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Abstract 

This thesis examines polarization and polarization mode dispersion (PMD) dynamics in optical fibers 

as well as the evaluation of probability density functions and bit error rates in a realistic wavelength 

division multiplexed (WDM) optical communication systems. 

In the first part of the thesis, experimental studies of the dynamics of polarization in a dispersion 

compensation module (DCM) are performed in which mechanical shocks are imparted to several 

different DCMs by dropping a steel ball on the outer casing at different locations and from different 

heights and the resulting rapid polarization fluctuations are measured. We provide a theoretical model 

that accounts for the dynamic birefringence generated due to the impact.  Next, an experimental 

technique is proposed to detect the location of temporal polarization activity in WDM systems. It is 

demonstrated theoretically and in simulations that measurement of both the PMD vector and the 

Stokes parameters at the WDM frequencies enables the detection of the location of such activity.  

Different linear prediction procedures are applied to the differential group delay of an optical fiber 

link assumed to obey the hinge model. The hinges are modeled as polarization rotators with fixed 

rotation axes and sinusoidally varying rotation angles. Three prediction methods are investigated and 

consequently compared: an autoregressive model (AR) with Kalman filter, a pattern imitation method 

and a Taylor expansion technique. The effect of measurement noise on the prediction horizon is also 

investigated for each prediction method. 

Using a physically reasonable stochastic model for the hinges, we derive analytical expressions for 

the temporal autocorrelation functions of the state of polarization (SOP) and the PMD vector. The 

obtained analytical results are compared to simulations.  

Finally, we apply the multicanonical method to the probability density function of received 

symbols and the symbol error ratio (SER) in a dual polarization quadrature phase shift keyed (DP-

QPSK) WDM system. We simulate five co propagating channels at a symbol rate of 10.7 GBaud/s 

and account for PMD and nonlinear effects. We evaluate the performance of the system for two 

different cases: single mode fibers with full dispersion compensation at the end of the link, effective 

large area fibers (LEAF) with full dispersion compensation at the end of the link.  
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Chapter 1 

Introduction 

1.1 Optical Communication  

Optical fiber communication has revolutionized global telecommunications since the early 1970’s. In 

particular, the large bandwidth due to small losses and dispersion in optical fibers led to the adoption 

of fiber systems initially for transoceanic communication and in long haul systems for e.g. internet 

traffic, but subsequently for transmission over increasingly smaller distances. Currently, fiber to the 

home (FTTH) is replacing conventional copper cables in carrying internet, telephone, and cable TV 

services to the homes. 

In a digital communication system, a digital electrical signal modulates a high frequency carrier 

that in turn is transmitted over a suitable medium. For example, electrical systems employ microwave 

carriers which oscillate at frequencies ranging typically from 1 to 10 GHz and then are transmitted in 

free space, over coaxial cables or over closed waveguides. Since only a few percent of the carrier can 

be used as modulation bandwidth, such systems cannot operate at bit rates larger than 0.2 Gb/s. An 

optical carrier on the other hand possesses a frequency of 100 THz and a few percent of the carrier 

frequency corresponds to a bit rate of 1Tb/s. To harness the full bandwidth of optical communication 

however requires a suitable transmission medium which was first provided with the advent of low 

loss optical fibers. Lightwave systems usually relied on intensity modulation (IM) of the optical wave 

in an on/off fashion and direct detection (DD). DD means that the detector only responds to the 

optical power of the signal; phase or polarization information is lost in the detection process. 

A typical optical communication system consists of an optical transmitter which in turn consists of a 

laser diode and a modulator, the optical fiber with repeaters and dispersion compensator modules 

(DCMs) along the line, and finally an optical receiver as shown in  

Figure  1.1. The repeater’s function was to regenerate the signal completely in the electronic 

domain to compensate for losses and dispersion roughly every 20km. Each repeater consisted of a 

complete receiver-transmitter system, where the optical signal was converted back into the electrical 

domain in the form of a binary stream that was then used to modulate a laser to regenerate the optical 

signal that is launched again in the optical fiber. The process of regeneration was expensive and 

different schemes to avoid its use or increase the distance between the repeaters were being 

investigated. 

 

 

 

Figure  1.1. Schematic of an optical communication system. A transmitter launches a modulated 

optical carrier into an optical fiber. DCMs and repeaters are periodically located along the line. An 

optical receiver at the end the system converts the optical signal back into an electrical signal. 

Tx DCM 

repeater 

DCM Rx 

fiber 
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Coherent optical communications was researched extensively in the 1980’s as a potential solution 

to the repeater distance problem [1]. The receiver architecture consisted of a local oscillator, a 

directional coupler, and a balanced photodiode detector as shown in Figure  1.2 as opposed to a single 

photodiode in DD. The received optical signal is mixed with a local oscillator signal in the directional 

coupler. Both outputs of the directional coupler are then detected by a photodiode and the difference 

between the resulting currents is fed to the electronic circuits. The signal is passed through a 

polarization controller (PC) before mixing [2]. 

By controlling the local oscillator power, coherent detection achieved a signal to noise ratio very 

close to the quantum limit of detection resulting in a higher sensitivity compared to the standard 

receiver by values ranging from 20 dB to 30 dB [1] thus increasing repeater distance. Further, 

information on the carrier frequency, phase and polarization can be retained [3], allowing polarization 

multiplexing and the employment of higher level modulation formats. The disadvantage of this 

approach was the complexity involved in tracking the carrier frequency, phase and polarization which 

required difficult to implement optical phase locked loops to allow accurate detection.   

Interest in coherent communications faded due to the discovery of Erbium doped fiber amplifiers 

(EDFA’s) allowing amplification of the signal in the optical instead of the electrical domain. Also, the 

wide bandwidth of 20nm offered by the EDFA along with reliable tunable lasers made wavelength 

division multiplexing (WDM) transmission possible where several IM/DD channels at different 

wavelengths are multiplexed together and propagated over the same fiber. For example, the standard 

Dense WDM (DWDM) consists of 80 channels separated by 50 GHz in the C band which extends 

from a wavelength of 1.53 µm to 1.57 µm. Consequently, WDM/EDFA systems were widely 

deployed during the 1990’s replacing the need for repeaters.  

 

 

Figure  1.2. A coherent optical receiver [3]. 

With the ever increasing bandwidth demand in the first decade of the twenty first century, WDM 

systems’ capacity required a boost which was provided by the technology of coherent 

communications. The ability to detect the frequency or phase of the carrier enables higher level 

modulation formats which rely on modulating the carrier phase with any number of values and hence 

increases the transmission bit rate employing the same bandwidth offered by the channel. The 

problems of carrier frequency, phase and polarization tracking still remained but were solved in the 
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electronic domain using high speed digital signal processing (DSP) made possible through advances 

in extremely fast sampling analog to digital converters [3]. Nowadays, DSP is also used to 

compensate for other propagation impairments such as chromatic dispersion, nonlinearities and 

polarization mode dispersion (PMD).  

A common figure of merit for communication systems is the BL  product ; the bit rate, B , the 

distance, L , product [4]. The distance is defined as the maximum length over which the optical 

signal can be transmitted without need of a repeater or an amplifier. Over four generations of optical 

communication systems, BL  has increased from 10 Gb/s – km in 1975 to10
6
 Gb/s – km in the early 

2000’s.  

1.2 Modulation Formats 

Two types of basic modulation formats are commonly used for digital transmission. Amplitude 

shift keying (ASK) which involves modulating the intensity (also called IM as explained above) of 

the optical carrier with a digital one represented by a burst of optical power and a digital zero 

represented as no optical power. In phase shift keying (PSK), digital ones and zeros are represented 

with a carrier phase of zero and π respectively. A schematic of the modulation formats is shown in  

Figure  1.3.    

 

Figure  1.3. Modulated optical carrier in the case of ASK and PSK for a specific digital bit pattern [4]. 
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As can be observed from Figure  1.3, the envelope of the PSK signal is constant while that of ASK 

is not. However, for a continuous stream of ones, the ASK envelope is also constant. The constant 

envelope can generate a problem at the receiver which functions by extracting a sine wave operating 

at the bit rate from the data, named the clock, in order to sample the data and make a decision. 

Transitions are required in the data stream to extract the clock. We distinguish between two types of 

transmission, nonreturn to zero (NRZ) and return to zero (RZ) formats.  

In the NRZ format, the optical pulse representing the one bit occupies the entire bit slot. On the 

other hand, in RZ format the optical pulse representing the one bit is chosen to be shorter than the bit 

slot and its amplitude returns to zero before the bit duration is over [4] as shown in Figure  1.4.In PSK, 

it is necessary to use RZ format to enable clock extraction.  

 

Figure  1.4. Comparison of (a) RZ and (b) NRZ signal for the bit pattern shown [4]. 

 

Modulation formats discussed so far transmit one optical symbol per bit. A currently widely 

employed higher level modulation format is quadrature phase shift keying (QPSK) in which each 

symbol is represented by two digital bits. Each symbol is in turn represented by a carrier with a phase 

of 4, 3 4s     depending on the bit combination. We can write for the optical field of the 

QPSK signal   
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 ( ) ( )sin( )s sv t a t t    (1.1) 

where ( )a t is the pulse shape and s  is the carrier angular frequency . Dropping the pulse shape as it 

is common for all symbols and expanding the sine term we can express (1.1) as 

 

 

1 1
( ) sin( ) cos( ), 4

2 2

1 1
( ) sin( ) cos( ), 3 4

2 2

1 1
( ) sin( ) cos( ), 4

2 2

1 1
( ) sin( ) cos( ), 3 4

2 2

s s s

s s s

s s s

s s s

v t t t

v t t t

v t t t

v t t t

   

   

   

   

  

   

   

    

 (1.2) 

 

Eq. (1.2) can be represented in a graphical form called the constellation diagram. Writing 

1( ) sin( ) 2sm t t and 2( ) cos( ) 2sm t t  and plotting them as x and y axes respectively we 

obtain the constellation diagram displayed in Figure  1.5. Such a constellation diagram can be 

obtained in practice after the receiver by sampling the resulting digital sequence and plotting the 

samples on the 1 2m m  axes. If the transmission is perfect, all samples will align and we get four 

dots corresponding to the four different symbols. However, transmission impairments such as 

dispersion and nonlinearity cause the sampled sequence to be spread out over an area in a scatter plot. 

A more realistic constellation diagram is shown in Figure  1.6 [3].  
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Figure  1.5. Ideal constellation diagram of QPSK. Each dot represents the symbol that consists of the 

specific two bit pattern shown on the graph. Each symbol defines a certain carrier phase which can be 

constructed from a suitable superposition of and .  

 

 

Figure  1.6. Measured constellation diagram at the receiver after 6400km of transmission [3].  

 

Eq. (1.2) also suggests a method for modulating the carrier in QPSK format. The bit stream is 

interleaved resulting in two sequences called I and Q. A one bit is represented by amplitude of 1 and a 

zero bit by amplitude of -1. Each stream then modulates sin( )st and cos( )st independently where 

cos( )st is obtained from sin( )st through a 2  phase shift. Finally both modulated signals are 

multiplexed to form the transmit signal. A schematic diagram of a QPSK modulator is shown in 

Figure  1.7. 
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Figure  1.7. QPSK modulator. The binary bit stream is interleaved and encoded by a RZ encoder to 

generate the I and Q signals which in turn modulate the carrier and a ninety degree phase shifted 

version of the same carrier respectively.  

State of the art optical communication systems use polarization multiplexed (PM) - QPSK format to 

further increase the effective bit rate by a factor of 2 over just simple QPSK. Each polarization carries 

a different data stream and each symbol carries two bits effectively quadrupling the bit rate compared 

to an IM/DD system thus achieving high spectral efficiency [5].  Further, PM-QPSK coding has been 

shown to yield excellent optical noise tolerance with modest implementation complexity [6] and has 

thus been widely employed in 40Gb/s transmission [7]. 

Optical fiber impairments restrict further increase in data rates. One of the most important factors 

that limit communication at bit rates beyond 10 Gb/s per WDM channel is PMD. This impairment in 

particular is not constant and drifts randomly with time and hence in general requires a statistical 

treatment. In the rest of this chapter, we explain the origin of this impairment and describe the theory 

and consequences.  

1.3 Polarization Mode Dispersion  

1.3.1 Origin of PMD 

PMD has its origin in fiber birefringence. A weakly guiding single mode fiber supports two 

orthogonally polarized modes, termed LP01 (linearly polarized) [8]. The electric fields E  of these 

modes can be expressed as 

 
( )ˆ ( , ) xj t z

xE xE F x y e
 

  (1.3) 

 
( )

ˆ ( , ) yj t z

yE yE F x y e
 

  (1.4) 
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where ,x yE E are the complex field amplitudes,  ( , )F x y is the transverse field distribution,  is the 

angular frequency, ,x y   are the propagation constants and z is the axial distance along the fiber. 

When light of arbitrary polarization is launched into the fiber, the power is divided between both 

modes. In the ideal fiber, x y   because of the perfect circular symmetry of the fiber cross section 

and hence the two modes are degenerate thus they propagate with the same velocity and no distortion 

occurs. In a real fiber, however, circular symmetry is broken either during manufacture due to the 

ellipticity of the core or cladding regions and anisotropic internal stress; or due to fiber cabling that 

induces bends and twists also introducing stress. Consequently, the modes are no longer degenerate 

hence light of arbitrary polarization launched at the input will arrive distorted at the output in what is 

called PMD. Writing , 0 ,x y effx yk n   with 0 02k   , 0  being the free space wavelength  and effn

being the effective refractive index of the mode, we define the birefringence of the fiber as 

eff effx effyn n n   . Figure  1.8 displays the different mechanisms that lead to birefringence. They are 

grouped under intrinsic and extrinsic birefringence. Intrinsic birefringence occurs due to the 

imperfections in the manufacturing process while extrinsic birefringence occurs during cabling. 

The perturbations illustrated in Figure  1.8 vary along the fiber length randomly. The reference x-y 

axes employed in (1.3) and (1.4) will not coincide with the true polarization directions of the 

fundamental modes and the birefringence might also change along the axis of the fiber.  Hence, for a 

treatment of PMD in lightwave systems, the fiber has to be represented as a concatenation of 

birefringent sections each having different orientation and birefringence. In the next section we 

introduce Jones calculus [9] which is the mathematical tool that is used to describe propagation in 

birefringent systems. 

 

   

 

 

 

 

 

 

 

 

 

Figure  1.8. (a) sources of intrinsic birefringence: geometric due to ellipticity of the core or anisotropic 

stress and (b) extrinsic birefringence due to imperfections occurring due to cabling and installation.  

(a) 

geometric stress 

Lateral stress 
twist 
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1.3.2 Jones Calculus 

Dropping the transverse field distribution, the time dependence, setting 0z   in Eq’s. (1.3) and (1.4) 

and grouping both electric field components into a column vector, we describe the polarization of the 

field by the Jones vector [10] 

   

 

x

y

j

xx

j
y y

A eE

E A e





  
        

E =  (1.5) 

 

where xA  and yA  are the x and y amplitudes of the fields, x and y are the phases. It is customary 

to normalize the Jones vector such that 
† 1E E , where 

†E is the Hermitian conjugate of E  . This 

is equivalent to setting the intensity of the light beam to unity. To describe the propagation of the 

Jones vector in a fiber, we consider propagation through a birefringent fiber section with LP modes 

oriented at an angle   to the reference x-y axes as shown in Figure  1.9. The section axes are called 

slow “s” and fast “f” depending on the values of the propagation constants of the modes. The 

polarization of these modes can be described by the following orthogonal Jones vectors 

 

Figure  1.9. Birefringent fiber section oriented at an angle  relative to the reference x-y axes.  

  

 
cos sin

  and  
sin cos

 

 

   
   
   

 (1.6) 
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Decomposing the incident light inE  into a linear combination of the s f modes is achieved through 

the coordinate transformation  

 

 
cos sin

( )
sin cos

s

in in

f

E

E

 
 

 

   
    

  
E E  (1.7)   

  

The propagation through the fiber section is achieved through the expression  

 

 2
' 0

' 0

s

f

j dd
s s

j d
f f

E Ee
e

E Ee










    
      

    

 (1.8) 

  

where ,s f   are the propagation constants of the slow and fast modes respectively,  is the power 

attenuation coefficient and d is the thickness of the section. Pulling out a common factor 2 av

d
j d

e e







where   
1

2
av s f     we can rewrite the propagation matrix as  

 

 

/2

2

2

0

0

av

jd
j d

j

e
W e e

e




 






 
  

 
 (1.9) 

 

where    
0

2
s f effd n d


 


     , effn  being the birefringence of the section. The common 

phase and loss terms are usually dropped in pure polarization calculations because they do not affect 

the state of polarization (SOP). To transform back the field to the reference x-y axes we need another 

coordinate transformation given by the matrix ( )  . The whole section can be represented by a 

Jones matrix, which is the product of all three matrices as    U W     . The relationship 

between the output and input electric field vectors can consequently be expressed as 

 

 out inUE E  (1.10) 
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For a concatenation of fiber sections, the fiber can be described by the product of the individual Jones 

matrices of the different sections. Figure  1.10 illustrates how a fiber can be modeled as a 

concatenation of different sections with random axes orientations.  

 

 

     

 

 

Figure  1.10. A fiber is modeled as a concatenation of birefringent segments. The orientation of each 

segment is chosen randomly. The arrows indicate the slow and fast axes orientations of each segment.   

 

Jones matrices satisfy a number of important properties. Time reversal symmetry and reciprocity 

principles lead to the unitary property of Jones matrices, hence 
†U U I  where I is the identity 

matrix [10]. If a Jones matrix of a system is represented as  

 

 
A B

U
C D

 
  
 

 (1.11) 

 

The unitary property of the matrix dictates that ,D A C B     where 
*A is the complex conjugate 

of A . Hence any Jones matrix can be written as 

 

 
A B

U
B A 

 
  

 
 (1.12) 

    

It’s important to note that these conditions hold for optical fibers but not for magnetooptical materials 

because they do not satisfy the reciprocity principle. In the absence of polarization dependent loss 

which also holds for optical fibers, the intensity of the electric field vector does not change during 

propagation apart from a common loss factor for both polarizations that can be accounted for by 

multiplying the Jones matrix of the system by  
2ze 

.   Therefore, 1AA BB    and hence 

det( ) 1U  . 

A very useful phenomenological model for the description of PMD in optical fibers depending on the 

global parameters of the fiber’s Jones matrix was first developed in 1986 [11]. We discuss this 

principal states model on which all PMD modeling and measurements are based in the next section. 
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1.3.3 Principal States Model 

The principal states of an optical fiber are output polarization states that do not change their 

polarization to first order in frequency.  A fiber can be described (as discussed in the previous 

section) by a frequency dependent matrix given by 

 

 
( )( ) ( )T e U    (1.13) 

 

where  is the angular frequency,      2 j        is in general complex as it includes 

the common phase and loss terms. ( )U  is the unitary Jones matrix given by 

 

 
1 2

* *

2 1

( ) ( )
( )

( ) ( )

u u
U

u u

 


 

 
  

 
 (1.14) 

 

where 
2 2

1 2 1u u  . The relation between the output and input polarizations is  

 

 ( )out inT E E  (1.15) 

   

  We can write the complex electric fields at the input and output as follows 

 

 /

/ / /
out inj

out in out in out ine
E   (1.16) 

 

  is the field amplitude,  is the phase and   is a unit vector describing the direction of polarization. 

Differentiating Eq. (1.15) and assuming that the input polarization is independent of frequency we 

have 

 

  ' 'out
in in

d dT
e U U

d d

 
 

  
E

E E  (1.17) 

  

where the prime denotes differentiation with respect to frequency. Differentiating Eq. (1.16), we 

obtain 
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'
' outjout out out
out out out

d d
j e

d d


 

  

 
   
 

E
E


 (1.18) 

 

Combining  Eq. (1.17) and Eq. (1.18) and making use of Eq. (1.15)  we obtain 

 

 

  'outj out
out in

d
e e U jkU

d

 


  E


 (1.19) 

 

where   

 

 

'
' ' out
out

out

k j


 


 
   

 
 (1.20) 

 

We are looking for polarization states that do not change to first order with frequency. Hence we set 

0outd d  to obtain the following eigenvalue equation  

 

  ' 0inU jkU   (1.21) 

 

Eq. (1.21) implies that for such states to exist the value of k has to take on specific values that can be 

evaluated by setting the determinant of the matrix 'U jkU to zero. Employing 
2 2

1 2 1u u   and 

its frequency derivative we find the allowed values of k to be 

 

 
2 2

' '

1 2k u u     (1.22) 

 

The corresponding eigenvectors which represent the principal states at the input are given by 
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'

2 2

'

1 1

j

in

u jk u

D
e

u jk u

D













    
 

  
    

 
 

  (1.23) 

 

where  is an arbitrary phase and  ' '

1 1 2 22 ImD k k u u u u 

  
      with Im indicating imaginary 

part. It can be easily shown that the two principal states form an orthonormal pair  

 

 0     and    1    in in in in

 

         (1.24) 

These principal states represent two orthogonal input polarization states whose corresponding output 

polarization states are independent of frequency to first order. A pulse aligned to the polarization of 

one of the principal states will remain polarized to first order in frequency at the fiber output. This 

implies that a pulse with a small enough frequency spectrum will not broaden as a result of 

propagation in the fiber to first order. The advantage of the principal states model is that it provides a 

simple picture for pulse broadening inside an optical fiber. A pulse of arbitrary polarization can be 

decomposed into the principal states at the input of the fiber. The two waves arrive at the output of 

the fiber each polarized along the principal state direction at the output. The resulting output field is 

determined by the relative magnitude and phase of each of these components. The time of flight of 

the principal states is in general different. Consequently, a pulse travelling along the fiber is distorted 

at the output. To determine the propagation delay of the two pulses we consider Eq. (1.20) and Eq. 

(1.22).  For both of these equations to be satisfied at the same time we must have  

 

  
' '

Re ' out out

out out

 


 
 

 

   (1.25) 

  and 

 

  
2 2

' ' '

1 2Im 'out u u      (1.26) 

  

The frequency derivative of the output phase of the principal state in Eq. (1.26) is the propagation 

delay. As can be seen, one state experiences more delay and hence is named the slow state and the 
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other is named the fast state. The common time delay is designated by o and the differential time 

delay, 
2 2

' '

1 22 u u   , is termed the differential group delay (DGD). Hence Eq. (1.26) states that 

the time delay for the slow and fast states is 2o  . It is worth noting that even for waves launched 

in the principal states, pulse broadening can still occur depending on the frequency dependence of the 

time delays and the second order variation of the state of polarization. 

Another description for polarization of light is provided by the Stokes parameters. We define these 

parameters in the next section. 

1.3.4 Stokes Parameter Description 

The Stokes parameters provide another description of polarization phenomenon as opposed to Jones 

calculus. From this point onwards in this chapter, we describe the electric field in Jones space using 

Dirac notation as a ket expressible as a column vector  ,x ys s s  such that 
* * 1x x y ys s s s  . The 

real 3D Stokes vector,  1 2 3
ˆ , ,s s s s  parameters are defined by 

 

 

 

* *

1

* *

2

* *

3

x x y y

x y y x

x y y x

s s s s s

s s s s s

s j s s s s

 

 

 

 (1.27) 

   

The Stokes vector also satisfies
2 2 2

1 2 3 1s s s   . The most general SOP can be described by the 

following Jones vector 

 

 
cos

sin je 





 
 
 

 (1.28) 

 

where  is the phase shift between the x and y components. Substituting into Eq. (1.27), we find the 

Stokes parameters to be  

 

 

1

2

3

cos 2

sin 2 cos

sin 2 sin

s

s

s



 

 







 (1.29) 
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The form of Eq. (1.29) suggests that the Stokes vector can be represented on a unit sphere called the 

Poincare sphere. Each Stokes parameter is plotted as a Cartesian axis where each point on the surface 

of the sphere represents a unique polarization state. The Poincare sphere is displayed in Figure  1.11.  

 

Figure  1.11.  Poincare sphere. A few representative polarization states are indicated [10].  

Linear polarization states occurs for 0,   , hence are represented as points on the equator in the 

1 2s s  plane. The north and south poles of the sphere represent left circularly polarized and right 

circularly polarized states respectively. Any other point on the surface corresponds to elliptical 

polarization.  

If the output polarization state in Jones space is t , the relation between the output and input 

polarization states in a birefringent system is t U s  where s  is the input state of polarization 



 

17 

 

and U is the 2x2 Jones matrix of the system. A similar relationship exists between the input and 

output states of polarization in Stokes space ŝ and t̂  respectively. Namely,  

 

 ˆ ˆt Rs  (1.30) 

where R is a 3x3 rotation matrix that is also unitary. There is a one to one correspondence between 

the Jones matrix and the rotation matrix of any system. Given the Jones vector s , we can express 

the corresponding Stokes vector conveniently using the Pauli spin matrices [10] 

 

 

1

2

3

ˆ

s s

s s s

s s







 
 

  
 
 

 (1.31) 

 

where 1 2 3,  and     are the 2x2 Pauli matrices 1

1 0

0 1


 
  

 
, 2

0 1

1 0


 
  
 

, 3

0

0

j

j


 
  
 

. Eq. 

(1.31)  is usually written compactly as ŝ s s , where   1 2 3, ,     is the Pauli spin vector 

in Stokes space. The connection between U and R can be obtained as follows. From Eqs.(1.30) and 

(1.31)  we have  
†v̂ v v R s s s R s s U U s       . Hence  

 

 
†R U U   (1.32)  

 

The projection operator is given by  

 

  
1

ˆ
2

s s I s    (1.33) 

 

where I is the identity matrix. The inner product of two arbitrary polarization states p and q  can 

be expressed in Stokes space by setting s p in Eq. (1.33) and multiplying with q  from the right 

and q  from the left to obtain 

      
1 1 1

ˆ ˆ ˆ ˆ
2 2 2

q p p q I q p q I p q q I p q        (1.34) 
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From Eq. (1.34), if two states are orthogonal in Jones space, then it follows that  ˆ ˆ 1p q   . 

Let the eigenvectors of the Jones matrix be r and _r . By definition, any SOP proportional to 

any of these eigenvectors will not change state upon propagation through the system. Since these 

states form a complete orthogonal set of Jones vectors, we can express U  as 

1 2 _ _r r r r   where 1  and 2 are its eigenvalues. Using the unitary and unity 

determinant properties of the Jones matrix, we find that both eigenvalues have unit amplitude and 

their product must be unity. Hence we can write U in the following form 

 

 _ _j jU e r r e r r    (1.35) 

 

Using the projection operator along with the orthogonality of r  and _r , we obtain the rotational 

form of the Jones matrix  

 

     ˆˆcos sin j rU I j r e         (1.36) 

 

Using Eq. (1.32), R can be expressed as 

 

       ˆˆ ˆcos 2 1 cos 2 sin 2R I rr r        (1.37) 

 

where  ˆˆrr  is the 3D dyadic operator and r̂  is the cross product operator defined in matrix notation 

as 

 

 

1 1 1 2 1 3 3 2

2 1 2 2 2 3 3 1

3 1 3 2 3 3 2 1

0

ˆˆ ˆ; 0

0

r r r r r r r r

rr r r r r r r r r r

r r r r r r r r

   
   

      
      

 (1.38) 

 

R can also be expressed in analogy to Eq. (1.37) as [9]  

 

 
ˆ2 rR e    (1.39) 
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The operation represented by Eq. (1.30) can be viewed as a rotation on the Poincare sphere of the 

initial state of polarization about the axis r̂  by a rotation angle 2  [10]. If the input polarization is 

aligned with the rotation axis, the output and the input SOP coincide and this can be deduced by 

applying Eq. (1.37).  

The propagation operation    W     through a fiber section can be given an interpretation 

in Stokes space by writing each matrix in terms of the Pauli spin vector and comparing the results to 

the rotational form of Eq. (1.36). The first operation is a rotation about the 3s  axis with an angle   

followed by a rotation about the axis 1s  by an angle 2  followed finally by another rotation about 

3s with angle . Expressing the propagation operation in rotational form (Eq.(1.36)) we find that 

 

      1 2cos sin cos 2 sin 2
2 2

W I j     
    

      
   

 (1.40) 

 

Hence the corresponding rotation matrix in Stokes space has the parameters 

 

 ˆ2 ; (cos2 ,sin 2 ,0)r     (1.41) 

 

In the next section, we describe the PMD vector in Stokes space and state some important results 

on the evolution of the polarization with distance along the fiber and with frequency. We also state 

the concatenation rule for PMD vectors.  

1.3.5 PMD vector 

The PMD vector,   is formed from the multiplication of the DGD with the Stokes vector of the slow 

principal state. The transformation of the input PMD vector to the output by a birefringent network 

with a rotation matrix R is given by [9] 

  

 t sR   (1.42) 

 

where s  is the input PMD vector and t is the output PMD vector. Eq. (1.42) is the same 

relationship that links the input and output polarizations. The output polarization evolves with 

frequency as [9] 

 



 

20 

 

 
ˆ

ˆ
s

s



 


 (1.43) 

 

Eq. (1.43) can be given a geometrical interpretation. The output SOP, precesses on the Poincare 

sphere around the PMD vector when the frequency is varied. To obtain the variation of the SOP with 

distance, we note that an infinitesimal fiber segment of length dz can be described by a rotation 

matrix having an angle 
2

2 ndz





   and a rotation axis r̂  given by Eq. (1.41). Using Eq. (1.37), 

R  can be written as ˆ2I r  . The polarization at the output of the section can be obtained from 

 

 
2

ˆ ˆ ˆ ˆ ˆ ˆs ds Rs s ndzr s



       (1.44) 

 

Defining the local birefringence vector as 
2

ˆnr





  , we obtain the evolution equation for the 

polarization along the fiber as   

 

 
ˆ

ˆ
s

s
z




 


 (1.45) 

 

This equation, similar to (1.43) , describes a rotation of the SOP on the Poincare sphere around the 

birefringence vector as light propagates along the fiber. Using Eqs. (1.43) and (1.45) we obtain the 

evolution equation for the PMD vector [12] 

 

 
z

 
 



 
  

 
 (1.46) 

 

Finally, we state the concatenation rule of   for two concatenated sections. Given two fiber sections 

with PMD vectors 1  and 2  and rotation matrices 1R  and 2R  as shown in Figure  1.12. The PMD 

vector of the concatenation of the two segments is  

 

 2 2 1R     (1.47) 
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Figure  1.12. The concatenation of two fiber segments and the resulting PMD vector.  

1.3.6 Manakov PMD equation 

In order to assess the performance of an optical communication system we need to take into account 

all propagation effects that occur during transmission over the optical fiber. For this purpose we 

develop in this section the evolution equation for the propagation of the electric field along the fiber 

that takes into account group velocity dispersion (GVD), PMD and the nonlinear response of the 

dielectric constant. The presence of EDFA’s introduces ASE (amplified spontaneous emission) which 

is a source of noise that accumulates along the fiber length since repeaters are absent. In order to 

maintain signal integrity at the receiver, a large input power is usually required to overcome ASE, 

typically in excess of 1mW. With such high input power, the nonlinear response of the dielectric 

constant of the fiber cannot be neglected. However, because the nonlinear contribution is much 

smaller than the linear contribution, we treat the former as a perturbation [13], [14].  

In our first analysis, we will assume that the nonlinear contribution to the dielectric constant 

vanishes. We start by considering the Jones vector of the electric field in the frequency domain given 

by 
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Consider the propagation of this Jones vector through a very small section of fiber of length z  

neglecting nonlinear effects. While we have so far considered LP modes, we are going to treat the 

more general case by assuming that the fiber section supports two orthogonal elliptically polarized 

modes. These can be expressed in normalized form as  
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In the case of LP modes, 0  . Both  and  vary with z and represent the varying direction of 

birefringence along the fiber.  We write Eq. (1.48) in terms of 1m  and 2m as  

 

 1 2 1 1 2 2

1 0

0 1
x y xA A A s Ay s m m       (1.50) 

 

where the coefficients 1 and 2  can be determined from the orthogonality of  1m  and 2m . 

Multiplying Eq. (1.50) by  1m and  2m we obtain  
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Rewriting this result in matrix form we have 
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which is a more general form for the transformation matrix of Eq. (1.7). Similar to Eq. (1.9), the 

propagation step can be represented as  
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with z    . It is important to note that  and av  are functions of frequency. The attenuation 

coefficient has a very weak dependence on frequency, thus it can be considered constant.  
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After the propagation step, we transform the electric field back to the x-y reference frame. For this 

purpose we follow the procedure leading to Eq. (1.51) to convert from the 1 2m m reference frame to 

the x y reference frame. The required matrix is  ,   . Therefore we can write an expression 

for  ,A z z  as follows 

          
2

2

0
, , , ,

0

av

j
j z

j

e
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

 
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 
 (1.55) 

Expanding both sides as a function of z  and keeping only first order terms in z  we obtain the 

required evolution equation  

 

 
 

 
 

 
,

,
2

av

A z
j M A z

z

  
  

  
   

  
 (1.56) 

  

where M is a random matrix given by  

 

    1, ,M          (1.57) 

 

where 1 is the Pauli matrix defined in section  1.3.4 . If we write the matrix  in terms of the Pauli 

matrices, we can show that M can be expressed as 

 

 1 2 3cos2 sin 2 cos sin 2 sinM            (1.58) 

 

or in more compact form as 

 

  cos2 ,sin 2 cos ,sin 2 sinM        (1.59) 

 

where   is the Pauli spin vector defined also in section  1.3.4. It’s important to note that the vector 

 ˆ cos2 ,sin 2 cos ,sin 2 sins      is the Stokes vector of the eigen polarizations for the short 

section of length z . Since both  and  vary randomly along the fiber, ŝ can be considered a 

random vector on the Poincare sphere and M a unitary random rotation matrix. 
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We are interested in the evolution of the field with time. To transform Eq. (1.56) into the time 

domain would require knowledge of  av  and    . Such information is not available in 

analytical form. To be able to proceed further, we assume that the spectral width of the electric field 

pulses is much smaller than the carrier frequency which is a valid approximation for pulse widths as 

small as 0.1 ps or, equivalently, up to a symbol rate of 10Tb/s which is a condition met by all state of 

the art communication systems. We therefore expand  av   and     in a Taylor series around 

the carrier frequency 0  as  

    
22

0 1 0 0( )
2

av


             (1.60) 

  0 1 0          (1.61) 

 

And keep terms up to second order in  av  and first order in     [4]. Substituting Eq. (1.60)

and (1.61) into (1.56), noting the association  0j
t

 

 


, and taking the inverse Fourier 

transform we arrive at 
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 (1.62) 

 

Up to this point we have neglected the nonlinear term. To include nonlinearity, it can be shown that 

we need to add a term of the form [4], [14] 

 

 3 3

1

3
j A A A A M A M A
 

  
 

 (1.63) 

 

to the right hand side of Eq. (1.62). The constant   is given by  2 02 effn A  where 2n  is a constant 

and effA is the effective area of the fiber mode. 3M  is a random rotation matrix given by 

   3 3, ,M         .  The first two terms on the right hand side of Eq. (1.62) can be 

eliminated by the transformation ' 'A M A  where the matrix 'M satisfies  
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Substituting in (1.62), using (1.63),  (1.64) and dropping the prime from the Jones vector we obtain 
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where a capital T superscript indicates the transpose of a matrix. The first term on the right hand side 

of Eq. (1.65) can be eliminated by substituting 1't t z  . This term corresponds to a constant delay 

as the signal propagates down the fiber and the substitution enables us to work in a reference frame 

moving with the signal. Nonlinear changes occur over lengths of a few kms while birefringence 

changes occur over lengths of tens of meters [14]. This permits us to employ an approximation for 

solving (1.65) by averaging the nonlinear term over the birefringence fluctuations. The result is [4] 
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Substituting back into Eq. (1.65) and dropping the prime from the new time variable we arrive at the 

central result of this section, the Manakov PMD equation 
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where we have written the rotation matrix  ˆ' 'TM MM r  as in Eq. (1.59) where  r̂  is a random 

vector on the Poincare sphere and  

 

   1
ˆb z r   (1.68) 
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Since  ( ) effn
c


     , where c is the speed of light, and the frequency dependence of effn is 

negligible, 1

effn

c



  and hence  

  b z   (1.69) 

is the local birefringence vector defined in section  1.3.5. The 2  term represents GVD. In order to 

solve this equation, we need to treat the random dependence of PMD that enters through the  b z

term. In the next section we discuss the statistics of PMD and statistical models that best describe 

fiber systems.  

1.3.7 Statistics of PMD 

Lightwave system impairments such as those due to chromatic dispersion, attenuation or 

nonlinearities will have some uncertainty caused by fabrication tolerances, aging, imprecise 

wavelength control and other factors. The probability density functions of these impairments vanish 

beyond a certain value [15] and hence allow system design to tolerate a worst case impairment. 

However, probability density functions of PMD have asymptotic tails that extend to unacceptable 

levels of impairment. Instead, when PMD is relevant, a system cannot be designed according to the 

worst PMD impairment, but rather with a specified probability of outage.  

Quantities of interest in statistical analysis of PMD include the PMD vector (also known as the first 

order PMD), the DGD, the second order PMD (the frequency derivative of the PMD vector) and the 

autocorrelation functions. An important assumption that has been verified experimentally in statistical 

analysis of PMD is that a statistical average calculated over a range of optical frequencies is 

equivalent to an average calculated over time if hinge behavior (to be explained in the next section) is 

not present. This assumption is necessary because PMD usually changes slowly over time and it is 

not often practical to make long time measurements of a system to determine its statistical properties. 

PMD statistics has been studied thoroughly by several researchers [16], [17] . We here follow a 

simplified model presented in [4] that leads to the same results. The components of the vector b of 

Eq. (1.68) are assumed to be statistically independent, stationary stochastic processes with first two 

moments given by  
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where ,i j  take on the values ,x y and z , 
ij  is the Kronecker delta. The correlation length cL , is 

measure of decorrelation of the birefringence components and  
2

b is a measure of the standard 

deviation of the birefringence. With these assumptions, Eq. (1.46) becomes  

 

 b b
z


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
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
 (1.71) 

      

The second term of Eq. (1.71) represents a rotation of the PMD vector and hence does not affect its 

amplitude. Neglecting this term, the components of   can be obtained by direct integration  
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Where we have approximated the integral by a summation which is equivalent to physically dividing 

the fiber into N segments each with length z . If we assume that the birefringence fluctuations in 

the various segments are independent, then i  is the sum of a large number of independent random 

variables with the same statistical distribution. It follows from the central limit theorem that the three 

components of  satisfy Gaussian distributions with zero mean given by 
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The variance can be obtained using Eq. (1.72) as 
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The DGD is given by 
2 2 2

x y z       and hence assumes a Maxwellian distribution. In terms of 

the mean DGD, the distribution has the form 
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which is defined for 0   and is zero otherwise.  In terms of the mean DGD, we can also rewrite Eq. 

(1.73) as  
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We note that the components of    are independent random variables. We also note that the variance 

of the DGD is given by 
22 3

8


   and the variance for each of the components of   is given by 

2 2

8
i


   and therefore 

2 2 3i  .  Observing  Eq.  (1.74) we see that for cz L , 
2

will be proportional to 
2z and for cz L ,

  

 

  
22 22

3
c PMDb L z D z     (1.77) 

 

proportional to z  where  

 

 

2

3
PMD cD b L 

 (1.78) 

 

is the PMD coefficient of the fiber in units of /ps km  . As it’s usually preferable to minimize the 

DGD, the correlation length should be as small as possible such that the DGD scales as L , L  
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being the fiber length, fast as possible. Compared to other types of dispersion that scale as L  , the 

randomness of the orientation of the fiber sections reduces the impact of PMD causing it to scale as 

L .  

To simplify the numerical solution of the Manakov PMD Eq. (1.67), the correlation function of Eq. 

(1.70) is simplified to the form        
22

' '
3

i j ij cb z b z b L z z    , obtained by assuming a 

very small small cL  and hence  
   

'
2 'cz z L

ce L z z
 

  . Upon comparison to Eq. (1.78) we have 

     2' 'i j PMD ijb z b z D z z   .  Therefore, the random vector  b z  is treated as a white noise 

Gaussian process with autocorrelation function      2' 'PMDb z b z D z z  . 

1.3.8 Hinge Model 

The statistics described so far assumes that all the fiber sections are influenced by random variations 

with time. Consequently, the instantaneous PMD of the fiber will occasionally sample the tails of the 

Maxwellian distribution leading to system outages. However, measurements on field fibers indicated 

that this “fast mixing assumption” is not realized in practice and that the PMD varies with time in a 

slower and more restricted manner [18]. In reality, fibers are usually buried underground for large 

distances and parts of them emerge at different places along the network. These particular places 

might be bridges where the fiber is exposed to the environment or at amplifier and DCM huts where 

these devices are also subject to environmental perturbations. Mounting experimental evidence has 

indicated that the buried fiber does not vary with time and the areas of the network that are exposed to 

the environment act as the main contributor to the PMD temporal variation. These exposed areas have 

negligible PMD themselves but act as polarization rotators and hence can vary the direction of the 

PMD vector. In this “hinge” model, the link is viewed consisting of long spans of stationary sections 

of fiber for which the PMD vectors are stable connected by hinges which essentially rotate those 

larger sections. The model does not preclude the possibility of the stationary sections varying with 

time; however, for shorter time scales (weeks or months) the hinge model will be a more accurate 

description.  

To illustrate the difference between the hinge model and the fast mixing assumption, consider a 

link in the form of two frozen fiber sections and a hinge connecting them. Using the concatenation 

rule, we can write the PMD vector as  

  2 2 1R H t     (1.79) 

where  H t  is the time dependent rotation matrix of the hinge and 1 2,   are the PMD vectors of the 

two sections and 2R  is the rotation matrix of section 2. In the fast mixing assumption, 1 2,  can take 
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on any value with time and hence there is no upper limit to the value of the DGD. However, in the 

hinge model, since both PMD vectors are fixed, an upper limit on the DGD exists given by 2 1   

when the rotator  H t aligns the two vectors and a lower limit given by 
2 1  . Consequently, 

the statistical distribution of the DGD diverges from Maxwellian form.  

1.3.9 PMD Compensation 

The purpose of PMD compensation is to reduce the PMD impairment caused by the combination of 

the fiber and the compensating element. Compensation in the past has been achieved using optical 

elements but currently optical compensation is being replaced by electronic compensation. In this 

section, we describe briefly one optical compensation technique and then outline how electronic 

compensation is achieved.  

Optical compensation techniques involve an adaptive element and a control algorithm. In 

Figure  1.13, we display the setup for the PMD vector nulling technique [15]. 

 

 

Figure  1.13. Schematic of the PMD nulling technique. The PC and the birefringent element are 

dynamically controlled to cancel the output PMD vector at the carrier frequency [15].  

 

The adjustable birefringent element compensates the magnitude of the output PMD vector while the 

PC compensates for the direction such that    0 0out comp     , 0 being the carrier frequency. 

comp is adjusted dynamically using the control algorithm.  

Electronic compensation has the advantage that it can be done in software and thus gets rid of the 

bulky components required in optical compensation as well as being cost effective. An adaptive FIR 
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(finite impulse response) digital filter is used to invert the Jones matrix of the fiber to recover the 

transmitted polarization. The optimal tap weights can be determined using various algorithms [3]. 

However one commonly used algorithm that exploits the properties of the data in a PM-QPSK system 

is the constant modulus algorithm, where deviations of the amplitude of the received electric field 

from unity is used to dynamically vary the tap weights.  

1.4 Bit Error Ratio 

The performance of a communication system is governed by the bit error ratio (BER) which is the 

average number of bits received in error after the detection process. The BER is a function of the 

signal to noise ratio (SNR) at the receiver; the higher the SNR, the smaller the BER. In this section, 

we demonstrate the calculation of the BER for a communication system with ASK modulation where 

the only impairment is the noise at the receiver as it’s analytically tractable. Then we will show how 

we can numerically calculate the symbol error ratio (SER) in a QPSK system. 

1.4.1  BER for ASK System 

Let A  be the received amplitude at the receiver when transmitting a logical 1. If the received signal is 

corrupted by an additive white Gaussian noise process,  w t , such that 0w  and 

     2' 'w t w t t t   , where 
2 is the noise power spectral density.  The random process 

representing the received signal at the receiver is therefore    

 

  rA A w t   (1.80) 

 

This is also a Gaussian process with a mean A  and a variance given by 
2 . Therefore the 

conditional probability density function (pdf) of the received signal given that a logical 1 was 

transmitted is given by 
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In case a logical 0 was transmitted, the received signal is  rA w t . Consequently the pdf given that 

a logical 0 is transmitted is given by  

 



 

32 

 

  
2

0 2

1
0 exp

22r

r
A r

A
f f A

 

 
   

 
 (1.82) 

 

The receiver compares the received signal with a certain threshold thA  and if r thA A  it decides that 

a 1 was transmitted otherwise if r thA A , it decides for a 0. Hence there are two types of error to 

consider. The error that the receiver detects 1 given that 0 is transmitted and the error that 0 is 

detected given that 1 is transmitted. The probabilities of these two events are given by  
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and 
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respectively. If the probabilities of transmitting 1 and 0 are 1p and 0p respectively, then the BER is 

given by 

 1 0 1 0 1 0BER p p p p   (1.85) 

 

Since the data stream is random, 1 0
1

2
p p  .If we substitute Eq. (1.83) and (1.84) into  (1.85) and 

differentiate with respect to thA , we obtain an optimal value 
2th

AA  . Substituting back into Eq. 

(1.85) we obtain an expression for the BER 
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where ( )erfc x  is the complimentary error function. The ratio A


 is proportional to SNR as the 

signal power is proportional to 
2A and the noise power to 

2 .  
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1.4.2 SER for QPSK System 

The calculation of the SER  in QPSK, requires the evaluation of four conditional pdfs. If the received 

symbol lies outside its corresponding quadrant, this results in an error. To illustrate, let the 

conditional pdf’s of each symbol S  be denoted by  k kp S S  where 
kS is symbol k , 1 to 4k  . 

The SER is defined as  

 

  
area of error

k k k

k

SER q p S S   (1.87) 

 

where kq  is the probability of occurrence of symbol k  and  the area of error is the area outside the 

corresponding quadrant of symbol k . However, from the symmetry of the problem, the SER can be 

obtained from the conditional pdf of any symbol since all symbols experience the same impairments 

and receiver noise. Furthermore, all symbols occur equally likely. Consequently, 1
4kq   and the 

values of  
area of error

k kp S S  are identical. Hence, the SER is given by   
area of error

k kp S S  where k  

can be any symbol.  

1.5 The Multicanonical Method 

As seen in the previous section, the performance of a communication system, quantified by its SER , 

is computed from the pdf of the received symbols. As this requires simulated pdf values of the order 

of 10
-9

, standard Monte Carlo methods must be supplemented by variance reduction techniques. The 

multicanonical method [19], unlike, for example, importance sampling is both easily programmed and 

does not require any prior knowledge regarding the structure of the pdf [19], [20]. Consequently, 

stochastic functions relevant to optical communication system performance are often calculated with 

multicanonical techniques [21], [22], [23], [24].  

In the multicanonical method the parameters governing the behavior of a system are initially 

assigned random values and the relevant output (control) variables are calculated.  Subsequently, 

these parameters are changed slightly and the output variables reevaluated.  From the change in the 

output variables the new set of parameters replaces the previous quantities with a probability 

governed by a selection rule that favors transitions to less probable states.  While the pdf of the output 

states (whose dimension equals the number of output variables) is not known in advance, an initial 

estimate can be obtained through a Monte-Carlo simulation. Subsequent iterations of the 

multicanonical method lead to increasingly accurate estimates of the tails of the pdf [25], [26].   

To illustrate, consider a variable X that is a function of several random variables expressed as a 

vector 1 2 3( , , ...)v v v v  and we wish to calculate the pdf ( )p X . We start by generating a histogram 

for X over all the possible expected values of X . For example, if we want to calculate the pdf of the 
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DGD of a 15 section fiber, each section with a DGD of 1ps, the minimum and maximum values of 

X are going to be 0 and 15ps respectively. Therefore a histogram ( )H X   is constructed for values of 

0 15X ps  each entry containing one and we set 0 ( )p X to be the normalized version of ( )H X . 

We employ a Metropolis Hastings algorithm [19] to obtain samples using the biased pdf given by 

01/ ( )p X  and update the histogram ( )H X  accordingly. The set of obtained samples form a new 

histogram 0 ( )H X . A new pdf , 1( )p X , is obtained by normalizing 0 0( ) ( )H X p X . The procedure is 

repeated using a new histogram ( )H X with all unity entries but with a biased pdf given by 11/ ( )p X

.Again, a Metropolis Hastings algorithm is used to update ( )H X based on the samples obtained using 

the algorithm to obtain a new histogram 1( )H X  . This iteration generates a new pdf given by 

normalizing 1 1( ) ( )H X p X . The procedure is again repeated using the new biased pdf until the 

desired reach in ( )p X  is obtained.  

1.6 Organization of the Thesis 

The structure of the thesis is as follows:  Chapter 1 introduced the background knowledge of PMD. 

In  Chapter 2, we present measurements of very rapid time variations of the SOP at the output of 

DCM’s and a physical model to describe these changes. In Chapter 3, we propose a technique to 

determine the position of temporal polarization activity i.e. a signal fast hinge in a WDM link and test 

it using simulations. In  Chapter 4, we study the ability and compare between various linear 

predictions models applied to the DGD for a link within a deterministic hinge model. In  Chapter 5 , 

we derive analytical expressions for the SOP and PMD vector temporal autocorrelation functions 

using a reasonable stochastic model for the hinges. Finally in  Chapter 6, we employ the 

multicanonical method to evaluate the SER as a function of the SNR in a WDM system taking into 

account fiber nonlinearities and PMD. 
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Chapter 2 

Measurement and Simulation of Polarization Transients in 

Dispersion Compensation Modules 

2.1 Introduction 

Coherent optical communication systems require state of polarization (SOP) tracking to enable 

accurate demultiplexing of polarization multiplexed data [3]. High speed polarization changes in 

excess of the receiver’s tracking capacity can adversely affect the performance of the PMD 

compensator and therefore yield a system outage.  Electronic polarization tracking at least partly 

avoids such failures; for example, an FPGA (field programmable gate array) based system has been 

developed that provides endless tracking up to speeds of 9 krad/s [27].  

Rapid polarization changes have long been known to result from mechanical impacts on patch 

cords and fibers spools when these components fall certain distance or are struck with a metallic tool 

such as a screwdrivers [28]. Since devices such as DCMs are placed in huts where they can 

experience similar mechanical impacts, the accurate characterization and modeling of such effects is 

necessary to predict even qualitatively the frequency and duration of outages. Based on these 

observations, a procedure that generates high frequency transients in the SOP and DGD (differential 

group delay) of a DCM was described in [29].  However, the procedure of [29], which was later 

transferred to industry and described in more detail in [30], employs a carefully calibrated system to 

release a steel ball on the DCM casing.  This method was unexpectedly found to produce nearly 

identical PMD traces when the experiment was repeated, which enabled the determination of time-

dependent quantities such as the DGD in an extremely convenient fashion.  Additionally, we 

observed angular velocities (AV’s) for the Stokes parameters over the Poincare sphere as large as 550 

krad/s, which are far higher values than those that could be compensated by the system described in 

[27].  

In this chapter we examine, both theoretically and experimentally, rapid polarization transients 

generated by mechanical impacts on DCMs. Experimentally we can measure AV’s of the Stokes 

vector over the Poincare sphere exceeding 100krad/s for all measured DCMs.  Theoretically, we 

demonstrate with a simple model for the excitation that the patterns of the AV observed in 

experiments can be reproduced through simulation and that the amplitude of the AV increases with 

the volume of the fiber affected by the impact.  Our model is sufficiently simple to be employed in 

system simulations. 

2.2 Experimental Setup and SOP Reproducibility 

To examine the time evolution of the rotation matrix describing the output state in DCM’s, we 

employed the experimental setup of Figure  2.1. Light from a Photonetics Tunics-PRI tunable laser is 

first passed through an inline polarization controller that selects the input polarization which is then 

inserted into a Nortel DCM10, DCM20, DCM40 or DCM100 dispersion compensation module, all of 
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which possess identical casings. The output SOP was measured with a Lightwaves2020 inline 

polarimeter and sampled at a 2.5 × 10
6
 Hz data rate with a Tektronix digitizing oscilloscope. The 

polarimeter was calibrated against an HP 8509B polarization analyzer. Successive measurements of 

the SOP Stokes vector on the Poincaré sphere, 
1 2 3

ˆ [   ]Ts s s s , coincided to within a mean angular 

error of 0.07
o
 and standard deviation of 0.050

o
 with the HP 8509B. The magnitude of the error further 

remained < 0.22
o
 over 200 independent measurements.  

The experiment is performed as follows. A random input polarization is launched into the DCM 

with the input polarization controller. A 2.6 g, 1.3 cm diameter steel ball is dropped on the DCM 

casing and the resulting output polarization transients recorded. The experiment is repeated for 

several impact locations at heights of 3.0, 6.0 and 9.0 cm. The positions of the different impact 

locations are shown in Figure  2.2. We have found that if this experiment is repeated several times 

under identical conditions, provided that the difference in measurement times does not exceed the 

time scale associated with the slow thermal drift of the system (typically 10min-1hr), the output 

polarization follows nearly identical paths on the Poincare sphere. In Figure  2.3, we display the 

results of 10 measurements of the time variation of the 1s  component of the light output from the 

DCM40, for a ball drop height of 9cm and drop position number 1. Apart from a small time shift 

between consecutive measurements, the plots of 1s  are almost identical. This time shift in the curves 

results from fluctuations in the trigger to the oscilloscope which was provided by monitoring the 

audio signal generated from a microphone resting on the DCM. Defining a measure of reproducibility 

by the mean squared error      
2 2 2

1 10 1 10 1 10

1 1 2 2 3 3

0

1
T

s s s s s s dt
T

       in which 
1ŝ  and 

10ŝ  are the 

first and tenth measured polarizations and T =25.0ms is the record length, yields the error versus ball 

drop height shown in Figure  2.4 at position 1 for the different DCMs under consideration.  This error 

is far smaller in magnitude than the amplitude of the polarization fluctuations.  Releasing the ball 

from a height exceeding 12cm or delaying successive measurements by a long time interval (for our 

setup approximately 24 hours) over which thermal drift is substantial, induces a substantial change in 

the internal state of the DCM changes so that the SOP traces a different path on the Poincare sphere 

for identical measurement conditions. 
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Figure  2.1. In our experiments, a steel ball is secured and later released onto a DCM by an 

electromagnet generating fast polarization changes. The acoustics signal from the impact is detected 

by a microphone and employed to trigger the scope, which then samples the output from a fast 

polarimeter. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.2. Different impact positions on the DCM as follows: points 1-4 are located 1.5 cm, 3 cm, 

4.5 cm and 6 cm from the inner core. Points 6 and 8 and 10 and 12 are at the same radial distances as 

points 2 and 4 but displaced at 45
o
 and 90

o 
angles. 

   

6 

1 

2 

3 

4 

10 12 

8 

DCM 

microphone 

Electromagnet 

Computer 

Patch 

cord 

 

Laser  

Control 

circuitry 

Scope 

Inline 

polarizer 

Steel ball 

polarimeter 



 

38 

 

 

Figure  2.3. Ten successive measurements of the  component. The inset displays the region from 0.7 

ms to 0.74 ms showing the individual measurement curves. 
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Figure  2.4. The mean squared error of the polarization trace versus drop height for different DCMs 

for impact location 1. The error is largest for a height of 9cm. 

2.3 Birefringence Modeling 

The time dependence of the output Stokes parameters can be determined theoretically if the 

birefringence of the fiber is known as a function of space and time. As a result, our measurement 

results for the time dependent behavior of the output polarization can be interpreted, at least 

qualitatively, with a simple theoretical model for the birefringence.  

The underlying equations for a model of polarization evolution are derived from the relationship 

between the variation in the SOP, ŝ , with distance, z along the optical fiber  in terms of the local 

birefringence vector  ,z t as in Eq. (1.45), but now with time included as  

 

 
ˆ( , )

ˆ( , ) ( , )
s z t

z t s z t
z




 


 (2.1) 

 

Consequently, the output Stokes vector, ˆ ˆ( , )outs s L t , where L  is the DCM fiber length, can be 

estimated given a birefringence model and input polarization. The relation between ˆ
outs  and the input 
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Stokes vector îns  is described by a rotation matrix R  such that ˆ ˆ out ins R s , which is the quantity that 

is measured experimentally. In terms of this rotation matrix, the AV vector   is determined from 

 

 
TdR

R
dt

   (2.2) 

 

as demonstrated in [31]. The amplitude of the AV vector,  , determines the rate at which the output 

polarization varies and is independent of the input polarization.  Therefore, this quantity is a property 

of the DCM under test and is directly related to the dynamics of the problem. The AV is related to the 

birefringence vector in an analogous manner to the relationship between the PMD vector and the 

birefringence vector, namely  

 

 
 

 
,

,
z t

z t
z t

 
 

 
  

 
 (2.3) 

Here  ,z t  is the angular velocity at point z  and time t  where we simulate or measure  ,L t . 

Since the term    represents a rotation, the principle source of the AV is the time derivative of 

the birefringence. 

Our fiber model separates the birefringence into two components: the steady-state birefringence 

before the mechanical impact and a time-dependent part generated by the acoustic wave which travels 

along the fiber away from the position of the mechanical impact. The unperturbed birefringence of 

the DCM is simulated by a random modulus model according to the Langevin equation [32], [33] 

  

 ( ), ,i i

c

d
g z i x y

dz L

 
     (2.4) 

 

in which ( )g z dz  is a Wiener process and cL is the birefringence correlation length. The standard 

deviation of the Wiener process is 
2

cb L  , where the beat length is defined by 2bL b .    

 To describe the time dependent component of the birefringence generated by the impact, we 

observe that torsional, longitudinal and flexural or bending waves can be present in a cylindrical rod 

[34], [35] . Dispersion curves for the sound velocity in a cylindrical rod have been derived for the 

three wave types as a function of the dimensionless parameter / tfa c , where f is the acoustic 

frequency, a  is the radius of the rod and tc  is the bulk transverse velocity [34].  For a fiber radius of 
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125µm, which includes the plastic acrylate jacket and a sound velocity of 
33.37 10  /tc m s   [36], 

we obtain  8/ 3.7 10tfa c f   . We estimate f  as 2v H where v is the speed of sound in the 

fiber with jacket and H is the height of the DCM, yielding
3/ 1.7 10tfa c   . Hence, for the range 

of acoustic frequencies resulting in our experiments from the mechanical impacts on the DCM casing,

/ tfa c <<1. In this case, only the fundamental bending, longitudinal and torsional modes can 

propagate as all higher orders are cutoff [34]. However, a torsional wave requires that the fiber be 

twisted by the impact, which is precluded by the DCM casing. Further, bending waves possess a 

significantly smaller propagation velocity compared to a longitudinal wave from an analysis of the 

dispersion curves. However, we will demonstrate later that AV magnitudes of the order of the 

experimentally observed values imply that a large fiber length is excited immediately after impact, 

which requires a large propagation velocity. That is, consider the DCM geometry in Figure  2.5 with 

the casing dimensions (height, inner and outer radii) indicated in the figure. When the ball impacts the 

DCM at a certain radius r, the part of the fiber coils immediately beneath the area of impact begin to 

oscillate. Initially only the top few coils are excited while subsequently the excitation propagates 

vertically downwards vibrating lower fiber coils.  Simultaneously, the wave also travels horizontally 

along the fiber length. We estimate the time taken by the wave to travel vertically to the bottom most 

wrap to be less than 4 cm/3645 m/s = 0.0 1ms, where 3645 m/s is the speed of sound in the fiber 

taking the jacket into consideration [36]. Within this interval the measured AV’s are relatively small. 

After impact, the wave also travels around the circumference of the fiber coils, traversing half of each 

coil for r = 10 cm in 0.086 ms for a longitudinal wave which travels at the speed of sound. Indeed, the 

experimentally measured polarization activity is significant over time scales of this order. However, 

these figures are qualitative in nature and only give an estimate of the order of magnitude of the 

physical effects. Examining the dispersion curves in [34], a bending wave requires roughly 0.5 ms to 

propagate half-way around the circumference of the fiber spool for 
2/ 10tfa c   which is an order 

of magnitude less than the estimated value. Thus the actual time is going to be even greater than that. 

Most of the significant oscillations we observed in experiment occur within the first 1 ms, hence a 

bending wave cannot significantly contribute to the experimentally observed AV.  
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Figure  2.5. The geometry of the DCM. Our model assumes that the steel ball impacts a certain area of 

the DCM resulting in the oscillation of the fiber coils beneath it. Here Rin=5.25 cm and Rout=12.4 cm. 

H = 4cm. 

 

Starting with the above general discussion, we now model the time dependent birefringence generated 

by a longitudinal wave. A longitudinal wave traveling along a bent fiber induces a linear 

birefringence. At a wavelength of 1.55 µm, this is given by [37] 
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  
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,
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zcl cl
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z t

r r z


 
     
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 (2.5) 

 

Here cla  and r are the cladding radius and radius of curvature and zu z  is the axial tensile strain. 

The first term of Eq. (2.5) is the bending-induced birefringence from [38].The time-dependent part of 

the birefringence is accordingly 

 

  
 6

,
, 1.8 10

zcl
u z ta

z t
r z




  


 (2.6) 

 

We model the displacement zu  from the equilibrium position by  

 

 
 1 2

2
( ) ( ) ( )sin ( )

tanh( ) tanh( )2
   ( )sin

2

z

i i

z
u q t F z q t W z

z z z zz
q t









 
   

 

   
  

 

 (2.7) 

 

in which   is the excitation wavelength,  q t  is a  function describing the time dependence,  1iz  

and 2iz  define the z coordinates of the fiber over which the wave is excited, hence the active length 

of the fiber would be 2 1act i iL z z  . The hyperbolic tangent function effectively represents a 

window function that defines the extent of the excited length and therefore yields a smooth transition 

of the birefringence between the vibrating and stationary portions of the fiber.   Since we cannot 

examine the internal structure of the DCM, we neglect the spreading of the wave in our model and 

instead consider the excited length as the average length that is excited over the duration of the 

oscillations. However, by varying this length parameter from a small value to actL L , which 

corresponds to equal excitation of the entire fiber length, we can examine the variation of the 

characteristic time response with the physical extent of the excitation.  Large values of the length 

parameter correspond to case of coupling of vibrational energy between a large area of the DCM 

casing and the fiber while a small value of the parameter instead indicates that the excitation is 

damped rapidly as it passes through the fiber coils or does not acquire energy from a large fraction of 

the DCM casing. The axial strain satisfies the damped wave equation [35]. Hence the function 

2
( )sin

z
q t





 
 
 

 is taken as a solution to the damped wave equation [35] 
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 (2.8) 

in which 
gv is the wave velocity and b  the damping coefficient. Substituting 

2
( ) ( )sin

z
f t q t





 
  

 
 

in (2.8) yields 

 

 
22 0o oq q q     (2.9) 

 

With 2  , 4  and 4o g g o o gv bv bv             . 

Eq. (2.9) admits underdamped, overdamped and critically damped solutions. With the initial 

condition (0) 0g  , we have,  1 2( )
t t

q t A e e
  

  , 

   2 2

1 21  and 1o o              for an overdamped system ( 1  ) and A  is the 

vibration amplitude. We will employ these formulas since our simulations demonstrated that 

underdamped systems exhibit a periodicity in the AV that is not present in our experimental results.  

To estimate o , we note that the attenuation coefficient of longitudinal sinusoidal waves in a fiber 

was demonstrated experimentally  to possess the nearly frequency-independent value of 0.8m
-1

 for 

small fiber losses [36]. Eq. (2.8) can then be employed to estimate b  by Fourier transforming 

Eq.(2.8) and solving for f in the limit that the loss is small compared to the propagation constant. 

This yields 
11.6gbv m and 7.9o m  .   

It remains to model the static fiber bending radius. We approximate this as a linear function of z  

since the DCM length extends over a few km and the radii are on the order of cm.  We denote the 

radius of curvature at the beginning of winding by R1 and that at the end of winding by R2. For a fiber 

of length L  we have 

 

   2 1
1

( )R R
r z R z

L


   (2.10) 

 

Denoting the time independent local birefringence vector by  ( ), ( ),0x yz z   and the birefringence 

vector due to bending and wave excitation by  ,0,0p , the total birefringence vector is now 
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The components ( )x z  and ( )y z are determined through Eq. (2.4) while 
p  is given according to 

Eqs. (2.5) and (2.7) as 

 

  1 2

2

5 65.11 10 1.8 10
t tcl cl

p

a a F
A e e

r r z

     
     
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 (2.12) 

in which F is defined as in Eq. (2.7). 

 

2.4 Measurement and Simulation Results 

2.4.1 S Parameters and Angular Velocity 

We now compare measured and simulated results for the AV and the S parameters. Here we first 

release a ball at position 1 and height 3cm and determine the rotation matrix R by repeating the 

experiment for 10 different input polarizations. A least squares technique based on singular value 

decomposition (SVD) was employed to obtain the elements of the rotation matrix. We display our 

resulting calculated values of the AV for our DCM10 to DCM100 components in Figure  2.6-

Figure  2.9. Evidently the DCM40 exhibits the largest AV magnitudes of all the DCMs. Further, the 

AV increases with release height for all DCMs as expected, reaching a maximum value of 550 krad/s 

for the DCM40, impact position 1 and release height of 9 cm.  
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Figure  2.6. The AV for DCM10 with impact location 1, and release height 3 cm. 

 

 

 
Figure  2.7. The AV for DCM20 with impact location 1, and release height 3 cm. 
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Figure  2.8. The AV for DCM40 with impact location 1, and release height 3 cm. 
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Figure  2.9. The AV for DCM100 with impact location 1, and release height 3 cm.  

We next present for comparison simulated AV curves. The parameters employed are a wave velocity 
310  /gv m s , 10.0 o m  , 50.0 m   (and hence 5  ), 125 cla m , 1 5.5 R cm , 

2 9.0 R cm , 2.5 A cm  and a fiber length 1 L km . Since we are concerned with the region of 

large AV, we only carry out simulations for the first 5 ms where the time derivative of the 

birefringence attains its largest values. The S parameters, which respond to the time scale of the 

birefringence rather than its time derivative, display oscillations after impact that decay much more 

slowly than those of the AV. Indeed, a comparison Figure  2.6 - Figure  2.9 with Figure  2.3, 

demonstrates that while AV decays after approximately 2ms, the S parameters continue to oscillate 

for a substantially longer time. We consider three different fibers, fibers A, B and C with different 

values of the steady-state birefringence and therefore different solutions of Eq. (2.4) but with identical 

beat and correlation lengths, 15  and 20 b cL m L m  ,respectively, which are typical values for 

communication fibers [39]. Since noise effects are absent in the simulations, three orthogonal input 

polarizations are employed after which R  and hence the AV is determined. The SVD technique is 

again employed to obtain the rotation matrix.  In Figure  2.10,  we display the simulated AV for fiber 

B, for 1600  and 100 act iL m z m  . Evidently, our simple model for the excitation yields an AV 

that displays the salient features of the experimental results.  The model appears well suited to system 

simulations since experimental behavior can be reproduced by varying only a small number of 

parameters. In Figure  2.11, we simulate the AV for 1.0  kmactL  , which corresponds to the entire 

fiber length. The magnitude of the AV corresponds to the largest value expected from a DCM with 

the parameters of the simulation. 
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Figure  2.10. The simulated AV of fiber B for an active length of 600m, zi1=100m.  

  

 

 

 
Figure  2.11. The simulated AV for fiber B, for active length equal to the total fiber length. 

 

We finally simulate in Figure  2.12 the S parameters of fiber C for a 20 m active length. The range of 

the S parameters obviously does not agree with that observed in the experiments. As well, the 

maximum AV is calculated to be 18 krad/s. However, the simulated S parameters ranges and AV 

results were in reasonable agreement with experiment for active region lengths in excess of 100 m, 

yielding maximum AV’s in the 100 krad/s range for an active length of 100 m. Hence, we conclude 

that the length of the fiber that must be excited at the beginning of oscillation must be relatively large 

which cannot be accomplished simply by the propagation of bending waves. 
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Figure  2.12. The S parameters for fiber C with an active length of 20 m and zi1=200 m. The 

fluctuations are clearly very small compared to the experimental measurements (figure 2.3). 

 

2.4.2 Variation with Fiber Length and Impact Position 

We finally investigate both theoretically and experimentally the influence of the active fiber length 

and impact position on the AV. Our comparison is based on a parameter we term the arc length 

defined for a given value of the angular velocity, o , as 

 

 

    
T

l o o

o

a dt      (2.13) 

 

where   is the Heaviside step function. Thus la  corresponds to length scanned by the output 

polarization over the Poincare sphere for angular velocities greater than a certain value. While the 

fraction of the arc length covered at low angular velocities increases with T, the time interval [0,T] 

can be restricted to the physically interesting region of rapid oscillations and large angular velocities 

shortly after the initial impact. In our simulations, we employ T=5ms while in our measurements, 

T=12ms.  In Figure  2.13, we plot la  as a function of o  for fiber B. The simulated curves are for 

Lact=600 m with zi1=100, 200 and 300 m and Lact=100m, with zi1=200, 500 and 800 m. Evidently, la  

depends on both the amount of the active fiber length that is excited and the excitation position with 

the maximum AV monotonically increasing as a function of this length.  Further, the maximum 

angular velocity is observed to vary with excitation position (zi1). The results for the fibers A and C 
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are qualitatively similar.  Our experimental results for la  are displayed in Figure  2.14 for two 

different ball drop positions, 6 and 8 for the same DCM. The arc length is clearly greater for the inner 

point 6 compared to the outer point 8.  Similar results also have been observed for points 10 and 12, 

independent of the DCM type and the release heights. This leads us to conclude that a greater length 

of fiber is excited if the ball is dropped near the inner core of the DCM, which may be the result of 

reflections of the vibrational motion from the solid inner core of the spool as well as the transmission 

of the acoustic wave through the annular metal region before entering the fiber.   A detailed 

mechanical analysis of the system, which we cannot undertake at present since the DCM cannot be 

opened nondestructively, would presumably show the precise evolution of the acoustic wave and 

enhance the accuracy of our predictions in this regard, but such a calculation is outside the scope of 

our work.  

By varying the active length of fiber B from 100m to its full length in our simulation, we found that 

the maximum AV increased from ~100krad/s to 620krad/s. At the same time, when the release 

position was altered experimentally for a release height of 9cm, the maximum AV values were 

observed to vary between 153krad/s and 550krad/s for the DCM40. Thus our model provides a 

possible explanation of this variation as resulting from the change in the excited fiber length with 

release position.   We have finally examined the arc length of all the DCMs, yielding results such as 

those of Figure  2.15. The DCM40 displays the largest arc length for all positions and heights 

employed although only a single position is considered in the figure. The difference between the 

different DCM behavior indicates the existence of different active lengths and might possibly yield 

information about the performance fabrication tolerances of a DCM device. 

 

 
Figure  2.13.The dependence of the arc length on the angular velocity for different lengths of fiber B. 
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Figure  2.14.The dependence of the experimental arc length on the angular velocity for DCM10 with a 

ball release height of 9 cm. 

 

 

 
Figure  2.15.The experimental arc length for impact location 1, a release height of 9 cm, and different 

DCM structures.   

 

2.5 Conclusion  

We have developed a model that describes, at least qualitatively, impulsive mechanical impacts on 

DCM’s generated by acoustic perturbations to the fiber birefringence. We have identified the source 

of rapid changes in polarization as a longitudinal wave propagating outward from a restricted region 



 

53 

 

of the fiber spool. This model is based on well-established physical considerations and yields results 

that at least qualitatively agree with our experimental observations which indicate that the maximum 

value of the AV increases monotonically with the active fiber length. We have employed a simple 

parameter, the arc length, to characterize the polarization activity on the Poincare sphere as a function 

of the AV. An examination of this parameter demonstrated that both the active length and the position 

of the initial excitation affect the polarization activity. Further, the procedure possesses a sufficiently 

flexible and simple structure adaptable to any DCM device and subsequently can be employed in 

system evaluations of outage probabilities.   

To be able to implement more accurate models, knowledge ofthe mechanical properties such as the 

speed of the acoustic wave, the amplitude of the mechanical oscillation, the mean fiber bending radius 

and the number of wrappings are required in order to investigate the evolution of the propagating 

acoustic wave inside the DCM in detail.  Unfortunately, this is not feasible since the DCM’s under 

consideration cannot be opened non-destructively. As well, the statistical properties of the steady-

state fiber birefringence would have to be known, presumably with a back-reflection measurement 

[39]. Consequently, a heuristic model such as that given here is likely optimal for system simulations. 
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Chapter 3 

Locating Regions of Polarization Activity in WDM Systems 

3.1 Introduction 

PMD temporal dynamics has been studied extensively in two contexts. Long term measurements of 

PMD on buried cables have been carried out by several researchers [40], [41] leading to detailed 

models that have been extensively compared to experiments [42], [43]. It was found that the PMD 

dynamics of buried cables is well described by a Langevin equation [43]. However, as mentioned in 

Chapter 1, measurements of installed systems demonstrate that the main sources of time variations 

arise in regions where the fiber is exposed to the environment or at the location of huts containing 

devices such as DCM’s [44], [45], [46]. Consequently, the hinge model has been put forward. The 

hinge model incorporating fiber sections with fixed DGD and isotropic polarization scattering at each 

hinge between these sections demonstrated non-Maxwellian DGD statistics [47]. Further analysis 

showed that another consequence of the isotropic hinge model is that in WDM systems, some 

channels remain outage free [48].  

Since the DGD statistics are highly dependent on the DGD of the sections between the hinges, 

knowledge of the hinge positions provides information regarding the temporal behavior of the DGD. 

Measurements however indicate that DCM’s are not entirely isotropic [46] and hence DGD statistics 

obtained under an istotropic assumption are approximate. In fact, a model with a fixed rotation axis 

and a sinusoidally varying hinge rotation angle can be employed to approximate the DGD spectra 

measured over a finite interval of time [46].  

A source of time variation that yields rapid changes in polarization and can therefore similarly be 

considered as a hinge is associated with mechanical impacts on DCM’s as we described in Chapter 2.  

Measurement methods for characterizing and locating such sources of polarization fluctuations 

include polarization OTDR (optical time domain reflectometry) [49], which however is unreliable for 

large PMD values [49] and the procedure of [50] for measuring the instantaneous DGD of fiber 

subsections in a link.  

In this chapter, under the assumption that the rapid polarization changes originate from a single 

spatial location within each time interval, we propose an alternative measurement procedure that 

yields the amount of DGD in the system preceding and following this position. This technique is 

particularly applicable to the detection of fast and short-lived polarization changes that are localized 

to a small area of the link. However, it can also be employed to determine the location of more slowly 

varying hinges in a several hinge link if only one hinge is active at one time or if one hinge exhibits a 

far more rapid variation then the other hinges. The method is otherwise independent of the hinge 

temporal or spectral behavior. 
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3.2 Theory 

A rapid fluctuation of the output polarization resulting from a physical event at a given point along an 

optical fiber link can be regarded as a polarization hinge activity at this point, as shown in Figure  3.1.   

 

 

 

 

Figure  3.1.  A rapidly varying localized polarization variation modeled as a hinge time varying 

rotation matrix ( )H t . The fiber before the hinge is section 1, with PMD vector and rotation matrix 

1  and 1R  while section 2 follows the hinge with PMD vector and rotation matrix 2  and 2R . 

 

The fiber lengths before and after the hinge will here be termed sections 1 and 2, respectively, where 

we assume that these fibers are sufficiently long that the mean DGD varies as the square root of their 

length and is Maxwellian distributed over long periods of time as describe in  Chapter 1. If the 

physical environment of sections 1 and 2 is constant over the characteristic time of the polarization 

variation at the hinge, the PMD vector and the Stokes vector at the output are respectively described 

by the concatenation rules  

 

  2 2 1R H t     (3.1) 

  2 1 in
ˆ ˆ
outs R H t R s  (3.2) 

   

where 1  and 2  represent the three-element PMD (column) vectors of sections 1 and 2 respectively, 

( )H t is the time-dependent rotation matrix of the hinge, t  being the time, 1R and 2R  denote the 

rotation matrices of  sections 1 and 2 respectively inŝ  and ˆ
outs  are the input and output polarizations 

respectively. 

Assuming that the time scales of the hinge dynamics are much slower than the pulse width, which 

is clearly valid at normal communication system bit rates, the time correlation functions for the PMD 

vector and Stokes vector are  

    
0

1
T

f t t dt
T

     (3.3) 
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    
0

1
ˆ ˆ

T

out outg s t s t dt
T

   (3.4) 

where T  is the observation window and   is the time shift. We now compute ensemble averages for 

f  and g . These averages can be obtained in practice by measuring f  and g  at a multitude of 

statistically independent frequencies. This is explained in more detail at the end of this section. The 

ensemble average of f  over the different fiber realizations of sections 1 and 2 is obtained by 

substituting Eq. (3.1) in Eq. (3.3) to obtain 

 

      ' ' '

2 1 2 2 2 1

0

1
'

T

f H t R R H t dt
T

         (3.5) 

 

in which the DGD of the two sections is written as a 3x1 matrix, while the prime here denotes 

transpose.  Exchanging the time and ensemble averages yields, noting that 
'

2 2R R I , where I  is the 

identity matrix, 

 

 

   

   

2 ' ' '

2 1 2 2 2 2 1

0 0

'

1 1

0

1 1
'

1
        '

         

T T

T

f dtH t R R dtH t
T T

dtH t H t
T

     

  

   
      

   

 
  

 

 

  (3.6) 

The second and third terms yield zero since 1  and 2  are independent and the ensemble average of 

the product of any two of their Cartesian components should be zero. Denoting 

 

    
0

1
'

T

M dtH t H t
T

   (3.7) 

the fourth term can be rewritten as  

  
11 12 13 1

'

1 1 1 1 1 21 22 23 1

31 32 33 1

x

x y z y

z

m m m

M m m m

m m m



     



  
  

   
  
  

 (3.8) 
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With 1 0, , ,i i x y z   , 
2 2

1

1

3
i   [15] and observing that the elements of the matrix M  

are independent of the PMD components of section 1, we obtain 

  

 

  ' 2

1 1 1

1

3
M Tr M    (3.9) 

 

where  Tr M  is the trace of the matrix M . 

 

Hence Eq. (3.6) reduces to 

 

  2 2

2 1

1

3
f Tr M    (3.10) 

Before calculating the ensemble average of g , we note that regardless of îns , the transformation 

1
ˆ

îns R s  yields a vector that has the properties 
2 2 20; 1 3x y z x y zs s s s s s        as 

long as section 1 is in the long length regime [32]. Employing Eqs. (3.2) and (3.4) and repeating the 

above procedure, we further obtain for the ensemble average of g  

 

  
1

3
g Tr M  (3.11) 

 

Combining Eqs. (3.10) and (3.11) yields 

 

 
2 2

2 1f g    (3.12) 

 

Since 
2 2 2

2 1    , Eq. (3.12) can be rewritten as  

 

  2 2

2 1f g g     (3.13) 
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Therefore, if the PMD vector and the Stokes parameters are measured for different fiber realizations, 

f and g  evaluated, 
2

2 can be obtained by a least squares fit yielding the position of the hinge 

if the average DGD of the link is known. The least squares fit is performed such that 
2

2   minimizes 

the error defined by   
2

2 2

2 1

T

T

d f g g  


    . 

The preceding formulas involve ensemble averages of time correlation functions that can be 

evaluated in two possible ways.  One of these is to observe the system over a time interval that 

encompasses many average DGD correlation times and then to average over the values obtained over 

each correlation time.  The second is to observe a system over a band of optical frequencies that is 

broader than a sufficient number of correlation frequencies, such as present in a WDM system and to 

average the relevant quantities over their uncorrelated values at representative frequencies that differ 

by at least the correlation frequency. Here the spectral separation of frequencies in the average must 

accordingly be at least 750 GHz /  , where   is the mean DGD of the link in ps [15] which 

corresponds to 6 times the correlation frequency of the PMD vector. Further, since the frequency 

correlation function of the Stokes vector is narrower than that of the PMD vector [51], [52] the Stokes 

vectors at the employed frequencies will then necessarily also be statistically independent. Thus in a 

dense WDM (DWDM) system with 80 channels with 50GHz separation [53], we require 15 ps 

. In a WDM system, each channel’s PMD vector and Stokes vector will be monitored. When the rapid 

changes are detected, the correlation functions are calculated. The value of  
2  is obtained as the 

value of f  at 0   and then the value of 
2

2  can be calculated from the least squares fit.  

3.3 Simulation Parameters 

In view of the above discussion, we simulate a link by generating 80 random realizations from which 

we employ the least squares fit described in the previous section to obtain the ratio 
2 2

2X     

which is the fraction of the squared DGD following the hinge. This ratio is then compared to the exact 

value exactX  . We first employ 80 realizations to establish the feasibility of the method in the case that 

only the channels present in a standard DWDM system are available. The fiber link, which is 

assumed to possess a mean DGD of 20 ps   at a vacuum wavelength of 1.55 µm, is modeled as a 

concatenation of 100N   birefringent sections with a DGD of  
3

8
n v

N


    in each section 

where v   is a normally distributed random variable with zero mean and a standard deviation 

3
0.2

8N



   . The Gaussian random variable, v  , randomizes the DGD of each section slightly 
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and prevents the spectrum of the PMD from becoming periodic with frequency [15]. Each section is 

chosen to have a random rotation axis. At the same time, the magnitude of the PMD vector of each 

section is held constant while its direction is varied randomly for each realization. We employed two 

different models for the hinge. Measurements on DCM’s have indicated that both the rotation angle 

and the rotation axis of the hinge may vary with time. Variation of hinge properties with frequency 

has been also reported but for large frequency shifts on the order of THz [46]. Therefore, the hinge, 

which is placed a certain number of sections from the entrance face of the fiber, is then modeled in 

model 1 by a polarization rotator with zero DGD, a time varying rotation axis given by 

   cos 2 sin 2 zr ft r ft r      where 
2 2 1zr r    and a rotation angle given by the decaying 

sinusoidal function     1.5 sin 2 exp 40d t z t        where 2 100    rad/s  and z   is a 

uniformly distributed random variable between 0 and 1. In each realization of the link, the phase 

2 z   will take on a different value and this serves to model the variation of the hinge behavior with 

frequency in a real system. The decaying rotation angle models the rapid but strongly damped 

excitations that are short lived according to our assumptions. Of course, hinge dynamics are to a 

certain extent deterministic as, for example, a model based on a prescribed evolution of a few hinges 

in a link yields results very similar to certain experiments [45], [46]. The present theory, however, 

does not assume any particular properties of the hinge behavior as a function of time or frequency and 

therefore our results are valid within wide limits irrespective of this behavior. In model 2, we employ 

the same form for the rotation angle but in each realization the value of zr   is chosen randomly from 

the uniform distribution defined over the interval [-1,1] and then r   is obtained from 
21 zr r   . 

Model 1 assumes that only the rotation angle is a function of frequency while model 2 assumes that 

both the rotation axis and the rotation angle of the hinge vary with frequency. The correlation 

functions f  and g   are computed over a time  after which the rotation angle is effectively zero and 

are then averaged over all realizations to obtain f   and g . Changing this time interval did not 

change any of the results significantly. In all simulations, a fixed input polarization  ˆ 1 0 0 'ins    

is employed. With the value of  
2   taken as that of f   at  0  , a least squares fit is then 

employed to determine 
2

2   from Eq. (3.13). The ratio X   is then calculated and compared to 

exactX . Knowledge of the mean DGD of the link together with the value of X   then yields an 

estimate of the DGD preceding the hinge. 

3.4 Results and Experimental Setup 

In Table  3-1, we display the value of X  obtained from our simulations compared to exactX   for 80 

realizations and two different sequences of random numbers for model 1. The same data is displayed 

in Table  3-2 for model 2. Except for the data points at 0.2,0.3exactX   for model 1, sequence 2, the 

error in all simulation points is less than 15%. This error and error difference between the two 

sequences demonstrates the statistical limitation of the method as a result of the limited number of 
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data samples.  However, if the rapid PMD changes recur, the statistical error would be decreased. To 

verify this, we ran our simulations for 1000 realizations instead of 80 for the two different sequences 

of random numbers. The results displayed in Table  3-3 and Table  3-4 for models 1 and 2 respectively 

indicate much improved results for the values of X  , model 1, sequence 2 hence supporting the 

theory presented in section  3.2. In addition to that, in Figure  3.2, we show the difference between the 

values of X  obtained from the two sequences for models 1 and 2 for 80 realizations and 1000 

realizations. As can be observed, the difference is reduced when more realizations are employed 

irrespective of the model chosen for the hinge.  

Table  3-1. Exact and computed values of X for 80 realizations and two different sequences of random 

numbers for model 1 

Exact Simulated sequence 1 Simulated sequence 2 

0.2 0.2069 0.2786 

0.3 0.3575 0.4369 

0.4 0.3889 0.4568 

0.5 0.5097 0.5384 

0.6 0.5937 0.6269 

0.7 0.7263 0.737 

0.8 0.8150 0.7962 

 

 

 

Table  3-2. Exact and computed values of X for 80 realizations and two different sequences of random 

numbers for model 2 

Exact Simulated sequence 1 Simulated sequence 2 

0.2 0.2044 0.2025 

0.3 0.27 0.31 

0.4 0.37 0.44 

0.5 0.45 0.56 

0.6 0.5977 0.60 

0.7 0.6832 0.72 

0.8 0.8044 0.81 
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Table  3-3. Exact and computed values of X for 1000 realizations and two different sequences of 

random numbers for model 1 

Exact Simulated sequence 1 Simulated sequence 2 

0.2 0.2053 0.2171 

0.3 0.3309 0.337 

0.4 0.4265 0.4298 

0.5 0.5117 0.5194 

0.6 0.5914 0.600 

0.7 0.7055 0.7052 

0.8 0.7926 0.7960 

 

 

Table  3-4. Exact and computed values of X for 1000 realizations and two different sequences of 

random numbers for model 2 

Exact Simulated sequence 1 Simulated sequence 2 

0.2 0.2115 0.2084 

0.3 0.3294 0.3414 

0.4 0.4181 0.4216 

0.5 0.4961 0.5011 

0.6 0.5964 0.6038 

0.7 0.7097 0.7075 

0.8 0.7926 0.8018 
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Figure  3.2.  Absolute difference between X from sequences 1 and 2 for the two hinge models used 

and for 80 and 1000 realizations. 

 

The above theory can be implemented through the experimental setup of Figure  3.3. Here a tunable 

laser is connected a concatenation of two fibers separated by a polarization controller that models a 

rapidly varying hinge in an actual fiber system. The mean DGD of both fibers 1 and 2 is assumed 

known or measured beforehand so that the exact value of X  can be determined. At the output of 

fiber 2, a splitter splits the light into PMD and Stokes parameters measuring apparatus. By collecting 

data for a sufficiently large number of correlation frequencies f    and g   and hence X  can be 

determined and compared to exactX  . 
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Figure  3.3.  Proposed experiment. A tunable laser launches light into a concatenation of two fibers 

connected through a polarization controller acting as a hinge. A power splitter at the output of fiber 2 

splits light into PMD and Stokes vector measurement apparatus for simultaneous measurements. The 

frequency of the laser is then varied and the process is repeated and ensemble averages are formed. 

The computer is used to control the time variation of the polarization controller thus implementing the 

hinge in the link.  

 

3.5 Conclusion 

We have demonstrated that the location of a hinge that induces fast polarization changes in WDM 

communication links together with the amount of DGD before and after the hinge can be determined 

to within statistical error by averaging over suitable correlation functions. The procedure is not 

limited to WDM standards.  It should be noted here that if sufficient data is collected, incidents in 

which two or more hinges are active could be separated from the remainder of the events. Statistical 

error can be reduced either by including more frequencies in the ensemble average, which can be 

accomplished by including additional diagnostic wavelengths in the system that do not carry data but 

can be employed in measurements.  In a WDM system, such additional wavelength channels could 

further be periodically modulated at the position of different hinges in order to provide a continuous 

map of the DGD of the link along its length. 
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Chapter 4 

Differential Group Delay (DGD) Prediction in Optical Fiber Links 

4.1 Introduction 

Given that the DGD of transmission fiber varies stochastically with time, knowledge of the outage 

probability for times beyond the present state of a communication system can enable mitigation based 

on system reconfiguration [54].  For short buried cable routes, characteristic times for the change of 

DGD have been observed to be of the order of weeks or months. These times are expected to diminish 

as the reciprocal of the square root of route length [52] .   

In this chapter, we simulate the time evolution of DGD in a fiber link in the hinge model with time 

varying hinges. The hinges are assumed here to be deterministic. However, measurements indicate 

that sometimes hinges show stochastic behavior [55]. We apply time series forecasting procedures, in 

particular, autoregressive (AR) models with Kalman filter, pattern imitation and a Taylor expansion 

to the DGD and compare their prediction abilities. Results of this study shed light on the degree to 

which it is reasonable to reconfigure based on a forecast of possible outage conditions. In these 

studies, the furthest prediction horizon was attained with the AR accompanied by the Kalman filter 

procedure. We further discuss the influence of measurement noise on the prediction horizon. We also 

apply these methods to the measured DGD on 40 Gb/s fiber links and discuss the results. 

4.2 Model Parameters 

We model a fiber link with a mean DGD of 20 ps  at a vacuum wavelength of 1.55 µm. Five 

static, highly mode coupled fiber spans each consisting of 50 birefringent segments are connected by 

four polarization rotating hinges as shown in Figure  4.1. The total number of birefringent segments is   

250N  and the DGD of each section, n  , is set to 
3

8
n v

N


     in which v   is a normally 

distributed random variable with zero mean and a standard deviation 
3

0.2
8N




    as described 

in  Chapter 3. As in [45], [46] hinges are modeled as randomly oriented polarization rotators with 

frequency-independent axes and a rotation angle given by  

  1.5 sin 2 1 8 2 500k kf t k t        , where t   is the time,  k  is the hinge number and the 

hinge frequency kf   is 0.5 for odd numbered hinges and 0.8 for even numbered hinges. This model 

has been shown elsewhere to yield results that resemble qualitatively certain experimental 

observations [45], [46] and in fact our results were very slightly altered for frequencies in the range 

from 0.5 to 1. The periods  1/ kf  of the hinge rotation angles are approximately 2 and 1.25 time units. 

Below, a total time 5t   will be employed to generate the AR models while a time of  50t   is 

employed to populate the database in the pattern imitation technique. These correspond to 2.5 times 
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and 25 times the slowest simulated hinge period respectively. The DGD of the link is then determined 

by applying the concatenation rule of the PMD (polarization mode dispersion) vector at each time 

instant.  

 

Figure  4.1.Simulated optical link. Fiver five fiber spans S1 to S5 are connected via a series of time 

varying hinges H1 to H4 modeled as polarization rotators. Each fiber span consists of 50 birefringent 

sections each having randomly oriented rotation axes.    

 

The simulation yields the three components ,x y   and z  of the PMD vector and  is then calculated 

2 2 2

x y z        as a function of time. We also simulate measurement noise by adding a noise 

vector    to   . The components of    are independently Gaussian distributed random variables 

with zero mean and a standard deviation of 1ps. If the signal is associated with  , the resulting signal 

to noise ratio /S N  is 25 dB over a period of 10 time units. Before applying the methods to the noisy 

signals, a filter is used to smooth the data. The details of the filter parameters are described in 

section  4.3.4. We apply the prediction methods to  , ,x y  , z  , and to 
2  . In cases when the 

methods are not applied to   ,     is derived from the predicted quantities for e.g. from 
2  by taking 

the square root.  For AR models and the Taylor expansion technique, in the absence of noise, 

applying the models below to ,x y    and z  individually or to 
2  and then deriving   from the 

resulting signals often yields an improvement over instead modeling   , except the pattern imitation 

method. For measured data, only the DGD is available so that our models can only be applied to   . 

To quantify the reliability of various prediction methods for the resulting numerical or measured 

DGD time series we define the metric 
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 (4.1) 

 

Here n  is an integer representing the time index, and the signals are   implemented as a discrete 

process where ŷ  is the predicted signal, vy  ranges over the validation section of the signal, and y is 

the mean over the entire signal (which in our calculations is nearly independent of the number of data 
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points for sufficiently large record lengths). The metric thus represents the percentage improvement 

of the prediction of a given method relative to employing the mean value of the signal as the 

predicted value. For a signal  n  with 1,2,3..., Ln N  the norm,  , is defined as 

 
1/2

2

1

LN

L

i

i N 


 
  
 
 . At a certain time index N  and for a given model,  ŷ N  is generally 

calculated from the values of 
vy  up to a time index of N P  where P  is termed the prediction 

horizon. To establish the prediction capabilities of each model, the metric   is calculated for 

7000LN   corresponding to 4.86 time units and different prediction horizons. The results are 

expressed in terms of the signal correlation time cN  defined here as the time index halfway between 

the correlation peak and the minimum of the first oscillation of the correlation function of the DGD as 

illustrated for our simulated time series in Figure  4.2. Here the time correlation function is defined as 

     
0

1
T

R t t dt
T

      with 10T   and   the time shift. Increasing T  does not affect cN  

which equals 97 for our simulated data. The models are also compared by calculating the ratio 

80% cP N   where 80%P  is the prediction horizon for 80%  . This provides an estimate of the 

time for which the model can predict future values subject to a given accuracy compared to the 

decorrelation time of the the DGD signal.  

 
Figure  4.2.Correlation function of simulated DGD time series. The correlation index is defined as the 

distance between the maximum of the correlation function and the first minimum. 
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4.3 Prediction Methods 

The three prediction algorithms employed in this paper, namely, the AR procedure with a Kalman 

filter, a pattern imitation technique and a Taylor expansion are now described as well as the filter we 

employ to reduce the noise. 

4.3.1 AR Modeling and Kalman Filters 

The first step in implementing an AR model, is to subtract the mean of the data from each data value. 

The resulting sequence is then divided into estimation and validation sections as shown in Figure  4.3. 

The estimation section is employed to generate the model that is subsequently analyzed with the 

validation data. We denote the estimation points by  y n  and the validation points by  vy n  as 

detailed in section II. Given k  previous values of y , namely,      1 , 2 ,.....,y n y n y n k   an 

estimate of  y n , denoted by  r n  is obtained from the weighted average of the previous k  values 

of y  according to 

    
1

k

i

i

r n a y n i


   (4.2) 

 

Figure  4.3. DGD time series with mean removed. The first 7200 data points are used to estimate the 

model and the following 7000 points of the series is employed for validation. 
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As Eq. (4.2) represents a k
th
 order AR model for  y n  it will be referred to as AR(k) in our 

following discussion . The coefficients ia  are obtained from a least squares fit of Eq.(4.2) to the true 

estimation points  y n  for 1,2,3,...n  up to the end of the estimation record with Burg’s method 

[56]. The resulting model for the estimation section is 

 

      
1

k

i

i

y n a y n i w n


    (4.3) 

  

where  w n  represents the error of the fitting procedure. We apply this technique to a record given 

by a simple sine wave described by  sin 0.025 n  with n = 1,2, … 75 which is less than a full 

period. Thus for example, the least squares fit yields a difference equation 

     1 21 2y n a y n a y n     with 1 1.994a  and 2 1.0a   in place of the exact values 2.0, 1.0 

for a k=2 second order model . To describe the Kalman filter technique, the model of Eq. (4.2) is 

recast in state space form. For this purpose we define a state vector 

        1  ...... 1
T

x n y n y n y n k      . From Eq. (4.3), the state vector at time n  is given in 

terms of the state vector at time 1n  through  

  

       1x n A x n w n    (4.4) 

 

where A  is a k k  matrix composed of the coefficients ia   

1 2 1....

1 0 .... 0 0

0 1 . . .

. . .... . .

0 0 .... 1 0

k ka a a a

A

 
 
 
 
 
 
  

 

 

and the error vector    [  0 0 0....]Tw n w n .  

The current value of y  can be obtained from the state vector through  
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     y n C x n  (4.5) 

 

where C  is given by [1 0 .........   0]C  .  

Eqs. (4.4) and (4.5) describe the model developed for the signal from the estimation data points. To 

predict the value of the signal,  ŷ N ,  for a time N  in the validation section, all the  vy n  with 

n N P   are employed. In particular, an initial state vector is chosen and the following formula 

applied [56] 

 

          ˆ ˆ ˆ1 1vx n Ax n K n y n CAx n     
 

 (4.6) 

 

where the Kalman filter gain  K n  is a 1k  column vector described in [56]. In this article,  x̂ n  

is the estimated value of the state vector at time n  given the previous value of the state vector 

 ˆ 1x n  and the current value of vy . The Kalman filter gain is successively updated for the next 

time index [56] and the state vector recalculated with Eq. (4.6) as outlined in [56] up to time index 

N P .  Eq. (4.4) is then applied P  times with the error vector absent and  ŷ N  is finally obtained 

from the final state vector according to Eq. (4.5). Note that the actual time series is not stored as only 

the updated state vector is required for each new value of the validation signal. The results of our 

simulations are effectively independent of the choice of initial state vector. We have also applied the 

above method in conjunction with an ARMA (autoregressive moving average) [56] or a state space 

model [56] in place of the AR model without significantly improving the predicted data values. It is 

also found that  K n  saturates after the first few time updates in a manner such that the predicted 

value can be just obtained by taking the most recently recorded state vector and applying Eq. (4.5) P  

times. In other words the AR model described by Eq. (4.3) is sufficient to generate the prediction if 

applied P  times employing      , 1 , ...... , 1v v vy n P y n P y n P k      .  

To select the model order, models of varying orders are first generated from the estimation section 

that are then verified on the validation section. Since generally increasing the model order beyond a 

certain value does not enhance the prediction accuracy or horizon, we increase the model order until 

the value of the metric becomes independent of the order number.   

4.3.2 Pattern Imitation [57] 

Pattern imitation techniques are based on the assumption of quasiperodicity in a time series that is 

divided into separate records by matching previous records to the most recent record and then 

employing the extension of the previous record to predict future values. Thus the time series is 

recorded over a sufficiently long period of time and stored in a database as a series of state vectors 

         1  ........ 1x n y n y n y n d      . Each successive set of d  measurements in the 
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validation section yields a new state vector, 

         1  ........ 1measured v v vx n P y n P y n P y n P d          . The database is searched 

for the nearest neighbor state vector,  nnx l , that minimizes the norm of the difference vector 

measuredx x  after which the predicted value of the signal is given by    ŷ N y l P  . 

Alternatively, several closely matching state vectors can be identified and the average of the 

corresponding values of  y l P of these vectors employed as the prediction.  

To implement this technique, we increase the size of the database until no further improvement is 

recorded in the metric, Eq. (4.1) . The number of nearest neighbors and the size of the state vector d

are optimized iteratively by fixing one variable and varying the other variable to maximize the metric 

and repeating this for each variable in turn until convergence is achieved. From the numerical data  

we have determined that a database of 72,000 points is sufficient for our problem with while 10d 

and 10 nearest neighbors supply optimal results.  

4.3.3 Taylor Expansion 

A straightforward procedure evaluates the derivatives of the time series up to a certain order. The 

predicted signal  ŷ N  after a time step st Pt  for a sampling time st , is then given by the Taylor 

expression 

 

      
 
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 
          (4.7) 

 

As in AR modeling, the order of the derivative at which the series is truncated is chosen such that 

increasing the order does not noticeably affect the metric, Eq. (4.1). 

4.3.4 Filter Description 

Before applying prediction methods to the noisy signal, the time series is smoothed with a filter such 

that numerical differentiation can be applied in our final method.   We employ local regression in 

which successive sets of fitN  data points are fitted to a quadratic function with a least squares 

technique along the lines of the Savitzky Golay filter [58]. The derivative of the noisy signal at a 

point is then estimated from the derivative of the resulting quadratic function at the same point. 

Subsequently  fitN  is optimized by calculating a predicted signal and comparing it to  which is 

noise free. However, to avoid significantly distorting the signal as a result of the smoothing operation, 

we have employed 250fitN   points for the numerical data as our results are then not appreciably 

changed by increasing fitN  by 100 points. 
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4.4 Results 

We first investigate the three methods outlined above in the absence of noise in Figure  4.4 for which 

the quantity   defined in Eq. (4.1), is plotted against the prediction horizon P . Where this metric is 

negative, indicating that the mean value is a better predictor than the model, it is replaced by 0%. The 

lines in the figures are the results of (1) an AR(5) model applied to   (dotted line) , (2) an AR(8) 

model applied to 
2  (dashed line), (3) a combination of three separate AR(9), AR(9) and AR(8) 

models applied to 
z,  and x y    respectively (circle markers), (4) a seventh-order Taylor expansion 

for 
z,  and x y    (square markers), and (5) the pattern imitation procedure applied to   (triangle 

markers). The results of Figure  4.4 indicate that models (2) and (3) yield the longest prediction 

horizon of the models surveyed subject to a given level of accuracy.  Indeed, the individual PMD 

components and 
2  do not experience the nonlinearity introduced by taking the square root of 

2 , 

improving the performance of the linear AR model and the Taylor expansion technique . The pattern 

imitation method, however, displays equal accuracy when applied either to the individual components 

or to 
2 . As indicated in Figure  4.5, which employs model (3) for 130P  , predicted values with 

80% , can be obtained even for horizons larger than the correlation time. For this model,

1.44  .  
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Figure  4.4.The metric versus prediction horizon for the different methods employed. The legend 

indicates model numbers as described in section 4.4. (1) an AR(5) model applied to   (dotted line) , 

(2) an AR(8) model applied to 
2  (dashed line), (3) a combination of three separate AR(9), AR(9) 

and AR(8) models applied to z,  and x y    respectively (circle markers), (4) a seventh-order Taylor 

expansion for z,  and x y    (square markers), and (5) the pattern imitation procedure applied to   

(triangle markers). 
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Figure  4.5.Simulated and predicted DGD time series for model (3) for 130P   and 86%  .   

 

In Figure  4.6, we display the same results after noise addition and filtration. Graph (1) is an AR(10) 

model of   (dashed line), (2) for AR(9), AR(9), AR(8) models applied to the PMD vector 

components just as in the noiseless case, (3) Taylor expansion up to second order and (4) the pattern 

imitation technique. The figure indicates that the prediction horizon for the same   is reduced for 

filtered noisy data. 0.77  for model (1) which is the best among the models considered . It is also 

evident from the figure that when the model order in the DGD implementation is sufficiently large, 

the resulting   can be better in the presence than in the absence of noise. In fact, filtering removes 

not only high frequency noise but also the high-frequency harmonics generated when a square root 

operator is applied to 
2 . On the other hand, the pattern imitation technique is unaffected by filtering, 

while higher order Taylor expansion models instead diverge rapidly even for small prediction 

horizons. Indeed, a derivative introduces high pass filtering of the low pass prefiltered signal so that 

the higher order derivatives are affected by the prefiltering. In Figure  4.7, we accordingly compare 

the filtered DGD time series (solid curve) and the predicted time series (dashed curve) for a 

prediction horizon of 75 points and 81%  . 
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Figure  4.6.Metric plotted as a function of the prediction horizon after filtering. 

 

We further applied our procedures to the measured DGD for two different fibers employed in 40 

Gb/s systems. The data were obtained from field measurements spanning 46 and 89 correlation times 

for fibers 1 and 2 respectively. The DGD was sampled every 60s and was measured over a period of 

11 days for fiber 1 and 21 days for fiber 2. A total of 16984 samples were collected for fiber 1 and 

28359 for fiber 2. The smoothing filter described in section  4.3.4 with 300Nfit  was employed to 

reduce noise. Since the speed of variation of the DGD increases with both the number of hinges in the 

link and the rate at which each hinge varies, our lack of information on the distribution and time 

variation of the hinges in the link precludes establishing a relationship between the filter integration 

time and the hinge dynamics.  However, we observe that the signal to noise ratio is 20dB for fiber 1 

and 25dB for fiber 2. Fitting an AR(8) model to the resulting DGD time series in which half of the 

points are employed for estimation and the other half for validation, we found   equal 0.25 and 0.38 

for fibers 1 and 2 respectively to an accuracy of ± 2.5% as determined by varying the validation 

record length. For fiber 1, Figure  4.8 demonstrates the predictive accuracy of the model, which yields 

a horizon of 90 points with 81%  . The 90 point horizon successfully predicts future DGD 

changes of up to 50% as in the region between 2017n   to 2107n  where the DGD changes from 

19ps to 30ps.  In Figure  4.9 we display the corresponding prediction and measured time series for 

fiber 2. Here the horizon is 120 points while 81%  . 
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Figure  4.7.Simulated DGD and predicted DGD time series for noisy data for AR(10) model applied to 

the DGD. 
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Figure  4.8. Predicted and measured DGD. 
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Figure  4.9. Predicted and measured DGD for fiber 2. 

 

We applied the pattern imitation technique to the DGD time series of fiber 2 since more data points 

are present in this record. Approximately half of the samples were employed as the database (14179) 

points. For 120P  , we obtained 55%   . While increasing the database size generally improves 

  , the extent of this improvement cannot be estimated here because of the limited number of points 

in the data record. Applying the Taylor series technique with three derivatives to the same time series 

(additional terms generated divergences) yielded 45%   for 120P  . In Table  4-1 we summarize 

the results of the different models for simulated data and measured data of fiber 2 as a function of the 

parameter  . The table demonstrates that for both simulated and measured data, the AR model yields 

the longest prediction horizons. Although the AR models perform better, the Taylor expansion 

technique is less complex. AR models require a suitable amount of data points to be able to build a 

reliable model that minimizes the least squares error. On the other hand, a Taylor expansion technique 

employing third order derivatives requires only four measurement points which can be a highly 

desirable feature, depending on system requirements. 

Table  4-1.  compared for the three methods applied to simulated and measured data. 

80%   Prediction Method 

AR model Taylor Expansion Pattern Imitation 

Simulated data 0.77 0.57 0.41 

Measured data 0.38 0.28 0.19 



 

78 

 

4.5 Conclusion 

In this chapter, we have examined methods that could potentially be employed to predict PMD 

impairments sufficiently long in advance to enable rerouting of the affected traffic.   We considered in 

particular three different time series prediction techniques for both simulated and measured data.  Of 

these, applying the AR model to each of the three PMD vector components followed by a Kalman 

filter yielded the longest predictions horizons for a given level of accuracy in the absence of noise.  

However, we did not observe an advantage in applying the model to the components of the PMD 

rather than the DGD directly when noise was present. Our results with simulated Gaussian noise 

yielded a prediction horizon equal to about 77% of the correlation time while for a time series taken 

from actual measurement data the horizon was greater than 25% of the correlation time. While the 

AR/Kalman filter method will not necessarily be optimal for arbitrary systems, other modeling 

methods may be employed such as ARMA which we found to be more suitable for signals with 

discontinuities.  
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Chapter 5 

Temporal Autocorrelation Functions of the PMD and Stokes 

Vectors in the Anisotropic Hinge Model  

5.1 Introduction 

PMD measurements of buried cables over multiple days indicate that to a reasonable approximation, 

the time dependence of the PMD of each cable section is described by assuming a Langevin equation 

for the birefringence [43]. Accordingly, such sections can be modeled as a concatenation of numerous 

segments each of which possesses a birefringence vector with a fixed orientation but with a 

magnitude that drifts randomly with time.  Averaging over different realizations of the segments 

yields the temporal autocorrelation function (ACF) of the PMD vector [43], [52] 

 

    
 2

1 exp
0

d
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
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where dt   is a decorrelation time characteristic of the fiber. In this chapter, we derive analytical 

expressions for the temporal ACF’s of the SOP and the PMD vector in the hinge model. Our studies 

demonstrate that for large time offsets, the ACF of the PMD vector approaches a constant value that 

depends principally on the DGD of the last fiber section but is also affected by increasingly 

diminishing amounts by the DGD of the preceding fiber sections. The accuracy of the procedure is 

further established through comparison with numerical simulations. 

5.2 ACF of the Hinge Matrix 

We examine PMD in optical fiber links, illustrated by Figure  5.1., that contain n   hinges separated by   

1n time-invariant fiber spans. Denoting the time-dependent rotation matrices of the hinges by 

 iH t   with 1,2, ,i n  , and the PMD vectors and rotation matrices of the fiber sections by  i  

and iR   respectively, from the PMD concatenation rule  

 

            1 1 1 1 1 1 1 3 2 2 1 1n n n n n n n n n n nR H t R H t R H t R H t R H t R H t               (5.2) 
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Figure  5.1. Optical fiber link with hinges. 

 

The anisotropic hinges considered here possess invariant rotation axes and a rotation angle  i t that 

evolves in time according to  

  i g t
t





 (5.3) 

 

where  g t dt  is a Weiner process with        20; 0g t g g      . This model is 

motivated by the measurements of [59] in which the frequency average of the autocovariance 

function of      0t t     displayed an almost linear decay with the time offset. Such 

behavior is a characteristic of the Weiner process as illustrated in Figure  5.2 , which plots the 

autocovariance of  t obtained after solving Eq. (5.3) numerically for 1  , averaging over 5000 

realizations and normalizing to unity at zero time offset.   

In the following analysis, the hinge angles are statistically independent of the rotation axes 

orientations.  Also, these orientations are set to different values uniformly distributed on the Poincare 

sphere [60] for each realization as this simplifies the derivation of the analytical expressions. 

However, the case in which the axes remain identical for all realizations will be subsequently 

examined numerically. The ACF of the rotation matrix of a single hinge is obtained by averaging over 

realizations  

 

    ' 0H H   (5.4) 

  

The ACF can in practice be determined by averaging over values obtained at different light 

frequencies spaced by more than a frequency correlation length. Hence the assumption of identical 

axes for all realizations would correspond physically to the axes remaining invariant with a change of 

frequency. With     ˆt r
H t e

 
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ˆ , ,
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r r r r  where r̂  

   

H1 

 

H2 

 

H3 

 

Hn 

 



 

81 

 

and  t  represent the rotation axis and angle respectively, since   sin 0    and 

  
2

cos exp
2


  

 
  

 
 [32],   

   

 

 

Figure  5.2. Averaged autocovariance of  t for 5000 realizations. 
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 (5.5) 

From ˆˆ 3rr  I , where I  is the identity matrix ,and   ˆ ˆ 2 3r r    I  [52], 
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Hence for 
22  , the correlation function approaches 3I . Accordingly, a characteristic 

correlation time,
22ct  , which corresponds to the variance of the Weiner process, can be 

associated with the hinge.   

 

5.3 ACF for the PMD Vector 

If n denotes the PMD vector of a fiber link before to the 
thn  hinge, the PMD vector after the 

thn  

hinge and the 1:n th  fiber section is obtained from 

 

  1 1 1n n n n nR H t       (5.7) 

Following the procedure of [51], Eq. (7) leads to a recurrence relation for the ACF after it is averaged 

over all fiber and hinge realizations (or equivalently over uncorrelated frequencies) according to 

 

                1 1 1 1 1 1 10 0 0T T T T

n n n n n n n n n n nC H R R H                   (5.8) 

 

Here the PMD vector is written as column matrix and the dot product is replaced by the matrix 

product of  0T and    . With ensemble averaging, the components 'i s become statistically 

independent Gaussian random variables with zero mean that are further independent of the hinge 

variables. Therefore, the cross terms and products of n  and 1n   in Eq. (5.8) vanish and 

 

          2

1 1 0 0T T

n n n n n nC H H         (5.9) 

 

In the same manner as for the frequency ACF of the PMD vector [51], Eq. (5.9) can be written as a 

recurrence relation 
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where      1 10n n nC       and     0 3T

n n nM tr H H  . From Eq. (5.6),  
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where cnt  is the correlation time of 
thn hinge. By repeatedly applying (5.10) with 

2

0 1C  , the 

ACF of an arbitrary number of hinges is found to be  
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 (5.12) 

Where cit , 1 to i n are the correlation times of the hinges. For fiber sections with comparable mean 

DGD, the ACF of the PMD vector is primarily affected by the time correlation properties of the last 

hinge in the link as the contribution to the ACF decreases by a factor of 1 3 for each preceding hinge. 

As   ,    
2

1

0

0
3

n
i

n i
i

E 
  






   .The ACF for the output Stokes vector  ˆ
outs t  is 

obtained in a similar manner. For n hinges  
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Accordingly, unlike the PMD vector, each hinge contributes equally to the ACF of the SOP.  As 

      

 

 

    
1
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3

out out n
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5.4 Simulations 

We simulate a 3 hinge optical fiber link with correlation times of 1 2ct  , 2 5ct  , 3 6.6ct   days. 

For each realization, the PMD vector of each fiber section is selected from a Gaussian distribution 

with zero mean and a standard deviation determined by the requirement that the mean DGD of each 

fiber section equals 10 ps. The hinge rotation angle is obtained from the numerical solution of Eq. 

(5.3) and rotation axes are randomly oriented on the Poincare sphere. The ACF of the PMD vector, 

the SOP and the PSP’s is determined by averaging over 5000 statistically independent realizations of 

the fiber link, hinge angles and axes and are subsequently normalized to unity at 0   and 

compared as a function of   in days with the analytic results of Eq. (5.12) and (5.13) in Figure  5.3.  
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Figure  5.3. Normalized ACF for the PMD vector and the SOP as a function of  in days.  

 

The numerical and the analytic results of Eq. (5.12) and (5.13) displayed as a function of time offset 

in days nearly coincide as illustrated in Figure  5.3. Further, the ACF of the PSP is very similar to that 

of the PMD vector, as noted for the frequency ACF in [61]. 

In Figure  5.4, we plot the simulated ACF of the PMD vector for three different sets of hinge 

rotation axes that are identical for every numerical realization together with the result of Eq. (5.12). 
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Figure  5.4. Simulated and analytic ACF’s of the PMD vector for three different sets of invariant hinge 

rotation axes. 

 

 

Figure  5.4  indicates that since the ACF is not affected significantly if the hinge axes remain 

invariant, the analytical result remains approximately valid. 

5.5 Conclusion 

We have presented analytical expressions for the ACF of the state of polarization and the PMD vector 

in the hinge model.  Our analysis incorporates a model in which the time evolution of the polarization 

rotation properties of each hinge is completely described by a single correlation time.  While this 

model is consistent with experimental observations only for certain fiber links, our results may be 

qualitatively applicable to a wider range of link behavior.   
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Chapter 6 

Simulation of a WDM Polarization Multiplexed Quadrature Phase 

Shift Keyed (PM-QPSK) System 

 

6.1  Introduction 

System performance is judged through the dependence of the SER on the SNR. An improvement in 

the SNR implies a reduced SER. The magnitude of the improvement enables the system designer to 

evaluate the importance and cost of using for example better receiver architecture with lower noise or 

increased input power. The purpose of this chapter is to present a full performance simulation of a 

WDM PM-QPSK system. This study serves as a starting point to evaluate the impact of PMD on such 

systems. A schematic diagram of the system is shown in Figure  6.1.  

 

 

 

 

 

 

 

 

 

 

Figure  6.1. A schematic diagram of the simulated system. 

 

Several channels are modulated using an electrical bit stream and multiplexed together then 

launched into an optical fiber. Amplifiers restore the optical signal to the initial power level 

periodically along the line. At the receiver the channels are demultiplexed and the electrical bit stream 

is restored through a receiver bank. 

6.2 System Description and Parameters 

The system of interest incorporates 5N   channels separated by 50 GHz at a symbol rate of 10.7 

GBaud/s per polarization, resulting in a 42.8 Gb/s transmission bit rate. The channel power is set to 4 
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dBm. The transmission medium consists of eight, 80 km standard single mode fiber (SMF) or large 

effective area fiber (LEAF) fiber spans making the total length of the link 640km. Both fibers have 

the following parameters:  nonlinear refractive index , 
20 2

2 2.64 10 /n m W  , 
279.6effA m ,

0.05 /PMDD ps km , 0.21 /dB km   but differ on the dispersion coefficient 
2

2 02D c      

which is 17 / /D ps km nm   for the SMF and 4 / /D ps km nm   for the LEAF fibers. After each 

fiber span, the signal is amplified by an amount equal to its power loss in the span. Once each channel 

of the input field is propagated through the fiber by solving the Manakov PMD equation numerically, 

and detected with a polarization diversity optical coherent receiver, the cumulative effect of ASE is 

modeled by adding a Gaussian random value of zero mean and standard deviation consent with the 

specified OSNR (optical SNR) to the center of each symbol in the probe channel. That the ASE can 

be loaded at the receiver end rather than distributed along the link without appreciably affecting the 

accuracy of the model was established for PM-QPSK systems in [62]. Subsequently, an electronic 

post compensation filter removes the total accumulated chromatic dispersion and PMD. Sampling the 

resulting optical field  RXA t  at the transmission rate yields the received digital symbols 

 m RXr A mT . In the polarization multiplexed WDM system of interest, the optical field can be 

expressed as    
1

0

, , n

N
i t

n

n

A z t A z t e






  which superimposes the fields of five optical channels 

with center frequency differences  n    .   

6.3 Initial Field Temporal Profile 

Consider one of the channels’ Jones vectors  ,iA z t . A random symbol stream is generated for ixA  

and iyA and for all channels. Initially at the input, the pulse shape for each symbol is a RZ square root 

raised cosine filter profile with a unity rolloff factor chosen because it minimizes intersymbol 

interference [63].  Each symbol is assigned one of the allowed phases at random. Referring back to 

Eq. (1.1), we can write for channel i , 

 

  
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2 m

M
j

i x s

m

A a t mT e




   (6.1) 

where  a t and m  are the pulse shape and the symbol phase respectively and 1M   is the number 

of symbols. Expanding the complex phase, we can rewrite Eq. (6.1) as 

  

    
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    (6.2) 
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where  , 1m mxI xQ    depending on the symbol m . The I and Q components were mentioned in 

section  1.2.  Hence to generate the random symbol stream, we generate random streams of 1 and 

j for the required number of symbols and multiply them by the time shifted version of  a t . We 

choose for our simulations a pattern length of 1 16M    symbols. The real part of ixA is displayed 

in Figure  6.2 .  

 

Figure  6.2. Real part of ixA  versus time in ns. 

 

After the 0z   temporal profile of each channel and polarization is determined, a random timing 

delay is applied to each channel because in practice they are not synchronized. Also, a random 

rotation matrix is applied to the Jones vector of each channel to ensure that the channels start off with 

random polarization states. The resulting superposition of the electric fields is propagated through the 

fiber by solving the Manakov PMD equation numerically. The method used to achieve this is the split 

step Fourier method (SSFM) and is described briefly in the next section. 

6.4 SSFM for Numerical Solutions to the Manakov PMD equation 

In the split step procedure we rewrite Eq. (1.67) as  
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where the nonlinear operator N̂ and the dispersion operator D̂  are given by  
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For a step h , the solution to Eq. (6.3) is simply 

 

    
ˆ ˆ( ), ,N D hA z h t e A z t   (6.6) 

 

The exponential is difficult to evaluate, hence it’s approximated by  

 

 
 ˆ ˆ ˆ ˆN D h hN hDe e e


  (6.7) 

 

Such an approximation is exact if N̂ and D̂ commute. For a small enough step h , Eq. (6.7) is used to 

solve the Manakov equation by treating each operator separately. The dispersion step can be solved 

entirely in the frequency domain and the result is  
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2, exp ,
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j
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 (6.8) 

 

where FT and IFFT denote the Fourier transform and inverse Fourier transform respectively. After 

performing the dispersion step, the nonlinear step is performed as  
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, exp ,
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Therefore, the fiber is divided into small steps of size h  and the initial field is propagated from the 

input to the output.  

6.5 Simulation Results  

Our simulations were performed with two constant values of the step sizes, h  , of the split step 

Fourier routine. The first of these is given by the smaller of the h  that insures a nonlinear phase 

rotation per step below 0.01 and the h  that restricts the walk-off between the two edge channels to 

less than 16% of the symbol period [64]. Subsequently we repeated the calculations with h  increased 

from the value above by a factor of 10. The number of birefringents segments in each span is given 

by its length divided by h  . The PMD vector of each segment, ( )h b z  of Eq.(6.8), was selected 

from three independent zero mean Gaussian random variables with standard deviation  
1 2

/ 3pmdD h

. The xI and xQ  components of the output electric field of the eighth symbol of the central channel 

were finally employed as the control quantities for the multicanonical algorithm which evaluates the 

joint density function conditional on the initial transmission of a (11) symbol. 

As described in section  1.5, we apply the multicanonical method to obtain the pdf. The present 

simulation employs the following random variables: 1) the value of each bit in the bit streams of each 

channel [65], 2) the phase shift between channel symbol streams 3) the angles of the random rotation 

matrices for each channel, 4) the PMD vector components of each section and 5) the ASE noise 

variables.  

In a proposed transition, each bit (except for the test bit) is inverted with a probability such that on 

average  2.5 bits are changed while symmetric random values are added to the random time delay of 

each channel and to the rotation angles. The normalized ASE variables are each modified by adding a 

Gaussian variable with zero mean and unity standard deviation, g .  Subsequently, as in [21] and [26] 

, g is replaced by g v , where v   is given by a small uniformly distributed random value. The new 

noise values are accepted with probability      2 2minimum 1,exp / 2 exp / 2g v g   . The 

same method is employed to perturb the normalized PMD vector components which are also selected 

from a Gaussian distributed random distribution with zero mean. Finally, the modified PMD variables 

are multiplied by  
1 2

/ 3pmdD h  and the ASE variables are scaled to reproduce the physical OSNR.  

We display in Figure  6.3, the contours of the base 10 logarithm of the joint pdf of the ,xI xQ

components in a single polarization of a single mode fiber for the central bit when this bit is launched 

with 1xI xQ   for a OSNR of 15dB.  These contours, which describe pdf values ≥10
-11

 were 

obtained after four iterations of the multicanonical procedure each of which employed the split step 
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Fourier method with 3x10
5
 samples that were propagated through the entire link.  The Monte Carlo 

result additionally is present in Figure  6.3 as the dotted contours. 

 

 

 

Figure  6.3. Log10  of the joint pdf of the ,xI xQ  components for a 1xI xQ   symbol launched into 

a single polarization in the center channel, for four 3x10
5
 multicanonical samples per iteration and the 

Monte  Carlo procedure.  The smallest pdf value shown is 10
-11

. 

 

Figure  6.4 and Figure  6.5  plot the SER vs the OSNR for both fiber types with both 0.69 sh km  

and 6.9 lh km , where sh is the step size employed in the SSFM routine. For both fibers, the larger 

step size underestimates the SER for all OSNR values; however, the error is less than 0.5 dB over 

most of the range investigated. While this value, as expected, increases for larger nonlinearities, even 

for a SMF at an OSNR of 20 dB,  the larger step size calculations only underestimate log10(SER) by 

1.2 dB. Hence, especially for analyzing trends, larger step sizes can often be employed to reduce 
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calculation times. We have verified that the results converged for sh , as for an OSNR of 20 dB, the 

ratio of the SER’s obtained using sh  and 2sh  is 1.1.   

 

 

Figure  6.4. The variation in the SER with OSNR for a SMF for two step sizes. 
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Figure  6.5. As in Figure  6.4 but for a LEAF. 

 

6.6 Conclusion 

We have analyzed a WDM-PM-QPSK system in the presence of both fiber nonlinearities and PMD 

with the multicanonical procedure. Our studies demonstrate that even for large propagation step sizes 

the errors in the calculated SER are less than 1.2dB for an OSNR range of 10 to 20dB for SMF. The 

associated reduction in computation time considerably extends the applicability of the method in the 

context of numerous practical system models. 
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Chapter 7 

Conclusions and Future Work  

In this thesis, we have examined several problems related to dynamics of polarization and PMD in 

optical communication systems. They fall under basically three categories: modeling and 

measurement of high speed polarization transients, modeling time varying PMD effects and system 

performance assessment.  

Mechanical shocks imparted by the free fall of a steel ball generate rapid polarization variations, 

the largest reported to date. Given their reproducibility, these measurements serve as diagnostic tools 

for both the DCM devices and the electronic polarization tracking system. Our proposed model shows 

that the active length of the fiber is the main contributor to the speed of the transients. These 

measurements can be extended by repeating the same experiments for fiber spools. More acoustic 

measurements on the device could lead to a better model and hence better understanding of what 

other properties of the DCM come into play. 

We have shown that it is possible to determine the location of temporal variation of the polarization 

through a statistical measurement. The accuracy of the method increases if more wavelengths are 

employed. The technique is attractive because it is independent of the hinge behavior. The described 

technique holds the potential for locating any number of hinges in a link provided accurate 

characterization of the temporal and frequency characteristics of hinges become available. 

The hinge model has been employed to study the time variation of PMD. We have shown that it 

might be possible to predict an outage due to a high DGD value using a linear prediction model. 

Modern systems however, rely on DSP to generate a time varying model for the channel to eliminate 

the effect of PMD. A combination between the simple model presented in this thesis and the current 

state of the art techniques might result in relaxing the complexity and speed of the currently employed 

compensators. Also, applying these linear prediction techniques to the elements of the Jones matrix or 

the rotation matrix can replace the current algorithms employed in the DSP processor as a simpler 

alternative for inverting the channel PMD characteristics. Another important extension would be 

applying more complicated nonlinear models based on, for example, neural networks and assessing 

the predictive ability and whether the complexity added by employing these models is warranted.  

Using a physically reasonable stochastic model for the hinges, analytical expressions for the ACF 

of the PMD vector and the SOP have been derived as a function of a single correlation time 

associated with each hinge. Our results provide insight into which parameters affect the ACF the 

most. Provided with field measurements, the results we obtained may be employed to determine the 

locations of the hinges in links which exhibit stochastic hinge behavior. ACF’s of the squared DGD 

and the PSP’s can also be studied.    

We have assessed the performance of a state–of- the-art PM-QPSK system through the evaluation 

of the SER vs the OSNR at the receiver. We have demonstrated that over a range of 10dB, the SER 

varies by no more than 1.2dB when the step size is increased by a factor of 10. Hence, for an order of 
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magnitude estimate, we can speed up computation by relaxing the requirements on the step size. 

Further studies of interest on such a system would be analysis of the effect of the symbol pattern 

length on the SER. The system examined can be further studied to map the impact PMD has on the 

performance. In particular, since PMD introduces some dispersion, it is expected that higher values of 

PMD might actually be more desired in a system as it helps mitigate the nonlinear effects. Optimal 

values for PMD are expected for such systems.   
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