
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tasks (e.g., Math Fluency, Calculation, and Applied Problems).  However, due to the 

relatively small sample size of each group this type of analysis could not be pursued.   

Instead regression equations were designed to investigate the underlying cognitive 

processes, represented by the composites in the READ and MATH models that best predicted 

the performance of the groups on each of the reading and math achievement measures.  By 

using regression analysis instead of SEM analysis, the contributing covariance of the four 

factors in each of the READ and MATH models, when predicting reading and math 

achievement, was sacrificed.  However, it was anticipated that by using a stepwise regression 

approach, that the main cognitive processes (i.e., predictor(s)) that significantly comprised 

each regression equation could be explained by both the different reading and math 

achievement levels and the cognitive strength and weakness profiles of each group.  This 

would offer important information about what cognitive processes/routes were being 

employed by students with ND, RD, MD or RD+MD on the reading and math achievement 

tests.    

It is acknowledged that there was variance in each regression equation that was 

unaccounted for by the current four READ and MATH model factors.  This caveat applies to 

all groups, but especially the RD group which had the lowest number of participants in this 

study (N = 36).  

Predicting Reading Achievement (LWID and WA) 

Good readers (ND and MD Groups). Based on the regression equations run for 

LWID and WA, using the four factor READ composites, the ND group appeared to rely on 

their solidly accurate and fast automatic visual/orthographic route (32%) and 

verbal/nonverbal reasoning (7%) to read words on LWID.  These data provide further 
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support for the ND group’s efficient automatic visual/orthographic route.  They also 

employed solid phonological processing accuracy (23%) to decode nonwords on WA.  Using 

the MATH factors, for the ND group, automatic RAN/Facts did not predict LWID, rather, the 

more advanced/challenging cognitive process, algorithmic processing accuracy (39%), 

predicted the main variance in LWID and none of the variance in WA.  Verbal/nonverbal 

reasoning (13%) however, predicted decoding nonwords on WA for this ‘good-at everything’ 

group.   

These findings suggest that the ND group tapped a more advanced store of automatic 

visual/orthographic information to achieve superior scores on LWID to the poor readers (RD 

and RD+MD).  The MATH factors, automatic RAN/Facts or algorithmic processing, did not 

predict WA, but phonological processing did when the READ factors were used.  This 

suggests that accurate phonological processing strategies are imperative for good decoding 

and that it is also a unique process specific to reading—a process that may require higher 

order verbal/nonverbal reasoning particularly to decode more complex nonwords.   

MD group.  Relative to the ND group, the MD group included similarly good readers 

with age-appropriate automatic visual/orthographic retrieval and phonological processing.  

However, MD children were weaker than the ND group in their working memory span for 

digits, Math Fluency, automatic visual/fact retrieval (for all facts), and they had less accurate 

algorithmic processing.  Thus, contributing factors in the prediction of reading were 

anticipated to be somewhat different in composition compared to the ‘good-at-everything’ 

good readers (ND group).   

For words in LWID, the MD good reader group relied on accurate phonological 

processing (40%) and then automatic RAN/Words (4%); an opposite pattern to the ND 
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group.  Unlike the ND good readers, the MD group did not appear to use automatic 

visual/orthographic retrieval and instead had to decode these regular words to read as well as 

the ND group.  This pattern might imply some taxation of working memory span for the MD 

good readers.  Compared to the ND good readers, verbal/nonverbal reasoning was not 

entered when predicting LWID.  Again unlike the ND group, the MD good readers relied on 

automatic RAN/Words (33%) for decoding nonwords on WA; to the ND group appeared to 

rely more on phonological processing accuracy.  This suggests that the two good reader 

groups (ND and MD) relied on different stores and access routes to reach relatively similar 

scores on LWID and WA.  

 Using the MATH factors to predict LWID, working memory (18%) was the main 

predictive variable for the MD good readers, again suggesting that LWID was not an entirely 

automatic task for the MD group and required more effortful processing than for the ND 

group who relied more on accurate processing (i.e., algorithmic processing).  When using the 

MATH factors to predict WA, automatic RAN/Facts (19%) predicted WA.  Evidence of 

access to the automatic visual/orthographic and visual/fact routes for decoding, suggests that 

it may not be as ‘clean’ a process as it was for the ND good readers.   

Poor readers (RD and RD+MD groups).  When interpreting the regression equations, 

it is important to recall the achievement and cognitive profile of the RD group.  The RD 

group was weaker than the good reader groups (ND and MD) in their automatic 

visual/orthographic route (e.g., less automatic RAN letter accuracy and RAN letter and digit 

naming speed, less automatic Benchmark and Exception word retrieval), visual/fact route 

(for more advanced multiplication facts), phonological processing, and working memory 

span for letters and digits.  Compared to the MD group, they had similarly weak Math 
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Fluency, better math fact retrieval (for addition and subtraction facts), and better algorithmic 

processing. 

When predicting their poor performance on LWID using factors from the READ 

model, their much weaker visual/orthographic automaticity (i.e., accuracy and speed) for 

RAN/ Words predicted 58% of the variance of LWID.  This finding suggests that compared 

to the good readers, the RD poor readers relied on a limited automatic visual/orthographic 

route to read words on LWID.  They may not have applied much, if any, phonological 

processing compared to the good reader groups (ND and MD).  Notably none of the MATH 

factors predicted LWID for this group.  The RD group had a very weak visual/orthographic 

route with weak RAN and automatic word retrieval. In contrast, they had a better established 

visual/fact route for addition and subtraction facts (which made up the Automatic RAN/Facts 

composite) with weaker RAN - both in the Automatic RAN/Facts composite.  Generally the 

automatic visual/orthographic route appeared to be weaker than the automatic visual/facts 

route for the RD poor readers.  This maybe why the Automatic RAN/Facts did not predict 

weaker word reading and/or that automatic visual/orthographic words and visual/facts might 

be stored and/or accessed from separate sites for the RD group.   

While the RD and ND groups did not have significantly different algorithmic 

processing, both showing age-appropriate performance, the accurate algorithmic processing 

composite predicted the better LWID performance of the ND group, and it did not predict the 

poorer LWID performance of the RD group.  The ND group was much more accurate than 

the RD group on this test.  When predicting WA, the main predictor for the RD group was 

their less automatic RAN/Words (31%), further supporting speculation that the RD children 

employed a weaker automatic visual/orthographic route to decode nonwords, the RD group 
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did not employ more advanced phonological processing like the MD good readers or higher 

order reasoning like the ND good readers.   

For the RD group, the algorithmic processing accuracy factor accounted for 

significant but relatively less variance (11%) when predicting WA.  This would suggest some 

level of processing for the RD group when decoding.  Again, it must be acknowledged that 

the RD group had fewer participants; with more RD children, a different or similar pattern, 

with smaller or larger variance accounted for, may have been found.   

RD+MD group.  The RD+MD group were ‘weak- at- everything’ readers, with an 

amalgamation of RD and MD deficits.  Their extremely slow and limited automatic 

RAN/Words accounted for 67% of the variance of LWID, with their weaker working 

memory contributing 9% more, for a total of 76% of the variance accounted for.  The 

RD+MD group had a very weak automatic visual/orthographic route from which to retrieve 

words.  Working memory span also entered into the regression equation for the comorbid 

RD+MD group, suggesting that they required working memory span to read unfamiliar 

words possibly to break apart words and hold them online.  Compared to the ND and MD 

good readers, they did not appear to employ higher order reasoning or phonological 

processing.  Compared to the RD group, the automatic visual/orthographic route of the 

RD+MD group appeared to be more severely compromised in that they relied upon working 

memory span to hold word parts for words and nonwords online.   

When the MATH factors were entered, very weak automatic RAN/Facts (52%) and 

working memory span (4%) predicted LWID for the comorbid RD+MD group.  For the RD 

weak readers, none of the MATH factors predicted their poorer LWID, although they did rely 

on their weaker working memory span to read unfamiliar words.  The RD+MD group had 
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severely compromised automatic visual/orthographic and visual/fact routes.  This might 

explain why automatic RAN/Facts predicted LWID for them.  There may be overlap 

(possibly functional neurobiological) in their weaker automatic visual/orthographic and 

visual/fact retrieval routes for RAN, sight words, and math fact stores, a possibility that 

requires further exploration.       

 For WA, the RD+MD group tapped their deficient phonological processing skills 

(52%) when attempting to decode nonwords, and not their weaker automatic 

visual/orthographic route as the RD poor readers did.  This suggests that this was a more 

labor-intensive task for them.  Similarly, when the MATH factors were used to predict WA, 

their limited working memory span (32%) was tapped, suggesting that they were attempting 

to hold parts of basic nonwords online – nonwords that the better readers could retrieve very 

easily through an automatic visual/orthographic route (ND group) or by employing more 

advanced phonological processing (MD group).  

Predicting Math Fluency 

 It is important to acknowledge that Math Fluency is a very basic single digit addition, 

subtraction, and multiplication (depending on the ceiling) time-limited task that allows the 

use of paper and pencil.  It should also be noted that math facts (easy and difficult addition 

and subtraction per sec.) made up part of the automatic RAN/fact factor in the MATH model.  

 Good readers (ND and MD groups). For the ND group, using the four READ factors, 

automatic RAN/Words (37%) predicted Math Fluency.  Using the four MATH factors, 

automatic RAN/Facts (66%) predicted Math Fluency.  For the MD group, using the READ 

factors, automatic RAN/Words factor (37%) was the main predictor of Math Fluency.  Using 

the MATH factors, automaticity RAN/Facts (57%) was the main predictor.  It is speculated 
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that an overlap in RAN/Words and RAN/Facts, or the automatic visual/orthographic and 

visual/fact routes may be similar for the good readers for very basic, solidly automatic, visual 

information (e.g., RAN, single digit math facts, and familiar words).      

Poor readers (RD and RD+MD groups). For the RD group, using the READ factors, 

automatic RAN/Words (44%) predicted Math Fluency.  Using the four MATH factors, 

automatic RAN/Facts (47%) and working memory span (8%) predicted Math Fluency.  For 

the RD+MD group, using the READ factors, automatic RAN/Words (50%) predicted Math 

Fluency.  Using the MATH factors, the automatic RAN/Facts (83%) predicted Math Fluency.  

For the poor readers, it is proposed that there may be substantial overlap in RAN/Words and 

RAN/Facts, or the weak automatic visual/orthographic and relatively weaker visual/fact 

routes.  For the poor readers, especially the comorbid RD+MD group, very basic visual 

information (e.g., RAN, some single digit math facts, and unfamiliar words) appears to be 

faulty. 

Predicting Calculation 

 Good mathematicians (ND and RD group). For the ND group, using the READ 

factors, solid Verbal/Nonverbal reasoning (30%) and highly Automatic RAN/Words (7%) 

predicted Calculation.  Using the MATH factors, highly accurate Algorithmic Processing 

(61%) predicted Calculation.  For the RD group, none of the READ composites predicted the 

RD group’s score on Calculation; the Verbal/Nonverbal reasoning factor did not enter the 

regression equation.  Earlier, when reading achievement was predicted, the ND group also 

applied Verbal/Nonverbal Reasoning to read words in contrast to the RD group.  Using the 

MATH factors, Algorithmic Processing (60%) was the main unique predictor, suggesting 
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that good mathematicians relied on this accurate process, regardless of their reading 

achievement. 

 Poor mathematicians (MD and RD+MD group).  For the MD group, using the READ 

factors, Verbal/Nonverbal reasoning (18%) was the main predictor of Calculation skill – 

suggesting that automatic visual/orthographic and phonological processes may not have been 

employed systematically by this group.  Using the MATH factors, Verbal/Nonverbal 

reasoning (22%) was the main significant predictor again.  It is notable that Algorithmic 

Processing, a process for which this group was very weak, was not a predictor as it was for 

the good mathematicians (ND and RD groups).  For the comorbid RD+MD group, using the 

READ factors Verbal/Nonverbal reasoning (27%) was also a main predictor of Calculation, 

along with weak Automatic RAN/Words (8%).  Of the four groups, the RD+MD group’s 

Verbal/Nonverbal reasoning was relatively lower, their RAN was slower than the ND and 

MD groups, and their math facts were the weakest.  Using the MATH factors, weak 

Algorithmic Processing (58%), Verbal/Nonverbal reasoning (7%) and weak Automatic 

(RAN/Facts) (4%) were the significant predictors, all processes on which the RD+MD group 

were inferior to the ND, RD, and MD groups. 

Predicting Applied Problems 

 Good mathematicians (ND and RD group). For the ND group, using the READ 

model, Verbal/Nonverbal reasoning (34%) predicted Applied Problems, similar to 

Calculation.  Using the MATH factors, the Verbal/Nonverbal reasoning composite (65%), 

and Algorithmic Processing composite (3%), predicted Applied Problems.  For the RD 

group, using the READ factors, Verbal/Nonverbal reasoning (22%) predicted Applied 
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Problems.  Using the MATH factors, Algorithmic Processing (34%) predicted Applied 

Problems, similar to Calculation. 

 Poor mathematicians (MD and RD+MD group). For the MD group, using the READ 

factors, Verbal/Nonverbal reasoning (43%) predicted Applied Problems.  Using the MATH 

factors, Verbal/Nonverbal reasoning (45%) again predicted Applied Problems.  Similar to 

Calculation, Algorithmic Processing (on which this group performed below age level) did not 

predict Applied Problems as it did for the good mathematicians.  For the comorbid RD+MD, 

using the READ factors, relatively weaker Verbal/Nonverbal reasoning (55%) and weaker 

Automatic RAN/Words (8%) predicted Applied Problems.  Using the MATH factors, 

relatively weaker Verbal/Nonverbal reasoning (69%) and significantly weaker Automatic 

RAN/Facts (5%) predicted Applied Problems.  This group had the most compromised 

automatic visual/orthographic route, working memory, and phonological and algorithmic 

processing.   They also performed at the lowest levels on this Applied Problems task.   
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GENERAL DISCUSSION 

Part 1 

Group Profiles 

The first part of this study assessed the specific areas of cognitive strength and 

weakness that are associated with good reading and math skills (ND), single reading (RD) 

and math disabilities (MD), and comorbid reading and math disabilities (RD+MD).  Each 

group exhibited unique performance profiles across measures representing automatic 

visual/orthographic and visual/fact routes, working memory span, phonological and 

algorithmic processing, and IQ or nonverbal/verbal reasoning factors.  These cognitive 

profiles enhanced our understanding of the cognitive strength and weakness patterns 

associated with good reading and math achievement, single reading or math disabilities, and 

comorbid learning disabilities.   

Good reader and good mathematician profiles (ND Group). Overall, the good readers 

and mathematicians showed solid performance on all tasks, suggesting intact automatic 

visual/orthographic and automatic visual/fact retrieval routes, solid working memory span 

capacity, phonological and algorithmic processing accuracy, and solid verbal/nonverbal 

reasoning.  This group’s solid performance across all tasks allowed profiling of the single 

and comorbid disability groups and provided a reference for statistical comparison of 

cognitive strengths and weaknesses.   

Single disability group profiles (RD and MD groups). In terms of their automatic 

visual routes, the single disability groups showed unique deficits, in comparison to each other 

and relative to the comorbid group.  The single RD group demonstrated deficits in their 

automatic visual/orthographic retrieval, Math Fluency, and in their easy multiplication facts 
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and difficult subtraction facts requiring working memory processing.  The single MD group 

showed solid visual/orthographic retrieval with a significant deficit in their Math Fluency, 

and automatic visual/fact retrieval for all operations.  The automatic visual/orthographic 

route deficit appeared unique to the RD group and the severity of the automatic visual/fact 

route deficit was unique to the MD group; the MD children showed weaker automaticity 

across all math facts.  Notably, the RD group showed some overlap in their automatic visual 

route retrieval; they had weaker Math Fluency and weaker aspects of the visual/fact route as 

well.     

In terms of working memory span, the RD group’s working memory span was just as 

weak as the MD group’s for digit span; however, their letter span was weaker than the ND 

and the MD group (who had similarly good letter span).  Again, the single MD group’s 

automatic retrieval deficit appeared unique to digits, whereas the RD group’s overlapped 

with weaknesses demonstrated on RAN letters and digits and working memory span for 

letters and digits.  There appeared to be a more specific profile of processing deficit in that 

the RD group showed poor phonological processing with good algorithmic processing, while 

the MD group exhibited good phonological processing and poor algorithmic processing.   

The two single disability groups showed similarly average verbal and nonverbal reasoning 

abilities.   

Comorbid learning disability group profile (RD+MD group). Assessing the severity 

of deficits in the comorbid RD+MD group was also a main focus of this study.  This group 

had a similarly weak automatic visual/orthographic route to the single RD group, and a 

significantly weaker visual/fact route than the single MD group.  The comorbid group had 

weaker working memory span (for letters and digits) than the single disability groups.  They 
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showed similarly weak phonological processing to the RD group, with weaker algorithmic 

processing (for subtraction, multiplication, and division) than the MD group.  They appeared 

to demonstrate a more severe general deficit in visual route retrieval; their automatic 

visual/orthographic route was just as weak as the RD group, and their automatic visual/fact 

route was more severely compromised than the MD groups.   

Overall, the RD+MD cognitive profile suggests that more severe deficits in the visual 

route and working memory system further impact their ability to store and automatically 

retrieve familiar word and fact information and hold it in working memory.  Weaker 

phonological and algorithmic processing further impedes the comorbid group’s word reading 

and solving of calculations.  Although the RD group had broader deficits than the MD group 

that overlapped into the math domain (e.g., RAN digits, working memory span for digits, 

visual/fact difficulties for subtraction and multiplication, and poor Math Fluency), the 

comorbid group had the broadest deficits and were the most disabled across all underlying 

cognitive processes related to reading and math achievement. 

Clinical Application and Future fMRI Research using Group Profiles 

 Fuchs et. al. (2006b) suggested more research into the nature of the academic and 

cognitive correlates areas of different math skill (e.g., ND, MD, and RD+MD).  This study 

addressed this issue by specifying the type of learning disability (MD versus RD+MD) and 

the achievement test used to identify the groups (e.g., Calculation); allowing for future cross-

validation studies.  While generalization of these results to clinical issues requires 

appropriate caution, this type of cognitive profiling could provide psychologists with a 

functional analysis of cognitive strength and weakness, and information about potential 

overlap of cognitive processing deficits in single and comorbid reading and math disabilities.  
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Areas of need can then be better defined and targeted for special educational programming; 

skills can be observed, measured, and potentially linked to improvements in curriculum-

based achievement.   

fMRI research could be pursued in the future to investigate the potential separation or 

overlap of functional neurobiological systems subserving reading and math development.  

For example, the angular gyrus has been associated with integrating automatic word and 

phonological processing (Fletcher, Simos, Papanicolaou, and Denton, 2004).  Does it also 

assist with retrieving automatic math facts (DeHaene et al., 1999; Stanescu-Cosson et al., 

2000) and integrating algorithmic/calculation processing? 

Given the apparent genetic overlap in linkage findings for reading and math 

disabilities (Kovas, Harlaar, Petrill, & Plomin, 2005) and potential for cognitive and 

functional neurobiological profiling, early at-risk assessment tools and early intervention 

strategies might also be developed to improve outcomes for children with these learning 

disorders.   

Part II 

Structural equation READ and MATH models 

The good and poor readers and/or mathematicians were characterized across a range 

of cognitive measures that clustered into theoretically-derived a priori factors.  Within each 

of the READ and MATH SEM models, two of the four factors in each model were Working 

Memory Span (e.g., Letters and Digits Total) and Verbal/Nonverbal Reasoning (e.g., 

Vocabulary, Similarities, Block Design, and Matrix Reasoning).  A third Automatic factor 

(i.e., accuracy and fluency) was placed in each model and it was representative of a 

visual/orthographic retrieval route in the READ model and a visual/fact route in the MATH 
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model.  The fourth Processing factor in each model was representative of Phonological 

Processing in the READ model and Algorithmic Processing in the MATH model. The results 

of the four factor READ and MATH models confirmed that each factor in each model was 

significantly representative of common measurement variance, and that the shared variance 

between each of the four factors in each model was also significant – representing a strong 

partnership between each of the four factors. 

Confirmation was found for the second goal proposing a READ and MATH cognitive 

processing system based on research from the cognitive functional neurobiological literature 

on children with and without reading and/or math learning disabilities.  It was proposed that 

this system includes an automatic visual route (orthographic or fact) a common cognitive 

process underlying reading and math acquisition, requiring the ability to rapidly identify the 

sound or name associated with visual information (e.g., familiar letters, digits, words, and 

math facts).  When words and facts are unfamiliar or not automatically identifiable as whole 

forms, more advanced processing – such as phonological processing (awareness and 

decoding) and algorithmic processing (calculation and procedure) are employed.   

These higher order processes first capitalize on what part of the word or fact has been 

automatically identified.  Then working memory span can apply verbal rehearsal and/or 

visualization strategies to keep the familiar and unfamiliar parts ‘online’ in a working order.  

The more automatically information is identified (e.g., immediately reading a whole word 

form, or identifying the solution to a math fact), the more capacity the working memory 

system has for processing.  The capacity of working memory span places limits on the 

amount the higher-order processes can simultaneously keep online to ‘work on.’   Verbal and 

nonverbal reasoning can also be employed to enhance problem-solving, and both of the SEM 
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models confirmed that these are vital partners that are also significantly intercorrelated with 

automatic, working memory span, and processing factors.    

These findings stress the importance of developing theoretical models that map onto 

our understanding of how the brain operates as a neurological system that can be associated 

with underlying cognitive processing profiles associated with reading and/or math learning 

disabilities.  These findings signal a need for assessments that not only look at the impact of 

independent cognitive processing deficits and their relation to academic skill, but also 

address the influence of one faulty cognitive process on the system and its collaborative 

effect on academic skill.  These findings also stress the importance of continuing to evaluate 

the role of IQ, as measuring specific cognitive processes, and investigating their role as such 

in learning disabilities.  These cognitive processes (e.g., vocabulary and verbal/nonverbal 

reasoning) appear to ‘work’ uniquely and in collaboration with other vital automatic, 

processing, and working memory processes underlying reading and math acquisition.  This 

observation offers a different perspective on the role of IQ in the assessment of reading and 

math disabilities, one that requires more refined investigation.    

Part III 

Regression Analyses 

 With the statistical advantage of sequestering error variance in the SEM models, the 

conceptual advantage to developing the READ and MATH models was that they provided 

solid theoretically-derived factors representing common measurement variance for 

automatic, working memory span, processing, and IQ or verbal/nonverbal reasoning.  The 

third part of the study used stepwise regression to explore the extent to which each of these 

composites/cognitive processes predicted each group’s performance on reading and math 
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achievement tests.  The findings enlightened our understanding of what cognitive processes 

(strong or weak) might contribute to each group’s achievement, again allowing potential 

identification of cognitive processes that may require remediation.   

 While there may appear to be many stepwise regression equations that were run, the F 

value for all of the equations reached significance at a p < .01 level, indicating extremely 

strong and reliable results.  While it may be argued that an Enter method could have been 

used to get a more valid estimate of the total variance accounted for by one or more of the 

composites, this method also runs the risk of entering in a second factor due simply to its’ 

significant correlation with the first; it may be that the second factor does not necessarily 

account for more unique variance.  As an example, using the Enter method, Automatic 

(RAN/Words) and Phonological Processing might enter into the regression equation together 

and account for 50% of the total variance in LWID, when stepwise regression showed that 

Automatic (RAN//Words) accounted for 46% of the variance and Phonological Processing 

accounted for 4%.  Using the Enter method in this particular example, Phonological 

Processing entered the equation with Automatic (RAN/Words) due to their high correlation.  

The READ and MATH SEMs already confirmed that the intercorrelations between each of 

the composites were highly significant.  The main goal was not to predict as much variance 

as possible by using an Enter method, but to group variables into valid composites to explore 

which composite/cognitive process predicted the achievement level for each group, and in 

what order/step using stepwise regression.    

Predicting reading achievement in good readers. Using the latent composites from 

the SEM READ and MATH models to predict reading achievement with the READ factors, 

the ND good readers appeared to rely on their more automatic visual/orthographic route and 
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solid nonverbal/verbal reasoning to achieve age-appropriate levels on LWID.  With the 

MATH factors, visual Automatic RAN/Facts did not predict LWID for this group; however 

their accurate algorithmic processing did predict LWID, and appeared a strong measure of 

more advanced levels of processing for this group.  Thus higher levels of processing on two 

composites (verbal/nonverbal reasoning and algorithmic processing) both predicted LWID 

for the ND good reader group.   

Among the READ factors, phonological processing accuracy predicted decoding of 

nonwords on WA.  When the MATH factors were entered, algorithmic processing did not 

enter and verbal/nonverbal reasoning did predict WA.  Thus for decoding, this ‘good-at-

everything group’ employed advanced phonological processing skills that did not appear to 

overlap with algorithmic processing This suggests that phonological processing is a unique 

reading skill.  Notably, this group was the only group to employ verbal/nonverbal reasoning 

to read and decode, suggesting their higher order processing advantage over all disability 

groups.     

 While the MD good readers had similar performance on LWID and WA as the ND 

good readers, it appeared that they used the opposite pattern of processes.  Using READ 

factors they appeared to rely more on solid phonological processing and then automatic 

RAN/Words to reach age-appropriate performance on LWID, and visual automatic 

RAN/Words to decode nonwords on WA.  Using the MATH factors, working memory span 

predicted LWID and their weaker RAN/Facts predicted WA.   

This finding suggests that the ND good readers employed more appropriate skills 

(e.g., automatic/orthographic route for LWID, and phonological processing for WA) along 

with advanced reasoning relative to the MD good readers who had to phonologically process 
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words on LWID and pull from the automatic/orthographic route for WA, and who did not 

apply advanced reasoning skills.  It is speculated that reading may not have been as ‘clean’ a 

process for the MD good readers.   

Predicting reading achievement in poor readers. For the RD poor readers, using the 

READ factors their much weaker automatic RAN/Words predicted their below average 

performance on LWID and on WA.  Advanced phonological processing was not employed 

by this group.  Compared to the good readers, no MATH composites predicted LWID, and 

the RD group’s accurate algorithmic processing accounted for only 11% of the variance in 

WA, suggesting at least some level of processing.  For the comorbid RD+MD group, who 

were ‘weak-at-everything’, their very limited automatic RAN/Words and weaker working 

memory span accounted for their similarly low scores on LWID, while there far less accurate 

phonological processing accounted for their low performance on WA.   

Interestingly, when the MATH composites were entered, the comorbid poor readers 

were the only group to have their severely compromised visual automatic RAN/facts route 

predict LWID and their working memory span predict WA.  These results suggest a potential 

overlap in faulty automatic visual retrieval routes for basic word and fact stores in the 

comorbid group. It also suggests that decoding was a much more taxing process in which 

they had to break down and attempt to hold online even the most basic grapheme-phoneme 

correspondences to read and decode words. 

Predicting math fluency: potential overlap in automatic visual/orthographic and 

visual/fact routes for good and poor readers and/or mathematicians. An overlap in automatic 

visual retrieval routes (visual/orthographic and visual/fact) was also observed on Math 

Fluency, a test on which all disability groups were similarly weak.  Also, for all four groups, 
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when the READ factors were used, automatic RAN/Words predicted Math Fluency, and 

when the MATH factors were used, automatic RAN/Facts predicted Math Fluency.  It is 

proposed that overlap in automatic visual/orthographic and visual/facts may occur for very 

basic visual information and that this more automatic for the ND good readers, less so for the 

single disability groups, and even less so for the poor readers.  In fact, in addition to 

RAN/Facts, weak working memory span predicted Math Fluency for the RD group and in 

addition to RAN/Words; weak phonological processing predicted Math Fluency for the 

RD+MD group.   

The finding that RAN/Words would predict a Math Fluency task might initially seem 

implausible from an education/skill instruction perspective.  However, it appears a viable 

hypothesis when looked at from a cognitive-neurofunctional perspective.  It is proposed that 

automatic visual information in the reading and math domains (e.g., word forms and math 

facts) may be supported by similar underlying cognitive processes, namely automatic 

retrieval of a visual form, that are potentially housed within similar neurobiological areas.  If 

this hypothesis proved reliable, educational programming/remediation could be targeted at 

unique or overlapping visual routes (orthographic and/or fact), along with areas of the 

curriculum that deficits in these routes might further impede (e.g., working memory span, or 

phonological or algorithmic processing).  

Predicting calculation and applied problems in good mathematicians (ND and RD). 

For the ND good mathematicians, good verbal/nonverbal reasoning and very automatic 

RAN/Words predicted Calculation.  For the RD good mathematicians, good verbal/nonverbal 

reasoning never entered into the regression equation.  In spite of good or poor reading, 

accurate algorithmic processing predicted Calculation for both good mathematician groups 
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(ND and RD) when the MATH factors were used.  Solid verbal/nonverbal reasoning also 

predicted the ND group’s age-appropriate performance on Applied Problems, in addition to 

algorithmic processing when the MATH factors were entered.  Notably, only algorithmic 

processing predicted the RD group’s age-appropriate performance on Applied Problems.  

Similarly, when reading achievement was predicted reasoning skills did not appear to be 

employed by the RD group. 

Predicting calculation and applied problems in poor mathematicians (MD and 

RD+MD). For the MD group, when READ and MATH factors were entered, only their solid 

verbal/nonverbal reasoning predicted low Calculation scores and their age-appropriate scores 

on Applied Problems.  Using the MATH factors, compared to the good mathematicians, the 

MD group’s weak algorithmic processing did not predict their Calculation and Applied 

Problems scores.  This suggests that this group possibly capitalized on good reasoning, 

reading, and aids (e.g., pencil and paper and visual pictures) to compensate for weaker 

algorithmic processing when solving Applied Problems.  For the RD+MD group, their very 

weak algorithmic processing and relatively weaker verbal/nonverbal reasoning predicted 

their poor Calculation scores while their weaker verbal/nonverbal reasoning and weaker 

automatic RAN/Facts predicted their below average performance on Applied Problems.  

Compared to the MD good readers, the RD+MD group also had weak reading skills that may 

have impacted their lower performance on these tasks. 

One final observation was that when the READ factors were used to predict 

Calculation or Applied Problems, unlike when Math Fluency was predicted, automatic 

visual/orthographic (RAN/Words) were not predictors for any of the groups.  This evidence 

further supports speculation that visual/orthographic and visual/fact routes appear to overlap 
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at a very basic automatic/visual skill level.  That accurate phonological processing did not 

predict any of the math tests for the good readers (ND and MD), but more accurate 

algorithmic processing predicted LWID and WA for good readers (ND and RD, respectively) 

continues to suggest that good phonological processing is a very unique skill related to good 

reading and that the processes in algorithmic processing (as measured in this study) may not 

be as unique to math.     

Future Implications 

These results contribute to our understanding of the underlying cognitive processes 

that are unique and shared by the present elementary aged students who were classified with 

single and comorbid reading and math disabilities.  By comparing their profiles to ‘good-at-

everything’ readers, a more refined understanding of cognitive strengths and weakness 

associated with good and poor reading and math achievement was provided.  As mentioned 

earlier, this profiling could be of value to psychologists when evaluating single versus 

comorbid reading and math disabilities.       

Structural equation modelling represented solid composites in reading and math and 

supported the significant and dynamic partnership between automatic visual routes, working 

memory span, advanced processing, and IQ or verbal/nonverbal reasoning.  It is important to 

look at these significant cognitive processes and how they uniquely and in partnership 

contribute to good and poor reading and math acquisition.  Such a perspective allows a closer 

approximation to how the brain works as a system and demonstrates that cognitive processes 

never operate in complete isolation.   

This dynamic relation between cognitive processes (as evidenced by the READ and 

MATH SEMs) could be used to specify the assessment tools needed for diagnostics, regular, 
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and special educational programming.  Assessment should sample associated underlying 

cognitive processes and their interrelationship to functionally explain single and comorbid 

reading and math learning disabilities.  On this basis, more informed evidence-based 

programming could be developed.  Instead of using regression analyses, future research 

should increase the number of children in each group and allow READ and MATH SEMs to 

be designed to predict each achievement test within each SEM model.  Such efforts could 

elucidate the relation between the four factors in each model and how they work together 

when predicting reading and math achievement.   

That said, using the READ and MATH composites as predictors of reading and math 

achievement in RD, MD, and comorbid groups, the present findings contribute to a new 

perspective on learning disabilities.  In the present research, the list-of-deficits approach to 

studying learning disabilities is abandoned in favour of a multiple-step level of analysis.  By 

theoretically modelling potential cognitive neurobiological systems in reading and math 

using SEMs, the independent and collaborative functions of the associated underlying 

cognitive processes of reading and math skill development were explored.  The regression 

analyses provided further information about which of the cognitive processes might help to 

functionally explain good and poor readers and/or mathematicians different achievement 

levels.  These analyses also identified different degrees of potential overlap in basic 

automatic visual/orthographic and visual/fact routes for good and poor readers and/or 

mathematicians.  

 These data provide fertile ground for larger-scale studies of the cognitive, 

behavioural, and functional neurobiological profiles of academic learning in atypical 

learners. Several new functional neuroimaging research findings are now providing 
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converging fMRI evidence about the unique and possibly shared neurobiological systems 

that support cognitive processes that are atypical in children and adults with reading 

disabilities (Pugh et al., 2005; Shaywitz et al., 2007) and with math disabilities (see Fletcher, 

Lyon, Fuchs, and Barnes (2007, for review)).  Within the reading domain, research shows the 

‘normalization’ of reading-related activation profiles with effective remediation (Just, 2007; 

Pugh et al., 2005; Shaywitz et al., 2007; Simos et al., 2002).   Future research could further 

investigate pre- and post- math-related activation profiles following targeted math 

remediation. 

With replication and extension of the present findings, future investigations may be 

able to customize remedial programs that target the specific cognitive deficits of single and 

comorbid reading and math disabilities, and allow for better evidence-based monitoring of 

the impact of such programs on reading and math acquisition in atypical learners.  Further 

observation of fMRI activation during tasks measuring the cognitive strengths and 

weaknesses associated with no disability and reading, math, and comorbid reading and math 

disabilities, could provide data on associated functional neurobiological systems and 

investigate their unique and possibly shared resources.     
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