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Abstract

The main technical problem with background independent approaches to
quantum gravity is inapplicability of standard quantum field theory methods.
New methods are needed which would be adapted to the basic principles of
General Relativity. Topological field theory is a model which provides natural
tools for background independent quantum gravity. It is exactly soluble and,
at the same time, diffeomorphism invariant. Applications of topological field
theory to quantum gravity include description of boundary states of quantum
General Relativity, formulation of quantum gravity as a constrained topolog-
ical field theory, and a new perturbation theory which uses topological field
theory as a starting point. The later is the central theme of the thesis. Unlike
the traditional perturbation theory it does not require splitting metric into a
background and fluctuations, it is exactly diffeomorphism invariant order by
order, and the coupling constant of this theory is dimensionless. We describe
the basic ideas and techniques of this perturbation theory as well as inclusion
of matter particles, boundary states, and other necessary tools for studying
scattering problem in background independent quantum gravity.
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1 Introduction

One of the major challenges of today’s theoretical physics is to find a theory of
quantum gravity, the theory that will unify Einstein’s General Relativity and Quan-
tum Mechanics. The standard perturbative quantization which has proved to be
successful for all other interactions has failed for gravity. The Feynmann diagrams
for graviton modes, which are small excitations around a flat spacetime background,
contain ultraviolet divergences which cannot be canceled via renormalization. Differ-
ent possible interpretations of the origin of this problem lead to different approaches
to quantum gravity.

The traditional perturbative approach to quantum gravity starts with fixing a
background metric g,y and defining excitations around it

Jab = Goab + hab~ (1)

The constraints of General Relativity generating four dimensional diffeomorphisms
are then linearized in hy,, which makes them look very much like those of abelian
gauge theory. This constraints can easily be solved and as a result one obtains
ordinary local field theory with two degrees of freedom per point. This is used as
the zero order approximation for perturbation theory. The only apparent difference
between this theory and local field theories for other interactions is the presence
of extra derivatives in the interaction term. As a result, the role of the coupling
constant is played by Newton’s constant, G, which is dimensionful. This can be
interpreted as that the theory becomes strongly coupled in the ultraviolet regime
and breaks down at the Plank scale [, ~ VG.

To solve this problem, String Theory [1] suggests keeping the above perturbation
theory unaltered at the scales much larger than [,;, and modify it by replacing local
excitations (gravitons) with excitations of a finite size (strings) at the scales of the
order of [,;. This reduces the number of degrees of freedom of the theory at short
distances, thus improving ultraviolet behavior. Such approach has an advantage
that existing field theory techniques can still be used, and it is easy to make a
connection to known physics above the Plank scale which is described by some local
field theory. On the other hand, measuring distances at which the theory has to
be modified requires a metric. To this end one generally takes the metric gogp,
which defines the expansion (1). So an auxiliary structure, which physics must be
independent of, enters the very definition of the theory. To solve this problem it has
been suggested that there exists a theory which unifies all different string theories
in various backgrounds, called M-theory. To find this theory, one needs a better
understanding of non-perturbative physics.

One can however notice, that taking into account non-perturbative effects, even
for ordinary General Relativity, leads to a picture that is very different from the
traditional approach to quantum gravity which uses a local field theory limit. First,



as follows from diffeomorphism invariance, the degrees of freedom of General Rela-
tivity must be relational, i.e. can only be associated to points labeled by some actual
physical events. Second, from the equivalence principle it follows that the degrees of
freedom of GR must be non-local (or quasilocal), i.e. could be restricted to a finite
region, but not to a point. This features are not seen in the local field theory limit,
which approximates the diffeomorphism transformations with linearized ones. As
a result the traditional perturbative approach leads to overcounting the degrees of
freedom of the theory. This suggests that the ultraviolet problem could be solved
simply by recovering the correct counting of the degrees of freedom of General Rel-
ativity, without any modification. For this one has to restore the original non-linear
diffeomorphism invariance of the theory. In perturbation theory, however, it would
take infinitely many steps, and the theory would break down before it is achieved.
This also suggests that a non-perturbative quantization is needed.

Non-perturbative quantization of General Relativity is known as Loop Quantum
Gravity [2]. It includes a canonical version [3] as well as a path integral (or spin-
foam) version [4]. The advantage of this approach is that it is explicitly background
independent: no fixed metric enters the definition of the theory. The existence of
a minimum possible length directly follow from both versions of this approach [5],
thus supporting the idea that gravity, when treated non-perturbatively, can regu-
late its ultraviolet behavior itself. The main problem with Loop Quantum Gravity
is that doing physics non-perturbatively is always hard, as it requires solving the
theory exactly. But General Relativity is too complicated to give a comprehensive
classifications of all its exact solutions. In particular, it is not clear what solutions
should be taken and in what combination to reproduce an ordinary semiclassical
spacetime. This problem is known as the problem of the classical limit [6].

The above problems are technical in essence, and to address them one needs
to have some mathematical tools which are adapted to the structure of General
Relativity. To do this one can take any model that is exactly soluble and at the
same time invariant with respect to all the basic symmetries of General Relativity.
An example of such models is provided by a class of theories known as Topological
Field Theories.

A Topological Field Theory (TFT) [7] is a theory that has exactly as many local
symmetries as fields. This allows one to gauge away all the local degrees of freedom.
The number of remaining degrees of freedom is finite and is related to the topology
of the manifold. This makes such a theory exactly soluble. On the other hand
topological field theory has some basic features of General Relativity that the local
field theory limit of GR misses. These are exact diffeomorphism invariance, positive
degree form structure of the theory, and non-locality of its fundamental excitations.

Solving TF'T exactly requires some specific methods, which are very different
from the methods of standard quantum field theory. These methods involve ex-
plicit identification of the non-local degrees of freedom of the theory, and applying



quantization rules, which could be both canonical or path integral based, to the
corresponding variables. This provides well defined results in all the known cases.
On the other hand application of standard quantum field theory methods to TF'T
often leads to inconsistent results.

A well known example of TFT is General Relativity in 2+1 dimensions. Ein-
stein’s Equations in 241 dimensions imply that the Riemann curvature tensor van-
ishes locally. The theory therefore doesn’t have local degrees of freedom. It can be
quantized non-perturbatively and was shown to be exactly soluble [8]. On the other
hand the traditional perturbation theory for 241 dimensional gravity based on the
expansion (1) fails exactly the same way as in 34+1 dimensions, even though 2+1
dimensional graviton doesn’t have “propagating modes”.

In dimensions higher than three General Relativity is not a topological field
theory, as it has infinitely many degrees of freedom. However, TF'T can be considered
as an approximation to General Relativity in which all the local degrees of freedom
are frozen. This limit is in a way opposite to the local field theory limit which has too
many degrees of freedom, and some of them have to be removed to recover General
Relativity. On the other hand every degree of freedom of TFT is also a degree of
freedom of General Relativity and to recover the later one has to reintroduce the
missing local degrees of freedom back in the theory. One therefore may argue that
TFET could be a useful tool for studying various aspects of quantum gravity, even
though it doesn’t provide a complete solution for the full theory by itself.

Topological field theory may be relevant to General Relativity in different ways
[9]. It may provide a theory describing the dynamics of boundary observables of
General Relativity in a closed form [10, 11]. It may give rise to a state sum model
which, via imposing some constraints, can be converted in a state sum model for
quantum gravity [12]. Finally, it may provide a staring point for a perturbation
theory of quantum General Relativity, when the local physical degrees of freedom
are made from gauge degrees of freedom via symmetry breaking [13]. All these
possibilities will be touched upon in the present paper.

In section 2 we review how to reformulate 241 and 341 dimensional gravity as
gauge theories. This reformulation is essential for establishing the relation between
General Relativity and topological field theory. We also consider a generalized ac-
tion, which contains General Relativity and a certain topological field theory as
different sectors. These results are based on paper [7].

In section 3 we review how to describe propagating point particles in 241 and
3+1 dimensional TE'T. This allows one to introduce matter degrees of freedom into
the theory without loosing its exact solubility. 341 dimensional results are based
on paper [49].

In section 4 we describe how the global conserved quantities of General Relativity
can be related to local charges of a certain topological field theory induced on a
boundary. This provides a specific point of view on how to describe propagating



excitations of non-perturbative General Relativity. This results are based on paper
[59]

In section 5 we provide the basic ideas of a new perturbation theory for quantum
gravity which uses a topological field theory as a starting point. It is exactly dif-
feomorphism invariant order by order and has a very small dimensionless coupling
constant, thus avoiding the main problems of the traditional perturbative approach.
This results are based on paper [13]

In section 6 we review the basic techniques necessary for making explicit calcu-
lations in this perturbation theory. This includes construction of spinfoam models
for TF'T coupled to particles, different approaches to removing divergences from the
theory, and a setup of the scattering problem of matter particles due to quantum
gravity effects, and its diagram techniques. An argument for renormalizibility of this
perturbation theory is given. This is based on a forthcoming paper [56] The results
are based on an unfinished work and are incomplete. However, they can provide
a first concise picture of background independent perturbation theory for quantum
gravity.



2 Gravity as a gauge theory

2.1 241 gravity: BF and Chern-Simons formulation

In this part we recall briefly the properties of 3 dimensional Euclidean gravity in
the first order formalism and fix some notations.

We consider the first order formalism for 3d gravity. The field variables are the
triad frame field ¢/, (i = 1,2,3) and the spin connection w/,. The metric is recon-
structed as usual from the triad g,, = e,ﬁmjei Where n = (+,+, +) for Euclidean
gravity. In the following, we will denote by €', w" the one-forms e da*, w, dz*. We
also introduce the SU(2) Lie algebra generator J;, taken to be ¢ times the Pauli
matrices, satisfying

[Ji, Jj] = —2ei5 0™ i, (2)
where €;;;, is the antisymmetric tensor. The trace is such that tr(.J;J;) = —2§;;. One

defines the Lie algebra valued one-forms e = e'J; and w = w'J;. The action is

1

S[e,w] = —% .y

) . A 1 A
e,-jk(6@/\Fﬂk(w)+§ew\eﬂ/\ek) - 167TG/Mtr(e/\F(w)+§e/\e/\e),
(3)

where A is the antisymmetric product of forms and F(w) = dw + w A w is the

curvature of w, and A is a cosmological constant. The equations of motion of this
theory are

de =0, (4)
F(w)+Aene=0, (5)

where d,, = d + [w, | denotes the covariant derivative. If M possess some bound-
aries OM, the variation of the action is not zero on-shell but contains a boundary

contribution )

= 160 /BM tr(e A dw). (6)

This boundary term vanishes if one fixes the value of the connection on M. The
gauge symmetries of the continuum action (3) are the Lorentz gauge symmetry

05

w — g 'dg+ g wg, (7)
e — g leg, (8)

locally parameterized by a group element g, and the translational symmetry locally
parameterized by a Lie algebra element ¢

w — w—l—A[6,¢], (9)
e — e—i—dw¢, (10)



which holds due to the Bianchi identity. identity d,F = 0. This supposes that ¢ =0
on OM. The infinitesimal diffeomorphism symmetry is equivalent on-shell to this
symmetry when we restrict to non-degenerate configurations det(e) # 0. The action
of an infinitesimal diffeomorphism generated by a vector field £# can be expressed
as the combination of an infinitesimal Lorentz transformation with parameter w,&*
and a translational symmetry with parameter e,&".

The conjugate phase space variables are the pull-back of (w,€) on a two dimen-
sional spacelike surface, their Poisson brackets being

{w, el} =08 (11)

The generator of the translational gauge symmetry is given by the pull-back of the
curvature on the two dimensional slice, whereas the pull-back of the torsion generates
the Lorentz gauge symmetry.

The first order formalism for 3d gravity provides an example of a topological
field theory which is called BF-theory. BF-theory can be defined in any dimension
d of spacetime and for arbitrary local gauge group G. Its basic variables are 1-form
connection field A and d — 2-form field B, both taking the values in the Lie algebra
of G. The action principle for BF-theory is

5:/ tr(B A F(A)), (12)

where F'(A) = dA+ A A A is the curvature of the connection. One of the equations

of motion of this theory
F(A) =0 (13)

means that the connection is locally flat everywhere. This is the reason why the
theory doesn’t have local degrees of freedom, and could be exactly solved in any
dimension.

The action (3) for A = 0 is an example of the action (12), where the dimension
of space is three and the role of B-field is played by the vierbein.

There is another possibility write down the action for 3-dimensional gravity in
a BF form, which is much more similar to the approach which we will be using in
4 dimensions. This approach, however, requires a non-zero cosmological constant.
For example for positive cosmological constant one could extend the gauge group
from SO(3) to SO(4). In addition to the tree rotation generators (2) it will include
three “translation” generators P;, satisfying the following commutation relations

[Ji, Jj] = —2€i% 0™ (14)
[Pz'>Pj] = —2€ Ulil (15)
[Pi> Jj] = —2€1 n’“le (16)



We can define the SO(4)-connection to be composed of the SO(3)-connection and

the vierbein,
1 . ,
A= jeZPZ- + (UZJZ‘, (17)
where the parameter of the dimension of length I = 1/v/A is needed for matching

dimensions. The curvature of this connection has a form

1 , y 1 . .
F(A) = jdwe’Pi + (FY(w) + l—26’ Aeeiin ", (18)
i.e. it contains information on both curvature and torsion.
It is easy to see that an action principle of the form (12) for connection (17) and
curvature (18), where trace is defined either by

tr(J'J7) = 209, tr(P'P7) =25, tr(J'PY) =0 (19)

or by o o o -~
tr(J'J7) =0, tr(P'P’)=0, tr(J'P') =25 (20)

results in the same equations of motion (4,5) for connection and vierbein as the
action (3). It also contains an equation for auxiliary B-field

duB = 0. (21)

Therefore, one can say that such an action is classically equivalent to the action
(3). On the other hand the Poisson bracket structure of this action is different from
(11). The SO(3) connection and the vierbein are no longer canonically conjugate,
they commute with each other. Therefore the quantization of the action (12) will
be different from quantization of the action (3).

Another possible reformulation of 3-dimensional gravity is Chern-Simons theory.
This is a 3d topological field theory which has as its only variable a connection for
an arbitrary gauge group G. Its action principle is

S:ﬁ/tr(AAdA+3AAAAA>, (22)
87T M 3

where x is a dimensionless coupling constant. Similar to BF-theory, its equation of
motion is the local flatness condition for A, F'(A) = 0.

One can show [14] that if in the action (22) we choose the connection (17) for the
SO(4) gauge group and x = 1/(G+/A) for the coupling constant, and also define the
trace by (20) we recover the action (3) for 3d gravity. It has the same equations of
motion (4,5) and the same simplectic form (11). Therefore, this action is equivalent
to first order General Relativity even at quantum level, provided the we do not
impose the condition of invertibility of the vierbein.



Another possibility is to use the definition of trace in (19) instead of (20). The
resulting action is

2
tr(w Adw + —w Aw Aw + Aede), (23)

so L _J
167GVA i 3

where the trace is now defined the same way as in (3). It results in the same
equations of motion (4,5) as ordinary 3d gravity, but has a different simplectic form.
Also, unlike ordinary 3d gravity, it does not allow limit A — 0. So for studying
this action it is essential to have a nonzero cosmological constant. In section 4 we
will see that the action of the form (23) describes in a natural way the dynamics of
boundary observables of four dimensional General Relativity. There we will consider
such an action in more detail.

2.2 341 gravity: MacDowell-Mansouri formulation

In this section we review the construction of [20], which allows to reformulate four
dimensional General Relativity as a gauge theory. Most of the results of the thesis
involve this formulation.

Macdowell-Mansouri action is a gauge theory for the SO(5) gauge group. We
consider a Euclidian theory with positive cosmological constant; however in the
classical theory everything can be directly generalized to a Lorentzian signature.
For writing down the action it is convenient to use y-matrices (See Appendix A):

=4 AP =267, (24)

where A, B =1,2...5, and {., .} means anticommutator. The ten generators of SO(5)
group can then be represented as

TAB — pABt  JAB _ ihA’fyB]_ (25)
The 15 matrices 74 and J4Z form a basis in the space of 4 x 4 hermitian traceless
matrices.
The only variable in the theory is an so(5)-valued gauge field A4Z. In a back-
ground independent theory, the action cannot involve any fixed metric. So, the only
form of the action possible in four dimensions is

1
Srr=— / FAB N FOPtryavpyep. (26)

Here
FAB = dAYB 1 A4 A AS (27)



is the curvature of the SO(5)-connection A4”. The equations of motion following
from the action (26)

d FAB =0 (28)

are trivially satisfied due to the Bianci identity V A FAZ = 0 and, therefore, the
theory (26) is topological.

By a small modification, however, which is a breaking of the SO(5) symmetry
down to the SO(4) the action (26) can be turned into that of General Relativity.
For example one can insert a 75 in the trace in (26)

1
Sar = o / FAB N FOPTrayavsve1ps, (29)

where 5 labels some preferred direction. To see that the action (29) is indeed the
action of General Relativity let us rewrite it in terms of 4 + 1-decomposed indices
A=(i,5),i=1,2.4:

1 .
SGR = a /(F” A FkIEijkl5). (30)

Also we can decompose the SO(5)-connection
ij ij o L
AT =l AP = 2d, (31)

where w* is an SO(4)-connection, e’ is a tetrad, and [ is a constant of dimension of
length. Equation (31) leads to the following decomposition of SO(5)-curvature

1 1
Ej = dwij +W2k/\u};€+ l_2€i/\€j = F(CU)Z] + l—2€i/\6j

1

Here F(w);; is an SO(4)-curvature and T; is a torsion. The action (30) can then be
rewritten as
1

SgR = QG—A /(F(w)w + Aei A ej) A (F(W)kl + Aek VAN el)‘sijklu (33)

where A = llz is the cosmological constant and G = a/A is the Newton constant.
The action (33) is the action of General Relativity.

2.3 General Relativity with a topological phase

The connection with topological field theory naturally raises the question of whether
there might be dynamical transitions between a low energy phase in which gravity



is approximately described by general relativity, and a high energy phase, which is
topological. Indeed, speculations in this direction have been made for some time. For
example, in 1988 Witten proposed that the Hagedorn temperature might represent
a transition to a topological phase in which the metric vanishes[16]. This kind of
conjecture has recently gained attention again in the context of spin foam models[15].

It has also been noticed that in certain first order action principles for GR and
supergravity there are degenerate phases in which the determinate of the metric
vanishes[17]. In [18] phase boundaries were studied between regions in which the
metric is degenerate and non-degenerate, and were found to be null.

However, to describe a transition between a topological and a gravitational phase
dynamically, both must be solutions to the same theory. In [19] it was proposed
that this could be done by making the constraints that reduce the gauge symmetry
of a TQFT dynamical. In this paper we would like to describe one way in which
this can be done.

In the next section we review the basic idea of gravity as a constrained topological
field theory and describe a new action principle from which the constraints arise
dynamically. In section 3 we describe solutions to those constraints and show how
four different theories are recovered. These are two TQFT’s: F N F theory and
BF theory for SO(5) and two versions of general relativity: the action of Palatini
and the action principle for the Ashtekar-Sen variables. In section 4 we study the
boundary between a topological and gravitational phase and find that it resembles
the conditions imposed on an horizon.

2.3.1 Action principle

It is possible to consider a theory in which the symmetry breaking in MacDowell-
Mansouri formalism is not introduced from the beginning but instead induced by
the theory itself. This is possible if e.g. the fixed quantity 75 in (29) is replaced by
a dynamical variable.

Let us consider the following action

o
Ser = / BY NFPTryaysyen — 5 / B*P A B“PTryaypyernl + / A2 = 1),

(34)
where we introduced u(4)-valued (hermitian, but not necessarily traceless) matrices
A and I'. For general covariance I' should be a 0-form (scalar) and A should be a
4-form (scalar density).

Let us first solve the equation for I' resulting from the variation of the action
(34) with respect to A:

=1 (35)
As an hermitian 4 x 4 matrix I' can be represented as
I'=ul +vay* + wagily*, 77, (36)

10



where u, v4, and wap are 16 arbitrary real numbers. By substituting (36) into (35)
and using the anticommutation relations for y-matrices (24) and

{i*, 7717} = ePPPilyp, vgl
. ) 1
{Zh/A7 ,VBL Z[’)/C, fyD]} — 5(5AC53D . 5AD5BC>1 4 GABCDE”)/E (37)

one finds

(u2+vAvA+wABwAB)1+(qu+eABCDEwABwCD)7E+(uwDE+eABCDEwABUC)z'[7,3, ve] =1

(38)
This leads to the following set of equations for u, v, and wyp
u? —|—UAUA +wABwAB =1
UUE + EABCDEUJABUJCD =0
uwP? 4 ABPEy \pve = 0 (39)

2.3.2 Solutions and phases

In the absence of the general solution to the equations (39) below we will give several
examples. As eq. (39) is 16 non-linear equations for 16 parameters it is natural to
expect that different solutions to them are disconnected from each other, i.e. cannot
be transformed into each other by a continuous change of parameters. The examples
are:

1.u=1,v4 =0, wag = 0, which means that

r=1, (40)

i.e. 4 x 4 unity matrix,
2. u =0, wag = 0, and vy is an arbitrary 5-dimensional vector such that
A _ .
vav° =1, i.e.
I' =%, (41)

3. u=0,v* =0, and wyp is an antisymmetric tensor 5 x 5 such that all the
nonzero components of it share one common index and wpw? = 1, which results
in

IO [ (42)

4. u=1/2,v° = —-1/2, w'? = w3 = 1/2, all the other components being zero,
ie.

D= 20—+ 7] + b 7) (13)

11



Let us now see what kind of theories the above solutions result in. If we plug the
solution (40) into the action (34) then solve the equation for BAZ and substitute it
back into the action we will obtain the F' A F' theory for SO(5) group.

1
Sy = % FAB N FOPTryaysyvep. (44)
o)
Due to the Bianchi identity the bulk equations of motion of this theory are trivial,
and therefore the theory is topological.
If we use the solution (41) in the action (34) we will get the following result

Sy = /BAB N Fap — %/BAB A BPespeprv”. (45)

This action is very similar to the action (30) except that it includes an additional
arbitrary parameter v*. The appearance of this parameter is an additional gauge
freedom in the action. This freedom can be fixed by aligning the vector v# along
some preferred direction. Then the analysis (30-33) can be repeated and the resulting
action will be the action of General Relativity. This is the ordinary Palatini action for
General Relativity which involves both left-handed and right-handed connections.
We also have the solution (42). After plugging it into (34) the second term in
the action will read _
% / BAC A BBw,p. (46)
As wyp is antisymmetric and the tensor it is contracted with is symmetric the
contribution (46) to the action disappears. The resulting action

Sh = / BAB A Fup (47)

is the action of BF-theory for the SO(5)-group. The equations of motion of this
theory mean that SO(5) curvature of the connection A4 is zero. So although it is
also a topological field theory, it is slightly different from the theory (44).

Finally, let us consider the solution (43). The result will be a sum of the results
(44) and (45):

Sy = L / FAB A Fap + L / FAB N FOPeypops. (48)

2c 2a
This action is the self-dual part of the action of General Relativity, which leads
to the Ashtekar canonical formulation with the Immirzi parameter equal to 1 (in
the Euclidian theory Ashtekar’s variables are real). In the bulk the actions (45)
and (48) are equivalent as they differ from each other by canonical transformation.
However they may lead to inequivalent field equations on the boundary. It is also
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interesting to notice that this formalism doesn’t seem to lead to any value of the
Immirzi parameter other than 1.

These three solutions are disconnected from each other, so a possible phase
transition between them must be a first order phase transition.

2.3.3 Conditions on a phase boundary

As it was mentioned the phase transition between different solutions of the above
theory is of the first order. Such transition generally occurs via formation of bubbles
of a phase B within a medium of a phase A. For two phases to coexist some boundary
conditions on a boundary between two phases must be satisfied.

Consider a two-phase mixture of the above model one of which is General Rela-
tivity (34) and the other is the Donaldson theory (44). Let the phase boundary be
located at 7 = 0. We don’t specify whether the direction x; is spacelike or null.
With the traces of y-functions calculated its action principle reads

1
Sophase = %0 / FAB N FOPT 4peop, (49)
where
Capep(x1) = 0acdppd(x1) + €apopsf(—x1), (50)

where 6z is the step O-function. The variation of the action (49) will give the
equations of GR in the region x; < 0, the equations of F' A F' theory (which are
trivially satisfied) in x; > 0 region and the singular contribution to the variation at
x1 = 0 resulting from differentiation of #-functions

1 1
6 Sophase = o — / FAB Ay ANSAPS(20) A ppep = .o+ — / FABNSAPA ypep.
x1=0

o) o)
(51)
Here ... stays for the bulk regular terms, n; is unit vector in z;-direction and

AABCD = 5AC5BD — €ABCD5- (52)

For the variational principle to be well defined the singular term (51) in the
variation must vanish. For this the condition F'4® = 0 must be satisfied on a phase
boundary, and, according to the 4+1-decomposition (32) this means

fag—i-Aea/\eg =0
T, =0. (53)

The second of the equations (53) (zero torsion) is always satisfied in GR, while the
first equation is a specific type of isolated horizons boundary conditions. This may
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suggest that after a suitable generalization the dynamics of the formation of a new
phase will be governed by the dynamics of isolated horizons.

As an example of a further generalization of the theory given by (34) one can
consider the following action

o 1
Ser = / TrB* 74y A(F“P Ty +BdUNdT) — / B ABPTryaypenn(T—3T%).

(54)
It is obvious that all the solutions of the theory (34) with constant I' considered
above are also solutions of the theory (54). (54) may have other solutions, but they
would be difficult to analyze as that would require to consider situations in which
the equation of motion for I is not "decoupled’ from those for other variables. In the
case of solutions in which I' is varying in spacetime the term containing derivatives
of I" in (54) would define the shape of the boundaries between domains of different
phases.
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3 Topological field theory with point sources

Generally coupling a topological field theory with matter, for example with a scalar
field, spoils its exact solubility. It also spoils the positive degree form structure
of the theory, since in writing down a field theory action one needs to invert the
metric. However there is a specific kind of matter, incorporation of which does
not require inverting a metric, and when included keeps the topological field theory
exactly soluble. These are point particles represented as topological defects that
were first introduced in 2+1 dimensional gravity by Deser, Jackew, and 't Hooft
[21]. Tt can be considered as a form of geometrization of matter, as it doesn’t
require introducing any new degrees of freedom. The particle degrees of freedom
are made from gravitational gauge degrees of freedom which are transformed into
physical degrees of freedom by symmetry breaking. In this section we will review
the construction of [21], show how to extend it to 341 dimensional topological field
theory, and find a relation of this construction to the formalism of Balachandran
[22] for describing point particles coupled to 341 dimensional gravity.

3.1 Point particles in 241 gravity

Here we review the construction of [21]. The presentation will closely follow that of
[23] and [24]. For simplicity we will consider Euclidian gravity

As suggested in [21] the metric associated with a spinning particle of mass m
and spin s coupled to 3 dimensional gravity is a spinning cone

ds® = (dt + 4Gsdp)* + dr® + (1 — 4Gm)*r*dy?, (55)

where m is the mass of the particle, s is its spin, t is the Euclidian time coordinate, r
is a radial coordinate, and ¢ is an angular coordinate with identification ¢ — @+ 27.
The space described by this metric is locally flat. When 4Gm < 1 it can be identified
with a portion of Minkowski space. The spinning cone is obtained by cutting out of
the Minkowski space a wedge 0 < ¢ < 27(1 — 4G'm), and then identifying the two
faces of this wedge by a translation along the ¢ axis of length 87Gs. Around r = 0,
which is the location of the particle there is a deficit angle of 87Gm and a time
offset of length 87Gs. The mass of the particle then has to be bounded by 1/4G, as
the deficit angle cannot exceed 27. A frame field for this geometry can be given by

e = Jodt + (cos pJ; + sin pJo)dr + ((1 — 4Gm)r(cos pJo — sin pJy) + 4GsJy) dp,
(56)
and the spin connection by
w = 2GmJydp. (57)

The torsion and the curvature have a distributional contribution at the location of
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the particle!

dee = 8mGsJyd*(z)d*z, (58)
F(w) = 4nGmJy6*(z)d*x, (59)

where the delta function is along the plane ¢ = const. Since the torsion is the
generator of Lorentz gauge symmetry we see that having a spin means that this
symmetry is broken at the location of the particle, also the mass is breaking the
translational symmetry at the location of the particle. We can explicitly see that

this is the case if we perform a Lorentz transformation labeled by ¢—! and then a
translation labeled by —¢, the equations (58) then become
dye = 4rGy8*(x)d*z, (60)
F(w) = 4nGpé*(x)d*x. (61)
where 7, p are the following Lie algebra elements
p = mgJog”, (62)
= 2sgJog~" —mlgJog™", ¢]. (63)

p is the momentum of the particle and 7 the total angular momentum, they satisfy
the constraints

1 1
—§t1r192 =m?; —itr(pj) = 2ms. (64)

From the canonical point of view these constraints are first class [23]. The mass
constraint generates time reparameterization and the spin constraints generate U(1)
gauge transformation g — gh. Due to the breaking of symmetry at the location
of the particle the gauge degrees of freedom g, ¢ become dynamical (modulo the
remnant reparameterization and U(1) gauge symmetry): ¢ describes the Lorentz
frame of the particle, ¢ describes the position of the particle. Moreover knowledge of
p, 7 is enough to reconstruct g, » modulo the remnant gauge symmetries. Indeed gH
is determined by (62). If we denote by % the position of the particle perpendicular
to the momenta, ¢ = %p +x,,then z, = #[j,p], also 2 = s? + m?z?%.

We can easily understand the canonical commutation relations of p, 7 from the
equations (60,61). Since the LHS of (60) is the generator of Lorentz transformations
and the LHS of (61) is the generator of translational symmetry, these constraints
are first class and from their canonical algebra we can easily deduce that the Poisson
algebra of p, 7 is given by

(9%, 1} = =2¢",, {1%, 0"} = —2¢"p.,, {p",p"} = 0. (65)

Lwe use the distributional identity ddy = 276%(Z)dzdy.
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This analysis shows that, instead of treating the gravity degrees of freedom and
the particle degrees of freedom as separate entities, we can reverse the logic and
consider that the equations (58,59) are defining equations for a spinning particle.
This allows us to describe a particle as a singular configuration of the gravitational
field giving a realization of matter from geometry. The ‘would-be gauge’ degrees of
freedom [27] are promoted to dynamical degrees of freedom at the location of the
particle. This is the point of view we are going to take in this thesis. In order to
get equations (58,59) from an action principle we have to add to the gravity action
(3) the following terms

S, (ew) = = [ dt al(me + 250 1] (66)

where the integral is along the worldline of the particle. This action describes
a ‘frozen’ particle without degrees of freedom. We have seen in (60,61) that the
particle degrees of freedom are encoded in the former gauge degrees of freedom. To
incorporate the dynamics of the particle we perform the transformation

w— = g_lwg + g_ldg, e— €= g_l(e + dw¢)g (67)

the action (66) becomes

— .. 1
i, (60) = 5 [ dt tslep + i + 5,,.(9.9) (68)

where the first term describes the interaction between the particle degree of freedom
and gravity. The second term

Spa0:0) = —gm [ deestg ) — s [ dres(y™'g0), (69)

is the action for a relativistic spinning particle in a form first described by Sousa
Gerbert [23]. One sees again that the original gauge degrees of freedom are now
promoted to dynamical degrees of freedom describing the propagation of a particle.

A similar procedure could be applied for describing particles coupled to the action
(12) of three dimensional gravity. It will be analogous to introducing particles in
four dimensional BF theory. This will be described in section 3.3.

3.2 Point particles in 341 gravity

We now present the formalism developed by Balanchandran et al. [22] which allow
to describe the motion of spinning particles coupled to gravity. As we will see, in
this formalism the degrees of freedom of the particle — Lorentz frame and position
— are identified with the gauge parameters of gravity: local Lorentz transformations
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and diffeomorphism invariance. The particle is breaking the symmetry of General
relativity and the gauge degree of freedom becomes dynamical at the location of the
particle. This is similar to what happens in three dimensions.

The gravitational field is encoded in a SO(4, 1) connection

Au = <%e“a Ya V5 + iwuab Vab) (70)
where the index a run from 0 to 3 ( see appendix A for notation). The 4-dimensional
de Sitter group acts by conjugation on its Lie algebra, the orbits of this action are
labeled by two numbers (m,s), which are the mass and spin of the particle. For
each orbit we choose a fixed representative element of the 4-dimensional de Sitter
Lie algebra Jy = my175/2 + s72773/4.

The Lorentz Lie algebra so(3, 1) is identified with the subalgebra of so(4, 1) gen-
erated by 74. The Lagrangian of a single particle propagating in a gravitational field
is characterized by an embedding of its worldline z(7) and a function g(7) valued
in the Lorentz group g = exp(a“b%). Let us denote by A9 = g71Ag + g~ 'dg the
gauge transformation of A. The lagrangian takes the simple form

L(z,h) = tr (JOA}T‘(T)) S = / dr L, (71)

where 7 parameterizes the world line and A,(7) = A,(2(7)) 2*. Consider now the
equations of motion that follow from the Lagrangian (71). The variation over h
gives (ignoring total derivatives)

SL = tr(h'6n([Jo, AM)), (72)
= tr(6nh~'(D.J)), (73)

where we introduced the SO(4, 1) covariant derivative along the world line of the
particle

d
D, =—+1A., ], 4
=+ (A (74

and we defined
J=gJyg . (75)

The components of J can be expressed in terms of the particle’s momenta p, and

Spin Sgp
1 1
J = ipa vys + Zsab o (76)

Since h is restricted to be in the Lorentz subgroup of SO(4,1) the equations (72)
constrain only the spin part of J and give the spin precession equation

D, J% =V, s+ ep’” — elp* =0, (77)

18



with V. = £ + [w,, ] the Lorentz connection and e? = ey, Note that by con-
struction the momenta and spin satisfy the orthogonality condition

s%p, =0 (78)
The variation over z gives
;712 = —%tr(JAM) + tr(J0,A,)z", (79)
= —tr(D.JA,) +tr(JF,(A))z", (80)
where
F.,(A) = 0,A —0,A,+[A. A, (81)
= Ti7a75/2 + (B (W) = € )7a /4. (82)

T = de® + w% A € is the torsion, and R* = dw + [w,w]/2 the Lorentz curvature.
If one uses the equation (72), equation (80) written in components reads

V.p, = %sabRZl;z'” +paT5, 3" (83)
This is the Mathiasson-Papapetrou equations describing the dynamics of a spinning
particle in the presence of torsion? When the torsion is zero we recover the usual
Mathiasson-Papapetrou equation. When the spin is also zero we recover the usual
geodesic equation.

The difference with the coupling of particles in 3 dimensional gravity described
in the previous section is that in three dimensions information about propagation
is encoded in the local translation group and the particle action is invariant with
respect to diffeomorphisms. In four dimensions, on the other hand information
about the position of the particle is encoded in the diffeomorphism group, the action
depends on the embedding of the worldline of a particle in a manifold, and there is
no analog of the local translation group. As the particle moves in curved spacetime
where the curvature changes from point to point, the state of the particle changes,
too.

The absence of an analog of the local translation group in four dimensional
gravity is the main obstacle in describing quantum particles in curved spacetime [25].

2We can write this equation in the usual form if we introduce the affine connection I';,,,”, which

is related to the spin connection wzb by the identity 0,.ef + wuabeg =Ty, ep. It can be written in
terms of the Christofel symbol I as I'ji.p, = Tyup + Tgpny — %Tqu and the MP equation reads

1 »
Vi, = §sasz’;z , (84)

where p, = pqej, and V,p, = 0upy — I, pp.
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The source of the problem is maybe inconsistency between a quantum mechanical
description of particles and a classical description of spacetime geometry. One of
the basic ideas of Loop Quantum Gravity, and one of the main topics of this thesis
(see section 6) is that in quantum theory it is more natural to describe curvature
of spacetime not as a continuous field but as a dynamical system of sources of a
certain topological field theory. The corresponding description of particles that is
compatible with this picture is based on topological field theory. This is what the
next section is devoted to.

3.3 Point particles in 3+1 dimensional BF theory

In this section we consider how to introduce matter particles as extrinsic sources in
four dimensional topological field theory. It is much more analogous with particles
in 3d gravity (section 3.1) than with particle in four dimensional gravity (introduced
in the previous section). In particular it has all the advantages of the presence of
local translational symmetry in the theory. So the constructions of this section
will basically repeat those of section 3.1, with some modifications which we will
emphasize along the way.

We start with four dimensional BF-theory for the SO(5) gauge group whose
action in very similar to the action (12)

S = /B” A Fry(A) = /tr(B A F(A)), (85)

with the difference that the B-field is now a two form. Here B = B!’/T;; and

A= AIJT[J, where
1

Try = 1 (V1,7 (86)

are so(5)-generators in the fundamental representation and 7y are y-matrices satis-
fying {7v7,vs} = 2d7;. And the equations of motion are

dsB =0, F(A)=0. (87)
The gauge symmetry of the action (85) includes local SO(5)-symmetry

A — gldg+g'Ag
B — g 'By, (88)

where ¢ is an SO(5)-valued scalar field and some 10-dimensional translational sym-
metry (10 is the number of generators of so(5))

A — A
B — B+duo, (89)
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where ¢ is an so(5)-valued 1-form field.
The general solution to equations (87) can be written as

A=g7'dg, B=g 'dgg, (90)

where g and ¢ are arbitrary due to the above gauge freedom.

We will study the above theory with extrinsic sources added. We will be pri-
mary interested in distributional sources that transform covariantly with respect to
diffeomorphisms. These can be defined by adding lower dimensional integrals to the
action (85):

S':/Mtr(B/\F(A))+/Str(POB)+/tr(JoA), (91)

L

where S is some 2-dimensional submanifold of M (worldsheet of a string) and L is
some 1-dimensional submanifold of M (worldline of a particle), Py and .Jy are some
fixed elements of so(5). The equations of motion then become

dsB = Jyb*(z)d*x
F(A) = Pyo*(x)d*x, (92)

where 6%(z) is concentrated on L and §?(x) is concentrated on S. Since Py and
Jo are fixed the gauge symmetry on S and L is broken. By performing a gauge
transformation equations (92) turn into

daB = J§*(z)d*x

F(A) = P&*(x)d?x, (93)
where
P =gPyg!
J=gJog™! = [9Pog ™", Purns), (94)

where ¢, s means that the component of ¢ is taken in the direction which together
with the basis in S and the basis in L forms a basis in M.

In this section we consider a special case with no stringy extrinsic sources, which
means that Py = 0 in (91) and all the subsequent formulas. We consider only local
particle sources which carry charges of so(5)-symmetry that is the symmetry of the
vacuum solution of (Euclidian) General Relativity. This must give us a description
of particles propagating in the vacuum spacetime with gravity effects ignored.

The third term in the action (91) when L is timelike

Sp(A) = /L tr(JoA) = /L dttr(JA,) (95)
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describes a point charge of SO(5)-group (or particle). Dynamics of the particle
comes from the gauge degrees of freedom. To incorporate them explicitly we can
perform a gauge transformation,

A—A=gT"Ag+g'dyg (96)

and the action (95) then becomes

Sp(A) = /L dtr(JA,) + Sp(g) (97)

where the first term with J given by (94) describes the covariant coupling between
the particle and BF theory and the second term

Sp =2 / dttr(g=" 3.0, (98)
L

describes the dynamics of the particle.

This action is analogous to the spin part of the action (69) for a particle in three
dimensional gravity. The difference is that the gauge group is now SO(5) which
has two Casimirs (mass and spin) and the information about the two Casimirs is
encoded in the extrinsic source Jy. It is convenient to take

Jo = my1y5/2 + s7273/4 (99)

as in the previous section.

To put (97) in a more conventional form let us rewrite it explicitly, distinguishing
the rotation transformations generated by 7j;, 4,7 = 1,..4 and translation transfor-
mations generated by T,5. By introducing the scalars J'7 = tr(JT'), J = J"T},
and recalling that A% = v/Ae’ and also introducing the 'momentum’ P? = /A J%
we can rewrite (97) as

50(4) = [ at(af? i) + Selg) = [ teiP+ [l ss 4 Sele) (100
L L L
J! in the above equations must satisfy the constraints

J I = Cy (101)

and
T I8 €1 i€ APEP Jupdop = Oy, (102)

where Cy and C} are the quadratic and fourth power Casimir operators of the so(5)
algebra.
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To see the physical meaning of Cy and Cy, let us rewrite equations (101) and
(102) using notation as in (100). Below we will also assume that the cosmological
constant A is small and consider the leading order in A. Thus

. , . 1 . 1 .
Cg = JUJZ‘]' + J5ZJ5Z' = ijij + KPZR ~ KPZR (103)

and
Cy = (J7T%e)* + J7T%€50€™™ Js, T

| 1 ... 1 ...
(JY T eim)* + KJ”qujklelm"mean ~ KJ”Pkeijklelm"mean (104)

From the way the particles are coupled to the connection in (100) it is clear that
P, in the above equations is space-time momentum and J,, is angular momentum.
From (103) one can see the Casimir Cy gives rise to the mass of the particle:

m? = ACs. (105)

The last equation for the mass relates two well-known problems in particle physics.
Explaining why the cosmological constant is small would also help to explain why
masses of elementary particles are small. In the non-relativistic limit, when P* ~
(m,0,0,0), the casimir Cy in (104) can be rewritten as

m2

Cy = TJ“beabCeCdeJde = (y5%s,, (106)
where a,b = 1,2,3-SO(3)-indices and s® = €*°J,. is the spin in the rest frame of
the particle. Thus we have the expression for the spin

s (4

S —— 1
s G (107)

This Casimirs are directly related to mass and spin in (99)
A general SO(5) transformation g = exp(a!/Ty;),where !/ are real numbers,
can be represented as a composition of pure SO(4) rotation and pure translation

1J

Here g; = exp(a®Tj;) are translations and ¢g; = exp(aT};) are pure rotations. We
consider the limit in which all translations g, commute with each other thereby form-
ing an abelian subgroup. This limit corresponds to the limit of small cosmological
constant.
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We can plug (108) into (98) to get

Sp = 2/ dttr(g: g, (Gegr + 9:90) o) = 2/ dttr(g;  cugr o) + 2 / dttr(gtg.Jo).
L L L

(109)
Or recalling the definition of momentum and angular momentum entering (100) one
gets

Sp=2 / dtc,; P' + 2 / dttr(g; g, T7) J;; (110)
L L

with the constraints on P; and .J;; given by (103) and (104). It is clear that the
first term in (110) is the action of a spinless relativistic particle propagating in four-
dimensional spacetime and the second term in (110) describes the dynamics of spin.
We should notice that for (110) to describe the most general particle the algebraic
element Jy in (109) must be a linear combination of both translation and rotation as
in (99). If Jy is a pure translation (110) gives the description of a spinless particle,
if Jy is a pure rotation (110) gives the description of a particle having only spin and
no energy-momentum.

Now one has to point out the difference between equations of motion following
from the action (109) and equations (83) and (77) derived in the previous section.
The equation (77) is the same for BF-theory, provided that using the local flatness
condition we can put all the components of the connection, including the vierbein
to zero. Instead of equation (83) for gravity, which follows from the variation of the
worldline of the particle, we have the following equation

Vipe = sabeg. (111)

following from the variation with respect to local translation. The two equations
are identical if the following equation holds along the particle worldline

sabeﬁez = %sabRZl;z’” +paT, 2" (112)
In the case of BF theory where curvature is locally zero this equation is automatically
satisfied.
We also need to describe the effect of inclusion particles on the fields of BF-theory.
As we can see from equations (93) in the presence of point sources only, Py = 0,
the curvature of spacetime is still zero everywhere, so unlike in three dimensional
gravity inclusion of point particles doesn’t change geometry of spacetime. It does
however change the solution for the B-field, the equation for which is now

xdaB=J /dt54(9: —2(t)) 2 (113)
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The general solution for the connection is the same as in (90), while the solution for
B-field can be written as

B=g! (d¢ + B) g (114)
where B is a particular solution of the equation (in components)
€ 9, By = J 0(x — 2(t)) 2, J=gJg~" (115)

By a coordinate transformation we can always make the vector Z# equal (1,0,0,0)
so that we find. B . .
€% 0 Bjp = J 0°(x — 2) (116)

The most natural form of the particular solution to this equation is the Wilson line
solution. If we choose an arbitrary spacelike curve v%(s) , where s € (0,00) is a
parameter of the curve, which begins at the location of the particle, 4/(0) = 2%, and
ends at spatial infinity, then the following expression will be a solution to equation
(116)

. - d~'
Bji(z) = Jeijk/ds i 8z — 7). (117)
5 ds
More generally, the solution (117) can be rewritten as
1A _ )
97 Bjr(w)g = Bix = W (A5 — ) Wom.s(A), (118)
where
W) = Pespl [ AL (a())) s (119
v

is a Wilson line along v taken in a representation labeled by mass m and spin s. This
solution will be used in further constructions, in particular in taking into account
the back reaction of B field on geometry of spacetime, when we incorporate the
terms that turn BF-theory into General Relativity.
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4 Boundary observables of General Relativity and
topological field theory

4.1 Canonical General Relativity, fixed boundary
4.1.1 Boundary terms in the action

In general the variation of an action for General Relativity in a bounded region
contains a surface term, which must vanish for the variational principle to be well
defined. This can be achieved by imposing some boundary conditions plus adding
a surface term to the action.

There are many possible choices of the surface term in the action. Different
boundary conditions require different surface terms. But they do not determine
them completely. The surface term also depends on the choice of canonical variables.
When we perform a canonical transformation in the theory, this is equivalent to the
addition of a total derivative term to the Lagrangian. This term doesn’t change the
equations of motion in the bulk, but it may have a nontrivial effect in the boundary.
This is another piece of ambiguity in the choice of the surface term.

Here we will follow the proposal of Smolin [10, 11] relating quantum gravity in
the bulk region with topological quantum field theory on the boundary. The self-
dual boundary conditions considered there were shown to be satisfied on black hole
horizons [36] and therefore were extremely useful for studying black hole mechanics.
However they are not very suitable for our purposes. They do not allow us to
define energy and momentum and as a consequence the boundary theory does not
completely capture the symmetry of the vacuum.

Therefore we choose another set of boundary conditions. To have a sensible
definition of energy and momentum we need to fix the metric on the boundary.
We must also choose what canonical variables to use and this is motivated by our
interest in the Kodama state. First, we must choose the Ashtekar variables in their
original form, with the Immirzi parameter equal to i, since only for these variables
the constraints take a simple form of which the Kodama state is a solution. Second,
it is well known that General relativity can be obtained from breaking SO(4,1)-
symmetry in topological field theory down to SO(3,1) [20]. The resulting form of
the GR action has definite implications as to what the boundary theory should be.
Given that SO(4,1) is the symmetry of the Kodama state it is natural to choose
this form of the boundary action.

Here it is worth reviewing how a breaking of SO(4, 1) symmetry in TQFT leads
to General Relativity, and what kind of action it results in. For convenience, we
will use spinorial notation. Our starting point will be a topological field theory for
Sp(4) group which is locally isomorphic to SO(4,1). The action depends on the
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Sp(4)-connection A?, where a, 3 =0, ..3.

1
S =S /Tngpf A FJP. (120)

Here Fi§ = dA§+ A5 A A} is the Sp(4)-curvature 2-form and P§ is a fixed symmetry
breaking 0-form matrix.

Sp(4) quantities can be decomposed by using SL(2,C') index notation A =0, 1,
A" =0,1. The Sp(4) connection can be represented as

B 1,B
Aﬁ:< A4 7 ) (121)

« 1 B’
T@A/ .AA/

where AL and Afff are left-handed and right-handed SL(2, C')-connections respec-
tively, e, is a tetrad and [ is a fixed parameter having dimension of length. Similarly
one can decompose Sp(4)-curvature

FB v
8 _ A A
Here 1
FP=f5+ B e4 nebi, (123)

where f§ is SU(2),-curvature of the connection A%, and
Fi =V ek (124)

is the torsion.
To get an action (the canonical form of which is Ashtekar’s) one has to restrict
to a purely self-dual SL(2,C)-connection, which means that we should choose Pg

in (120) to be
B
sz(%‘ 8) (125)

The resulting bulk action is then

]_ / /
Saun = g [ IR+ Ak ABIA G+ A Ak (120)

where A = liz is the cosmological constant. This will be the basic bulk action for
the rest of the paper.
As we mentioned before in order to be able to define energy and momentum we

choose to fix the metric on the boundary

Sely =0 (127)
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We can now calculate the variation of the action (176) subject to this condition.

1
47GA

1 B A’ B A
— A , Ag.

1

55Bulk = m

/(fA3 + Aey AeB)neB Aded, —

For the variational principle to be well defined the boundary term in (128) has to
vanish, which can be achieved by adding a boundary term to the action (126):

S = Spur + 95, (129)

where

_ 1 EE VUV
SS— 67{GASCS[A]+47TG/56A /\AB/\CA/‘I‘S[B], (130)

where Scg[A] is the Chern-Simons action of the connection A and S[e] is a sur-
face action, which depends purely on the metric. It can be checked that the the
variation of the action (129) subject to the condition (127) has no surface term for
arbitrary choices of Sfe] in (130). The later can be fixed by the requirement that
the total action (129) be covariant, i.e. that the gauge and diffeomorphism invari-
ance at the boundary be broken by the boundary conditions and not by the action
itself. However diffeomorphism and gauge symmetries are partially broken due to
the presence of the boundary. We can keep only invariance with respect to diffeo-
morphisms tangent to the boundary and with respect to rotations in the tangent
space of the boundary. To be explicit let us introduce an arbitrary unit vector field
on the boundary s* and its spinorial representation s4, = S“eﬁA,, s4s% = 5. By
using it one can parametrize the self-dual part of the tetrad e4, A ef by a traceless
triad o = e, 58 — 1/2eG,58 64

e ney =B NoG + s oh. (131)

The second term in the r.h.s. of (130) can then be rewritten in the form

/eﬁ’/\Ag}/\eﬁ,:/af/\Ag‘/\ang/s/\Ag/\af. (132)
S S S

The second term in the r.h.s of (132) does not admit a covariant extension and has
to be removed. This can be done by choosing the vector field s on the boundary
to be the unit normal to this boundary, which makes the above term disappear
automatically. This means that the triad o4 is chosen to be the projection of the
tetrad e/, on the surface S. The remaining term in the r.h.s of (132) by a specific
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choice of S[e] can be completed to the term with a covariant derivative of o. The
covariant form of the boundary action is thus

_ 1 1 [ 5 A
S = 67TGASCS[A]+47TG/SUA/\V/\JB (133)

In [11] two possible sets of boundary conditions dual to each other were studied.

One could either fix connection on the boundary dA%| = 0 or choose self-dual

s
boundary conditions F¥ — Ae4’ A ef, and leave the connection loose. Similarly,

instead of fixing the metric on the boundary, the action principle (129) can be made
consistent by imposing the following set of conditions

VAcgl =0 (134)

S

As in the case of free varying lapse and shift functions we cannot define energy and
momentum; the condition (134) must imply that energy and momentum is zero. In
the next section we will see that this is indeed the case.

4.1.2 Quasilocal quantities and the algebra of boundary observables

In this section we will study the boundary theory defined by the action (133) in more
detail and relate its observables with the quasilocal energy, momenta, and angular
momenta of the bulk theory.

A theory of the form (133) was considered by Witten [37] along with the action
of 2+1 gravity. It can be rewritten as a Chern -Simons action

1
SS = 67TGASCS(CL) (135)
for SO(3,1)-connection
a=AJ + VAo, P, (136)
where
(T, T = ¥ Ty, [T P = 7Py, [P, PY] = 7T, (137)

are the generators of the SO(3,1) group. This means that the constraints of the
theory (133) form an SO(3,1) algebra with respect to the boundary simplectic form.
In this the theory is similar to 241 dimensional gravity. Also its constraints have
the same form

A aB( A A C
Cz = Eﬁ(FaﬁB+A0acaﬁB>

Hj = €"V,oip, (138)
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where the indices o, 3 = 1,2 are two-dimensional spatial manifold indices and e*?
is the completely antisymmetric tensor. It differs however form (2+41) gravity by
the fact that the gauge and the diffeomorphism constraints have traded places. Also
different are the canonical commutation relations between basic variables. Now they
are

{A3B7 AgD} = 37TGA€aﬁ(5gég -+ GACEBD)
{O-:J?B7 agD} = 27TG€aﬁ(5g(Sg + EACGBD)
{AéBv Uﬁcp} = 0. (139)

It is known that the consistent quantization of the Chern-Simons theory require
the quantum deformation of the gauge group. So the fact that the boundary theory is
a Chern-Simons theory for SO(3,1) group with the coupling constant k = %L means
that the symmetry group of the vacuum is now g-deformed with ¢ = exp(%). This
means that particles inserted in punctures of the boundary theory will propagate in
g-deformed spacetime.

In the rest of this section we will relate the constraints (138) with quasilocal
observables of the bulk theory. This relation will involve projection of spinors on
surfaces which may be spacelike or timelike. For this some useful notations are
introduced below.

Let ¥ be an arbitrary surface, which may be spacelike or timelike. Let n, be
the unit normal vector to this surface, n,n® = 1, and n4, = n%:,, its spinorial
representation. n%, can be considered as an Hermitian metric for spinors on ¥,
which allows us to introduce an operation of Hermitian conjugation for such spinors

:Ujréx = nﬁlﬂA” (140)

where bar means complex conjugation. This operation is involutive (Nix)T = tfia,
where + stands for a timelike surface and - for a spacelike one.

The operation of Hermition conjugation allows one to define a new type of con-
nection on the surface ¥. In four dimensions the only relevant completely covariant
connection is the torsion free one. We will denote it simply by V:

VAed =det + A8 nel —ef NAFY =o0. (141)

Here A,® and ALY are anti-self-dual and self-dual parts of the torsion-free con-
nection which act on unprimed (left-handed) and primed (right-handed) spinors
respectively. They are related to each other by complex conjugation:

AR = AN (142)

Along with the torsion-free covariant derivative one can define define purely anti-
self-dual and purely self-dual covariant derivatives. Let u4" be an arbitrary spinor
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with one primed and one unprimed indices. Then we define

VoM = AP
Vipt = 0 + AT uAP (143)

These “covariant” derivatives are not completely covariant. The first of them re-
stricts the gauge covariance to anti-self dual transformations and the second to
self-dual. However they may give rise to fully covariant derivatives when projected
on the surface.

Below, unless otherwise stated, Y is a spacelike slice of spacetime, nup is
the spinorial representation of timelike unit normal vector and ef = e*'nyp —
%eCA’nA/C(Sg‘ is the triad on X.

Let us first show that the torsion of the (anti)self-dual connection defined by
(143) projected on a timelike surface S is ADM energy-momentum (generally S is
supposed to be taken to infinity although it doesn’t necessarily have to). Let us
consider the second term on the r.h.s of (130), which is the only term dependent
on metric needed for consistency of the action principle if we don’t care about
covariance. If we take a spatial slice > and make a 3+1 decomposition this action
will read

Sg = ...+/dt/e£;/\Ag}/\e§,. (144)

The ADM energy and momentum are the coefficients in front of lapse and shift
functions in the above integral, and given that e/4n4’ = N and e} e/, = N; they are

FEipy = 62/\145

47TG a)>

(Paow)h = o | (e A AG — e A AR, (145)
ArG Jgns 2

where the symmetric pare of spinorial indices A, B labels 3 spacelike directions. The

same expressions written in Ashtekar canonical variables can be found e.g. in [38].

Now taking into account that the total connection is torsion-free it is easy to see that

the expressions entering the first and the second integral in (145) are components

of the torsion of the connection (143), V* Ae4’, projected on n4 and orthogonal to
n‘d’ respectively.

The above expressions for energy and momenta are simple and have been proved

to be zero in the vacuum, however they are not covariant and do not form any

algebraic structure from the point of view of boundary theory. Below we consider

covariant expressions for energy and momenta given by the boundary constraints
(138).
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First, let us notice that the constraints from the first line in (138) define the
quasilocal angular momenta of the bulk theory.

1 1

== - (KF;Q oA ag> (146)
Indeed C4 in (138) are boundary terms resulting from the variation of the Gaussian
constraints of the bulk theory, generating local Lorentz transformations. One can fix
a tetrad on the boundary so that it includes a gauge condition aligning the intrinsic
Lorentz frame with the global basis of boundary spacetime. So the intrinsic Lorentz
transformations are identified with global ones and the operator generating them
becomes the angular momentum of the theory.

The rest of the constraints (138) are components of the torsion of the purely
self-dual connection, the triad o4 which is the tetrad e projected on S. The
connection entering this torsion can be equally understood as the four-dimensional

torsion-free connection:
V™ Aog =V Aoy (147)

From the fact that the four-dimensional covariant derivative annihilates the space-
time tetrad e24" it follows that only the derivative of the normal vector n4 g con-
tributes to the torsion (147). This means that the torsion(147) is related to the
extrinsic curvature of X.

V A O'g = V(TLA/B) N €AA/ = (dnA’B —+ AECTLA/C — Aj;,C,nC/B)ng, AN O'AD

= (A A Ao (148)
In the last line we introduced a self-dual connection acting on left-handed spinors
ARA =nfdng —nm AP nd =04, Vg (149)

There are some simple relations between self-dual and anti-self-dual connections
acting on spinors of the same chirality. First, it follows from (148) that

ARt — At = iK3, (150)

where K37 is the tensor of extrinsic curvature of ¥. On the other hand the usual
reality condition for Ashtekar variables means that

AFA+ A =T, (151)
where I'4 is the connection which is torsion-free on X:

Vr Aog = 0. (152)
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Similarly one can introduce an anti-self-dual connection acting on right-handed
spinors

AN =niV g (153)

Now we should relate Hz in (138) to energy and momenta. Let TfA, w=0,1,2
be 3 generator of SL(2,R) group, which is the restriction of SL(2,C) on timelike slice
1 = 0, corresponding to rotation, and p = 1,2 corresponding to boosts. By using

(148) and (150) it is easy to show that
=18, % (K& Ao det (o, K3 (154)

det( O“EOS KZ,

ses =

it8, % (VAo ‘zns

iTia * (VA 0p)| g = Tia x (KGN op)sg =

where * denotes hodge dual with respect to the volume form on ¥ N.S. In the r.h.s.
of the first line of (155) we recognize the density which when integrated over ¥ N S
gives rise to the Brown-York quasilocal energy [39] and in the second line we find
quasilocal momentum. Thus we can write down the relation between the constraints
H# from (138) and the quasilocal energy-momentum as follows

1
E = irB— Ao
ZTOA47TG/V UB,
1
P, ZTZA47TG/V/\O’B. (155)

The expressions are not simply related to the basic canonical variables of the bulk
theory and they do not vanish in the vacuum. However they can be related to simple
ADM expressions (145) by using a reference spacetime [39]

EADM == E - Efref
(PADM)gTZEX =P — (Pi)refa (156)

where the subscript ref means calculated in a reference spacetime. This simple
form can be restored at the cost of covariance. The advantage of this form is
that quantities with subscript ref are non-dynamical (they are c-numbers), and
we can calculate bulk commutators of quasilocal quantities by using simple ADM
expressions. A more detailed description of Brown-York energy in Ashtekar variables
can be found in the paper of Lau [40].

4.1.3 Einstein’s equations as a local conservation law

It is interesting to notice that the torsion of the connection (143) with the spacetime
tetrad
T =V~ Aely (157)
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(the projection of which on a boundary defines the ADM energy) is a locally con-
served quantity in a covariant sense. Indeed the covariant divergence of Tf’ vanishes
due to Einstein’s equations:

VATY =VAV Aetd =FBned =0, (158)

Here F'; 7 is the curvature of the self-dual connection. The quantities C4 from (138)
(which define quasilocal angular momentum when projected on the boundary) are
also locally conserved due to the total connection being torsion-free:

VACQZV/\(%FgJFUé/\ag)ZV/\(eg‘,/\eg’)zo. (159)
From (158,159) it follows that the complete set of equations of GR. is simply equiv-
alent to the condition of conservation of T} and C4. Therefore all of Einstein’s
equations can be put in the form of a local conservation law.

One of the conserved quantities, T4, is not a tensor (it does not transform covari-
antly with respect to right-handed gauge transformations). This is like reexpressing
the divergence-free condition of the stress-energy tensor as a genuine conservation
law for some pseudotensor. In the present situation we can however rewrite all the
equations as the conservation of covariant quantities. This can be done on an ar-
bitrary slice of spacetime. To each such slice one can associate a triad o4 which
is the projection of the tetrad e4, on it. The torsion of o5, Hf = V A 03, is a
covariant quantity. In particular, if the slice is timelike this is a constraint (138)
of the boundary theory (133). The covariant divergence of Hz is equivalent to a
subset of Einstein’s equations:

VAHs=VAVAcp=FiNnG =0 (160)

These equations are not necessarily defined on a single slice. One can consider a one
parameter family of slices or foliation of the whole spacetime to define it everywhere.
One foliation is however not enough to recover the whole set of Einstein’s equations
(equations with components normal to the foliation are still missing). At least two
foliations which are different everywhere are required.

Equations (158,159) pulled back on a spatial slice ¥ form the complete set of con-
straints of GR. Formally all the constraints are now Gaussian — they say that the elec-
tric field C4 and some other field 74" are divergence-free. Quantum-mechanically
this form of constraints is very difficult to treat because of complicated dependence
of Hf and even T4 on the basic canonical variables. However it provides us with
some intuition about what generic solutions of the bulk theory must look like. If
we introduce a perturbation on the boundary that has a certain energy and mo-
mentum it has to be continued into the bulk as a certain flux of energy-momentum.
Constraint equations simply mean that the lines of such fluxes must be continuous.
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4.2 BF theory, movable boundary

In the previous section we propose a specific way of describing propagating modes of
non-perturbative General Relativity. They can be defined on a surface on which cer-
tain boundary conditions are fixed and represented as local charges of a topological
field theory described on this surface.

However this definition has a certain drawback. The gauge group of a resulting
topological field theory is SO(3, 1), which is only a subgroup of the symmetry needed
to describe all possible propagations. This is a consequence of fixing the boundary
conditions on a certain surface. This surface cannot be moved, as fixing boundary
conditions on a different surface would mean changing the physical system under
consideration. As a result, topological field theory defined on this surface cannot
incorporate a symmetry with respect to translations and rotations transverse to it.

To be able to describe excitations propagating in all possible directions one needs
either to define the excitations in the bulk of spacetime or define them on a boundary
that is movable in a transverse direction.

The first possibility is often impossible in a gravitational context. This is because
the conserved charges describing propagation of particles, such as mass and spin,
cannot be defined in the bulk. An exception is a BF theory of the type (12), where
charges can be defined in the bulk as in section 3.3 due to the local flatness condition
(87).

In this section we consider BF theory with a cosmological term. As we will see
in section 5 this term is necessary to regulate a partition function in a physical way.
The action of such BF theory reads

S = / (B A Fry+ gB” A Brj), (161)
M
and its equations of motion are
Frj+ BBy =0
dsB'" = 0. (162)

Notice that due to the Bianchi identity the first equation (162) implies the second.
One can say that the g-term in (161) can mimic the back reaction of the B-field on
geometry, which occurs in General Relativity, but in a very simplified way.

If we want to incorporate point charges representing propagating particles into
this theory, we will immediately find that this is impossible in the bulk of spacetime.
The reason behind this is the relation between the two equations (162). When we
introduce a point extrinsic charge to the action (161)

Sparticle = S + / dttl‘(JoAt) (163)
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the equations (162) become

Fry+pB8Br; =0
daB" = Jl76(x — 2(1)). (164)

From this two equations and the Bianchi identity it follows that J, = 0, so a non-
trivial charge cannot be introduced.

There is however a possibility to put a point charge on a boundary of the system.
If we consider a variation of the action (161) in the presence of a boundary there
will be an additional contribution on the boundary

0S = 0Spur + / B[J(SAIJ. (165)
oM

Now if the worldline of the particle in (163) completely belongs to the boundary of
M then instead of equations (164) we have

Fr;+ BBy =0
daB" =0
BY| = Ji(x — 2(t)). 166
L= (= (1) (166)
This is equivalent to equation
1
BF” = J3o(x — 2(1)). (167)

on the boundary. This equation doesn’t force the charge J, to be zero and so allows
us to introduce a particle.

One can see that equation (167) is the equation of SO(4, 1) Chern-Simons theory
with extrinsic charges. This is a consequence of the equivalence of the theory (161)
with a Chern-Simons thery. This Chern-Simons theory could be used to cancel the
boundary contribution to the variation (165) similar to what was done in section
4.1, thus making the bulk theory self-contained. Indeed, if we modify the action
(161) by adding a Chern-Simons term

S =5+~ [ vos(a) (168)

B Jam
Then the boundary contribution to the variation of this action vanishes identically
due to the first of the bulk equations of motion (166), and the theory becomes a
purely bulk theory. Notice that we didn’t have to impose any condition on the
field on the boundary, it is enough that the bulk equations of motion are satisfied.
This means that the boundary could be moved arbitrarily without changing the
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properties of the physical system considered. The sources on the surface can now
be considered as the sources for the Chern-Simons theory for SO(4, 1) gauge group.

The main difference from the result of section 4.1 is that the possible motion
of the particles is no longer constrained to any subspace in the deSitter spacetime;
they can move in all directions. This is seen from the fact that the gauge group now
is SO(4,1), which describes all the possible motions of de Sitter spacetime.

This is possible because the surface on which the Chern-Simons theory is de-
fined is no longer fixed. One can picture it the following way. Let us introduce
coordinates {x;} parameterizing the deSitter spacetime. We can choose one of these
coordinates x; and define a one parameter family of surfaces ¥,, which slices the
deSitter spacetime across this coordinate. On these surfaces we can define a family
of Chern-Simons theories with extrinsic SO(4, 1) charges

J = 9;11J09x1> (169)

where .Jy is a charge defined on some selected reference surface, for example x1 = 0,
and .
Gy = €7 (170)

where T is the translation generator in z; direction. Clearly all such Chern-
Simons theories are equivalent and can be identified, because the transformations of
the charge (169) are included in the gauge transformations of the theory.

So all the motions in the four dimensional deSitter spacetime can be described
by three dimensional Chern-Simons theory. It is well known that a consistent quan-
tization of the Cern-Simons theory requires the quantum deformation of the gauge
group. So for § # 0 the propagation of particles in BF-theory will be described not
by Special Relativity, but by Doubly Special Relativity [45], with the deformation
parameter related to . What role is played by [ in quantum General Relativity
will be clear in the next section.
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5 Perturbative General Relativity from topologi-
cal field theory

In a famous paper [8] Witten has shown that in 2+1 dimensional gravity, if we don’t
do the expansion (1), if we treat the whole geometry quantum mechanically, thus
keeping the theory generally covariant, we can avoid the ultraviolet problem. One
can even show that the theory exactly soluble.

The natural question that arises, which is also addressed in [8], is whether we
can do the same in 341 dimensions. The immediate problem then is the following.
If we look at the action of 2+1 dimensional General Relativity in the triad-Palatini
representation

S:/tr(e/\dA+e/\A/\A) (171)

we see that the lowest order term in it is quadratic. Thus the theory is nearly
linear and we can apply standard quantum field theory techniques to it. On the
other hand the action of 3+1 dimensional General Relativity in the tetrad-Palatini
representation looks like

Sz/tr(e/\e/\d/H—e/\e/\A/\A). (172)

The lowest order term in it is cubic. Standard quantum field theory techniques are
not applicable anymore. The only way out seems to be to get a quadratic term in
the action via the expansion (1), which leads to a non-renormalizible theory. The
conclusion of [8] is that 3+1 dimensional General Relativity is non-renormalizible
because it is too non-linear.

One of the questions that we address in this paper is: how non-linear is 3+1
dimensional General Relativity?

Below, to avoid complications with using a non-compact group we will consider
Euclidian gravity with positive cosmological constant.

5.1 MacDowell-Mansouri type BF-theory: How non-linear
is 4 dimensional General Relativity?

There are several formulations of 4 dimensional general relativity known which do

contain a quadratic term in the action [46]. They are based on BF-theory plus a

term which breaks topological symmetry. A well known example is the so called
Plebanski action?:

S = / (B™ A Fp(w) + ¢" P B, A Bag) (173)

3A similar formulation of gravity works in any dimension [47]
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The first term in (173) is a BF-theory, which is an exactly soluble theory. One
could think that we can use it as a free field theory and treat the remaining term
as a perturbation. There is a problem with such a perturbation theory. This is
the fact that the second term actually imposes some constraints on B*/, as @8
is a Lagrangian multiplier. In a path integral this term becomes a delta function of
the constraints, and to treat it as a perturbation we would have to expand a delta
function in a power series around zero. But such an expansion doesn’t exist. What
we would need for a perturbation theory is an action principle in which General Rel-
ativity would be represented as an exactly soluble theory plus a regular interaction
term. Such a formulation does exist and this is the McDowell-Mansouri formulation
of General Relativity [20] rewritten as a BF-theory. This kind of action principle
was also considered in [48].

Our starting point will be the BF-theory for the SO(5) group. Let T1/ = —T7!
be ten generators of so(5) Lie algebra, where I, J =1,...,5 (see appendix A for our
conventions and physical interpretation of other gauge groups). The basic dynamical
variables are an so(5)-connection A’/ and an so(5)-valued 2-form field B’’. The
action principle is then

S = /B” A Fyy. (174)

Here Fry = dAr; + AX A Ak s is the so(5) curvature.
The equations of motion following from the action (174)
F[J =0
daBr; =0 (175)
mean that the connection A!” is flat.
Now the statement is that if we break the SO(5) symmetry in the theory (174)
down to SO(4) we get the action of General Relativity.

We add an extra term to the action (174) which depends only on B-field and
contains a fixed SO(5) vector v pointing in some preferred direction.

1
Sl = /(BIJ/\F[J - iBIJ/\BKLEIJKLMUM). (176)
The SO(5) symmetry is not a symmetry of the action (176). It is broken down to
SO(4), the subgroup of SO(5) rotations that leave v’ immovable. For simplicity we
choose v! = (0,0,0,0,a/2), where « is a fixed dimensionless constant. The action
(176) then becomes
S, = / (B A Fry— %B,J A B! 755, (177)

To show that (177) is the action of General Relativity we introduce the following
notation for 4 + 1-decomposition. Let 7, j = 1,2, ..4 be four dimensional indices such
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that €kl = k5 Then we can introduce an so(4)-connection w” = A% and its
curvature RY(w) = dw® + wi A wh. Also, we can introduce a frame field ¢! = [A®,
where [ is a constant with dimensions of length, giving rise to a four-dimensional
metric g, = ezeyi.

In the above notation we have the following decomposition of so(5)-curvature:

. . 1 . .
FY9(A) = RY(w) — l—26Z A e

. 1 .
F®(A) = 7dwe’. (178)
The equations of motion of (177) for B impose the torsion to vanish d e’ = 0.
This determines uniquely the connection w to be the spin connection. Since the

action is quadratic in the fields B¥ we can solve the equations of motion for B¥ and
substituting them back into action, we find

1 .
Sl = E /F” N FkIEijkl, (179)

where we used the notations introduced above. Finally, using (178) one can rewrite
(179) as

1 . . 1
S = = (RY — e A ') A (R¥ — l—gek A €')eijn
1 g
= Sp+ o /R”(w) A Rkl(w)eijkl (180)
Here 1 A
Sp = 5 [(RI@) A nel = T Ae Aek Ao (181)

is the Palatini action? of General Relativity with nonzero cosmological constant. The
role of the Newton constant® is played by G = al? and the cosmological constant is
A = 3/I%. The constant « in (179) is the square of the ratio of the Planck length
over the cosmological radius, & = GA/3 ~ 10712, Tt is dimensionless and extremely
small which makes it a good parameter for perturbative expansion.

The second term in the r.h.s. of (180) is the integral of the Euler class. It is
topological and its variation vanishes identically due to Bianchi identity. Thus the
action (176) indeed describes General Relativity.

4The normalizations are such that when written in the metric variables the Palatini action is
of the usual form

Sp = —é/\/f;(R —2A), (182)

R being the scalar curvature.
®We work in units where ¢ and 16wk = 1, so G means 167Gh = [, which is the Planck length.
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The main result of this section is that General Relativity in four dimensions
admits an action principle (177) that is just slightly non-linear, exactly as non-
linear as that of 3 dimensional gravity. Also, (177) has a form of exactly soluble
theory plus a small correction. The correction is so small that even if we neglect
it we should give a good approximation to the observed reality. And indeed we
do, because the equations of motion in this case are (175) which in the case of
SO(4,1) gauge group have the only solution which is the deSitter spacetime, which
is very close to what we see. This formulation of gravity is strikingly similar to a
formulation of QCD in terms of the Lagrangian tr(BA F + g?BA%B). The difference
comes from having a quadratic form contracting the B fields that is strictly positive
and background dependent.

Despite the smallness of «, however, there are many situations in which the
second term in the action (177) leads to noticeable effects. This happens when some
of the components of B-field are large. Then the second term in (177) which is
quadratic in B cannot be neglected as compared to the first term which is linear
in B, even though multiplied by a tiny constant. In classical theory the B field
becomes large, for example, when we couple gravity to massive matter sources [49].

In quantum theory we have to take into account large fluctuations of B-field,
thus including the regime in which the theory becomes strongly coupled. This may
lead to a breakdown of perturbation theory. Most visible is the contribution from
the components of B that form the orbit of the translational gauge group of the
free field theory, B = d ¢, which is broken by the interaction term. To avoid this
problem we need to find a way to suppress large fluctuations of the B-field in a path
integral. This can be done by a very natural modification of the action principle
considered in the next section.

5.1.1 Introducing the Immirzi Parameter

In the previous section we have described gravity in terms of a symmetry breaking
perturbation of topological BF theory. In this section we generalize this construction
to the case where the topological field theory is BF with a ‘cosmological term’. As
we will see this is necessary in order to regulate in a physical way our perturbative
expansion. We will also see that at the classical level this allows us to introduce
naturally another dimensionless parameter that appears in 4D gravity, the so called
Barbero-Immirzi parameter.
The action principle for SO(5) BF' theory with a cosmological term is [50]

S = /B” A Fry— gB” A Bry. (183)
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The equations of motion following from this action are

Fr; = BBy,
dsaBr; = 0. (184)
Note that the first equation implies the second one. This theory is invariant under

local SO(5) transformations, it is topological due to the additional ‘translational’
symmetry labeled by a one form ®!7 valued in the Lie algebra®

SAY = pol7, B! = d, o7, (187)

The gauge invariant observables of this theory are therefore gauge invariant functions
of BV —F17 /3. As before, we add an extra term to the action that breaks the gauge
symmetry down to SO(4) and also breaks translational symmetry. Our proposal for
a gravity action is

«
SQ == /(BIJ VAN FIJ - gBIJ VAN BIJ - ZB]J A BKLEIJKL5). (188)

We can solve the equations of motion” for B!/

ij 1 Q ikl ij
BY = a2—ﬁ2(§€j Fkl—ﬁF]), (189)
B = —F™ 190
3 (190)
and substituting them back into the action (188), we get
Sy = / X gt~ P pipnp i) (101)
Aa? — 3?) o 2(e? - 7) voB A

Using (178) and introducing the Nieh-Yan class C' = de' Ad,e; — RY Ne; Aej [51],
we can rewrite this action in terms of gravity variables

_3g o i (o BV er iy — s i (0 4L
52 = S (g 0 A Rl = g ) A )+/6(1C9)2)'

6The non linear transformations corresponding to this infinitesimal symmetry are given by

A — A+pg, (185)
F(A+B¢) — F(A)
5 :

B — B+dA¢+§[¢,¢]=B+ (186)

"We restrict to the case a® # (32. Considering this case will lead to a self dual formulation of
gravity.
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The last term is an integral of a linear combination of the Euler class, the Pontryagin
class and the Nieh-Yan class. These are integer valued topological invariants with
trivial local variation. The first term of action (192)

~ 1 i, A . 2 ..

Sp = e <R” (W) Ae* A eleij;d — ge’ Ael Aef A eleij;d — aR” (W) Ae; A e])
(193)

is the Cartan-Weyl action of General Relativity with nonzero cosmological constant

and a nonzero Immirzi parameter v, which is dimensionless [52]. The initial param-

eters «, 3,1 are related to the physical parameters as follows

I A _ GA _ 7GA
. )

3’ 3(1—72)

This are not all the terms that could be included in the action: the constants in
front of topological terms could be varied independently. However topological terms
do not affect the dynamics of the local degrees of freedom of the theory, so we
do not need a control over them. The term proportional to v is not topological
(its variation is non zero), it doesn’t affect the classical equation of motion when
72 # 1. It plays no role in the classical theory of gravity and it is therefore not
constrained experimentally. It is important to note however that this term, similarly
to the theta term in non abelian gauge theory, breaks CP symmetry. Since this fact
seems to have been unnoticed let us explain it in more detail. Suppose that we
perform an orientation reversing diffeomorphism of our spacetime, lets call it a C-
transformation. All the terms in the action change signs since they are 4-forms, so
C is not a symmetry of our gravity action. Lets now consider the discrete Lorentz
transformations ¢;; = diag(— + ++) or g;; = diag(+ — ——), that we respectively
called T or P transformation. The T transformation changes only the sign of ¢ and
w% leaving all the other fields invariant. The first two terms in the action change sign
under P or T since they contain one epsilon tensor contracting the Lorentz indices
but the last term does not. The action is not invariant under P or T but if we now
consider CP (or CT) we see that the first two terms in the action are left invariant
whereas the last one changes sign. In other word CP does not affect G or A but
changes the sign of the Immirzi parameter. The CP symmetry is therefore realized
only if v = 0 or co. When ~ = 0, which is the case studied previously, we recover
the case of usual metric gravity, where the torsion is identically 0. When v = oo we
recover the usual Cartan-Weyl gravity where the torsion is free to fluctuate. Any
other value of v leads to a CP violation mechanism in quantum gravity that is worth
exploring.

Even if it doesn’t affect the classical theory the Immirzi parameter deeply affects
the quantum theory and labels inequivalent quantizations in the context of kine-
matical loop quantum gravity. Indeed it is known for a long time (see [53] for a

(194)
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review) that this parameter modifies the symplectic structure and this modification
is not unitarily implementable at the quantum level. It affects the prediction of
the spectra of geometrical operators and plays a key role in the black hole entropy
calculation [54]. This calculation suggests that v and 1 —~? are of order unity. One
should keep in mind however, that the above conclusions are based on kinematical
considerations, i.e. before Hamiltonian constraint is applied. And one open prob-
lem in this context is to understand whether the Immirzi parameter really leads to
inequivalent quantization once the dynamics is fully taken into account or whether
it can just be reabsorbed into a redefinition of the Newton constant. This point has
already been raised at the kinematical level in [55] where a seemingly more covariant
approach to loop gravity leads to a geometrical spectra independent of the Immirzi
parameter.

A more direct way to understand why the Immirzi parameter should affect quan-
tization is to notice that 2/ is proportional to the torsion square since [ RY Ae; A
ej = f d,e' A dye; up to a boundary term. 7 therefore controls the width of fluctu-
ation of the torsion at the quantum level. We have already remarked that if v = 0,
which is the case of metric gravity studied in the previous section, the torsion is not
allowed to fluctuate. The mean value of the torsion is always equal to 0 irrespective
of v; this is why it doesn’t affect classical gravity. However a naive semiclassical
calculation shows that one should expect the two point function of the torsion to
be proportional to . Therefore 4 controls how strongly we suppress (or not) the
torsion fluctuations in the path integral.

In our context the Immirzi parameter appears to act as a physical regulator.
The role of the Immirzi parameter in this theory and its relevance to the physical
predictions will be explored in more detail in our next paper [56].

There is not yet any preferred experimental value for v, whether it is 0, oo or
the value suggested by loop quantum gravity. Anyway, in all these cases® a and 3
are at most of the order GA, which is a tiny number.

5.2 Formal setup for perturbation theory

We first concentrate on the case § = 0. Let us rewrite the action (177) in an index
free form

Sen = / (B A F(A) ~ B A Brg). (195)
Here B = B!/Ty;/2 and A = ATy;/2, where
1
Try = Z[VIWJ] (196)

8if ¥ — oo both « and f3 are sent to zero while the ratio 5%/« tends to a finite value GA/3
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are so(5)-generators in the fundamental representation and 7y are y-matrices satis-
fying {7v7,7s} = 2d;;. The insertion of 75 in the second term of (195) breaks SO(5)
symmetry down to SO(4).

We will be calculating the path integral for the action (195)

ZGR = /DADB eXp(iSGR). (197)
Following [57] we will treat the BEF term in (195) as free field theory and the second

term as a perturbation. Define the generating functional which is the path integral
for the BF' theory with an extrinsic source as

Z(J) = /DADB exp (z / tr(B A F(A) — B A J)), (198)
where J is an so(5)-valued 2-form field. Then the path integral for General Relativity
can be obtained by including the interaction by differentiating with respect to the

sources.

(199)

. a o )
ZGRr = €xp (Z/tf(zﬁ A E%))ﬂj)

The perturbation theory can be obtained by expanding the exponent in (199) in a
power series

J=0

(200)

1/. a0 ) n
ZGR = ; E(z/tr(Zﬁ N E%)) Z(J)
As a < 1 we expect the sum to be dominated by the lowest order terms.

5.2.1 Computing the generating functional

We know show that the generating BF functional can be exactly evaluated. We
start with

Z(J) = /DADB exp (i/tr(B A F(A) — gB AB— B A J)). (201)

Since the action is quadratic in the B field we can integrate it out by replacing it

by its classical value
BB = F17(A) — JV, (202)

and so the action becomes

1
S1=15; / tr((F(A) — J) A (F(A) - J)). (203)
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Its equations of motion are
daJ =0, (204)

and we denote by M the solution space. In order to solve these equations lets
introduce a linear operator mapping Lie algebra valued 1-forms to Lie algebra valued
three forms

A = [J A (206)

The space of three forms L,,, € Q3(G) is isomorphic to the space of densitized
vectors L* = 1/ 2¢*"™PL,,,. Ly is a square matrix whose matrix elements can be
explicitly written as .

LY (2 ) = e 12 oop). (207)
For a generic J we expect L; to be invertible. In this case there is a unique connec-
tion solution of (204)

ay = L3 (dJ) (208)

We expand A = a; + a and the action around this solution
1
23S = / tr((F(aJ) — )N (F(ay) —J)+2(dg,a+ 5[&, al) A (F(ay) —J) (209)
M

+(da,a + %[a, a)) A (da,a + %[a, a]).) (210)

This expansion can be drastically simplified. First we can integrate by part the
second term in the action using the equation of motion and the Bianchi identity
do,J = do,F(ay) = 0. We can also integrate by parts the third term in the action
by introducing the Chern-Simons functional

1
CSy(a) :tr(aAdaJa+§aA [a,a]), (211)
its derivative is given by
1 1
dCS;(a) = tr((ds,a + i[a, a)) A (da,a + 5[&, a)) + la,a] A F(ay)). (212)

The action (209) can then be written as a sum of a boundary term

CSy(a) +2tr(a A (F(ag) — J)) (213)

and a bulk action that remarkably is quadratic

235, = /M te((Flas) — J) A (Flay) - J) +aA[J,a]). (214)
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We can then get an exact expression for the generating functional

o (3 utrlFlan) = D) A (Flas) = ) -
= . 1
(/) o (215)
In the denominator we have the determinant of the operator L ;(z,y) = L;(z)d(x,y).

If J is such that L; is not invertible we can still carry out the computation. In
this case M ;, the space of solutions of (204), is an affine space of non zero dimension,
its tangent space is the kernel of L;. The action (203) now possess an extra gauge
invariance

0A =a, witha € ker(Ly). (216)

We denote by a; any solution of (204), and expand as before A = a; + a, we still
get the quadratic action (214). The integration over a now gives

s | e (5 [y (@) = ) A (Flen) - )
= a

MGy Vdet'L,
where det’ denotes the determinant of L acting on a orthogonal subspace of Ker(L ),

Gy ={g9/gJg~' = J} is the subgroup preserving J, and M ;/G is the space of so-
lutions modulo gauge transformation.

(217)

5.3 Topological effective action

We now want to study further the path integral and the effect of the gauge symmetry-
breaking term. We suppose in the following that 5 = 0. The gauge parameters are
pairs g, ¢ where g € SO(5) and ¢ is a Lie-algebra-valued one form. The BF action
Spr(B, A) is invariant under the transformation

A — 9A=gA¢g ' + gdg!, (218)
B — g(B—dad)g". (219)

We can split the integration over A, B into an integration over the gauge equivalence
class [A], [B] of the BF symmetry and an integration over the gauge parameters g, ¢.

The integration measure decomposes, by the standard Faddev-Popov argument
as DADB = D[A|D[B]DgD¢ and the path integral becomes

7 = / D[A]D|B]eSer (BAFTs(AB) (220)

where s(A, B) is an effective action obtained by integration over the gauge degrees
of freedom, explicitly

Gis(AB) _ / DyDoe  anllB-daoh(s) (221)
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where we define y(g) = g 1959 which is a unit vector? in R® and for every SO(5)
valued 2 form B we define the vector density |B|(x) = |B|uy(2)y™ by'?

tr(B A Byy) = | Blwd*x (223)

In order to understand the form of this effective action we will look at the partial
effective action obtained by integrating only g and only ¢. As we will see each partial
integration is one loop exact, which means that it localizes on its classical solutions
and that its evaluation is given by its stationary phase evaluation (see [58] for a
discussion of localization in QFT). This is clear for the integration over ¢ since the
action is quadratic in ¢ but it also happens for the integration over g.

5.3.1 Spontaneous symmetry breaking

The action [ tr(|B—da¢|y(g)) is ultralocal for g and it doesn’t contain any derivative
acting on g. We can therefore understand the localization property of the path
integral by looking at the final dimensional analog

/ daettr(Blv(9)) N (224)
ge = — .
s0(4) 2[Bl| 2Bl

The RHS of this expression is the semi classical evaluation of the integral. This is
clear since the equation of motion of tr(|B|v(g)) gives [v(g),|B|] = 0. The solutions
when ||B||? = | B|y| B[ # 0 are given by

_ 1B

0) = £ (225)

The action evaluated on this solution is £|| B|| which reproduces the terms in the ex-
ponential. The denominator comes from the evaluation of the quadratic fluctuations
around the solution.

Similarly, the equations of motion of the continuum action [ tr(|B|v(g)) (sup-
posing ¢ = 0 for simplicity) are [y(g),|B|] = 0. The solutions when ||B|]? =
|Bla| BI™ # 0 are given by

Y(9)(z) = i%. (226)

945 is left invariant by an SO(4) subgroup so ¥(g) determines a point in S* = SO(5)/SO(4)
10Tf we spell out the indices this reads

_ M vpo plJ RKL
|Bl =" ersxLme?’ By, By, (222)
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The sign is a priori x dependent, but if we restrict to continuous solutions for g we
have only two solutions'.

The localization property of the integral therefore suggests that the gravity ef-
fective action obtained by integration over g is (if we keep one branch)

Ser = / tr(B A F(A)) — %||B||(x)d49:. (227)

This action is now SO(5) invariant whereas gravity is only SO(4) invariant. It
sounds therefore strange at first that we can recover gravity from this action. In
order to understand this let us first check that the equations of motion for this action
are equivalent to Einstein’s equations.

The action is defined for all B. However it is differentiable only when || B||(z) # 0
which we now suppose holds true. The equations of motion are given by

FlJ %EIJKLMBKLHM’ (228)
dsBY = 0. (229)
where we denote ny; = %. Given this unit vector we define
el =dan! =dn! + Al'n;, W =AY pple! —n'el (230)
v = B"n,y, v’ = B 4 n'b! — n’b (231)

We denote by F7 (respectively R’7) the curvature of the connection A (respectively
w). We have the following identities

F'ny =dae’ =d,e, (232)
R —2ell A el = F1T — 9d elin ), (233)

where the bracket denotes antisymetrisation. From these identities it is clear that

R'n; =0, also dyn; =0, so w is an SO(4) connection preserving the direction n?.

In terms of the variables (230, 231) the equations of motion read

dye! = 0, (234)

%GUKLM(R” — 2t nel M = by, (235)

daB"n; =d,b" — b ne; = 0, (236)

db +2e8 ABTT = 0. (237)

' This problem disappears when we consider a negative cosmological constant. In this case v(g)

belongs to an hyperboloid and there is only one solution to the equation [y(g),|B]|] = 0.
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The first equation tells us that w is the spin connection if the frame field e is
invertible. If we take the derivative d, of (235) we obtain that d, bk, = 0 since
d,R" = 0 by the Bianchi identity, d,e! = 0 by the torsion free equation and
d,n; = 0 by construction. Equation (237) then implies that b’ = 0 when e’ is
invertible. This means that b’/ A e; = 0 by equation (236) which is equivalent, due
to (235), to the Einstein equation

eirl(R7 —2e" Nel) A ef =0, (238)

where the indices i, j, k label vectors orthogonal to n.

One sees that the equations of motion of the SO(5) invariant theory are equiv-
alent to the Einstein equations when e is invertible. Even if the action is invariant
under SO(5) gauge symmetry the solutions of this action spontaneously breaks this
symmetry by choosing a preferred direction in the internal space proportional to
|B|. The same results apply for 5 # 0.

On shell we have that ||B|| = Zle;uF™ A FM|. Any SO(4) bivector BY can
be decomposed into self dual and anti self dual parts B = B, + B_. Using this
decomposition for spatial and internal indices of F) ﬁju = we can write decompose F'
as ' = W, +W_+¢+¢, where W is a symmetric traceless tensor labeling the five
self dual components of the Weyl tensor, ¢ a traceless tensor labeling the trace free
part of the Ricci tensor and ¢ is the scalar curvature. In term of these components
we have ||B|| = 4ldet(e)/a*(W,)? + (W_)? + (¢9)* — (¢)?) The components ¢, ¢
are zero by the Einstein equation. Thus ||B|| is zero if and only if the Weyl tensor
vanish that is only if F' = 0 and our spacetime is spherical'? . We therefore see that
the presence of a spontaneous symmetry breaking is equivalent in the Euclidean case
to the existence of a non trivial gravitational field.

5.3.2 Gravity as a non local topological theory

We now consider the construction of the effective action coming from the integration
of the translational symmetry parameter for g fixed. We discuss the case g = 0.

oi5(A,B)= /D¢ei% Jd*atr(|B—dadlys) (239)

This integral being quadratic localizes on the classical solution if it exists. The
equation of motion are given by

dA{B7’Y5} = AACb, (240)

where Ay is the differential operator A ¢ = da{dadp,7v5}. Using the 4 + 1 de-
composition A7 = (w¥ ef) and ¢ = (¢¥,¢") we can write these equations in

2In the Lorentzian case the condition is less restrictive since W4 are complex conjugates
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components.

d,BY = dy(d,¢" — 26l A ¢/ (241)
Eijleij A€l = Eijkl(dw¢ij —2¢" A ¢j) Aet, (242)

If A 4 is invertible we can uniquely solve this equation. Lets denote ¢ = A (da{B,75})
a solution of these equations and define

B =B —dap. (243)

By construction B is a solution of d4{B, s} = 0. If we insert the previous decom-
position in the integral (239) we can factorize B out of the integral

ei% J tr(BAB~ys)

\/det(AA)

€iS(A7B) — ei% Jtr(BAB~ys) /D(be—i‘ J d*ztr(|dad|vs) — (244)

where A4 is the differential operator A ¢ = da{dap, 5}
One sees that the integration over the gauge modes produces for us an effective
action

s4.8) = [aBABw) = [u((BABw) + 5B} a(Bs)
(245)
This action is invariant under the translational gauge symmetry of BF' theory which
is the symmetry that makes BF theory topological. By construction its partition
function is the one of gravity. BF theory does not carry local degrees of freedom
whereas gravity does. The catch is that the effective action is a non local observable
for BF' theory since it involves the propagator of A4. It is important to remark
that this action is still quadratic in B since A4 is a linear operator. It is not clear
however, whether we can explicitly do the g integration of the action (245).
In the derivation of the effective action we have assumed that A 4 is an invertible
operator, or alternatively there is no non trivial solution to the equation

da{dag, 75} = 0. (246)

We expect it to be true for a generic choice of A (as long as e = d 475 is invertible).
We are now going to give an argument in favor of this claim, keeping in mind that
it will be interesting to have a proper characterization of the connections for which
it holds.

Before doing so, let us first study a particular case where on the contrary Ay,
is not invertible. We will now show that if A is a flat SO(5) connection, then the
gravitational waves around this connection are in one to one correspondence with
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the kernel of A 4. If we start from a Cartan Weyl formulation of gravity (181), with
A = 3, the equation of motions are

dy(R7 — el Aell) =0, eu(RT —e' Ned) Aeh = 0. (247)

In the first equation which comes from variation with respect to w* we have added
for convenience a term trivial by Bianchi identity. These equations can be written
in a compact form

using the notation of eq.(178). Given a gravity solution A = (w%, ') we can look for
‘graviton solutions’, i-e infinitesimal perturbation 0 A such that A+ JA is a solution
of the Einstein equations to first order. The equation for the perturbation is

AuSA = [{F(A), 75}, 64]. (249)

Therefore, if the original space time is a four sphere (F'(A) = 0), and § A is a graviton
solution, then ¢ = J A is in the kernel of A4. Even in Euclidean space where there is
no graviton Ay is not invertible around a flat SO(5) connection since infinitesimal
diffeomorphisms 6A = LA are in the kernel of A,. Away from a spherical space
this is no longer true: the graviton Laplacian is now Ay = Ay + {F(A),v}, ]
infinitesimal diffeomorphisms 04 = LA are in the kernel of A4 but not of Ayu.
This can be easily understood from the fact that the action S(A, ¢) = [ tr(ds¢" A
dad*)€ijp is not invariant under diffeomorphisms or SO(4) gauge transformations
acting on ¢ alone unless A is chosen to be fixed by a combination of diffeomorphism
and gauge transformations. This is the case for a flat connection since we have in
this case LcA — da(icA) = ig(F(A)) = 0, with £ a four vector and i¢ denotes the
interior product!®. In general A4 being non invertible means that S(A, ¢) possesses
some gauge invariance. We expect all possible gauge invariance of such an action
to come from a restriction of the diffeomorphism group times the local rotation
group. Only some special connection will have such an invariant subgroup like the
flat connection as well as connections of some special holonomy. For a generic A
there is no such invariance and therefore we expect A4 to be invertible.

13Tn the case of Flat SO(5) connection this action is clearly invariant under the transformation

0¢p = darp
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6 Spinfoam quantization of topological field the-
ories

Now we need to make sense of the path integral in (200). In our perturbative
approach the free field theory is a topological field theory. In ordinary QFT the
free field theory is Gaussian and the total partition function can be represented
as an infinite series of Gaussian integrals with the number of insertions growing
with the order. Similarly, in our approach the partition function is an infinite
series of topological path integrals with the complexity of moduli space growing
with the order. We will see that it is these moduli spaces where the propagating
degrees of freedom of General Relativity emerge. The integrals in the series are
no longer Gaussian, so we need another method for calculating them. But because
they are all topological any method that has proved successful for a topological field
theory could be used as a basis for our perturbation theory. Here we will use the
spinfoam approach to calculating these path integrals, which is based on discretizing
(triangulating) the manifold and then restricting the integration variables to the
given triangulation. This definition of the path integral is meaningful because the
result is independent of the choice of triangulation due to underlying topological
symmetry (provided that the triangulation is complex enough to cover all the moduli
spaces of the given topological field theory).

When we try to apply the spinfoam approach to General Relativity directly, the
main problem comes from the fact that the amplitude usually proposed depends on
the chosen triangulation and some extra work is needed in order to either understand
the refinement limit of the model or sum over triangulations by realizing this sum as
a perturbative expansion of an auxiliary Field theory [62]. This problem is generally
referred to as the continuum limit problem.

The spin foam quantization we are proposing is free of this problem and we want
to argue that it leads to an expansion that is triangulation independent. The main
idea is that at each order in the perturbation theory the model still carries part of
the original BF symmetry. This symmetry allows us to identify triangulations that
are identical away from the insertion of the perturbation operator and when properly
gauged fixed lead to a triangulation-independent amplitude. The complexity of the
minimal triangulation needed for the computation grows with the expansion order.
For example in 0-th order our perturbative vacua corresponding to de Sitter space
is described by a spin foam with one dual vertex.

We will first consider BF-theory where (3 (and hence the Immirzi parameter) is 0.
It contains infinities, so called bubble divergences, that result from the topological
gauge symmetry behind the triangulation independence. We describe the gauge
fixing procedure of [61] that removes those divergences. In perturbation theory,
however, some of those gauge degrees of freedom are sent to the physical sector,
so we cannot fix them any longer and some other treatment of the corresponding
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divergences is needed. This can be done in the case # # 0 which is much more
regular. Indeed it has been conjectured for a long time that the computation of the
partition function of the BF model with non-zero ‘cosmological term’ is realized by a
state sum model built on a quantum group with ¢ = exp(if3) roots of unity. This was
proved recently by Barrett et al [65] for the case of the group SU(2). Presumably
this results holds for any compact group which we will assume in the following. The
gauge fixing procedure of [61] can also be extended to this case wherever the gauge
symmetry is unbroken, and where it is broken no infinities arise.

6.1 Basics of spinfoam

Fix a triangulation A of M and its dual A*. As usual, the connection field A is
replaced by group elements g.- representing the holonomy of A along the dual edges
e* of A*. The B-field is replaced by Lie algebra elements X associated to the faces
f of A and representing the integration of B over these faces. The curvature 2-form
is represented as a group element Gy living on the faces f (or dual faces f*), and is
obtained as the ordered product of the group elements g.- for dual edges e* C f*,
upon the choice of a starting dual vertex on the dual face. The discretized action
for BF-theory with an extrinsic sources Jy, which are associated to the dual faces,
can then be defined to be

Sa(J) =) _[tr(X;P(Gpe™))], (250)
/

where P(g) is a projection of a group element on a Lie algebra defined in Appendix
B. The generating functional (198) then becomes

Z(J) = <H /S o dge*) <1;[ / " de) exp [iSA(J)]. (251)

The integration wrt Xy can then be explicitly performed (as shown in Appendix B),

yielding
2(7) = (H /.. i) [Tose") (252)

In the zeroth order of perturbation theory the partition function is just the
generating functional at J = 0. By using the Peter-Weyl decomposition for delta
functions in (252) and performing integration over the group elements it can be
reexpressed in the form of the Ooguri model [63]

2(0) =[] dim(y) [ ] dim(G) [ J(155).. (253)
jr gt f t s
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where jy j: label representations associated to the faces and tetrahedra respectively
and 15j-symbols are associated to the four simplices s.

The model (253) is generally divergent, the rate of divergence being proportional
to the number of closed three-dimensional regions (bubbles) in the dual triangula-
tion. The reason for these divergences is easier to see in the expression (252) at
J = 0. It contains a product of delta functions of holonomies around all the faces.
Not all such holonomies are independent. For each 3-bubble of A* or, equivalently,
for each edge e of A there is an identity relating the holonomies around the faces
forming this bubble.

[Tker) G ks = 1d. (254)

fDe

Here G is a holonomy around the face f* of A* dual to f, k.s is a group element
connecting the starting point of the 3-bubble b* of A* dual to e and the starting
point of f*, and €(f,e) is a sign chosen so that {f* C b*} = 9b*. Eq. (254) is a
discretized version of the Bianchi identity d4 F' = 0, which is a condition on a 3-form
field. This is why it involves 3-dimensional objects (bubbles).

It has been shown [61] that these divergences come from the gauge symmetry
of the model and result from integration over the orbit of the gauge group. There
are two possible ways to deal with these divergences: either we remove the integrals
over the gauge group by gauge fixing [61] or we modify the model so that the orbit
of the gauge group becomes finite, so that the integral over it converges.

6.2 Regulating bubble divergences
6.2.1 Bubble divergences and gauge fixing

In this section we briefly review the gauge fixing procedure of [61] and evaluate
the partition function of pure BF theory, which is in turn the partition function
of quantum gravity to 0-th order of perturbation theory. This allows us to give a
spinfoam representation of the perturbative vacuum of quantum gravity.

The free theory is the pure BF-theory

5= / t(B A F(A)). (255)

The gauge symmetry of the action (255) includes local SO(5)-summetry

A — gldg+g "Ag
B — g 'By, (256)

where g is an SO(5)-valued scalar field, and 10-dimensional translational symmetry
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(10 is the number of generators of so(5))

A — A
B — B+dao, (257)

where ¢ is an so(5)-valued 1-form field. This is a very simple gauge group and it
has a simple analog in the discretized action.

The 0-th order part of the expansion is just the generating functional (251) with
all the sources set to zero, J = 0:

Zo = (H /S o dge*> (1;[ / " de) exp [izf:[tr(xfef)}. (258)

Before performing the integration we should remove the variables of which the
integrand in independent. The existence of such variables is the consequence of the
gauge symmetries (256,257) [61].

The discrete analog the symmetry (256) is parameterized by group elements k-
living at the dual vertices of the triangulation. It acts as

Jex — kt_eige* kse*
Gf — ks_ltchGfkstf
X5 = kgt Xrkst, (259)

where s« and t.~ denote the dual vertices that are source and target of e* sty denotes
the dual vertex, which is the starting point for computing curvature on the dual face
fr~f

The translational symmetry (257) acts on the B-field as

B — B+do+[A, ¢). (260)

It is naturally integrated over the faces of the triangulation, X; = [ f B. The 1-form
¢ is naturally discretized at the edges of the triangulation in terms of a collection
of Lie algebra elements ®.. Therefore, the discrete transformation should be of the
form

5Xf = Z(q)e + [Qea (I)e]) (261)

eCf

where the orientation of the edges e C f is chosen so that {e C f} = df and Q. is
a certain functional of the connection which can be found as in [61].

The reason behind the translational symmetry (261) is the discrete Bianchi iden-
tity (254). We now can employ it to isolate the components of X; of which the
partition function is independent.
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Figure 1: Spinfoam representation of the perturbative vacuum of quantum gravity.
It consists of a single dual vertex vy with several closed loops g; attached to it.

Eq. (254) allows us to rewrite a factor in the path integral (258) related to one
bubble as

<H/ de) expl > [t (X,Gy) } [TsG)

foe foe fDe
= < H / de> exp [ Z / [tr(X;Gy)] } / d Xy, explitr(X s, Id)R62)
{F2e}\fo 7 #0) {2eN\ fo

Clearly in the last expression the integrand does not depend on Xy, and the in-
tegration w.r.t to it has to be removed. This should be done for every bubble in
A*.

The symmetry (259) results in the fact that the integrand in (258) does not
depend on the group elements connecting any two invariant vertices. The integration
w.r.t. such group elements must also be removed.

Generally we choose a maximum tree in a 1-skeleton of A*, T* C A*, and remove
every integral w.r.t. the holonomies along the dual edges e* C T™. Also we fix a
maximum tree in the 2-skeleton of A, 7" C A, and remove every integral w.r.t. Xy
such that f C T. We also should take into account the Faddeev-Popov determinant
which was proved to be unity in [61]. For trivial topology the partition function is
thus equal to 1.

At the end we get a triangulation containing only one edge and only one dual
vertex. This simple spinfoam describes the perturbative vacuum. This is because
with no matter and no gravitational excitations there is no physical way to distin-
guish different points of spacetime. (Fig. 1) There is one copy of SO(5) associated
with this vertex. It can be understood as the global SO(5) symmetry of the vacuum.

In the generating functional (251) the gauge symmetry described in this section
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is broken. Therefore, instead of infinities coming from the integration over the gauge
group and which can be represented as §(0) we will have delta functions expressing
the conservation of current J at every bubble.

Z(J) ~ [T ] kple” kp), (263)

b fCb

where £y, is a group element connecting the starting point of a face and a starting
point of a bubble. The corresponding X ; degrees of freedom become physical. Then
we have to apply derivatives to (263) and take a limit J — 0. But because of the
distributional character of the expression (263) such a limit is ill defined. We have
to regularize the expression for the generating functional. This is done in the next
section.

6.2.2 Bubble divergences and compactification of the translation group

There is another way to treat the bubble divergences which can be extended beyond
free field theory. While for pure BF' theory the problem comes from integration
over (the translational part of) the gauge group, in perturbation theory it can be
interpreted as a strong coupling regime. Indeed, if we look at the action (195) for
B = 0, we see that the free theory (pure BF) is linear in B, while the interaction
term is quadratic in B. Thus, even though the coupling constant « is very small,
for sufficiently large fluctuations of B-field the interaction term becomes large as
compared to free field term and the perturbation theory breaks down. Clearly, the
later problem is an artifact of the perturbative expansion, as the interaction term,
if treated non-perturbatively, would suppress the large fluctuations of B-field due
to its strong oscilatory behavior. But exactly the same could be done by adding
the term ( # 0 to the free field theory. This modification keeps the free field
theory topologically invariant and exactly soluble. Now we can make a perturbative
expansion in terms of a.. Because the large fluctuations of B-field are now suppressed
by the (-term, perturbation theory does not break down, and later in this paper we
will argue that it is finite in all orders.

The first step will be the quantization of BF-theory with a ‘cosmological’ term
(183). The basic difference between the translational gauge symmetry of pure BF
theory (255) and that of (183) is that (257) just shifts some components of B-field,
while as it follows from (6) for § # 0 the translational symmetry acts on B-field
non-linearly

0B = dad + [0, ). (264)

By analogy with gravity in 241 dimensions the this can be interpreted as a de-
formation of the coalgebra to the gauge group. So, it has been conjectured that
the computation of the partition function of BF model with non zero ‘cosmological
term’ is realized by a state sum model built on a quantum group with ¢ = exp(if3)
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roots of unity. The model is known as the Crane-Yetter model [64], and it is obtained
from the Ooguri model (253) by replacing the representations and intertwiners with
g-deformed ones:

172 _ 172\ —2{NutNe)
oy — (mq — >) ;;gdimq<jf>Hdimq<jt>H<<15j>q>s,

(265)
where N, and N, are numbers of vertices and edges of the triangulation respectively.
Recently [65] this conjecture was proven along with triangulation independence of
the model.

It is important that the model (265) has no bubble divergences in it, instead
it contains a factor of 1/v/beta per bubble. This can be interpreted as a result of
compactification of the translation group after which it acquired a finite volume
1/Vbeta.

Below, in the absence of differential calculus on a quantum group, we will be
working directly with the action principle (183) and corresponding generating func-
tional. We will use the conjecture of [64] in the discussion on triangulation indepen-
dence.

6.3 Spinfoam perturbation theory (outline)

In this section we illustrate the basics of spinfoam perturbation theory techniques.
We will describe all the possible diagrams relevant to the vacuum-vacuum transiton
amplitude to the second order in . For this we will first need to derive the expression
for the generating functional evaluated at the simplest possible triangulation of a
4-sphere.

The simplest possible triangulation of a 4-sphere consists of two 4-simplices glued
to each other along five tetrahedra. The dual triangulation consists of two vertices
dual to the two 4-simplices and five links connecting them, which are dual to the five
tetrahedra. The two dual vertices allow a description of all the possible arrangements
of two derivative terms acting on the generating functional. Therefore, the simplest
possible triangulation allows to calculate the partition function to the second order
of perturbation theory. Higher order contributions would require a more complex
triangulation to be calculated.

6.3.1 Generating functional on a lattice

We begin with evaluation of the partition function on the simplest possible triangu-
lation of a 4-manifold, having a boundary that is a 3-sphere. Such triangulation con-
sists of a single dual vertex in the bulk and five dual vertices on the boundary, Fig.3.
The bulk vertex v is connected to the boundary vertices by holonomies g;, I = 1..5,
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a1

U1 U2

Figure 2: The dual of the simplest possible triangulation of a 4-sphere. T'wo dual
vertices v; and v, connected with five dual links g;

and the boundary vertices are interconnected with each other by holonomies hy;.
The holonomies h;; comprise a triangulation of the boundary, which is different
from the simplest possible triangulation by one 1 — 4 Pachner move, i.e. a change
of the triangulation in which one dual vertex is replaces by four dual vertices..

The picture in Fig.3 can also be considered as a part of larger triangulation
restricted to one 4-simplex with the dual faces cut in wedges. The vertex v is the
vertex dual to that simplex, the holonomies g; are parts of dual edges belonging to
the simplex, and the holonomies h;; are those cutting the dual faces into wedges.

hay e .

Fhis

Figure 3: The simplest possible triangulation of a four manifold with a boundary.
The holonomies g; lie inside the bulk while the holonomies h;; are on the boundary.

We consider the regularized action with a non-zero Immirzi parameter 3 # 0. To
make the formalism more convenient for generalization to an arbitrary triangulation

62



we will use the same generating functional technique as before. First, we calculate
the generating functional for # = 0. Then we convert the term containing 3 into a
derivative term acting on the generating functional. Finally, we calculate the result
of applying the derivative term to the generating functional non-perturbatively, so
that no bubble divergences appear in the intermediate calculation.

We assume the boundary triangulation fixed, so the expression for the generating
functional reads

Zo(J,h) = / ( I1 dg1)<HdXU)eiS°(J’g’h’X) (266)

I=1...5 J<I

Here we introduced algebra elements X 1152 corresponding to the B-field smeared
along the wedges. The holonomy around a wedge can then be written as G;; =
grhrs(gs)~t. All the charges Jr; originate at the vertex v in the center of the given
four simplex and are associated with ten wedges w;;. By Zy and Sy in (266) we
mean at 0 = 0.

In our calculations we will use the following d-function identity described in the
appendix

/dXeitr(XP(g)) =4d(g), (267)

where X is an algebra element, g is a group element, and P(g) is a projection of a
group element on the Lie algebra described in the appendix.
Then we can write the discretized action as

So(J g, b, X) =Y " tx(X1,P(grhis(gs)~'e’7)). (268)

J<I

The path integral (266) is now easy to evaluate by performing integration over
X;; and g;. This can be done by using the identity (267) and the composition of
delta functions. One of the integrations over g; has to be left out however, and we
choose it to be g5, and we can put g5 = ¢g. The resulting expression contains six
d-functions corresponding to six independent bubbles in the model

Zo(J, h) = /dgH(5(€J5i€Jij€Jj5gh5jhjihi5g_1). (269)

i<j

This is the expression to be used for further calculations.
The term containing 3 in the action can be discretized as

Sg(X) = é Z EIJKLMtI(XJKXLM). (270)

I,J,K,L,M=1...5
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This is the discretization of B A B term on one simplex. Notice that €; ;57 factor
in this expression has nothing to do with the symmetry breaking e from the previous
sections. This is the five dimensional 'e¢’ needed to define a 4-simplex.

So, the generating functional for non-zero 3 can be rewritten as

Zﬁ(J,h):eXp [Zg Z E[JKLMtr( 0 0 ) Z()(J,h) (271)

I,J,K,L,M=1...5 0J sk 0JLm

For non-perturbative evaluation of this expression we use the following identity.
For arbitrary non-degenerate quadratic form A and a vector variable x

. 1 . —1
10 A0z __ (kO —kA™E)
= dk 272
¢ det(A) / ¢ ( )

and then we can use the fact that the differential operator in the r.h.s. of this
expression is a shift operator. In fact, this is the same as a direct evaluation of the
path integral containing both terms (268) and (268). However, as we will see, for a
complex triangulation the above method is much more convenient, as it allows us
to compose all the delta functions first.

First of all, one should notice that the quadratic form in (270) to be inverted is
degenerate, so one should extract the non-degenerate part of it. The degeneracy of
this quadratic form is easy to see if one introduces the following variables:

X*JK — Z EIJKLMXLM. (273)

I=1...5

One can notice that they are not all linearly independent. There are four obvious

relations between them
> x =, (274)
I

Only six of the ten X*/’ are independent, and we can take them for the basis
X*J 4, 5 =1..4. By using these variables the quadratic form in (270) then can be
rewritten as

Z EIJKLMU'(XJKXLM) = Z tl"(X*JKXJK)
1,J,K,L,M=1...5 JK=1...5
= ) (XX M)e.  (275)
1,5,k,01=1...4

To get the last line in this equation we used the relation (274) to express X*/® in
terms of X*¥. Thus the quadratic form in (270) can be written as a form depending
purely on X*¥  which are independent variables.
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For the rest of this section we will consider the example of an abelian group.
This will allow us to illustrate the basic structure of the generating functional on
a simple example. Many of the results obtained here could be generalized for a
non-abelian group. So, let g;,h;;, and J;; all be elements of U(1). We can use the
identity (272) to apply the differential operator in a form of the last line of (275) to
the generating functional (269). The shift operator

JK* o ZKZ*J( Z 6IinLOE) )

T(K)=e "% =¢ "ists VKL (276)
acting on the generating functional (269) yields
T(K*)Zo(J, h) =

/ dg H 5( H esipqu;qeeijle;l H egqumK;quSieJij €Jj5gh5jhjihi5g_l) (277)

i<j m=1..4 m=1..4

In an abelian theory the group elements g in the delta functions and integration
with respect to g can be neglected. The expression for the regularized generating
functional

*

Zs(J, h) = / A K¢ 2 KKAT (K Zo(J, h), (278)

where the action of the shift operator T'(K*) is given by (277), can be evaluated
using the formula (333) from appendix C for regularized delta functions defined on
quantum U(1) with ¢ = ¢%:

Zg(J, h) = H eijkl(Sg(eJ“eJ"je‘]j5h5jhjih,~5,e‘]“e‘]’“e‘]“hg,khmhlg,) (279)

i7j7k)l

These regularized delta functions express conservation of charges J in the bubbles.

The expression (279) describes the generating functional for the simplest possible
triangulation of a 4-sphere. The natural question is then: what happens if we
use another, more complex triangulation for evaluating the generating functional
and its derivative. Because zeroth order of perturbation theory is topologically
invariant it is natural to expect that the result is independent of the triangulation,
the partition function changes by a factor. The basic idea of the present perturbative
approach is that a large part of topological symmetry is preserved in higher orders of
perturbation theory. At a finite order of perturbation theory topological symmetry is
broken only at a finite number of places (finite number of vertices were the derivative
terms act). Because of this we expect that the result must also be independent of
triangulation provided that the tringulation is complex enough to describe all the
possible symmetry breaking configurations at a given order of perturbation theory.

To see whether this is actually the case we need an expression for generating
functional for an arbitrary triangulation. Any two triangulations of arbitrary mani-
fold can be related to each other by a sequence of Pachner moves. In four dimensions
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Figure 4: The triangulation of a 4-ball Fig. 3 after a 1 — 5 Pachner move, solid
lines g} denote the edges of the dual triangulation, dashed lines h%, denotes the
boundaries of each new simplex (not all of them are depicted), the edges hi, can
be thought of as belonging to the boundary of the ball.

there are 1 — 5, 2 — 4 and 3 — 3 moves which split one dual vertex into five which
replace two dual vertices with four vertices, and which replaces three with three oth-
ers respectively. We will prove the invariance of the partition function with respect
to one type of Pachner move, 1 — 5.

Let us consider a triangulation which can be obtained from that on Fig. 3 by
1 — 5 Pachner move, see Fig. 4. It consists of five copies of triangulations Fig.
3 glued together. We will label group elements and charges corresponding to each
dual vertex on Fig. 4 with a superscript I = 1...5. Let Zz(J!, h!) is a generating
functional corresponding to a part of triangulation around a dual vertex I, and let
Z é(J, h) is the generating functional for the whole triangulation depicted on Fig. 4.
The later can be expressed through the former by

Zy(J,h) = /(H IT v} )(Hzﬁ(ﬂ,hf) ( [T orhx )) (280)

I J<K#I I<J<K

Because of the quantum deformation the group elements J and h take on a discrete
set of values. Therefore, by integration in (280) we mean a discrete summation and
by a delta function — the Kronecker delta symbol, (see appendix C). The later is
introduced to describe the gluing of the five simplices into one complex.
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The integration in (280) can be explicitly performed to yield

Zy(J,h) = ;2 s(Jh) [T o (H a‘MJKLeJ%L> : (281)

i1=1..4 M

Here hyy = i, hl;, Jry = JL,+J7;, Zs(J, h) is the partition function for one simplex
(279), and the delta function is the Kronecker delta as in appendix C.
From (281) it directly follows that

1
J=0 /62

which proves the triangulation independence (up to a finite factor) of the partition
function in zeroth order of perturbation theory.

To consider higher orders of perturbation theory, one can apply the interaction
term with derivatives to generating functionals evaluated at different triangulations
and compare the results. By a direct computation one can check that

0 0
JKLMN
>« (aJ;(L aJm) Z5(,h)

Zj(J, h) —Z5(J, h) (282)

J=0

IJKLMN=1.5 J=0
1 JKLMN ( 0 0 ) 35
- ¢ ) Zs(J, h) (283)
62 JKL%:L.E) Ik OJun J=0

which proves the triangulation independence to the next order.

6.3.2 The basics of the diagram technique of perturbation theory

In this section we will describe schematically the perturbative expansion considering
all the orders which could be based on the simplest possible triangulation of a four
sphere. As we will argue this will allow us to see perturbation series up to the second
order.

In the previous section we have derived the generating functional for an abelian
group. This have illustrated why the perturbative expansion must be triangulation
independent. However in an abelian theory we cannot describe one important feature
of the present perturbative approach. This is a gauge symmetry breaking by the
interaction term and sending some of of the gauge degrees of freedom to the physical
sector. For this we need to consider a non-abelian theory.

We do not have an explicit expression for a generating functional for non-abelian
theory so far, and it is expected to be much more complicated than abelian. However
there is a way of making calculations in this case by employing some results already
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existing in literature. One can recall a formal expression for the generating functional
from section 5.2.1

ZJ—/DAeXp (226 ((F(A)—J)/\(F(A)—J))). (284)

If we discretize the manifold in (284) and associate the extrinsic charges J to
the dual faces, than application of derivatives to the generating functional (284) will
yield

0 0
5775 5T Z(J) »
= / DAIn(GAP)....In(GSP) exp <% tr(F(A) AF(A))) (285)

Here the little indices a, b label the dual faces to which the charges J4Z are asso-
ciated. Capital A, B are SO(5) indices. G2P is a holonomy of the connection A48
around a dual face a, i.e. Wilson line. The evaluation of expectation values of Wilson
lines with a F'A F' action already exists in literature (see [65] and refrences therein).
It is related to certain knot invariants formed by those Wilson lines and uses the
quantum group techniques with ¢ = ¢, analogously to the previous section. In this
paper we will not focus on knot structure of (285), but we will mostly be interested
in the tensorial structure of this expression, because this is where the "local” degrees
of freedom of General Relativity should appear. Generally an expression (285) is a
knot invariant of the holonomies G2 ... times some invariant tensor containing the
indices A, B, ....

The perturbative expantion can be obtained by applying the derivatives from the
interaction term to (284). The explicit expression for the interaction term reduced
to the triangulation Fig. 2 is (indices 1 and 2 stay for the two dual verices of this
triangulation)

90 92
OJh e 01,

o 0

.

Sint = Z ersLmtr(ys ) —« Z ersrnmtr(ys
T T

Because we consider perturbative expansion to the second order and the inter-
action term is the of second order in derivatives, we will be needing the expressions
of the derivatives of Z; up to the fourth order evaluated at.J = 0.

Thus the derivatives of Z(.J) that we need are:

&Z(J))H = a (B)tr(T47) =0 (287)
%%Z(J)’H = ax(A)a(TAPTP) (288)
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0 0 _ AB, mCD —1
o7 JgDZ(J)‘J:o_% / dgtr(T""gT""g™") (289)
o o0 0 0
A — TABTCDTEFTGH 2
0J4p 0J¢p 0Jpp 0Jey (J)’J:O as(B)tr( ) (290)
g o0 o0 0
7 — 4 TABTCD TEFTGH -1 291
T T A0, = ) [ gl TergrErTny (o)

where a1(3), a2(8), ab(B), as(B), ay(B) are some knot invariants. The intependece
of these invariants on the triangulation has also been demonstrated in [65] The
integrals over g, the group element connecting the two dual vertices, appears when
the two derivatives are acting at two different points. This is an integral of a regular
expression over a compact space. So, we can notice that all the above expressions
are finite, and the same could be said about the derivatives of Z(J) of any order.
On the other hand at § = 0 these expressions diverge. So, one can say that the
parameter 3 renormalizes the coupling constant of the perturbation theory.

Now we will try to give an expression for perturbative expansion of the partition
function of GR up to the second order

Z=2+72'+ 7%+ .. (292)

Zero order contribution is simply

1

7%= Z5(J =—. 293
o), =5 (298)

The first order contribution appears to be zero. Indeed
aseapepstr(TABTOP) = 0 (294)

because it contains a contraction of a symmetric tensor with antisymmetric. So
7' =0 (295)

The first non-trivial order in this expansion is the second order. We will describe
it schematically without numerical evaluation. At this stage it is important to
demonstrate where the "local” degrees of freedom of General Relativity come into
play.

In the expression

72 = §3,Z(J) (296)

There are two types of terms. One is when all four derivatives in the squared
interaction term act at the same vertex and the other is when two derivatives act on
one vertex and two others act on the other vertex. Here we describe the second, the
most interesting contribution. We list the terms relevant for this contribution except
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those which are zero as they contain In B, and those which could be reduced to the
first order contributions applied twice and are therefore zero, too. These includes

/ dgeapcpsepraustr(TAPTEE gTPTEH 671y (297)
/dQEABCDsEEFGHstl"(TABQTEFg_1)tT(TCDgTGHg_l) (298)

and
/ dgeapcpsepraustr(TAPgT M g™ er (TP gTE g7) (299)

One can show that due to SO(4) invariance of the last three expressions the
integrand does not depend on the SO(4) subgroup of SO(5). The integration is
thus actually taken over the coset SO(5)/SO(4). This is where the physical degrees
of freedom of General Relativity show up. They are elements of the SO(5)/SO(4)
coset which are sent from gauge sector to physical sector by symmetry breaking.

The terms appearing in such a perturbation theory can be expressed in terms of
chord diagrams with interchord connections. A typical second order chord diagram
is depicted on Fig. 5. The main difference between such chord diagram and a chord
diagrams that appear in the theory of Vassiliev invariants [57] is the presence of
inrterchord connections described on the diagram as a dotted line. This is precisely
the point where the perturbation theory described becomes different from that for
topological quantum field theory. Interchord connections encode information of the
“local” physical degrees of freedom of General Relativity. To each such connection
is associate an element of SO(5)/SO(4) coset and an integration over it.

We will not study the higher orders of perturbation here, but we can notice that
the expression (284) for the generating functional is infinitely differentiable at J = 0
for B # 0. This follows from explicit calculations of the expectation values of the
Wilson lines. So, for § # 0 the expressions for the vacuum loops must be finite to
all orders. One can say that a single counterterm related to the Immirzi parameter
controls all the divergences appearing in the vacuum loop diagrams.
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Figure 5: A typical chord diagram. A solid line denotes a flux of extrinsic current
J. It should be closed as the current is conserved (a regularized delta function
expresses the conservation of the current). A chord, the dashed line, denotes a pare
of derivative in the interaction term acting on a functional of extrinsic current at
two different places. Each chord has a point of origin. The origins of each two pares
of chords are related to each other by a holonomy g. The integral with respect to g
is denoted by a dotted line connecting two chords.

7 Discussion

The central part of this thesis is a new background independent perturbation theory
for quantum General Relativity. It is very different from the traditional pertuirba-
tion theory, which is based on splitting the metric into a background and fluctuations
(1). So there are two natural questions to ask. First, is the new perturbation theory
behaves any better in the ultraviolet regime than the traditional one? Second, is
there any regime in which the results of two different perturbation theories reproduce
each other?

While at the present stage we cannot give a final answer on either of these
questions, there are several indications as to what the answer should be.

The main reason behind the non-renormalazibility of the traditional perturba-
tive quantum gravity is the dimensionality of coupling constant. The actual di-
mensionless coupling is proportional to energy squared and therefore the theory
becomes strongly coupled in the ultraviolet regime producing infinitely many type
of divergent diagrams. One needs infinitely many counterterms to control all these
divergences.

On the other hand the coupling constant of the perturbation theory for quantum
gravity proposed here is dimensionless. The only divergences appearing in this
theory are very similar to bubble divergences in the Ponzano-Regge model. The
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difference is that the divergences in the Ponzano-Regge model are infrared, while in
the model proposed here they are infrared and ultraviolet at the same time. One
may expect that there is some mechanism relating ultraviolet and infrared physics
in this theory. We have argued that at least at the level of vacuum loops all the
divergences appearing in the theory are controlled by a single counterterm which is
related to the Immirzi parameter. This is already very different from the results of
the traditional perturbative approach where one needs infinitely many counterterms
to remove all the divergences.

This is not yet a proof of renormalizibility, because one has to show that the
divergences can be removed from all the possible diagrams, not only from vacuum
loops. This has to do with scattering problem which is also related to the second
question.

To address the second question, one could think of setting up the problem of
graviton-graviton scattering. In attempting this we encounter the main difference
between the traditional perturbative approach and the present one. In the tradi-
tional approach as a result of linearization of the diffeomorphism transformations
graviton can be described as a point particle. So, the ordinary scattering problem
for particles can be directly generalized for gravity.

In the present perturbative approach, however, the theory is kept exactly dif-
feomorphism invariant order by order. As a result the generic non-locality of the
basic excitations of the gravitational field appears already at the perturbative level.
So, the conventional approach to scattering can no longer be directly applied, some
revision of the scattering problem is needed.

However, there is a simpler way to address a scattering problem. Matter fields
have local excitations even in a diffeomorphism invariant context. So, we can try to
calculate scattering of matter particles, such as Deser Jackew 't Hooft like particles
described in this thesis due to quantum gravity effect. In the approach developed
we have all the necessary tools to address this problem. This will be a subject of
further investigations.
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A  SO(5) conventions

T;; = —=Ty; with I = 1,--- 5 are the ten generators of so(5). They satisfy the
algebra
75, Trr) = s Tre — nixTor + T — nsclix, (300)

where 1;; = 75 in the case of so(5). The corresponding theory of gravity is Eu-
clidean with a positive cosmological constant, i-e ‘spherical gravity’. This is the one
we focus on in the main text. If we want to describe Lorentzian gravity and/or
other sign of cosmological constant one should consider metric of different signa-
tures, the cases of interest for gravity are: SO(4,1), where n = diag(+ + + + —)
which describes Euclidean gravity with a negative cosmological constant (i-e ‘hy-
perbolic gravity’). SO(1,4) where n = diag(— + + + +) which describes Lorentzian
gravity with a positive cosmological constant, i-e ‘de Sitter gravity’. SO(3,2) where
n = diag(— + + + —) which describes Lorentzian gravity with a negative cosmolog-
ical constant, i-e ‘AdS gravity’. One can split the generators of in terms of so(4)

generators T;;, ¢ = 1,---,4 and ‘translation’ generators P, = T5;/l, where [ is a

length scale (cosmological length scale in our context). The algebra reads
[T, Tra) = mppTa+-- (301)
[T, Pe] = maP; — D, (302)

M55
PRl = -2, (303)
The so(5) can be represented in terms of v matrix
1

Ty = Zhl’ 7] (304)

where ~y; are y-matrices satisfying {v;,vs} = 2n1;.

In this spinorial representation we can easily write the root system and Cartan
basis of the Lie algebra of SO(N). Lets consider SO(2n + 1) and SO(2n) and lets
define

1 .
V;E = 5(72;’—1 + i95), (305)
which satisfy
(=0, [yt =00 (=1 (306)
We define the Cartan subalgebra to be generated by
1 _
h; = 5[7;’_’72' J. (307)

which satisfy h? = 1/4. The adjoint action of h;s are diagonalized by the roots
generators

N —

€eiteje;
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where ¢ < j and we denote by e; the dual basis of the Cartan subalgebra e;(h;) =
tr(hih;) = ;5. One can easily check that if h is any Cartan element we have:

[hv Eeiei+5jej] = (Elel(h'> + €j€j(h))E€iei+€jej' (309)

In the case of SO(2n) this generators gives a basis of the Lie algebra and +e; +
+e;,i < j € [1,---n| are all the roots. The positive roots are e; + €;,e; — €;j,i < j
and the simple roots are {e; —eg, -+ ,e,_1—€,, €,_1+€,}. The Weyl is of dimension
2"~In! and consists of the group of permutation of and even sign change of e;.

In the case of SO(2n + 1) we consider

v =(2H) - (2H,) = (=0)" 7 - Yan, (310)

which clearly commutes with the Cartan generators, and define
Eee; =77 (311)
For SO(2n + 1), +e; and *e; + xe;,i < j € [1,---n] are all the roots. The positive
roots are e;, e; +¢€;,e; —e;, 1 < j and the simple roots are {e; —ea, - ,€4_1 —€p, €}

The Weyl is of dimension 2"n! and consists of the group of permutation of and sign
change of e;.
We now look at representations of SO(5), the roots are +e; + ey, e1,e5. The
fundamental weights are given by
er + €

)\1 = €1, )\2 = 5 (312)

the representations are labeled by one integers and one half integer (m, s) = me; +
sey = (m — $)A1 + 2sAy which physically correspond to mass and spin. They satisfy
the restriction m > s. The vectorial representation corresponds to (1, 0) the spinorial
to (0,1/2) and the adjoint to (1,1). The Casimirs are given by the quadratic casimir
Cl = ZIJ X[JXIJ and Cg = WIW[, with WI = éEI‘]KLMXJKXLM. The action of
this casimir on the representation (m, s) is diagonal and given by
3 s+1 5

4 :(m+§)2+( 5 )2—5, Cy = ms(ms + ¢). (313)

where ¢ is a integer which can be evaluated in the adjoint representation.
The character of this representation is given by

sin[(m + %)yl] sin|(s + %)yg] — sin[(s + %)yl] sin[(m + %)yg]

s yihiy _ 314
X(m, )(e ) sin(%yl) sin(%yg) sin (ylgyz) sin (yl-;-yz) ( )
and the dimension is given by
1
Aim,sy = z(2m +3)(2s + 1)(m + s+ 2)(m — s+ 1). (315)

3
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B Delta function identity

Lets consider the orthogonal group G = SO(N) and denote G its Lie algebra and Z¢
its center. We define P : G — @ the following map from the group to the Lie algebra:
P is such that P(gHg™!) = gP(H)g™'. Using this property it is enough to define
it on the Cartan subgroup of SO(N). Lets denote y = y'h; € H an element in the
Cartan subalgebra with h; the basis (307) of the Cartan Lie algebra and exp(iy) € H
an element of the Cartan subgroup. In the spinorial representation of SO(N) we
have exp(iy) = [[,(cos(y;/2)+isin(y;/2)h;). We define P(exp(iy)) = >, sin(y;/2)h;.
This projects all center elements on 0.
We want to establish the following identity

/ dXe"XPE) = AZ(2p) D €.0(Gx). (316)
g z2€2¢q

p=1/2%" _,a and we denote Ag(X) = [[,-,(e|X) the product being over all
positive roots.!* The trace is taken in the spinorial representation of SO(N), it is
normalized by tr(h;h;) = d;;, 6(G) is the delta function on the group associated with
the normalized Haar measure, the sum is over all center elements and €, = (—1)"
for SO(2n), €, = [T} (=1)®+Y for SO(2n + 1) and 2 = €%, y; = 27n,;. The measure
on the Lie algebra is normalized to be

/g dX e ") = /H [T dxiag(x)e =X

where the integral on the RHS is over the Cartan subalgebra and we denote Ag(X) =
[1.-0(|X) the product being over all positive roots.'> This identity is a consequence
of Harish-Chandra-Itzykson-Zuber formula [66]. Lets consider X = X'h;,Y =
Y'h; € H two elements in the Cartan subalgebra. We have the identity

Zw Ewe)(iyw(i)
Ag(X)Ag(Y)

dU is the normalised invariant measure, the sum is over the Weyl group, €, = +1
and p=1/2% .o

One of the simplest proof of this formula uses the fact that the integral satisfies
the Duistermaat and Heckman hypothesis and is therefore equal to its sationary
phase evaluation. The stationary points of S = tr(XUYU™!) are given by dS =
tr(U~'dU[Y,UXU™']) = 0. This implies that U is an element of the Weyl group
U = w. If one expands the action around such a solution U = exp(¢)w one finds

I(X,)Y) = / AU XUYU™) = Ag(p) (317)
G/H

S = tr(XwGuw) — %n([@ X)[6, wYw ) 4+ . (318)

this is equal to [[;_, X; HK]-(XZ-Q — X?) for SO(2n + 1), and to []
this is equal to [[}—, X; [[,.;(X7 — X7) for SO(2n + 1), and to []

i<j(Xi2 — X?) for SO(2n).
i<j i (X7 = X3) for SO(2n).
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Expanding ¢ = ) ¢, E, in the Cartan basis and computing the trace one finds
S = tr(XwGuw™) + Z bab_ala|X)(alY). (319)

The stationary phase approximation of the integral is, up to a normalization factor,
then given by the RHS of (?7). The normalisation factor is obtained with the help
of the Weyl identity
Z €peXi XiP) = Ag(eX) (320)
by considering Y = p, X = ex and letting € go to 0.
In order to prove the delta function identity lets take f an invariant function on
the group and consider

= /G dGf(G) /g dX M XPE) (321)

where dG is the normalized Haar measure. Lets define Ag(e?) =[], (e T e e

the product being over all positive roots. We can split both integrals over G' and
X as integral over the Cartan subgroup and integrals over the corresponding orbits,
one gets

1 ) ) ; -1
I= 0 /H dyAZ(e”) f(e") /H AXAZ(X) /g dU ™ XUPOUT), (322)

The integral over H is over y; € [0,47|, dy =[], § dyl denotes the normalized measure
and || is the volume of the Weyl group. We can use the integral formula (317)
with Y = iP(e") to obtain

ZZ X; sm(yw( )/2)
‘W‘ Z / Ag ZP ew / HdX Ag(X (323)

The factor Ag(X) can be obtained by acting recursively with derivative of y;/2. If
we denote Y; = sin(yw(i)/2), then

F(e) P . .
i3 Xi sin(Yuw(iy/2)
|W| Z / Ag zP ew» B (imm)/ﬁdxe - (324)

We can reabsorb the sign ¢, in the differential operator and perform the sum over
the Weyl group. We are left with

_ AG(eiy)f(eiy) 0 iy, Xisin(y/2)
[_Ag(p)/de—Ag(iP(eiy)) Ag (z’@Yi) /HdXe : (325)
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The integral over X; can be performed easily, giving rise to a factor [ [, 20 (sin(yuw/2))-
This product is equal to (4m)" [[,(d(y;) + 0(y; — 2m)). We can then integrate out
this delta function, thus

_ S Al [Aeee)
I = Ag (p) o= AQ( 8}/2) |: AQ’ (ZP(ezy)) :| Y =27n; (326)
) S A ) (g LA

where we have used that all the derivative should act on Ag(e®) in order to get a
non zero result. The derivative action on Ag(e?) can be calculated with the Weyl
identity (320), when evaluated at y; = 27n; it gives an additional factor Ag(—2p) =
(—=1)"Ag(2p) for SO(2n) and Ag(2p) [];(—=1)"** for SO(2n) + 1. Finally the ratio
Ag(e®)/Ag(iP(e™)) is equal to 2" where r is the number of positive roots. Overall
this gives

AZ(20) Y e f(2). (328)

z2€EZG

where ¢, = (—1)" for SO(2n), €, = [[(=1)™=Y for SO(2n + 1) and 2 = e¥,y; =
2mn,.

C Regularization of delta functions and ¢g-deformation
(abelian group)

In this section we consider how to regularize a delta function defined in a previous
section using g-deformation. We restrict our consideration to the simplest example
which is U(1) group.

For a group element g = €%, the delta function is defined as in the previous
section

d(g) = /dXeXP(g) =0(sinz) = Z(—l)"é(m + ) (329)

We define s
05(91, 92) = €701 72 6(1)3(g2) (330)
Such expressions naturally show up in the partition function for BF theory with
‘cosmological” term £.

(330) can be explicitly calculated by using a formula for the gaussian integral
and finite translation operator and the result is a series of gaussian functions of

77



T1,T2:

56(91,92)25 > (—1ymEnestatmmaatmy (331)

This expression however is ill defined and one needs to find a way to regularize the
infinite sum in it.

One can suggest the following regularization scheme. Choose an integer N > 1.
As generally # < 1 we can choose 3 = 5%. One can evaluate the sum in (331) at

Tr = 27Tﬁk’1, T = 27Tﬁk’2, (332)

where k; and ky are integers. As [ < 1, any value of z; and x5 can be well
approximated by a value form a subset (332). By restricting the summation in
(331) to {—M, M} one obtains

M

1 i ]_ 27
5ﬁ(917g2> = B Z (_1>m+ne 2ﬂN(7rk1/N+7rm)(7rk2/N+7rn) _ Be%klb (333)

m,n=—M

Because the right hand side of (333) does not depend on M the limit M — oo is
well defined.

This expression for the regularized delta function is regular (with infinitely many
regular derivatives) and periodic

65(91€”™, g26*™™) = 65(g1, g2) (334)
and
g{}% 56(91,92) = 5(91)5(92)- (335)

This construction can be thought of as a quantum deformation of the U(1) group

with ¢ = e”®. The non-commutativity of the coalgebra, the algebra of functions on

the group, follows from the definition of non-commutative product in (330).
Differential and integral calculus on this group can be defined as

0 qa_az — q_%
i ——— (336)

and

/ dgf(g) — 83 Fe>), (337)

k=—N

It is easy to derive the following relations for regularized delta functions

/d9156(9—192793)55(91794) = 03(92, 93)Oky (338)
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/d91d9456(9—192>93)56(91&4)55(9594_1,96) = 85(g2, 93)05(9595 ', g6) (339)

These relations are essential for the prove of topological invariance of the quantum
deformed state sum model. At the same time all the relations are about regular
functions and no divergences appear in the calculations.
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