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Abstract

In the following thesis, I will conduct a thermodynamic analysis of the
Taub-NUT spacetime in various dimensions, as well as show uses for Taub-
NUT and other Hyper-Kahler spacetimes.

Thermodynamic analysis (by which I mean the calculation of the entropy
and other thermodynamic quantities, and the analysis of these quantities)
has in the past been done by use of background subtraction. The recent
derivation of the (A)dS/CFT correspondences from String theory has allowed
for easier and quicker analysis. I will use Taub-NUT space as a template to
test these correspondences against the standard thermodynamic calculations
(via the Nöether method), with (in the Taub-NUT-dS case especially) some
very interesting results.

There is also interest in obtaining metrics in eleven dimensions that can
be reduced down to ten dimensional string theory metrics. Taub-NUT and
other Hyper-Kahler metrics already possess the form to easily facilitate the
Kaluza-Klein reduction, and embedding such metrics into eleven dimensional
metrics containing M2 or M5 branes produces metrics with interesting Dp-
brane results.
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Chapter 1

Introduction

1.1 The Standard Model and Gravity

Our current view of the physics of the universe, developed over the last
century, divides the forces of nature into four distinct groups: the Strong
Nuclear forces, which govern the interactions of the quarks inside atoms;
Electromagnetism, which describes the interaction between charged particles;
the Weak Nuclear forces, governing radiation; and Gravity, which is the
interaction between mass and energy.

One of the overall goals of physics has always been an attempt to unify
these four forces into one complete theory. This complete theory would allow
one to predict events and phenomena without having to resort to different
theories and equations, depending on the phenomena one was studying. Such
a complete theory would also provide new predictions concerning the nature
of the universe we live in, on both the atomic and large scales. There is
even suggestive evidence that such a theory exists; modern Grand Unified
Theories (that are a unification of the Strong, Weak, and Electromagnetic
forces) suggest that the three gauge coupling constants unify at a scale of
at least 1015GeV , with gravity seeming to unify at an energy scale slightly
higher than this. Finally, there is the beauty argument: one feels that in
a universe that is working properly, there should be one theory to describe
everything, instead of a collection of separate theories that describe parts of
the whole.

The name given to the collective Strong, Weak and Electromagnetic in-
teractions is the Standard Model. This model includes the matter particles,
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force carriers and the Higgs boson. The force carriers are particles that
mediate the force they are associated with; for example, the electromagnetic
force carrier is the photon. The Higgs boson, whose existence was postulated
by Peter Higgs, gives masses to particles that need mass, while not giving
masses to those that don’t.

The Standard Model is consistent with every experiment to date, but
also has predictions that have not yet been seen. For instance there is no
direct evidence for the Higgs boson. The Standard Model, and most GUT’s,
are described by Quantum Field Theory (QFT), which is what we are led to
when we combine Special Relativity (SR) and Quantum Mechanics (QM). It
is in QFT that each force is associated with a force carrier. One application
of QFT, Quantum Electrodynamics (QED), is the study of the interaction
between electrons and photons. QED is the most successful theory to date,
in that it has exceptionally close agreement with experimental results. For
example the g-factor, which is a measure of the magnetism of the electron,
is given in QED by1

g

2
= 1.001159652190

This is very close to the experimental value of

g

2
= 1.001159652193

The success of QED has led scientists to attempt to describe the other
forces though the use of force carriers. For example, the Strong force is
described by Quantum Chromo-dynamics (QCD), and is the study of the
interaction between coloured quarks and gluons, though the existence of the
gluon has only been established indirectly (1978). Also, the collective study
of the interactions between quarks and leptons with photons and the W and
Z bosons is called Electroweak theory. For example, the radioactive decay of
the neutron

n → p + e− + ν

is mediated by an exchange of a W -boson.
One final particle needed in field theory is the Higgs boson. The Higgs

boson itself, however, is neither a force carrier nor a matter particle. It does
its job by spontaneously breaking the gauge symmetries; this also has the
benefit of keeping the theory renormalizable.

1Values from [1]
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The final force, not included in the Standard Model (or not completely
successfully included at any rate) is Gravity. The force carrier for Gravity
is the graviton, which is only theoretical at the moment. The theory we
have to describe gravity, found by Einstein in 1915, is the General Theory
of Relativity (GR). GR provides an understanding of the gravitational force.
The idea of GR is that all of the laws of physics should be the same for all
observers. According to the picture provided by GR, the force of gravity has
a geometric description that curves spacetime. This means that observers
in free fall through this curved spacetime will move along an extremal path,
called a geodesic. Most often, this extremal path is the shortest path.

The Standard Model, when combined with GR, is consistent with almost
all physics known today, down to scales probed by modern day particle ac-
celerators. However, there still remains the problem of correctly combining
gravity along with the other three forces, into one complete theory, so that
we don’t have to switch between the Standard Model and GR.

Thus the Standard Model, despite its successes, is not complete. Many
of the parameters in the Standard Model must be input by hand, in order
to get out the correct predictive results. Also, gravity is generally neglected,
when dealing with atoms or elementary particles, in the Standard Model and
in GUT’s. This is due to the weakness of gravity when compared to the other
forces. Gravity becomes important, however, when we remember that it is a
long range force, and that it is always attractive. This means its effects will
add up, and so for a collection of a large number of particles, gravity can be
the dominant force.

There are difficulties in forming a theory that includes gravity in with the
other three forces, however. One difficulty with gravity is that the theory
we have to describe it is a theory of spacetime, and so gravity is a part of
spacetime, unlike the forces of the Standard Model, which are in spacetime.
To put it another way, the gravitational field in GR is manifested as a cur-
vature of spacetime, and so is a part of spacetime itself, as opposed to the
electromagnetic field travelling in a spacetime. So, if we quantize gravity, we
are in a sense quantizing spacetime itself.

Gravity also presents problems mathematically. Einstein’s equations are
non-linear, for example. Thus the superposition principle, which only applies
to linear equations, cannot be used. Another difficulty is that gravity is a
classical theory, in that it does not depend on or incorporate the uncertainty
principle. The Standard Model and other GUT’s depend on quantum me-
chanics and the uncertainty principle, however. A first step would seem to be
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to form a quantum theory of gravity, that includes the uncertainty principle
as part of its framework. This is conceptually difficult, though, in that this
would seem to indicate we would be quantizing spacetime itself.

Such a theory of quantum gravity has already been shown to have many
strange predictions. For example, as Hawking showed [2], quantum effects
mean that black holes aren’t really “black” - they can emit black body radi-
ation. There have been a few attempts at a quantum theory of gravity, one
of which is the path integral approach.

1.2 Quantizing Gravity

One approach to quantizing gravity involves the path integral, to be briefly
described here, and more fully introduced in section 2.3. The quantization
of gravity through the path integral method involves partition functions of
the form

Z =

∫
D[g]D[φ]eiI[g,φ] (1.2.1)

Here, D[g] is a measure on the space of metrics g, D[φ] a measure on the
space of matter fields φ, and I[g, φ] is the action in terms of the metrics
and matter fields. Although the action is in general divergent, one could
calculate (1.2.1) by first calculating the action, and then use the results to
calculate the gravitational entropy of spacetimes containing horizons, as was
done by Gibbons and Hawking in 1977 [3]. It is important to note that the
entropy can be calculated for spacetimes containing horizons, and not just
black holes, as a cosmological horizon has many of the same thermodynamic
properties as the event horizon of a black hole.

One way of calculating the entropy of a black hole spacetime (and other
spacetimes containing a horizon) involves a background subtraction - an ex-
ample of which is the Nöether method, to be reviewed in section 2.2. Here,
one matches the asymptotic boundary geometries of the spacetime of inter-
est with a suitably chosen background metric in order to get finite surface
contributions. For example, one would use flat space as a background for
Schwarzschild, or Taub-NUT-AdS as a background for Taub-Bolt-AdS [4].
This method suffers from the fact that, for a lot of spacetimes one cannot
choose a suitable background metric.

There has recently been proposed a theory that connects any asymptoti-
cally Anti-de Sitter (AdS) spacetime in (d+1) dimensions with a holographic
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dual conformal field theory (CFT) on its boundary in d dimensions. The pro-
posed AdS/CFT conjecture (to be more fully reviewed in section 2.5) depends
fundamentally on the use of the path-integral formalism, in that the parti-
tion function of the bulk AdS theory is equated with the partition function
of the boundary CFT theory. The first suggestion of this AdS/CFT corre-
spondence was made by Strominger and Vafa [5]. Here, the authors were
able to connect the entropy of certain black holes to a system of D-branes.
In hindsight, their findings can be viewed as the first hint of the AdS/CFT
conjecture.

The AdS/CFT conjecture offers an alternative method of calculation of
the action, through the use of counterterms instead of background subtrac-
tion. These counterterms, derived from the Gauss-Codazzi equations, are
added as extra terms in the action that cancel out the divergent parts in a
manner analogous to the counterterms applied in field theory renormaliza-
tion. The counterterm action does not depend on the metric, but rather on
the boundary metric, and so also leaves the equations of motion invariant.

1.3 M-Theory

One of the most recent attempts to unify the four forces is string theory, from
which the AdS/CFT is derived. String theory, not to be discussed here in
any detail, is now known to be a part of a much larger, overall theory known
as M-theory.

M-theory arises as our next attempt to unify the four forces of nature into
one complete theory. It relies on spacetime supersymmetry (susy), in which
bosons and fermions are interchangeable - every boson has a supersymmetric
fermionic partner, and vice versa, under variation of the Lagrangian. Su-
persymmetry is clearly a broken symmetry, as unbroken susy would mean
that every elementary particle would have a super-partner having the same
mass, but opposite statistics. For example, spin 1/2 quarks would have spin 0
squark super-partners, the photon would have a spin 1/2 photino, etc.. How-
ever, clearly no such equal mass partners exist in our world, hence susy must
be broken. At sufficiently high energies, supersymmetry may be restored.
One major advantage of susy is that local2 susy predicts gravity. This is be-
cause the supersymmetry algebra contains the generator of translations, Pµ.

2Symmetries are global if changes are the same throughout the spacetime, and local if
they differ from point to point.
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In local (super)symmetry, the group parameters should be functions of the
points of spacetime xµ. This means we should consider translations Pµ that
vary from point to point, and so local supersymmetry should be a theory of
general coordinate transformations of spacetime, or in other words a theory
of gravity. Thus, we are forced into a supergravity - i.e. if Einstein hadn’t
invented GR, local susy would have demanded it. In supergravity, the spin 2
graviton is partnered with the spin 3/2 gravitino. Supergravity confronts the
problem from which GR and Grand Unified Theories shy away from: neither
takes the others symmetries into account.

M-theory is the overall theory that contains as a low energy limit all five
of the known string theories3 and eleven dimensional supergravity. It was
Witten [6] in 1995 who put forward the idea that the distinction between
the five consistent string theories was due to our approximations, and that
there would only be one theory if we could look at it exactly. Moreover,
this theory had to be supersymmetric, and eleven dimensional. In M-theory,
the Electromagnetic duality in D = 4 is a consequence of the M2-M5 brane
duality in D = 11.

The idea that the elementary particles might correspond to modes of a
vibrating membrane was put forward by Dirac (1960). The idea is as follows;
regular field theory uses the idea that the elementary particles are point-
like objects that move in spacetime, with different particles having different
properties. A particle starting at point A and ending at point B will travel a
path between the two - i.e. will sweep out a world-line. String theory takes
this a step further; in String theory, the elementary particles are taken to
be strings, with different particles now corresponding to different vibrational
modes of the string. A particle string will sweep out a world-sheet as it
moves from A to B. But, once you have strings, you can move up to two
dimensional membranes and higher dimensional objects, that sweep out three
or more dimensional world-volumes as they move from A to B.

M-theory is the current best candidate for the “theory of everything”,
the GUT’s that have been the holy grail of physics for the past 100 years. It
is currently the only theory that seems to give hope for unifying Einstein’s
General Relativity with Quantum Mechanics, the two major theories that
are at the core of our current understanding of physics, and yet appear to
be mutually incompatible. Though there is no well defined theory as yet,

3Five known string theories: Type I, Type IIA, Type IIB, SO(32) Heterotic and E8×E8

Heterotic.
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the low energy limit of M-theory is generally understood to be eleven dimen-
sional supergravity. Indeed, local supersymmetry predicts the existence of
supergravity - one is forced through local supersymmetry to have the gravi-
ton (spin 2 boson) partnered with the gravitino (spin 3/2 fermion), along
with all of the other particles from quantum mechanics. Hence, supergravity
(sugra) would seem to be succeeding where all other unifying attempts have
failed. The interest in eleven dimensional sugra is that eleven dimensions
seems to be the maximum number of dimensions allowable by supersymme-
try. In fact, N = 8 supersymmetry is only fully realized in eleven dimensions,
and N = 8 susy is the only truly unified theory - in it, gravity and all other
lower spin particles appear in the same multiplet.

The theory that M-theory supersedes is of course the idea of superstrings,
a ten dimensional theory (nine spatial and one time dimension (9+1)) that in-
volves one-dimensional relativistic string-like objects that vibrate, with each
vibratory mode associated with a specific particle. M-theory contains both
two dimensional (M2) and five dimensional (M5) branes, that now live in
eleven dimensions (10+1). Both of these theories live in dimensions greater
than the four we are used to in our everyday lives, however. Thus, the extra
six dimensions from string theory, or the extra seven from M-theory, must
be extremely small, or invisible in some way, if such theories are to explain
our (3+1) dimensional world. The idea of a hidden dimension was used by
Theodor Kaluza and Oskar Klein when they tried to unify gravity with elec-
tromagnetism by adding a fifth, hidden dimension (for a good review of this,
see either [7] or for a non-technical overview, [1]).

1.4 (A)dS and Taub-NUT Spacetimes

1.4.1 (A)dS Spacetimes

Anti-de Sitter (AdS) and de Sitter (dS) spacetimes, in (3 + 1) dimensions,
can be written in static coordinates as

ds2 = −
(

1± r2

`2

)
dt2 +

dr2

(
1± r2

`2

) + r2(dθ2 + sin2(θ)dφ2) (1.4.1)

where ` is the characteristic length. AdS is negatively curved, with a negative
cosmological constant Λ = −3/`2, and dS is positively curved, with positive
cosmological constant Λ = 3/`2. Both spacetimes solve the classical Einstein
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equations with appropriate cosmological term;

0 = Rab − 1

2
gabR + gabΛ (1.4.2)

Both spacetimes are maximally symmetric; specifically, the Riemann cur-
vature tensor can be written as

Rabcd = ∓ 1

`2
(gacgbd − gadgbc) (1.4.3)

This ensures the geometry of a spacetime is asymptotically (A)dS - any space-
time whose Riemann curvature tensor can be written in the form (1.4.3) is
asymptotically (A)dS. The condition for a spacetime to be asymptotically lo-
cally AdS (aLAdS) is that the Riemann tensor for the spacetime approaches
(1.4.3) asymptotically to O (r−3) [9]. This means, near the boundary, con-
formally compact manifolds have a curvature tensor that looks like the AdS
curvature tensor. For example, the Riemann tensor of the Taub-NUT-(A)dS
spacetimes discussed below can be written asymptotically in the form (1.4.3),
but the Eguchi-Hanson-(A)dS spacetimes [10], even though they solve the
Einstein equations (1.4.2), cannot.

AdS spacetime, in global coordinates, can be written as a hyperboloid
metric S1 ⊗ R3, where since the time coordinate is the S1, there are closed
timelike curves. However, the S1 can be unwrapped (take −∞ < t < ∞)
to obtain a causal spacetime without closed timelike curves. Half of the
spacetime can be represented by the metric [11]

ds2 = −dt2 + `2 cos2

(
t

`

) [
dχ2 + sinh2(χ)

(
dθ2 + sin2(θ)dφ2

)]
(1.4.4)

and contains apparent singularities at t = ±π/2. The whole space can be
covered by the static metric (1.4.1). There are no Cauchy surfaces in AdS
spacetime - in other words, there are null geodesics that never intersect any
given surface. This means, in the above metric, that given the surface t = 0,
one can only predict events in the region covered by coordinates t, χ, θ, φ.
Predictions beyond this region are prevented by new information coming in
from timelike infinity.

AdS spacetime can be characterized by its geodesics. Future timelike
geodesics (or timelike observers), starting at a point p (for example the origin
r = 0), cannot reach r = ∞ in a finite amount of time. However, future null
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geodesics starting at a point p will reach r = ∞ in a finite time, and hence
form the boundary of the future of p - i.e. in the units of (1.4.1), a photon
starting at r = 0 will reach r = ∞ in a finite time π`/2.

dS spacetime can also be represented as a hyperboloid [11], however here
t is not periodic. Introducing coordinates (t, χ, θ, φ) on the hyperboloid, dS
spacetime can be written as the metric

ds2 = −dt2 + `2 cosh2

(
t

`

) [
dχ2 + sinh2(χ)

(
dθ2 + sin2(θ)dφ2

)]
(1.4.5)

where the coordinates cover the whole space, −∞ < t < ∞, 0 ≤ χ ≤ π,
0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. Constant t spatial sections are S3 spheres of
positive curvature, and are Cauchy surfaces.

In dS spacetime (see [11] or the appendix in the second paper of reference
[19], for example), each observer is surrounded by a cosmological horizon,
at r = ` (best seen in the static coordinates (1.4.1)). An object that is
held at a fixed distance from the horizon will be redshifted, with the redshift
diverging near the horizon. If released, the object will then accelerate towards
the horizon, and once it crosses the horizon cannot be retrieved. Thus, the
cosmological horizon acts like the horizon of a black hole, “surrounding”
observer. Note that the symmetry of dS spacetimes implies that the location
of the cosmological horizon is observer dependent. Semi-classically, then,
because matter/entropy can be lost crossing the cosmological horizon, it must
be assigned a Bekenstein-Hawking entropy, and the horizon must also emit
Hawking radiation, with T = 1/(2π`). (Note that throughout this thesis,
except for formal definitions, I will be using units such that ~ = c = G = 1).

1.4.2 Taub-NUT Spacetimes

The metric now known as the Taub-NUT metric (reviewed in more mathe-
matical detail in chapter 3) was originally discovered by Taub [8] in 1951, in
his search for metrics with high symmetry. It was later rediscovered by New-
man, Tamburino and Unti [12]. The metric, given by (in (3+1) dimensions)

ds2 = −F 2(r)

[
dt + 4n sin2

(
θ

2

)
dφ

]2

+
dr2

F 2(r)
+ (r2 + n2)dΩ2

2 (1.4.6)

F 2(r) =
r2 − n2 − 2mr

r2 + n2
(1.4.7)
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and with the two-sphere metric dΩ2
2 given by

dΩ2
2 = dθ2 + sin2(θ)dφ2

can be considered a generalization of the empty-space Schwarzschild metric,
as can be seen by taking n → 0. The Taub-NUT metric possesses many
unusual properties that make it an interesting metric for study. For example,
the “NUT” charge n can be considered a magnetic type of mass, and its
presence causes spurious singularities known as Misner strings to crop up,
that can be dealt with in a manner similar to the Dirac string singularities
that occur around a magnetic monopole (both to be discussed in chapter
3). This metric is also not asymptotically flat (aF); it is only asymptotically
locally flat (aLF)4.

The Euclideanized version of the metric (1.4.6), (1.4.7)5

ds2 = F 2(r)

[
dτ + 4N sin2

(
θ

2

)
dφ

]2

+
dr2

F 2(r)
+ (r2 −N2)dΩ2

2 (1.4.8)

F 2(r) =
r2 + N2 − 2mr

r2 −N2
(1.4.9)

admits two separate kinds of solutions. One of these, called the “NUT”
solution, occurs when the fixed point set of ∂τ is zero dimensional. A second
solution, called a “Bolt” solution, occurs when the fixed point set is two
dimensional. It is these two solutions that are used to evaluate the entropy
in the background subtraction method - the entropy of the Bolt solution is
calculated relative to the NUT solution.

There are also closed timelike curves (CTC’s) in the regions where r < r−
or r > r+, where r± are the zeroes of the metric function (1.4.7). Along
with the CTC’s, the metric has quasi-regular singularities (again discussed
in chapter 3) which are the mildest form of singularity in that, although they
are formed by incomplete geodesics spiralling infinitely around a topologically
closed spatial dimension, the Riemann tensor is completely finite near the

4aF (in four dimensions, and for a Euclideanized metric) means the metric has a bound-
ary at r →∞ that is S1 ⊗ S2 (for example - Schwarzschild), with the radius of S1 being
asymptotically constant, and the radius of the S2 being r. aLF means the boundary is
an S1 bundle over an S2, (or a squashed S3), with the bundles labelled by their Chern
number, ∝ n here. (For a Lorentzian metric, aF means the boundary is R1 ⊗ S2.)

5Found by Wick rotating t → iτ , n → iN , and important because the path-integral
approach involves the Euclideanized metric to get a converging partition function (1.2.1).
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singularity and no observer near the singularity - including those that fall in
- feel unbounded tidal forces.

The Taub-NUT metric can be further generalized to include either a posi-
tive or negative cosmological constant. Such Taub-NUT-AdS/Taub-NUT-dS
metrics have all of the unusual properties of the aLF Taub-NUT solution,
but are not asymptotically AdS/dS (aAdS/adS). They are, however, asymp-
totically locally (Anti-)de Sitter (aLAdS/aLdS); hence, they still contain a
cosmological horizon, whose entropy and other thermodynamic properties
can be calculated.

1.5 Current Research

However, why are these metrics of use when studying the AdS/CFT con-
jecture or M-Theory mentioned above? First, the AdS/CFT conjecture of
course holds for metrics that are asymptotically AdS (aAdS). It is thus a nat-
ural next step to consider whether the conjecture holds for spacetimes with
(Euclidean) toplogy different from that of aAdS spacetimes - for example,
asymptotically locally AdS (aLAdS) spacetimes. A first test of the conjec-
ture in four dimensions for metrics beyond aAdS metrics, with metrics that
are only aLAdS, involved the use of the Taub-NUT-AdS (TNAdS) metric
[4, 13, 14]. These metrics describe spacetimes whose topology is aLAdS, i.e.
metrics that are aAdS, but with identifications. It is not a-priori obvious
that the AdS/CFT conjecture (or the counterterms derived from it) can be
applied to this case. Indeed, historically the Taub-NUT spacetime has been
a “counterexample to almost anything” [15] and, in keeping with this, the
TNAdS metric provides a rigorous test of the AdS/CFT correspondence, and
specifically of the counterterm approach to the calculation of the action and
conserved mass.

Motivated by this, I will examine the validity of the AdS/CFT correspon-
dence for higher dimensional TNAdS metrics [16], whose generalizations of
the four dimensional TNAdS metric were found by Awad and Chamblin
[17]. As I will show below, the conjecture holds in these higher dimen-
sions - and indeed, I was able to show (see chapter 4) that the full coun-
terterm action is not needed, as the finite contributions from the countert-
erm action come from the first few terms of this action. Also, the calcula-
tion of the thermodynamic properties through the Nöether approach, using
Taub-NUT-AdS as a background for Taub-Bolt-AdS, can also be done in
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higher dimensions, and a comparison can be made. The entropy found from
the Nöether method can be written - up to an integration constant - in
terms of the entropies of the NUT and Bolt solutions found individually, i.e.
SNöether = SBolt,AdS/CFT − SNUT,AdS/CFT + C. It is important to compare the
AdS/CFT counterterm results with these Nöether results, as the AdS/CFT
correspondence is still a conjecture at this stage. Since the Nöether results
yield a difference between the Bolt and NUT results, this comparison pro-
vides a confirmation of the AdS/CFT conjecture.

A natural next step from the work mentioned in the last paragraph is to
test the so-called dS/CFT correspondence [18] using the Taub-NUT-dS met-
rics, which are only aLdS, but also still possess the same interesting topology.
This provides an equally rigorous test of the proposed dS/CFT conjecture.
The original intent of this was simply to test this correspondence, but there
was an interesting consequence of calculating the entropy and conserved mass
of Taub-NUT-dS spacetime.

For asymptotically de Sitter spacetimes, there exist two conjectures, one
called the Bousso N-bound [19], and what was called in [20] - and which I
will also call - the maximal mass conjecture. The N-bound states that any
asymptotically dS spacetime will have an entropy no greater than the entropy
π`2 of pure dS with cosmological constant Λ = 3/`2 in (3 + 1) dimensions.
Balasubramanian et. al. [21] derived the maximal mass conjecture assuming
this N-bound. The maximal mass conjecture states that any asymptotically
dS spacetime with mass greater than dS has a cosmological singularity.6 In
the original conjecture, the term cosmological singularity is not well defined.
Here, I interpret it to mean that the scalar Riemann curvature invariants
will diverge to form timelike regions of geodesic incompleteness whenever
the conserved mass of a spacetime becomes larger than the zero value of
pure dS.

Up until the calculation I performed [20] using Taub-NUT-dS spacetime,
all asymptotically dS spacetimes respected both of these conjectures. How-
ever, as will be shown in chapter 4, the Taub-NUT-dS spacetime provides
a counter-example to both of the conjectures, as for certain values of the
NUT parameter, both the entropy and the conserved mass M of Taub-NUT-
dS spacetime are greater than the entropy and conserved mass of pure dS.
Although the Taub-NUT-dS spacetime does have the quasi-regular singular-

6Of course, dS spacetime in four dimensions has M = 0, and so mass greater than dS
means M > 0.
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ities mentioned above, these singularities are the mildest form of singularity
possible, and are not what I consider to be meant by the term “cosmological
singularity”. Thus, as stated, the maximal mass conjecture is violated. It
was also suggested [22] that, since these spacetimes have CTC’s, the Chrono-
logical Protection Conjecture (CPC) [23] would exclude the Taub-NUT-dS
spacetime as a counterexample. This is because the CPC suggests that space-
times that contain CTC’s will develop singularities upon perturbation of the
stress tensor, and thus our counterexample is at best a marginal one.

Following this, another counterexample to the maximal mass conjecture
was obtained [24] using NUT-charged spacetimes without CTC’s, with an
overall global structure that is the same as de Sitter space. This NUT-charged
spacetime can be found from the four dimensional Taub-NUT-dS metric I
will use (4.3.1) through analytic continuation, and that the parameters of
the metric exclude horizons and CTC’s.

However, as stated in [25], the calculation of the conserved mass (for
any dimension) doesn’t depend on the existence of horizons or CTC’s, since
it is calculated at future infinity. Since the mass and the NUT charge in
the spacetime are a priori independent, one can choose these quantities so
as to preserve the global structure of pure de Sitter space, and violate the
maximal mass conjecture. For example, one could choose Anderson’s values
[24], and recover his results. Mindful of this, I still consider the Taub-NUT-
dS spacetime to be a violation of the conjecture, and present the results in
chapter 4.

As well as being an aLAdS solution with which to test the AdS/CFT and
an aLdS solution with which to test the dS/CFT, Taub-NUT spacetimes have
played a key role in other M-Theory considerations. In eleven dimensional
supergravity, the two types of branes that one can have are M2-branes (or
membranes) and M5-branes, which are in fact dual to one another. Super-
gravity in D = 11 is important because it is believed to be the low-energy
limit of fundamental M-theory. Thus there is a great deal of interest in ex-
tending our understanding of the different classical brane solutions that arise
from M-theory or string theory. This includes D = 11 M-brane solutions
that, after reduction down to ten dimensions, reduce simply to supersym-
metric BPS saturated p-brane solutions. Supersymmetric solutions with two
or three orthogonally intersecting M2 or M5 branes have been obtained [26].

Recently, however, an interesting supergravity solution for a localized
D2/D6 intersecting brane system was found by Cherkis and Hashimoto [27].
The Taub-NUT metric was used in eleven dimensional supergravity to con-
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struct a solution that can be reduced to a D6-brane solution in type IIA
string theory (specifically, the authors constructed the solution by lifting a
D6 brane to a four dimensional Taub-NUT geometry embedded in M-theory,
and then placed M2 branes in the Taub-NUT background geometry).

This construction is not restricted to the near core region of the D6 brane.
By assuming a simple ansatz for the eleven dimensional metric, the equations
of motion reduce to a separable partial differential equation that is solvable
and admits proper boundary conditions.

Cherkis and Hashimoto only considered embedding one four dimensional
(Euclidean) Taub-NUT metric into the eleven dimensional metric, when
other combinations are possible. Indeed, even more combinations are possi-
ble if one does not require supersymmetry to be preserved. Taub-NUT space
(1.4.8) is of use when embedded to eleven dimensions because it allows a
reduction to ten dimensions along the τ coordinate that will automatically
give rise to a D-brane with Ramond-Ramond (RR) field C[1] (proportional
to the off-diagonal component dτdφ in the metric).

Since finding localized brane solutions aids in constructing SUGRA duals
of gauge theories with fundamental matter, motivated by their work, I [28,
29] embedded combinations of Taub-NUT and Eguchi-Hanson metrics into
and M2 brane and M5 brane metric (supersymmetry preserving) and also
combinations of Taub-Bolt and higher dimensional Taub-NUT and Taub-
Bolt metrics into M2 and M5 brane metrics (non-supersymmetry preserving).
After suitably reducing to ten dimensions (and performing any necessary T-
dualities), these solutions are localized brane intersections of D-branes or
Neveu-Schwarz (NS)-branes with various other branes. I present some of
these results in chapter 5.
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Chapter 2

Review of Black Hole
Thermodynamics and Quantum
Gravity

My intent in this chapter is to present a review of black hole thermodynam-
ics. In section 2.1, I will go over the general thermodynamics of black holes,
with a review of the Nöether method in section 2.2. Then in sections 2.3
and 2.4, I will discuss thermodynamics of asymptotically AdS and dS space-
times respectively, using the path integral approach. Finally, in section 2.5
I will review the proposed AdS/CFT and dS/CFT correspondences, and the
counterterms that arise from these.

2.1 General Thermodynamics

The thermodynamic entropy of a system can be defined as a measure of the
molecular disorder existing in the system. Mathematically, this works out to
be

S = −k 〈ln(Pr)〉 = −k
∑

r

Pr ln(Pr) (2.1.1)

where Pr is the thermodynamic probability [30]1, or canonical distribution
[31]2. Thus, the entropy can be regarded as a measure of the amount of chaos
or disorder in a system, or in other words, is a description of the number of

1pg. 189. See also pg’s 146-148, 170.
2pg’s 53,54
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accessible states available in a given system. Complete order (S = 0) will
occur only when the system has no other choice but to be in a unique state
(Pr = 1).

This means that, from (2.1.1), with an increase in entropy, a system goes
from a state of lower probability (disorder) to a state of higher probability
(disorder), or that the direction in which natural processes take place is
governed by probability. Hence, the Second Law of Thermodynamics, which
states that the total entropy of all matter in the universe can never decrease
(δS ≥ 0), is a statistical law - i.e. it is believed to be extremely likely to hold
for systems with many degrees of freedom.

Take for example the process of heating a kettle on a stove. By the Second
Law, the heat from the stove does not have to flow into the kettle, but rather
it is highly probable that it will. This means that there is a - extremely small
- non-zero probability that the heat will flow the other way.

The area law of Black Holes, on the other hand - which states that the
total area of all Black Holes cannot decrease (δA ≥ 0) - can be rigorously
proven in the context of General Relativity. These two results, despite the dif-
ferences in their mathematical rigor, are very similar. It would seem strange
to compare such a mathematically proven result to a law that is inferred
rather than shown, but ever since Bekenstein’s suggestion [32] of the propor-
tionality relationship between the area of the event horizon of a black hole
and its physical entropy (S = A/4), the relationship between black holes and
thermodynamics has been a fertile area of research.

It turns out that it is not only the Second Law of Thermodynamics that
has an analogue in black hole thermodynamics. All four of the Laws of
Thermodynamics are in some way applicable to black holes. I reproduce table
12.1 from Wald’s book in Table 2.1 to demonstrate the involved relationship
between black holes and thermodynamics that has actually been built up.

From the first law in table 2.1, we can see that the thermodynamic energy
and the mass of a black hole are related; also that the angular momentum
of a black hole is the “work” done by the black hole. This leaves the surface
gravity κ, which plays the role of temperature in black hole thermodynamics.
This surface gravity is a “measure of how fast the Killing vector is becoming
spacelike”3. The main mathematical arguments involved in deriving the black
hole thermodynamics are worth repeating, and I will do so now.

3[2], pg. 202.
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2.1.1 Black Hole Thermodynamics

Zeroth Law

The surface gravity κ is defined on the horizon of an arbitrary, stationary
black hole, and plays the role of temperature. For stationary black holes,
there exists a Killing field χa, normal to the horizon (chapter 12.5, [33]),

χa = ξa + ΩHψa (2.1.2)

where ΩH is the angular velocity of the horizon, ξa is the stationary Killing
field, and ψa is the axial Killing field. With this Killing vector, a simple
formula for κ is easily found

κ2 = −1

2
χa;bχa;b (2.1.3)

(for the full mathematical derivation of (2.1.3), see appendix A or [33, 34]).
From this, the temperature of a black hole is given by T = ~κ

2π
. The reason

for the analogy between the zeroth law of thermodynamics and that of black
holes given in table 2.1 is that, as shown in [33] and reviewed in appendix
A, the surface gravity can be shown to be constant over the horizon of a
black hole. It should be noted that classically, κ cannot physically represent
a temperature, because of course a black hole is a perfect black body, and
does not emit anything, and hence the temperature of a black hole would be

Table 2.1: Black Holes & Thermodynamics (Reproduced from [33], pg. 337.)

Context
Law Thermodynamics Black Holes
Zeroth T constant throughout body κ constant over horizon of

in thermal equilibrium stationary black hole

First dE = TdS+ work terms dM = κ
8π

dA + ΩHdJ

Second δS ≥ 0 in any process δA ≥ 0 in any process

Third Impossible to achieve T = 0 Impossible to achieve κ = 0
by a physical process by a physical process
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absolute zero. However, Hawking showed [2] that a black hole can radiate
quantum particles like a black body, with a spectrum at a temperature T =
~κ
2π

.

First Law

The First Law of black hole thermodynamics can be stated mathematically
such that the relation between the change in mass (M), area (A) and angular
momentum (J) of a black hole is given by the equation

δM =
κ

8π
δA + ΩHδJ (2.1.4)

This is directly analogous to the First Law of thermodynamics, which can
be written mathematically as

δE = TδS − PδV (2.1.5)

and indeed, the ΩHδJ term in (2.1.4) is the work done on a black hole,
analogous to the work term PδV in (2.1.5). Note that δA is analogous to
the change in entropy δS in (2.1.5), and so κ is again seen to play the role
of temperature in black hole thermodynamics.

A mathematical derivation of (2.1.4) following the results in [34] is given
in appendix A

Second Law

The original version of the Second Law of black hole thermodynamics, as
proven by Hawking [35], and stated by Bardeen, Carter and Hawking [36],
was that the total entropy of a black hole cannot decrease with time, i.e.

δS ≥ 0 (2.1.6)

and was proven due to the relationship between the black hole entropy (S)
and the area (A) of the horizon of the black hole, given by

S =
1

4
A (2.1.7)

In other words, the statement that the entropy cannot decrease is equivalent
to the statement that the area of the event horizon of the black hole cannot

18



decrease, δA ≥ 0. This version is of course stronger than the Second Law
of thermodynamics, as in thermodynamics one can transfer entropy from
one system to another, and the requirement is only that the overall or total
entropy does not decrease. However, one cannot transfer area between two
black holes, and classically, black holes cannot emit anything, and so do not
lose mass, and hence the horizon area will not decrease.

However, Hawking [2] then discovered that black holes can radiate quan-
tum mechanically, and hence black holes could lose mass and horizon area.
This of course violates the direct relationship between the entropy and area
of a black hole stated above. However around the same time, Bekenstein
[37] suggested, and Hawking refined [2] a Generalized Second Law, such that
the total entropy S̃(= SBH + Srad) - the entropy of the black hole horizon
(SBH ∝ A) and the entropy of matter and gravitational radiation surround-
ing the black hole (Srad) - could not decrease. (In the original version of the
Generalized Second Law, Bekenstein did not suggest a black hole could emit
as well as absorb particles - hence, this original version could be violated by,
for example (as pointed out by Hawking [2]), immersing the black hole in
black body radiation of lower temperatures. For the full Generalized Second
Law then, one must include the absorbtion and emission of particles from
the black hole.)

This Generalized Second Law was proven by Frolov and Page [38] for
quasi-stationary changes of a generic, charged, rotating black hole that emits,
absorbs and scatters any radiation in the Hawking semiclassical formalism.

Third Law

The Third Law of thermodynamics can be stated in several ways. One, due
to Nernst, is that The temperature of a system cannot be reduced to zero in a
finite number of operations. A stronger statement, by Planck, is The entropy
of any system tends, as T → 0, to an absolute constant, which may be taken
as zero.

Although the Third Law of black hole thermodynamics is analogously
stated by Bardeen, Carter and Hawking [36] in 1973, as It is impossible by
any procedure, no matter how idealized, to reduce κ to zero by a finite sequence
of operations, they did not present a proof. It was Israel [39] in 1986 that
presented a dynamical proof to the Third Law, reviewed in appendix A.
Informally, Israel stated the Third Law as follows:

“A non-extremal black hole cannot become extremal (i.e. lose its trapped
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surfaces) at a finite advanced time in any continuous process in which the
stress-energy tensor of accreted matter stays bonded and satisfies the weak
energy condition in a neighbourhood of the outer apparent horizon.”

The proof depends, obviously, on the weak energy condition. It also
depends on defining a “process” in a dynamical context as an interaction
between a black hole and its environment, where the active phase has a
finite time as seen by freely falling observers near the horizon of the black
hole.

Period of a Black Hole

A simple example of a black hole metric is the Schwarzschild solution, given
by the metric

ds2 = −
(

1− 2m

r

)
dt2 +

dr2

(
1− 2m

r

) + r2dΩ2 (2.1.8)

Note that the apparent singularity at r = 2m is a coordinate artifact that can
be removed by a coordinate transformation. This metric has a Lorentzian
signature [−, +, +, +]. One can obtain a Euclideanized form of the metric by
Wick rotating the time coordinate t → iτ , to give a positive-definite metric
(for r > 2m)

ds2 =

(
1− 2m

r

)
dτ 2 +

dr2

(
1− 2m

r

) + r2dΩ2 (2.1.9)

This metric will be regular at r = 2m if τ is taken to be an angular variable,
with period 8πm. The manifold then defined by the ranges r ≥ 2m, 0 ≤ τ ≤
8πm is the Euclidean section of the Schwarzschild solution (note the true
singularity at r = 0 does not lie in the Euclidean section).

We demand regularity in the Euclidean section of any metric, and hence
in general the Euclidean time τ will be a periodic variable with some period
β. The period of a black hole can be found, for a general Euclideanized
metric

ds2 = G(r)dτ 2 +
dr2

F (r)
+ dΣ2 ; τ = it (2.1.10)

to be given by β = 4π(|F ′(a)G′(a)|)−1/2, where r = a is the black hole horizon
(and so F (a) = G(a) = 0). This is done by expanding F (r) around r = a,
and then using the fact that G(a) has the same order of zero. This procedure
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will force τ to have a period 2π = βF ′(a)G′(a)/2. If G(r) = F (r), then one
arrives at

β =
4π

|F ′(a)| (2.1.11)

The period can be shown to be equal to β = 1/T , where T is again the
temperature of the black hole. The full derivation of (2.1.11) is given in
appendix A, section A.5.

2.2 Nöether Charges

Note from the discussion in section 2.1.1 above that in the Euclideanized
version of a black hole metric, the horizon is a place where the Killing field
∂τ vanishes. This obstructs one from foliating the spacetime with constant-τ
surfaces, and gives rise to entropy because it causes a difference in the Eu-
clidean action I and βH, where β is the period of τ and H is the Hamiltonian.

In general, to calculate the entropy, one uses the Gibbs-Duhem relation

S = βH − I (2.2.1)

(proven below using thermodynamic arguments in sections 2.3, 2.4 for asymp-
totically AdS/dS spacetimes). However, in general, the action and Hamil-
tonian are infinite, and one must introduce a background spacetime. The
action and Hamiltonian of this background spacetime are also calculated,
and subtracted off of the main spacetime in order to render a finite answer.

The Nöether method [40, 41] is an example of one of the methods used
to calculate the thermodynamic properties of black hole spacetimes using
background subtraction. In this method, the generalized gravitational en-
tropy is related to the Nöether charge. A background of suitable topology
must be introduced, to match with the main spacetime - for example, a
Schwarzschild-AdS spacetime could be calculated relative to the pure-AdS
spacetime. Provided that such a background can be introduced, conserved
quantities are considered as being relative to the background.

Following the discussion in [40, 41], consider a (d+1) dimensional action

I = −
∫

M

L +

∫

∂M

B (2.2.2)

where the action will depend in general on the metric and any matter fields
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present, collectively denoted Φ as in [41]. For diffeomorphism invariant the-
ories4 there is a d− 1 form Q associated with the diffeomorphism invariance.

The action remains unchanged to first order by compact support vari-
ations of solutions to the equations of motion. Thus, there is a d-form
Θ(Φ, δΦ) such that

δL = EδΦ + dΘ (2.2.3)

where E represents all of the equations of motion. This implies

0 = δI = −
∫

M

[EδΦ + dΘ] +

∫

∂M

δB

0 =

∫

∂M

[δB−Θ] (2.2.4)

Now, if ξa is a smooth vector field on M , consider the field variation
δ̂Φ = LξΦ. The diffeomorphism invariance of L implies that, under this
variation,

δ̂L = LξL = d(ξ · L) (2.2.5)

where the dot denotes contraction of the first index of the form5. Then
there is an n-form Nöether current J associated with every diffeomorphism
generated by ξ,

J[ξ] = Θ− ξ · L (2.2.6)

This then gives

dJ = dΘ− d(ξ · L)

= −EδΦ = 0 (2.2.7)

where (2.2.5) has been used, and the last equality follows when the equations
of motion are satisfied. But, (2.2.7) implies that there exists a Nöether charge
that is an (n− 1)-form Q[ξ] such that

J[ξ] = dQ[ξ] (2.2.8)

The Hamiltonian conjugate to a time-evolution vector field satisfying
ta∇aτ = 1 can be found to be

H =

∫

∞
[Q[t]− t ·B + C] (2.2.9)

4From [40], for any diffeomorphism ψ : M → M we have L [ψ∗(Φ)] = ψ∗L [Φ]. Note on
the LHS of this equation, ψ∗ is not applied to ∇a or any other non-dynamical fields that
may appear in L.

5This follows from the general identity, equation (5) of [40]: LξΛ = ξ · dΛ + d(ξ ·Λ)
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where C is any quantity with zero variation. This is implied through noting
that the variation of the Hamiltonian is the integral of the symplectic current.
In (2.2.9), C is chosen to be −Q̄ so that the Hamiltonian vanishes in the
background (where a bar denotes a quantity evaluated in the background).

We want to foliate the manifold M with surfaces of constant τ - this may
require the removal of a set of measure zero from M . The action is now

I = −β

(∫

Στ

t · L +

∫

∞
t ·B

)
(2.2.10)

where the sign change in the B term is due to the orientation of ∂M . Then,
inserting (2.2.9), (2.2.10) into (2.2.1),

S = β

(∫

∞
Q−

∫

Στ

J[t]−
∫

∞
Q̄

)
(2.2.11)

and from (2.2.8), the integral of J depends on Q only on the boundary of Στ .
Recall now that all obstructions to the foliation were removed on the ∂M
boundary before integration. Letting O represent the intersection of these
obstructions with Στ , we have

∫

Στ

J[t] =

∫

∞
Q +

∫

O
Q (2.2.12)

giving

S = −β

(∫

O
Q +

∫

∞
Q̄

)
(2.2.13)

Thus, the entropy is seen to be related to the Nöether charge.
In practical, calculational terms then, the Nöether framework depends on

the covariant first order Lagrangian, that can be written as the sum of three
terms,

L = L1 + L2 + L3 (2.2.14)

where the terms are given by

L1 =
1

2κ
(R− Λ)

√
gds (2.2.15)

L2 =
1

2κ
dµ

(
ωµ

αβgαβ√g
)
ds (2.2.16)

L3 = − 1

2κ
(R− Λ)

√
gds (2.2.17)
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and each term is a covariant Lagrangian on its own. Here, gαβ is the dynam-
ical metric, gαβ is the background metric, and R, R are the Ricci scalars of
the metric and background metric, respectively. The dµ in (2.2.16) means
differentiate with respect to xµ, and ωµ

αβ is a tensorial quantity, defined by

ωµ
αβ = uµ

αβ − uµ
αβ (2.2.18)

uµ
αβ = Γµ

αβ − δµ
(αΓλ

β)λ , uµ
αβ = Γ

µ

αβ − δµ
(αΓ

λ

β)λ

The constant κ depends on unit conventions, and becomes relevant when
coupling to matter fields.

This splitting of the Lagrangian will carry through to the conserved quan-
tities calculated from it; in a geometrical, well-defined way, the total con-
served quantities Q calculated from L will thus be given by Q = Q1+Q2+Q3.
Conserved quantities are defined by the following integral

QD(ξ) =

∫

D

U(ξ, g, g) (2.2.19)

of the superpotential (2.2.20). This superpotential, when integrated along the
dynamical and background metrics, defines the conserved current (relative
to the background) within a closed (d−1) dimensional submanifold D of the
spacetime.

The superpotential in (2.2.19) is given by

U(ξ) = U1(ξ) + U2(ξ) + U3(ξ) (2.2.20)

where the individual superpotentials are carried over from the individual
Lagrangians,

L1 → U1(ξ) =
1

2κ
∇αξβ√gdsαβ (2.2.21)

L2 → U2(ξ) =
1

2κ
ξαωβ

µνg
µν√gdsαβ (2.2.22)

L3 → U3(ξ) = − 1

2κ
∇α

ξβ
√

gdsαβ (2.2.23)

Here, ∇α and ∇α
are the covariant derivatives with respect to the dynam-

ical metric and the background metric, respectively. Also, dsαβ is the sur-
face element, defined by dsαβ = uanbdS, where ua, nb are the unit time-
like/radial vectors, and dS = dθdφ in four dimensions, for example. The
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energy-momentum and the angular momentum of the spacetime (g) relative
to the background spacetime (g) can be obtained from (2.2.19), (2.2.20) by
specifying ξα appropriately.

The First Law of black hole thermodynamics can be written in the fol-
lowing form,

δM = TδS (2.2.24)

for the Taub-Bolt type solutions to be described later, and this formula can
be integrated to obtain the entropy (relative to the background) of the space-
time. Note of course, since this entropy will be obtained through integration,
it will depend on a constant that may depend on the model (e.g. on the cos-
mological constant), though of course not on the solution under investigation.

This entropy, from (2.2.24), can only be defined once the relevant thermo-
dynamic potentials are provided, such as the temperature T = β−1, and (in
general) the momenta conjugate to the angular momentum along with other
(gauge) charges. These must be provided through other physical means (e.g.
from the radiation spectrum).

2.3 Asymptotically AdS Thermodynamics

2.3.1 Path Integral Approach

Here I wish to present an introduction to the use of the path integral in
quantum gravity, for use later on in the calculation of the action in conjunc-
tion with the Gibbs-Duhem relation and the counterterms produced by the
AdS/CFT correspondence. For other reviews, see for example [42].

The starting point for the path integral approach to quantum gravity is
due to Feynman, for which

〈g2, Φ2, S2|g1, Φ1, S1〉 =

∫
D[g, Φ]eiI[g,φ] (2.3.1)

where the left hand side is the amplitude to go from some initial state of
metric and matter fields g1, Φ1 on some (spacelike) surface S1 to some fi-
nal state of metric and matter fields g2, Φ2 on a surface S2. This can be
represented, as on the right hand side of (2.3.1), as a sum over all possible
metric/field configurations g, Φ lying on all the surfaces Si between S1 and
S2 - see also figure 2.3.1 for a pictorial view, to be explained later. D[g, Φ]
thus represents the measure of the space of all such field configurations, and
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I[g, Φ] is the action taken over all fields having these values over the two sur-
faces. Asymptotically flat and asymptotically anti-de Sitter spacetimes have
timelike tubes at some finite mean radii connecting the two surfaces, so that
both the boundary and the contained region are compact. The amplitude for
the entire spacetime can thus be obtained by letting the larger mean radii
tend to infinity, and the smaller to zero.

The action (in (d + 1) dimensions) can be decomposed into two (later
three - Ict will be introduced in section 2.5) parts

I = IB + I∂B (2.3.2)

where the bulk and boundary actions are given by

IB = − 1

16πG

∫

M
dd+1x

√−g (R− 2Λ + LM(Ψ)) (2.3.3)

I∂B = − 1

8πG

∫

∂M
ddx

√−γΘ (2.3.4)

Here Λ = −d(d−1)
2`2

, and LM is the matter Lagrangian if required (the matter
Lagrangian won’t be used here). Θ is the trace of the extrinsic curvature,
where

Θµν = γ σ
µ γ δ

ν nδ;σ

and γµν is the boundary metric. The unit radial vector is given by na =
[0, (

√
grr)

−1, 0, 0]. Note that G will be taken to be unity for all calculations.
The boundary action is present in order to correctly derive the Einstein

equations. If one varies (2.3.2) with only the bulk action present, with only
the condition δgαβ = 0 on ∂M, then an extra term in the equations of motion
occurs (this term does not appear if one also requires δ (∂gαβ) = 0). It turns
out that this extra term is exactly equal to the negative of the variation of
the boundary (2.3.4) term. Hence, (2.3.2) is the correct action to use to get
the equations of motion. One can also just use IB with the conditions that
δgαβ and its first derivatives equal zero.

The presence of the bulk action can also be understood from the path
integral viewpoint by considering the situation in figure 2.3.1 (see also [42]).
Here, there is a transition from a surface S1 with metric and matter fields
[g1, Φ1] to an intermediate surface Si with metric and matter fields [gi, Φi],
and then to a surface S2 with [g2, Φ2]. Thus, the amplitude of going from a
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Figure 2.3.1: Amplitude to go from g1,Φ1 on S1 to g2, φ2 on S2.

surface [g1, Φ1, S1] to a surface [g2, Φ2, S2] can be written as a sum over all of
the possible intermediate surfaces

〈g2, Φ2, S2| g1, Φ1, S1〉 =
∑

i

〈g2, Φ2, S2| gi, Φi, Si〉 〈gi, Φi, Si| g1, Φ1, S1〉
(2.3.5)

This will be true if and only if (iff) (i.e. will relate to (2.3.1) iff)

I [g12, Φ] = I [g1i, Φ] + I [gi2, Φ] (2.3.6)

where gij is the metric that is between surfaces Si, Sj, and the metric g12

is of course the full metric of the region between S1, S2. In general, g1i

and gi2 will have different normal derivatives - they will yield delta-function
contributions to the Ricci tensor proportional to the difference between the
extrinsic curvatures of the surfaces Si in the metrics g1i, gi2. The boundary
term in (2.3.2) is what compensates for this.

2.3.2 Thermodynamics

Next, I wish to relate the path-integral arguments above to the thermody-
namic arguments needed to calculate the thermodynamic properties of the
metrics in question. Consider a scalar quantum field φ - the amplitude for
going from a state |t1, φ1〉 to |t2, φ2〉 can be expressed as an integral

〈t2, φ2|t1, φ1〉 =

∫ 2

1

d[φ]eiI[φ] (2.3.7)
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over all possible intermediate field configurations between the initial and final
states. However, this amplitude can also be expressed as

〈t2, φ2|t1, φ1〉 = 〈φ2|e−iH(t2−t1)|φ1〉 (2.3.8)

where H is the Hamiltonian. By imposing the periodicity condition φ1 = φ2

for t2 − t1 = −iβ, we sum over φ1 to obtain

Tr(exp(−βH)) =

∫
d[φ]e−Î[φ] (2.3.9)

The right-hand side is now a Euclidean path integral over all field config-
urations intermediate between the periodic boundary conditions because of
the Wick rotation of the time coordinate, where Î is the Euclidean action.
Inclusion of gravitational effects can be carried out as described above, by
considering the initial state to include a metric on a surface S1 at time t1
evolving to another metric on a surface S2 at time t2, yielding the relation
(2.3.1).

Note that the left-hand side of (2.3.9) is simply the partition function Z
for the canonical ensemble for a field at temperature β−1. This connection
with standard thermodynamic arguments [31] can be seen as follows. We
start with the canonical distribution

Pr ≡ < nr >

N =
e−βEr

∑
r e−βEr

(2.3.10)

with β determined by considering the average total energy M

M =

∑
r Ere

−βEr

∑
r e−βEr

= − ∂

∂β
ln

{∑
r

e−βEr

}
= − ∂

∂β
ln Z (2.3.11)

Also, the Helmholtz free energy W = M − TS can be rearranged so that

M = W + TS = W − T

(
∂W

∂T

)

N,V

= −T 2

[
∂

∂T

(
W

T

)]

N,V

(2.3.12a)

=
∂

∂β
(βW ) (2.3.12b)

Comparing (2.3.11) and (2.3.12b), we get

−βW = ln

{∑
r

e−βEr

}
= ln Z (2.3.13)
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which can be interpreted as describing the partition function of a gravita-
tional system at temperature β−1 contained in a (spherical) box of finite ra-
dius. Thus, using the expression for the Helmholtz free energy M = W +TS,
and defining T = 1/β (via thermodynamic arguments), we can re-arrange
(2.3.13) into the more familiar form of the Gibbs-Duhem relation,

S = βM − Icl (2.3.14)

where recall from (2.3.9) that Z =
∫

e−Icl .
We therefore compute Z using an analytic continuation (“Wick rotation”)

of the action in (2.3.1) so that the axis normal to the surfaces S1, S2 is rotated
clockwise by π

2
radians into the complex plane [3] (i.e. by rotating the time

axis so that t → iτ ) in order to obtain a Euclidean signature. The positivity
of the Euclidean action ensures a convergent path integral in which one can
carry out any calculations (of action, entropy, etc.). In order to achieve a
physical result, one then Wick rotates back into the Lorentz frame at the
end of the calculation.

2.4 Asymptotically dS Thermodynamics

2.4.1 Path-Integral

The idea of applying the thermodynamic analysis used on black holes to
spacetimes with a positive cosmological constant was first suggested and
used by Gibbons and Hawking [43]. Though pure and asymptotically dS
spacetimes may not contain a black hole, one can calculate thermodynamic
quantities using the cosmological event horizon in the same way as one does
so using a black hole event horizon. This is because the cosmological event
horizon acts in the same manner as the event horizon of a black hole.

As is well known for spacetimes containing a black hole, the region be-
hind the event horizon is not visible to an observer outside the horizon. A
similar effect is produced by the cosmological event horizon that each fun-
damental observer has in a spacetime with a positive cosmological constant.
A positive cosmological constant causes the universe to expand so rapidly
that there are regions where, for each observer, light can never reach him.
In other words, for spacetimes with a positive cosmological constant, a given
observer cannot receive information out of his cosmological horizon. Since
cosmological spacetimes with a positive cosmological constant will approach
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dS spacetimes asymptotically at large times, thermodynamic analysis can be
applied to asymptotically dS spacetimes as well as pure dS spacetime.

The future infinity of de Sitter spacetime is spacelike. Thus, an observer
moving on a timelike world line will have an event horizon, beyond which he
cannot detect anything - i.e. for the observers world line, the event horizon
is the boundary of the past. As shown in [43], this cosmological horizon
has many formal similarities with the event horizon of a black hole. It obeys
laws similar to the Zeroth, First and Second laws, and also bounds the region
where negative energy particles can exist with respect to the observer. Thus,
particle creation with a thermal spectrum occurs in positive cosmological
constant spacetimes, and thus a cosmological event horizon can be considered
to have thermodynamic properties as with a black hole. It therefore also
makes sense to have a path integral approach to an asymptotically de Sitter
spacetime, which I will now explore.

Though the procedure and steps for the path integral approach in asymp-
totically de Sitter spacetimes is generally the same as that in the asymptoti-
cally AdS case above, there are difficulties that arise here that don’t appear
in AdS. The surfaces S1, S2 must be replaced with histories, or time-lines,
H1, H2 that have spacelike unit normals. These histories are surfaces that
form timelike boundaries of the spatial region, and describe particular histo-
ries of the d-dimensional subspaces of the full spacetime.

The notion of a quantum field on a timelike boundary is a difficult one,
indeed seemingly impossible to construct at first glance. The usual notion of
a quantum field involves defining the field on a spacelike surface and having it
propagate forward in time. So how does one define such a field on a timelike
surface? Though this is just a conjecture, requiring further exploration and
proof, it should be possible to define or describe a QM operator that evolves
forward on some history Hi, but restricted to a specific point or region of
space. Then, the notion of “correlation” that I will use below between two
histories will occur when, for example, the light cones of two observers on
two histories H1, H2 - originally spacelike, and hence completely causally,
separated - meet. Once the light cones intersect, the two observers can
compare their observations, made when they were causally separated, and
see to what extent the measured observables match each other.

The starting amplitude (2.3.1) is thus altered to

〈g2, Φ2, H2| g1, Φ1, H1〉 =

∫
D [g, Φ] eiI[g,Φ] (2.4.1)
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where the left hand side is again the amplitude to go from some initial state
with a metric and matter fields g1, Φ1 to some final state with metric and mat-
ter fields g2, Φ2. The difference now is that the initial and final states are on
some histories H1, H2. This can again be represented as sum over all possible
metric and field configurations g, Φ, but again here, they lie on all histories
Hi that lie between H1, H2. To make the boundary and interior region com-
pact, the histories are joined by spacelike tubes at some initial and final time.
In the limit that these initial and final times approach past/future infinity,
the correlation between the complete histories [g1, Φ1, H1] and [g2, Φ2, H2]
is obtained. Similar to the AdS case, the quantity 〈g2, Φ2, H2| g1, Φ1, H1〉
depend only on the hypersurfaces H1 and H2 - along with the metric and
matter fields on these hypersurfaces - and not on any special hypersurface
lying between H1 and H2.

The action can again be decomposed into two parts

I = IB + I∂B (2.4.2)

where the bulk and boundary actions are given as

IB =
1

16πG

∫

M
dd+1x

√−g (R− 2Λ + LM(Ψ)) (2.4.3)

I∂B± = − 1

8πG

∫

∂M±
ddx

√−γΘ (2.4.4)

The dS case has a positive cosmological constant, Λ = +d(d−1)
2`2

. Θ is again
the trace of the extrinsic curvature, and LM the matter Lagrangian. Note

that ∂B± is future/past infinity, so that
∫

∂B± =
∫ ∂B+

∂B− is the integral over a
future boundary minus the integral over a past boundary, with appropriate
boundary metrics and extrinsic curvatures.

The presence of the boundary action can be understood exactly as in the
AdS case, through the need to cancel the extra term arising from the vari-
ation of the bulk action when one only requires δgαβ = 0. It can also again
be understood through the path-integral viewpoint by considering the cor-
relation between the initial hypersurface [g1, Φ1, H1] and some intermediate
hypersurface [gi, Φi, Hi], and also between this intermediate hypersurface and
the final hypersurface [g2, Φ2, H2]. The correlation between the initial and
final states should be found by the sum of products of correlations between
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all possible intermediate histories,

〈g2, Φ2, H2| g1, Φ1, H1〉 =
∑

i

〈g2, Φ2, H2| gi, Φi, Hi〉 〈gi, Φi, Hi| g1, Φ1, H1〉
(2.4.5)

This will again only hold iff (2.3.6) is true. Now, of course, gij is the metric
between histories Hi, Hj, and the metric g12 is of course the full metric of
the region between H1, H2. In general, g1i and gi2 will have different normal
spacelike derivatives, they will yield delta-function contributions to the Ricci
tensor proportional to the difference between the extrinsic curvatures of the
histories Hi in the metrics g1i, gi2. The boundary term in (2.4.2) is what
compensates for this.

2.4.2 Thermodynamics

I will again link the arguments for the path-integral approach, now in asymp-
totically de Sitter spacetimes, with the usual thermodynamic arguments.
Here however, these arguments require a greater degree of care because the
action is in general negative definite near past and future infinity (outside
of a cosmological horizon). The natural strategy would appear to be to
analytically continue the coordinate orthogonal to the histories [g1, Φ1, H1]
and [g2, Φ2, H2] to complex values by rotating the axis normal to the histo-
ries H1, H2 anticlockwise by π

2
radians into the complex plane. The action

becomes pure imaginary and so exp(iI [g, Φ]) −→ exp(+Î [g, Φ]), yielding a
convergent path integral

Z ′ =
∫

e+Î (2.4.6)

since Î < 0. Furthermore, since we want a converging partition function, we
must change (2.3.11) to

M = +
∂

∂β
ln

{∑
r

e+βEr

}
= +

∂

∂β
ln Z ′ (2.4.7)

Now comparing (2.4.7) with (2.3.12b) (since (2.3.12a,2.3.12b) won’t change)
one obtains

+βW = ln
{
e+βEr

}
= ln Z ′ (2.4.8)
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In the semi-classical approximation this will lead to ln Z ′ = +Icl. Substitut-
ing this and (2.3.12a) into (2.4.8),

β (M − TS) = +Icl

βM − S = Icl

S = βM − Icl (2.4.9)

As before, the presumed physical interpretation of the results is then
obtained by rotation back to a Lorentzian signature at the end of the calcu-
lation. However there is an ambiguity here that is not present in the asymp-
totically flat and AdS cases. This occurs because outside the horizon, near
past and future infinity, the signature of any asymptotically dS spacetime
becomes (+,−, +, +), and so the spacelike boundary tubes naturally have
Euclidean signature. This leads to two possible approaches in evaluating
physical quantities.

First, notice that if one does perform the Wick rotation in order to carry
out the calculation of the action and entropy, the signature of the metric
becomes (−,−, +, +, . . .) (in (d + 1) dimensions). Thus, the metric is not
the Euclidean metric one would expect from the AdS case. However, the
argument for proceeding in this manner would be that the purpose of per-
forming the Wick rotation is not to attain a Euclidean signature, but rather
its purpose is to achieve a convergent path integral and partition function.
To ensure the absence of conical singularities, one also again identifies the
period β with the temperature T . The presumed physical interpretation
here, as before, would be to rotate back into the real plane at the end of
the calculation. In [20] this was referred to as the C-approach, and I will
continue to use this description.

In the second approach, one proceeds by noting that at future infinity,
the Killing vector ∂/∂t = ∂t is asymptotically spacelike. It was suggested in
[18] that this means the purpose of the rotation into the complex plane is
merely a mathematical device used in order to establish the Gibbs-Duhem
relation (2.4.9), and is not actually required for actual calculation. In this
approach, then, one simply calculates all quantities relative to the original
signature of the metric at future infinity, and imposing periodicity in t consis-
tent with regularity at the cosmological horizon (given by the surface gravity
of the horizon of the (+,−) section. This approach was referred to as the
R-approach in [20].

A recent paper by Mann and Stelea [44] has explored the relationship
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between the C-approach and the R-approach as it applies to the Taub-NUT-
dS spacetime in further depth. Since a full discussion of their results is
easier once the Taub-NUT spacetime has been introduced, I will postpone
this discussion until chapter 3, and the thermodynamic consequences of their
results until chapter 4.

For now, suffice it to say that one can show that the C-approach results
can be shown to be the analytic continuation of the R-approach results, and
vice versa. Also, as will be shown, the NUT solution results found in the
ds-C-approach, originally thought to be valid as it satisfies the first law of
thermodynamics, is also shown not to be a solution as the root τ = N is not
the largest root of the metric function. It also turns out that the two lower
branches of the Bolt solutions found in [20] (from the C and R-approach) are
not solutions either, as they are also not the largest roots of their respective
metric functions. This too will be explored in chapters 3, 4.

2.5 Review of (A)dS/CFT Correspondence

2.5.1 General Review (AdS/CFT)

Since fully two-thirds of the results presented in this thesis involve the direct
application of the counterterms that arise from the AdS/CFT or dS/CFT
correspondences, it is pertinent to review the overall theory that gives rise to
these counterterms. Hence, this section is intended to give a brief overview
of the AdS/CFT and dS/CFT correspondences. For a full review, consult for
example [45, 46, 47, 48], and references therein. Note that, since the dS/CFT
is largely derived from the AdS/CFT, I will only discuss the latter here, and
point out differences in section 2.5.3. The counterterms themselves, which
will be used to derive the results in chapter 4, will be reviewed in sections
2.5.2, 2.5.3.

The action and energy-momentum of the spacetime, though of great im-
portance in gravity, are very difficult to define and compute. One of the
major stumbling blocks is that the action (2.3.2) diverges. A standard rem-
edy for this has been the “background subtraction” method, for example the
Noether approach. By bounding the spacetime by a surface and subtracting
some reference spacetime with similar infinities in its action and possessing
the same boundary geometry, one can in some cases successfully compute
the action, which will be finite as the boundary is taken to infinity. The
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energy-momentum tensor can also be computed, by varying the action with
respect to the boundary metric [49].

There are of course a number of drawbacks to this procedure. The first
is that some spacetimes don’t have suitable background metrics. Even for
metrics with some suitable background, the asymptotic boundary geometries
must be matched in order to get finite surface contributions [13, 50, 51, 52].
An alternative to this method was proposed by [53], and in the case of Anti-
de Sitter spacetimes a completely iterative procedure, to be reviewed in the
next section, was given by [48]. This new, “counterterm” procedure depends
on the use of the proposed AdS/CFT correspondence.

The AdS/CFT correspondence, first proposed by Maldacena [45] and
later enunciated more completely by Witten [46], is a holographic theory
suggesting that the thermodynamics of quantum gravity in some spacetime
of dimension (d+1) can be successfully modelled using the thermodynamics
of the corresponding field theory on the d dimensional boundary of the space-
time for large N , where the field theory will be described by a gauge theory
with, for example, an SU(N) gauge group. The behaviour of the fields at
the boundary uniquely specifies the fields as they propagate in the bulk of
the AdS spacetime. The correspondence is precisely formulated by the use
of the partition functions of the bulk and boundary theories,

ZAdS(φ0,i) =

∫

[γ,Ψ0]

D[g]D[Ψ]e−I(φi) =

〈
exp

{∫

∂Md

ddx φ0,iOi

}〉

= ZCFT (φ0,i) (2.5.1)

where φ0,i represent, on the gravity side, the boundary values of the fields
φi that propagate in the bulk. In the field theory, the φ0,i are the exter-
nal source currents that couple to the various CFT operators. In (2.5.1),
I(φi) is the classical gravitational action, and O is a quasi-primary confor-
mal operator defined on the boundary. The beauty of this conjecture is
that it suggests the use of a counterterm action to offset the infinities in the
Einstein-Hilbert and Gibbons-Hawking action (2.3.2). The counterterms, to
be reviewed next, depend only on curvature invariants that are functionals of
the intrinsic boundary geometry, thus leaving the equations of motion from
varying (2.3.2) with respect to the bulk metric unchanged.

The conjecture has been verified for several important cases, providing an
expectation that quantum gravity (at least in an AdS case) can be obtained
by studying the holographic dual of the CFT.
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2.5.2 AdS/CFT - Counterterms

The proposal from [53] suggests that in general, as mentioned above, for a
manifold that has a boundary one can modify the action without altering
the equations of motion by adding a coordinate invariant functional that is
dependent only on the intrinsic boundary geometry - this of course could be
done with or without the AdS/CFT conjecture. This counterterm cancels the
divergences in the action (2.3.2) in a manner analogous to the counterterms
used in field theory to cancel the infinities of the bare coupling constants.

The first few terms, usable for lower dimensional metrics, were found by
[53] (see also [47]). A counterterm action usable in asymptotically flat cases
was also suggested in [14]. However, there exists an iterative procedure, de-
rived by Kraus, Larsen and Siebelink [48], that will provide the counterterms
for any arbitrary dimension, at least for asymptotically AdS metrics (indeed,
note the results in this section are from [48]). The procedure can provide the
required counterterm action to fully cancel the divergences in (2.3.2). Thus,
one alters this action by adding a counterterm action

I = IB + I∂B + Ict (2.5.2)

Varying the original action (2.3.2) with respect to the boundary gives the
energy-momentum tensor for the spacetime

Παβ =
δS

δγαβ
= Θαβ − γαβΘ (2.5.3)

which also diverges. Recall that the boundary action I∂B was added by Gib-
bons and Hawking [3] to the action in order to achieve well defined equations
of motion. The counterterm action will ruin this unless it depends only on
the boundary metric γ. Further, since the counterterm action is taken as a
series expansion in the radius of AdS space, dimensional analysis shows that
the series can be truncated - only terms < d/2 contribute to the divergent
part of the action. The divergent part of the stress tensor is

Π̃αβ =

d/2∑
n=0

Π̃
(n)
αβ ; Π̃

(n)
αβ ∝ `2n−1 (2.5.4)

The procedure depends on the Gauss-Codazzi equations. From [33, 48],
after using (2.5.3), the constraint equation reads

1

d− 1
Π̃2 − Π̃αβΠ̃αβ =

d(d− 1)

`2
+ R (2.5.5)
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where one always considers the bulk equations of motion. The counterterm
energy-momentum tensor must be derived from the counterterm action, and
so

Π̃αβ =
2√−γ

δ

δγαβ

∫
ddx

√−γL̃ (2.5.6)

Under a Weyl rescaling δW γαβ = σγαβ, [48] show that (after some algebra)

L̃(n) =
Π̃(n)

(d− 2n)
(2.5.7)

up to a total derivative.
Now, since the leading order term in (2.5.4) scales as `−1, the curvature

term in (2.5.5) can be neglected, so that Π̃
(0)
αβ is proportional to the metric,

Π̃
(0)
αβ = −(d− 1)

`
γαβ (2.5.8)

Higher order terms are thus calculable through the iterative procedure from
[48], restated here:

Step 1: Insert known terms into (2.5.5), giving a linear equation with the
trace Π̃(n) being the only unknown.

Step 2: Integrate (2.5.6) to find L(n) (i.e. use (2.5.7)).

Step 3: Take the functional derivative of L(n) with respect to γαβ, to obtain

Π̃
(n)
αβ from (2.5.6).

An explicit computation of the first few terms in the counterterm action is
done in [48], and they are

Ict = − 1

8πG

∫
ddx

√−γ

{
− d− 1

`
− `Θ̃ (d− 3)

2(d− 2)
R

− `3Θ̃ (d− 5)

2(d− 2)2(d− 4)

(
RabRab − d

4(d− 1)
R2

)
(2.5.9)

+
`5Θ̃ (d− 7)

(d− 2)3(d− 4)(d− 6)

(
3d + 2

4(d− 1)
RRabRab − d(d + 2)

16(d− 1)2
R3

−2RabRcdRacbd +− d

4(d− 1)
∇aR∇aR+∇cRab∇cRab

)
+ . . .

}
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Note in Ict that Θ̃(d) is a step function, equal to zero unless d > 0, where it
is equal to one, and is not the extrinsic curvature in (2.3.4).

The conserved charges are found from the full stress tensor. The countert-
erms in the stress tensor can be found step by step from the above procedure
along with the action, or by varying the action. Taking the variation of
the action (2.5.2), and carefully keeping account of all boundary terms, the
conserved charge is found to be

Qξ =

∮

Σ

dd−1Sα ξβT eff
αβ (2.5.10)

(where T eff
αβ ≡ Π̃αβ). This is associated with a closed surface Σ (with unit

normal na), provided the boundary geometry has an isometry generated by
a Killing vector ξα. T eff

αβ is found by varying (2.3.2) at the boundary with

respect to γαβ, and Qξ is conserved between closed surfaces Σ distinguished
by some foliation parameter τ . If the Killing vector is ξ = ∂t, then Q is the
conserved mass/energy M, and if ξα = ∂φi

, then it is the conserved angular
momentum J in the φi direction, provided φi is periodic, and associated with
Σ. Details of the formulation can be found in [48, 53, 54, 49, 55], with the
first few terms of the expansion of T eff

αβ given by

T eff
αβ = Θαβ −Θγαβ +

d− 1

`
γαβ +

`

d− 2

(
Rαβ − 1

2
γαβR

)
+ . . . (2.5.11)

An expansion usable up to eight dimensions can be found in [56]. Θαβ is again
the extrinsic curvature of the boundary, and γαβ and Rαβ are the metric and
curvature of the boundary, respectively.

The Gibbs-Duhem relation is given by (2.3.14), and can be used to find the
now finite entropy associated with the metric in question, also now intrinsic
to this metric.

It should be noted here that later I will show only the first term in (2.5.9)
and the first three terms in (2.5.11) are needed for the calculations performed
in this thesis.

2.5.3 dS/CFT - Counterterms

Asymptotically de Sitter spacetimes do not have a spatial infinity in the way
that asymptotically AdS or flat spacetimes do. Also, although inside any
cosmological horizon in a dS spacetime there is a timelike Killing vector,
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this vector becomes spacelike outside the horizon. For these reasons, the
definition of a conserved charge is not well defined in asymptotically dS
spacetimes, and hence it is unclear what the physical meaning of energy is
outside the horizon.

There is a dS/CFT proposal that has been derived in analogy with the
AdS/CFT correspondence described above. The method, analogous to the
Brown-York prescription for asymptotically AdS spacetimes [53, 54, 49],
yields suggestive information regarding the dual Euclidean CFT of asymp-
totically dS spacetimes.

Calculations for conserved charges for pure and asymptotically dS space-
times have been carried out inside the cosmological horizon, where the Killing
vector is timelike [3]. However, outside the horizon, the spacetime bound-
aries at early and late time infinity (I±) are Euclidean surfaces. One can
adapt the coordinates [21] so that the “radial” normal na± is proportional
to the (now spacelike) boundary Killing vector, and hence use the notion
of a conserved charge defined on the spacetime boundary at late (or early)
time infinity, as in (2.5.14) below. These formulae are computed on surfaces
of fixed time, and then time is sent to infinity so that it approaches the
spacetime boundaries I±.

The notion of conservation of charges in de Sitter spacetimes outside the
cosmological horizon, where the Killing vector to be used is now spacelike,
needs clarification. In AdS spacetimes, of course, the Killing vector is time-
like, and so the definition of a conserved charge Qξ (for example the conserved
mass/energy) is the usual one in that the mass is conserved as one moves in
time. In de Sitter spacetime, however, with the Killing vector being space-
like, there is no longer a conservation with motion in time. There is now
conservation with respect to position, i.e. multiple observers with a spacelike
separation between them should now measure the same mass, for example,
at the same time, and should also measure the same change in mass with
changes in time.

By carrying out the calculation of the conserved charges using the pro-
posed dS/CFT conjecture, a conserved charge that can thus be interpreted as
the asymptotically dS mass can be calculated. Sample calculations performed
by Balasubramanian et. al. [21] led them to what I have called the “maximal
mass conjecture”: Any asymptotically dS spacetime with mass greater than
that of dS has a cosmological singularity. This conjecture has no exact proof,
and I will show later that, at least as stated, there are counter-examples.

Along with the above difficulties, there is also the question of what ther-

39



modynamics means at future or past infinity. The approach of this thesis,
to be shown below, is that the formalism allows one to define an action and
a conserved mass, and hence the last element needed in order to get an en-
tropy is the temperature. Calculating the temperature by analogy with the
formalism from the AdS/CFT conjecture also allows one to calculate a quan-
tity resembling the temperature in the dS case. As shown above in section
2.4, one can use this temperature in the C-approach, along with thermo-
dynamic arguments, to calculate the Gibbs-Duhem relation (2.4.9) in the
dS/CFT conjecture formalism. Hence, although it still needs to be proven
that such quantities are valid in adS spacetimes, since the formalism allows
the quantities to be calculated, I will take thermodynamics at future/past
infinity in dS spacetimes to be valid throughout this thesis. As mentioned,
doing so allows the calculation of quantities that resemble their thermody-
namic counterparts from AdS spacetimes. Such calculations, even if they
should prove to be something other than true thermodynamic information,
will provide interesting insights into the dS/CFT conjecture.

The iterative procedure from [48] was shown by Ghezelbash and Mann
[18] to apply for asymptotically dS metrics also. Thus, one alters the total
action (2.4.2) to include a counterterm action

I = IB + I∂B + Ict (2.5.12)

Except for differences in sign that arise due to going from asymptotically AdS
to asymptotically dS spacetimes, the procedure for finding Ict is as outlined
above. The results of this procedure give the counterterm action as

Ict = − 1

8πG

∫
ddx

√−γ

{
− d− 1

`
+

`Θ (d− 3)

2(d− 2)
R

− `3Θ (d− 5)

2(d− 2)2(d− 4)

(
RabRab − d

4(d− 1)
R2

)
(2.5.13)

− `5Θ (d− 7)

(d− 2)3(d− 4)(d− 6)

(
3d + 2

4(d− 1)
RRabRab − d(d + 2)

16(d− 1)2
R3

−2RabRcdRacbd − d

4(d− 1)
∇aR∇aR+∇cRab∇cRab

)
+ . . .

}

Taking the variation of the action (2.4.2), and carefully keeping account
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of all boundary terms, the conserved charge can be found to be

Q±
ξ =

∮

Σ±
dd−1ϕ±

√
γ±na±ξb±T±

ab (2.5.14)

This equation has the same interpretation as (2.5.10), where the ± again
means take the calculation at the future boundary minus the calculation at
the past boundary. The first few terms in the stress-tensor, found by varying
the full action (2.4.2) with respect to the boundary metric, is given by

Tab = Θab − γabΘ− d− 1

`
γab +

`

d− 2

(
Rab − 1

2
γabR

)
+ . . . (2.5.15)

with Θab the extrinsic curvature on the boundary, and all other quantities
again calculated on the boundary.

The Gibbs-Duhem relation (2.4.9) can be used to calculate the finite
entropy intrinsic to the spacetime in question.

It is to be noted again that later, as in the AdS case, I will show only the
first term in (2.5.13) and the first three terms in (2.5.15) will be needed to
calculate the action and entropy of the Taub-NUT-dS metrics.
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Chapter 3

Introduction to Taub-NUT
Spacetimes

Taub-NUT spacetimes were discovered by Newman, Unti and Tamburino as
a generalization of the Schwarzschild metric in 1963 [12]. Misner [57] then
did an analysis of the Taub-NUT metric. More recently, Awad and Chamblin
[17] demonstrated how the Taub-NUT-AdS metric can be generalized to d+1
(even) dimensions, which of course also easily demonstrates generalizations
of pure Taub-NUT metrics to higher dimensions (by setting the cosmological
constant to zero). Since this thesis is based on the Taub-NUT metric, I’ll
review the findings of those papers here. The Taub-NUT spacetime contains
a gravitational analogue of the Dirac string from electromagnetic theory,
called a Misner string. As such, it is also a good idea to briefly review the
idea of Dirac Strings.

The outline of this chapter is therefore as follows. In section 3.1, I will
review the idea of the Dirac string that comes about when one attempts
to include a magnetic monopole. Then, in section 3.2, I will review the
analogous Misner strings that arise in gravitational theory when one discusses
a metric containing a NUT charge. Following this, a more overall review of
the Taub-NUT spacetime itself, in (3 + 1) dimensions, will be presented in
3.3. This will include a discussion of the NUT and the Bolt solutions that one
can obtain, depending on the fixed point set of ∂t. Next, the extension of the
Taub-NUT spacetime to include a negative or positive cosmological constant,
in (3 + 1) dimensions, will be presented in sections 3.4, 3.5. Finally, section
3.6 will discuss the Taub-NUT spacetime in general (d + 1) dimensions, for
the AdS and dS cases.
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3.1 Dirac Strings

Dirac strings arise from Maxwell’s equations when one attempts to consider
the idea of a magnetic charge. Dirac first noticed in 1931 [58] that the
Maxwell equation ∇ · B = 0 denies the existence of a magnetic charge.
His solution to this (see also [60]) was to introduce the idea of a magnetic
monopole1, which is a point magnetic charge. Consider a magnetic monopole
of strength g at the origin2,

B =
gr

r3
= −g∇

(
1

r

)
(3.1.1)

Thus, recalling that ∇2
(

1
r

)
= −4πδ3(r), this gives

∇ ·B = 4πgδ3(r) (3.1.2)

which corresponds to a magnetic monopole. The total flux through a sphere
surrounding the origin will then be given by

Φ =

∫

S

B · dS =

∫

V

∇·B dV = 4πg (3.1.3)

Consider now an electric particle with charge e moving through the field of
the monopole. The wavefunction will change in the presence of an electro-
magnetic field to

ψ → ψ exp

{
− ie

~c
A · r

}
(3.1.4)

or the phase α changes by α → α − e
~cA · r. The total change in phase, for

a closed path at fixed r, θ, and 0 ≤ φ ≤ 2π, is

∆α =
e

~c

∮
A · dl =

e

~c

∫
∇×A · dS =

e

~c

∫
B · dS

=
e

~c
Φ(r, θ) (3.1.5)

If we take the flux through a cap at the top of a sphere, the situation will be
as depicted in figure 3.1.1. Note that as θ → 0, the flux through the cap will
approach zero. As the loop is passed over the sphere, the cap encloses more

1Sometimes also called the Dirac monopole
2Derivation from [59], pg. 402-405 or [61], pg. 14-17.
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Figure 3.1.1: Magnetic Monopole Flux

of the sphere, and at θ → π, the flux should be (3.1.3). However, as θ → π,
the cap has in fact shrunk back down to a point. Since the flux at π, Φ(r, π),
is required to be finite, A must be singular at θ = π. This argument holds for
all spheres, of all possible radii, and hence it follows that A is singular along
the entire z-axis. This is known as the Dirac String. Of course through
a suitable choice of coordinates, the Dirac string can be chosen along any
direction, and need not be straight, though it must be continuous.

In the current example, the wave function vanishing along the negative
z-axis means its phase is indeterminate there. Thus, by (3.1.5), it is not
necessary that as θ → π, ∆α → 0. However, we must have ∆α = 2πn for
some integer n if ψ is to be single valued. So, from (3.1.5) and Φ(r, π) = 4πg,
we get,

2πn =
e

~c
4πg

eg =
n~c
2

(3.1.6)

This is the Dirac quantization condition for the magnetic monopole. It im-
plies that, should a magnetic monopole exist, all electric charges are then
quantized.

Now consider a vector potential Aµ that gives rise to the magnetic field
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(3.1.1). From the argument above, it must obviously be singular, and can
be constructed by considering the magnetic monopole to be the end-point
of a string of magnetic dipoles going off to infinity. This will give a vector
potential

AN
x = − gy

r(r + z)
, AN

y =
gx

r(r + z)
, AN

z = 0 (3.1.7)

or equivalently in spherical coordinates3

AN
r = AN

θ = 0 , AN
φ =

g(1− cos(θ))

r sin(θ)
(3.1.8)

This is clearly singular along the r = −z axis, reflecting a poor choice of
coordinate system, (note ∇×A = gr/r3 + 4πgδ(x)δ(y)θ(−z)r̂), and this
singularity along the z axis is again the Dirac string. One can remove this
singularity by dividing the sphere surrounding the monopole into two over-
lapping regions RN and RS, where RN excludes the −z-axis (the “S” pole)
and RS excludes the z-axis (the “N” pole), as shown in figure 3.1.2. If we
now let (3.1.8) hold for the region RN , and define

AS
r = AS

θ = 0 , AS
φ = −g(1 + cos(θ))

r sin(θ)
(3.1.9)

to hold for a Dirac string at θ = 0 (+z-axis), then AN and AS are both
finite in their own regions. Where the two regions overlap, then the vector
potentials are related by a gauge transformation (~ = c = 1), AN−AS = ∇Λ,
or

AN −AS =
2g

r sin(θ)
êφ = ∇(2gφ) (3.1.10)

where the gauge transformation connecting AN and AS is Λ = 2gφ (from
the definition of the gradient). (The transformation is performed only at the
boundary, θ = π

2
, and so the singularities in Λ at φ = 0, 2π don’t matter.)

This same trick of dividing the region of interest into two hemispheres will
also be very useful in Taub-NUT spacetimes, which posses similar singulari-
ties.

3(3.1.8) can be found from (3.1.7) by using x = r sin(θ) cos(φ), y = r sin(θ) sin(φ)
and z = r cos(θ), along with the unit vector transformations x̂ = sin(θ) cos(φ)r̂ +
cos(θ) cos(φ)θ̂−sin(θ)φ̂, ŷ = sin(θ) sin(φ)r̂+cos(θ) sin(φ)θ̂+cos(θ)φ̂, ẑ = cos(θ)r̂−sin(θ)θ̂,
and use of the double angle trig identities.
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Figure 3.1.2: Diagram of region around magnetic monopole, showing division of
sphere into a northern hemisphere “N” region that excludes θ = π and a southern
hemisphere “S” region excluding θ = 0.

3.2 Misner Strings

The general form of the Taub-NUT spacetime in four dimensions, with zero
cosmological constant, and with a two-sphere S2 as a base space, is given by
equations (1.4.6), (1.4.7), and which I repeat here:

ds2 = −F 2(r)

[
dt + 4n sin2

(
θ

2

)
dφ

]2

+
dr2

F 2(r)
+ (r2 + n2)

(
dθ2 + sin2(θ)dφ2

)

(3.2.1)
where

F 2(r) =
r2 − n2 − 2mr

r2 + n2
(3.2.2)

The Riemann components are easily calculated (see appendix B.1, equations
(B.1.39) for the tangent-space forms, for example), and from the scalar in-
variants, it can be shown that the metric has no curvature singularities for
n 6= 0. Also from (B.1.39) the metric is seen to be asymptotically locally flat
in the sense that the Riemann tensor vanishes as r →∞.

Though there are no curvature singularities, as mentioned the Taub-NUT
spacetime contains a spurious singularity analogous to the Dirac string dis-
cussed above, commonly called a Misner string. These singularities are not
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associated with F 2(r) = 0, and are found from the basis vectors in the et̂

component. We can see these singularities by manipulating (B.1.14) to give
an expression for ∇t (this was first shown in [57]),

dt =
et̂

F (r)
− 2n

(r2 + n2)1/2
tan

(
θ

2

)
eφ̂ (3.2.3)

∴ −(∇t)2 =
1

F 2(r)
− (2n)2

r2 + n2
tan2

(
θ

2

)
(3.2.4)

and thus, though (∇t)2 is regular as θ → 0, it diverges as θ → π.
These singularities are the same on all r =constant hypersurfaces, and

can be removed by assigning to these hypersurfaces an S3 topology. Thus,
taking any r =const. hypersurface, we can study

et̂ = dtN + 4n sin2

(
θ

2

)
dφ (3.2.5)

Note that tN is regular as θ → 0 (the “north” pole), but that it diverges as
θ → π, and hence I’ve changed t = tN in (B.1.14) to give (3.2.5) (on constant
r hypersurfaces). We can introduce a new time coordinate tN = tS − 4nφ so
that

et̂ = dtS − 4n cos2

(
θ

2

)
dφ (3.2.6)

and through similar arguments tS is singular as θ → 0, but regular as θ → π.
One can now use tN on a coordinate patch 0 ≤ θ < π, and tS on a coordinate
patch 0 < θ ≤ π, and combining the two patches, one gets a manifold where
the metric is non-singular everywhere. However, recall that φ is only a regular
function if it is periodic, φ ≡ φ+2π, and this means that the time coordinate
must also be periodic,

tN ≡ tN + 8πn (3.2.7)

and similarly for tS. With this requirement, the manifold is also compact.

3.3 Taub-NUT in (3 + 1) dimensions

From now on, I will work with another form of the metric (3.2.1),

ds2 = −f(r) [dt + 2n cos (θ) dφ]2 +
dr2

f(r)
+ (r2 + n2)dΩ2

2 (3.3.1)

f(r) ≡ F 2(r) =
r2 − n2 − 2mr

r2 + n2
(3.3.2)
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Figure 3.3.1: Penrose diagram of Taub-NUT spacetime.

easily found from (3.2.1). The Euclidean section is found by Wick rotating
the time and the NUT charge (t → iT, n → iN), to give,

ds2 = f(r) [dT + 2N cos (θ) dφ]2 +
dr2

f(r)
+ (r2 −N2)

(
dθ2 + sin2(θ)dφ2

)

(3.3.3)
and

f(r) =
r2 + N2 − 2mr

r2 −N2
(3.3.4)

The spacetime (3.3.1) has singularities at r = r±,

r± = m±
√

m2 + n2 (3.3.5)

where f(r) = 0. The manifold defined by t and r ∈ (r−, r+) (θ, φ constant
hypersurfaces) can be extended (see chapter 5 of [11]) to obtain a Penrose
diagram as in figure 3.3.1. There are closed timelike curves (CTC’s) in the
regions r < r− and r > r+. The region r− < r < r+ is compact, yet contains

49



timelike and null geodesics that remain within this region and are incomplete,
leading to quasi-regular singularities.

Quasi-regular singularities (see [62, 63]) are points of incomplete and in-
extensible geodesics that spiral infinitely around a topologically closed spatial
dimension. These are the weakest form of singularity, in that the Riemann
tensor is completely finite in all parallelly propagated orthonormal frames.
No observer near a quasi-regular singularity, nor one who falls in to the sin-
gularity, feels unbounded tidal forces.

Taub-NUT spacetimes can be further separated into two “sub” spaces,
depending on the fixed point set of ∂t, and after Euclideanizing the metric.
These solutions are the NUT and Bolt solutions, described below.

3.3.1 NUT solution ((3 + 1) dimensions)

The metric (3.3.3) will describe a NUT solution if the fixed point set of ∂t

is zero-dimensional; i.e. the extra dimensions collapse to zero size. This
condition occurs when f(r) is fixed so that f(N) = 0. Solving for the mass
in this case leads to

mn,flat = N (3.3.6)

giving, for the NUT,

f(r) =
r −N

r + N
(3.3.7)

This solution is an example of a Euclidean, self-dual solution (i.e. can be

shown to satisfy R̃αβµν = ε γδ
αβ Rγδµν where ε =

√
gε is the Levi-Civita ten-

sor). It is this self-dual nature of the NUT metric that makes it so useful
in M-theory applications. Though this will be discussed more fully in chap-
ter 5, in the full Lagrangian (in eleven dimensions, given by (5.1.1)), the
fermion fields are included. However, maximal supersymmetry requires that
the vacuum expectation values of the fermion fields vanish, i.e. 〈Ψ〉 = 0, and
the equation of motion for Ψ becomes an equation, given by (5.1.6), that
checks the amount of supersymmetry preserved by any solution. Due to its
self-duality, the Taub-NUT metric preserves 1/2 of its supersymmetry.

Though there are no curvature singularities associated with either the
NUT or the Bolt solutions, both solutions will develop conical singularities
unless the fibre closes smoothly at the NUT and bolt points. To ensure
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regularity in the (T, r) section, we impose the condition

β =
4π

F ′(r = N)
=

8πN

q
(3.3.8)

where q is a positive integer, and β is the period of the T component. The q
is present because the period can’t be greater than 8πN , so that the Misner
string singularities vanish - which is where the second equality comes from.
However, the period can be less than 8πN , as long as q is an integer. The
period of the Lorentz frame can be recovered by Wick rotating back (N →
in, q → iq).

Of course, substituting (3.3.7) into (3.3.3) solves Einstein’s vacuum equa-
tions.

3.3.2 Bolt Solution ((3 + 1) dimensions)

The Bolt solution occurs when the fixed point set of the Killing field ∂T is two-
dimensional - as, obviously, the (r2 −N2) term won’t vanish at r = rb > N .
Here, the conditions for regularity at r = rb are given by

(i) f(r = rb) = 0

(ii) f ′(rb) = 1
2N

The second condition follows from the fact that we still want to avoid any
conical singularities and from the Misner-string requirements (i.e. from the
second equality in (3.3.8)). Imposing condition (i) forces the mass in the
Bolt case to be

mb,flat =
r2
b + N2

2rb

(3.3.9)

Imposing condition (ii) then gives

rb = 2N (3.3.10)

The regularity requirement for the bolt will give the period

βb =
2π(r2

b −N2)2

r2
bm− 2rbN2 + mN2

(3.3.11)
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and this can be shown to give the same period as in the NUT case by sub-
stituting in (3.3.9) and (3.3.10). Substituting r = rb and (3.3.9) into (3.3.4)
will give, for the bolt solution,

F (r = rb) =
2r2

b + 2N2 − 5Nrb

2(r2
b −N2)

(3.3.12)

Using this in (3.3.3) will also satisfy Einstein’s vacuum equations. It is impor-
tant to note that, unlike the NUT solution, the Bolt solution is not self-dual,
and so will not preserve any supersymmetry.

3.4 Taub-NUT-AdS Spacetimes in (3 + 1) di-

mensions

The Taub-NUT metric can be adapted to satisfy Einstein’s equations in-
volving a cosmological constant. The four dimensional (AdS) case has been
previously discussed in [47, 14] in relation to the AdS/CFT, but is easier to
discuss here for demonstration purposes. I’ll first deal with the Taub-NUT-
AdS (TNAdS) case. In four (3 + 1) dimensions, the discussion from section
3.2 still holds, and so we still have Misner strings present. The Euclidean
section of the metric is again given by (3.3.3), where now

f(r) =
r2 + N2 − 2mr + `−2 (r4 − 6N2r2 − 3N4)

r2 −N2
(3.4.1)

where the cosmological constant is given by Λ = − 3
`2

. Note, of course, that
to get the Euclidean metric from the Lorentzian, the Wick rotation is again
t → iT, n → iN . A typical Penrose diagram of the TNAdS spacetime
appears in figure 3.4.1. Note there are still quasi-regular singularities present
(the solid dots) as well as CTC’s. TNAdS spacetime, like the flat TN case,
can also be divided into both a NUT solution and a Bolt solution, again
depending on whether the fixed point set of ∂T is zero- or two-dimensional.

3.4.1 TNAdS - NUT solution

The NUT solution, as in the flat case, occurs when the fixed point set of ∂T

is zero-dimensional. Solving (3.4.1) for the mass at the NUT (r = N), the
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Figure 3.4.1: Penrose diagram of Taub-NUT-AdS spacetime.

NUT mass is found to be

mn,AdS =
N(`2 − 4N2)

`2
(3.4.2)

This gives the metric function (3.4.1) for the NUT as;

FNUT (r) =
r3 + Nr2 + (`2 − 5N2)r + 3N3 −N`2

`2(r + N)
(3.4.3)

Note that (3.4.3) → (3.3.7) as ` → ∞. The condition for regularity here is
again given by (3.3.8), and so the period is again

βN,AdS =
8πN

q
(3.4.4)

as in the flat case. Substituting (3.4.3) back into (3.3.3) satisfies Einstein’s
equations with negative cosmological constant.

3.4.2 TNAdS - Bolt solution

The Bolt solution again occurs when the fixed point set of ∂T is two dimen-
sional, and the conditions for a regular bolt at r = rb > N are the conditions
(i) and (ii) mentioned in the flat case on page 51. Imposing condition (i)
gives the AdS bolt mass as

mbolt,AdS =
r4
b + (`2 − 6N2)r2

b + (`2 − 3N2)N2

2`2rb

(3.4.5)
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Now, however, imposing condition (ii) leads to two possible solutions

rb±,AdS =
`2 ±√`4 − 48N2`2 + 144N4

12N
(3.4.6)

Since the solution is required to be real, equation (3.4.6) will impose an
additional limit on the range of N , so that

0 < N <
(3
√

2−√6)`

12
= Nmax

The regularity requirement for the Bolt-AdS is

βBolt,AdS =
2π(r2

b −N2)2`2

r5
b − 2r3

bN
2 + mr2

b`
2 + N2(9N2 − 2`2)rb + m`2N2

(3.4.7)

It is easily checked that substituting (3.4.5) and either of (3.4.6) into (3.4.7)
gives the same period as in the NUT case (3.4.4).

3.5 Taub-NUT-dS Spacetimes in (3 + 1) di-

mensions

Taub-NUT spacetimes can also be discussed with a positive cosmological
constant, such that they are asymptotically de Sitter. The Taub-NUT-dS
(TNdS) spacetimes will still contain CTC’s, Misner strings, etc., and so regu-
larity conditions must still be applied. Since all of the calculations performed
in this document will be done outside the cosmological horizon (the region
marked “X” in the Penrose diagram, figure 3.5.1), the metric will be written
to reflect this. The metric in this case is thus given by

ds2
TNdS = f(τ) [dt + 2n cos(θ)dφ]2− dτ 2

f(τ)
+(τ 2+n2)(dθ2+sin2(θ)dφ2) (3.5.1)

(where, since we are working outside the cosmological horizon near future
infinity, I’ve taken r → τ), f(τ) is given by

f(τ) =
τ 4 + (6n2 − `2)τ 2 + n2(`2 − 3n2) + 2mτ`2

(τ 2 + n2)`2
(3.5.2)
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2τ

3τ
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Figure 3.5.1: Penrose diagram of Taub-NUT-dS spacetime.

and the cosmological constant is Λ = 3
`2

. The coordinate t parameterizes a
circle (S1) Hopf-fibred over this space, and must again meet the periodicity
requirement

βTNdS,R =
4π

|f ′(τ)| =
8π|n|

q
(3.5.3)

to avoid conical singularities (where again q is a positive integer), and to avoid
the Misner string singularities. Constant-τ surfaces (spacelike hypersurfaces)
are a Hopf-fibration of the circle over the base space (in four dimensions,
S2), well defined in a spacetime where f(τ) > 0 outside of the past/future
cosmological horizons.

The causal structure of TNdS spacetimes can be understood through a
Penrose diagram (figure 3.5.1). The double line is future infinity τ = +∞, the
single line is past infinity τ = −∞, and the roots of f(τ) are the horizons,
denoted by the increasing sequence τ1 < 0 < τ2 < τ3 < τ4 = τc. Quasi-
regular singularities are again denoted by solid dots, and the region outside
the cosmological horizon is the triangular region denoted by “X”.

However, unlike in the asymptotically AdS and asymptotically flat cases,
Wick rotation does not yield a Euclidean metric signature (in fact it gives
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the signature (−,−, +, +)), and so care must be taken when discussing this
case. Also, as was discussed in [20], it is not clear, at least for the purposes
of calculating the action and other quantities via the dS/CFT, whether one
needs to Wick rotate the metric (indeed, it was shown in [44] that the quanti-
ties calculated by Wick rotating the metric are equivalent to those calculated
when Wick rotation isn’t used). However, since each case yields interesting
discussions, and since most readers will be more familiar with the Wick ro-
tated case from the AdS/CFT, I’ll go through both (called the C-approach
and R-approach, above). Also, as discussed previously, Wick rotation is nec-
essary to prove the Gibbs-Duhem identity in the de Sitter case. Finally, I
will go through both cases here since I will also use both cases to calculate
the actions, entropies, conserved masses and specific heats in chapter 4.

3.5.1 TNdS C-approach

As mentioned above, the form of the metric in the C-approach is obtained
from (3.5.1) by Wick rotating the time and the NUT parameter (t → iT, n →
iN),

ds2
tndS,C = −f(ρ) [dT + 2N cos(θ)dφ]2 − dρ2

f(ρ)
+ (ρ2 −N2)(dθ2 + sin2(θ)dφ2)

(3.5.4)
with f(ρ) now given by

f(ρ) =
ρ4 − (6N2 + `2)ρ2 −N2(`2 + 3N2) + 2mρ`2

(ρ2 −N2)`2
(3.5.5)

where now N is the non-vanishing NUT charge. T parameterizes a circle
fibred over the non-vanishing sphere parameterized by (θ, φ), and must have
a periodicity respecting

βtnds,C =
4π

|f ′(ρ)| =
8π|N |

q
(3.5.6)

(found from (3.5.3) by n → iN, q → iq). Note that this situation has
a metric signature (−,−, +, +), and so the geometry is no longer strictly
speaking a Hopf fibration of S1 over S2, since T is now also timelike. The
physical relevance of the C-approach is thus in question. However, since the
metric is independent of T , calculations can still be carried out, provided one
remembers the preceding considerations.
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It appears at first glance that, as in the TNAdS situation, the C-approach
can be sub-divided into two separate solutions, depending on the fixed point
set of ∂T . However, as discussed below, this turns out to not be the case.

NUT solution - (3 + 1) dimensions

At first glance, (3.5.4) will be a NUT solution if the fixed point set of ∂T is
zero dimensional. Solving for the mass in the case when f(ρ = N) = 0 gives

mn,dS =
N(`2 + 4N2)

`2
(3.5.7)

and substituting this back into (3.5.5) gives

f(ρ) =
ρ3 + Nρ2 − (5N2 + `2)ρ + 3N3 + N`2

(ρ + N)`2
(3.5.8)

Note that as ` →∞, f(ρ) → −(3.3.7), as it should to recover (3.3.3) (recall
the metric signatures). The condition for regularity is given by (3.5.6).

However, upon substitution of (3.5.7) back into (3.5.5) to give (3.5.8),
one should be able to solve (3.5.8) for the largest root of f(ρ) in the dS-NUT
case, and get ρ = N . This is not the largest root one gets, however. Solving
for the roots gives three (four - N is a double root) roots,

N , ±
√

`2 + 4N2 −N (3.5.9)

of which
√

`2 + 4N2−N is the actual largest root. Thus, although the “NUT”
solution ρ = N can be shown to solve the First Law, since there exists a Bolt
solution of larger radius, the NUT solution is not actually valid.

It should also be noted that, as mentioned in [44], the ds-NUT quantities
(3.5.7), (3.5.8) can be computed, through analytic continuation of the cos-
mological parameter ` → i`, from the AdS-NUT quantities (3.4.2), (3.4.3)
respectively (recalling that in (3.5.8), the negative sign that should be there
is actually part of the metric (3.5.4), giving it the (−,−, +, +) signature).

Bolt solution - (3 + 1) dimensions

The Bolt solution occurs when the fixed point set of ∂T is two dimensional.
The conditions for a regular bolt are given by

(i) f(ρ = ρb) = 0
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(ii) f ′(ρ = ρb) = q
2|N |

(exactly the same as the conditions given on page 51, and for the same
reasons). Imposing the first condition gives the bolt mass as

mbolt,dS(C) = −(ρ4
b − (6N2 + `2)ρ2

b − (3N2 + `2)N2)

2`2ρb

(3.5.10)

From condition (ii), ρb is given by

ρb± =
q`2 ±

√
q2`4 + 144N4 + 48N2`2

12N
(3.5.11)

Note that the discriminant in (3.5.11) is positive, and so there is no upper
limit on N here, unlike in the TNAdS. The period for the Bolt is found from
the first equality in (3.5.6),

βBolt,AdS = 2π

∣∣∣∣
(ρ2

b −N2)2`2

ρ5
b − 2ρ3

bN
2 + N2(9N2 + 2`2)ρb −m`2(ρ2

b + N2)

∣∣∣∣ (3.5.12)

Substituting (3.5.10) and either of (3.5.11) into this will give the same period
(3.5.6) as in the NUT case.

Both solutions, the upper and lower branches ρb± respectively, can be
shown to solve the First Law once the entropy is calculated. However, al-
though ρb+ is the largest root of the upper branch, ρb− is not the largest root
of the lower branch. There in fact exists two roots ([44]) ρ1, ρ2 of f(ρ) such
that ρ1 < ρb− < ρ2. Because of this, the lower branch solution, despite satis-
fying the first law, is not a valid solution. The fact that it satisfies the first
law is a direct consequence of the fact that the lower branch C-approach is
the analytic continuation of the lower branch solution in the Taub-NUT-AdS
case.

3.5.2 TNdS R-approach

In this approach, the time coordinate and NUT charge are not rotated into
complex space, and the metric is given by (3.5.1), (3.5.2). The geometry
of a constant-τ surface is, here, a Hopf fibration of S1 over S2, and the
metric describes the contraction/expansion (for q = 1) of this three-sphere
in spacetime regions where f(τ) > 0, outside of the past/future cosmological
horizons. In the R-approach, we only get Bolt solutions, where τ = τc will
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denote the horizon for any constant φ-slice. The conditions for a regular
bolt are given on page 58. Again, the coordinate t parameterizes a circle
fibred over the two-sphere with coordinates (θ, φ), and must have a period
respecting

βtndS,R =
4π

|f ′(τ)| =
8π|n|

q
(3.5.13)

yielding,

βtndS,R = 2π

∣∣∣∣
(τ 2

c + n2)2`2

τ 5
c + 2n2τ 3

c + n2(9n2 − 2`2)τc + m`2(n2 − τ 2
c )

∣∣∣∣ (3.5.14)

The condition f(τ) = 0 gives the mass as

mbolt,dS(R) = −(τ 4
c + (6n2 − `2)τ 2

c − 3n4 + n2`2)

2`2τc

(3.5.15)

As in the C-approach, imposing condition (ii) appears to give two possible
solutions τ = τc±

τc± =
q`2 ±

√
q2`4 − 144n4 + 48`2n2

12n
(3.5.16)

Here, unlike in the C-approach bolt solution, the discriminant will sometimes
be negative, forcing n to have the range,

0 < n <
`
√

6 + 3
√

4 + q2

6
= nmax (3.5.17)

Again, substituting in (3.5.15) and either of (3.5.16) will give the period of t

as 8π|n|
q

.
However, as in the C-approach, the lower branch τc± solution is not the

largest root of the metric function f(τ). There again exist two roots τ1, τ2

of f(τ) such that τ1 < τc− < τ2, and so the lower branch solution cannot be
taken as a valid solution, even though this solution, once the thermodynamic
quantities are calculated, can be shown to satisfy the first law. The fact that
the lower branch solution is a solution of the first law is a consequence of
the fact [44] that the lower branch solution is the analytic continuation of
the lower branch solution of the TNAdS solution, if one were to calculate
the thermodynamic properties of the TNAdS solution without first Wick
rotating the t, n and q values (i.e. the TNAdS equivalent calculation of the
R-approach).

59



3.5.3 C-approach from R-approach

It was also shown in [44] that the C-approach quantities can be derived from
the R-approach quantities by direct analytic continuation of t, n and q in
equations (3.5.14), (3.5.15) and (3.5.16). It is easy to see this; applying
t → iT , n → iN and q → iq to these equations gives (3.5.6), (3.5.10) and
(3.5.11) respectively, where now of course only the radii ρ = ρb+, τ = τc+ are
to be used.

This trend will be later shown to hold for the thermodynamic quantities
also.

3.6 General (d + 1) dimensional Taub-NUT

spacetimes

The above discussion in (3+1) dimensions can be extended to arbitrary even
dimensions. Since the asymptotically flat case can be found from either of the
TNAdS or TNdS general equations, I will only show the general equations for
these cases, and point out how to get the flat case equations from these. The
discussions involving Misner strings, quasi-regular singularities and CTC’s
apply in higher dimensions, and so won’t be repeated here. It should also be
pointed out that the discussion in this section are either taken from or are
generalizations of the paper by Awad & Chamblin [17].

3.6.1 TNAdS in (d + 1) dimensions

The Euclidean section of the Taub-NUT-AdS metric in general (even) di-
mensions, for a U(1) fibration over a series of two spheres as the base space
⊗k

i=1S
2, is given by

ds2
TNAdS = f(r)

[
dT + 2N

k∑
i=1

cos(θi)dφi

]2

+
dr2

f(r)

+(r2 −N2)
k∑

i=1

(
dθ2

i + sin2(θi)dφ2
i

)
(3.6.1)
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where (d+1) = 2k+2 is the total number of dimensions. The metric function
has the general form

f(r) =
r

(r2 −N2)k

∫ r [
(s2 −N2)k

s2
+

(2k + 1)

`2

(s2 −N2)k+1

s2

]
ds− 2mr

(r2 −N2)k

(3.6.2)
Note that to get the asymptotically flat metric for general (d+1) dimensions,
just take ` → ∞. In general, to ensure regularity in the (T, r) section, the
condition (3.3.8) is generalized to

βAdS =
4π

f ′(r)
=

2(d + 1)πN

q
(3.6.3)

with q a positive integer, and β is the period of T . Note that the second
equality is obtained when considering f(r = N) = 0 - i.e. obtained when we
demand that the manifold be regular, so that the singularities at θi = 0, π
are coordinate artifacts and there are no Misner string singularities.

The NUT and bolt solutions can also be generalized, depending on the
fixed point set of ∂T . For the Bolt solution, the fixed point set is (d − 1)
dimensional, and for the NUT, it is zero dimensional.

General NUT solutions

A NUT solution arises in (d + 1) dimensions when the fixed point set of ∂T

is zero-dimensional (this is because it occurs at r = N , and so due to the
(r2−N2), all of the other dimensions will vanish). The binomial theorem can
be used on (3.6.2) to get a general expression for the NUT mass for (d + 1)
dimensions,

mn,AdS =
N2k−1

2`2

[
`2 − (2k + 2)N2

] k∑
i=0

(
k

i

)
(−1)i

(2k − 2i− 1)

=
N2k−1 [`2 − (2k + 2)N2]

`2(2k − 1)
√

π
Γ

(
3− 2k

2

)
Γ (k + 1) (3.6.4)

(where the identity, provable by induction

k+1∑
i=0

(
k + 1

i

)
(−1)i

(2k − 2i + 1)
= −

(
2k + 2

2k + 1

) k∑
i=0

(
k

i

)
(−1)i

(2k − 2i− 1)
(3.6.5)
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has been used). Note that, either by (3.6.5) or by noting the properties of
the Gamma functions, it is easily seen that the general form of the NUT
mass will remain ∝ [`2 − (2k + 2)N2], but that the overall sign will change,
alternating between (even) dimensions. The period of T is given by (3.6.3).

General Bolt solutions

The Bolt solution occurs when the fixed point set of ∂T is (d−1) dimensional.
The conditions for regularity at the bolt radius r = rb > N are

(i) f(r = rb) = 0

(ii) f ′(r = rb) = 2q
(d+1)N

The second condition is required in general dimensions to avoid conical singu-
larities, and the first will give rise to the bolt mass in the specific dimension.
A general formula for the bolt mass can be found from (3.6.2),

mbolt,AdS =
1

2

∫ r [
(s2 −N2)k

s2
+

(2k + 1)

`2

(s2 −N2)k+1

s2

]
ds

=
1

2

{
k∑

i=0

(
k

i

)
(−1)ir2k−2i−1

b N2i

(2k − 2i− 1)

+
(2k + 1)

`2

k+1∑
i=0

(
k + 1

i

)
(−1)ir2k−2i+1

b N2i

(2k − 2i + 1)

}
(3.6.6)

although in practical terms it is far easier to find f(r) for a specific case, and
then solve for mb. It is also easier to solve for the two different horizon radii
rb± in whichever specific case one is dealing with.

3.6.2 TNdS in (d + 1) dimensions

Taub-NUT spacetimes can also be written for general (even) dimension to
include a positive cosmological constant. Here as in four dimensions however,
we have the question of whether to rotate the time and NUT charge. I will
cover both cases. Note that for simplicity again, the base space in either case
will be taken to be a product of two-spheres ⊗k

i=1S
2, where as in the TNAdS

case, (d + 1) = 2k + 2 is the total number of dimensions.
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R-approach in (d + 1) dimensions

The metric for the R-approach is the higher-dimensional generalization of
(3.5.1), given by

ds2
TNdS,R = f(τ)

[
dt + 2n

k∑
i=1

cos(θi)dφi

]2

− dτ 2

f(τ)

+(τ 2 + n2)
k∑

i=1

(
dθ2

i + sin2(θi)dφ2
i

)
(3.6.7)

where the metric function can be found from the general formula

f(τ) =
2mτ

(τ 2 + n2)k
− τ

(τ 2 + n2)k

∫ τ [
(s2 + n2)k

s2
− (2k + 1)

`2

(s2 + n2)k+1

s2

]
ds

(3.6.8)
where again the largest root of f(τ) will be denoted by τc. The subspace for
which τ = τc is the fixed point set of ∂t. Note that the fixed point set of ∂t is
always (d− 1) dimensional, and so the solutions for the general R-approach
will always be bolt solutions.

The ∂φi
are Killing vectors, and so for any constant (φ1, . . . , φk)-slice near

the horizon, additional conical singularities will be introduced in the (t, τ)
section, unless we require that t has a period

βTNdS,R =
4π

|f ′(τc)| =
2π(d + 1)|n|

q
(3.6.9)

where note again that the second equality is to ensure that the Misner string
singularities do not arise.

The two conditions for a regular bolt are

(i) f(τ = τc) = 0

(ii) f ′(τ = τc) = 2q
(d+1)|n|

Condition (ii) will have two solutions τc = τc±, both functions of n, and arises
because (3.6.9) must match the condition for the vanishing of the Misner
string. As mentioned above for the four dimensional case, and in [44], the
τc+ solution will be the largest root; the τc− solution, however, will not, as
in any dimension, there will exist two roots of f(τ) such that τ1 < τc+ < τ2.
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Hence, although this lower branch solution can be shown to satisfy the First
Law, it is not a valid solution.

Condition (i) will give rise to a bolt (R-approach) mass - the general
formula can be found,

mbolt,dS(R) =
1

2

{
k∑

i=0

(
k

i

)
n2iτ 2k−2i−1

c

2k − 2i− 1

−(2k + 1)

`2

k+1∑
i=0

(
k + 1

i

)
n2iτ 2k−2i+1

c

2k − 2i + 1

}
(3.6.10)

by using the binomial expansion on (3.6.8).

C-approach in (d + 1) dimensions

The metric here can be found from (3.6.7) by rotating the time coordinate
and the NUT charge (t → iT, n → iN)

ds2
TNdS,C = −f(ρ)

[
dT + 2N

k∑
i=1

cos(θi)dφi

]2

− dρ2

f(ρ)

+(ρ2 −N2)
k∑

i=1

(
dθ2

i + sin2(θi)dφ2
i

)
(3.6.11)

where f(ρ) can now be found from

f(ρ) =
2mρ

(ρ2 −N2)k
− ρ

(ρ2 −N2)k

∫ ρ

ds

[
(s2 −N2)k

s2
− (2k + 1)

`2

(s2 −N2)k+1

s2

]

(3.6.12)
The period of T is again obtained by setting

βTNdS,C =
4π

|f ′(ρ+)| =
2(d + 1)π|N |

q
(3.6.13)

to ensure regularity. In a general dimensional C-approach, as in four dimen-
sions, one can solve for what appear to be NUT solutions, as well as Bolt
solutions. However, the NUT solution will be invalid, as the root of the
metric function ρ = N used to solve for the NUT solution will not be the
largest root of f(ρ). However, a general “ds-NUT” solution, found through
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the analysis above, can be shown to be the analytic continuation of the AdS-
NUT solution above.

General C-approach NUT solution

The fixed point set of ∂T is again zero dimensional, for any (d + 1) di-
mensional metric, giving a NUT solution. Setting ρ = N in (3.6.12) will give
a general formula for the NUT mass

mN,TNdS =
N2k−1 [`2 + (2k + 2)N2]

`2(2k − 1)
√

π
Γ

(
3− 2k

2

)
Γ (k + 1) (3.6.14)

and the period will be given by (3.6.13). Note that this has no actual rel-
evance - the root of f(ρ) at ρ = N is not the largest root, and the largest
root, in any dimension, won’t satisfy the First Law. However, (3.6.14) is in
general, as stated above and in [44], the analytic continuation of the general
AdS-NUT solution (3.6.4).

General C-approach Bolt solution

The fixed point set of ∂T is (d− 1) dimensional here. The conditions for
a regular bolt at ρ = ρb > N in general dimensions are given by

(i) f(ρb) = 0

(ii) f ′(ρb) = 2q
(d+1)|N |

With (ii) arising for the same reasons as in the other cases. Condition (i)
will again give a general bolt mass in (d + 1) dimensions,

mbolt,dS(C) =
1

2

{
k∑

i=0

(
k

i

)
(−1)i N

2iρ2k−2i−1
b

2k − 2i− 1

−(2k + 1)

`2

k+1∑
i=0

(
k + 1

i

)
(−1)i N

2iρ2k−2i+1
b

2k − 2i + 1
(3.6.15)

Also, as in four dimensions, one will get two different bolt horizon radii, ρb,±,
as functions of N , in higher dimensions. However, also as in four dimensions,
the lower branch solution ρb,± won’t be the largest root, and will hence be
an invalid solution.
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Chapter 4

Thermodynamics of Taub-NUT
(A)dS Spacetimes

Here I consider the thermodynamic properties of (d + 1) dimensional Taub-
NUT-(A)dS spacetimes. Calculation of the thermodynamics can be done
both through the Nöether method, discussed briefly in section 2.2, and by
using the (A)dS/CFT conjecture. Here, I will mainly discuss the results that
arise from using the counterterm approach from the (A)dS/CFT’s, though
a comparison of the six dimensional TNAdS counterterm results with the
Nöether results will be done in section 4.2.

This chapter is arranged as follows; I will first discuss the calculation
of such quantities, for both Taub-NUT-AdS and Taub-NUT-dS, in general
(d+1) dimensions, in section 4.1. I will show that, in general, one only needs
the first terms of the counterterm action in order to successfully calculate
the action and thermodynamic quantities of Taub-NUT-(A)dS spacetimes.
Then, in sections 4.2, 4.3, I will present specific examples, the TN-AdS (5+1)
dimensional solution and the TNdS (3+1) dimensional solution, respectively.
In section 4.3, it will also be shown that, for certain values of the NUT charge,
in either the C-approach or the R-approach, the Taub-NUT-dS spacetime is
a counter-example to both the maximal mass conjecture and the Bousso-N
bound of asymptotically dS spacetimes.
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4.1 General Calculations in (d+1) dimensions

One can calculate the action, entropy, specific heat and conserved mass for
a specific dimension, as done in [20, 16]. However, also shown in [20, 16]
was that the calculations can be done for arbitrary even dimension, leaving
all quantities general, so that one has a set of equations that apply for any
dimension (and I have checked that these formula agree with calculations
done in specific dimensions up to 20 dimensions, for both TNAdS and TNdS
- though it should be noted that this check depends on the proof, to be shown
later, that the counterterm contribution to the finite action comes only from
the first term in the counterterm expansion). Since it is easier to perform
this calculation in general, and then apply the results as needed to a specific
dimension, I will discuss these general results first, and then perform the
calculation in four dimensions to demonstrate their accuracy. Also, at the
end, I will discuss the general trend that occurs in 4k and 4k + 2 dimensions
(k is a positive integer) in both TNAdS and TNdS.

4.1.1 Taub-NUT-AdS

The general form of the Taub-NUT/Bolt class of metrics for a U(1) fibration
over k two-spheres ⊗k

i=1S
2 is given by (3.6.1), along with (3.6.2), where (d +

1) = 2k + 2, and m is an integration constant. From (3.6.2), the Ricci scalar
and metric determinant can be found for an arbitrary k,

g = (r2 −N2)2k

k∏
i=1

sin2(θi) (4.1.1)

R = −d(d + 1)

`2
(4.1.2)

where Λ = −d(d−1)
2`2

. Also needed are the determinant of the d-dimensional
boundary metric (the boundary is taken to be r →∞) and the Ricci scalar
on the boundary, found to be

γ = f(r)(r2 −N2)2k

k∏
i=1

sin2(θi) (4.1.3)

R(γ) = 2k

[
1

(r2 −N2)
− f(r)N2

(r2 −N2)2

]
(4.1.4)
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Finally, for the contribution from the boundary action (2.3.4), the trace of
the extrinsic curvature can be calculated for general dimension

Θ =
f ′(r)

2
√

f(r)
+

2kr
√

f(r)

(r2 −N2)
(4.1.5)

Before calculating the specific terms, it should be noted that the countert-
erm action (2.5.9) is designed to cancel divergences in the bulk and boundary
actions. This means that, since after cancellation the action is finite, only
the finite contributions from (2.3.3) and (2.3.4), as well as from (2.5.9), need
to be calculated.

Substituting (4.1.1) into (2.3.3) gives, for the bulk action,

IB,AdS =
(2k + 1)(4π)kβ

8π`2

∫
dr (r2 −N2)2k (4.1.6)

and note that the
∏

sin2(θi) from
√

g (and later
√

γ) contributes to the
volume element (4π)k. The binomial theorem can now be used on this to
integrate term by term, over the range r = (r+, r′), where since r′ →∞, any
terms involving r′ will be cancelled by the counterterm action. This will give
the finite bulk action contribution as

IB,AdS = −(2k + 1)(4π)kβ

8π`2

k∑
i=0

(
k

i

)
(−1)iN2i r

(2k−2i+1)
+

2k − 2i + 1
(4.1.7)

where r+ is the largest positive root of f(r), determined by the fixed point
set of ∂T , and β is the period of T .

Next, expanding
√

γΘ for large r, the general finite contribution from the
boundary action can be calculated also,

I∂B,AdS =
(2k + 1)(4π)kβ

8π
m (4.1.8)

Finally, from (2.5.9), the counterterm action can be calculated. However,
in general only the first term in (2.5.9) needs to be calculated, as all of the
other terms in the expansion will diverge as r → ∞. This can be seen by
noting that f(r) can be written as an expansion (for large r)

f(r) ∼ r2

`2
− 2m

r2k−1
+

∑
i=1

Ai

r2k+2i
− 2m

∑
i=1

Bi

r2k+2i+1
(4.1.9)
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where Ai, Bi are constants depending on `, N . This means that the expan-
sion of

√
γ (the first term in (2.5.9)) is

√
γ ∼ r2k+1

2`
−m`−

∑
j

Cjr
2k−2j+1

2
+ (terms that vanish at large r) (4.1.10)

The first and third terms will cancel divergences in the bulk and boundary
actions, and thus only the second term will contribute to the finite action.
All powers of r in this expansion of

√
γ are odd (or zero) - and from (4.1.4)

it can be seen that any expansion of the Ricci scalar on the boundary will be
even, and so multiplying

√
γR(γ) will give only terms that contain non-zero

powers of r. Thus, the second term in (2.5.9) will have no finite terms - all
the terms will either vanish at large r or will diverge, and hence be used to
cancel terms from the bulk and boundary. Since multiples of the Riemann
and Ricci tensors will also contain even powers of r, later terms in (2.5.9)
will also not give any finite contributions, and so the only term that needs
to be calculated is the first term in the expansion (2.5.9). This will give a
finite contribution of

Ict,AdS = −2k(4π)kβ

8π
m (4.1.11)

to the total action.
Adding together (4.1.7), (4.1.8) and (4.1.11) gives, for the total Taub-

NUT-AdS finite action,

IAdS =
(4π)kβ

8π`2

[
m`2 − (2k + 1)

k∑
i=0

(
k

i

)
(−1)iN2i r2k−2i+1

+

2k − 2i + 1

]
(4.1.12)

The conserved mass can also be found in general, from formulae (2.5.10)
and (2.5.11),

M =
1

8π

∫
dd−1x

√
γ

{
Θab − γabΘ +

d− 1

`
γab + . . .

}
uaξbNlpse (4.1.13)

Note that, of course, in this case there are no further conserved quantities to

be calculated. In (4.1.13), ξa is the timelike Killing vector, ua =
[

1√
gtt

, 0, . . .
]

is the timelike unit normal, and Nlpse is the square root of the lapse function,

here equal to 1/
√

f(r). It turns out, for the same reasons as used for cal-
culating the action, that only those terms in (4.1.13) will contribute to the
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finite conserved mass, and the rest will only be used to cancel divergences.
Thus, using (4.1.5) and Θtt, γtt, the general formula for the conserved mass
in any (even) dimension is given by

MTNAdS =
2k(4π)k

8π
m (4.1.14)

Using (4.1.12), (4.1.14), the Gibbs-Duhem relation (2.3.14) gives a general
formula for the entropy in (even) dimensions:

STNAdS =
(4π)kβ

8π`2

[
(2k − 1)m`2 + (2k + 1)

k∑
i=0

(
k

i

)
(−1)iN2i r2k−2i+1

+

2k − 2i + 1

]

(4.1.15)
Note that, since r+ will depend on N (in the NUT case, it will equal N , and
in the Bolt case, r+ = rb±(N)), and since the formula to find the specific
heat1, C = −β∂βS, will be a differentiation of the entropy with respect to N
(since β is a function of N), a general formula for the specific heat cannot
be found before specifying to the NUT solution (since rb± cannot be found
in general, a general solution for the specific heat cannot be found for the
Bolt).

General formulae can also be found for the cases of specifying our solution
to either the NUT or Bolt.

General NUT solution

The general form of the NUT mass for arbitrary even dimension has already
been found in (3.6.4). Using this, and substituting r+ = N into (4.1.12), the
general form

INUT,AdS =
(4π)kβN2k−1

16π3/2`2

[
2kN2 − `2

]
Γ

(
1− 2k

2

)
Γ(k + 1) (4.1.16)

for the NUT action for general dimension (d+1) = 2k+2 can be found. The
general NUT entropy can be found similarly from (4.1.15),

SNUT,AdS =
(4π)kβN2k−1

16π3/2`2

[
2k(2k + 1)N2 − (2k − 1)`2

]
Γ

(
1− 2k

2

)
Γ(k + 1)

(4.1.17)

1Which can be found from the usual thermodynamic specific heat formula C = T∂T S
([31], pg. 15, for either constant volume or pressure) by noting that T∂T = β∂β , since β
is equal to the inverse of the temperature T .
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A general expression for the specific heat can also be found, by using the
relation C = −β∂βS and the general form of the period (3.6.3);

CNUT,AdS = −(4π)kβN2k−1

16π3/2`2
Γ

(
1− 2k

2

)
Γ (k + 1)

[
2k(2k + 1)(2k + 2)N2 − 2k(2k − 1)`2

]
(4.1.18)

Analysis

Tables 4.1, 4.2 shows the NUT quantities for four to ten dimensions, with
the general dimensions given at the end (note in the table, n = (d + 1)).

From (4.1.16), (4.1.17) and (4.1.18), it is easy to notice that the action,
entropy and specific heat for any NUT solution will vanish in the high tem-
perature limit (note that the high temp. limit is N → 0, because T = 1/β).
Also, due to the nature of Gamma functions, Γ

(
1−2k

2

)
will produce a nega-

tive sign for all odd k. This means that for dimensions 4k (4, 8, 12, . . .), the
entropy and specific heat will both be greater than zero, for N given by

`

√
(2k − 1)

(2k + 2)(2k + 1)
< N < `

√
(2k − 1)

2k(2k + 1)
(4.1.19)

This means that in these dimensions, the NUT solutions will be thermody-
namically stable for this range of N , though note that the range becomes
increasingly narrow as k increases. Since no minus sign will be produced
for even k, (i.e. in 4k + 2 dimensions, 6, 10, 14, . . .), the entropy will be

positive for N > `
√

2k−1
2k(2k+1)

, and the specific heat for N < `
√

(2k−1)
(2k+1)(2k+2)

.

Thus, for dimensions with even k, the NUT solutions are all by definition
thermodynamically unstable.

The flat space limits (` →∞) of the NUT quantities can also be found,

INUT,AdS → −(4π)kβ

16π3/2
Γ

(
1− 2k

2

)
Γ (k + 1) N2k−1 (4.1.20)

SNUT,AdS → −(4π)kβ

16π3/2
Γ

(
1− 2k

2

)
Γ (k + 1) N2k−1(2k − 1) (4.1.21)

CNUT,AdS → (4π)kβ

16π3/2
Γ

(
1− 2k

2

)
Γ (k + 1) N2k−12k(2k − 1) (4.1.22)

With the same Gamma function property taken into account, these equa-
tions show that in any dimension, the asymptotically locally flat pure NUT
solutions will always be thermally unstable, for any dimension.
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General Bolt Solution

The conditions for arbitrary (d + 1) dimensions that give a regular Bolt at
r = rb > N are given on page 62. Recall that condition (i) implies

mb,AdS =
1

2

[
k∑

i=0

(
k

i

)
(−1)ir2k−2i−1

b N2i

(2k − 2i− 1)

+
(2k + 1)

`2

k+1∑
i=0

(
k + 1

i

)
(−1)iN2ir2k−2i+1

b

(2k − 2i + 1)

]
(4.1.23)

from which a general expression for the Bolt action can be obtained

IBolt,AdS =
(4π)(n−2)/2β

16π`2

{
− (2k + 1)(−1)k+1N2k+2

rb

+
k∑

i=0

(
k

i

)
(−1)iN2ir2k−2i

b

[
`2

rb(2k − 2i− 1)

− rb(2k + 1)(k − 2i + 1)

(2k − 2i + 1)(k − i + 1)

]}
(4.1.24)

by substituting m = mb in (4.1.12). Next, using the Gibbs-Duhem relation
(2.3.14), and substituting m = mb into (4.1.14) (or directly from (4.1.15)),
we find

SBolt,AdS =
(4π)(n−2)/2β

16π`2

{
− (2k − 1)(2k + 1)(−1)k+1N2k+2

rb

+
k∑

i=0

(
k

i

)
(−1)iN2ir2k−2i

b

[
(2k − 1)`2

rb(2k − 2i− 1)

+
(2k + 1)(2k2 + 3k − 2i + 1)rb

(2k − 2i + 1)(k − i + 1)

]}
(4.1.25)

for the general expression for the Bolt entropy in n = d + 1 dimensions. The
explicit expression for the specific heat is extremely cumbersome, and I will
not include it here. Note, for both of the equations above ((4.1.24), (4.1.25)),
that rb = rb± must be substituted in to get the upper/lower branch solutions
and analysis.
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Table 4.1: Summary of NUT Period, Mass and Action for TNAdS
Dim. Period. Mass Action

4 8πN N(`2−4N2)
`2

4πN2(`2−2N2)
`2

6 12πN 4N3(6N2−`2)
3`2

32π2N4(4N2−`2)
`2

8 16πN 8N5(`2−8N2)
5`2

1024π3N6(`2−6N2)
5`2

10 20πN 64N7(10N2−`2)
35`2

8192π4N8(8N2−`2)
7`2

n 2nπN
Nn−3Γ( 5−n

2 )Γ(n
2 )[`2−nN2]√

π`2(n−3)

(4π)(n−2)/2βΓ( 3−n
2 )Γ(n

2 )Nn−3[(n−2)N2−`2]

16π3/2`2

0

0.1

0.2

0.3

0.4

0.5

S

0.02 0.04 0.06 0.08 0.1 0.12 0.14
N

Figure 4.1.1: Plot of the Relative entropies for (from right to left) 4 to 10
dimensions for TNAdS - Bolt case.
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Table 4.2: Summary of NUT Entropy and Specific Heat for TNAdS
Dim. Entropy Specific Heat

4 4πN2(`2−6N2)
`2

8πN2(12N2−`2)
`2

6 32π2N4(20N2−3`2)
`2

384π2N4(`2−10N2)
`2

8 1024π3N6(5`2−42N2)
5`2

6144π3N6(56N2−5`2)
5`2

10 8192π4N8(72N2−7`2)
7`2

65536π4N8(7`2−90N2)
7`2

n B[(n−1)(n−2)N2−(n−3)`2]

16π3/2`2
B[(n−2)(n−3)`2−n(n−1)(n−2)N2]

16π3/2`2

A = Nn−3Γ
(

5−n
2

)
Γ

(
n
2

)
, B = (4π)(n−2)/2βΓ

(
3−n

2

)
Γ

(
n
2

)
Nn−3

0

1

2

3

4

5

S

0.02 0.04 0.06 0.08 0.1N

Figure 4.1.2: Plot of the Re-scaled Relative entropies for (from right to left)
4 to 10 dimensions for TNAdS - Bolt case.
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An analysis of the general bolt case is somewhat awkward, though it is
possible to deduce some general trends. For example, it can be seen that the
relative entropies (SRel = SBolt(r = rb−) − SNUT ) increase (with increasing
N) faster as we increase the number of dimensions. This can be seen in
figure 4.1.1, where we plot the relative entropies from four to ten dimensions.
From small values of N , the entropy increases with decreasing dimensionality.
However this rapidly changes once N becomes sufficiently large, in which case
the entropy rapidly increases with increasing dimensionality like Nd−2. The
plot in figure 4.1.2 shows the relative entropies with the pre-factor of Nd−2

scaled out (so that all relative entropies are unity at N = 0) - and it can be
seen that entropy still increases with increasing dimensionality. The general
Bolt quantities for four to ten dimensions are summarized in table 4.3 (where
note again for this table, n = (d + 1) dimensions).

4.1.2 Taub-NUT-dS: R-approach

The general metric for the Taub-NUT metric with positive cosmological con-
stant is given by (3.6.7) with (3.6.8). As above, the general forms for the
metric determinant and Ricci scalar are easily found

gdS,R = −(τ 2 + n2)2k

k∏
i=1

sin2(θi) (4.1.26)

RdS,R =
d(d + 1)

`2
(4.1.27)

With these, the finite contribution from the bulk action (2.4.3) can be cal-
culated in general, using the same steps as in the TNAdS case, where the
binomial expansion is again used;

IB,ds(R) = −(2k + 1)β(4π)k

8π`2

k∑
i=0

(
k

i

)
n2i τ 2k−2i+1

c

2k − 2i + 1
(4.1.28)

where τc is the largest positive root of f(τ), found from the fixed point
set of ∂t. The finite boundary and counterterm contributions can also be
calculated, by finding the general forms for the determinant of the boundary
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Table 4.3: Summary of Bolt quantities for TNAdS
Dim. Mass Action Entropy

4
r4

b+(`2−6N2)r2
b+N2(`2−3N2)

2`2rb

−π(r4
b−`2r2

b+N2(3N2−`2))

3r2
b
−3N2+`2

π(3r4
b+(`2−12N2)r2

b+N2(`2−3N2))

3r2
b
−3N2+`2

6

1
6rb`2

[
3r6

b + (`2 − 15N2)r4
b

−3N2(2`2 − 15N2)r2
b

−3N4(`2 − 5N2)
]

−4π2

3(5r2
b
−5N2+`2)

[
3r6

b

−(5N2 + `2)r4
b

−3N2(5N2 − 2`2)r2
b

+3N4(`2 − 5N2)
]

4π2

3(5r2
b
−5N2+`2)

[
15r6

b

−(65N2 − 3`2)r4
b

+3N2(55N2 − 6`2)r2
b

+9N4(5N2 − `2)
]

8

1
10`2rb

[
5r8

b

+(`2 − 28N2)r6
b

+5N2(14N2 − `2)r4
b

+5N4(3`2 − 28N2)r2
b

+5N6(`2 − 7N2)
]

−16π3

5(7r2
b
−7N2+`2)

[
5r8

b

−(`2 + 14N2)r6
b

+5N2r4
b `2

−5N4(3`2 − 14N2)r2
b

−5N6(`2 − 7N2)
]

16π3

5(7r2
b
−7N2+`2)

[
35r8

b

+(5`2 − 182N2)r6
b

−5N2(5`2 − 84N2)r4
b

−5N4(154N2 − 15`2)r2
b

+25N6(`2 − 7N2)
]

10

1
70`2rb

[
35r10

b

+5(`2 − 45N2)r8
b

+14N2(45N2 − 2`2)r6
b

+70N4(`2 − 15N2)r4
b

+35N6(45N2 − 4`2)r2
b

+35N8(9N2 − `2)
]

−64π4

35(9r2
b
−9N2+`2)

[
35r10

b

−5(`2 + 27N2)r8
b

+14N2(2`2 + 9N2)r6
b

−70N4(`2 − 3N2)r4
b

−35N6(27N2 − 4`2)r2
b

−35N8(9N2 − `2)
]

64π4

35(9r2
b
−9N2+`2)

[
315r10

b

+5(7`2 − 387N2)r8
b

+14N2(369N2 − 14`2)r6
b

+70N4(7`2 − 117N2)r4
b

+35N6(333N2 − 28`2)r2
b

+245N8(9N2 − `2)
]

n

1
2

[
∑

1 A1
(−1)iN2ir

2k−2i−1
b

(2k−2i−1)

+
(2k+1)

`2
∑

2 A2
(−1)iN2ir

2k−2i+1
b

(2k−2i+1)

]

V

{
(2k+1)(−1)kN2k+2

rb

+
∑

3 A3

[
`2

rb(2k−2i−1)

− rb(2k+1)(k−2i+1)
(2k−2i+1)(k−i+1)

]}

V

{
(2k−1)(2k+1)(−1)kN2k+2

rb

+
∑

3 A3

[
(2k−1)`2

rb(2k−2i−1)

+
(2k+1)(2k2+3k−2i+1)rb

(2k−2i+1)(k−i+1)

]}

∑
1 A1 =

∑k
i=0

(
k
i

)
,

∑
2 A2 =

∑k+1
i=0

(
k+1

i

)
,

∑
3 A3 =

∑k
i=0

(
k
i

)
(−1)iN2ir2k−2i

b
,

V =
(4π)(n−2)/2β

16π`2
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metric and the Ricci scalar of the boundary,

γdS,R = f(τ)(τ 2 + n2)2k

k∏
i=1

sin2(θi) (4.1.29)

RdS,R(γ) = 2k

[
1

(τ 2 + n2)
− n2f(τ)

(τ 2 + n2)2

]
(4.1.30)

as well as finding the trace of the extrinsic curvature

ΘdS,R = −
[

f ′(τ)

2
√

f(τ)
+

2kτ
√

f(τ)

(τ 2 + n2)

]
(4.1.31)

(4.1.29) and (4.1.31) will give the finite contribution from the boundary ac-
tion as

IdS,R(∂B) = −2kβ(4π)k

8π
m (4.1.32)

The finite contribution from the counterterm action can be found from (2.5.13).
Here, as in the TNAdS case, only the first term from the counterterm expan-
sion is needed, which can be understood through exactly the same reasoning
as used above. Thus, the finite contribution from Ict can be written

IdS,R(ct) =
2kβ(4π)k

8π
m (4.1.33)

Adding together these three contributions, the finite action for general (even)
dimensions in the R-approach is given by the formula

Ids,R finite = −β(4π)k

8π

[
m +

d

`2

k∑
i=0

(
k

i

)
n2i τ 2k−2i+1

c

2k − 2i + 1

]
(4.1.34)

The only non-vanishing conserved charge will be the mass, associated
with ξt. Using (2.5.14), we get upon including the counterterms,

MdS =
1

8π

∫
dd−1x

√
γ

{
Θab −Θγab − (d− 1)

`
γab + . . .

}
ξaubNlpse (4.1.35)

where here, as in the TNAdS case, only these terms are necessary to compute
the finite mass, for the same reasons. The finite conserved mass in general
dimensions (d + 1) = 2k + 2 is then given by

MdS,R = −2k(4π)k

8π
m (4.1.36)
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where m is solved for in terms of τ and the NUT parameter through the first
condition for a regular bolt, given on page 63.

Using the Gibbs-Duhem relation and (4.1.36), (4.1.34), the entropy for-
mula for general dimensions is given by

SdS,R =
(4π)kβ

8π

[
(2k + 1)

`2

k∑
i=0

(
k

i

)
n2i τ 2k−2i+1

c

2k − 2i + 1
− (2k − 1)m

]
(4.1.37)

Note that again, since τc = τc(n), a general formula for the specific heat is
very difficult to find, and is best left to calculation in the specific dimension
of interest.

It should also be noted that none of the above formulae required the use
of the consistency condition (ii) on page 63, which can also be written

|f ′(τc)| = 2q

(d + 1)|n| (4.1.38)

This equation will have, in general, four solutions for τc, (two positive, two
negative), yielding two possible relationships between the parameters m and
n from the positive pair. This will give two distinct spacetimes with two
distinct sets of characteristics with regards to the entropy and conserved
mass. While it is easy to solve this equation in a specific dimension, it is
difficult to do so in closed form in general dimensions.

4.1.3 Taub-NUT-dS: C-approach

The metric here is given by (3.6.11), (3.6.12). This metric is the same as
the R-approach metric with a few signs changed, and so exactly the same
reasoning can be used to calculate the general finite contributions for the
C-approach. (Note also that one could find the finite formulae through ap-
propriate continuation and sign counting of the TNAdS quantities here). I
am working at future infinity. The metric determinant and Ricci scalar are

gdS,C = (ρ2 −N2)
k∏

i=1

sin2(θi) (4.1.39)

RdS,C =
d(d + 1)

`2
(4.1.40)
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Through the use of the binomial expansion, the finite bulk action is found to
be given by

IB,C finit = −2k(4π)kβ

8π`2

k∑
i=0

(
k

i

)
(−1)iN2i ρ2k−2i+1

+

2k − 2i + 1
(4.1.41)

where ρ+ is the largest positive root of f(ρ). The boundary metric is given
by γµν = gµν + nµnν , so that

γdS,C = −f(ρ)(ρ2 −N2)2k

k∏
i=1

sin2(θi) (4.1.42)

RdS,C = 2k

[
1

(ρ2 −N2)
+

N2f(ρ)

(ρ2 −N2)2

]
(4.1.43)

are the boundary metric determinant and Ricci scalar, respectively. The
trace of the extrinsic curvature can also be found,

ΘdS,C = −
[

f ′(ρ)

2
√

f(ρ)
+

(2k + 1)ρ
√

f(ρ)

(ρ2 −N2)

]
(4.1.44)

Using the same steps as above, the boundary and counterterm contributions
can be found to be the same as in the R-approach, (4.1.32) and (4.1.33), and
so the general action is

IdS,C finite = −(4π)kβ

8π

[
m +

d

`2

k∑
i=0

(
k

i

)
(−1)iN2i ρ2k−2i+1

+

2k − 2i + 1

]
(4.1.45)

The conserved mass is also found through the same steps,

MdS,C = −2k(4π)k

8π
m (4.1.46)

The general formula for the entropy in the C-approach is again found through
use of the Gibbs-Duhem relation,

SdS,C =
(4π)kβ

8π

[
d

`2

k∑
i=0

(
k

i

)
(−1)iN2i ρ2k−2i+1

+

2k − 2i + 1
− (2k − 1)m

]
(4.1.47)

In the C-approach, however, we now have NUT and Bolt solutions anal-
ogous to the TNAdS case, depending on the co-dimensionality of the fixed
point set of ∂T .
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General C-approach; NUT

For the NUT solution, the fixed point set of ∂T is zero dimensional at ρ+ = N .
By substituting in (3.6.14) and ρ+ = N , general expressions for the NUT
action and entropy in (d + 1) dimensions can be found from (4.1.45) and
(4.1.47). The action is

IdS(C),NUT =
(4π)kβN2k−1

16π3/2`2

[
`2 + 2kN2

]
Γ

(
1− 2k

2

)
Γ (k + 1) (4.1.48)

and the entropy

SdS,NUT =
(4π)kβN2k−1

16π3/2`2

[
(2k − 1)`2 + 2k(2k + 1)N2

]
Γ

(
1− 2k

2

)
Γ (k + 1)

(4.1.49)
With the specific equation (4.1.49), using C = −β∂βS the general equation
for the NUT specific heat can be found;

CdS,NUT = −(4π)kβN2k−1

16π3/2`2
Γ

(
1− 2k

2

)
Γ (k + 1) ·

[
2k(2k − 1)`2 + 2k(2k + 1)(2k + 2)N2

]
(4.1.50)

Note, as should be expected from the discussions above, all of these can be
found by taking ` → i` in the AdS quantities (4.1.16), (4.1.17) and (4.1.18).
Indeed, it can be shown in specific dimensions that, although the above
formulae satisfy the First Law, the root at ρ = N is not the largest root
of f(ρ), and hence, in any dimension, the ds-NUT solution is not a valid
solution. The fact that the above entropy satisfies the First Law is merely a
consequence of the fact that this entropy is derivable by analytic continuation
(` → i`) of the AdS-NUT entropy.

General C-approach: Bolt

Recall that the first condition for a regular bolt solution will force the general
bolt mass parameter to be (3.6.15). Thus, general formulae for the bolt
action and entropy in the C-approach can be found by substituting (3.6.15)
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into (4.1.45) and (4.1.47). The general action is thus

Ibolt,dS,C = −(4π)kβ

16π`2

{
(2k + 1)(−1)k+1N2k+2

ρb

+
k∑

i=0

(
k

i

)
(−1)iN2iρ2k−2i

b

[
`2

ρb(2k − 2i− 1)

+
(2k + 1)(k − 2i + 1)ρb

(k − i + 1)(2k − 2i + 1)

] }
(4.1.51)

and the general entropy is

Sbolt,dS,C =
(4π)kβ

16π`2

{
− (2k + 1)(2k − 1)(−1)k+1N2k+2

ρb

+
k∑

i=0

(
k

i

)
(−1)iN2iρ2k−2i

b

[
− `2(2k − 1)

ρb(2k − 2i− 1)

+
(2k2 + 3k − 2i + 1)(2k + 1)ρb

(k − i + 1)(2k − 2i + 1)

] }
(4.1.52)

Again here, a general expression for the specific heat is difficult to find, and
also analysis is best left to specific dimensions. Note also that in employing
these formulae, one must further specify to the upper bolt solution (ρ+) as
in the AdS case. Note that, though there is always a lower bolt solution, it
is not a valid solution as it can be shown that this lower bolt root is not the
largest root of the metric function.

4.2 Six dimensional Example - TNAdS

Calculations in a specific dimension can be done by taking the above general
forms, and using the appropriate k to get the dimension of interest. However,
obviously the calculation can also be done in full in the specific dimension.
As an example, here I will calculate the six dimensional actions, entropies,
etc., as a specific demonstration of the AdS/CFT (and next for the four
dimensional example in the dS/CFT) counterterm method.
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The Euclidean section of the six dimensional metric, using S2 × S2 as a
base space, is given by

ds2 = f(r) [dτ + 2N cos(θ1)dφ1 + 2N cos(θ2)dφ2]
2 +

dr2

f(r)

+(r2 −N2)(dθ2
1 + sin2(θ1)dφ2

1 + dθ2
2 + sin2(θ2)dφ2

2) (4.2.1)

with

f(r) =
3r6 + (`2 − 15N2)r4 − 3N2(2`2 − 15N2)r2 − 6mr`2 − 3N4(`2 − 5N2)

3`2(r2 −N2)2

(4.2.2)
Another form, mentioned in [17], is to use B = CP2 as a base space,

ds2 = f(r) [dτ + A]2 +
dr2

f(r)
+ (r2 −N2)dΣ2

2 (4.2.3)

where dΣ2
2 is the metric for the CP2 space,

dΣ2
2 =

du2

(1 + u2/6)2
+

u2

4(1 + u2/6)2
[dψ + cos(θ)dφ]2

+
u2

4(1 + u2/6)

(
dθ2 + sin2(θ)dφ2

)
(4.2.4)

A is the one-form, given by

A =
u2N

2(1 + u2/6)
(dψ + cos(θ)dφ) (4.2.5)

This metric (4.2.3) also uses (4.2.2), and yields the same action and total
mass, with appropriate change in the volume element.

Calculating the action (2.3.2), and including the counterterm action to
cancel the divergences, the finite, six dimensional action is

I =
2πβ(−3r5

+ + 10N2r3
+ − 15N4r+ + 3m`2)

3`2
(4.2.6)

where r+ is as usual the largest positive root of f(r), determined from the
fixed point set of ∂τ . The period of τ is

β = 12πN (4.2.7)
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here. Note that as pointed out in section 3.6.1 below equation (3.6.3), (4.2.7)
is determined by demanding regularity of the manifold so that the singular-
ities at θi = 0, π are coordinate artifacts (for i = 1, 2). Since the metric is
not rotating, we only have the conserved mass to calculate. Using the full
expansion of the boundary stress-energy Tµν for six dimensions (see [56]), the
mass can be calculated

Mξ =
(4π)2

8π

∫ π

0

dθ1

∫ π

0

dθ2
√

γ

[
Θµν − γµνΘ− (d− 1)

`
γµν + . . .

]
uµξν

where ξµ = [1, 0, 0, 0, 0, 0] is the timelike Killing vector, and uµ is the time-
like unit vector. Upon explicit calculation, the finite conserved mass is found
to be

M = 8πm (4.2.8)

4.2.1 Taub-NUT-AdS solution

The zero dimensional fixed point set of ∂τ occurs when r = N , giving the
NUT solution. This implies f(N) = 0, which will give, for the mass param-
eter [17]

mn =
4N3(6N2 − `2)

3`2
(4.2.9)

Note that the overall sign of this mass is minus the overall sign from four
dimensions (see table 4.1).

Inserting r = N and the period (4.2.7) into the action, we get

INUT =
32π2N4(4N2 − `2)

`2
(4.2.10)

By inserting (4.2.9) into the conserved mass, we can use (4.2.8) and (4.2.10)
in the Gibbs-Duhem relation (2.3.14) to obtain the entropy for the NUT
solution

SNUT =
32π2N4(20N2 − 3`2)

`2
(4.2.11)

Finally, the specific heat C = −β∂βS can now be found (using (4.2.7))

CNUT =
384π2N4(`2 − 10N2)

`2
(4.2.12)
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Figure 4.2.1: Plot of the NUT Entropy
and Specific Heat vs. N in 6 dimensions

The above equations have been checked to verify they satisfy the first law of
black hole thermodynamics, dS = βdH. Here, the Hamiltonian H is equal
to the conserved mass M, with m given by (4.2.9).

The entropy and specific heat can now be plotted as functions of N (figure
4.2.1). From the figure, it can be seen that the entropy is negative for N <
`
√

3/20, and the specific heat is negative for N > `/
√

10. More importantly,
from the figure it can be seen that nowhere are the entropy and the specific
heat both positive for the same range of N . Since it is necessary for both to
be positive for the solution to be thermodynamically stable, this means that
the NUT solution in six dimensions is not thermally stable. Note that this is
different from the four dimensional solution, where there does exist a range
where both are positive. This trend continues: for dimensions 8, 12, 16, . . .,
the solution is thermally stable in a given range (as in four dimensions),
and for dimensions 10, 14, 18, . . ., there is no range of stability, as in six
dimensions.

4.2.2 Taub-Bolt-AdS solution

The Bolt solution requires the fixed point set of ∂τ to be four dimensional,
implying r+ = rb > N and giving

mb =
3r6

b + (`2 − 15N2)r4
b − 3N2(2`2 − 15N2)r2

b − 3N4(`2 − 5N2)

6rb`2
(4.2.13)
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The conditions in six dimensions for a regular Bolt solutions, given in [17],
are (i) f(rb) = 0 and (ii) f ′(rb) = 1/(3N). From (ii), rb is given as a function
of N as

rb± =
`2 ±√`4 − 180N2`2 + 900N4

30N
(4.2.14)

(where note the q = 1 here). Since we require the solution to be real, the
discriminant of the square root forces the range of N to be

N ≤
(√

15

15
−
√

30

30

)
` = Nmax (4.2.15)

and of course greater than zero.
The action is obtained from (4.2.6)

IBolt =
−4π2(3r6

b − (5N2 + `2)r4
b − 3N2(5N2 − 2`2)r2

b + 3N4(`2 − 5N2))

3(5r2
b + `2 − 5N2)

(4.2.16)
where regularity requires that the period be

βBolt =
4π

F ′(rb)

=
(
6π`2(r2

b −N2)3
) [

3r7
b − 9r5

bN
2 + N2(4`2 − 15N2)r3

b

+9m`2r2
b + 3N4(4`2 − 25N2)rb + 3m`2N2

]−1
(4.2.17)

The temperature of the NUT and Bolt solutions is of course the same, as can
be seen by substituting mb and either of rb± into βBolt.

The Bolt entropy is

SBolt =
4π2(15r6

b − (65N2 − 3`2)r4
b + 3N2(55N2 − 6`2)r2

b + 9N4(5N2 − `2))

3(5r2
b + `2 − 5N2)

(4.2.18)
and this can also be checked to satisfy the first law (though each branch rb±
must be checked separately). The specific heat can be computed for each
branch specifically, giving

CBolt(rb±) =
−8π2

50625

[
`6(90N2 − `2)

N4
±

(
(`2 + 30N2)(−`2 + 30N2)×

(`8 − 180`6N2 + 5400`4N4 − 162000`2N6 + 810000N8)

N4`2
√

`4 + 900N4 − 180N2`2

)]

(4.2.19)
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Figure 4.2.2: Plot of Entropy and Specific Heat vs. N for the upper branch
Bolt solutions in 6 dimensions.

Note that rb+ diverges as ` → ∞, so only the lower branch rb− need be
considered in the flat space limit. We found rb− → r0 = 3N and

IBolt(rb = rb−) → 32π2N4

SBolt(rb = rb−) → 96π2N4

CBolt(rb = rb−) → −384π2N4

and the Bolt mass parameter (4.2.13) is

mb → (r4
b − 6N2r2

b − 3N4)

6rb

=
4

3
N3

confirming the results of ref. [17].
The upper and lower branch entropies and specific heats are plotted vs.

N , in figures 4.2.2, 4.2.3 and 4.2.4. Note that the upper branch plot, figure
4.2.2, shows that the specific heat and entropy are everywhere positive, the
lower branch entropy is always positive, and the lower branch specific heat is
always negative. This means the upper branch is thermodynamically stable,
while the lower branch is unstable.

4.2.3 Nöether Results for TNAdS 6

The results here were first presented in [16]. I reproduce them here as a
comparison to the counterterm calculation presented above.
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Figure 4.2.3: Plot of lower branch Bolt Entropy vs. N in 6 dimensions
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Figure 4.2.4: Plot of lower branch Bolt Specific Heat vs. N in 6 dimensions
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Consider now taking the Taub-Bolt-AdS solution (4.2.13), with metric
(4.2.1) and metric function (4.2.2), as the dynamical metric to be studied.
The reference spacetime is then chosen to be the NUT solution (4.2.9), with
(4.2.1) and (4.2.2) again used. Note that despite the use of the term “mass”
for mb and mn, these have nothing to do a priori with the mass of the
solution, though the Nöether theorem does justify the description “mass”.

The following spacetime vector field,

ξ = ∂τ + a∂θ1 + b∂θ2 (4.2.20)

will (by definition) produce the Nöether conserved quantity Q = m+aJ1+bJ2

of the dynamical Taub-Bolt-AdS metric relative to the background Taub-
NUT-AdS metric. Here, of course, J1 = J2 = 0. The superpotential (2.2.20)
is evaluated on (g, g), and then integrated on the spatial region (τ = τ0, r =
r0). The solution is then Taylor series expanded around r0 = ∞. The three
separate conserved charges are thus given by:

Q1 =
4π2

κ`2

(
2r5

0 − 4N2r3
0 +

2r0

3
N2(4`2 − 21N2) +

1

rb

(3r6
b + (`2 − 15N2)r4

b

+3N2(15N2 − 2`2)r2
b + 3N4(5N2 − `2))

)
+O

(
1

r0

)
(4.2.21)

Q2 =
4π2

3κ`2rb

(
3r6

b + (`2 − 15N2)r4
b + 3N2(15N2 − 2`2)r2

b

+8N3(`2 − 6N2)rb + 3N4(5N2 − `2)

)
+O

(
1

r

)
(4.2.22)

Q3 =
4π2

κ`2

(
−2r5

0 + 4N2r3
0 +

2r0

3
N2(21N2 − 4`2) + 8N3(`2 − 6N2)

)

+O
(

1

r

)
(4.2.23)

Note that Q1, Q3 →∞ as r0 →∞, but that adding these together, the total
conserved quantity does not. The finite conserved charge is in fact

Q =
16π2

κ`2

(
r5
b +

1

3
(`2 − 15N2)r3

b + N2(15N2 − 2`2)rb

+
8

3
N3(`2 − 6N2) +

N4

rb

(5N2 − `2)

)
+O

(
1

r0

)
(4.2.24)
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This is in fact equal to

Q =
32π2

κ
(mb −mn) (4.2.25)

justifying the interpretation of Q as the relative mass.
From the first law of thermodynamics,

δS = βδM = 12πNδQ (4.2.26)

which can be interpreted as, and indeed is shown to be, the relative entropy
between the Bolt and NUT solutions. Note that in taking δQ, one must
remember that rb = rb(N) for both rb±. Substituting in either rb± into
(4.2.24) and integrating to give the entropy will give the same answer,

S =
16π3

3375κN3`2

((
`8 − 90N2`6 − 300`4N4 − 27000N6`2 + 540000N8

)
rb

+N(30N2 − `2)(3`6 + 80N2`4 + 1500N4`2 − 18000N6)
)

(4.2.27)

=
4π

κ

(
SBolt − SNUT − 112π2

675
`4

)
(4.2.28)

This result shows that the classical entropy, computed through either the
counterterm or Nöether method, is the same, up to a constant of integration.

4.3 Four dimensional Example - TNdS

4.3.1 R-approach

Recall that the metric for the R-approach in (3 + 1) dimensions, with an S2

base space, is given by

ds2
R = f(τ) [dt + 2n cos(θ)dφ]2 − dτ 2

f(τ)
+ (τ 2 + n2)(dθ2 + sin2(θ)dφ2) (4.3.1)

with

f(τ) =
τ 4 + (6n2 − `2)τ 2 + n2(`2 − 3n2) + 2mτ`2

(τ 2 −N2)`2
(4.3.2)

The period must respect the condition (3.5.3), and yields the equation (3.5.14).
The finite action can be calculated from either the general formula (4.1.34)
or directly from (2.5.12), to give

IR,4d = − β

2`2
(mR`2 + τ 2

c + 3n2τc) (4.3.3)
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and recall that mR is given by (3.5.15). The finite conserved mass can also
be found

MR,4d = −mR (4.3.4)

near future infinity. The entropy, either through use of the Gibbs-Duhem
relation or from the general formula above, can also be found

SR,4d = −β(mR`2 − 3n2τc − τ 3
c )

2`2
(4.3.5)

Note that these results are satisfied by the solution to the second condition
for a regular bolt, from page 63, the solution given by (3.5.16)+, rewritten
here for convenience:

τ+
c =

q`2 +
√

q2`4 − 144n4 + 48n2`2

12n
(4.3.6)

The high temperature (n → 0) and flat space (` → ∞) limits of τ+
c are

infinite.
From these results, one can straightforwardly obtain the mass and tem-

perature by substituting τ+
c into (3.5.15) and (3.5.14) respectively. Following

the notation in [20], I will call these solutions R+
4 with action I+

4 and entropy
S+

4 .
From figure 4.3.1, it can be seen that M+

R is always positive. This means,
since the mass of pure dS space in four dimensions Mds = 0, that this solution
R+

4 violates the maximal mass conjecture of [21], at least as written. Note
that the solution violates the conjecture for all q, since M+

R > 0.
Note also that, as mentioned in the introduction, the use of (2.5.14) to

calculate (4.3.4) did not depend on the existence of horizons, nor on the
CTC’s present in the TNdS spacetime.

From (4.3.3), using (3.5.14) and (3.5.16), the R+ action is

I+
R,4d(τ0 = τ+

0 ) = −π`2

216

(72n2 + q2`2)

n2
(4.3.7)

+
π

216

(−q2`4 + 144n4 − 48n2`2)
√

q2`4 − 144n4 + 48n2`2

n2q`2

and from (4.3.5), the entropy is

S+
R,4d =

π`2(24n2 + q2`2)

72n2
+

π(144n4 + q2`4)
√

q2`4 − 144n4 + 48n2`2

72n2q`2
(4.3.8)
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Figure 4.3.1: Plot of the bolt (τb = τb+) mass for R-approach.
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Figure 4.3.2: Plot of the bolt entropy and specific heat (for q = 1). Horizontal
line is pure dS entropy.

It can be easily checked that this satisfies the first law. From the entropy
and the relation C+

R,4d = −β+
R∂β+

R
S+

R,4d, we find for the specific heat

C+
R (τ+

0 ) =
π`4q2

36n2
+

π(−144q2`4n4 + 41472n8 − 10368n6`2 + 24n2`6q2 + q4`8)

36q`2n2
√

q2`4 − 144n4 + 48n2`2

(4.3.9)
The plot for the entropy/specific heat is in figure 4.3.2.

It can be seen in figure 4.3.2 that the entropy is always positive (and
almost always greater than π`2, except for NUT charge in a range near the
maximal value nmax = .5941`), but the specific heat is positive only outside
the range .2886751346` < n < .5`; thus, this solution is only stable for n
outside this range.

The pure dS entropy is shown in figure 4.3.2 as the horizontal line. As
can be seen, the entropy of the TNdS solution is greater than the dS entropy
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for all n except near nmax. This means the N-bound is violated for all n
except near nmax by the TNdS solution.

4.3.2 C-approach

Here, as mentioned, the metric is obtained from the R-approach metric by a
Wick rotation of the time and NUT parameters, to give

ds2 = −f(ρ) [dT + 2N cos(θ)dφ]2 − dρ2

f(ρ)
+ (ρ2 −N2)(dθ2 + sin2(θ)dφ2)

(4.3.10)
with the metric function

f(ρ) =
ρ4 − (`2 + 6N2)ρ2 + 2mρ`2 −N2(`2 + 3N2)

(ρ2 −N2)`2
(4.3.11)

and the cosmological constant is now Λ = 3
`2

. Recall that the period must
satisfy the condition (3.5.6).

The action can be found to be

IC,4d = −βc(ρ
3
+ − 3N2ρ+ + m`2)

2`2
(4.3.12)

before specifying to the bolt solution, where as usual ρ+ is the largest positive
root of f(ρ). The finite conserved mass is given by

MC,4d = −m (4.3.13)

near future infinity, and applying the Gibbs-Duhem relation, the entropy is
given by

SC,4d =
βc(ρ

3
+ − 3N2ρ+ −m`2)

2`2
(4.3.14)

Bolt solution

The mass, period and the two radii solutions were (3.5.10), (3.5.12) and
(3.5.11) respectively. Recall that the lower branch solution is invalid, and so
I will present only the upper branch solution here. Substituting in ρb = ρb+

into MC,b, we can see that the Taub-Bolt-C solution is also a counter-example
to the maximal mass conjecture of [21] for certain values of N . The conserved
mass M(ρb = ρb+) is positive for N < 0.2066200733, and thus the solution
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Figure 4.3.3: Plot of (ρb = ρb+) bolt mass Mb+ (for q = 1).

violates the conjecture for N less than this value. (This trend holds for
higher values of q, with the cross-over point for the solution increasing with
increasing q).

Note here, as in the R-approach, the calculation of (4.3.13) is again done
at future infinity, and does not depend on the existence of the horizon of the
spacetime, nor the CTC’s present in the spacetime.

The bolt action is, using (4.3.12)) and (3.5.12)

IC,bolt4d(ρb = ρb+) = −π(ρ4
b + `2ρ2

b + N2(`2 + 3N2))

ρb

∣∣∣∣∣
ρb

3ρ2
b − 3N2 − `2

∣∣∣∣∣

= − π

216

[
(q2`2 + 72N2)`2

N2
(4.3.15)

+
(q2`4 + 144N4 + 48N2`2)(3/2)

N2q`2

]

and from (4.3.14), the bolt entropy is

S+
C,bolt4d =

π(3ρ4
b − (`2 + 12N2)ρ2

b −N2(`2 + 3N2))

ρb

β

=
π

72

[
(q2`2 + 24N2)`2

N2
(4.3.16)

+
(q`2 − 12N2)(q`2 + 12N2)

√
q2`4 + 144N4 + 48N2`2

`2qN2

]

It can again be checked that this satisfies the first law. From this entropy,
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Figure 4.3.4: Plot of the upper branch bolt entropy and specific heat (for q = 1).
Horizontal line is pure dS entropy.

the specific heat can be found for the bolt;

C+
C,bolt4d =

π

36N2

[
q2`4 (4.3.17)

+
(144q2`4N4 + 41472N8 + 10368N6`2 + 24N2`6q2 + q4`8)

q`2
√

q2`4 + 144N4 + 48N2`2

]

A plot of the entropy and specific heat (for q = 1) appears in figure
4.3.4. From the figure, we can see that the entropy is positive for N <
.3562261982` , and the specific heat is always positive; thus this solution
is thermodynamically stable for N < .3562261982`. Note that this trend
continues for q > 1. Also note that the upper branch entropy violates the
N-bound for N < .2180098653`. This can be seen in figure 4.3.4, where the
horizontal line is the pure dS entropy.
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Chapter 5

M-Branes and Taub-NUT
Metrics

The Taub-NUT metric also has another use when one considers eleven di-
mensional supergravity. This interesting idea was considered recently by
Cherkis and Hashimoto [27]. They constructed an M2-brane solution by
lifting a D6 brane to a four dimensional Taub-NUT geometry embedded in
M-theory and then placed M2 branes in the Taub-NUT background geom-
etry. However, they only considered a single four dimensional Taub-NUT
metric. One can also embed a Taub-NUT or similar metric (in [28, 29],
we used Taub-NUT and Eguchi-Hanson metrics) into the eleven dimensional
equations of motion, either those that describe an M2-brane (a “membrane”),
or those describing M5-branes. These metrics can then be solved for their
harmonic functions (sometimes only numerically), supplying a full solution
to the eleven-dimensional equations of motion. Further, due to the form of
such metrics, once embedded into eleven dimensions they can be used to
reduce the solution down to a ten dimensional type IIA metric, using the
well known Kaluza-Klein (KK) reduction. Embedding the four dimensional
Taub-NUT or Eguchi-Hanson metrics preserves 1/8 of the supersymmetry.
The four dimensional Taub-Bolt metric can also be embedded into both the
M2 and M5 brane solutions; also, higher dimensional Taub-NUT/Bolt met-
rics can be embedded into the M2 brane solution. These embeddings do not
preserve any supersymmetry, but are however interesting in that they exhibit
properties qualitatively similar to the supersymmetry preserving cases. For
instance, the harmonic function of the M-brane behaves the same way near
the brane core, as well as at infinity.
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A map of all possible D-brane combinations giving rise to supersymmet-
ric solutions has been assembled [64], and it should be noted that some of
the non-supersymmetric solutions discussed in [28, 29] and to be discussed
here have a brane structure listed in this map. Thus, each metric must be
explicitly checked to see if it preserves any supersymmetry, and cannot be
simply compared to the map. For example, by embedding the four dimen-
sional Taub-Bolt into eleven dimensions, and reducing to ten dimensions,
the result achieved is a 2 ⊥ 6(2) solution (i.e. a D2 brane intersecting a
D6 brane along 2 tangential directions), but this specific embedding is not
supersymmetric.

The layout of this chapter will be as follows: in section 5.1, I will briefly
discuss the equations of motion for eleven dimensional supergravity, and in-
troduce the equations for M-branes. Then, in section 5.2, I’ll go over the
Kaluza-Klein reduction down to ten dimensions, as well as discuss the type
IIA (and IIB) D-branes given by the ten dimensional string theory. Finally,
in sections 5.3 and 5.4, I’ll give examples of the embeddings that are super-
symmetric and non-supersymmetric, respectively.

5.1 M-theory and Eleven dimensional Super-

gravity

As mentioned in the introduction, M-theory would appear to be the current,
best candidate for the “theory of everything”. Eleven dimensional super-
gravity, the topic of this chapter, is in general understood to be the low
energy limit of M-theory. The M-branes contained in M-theory can be found
in eleven dimensions, both the two dimensional (M2) and five dimensional
(M5) branes. These M-branes are dual to one another, with the M2 brane
being the “electric” type brane, and the M5 brane being the “magnetic” type
dual to the M2 brane.

However, if M-theory, and specifically eleven dimensional supergravity are
to be useful, it must be reducible to the already successful ten dimensional
string theories, as well as to four dimensional spacetimes. The procedure of
reduction down to a lesser dimension is given by the Kaluza-Klein ansatz,
where the extra dimensions are wrapped up to extremely small size around
a sphere, torus, etc..

To begin one must start with the equations of motion in eleven dimen-
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sions.

5.1.1 Eleven dimensional Equations of Motion

An excellent introduction to the eleven dimensional equations of motion and
the KK-reduction method is given by Duff et. al. in [7]. Here, I will be
using slightly different notation (mainly lower case letters m,n, . . . for world
indices and a, b, . . . for tangent space indices, instead of upper case letters).
The Lagrangian for N = 1 supergravity in eleven dimensions is given by

L =
1

4
eE m

a E n
b R ab

mn (ω)− 1

2
ieΨ̄mΓ̂mnpDn

[
1

2
(ω + ω̄)

]
Ψp

− 1

48
eFmnpqF

mnpq +
2

(12)4
eεm1...m11Fm1...m4Fm5...m8Am9m10m11

3

4(12)2
e
[
Ψ̄mΓ̂mnwxyzΨn + 12Ψ̄wΓ̂xyΨz

] (
Fwxyz + F̃wxyz

)
(5.1.1)

where the metric signature is (−, +, . . .), and with m,n, . . ./a, b, . . . being d =
11 world/tangent space indices, respectively. Here, e = detE a

m , Ψ̄ = Ψ†Γ̂0,
Dm(ω) = ∂m − 1

4
ω ab

m Γ̂ab, and the ω’s are the spin-connection coefficients.
Note also ε =

√
gε, where ε is the usual Levi-Civita symbol (not to be

confused with the Killing spinor, below). The Γ̂ matrices satisfy the usual
Clifford algebra {

Γ̂a, Γ̂b

}
= −2ηab (5.1.2)

and the notation Γ̂a1...ap = Γ̂[a1 . . . Γ̂ap] is used.
To get the equations of motion, one varies the Lagrangian (5.1.1) with

respect to E a
m , Ψ̄m and Amnp. However, these simplify when one requires

maximal supersymmetry. Maximal supersymmetry will occur when the vac-
uum expectation value (VEV) of all fermion fields vanish, so

〈Ψm〉 = 0 (5.1.3)

Also, note that the low energy classical limit can be taken when 〈Ψm〉 = 0.
Thus, the equations of motion become

Rmn − 1

2
gmnR =

1

3

[
FmpqrF

pqr
n − 1

8
gmnFpqrsF

pqrs

]
(5.1.4)

∇mFmnpq = − 1

576
εm1...m8npqFm1...m4Fm5...m8 (5.1.5)
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Since the VEV’s (5.1.3) vanish, Fmnpq here is the unmodified four-form field
strength.

The equation of motion for Ψ̄m then becomes an equation checking the
amount of supersymmetry that is preserved by any solution. The number of
non-trivial solutions to this Killing spinor equation [65]

0 = ∂mε +
1

4
ωmabΓ̂

abε +
1

144
Γ npqr

m Fnpqrε− 1

18
Γ̂pqrFmpqrε (5.1.6)

determine the number of supersymmetries that are preserved, where ε is
the anti-commuting parameter of the supersymmetry transformation. My
conventions for the Cartan algebra are

dea = ga
bce

b ∧ ec

ωa
bc =

1

2
(ga

bc + ga
ca − gc

ab) (5.1.7)

ωdbm = ωa
bcηade

c
m

where the usual definitions and properties

ea = ea
mdxm gmn = ηabe

aeb (5.1.8)

(etc.) are taken to hold.

5.2 Kaluza-Klein Reduction to type IIA D-

branes

The metric ansatz for an M2 brane solution can be written in the general
form

ds2
M2 = H−2/3

(−dt2 + dx2
1 + dx2

2

)
+ H1/3

(
ds2

mtrc1 + ds2
mtrc2

)
(5.2.1)

Fmnpq = 4∂[mAnpq]

=
1

2
[Amnp,q − Anpq,m + Apqm,n − Aqmn,p] (5.2.2)

In general, the metric function H = H(x3, . . . , x10) will depend on the
eight coordinates transverse to the brane, and Atx1x2 = 1/H. The eight-
dimensional space not part of the brane world-volume is labelled by the
two metrics ds2

mtrci
, where these are some combination of (Euclideanized)
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flat space or curved metrics, totalling eight dimensions. These metrics will
contain one or more coordinates upon which I will compactify in order to
reduce down to ten dimensions. Fully localize solutions are difficult unless
one chooses these transverse spaces to be spherical in nature, allowing one
to define H in terms of the radii of the transverse spaces.

For an M5 brane, the ansatz is given by

ds2
M5 = H−1/3

(−dt2 + dx2
1 + . . . + dx2

5

)
+ H2/3

(
dy2 + ds2

4

)
(5.2.3)

Fm1...m4 =
α

2
εm1...m5∂

m5H (5.2.4)

where again ds2
4 is a flat space or curved (Euclideanized) metric, H again

depends only on the coordinates transverse to the M5 brane, and α = ±1
corresponding to an M5/anti M5 brane, respectively. The metrics I will
use for the ds2

mtrci
or ds2

4 will of course be either flat space, k-dimensional
Taub-NUT/bolt, or Eguchi-Hanson.

Either metric can be decomposed into one of the following forms

ĝmn =

[
e−2Φ/3

(
gαβ + e2ΦCαCβ

)
νe4Φ/3Cα

νe4Φ/3Cβ ν2e4Φ/3

]
(5.2.5a)

=

[
eΦ/6

(
gαβ + e−3Φ/2CαCβ

)
νe−4Φ/3Cα

νe−4Φ/3Cβ ν2e−4Φ/3

]
(5.2.5b)

where (5.2.5a) is the reduction to the string frame, and (5.2.5b) is the reduc-
tion to the Einstein frame. Here, ν is the winding number, representing the
number of times the brane is wrapped around the compactified dimension
[66]. The Kaluza-Klein reduction of 11-D supergravity down to 10-D is then

ds2
(1,10),s = e−2Φ/3ds2

(1,9) + e4Φ/3 (νdx10 + Cαdxα)2 (5.2.6)

F[4] = F[4] + νH[3] ∧ dx10 (5.2.7)

in the string frame, and

ds2
(1,10),E = eΦ/6ds2

(1,9) + e−4Φ/3 (νdx10 + Cαdxα)2 (5.2.8)

F[4] = F[4] + νH[3] ∧ dx10 (5.2.9)

where F(4) and H(3) are the Ramond-Ramond (RR) four-form and Neveu-
Schwarz Neveu-Schwarz (NSNS) three-form field strengths corresponding to
Aαβγ and Bαβ respectively, and x10 is the coordinate of the compactified
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manifold. I will take this compactified manifold to be a circle with radius
R∞, parameterized as x10 = R∞ψ, 0 < ψ < 2π. Thus, the RR (Cα, Aαβγ)
and NSNS (Φ, Bαβ and gαβ) fields can easily be found.

By using either of these forms of the metric in the bosonic action in eleven
dimensions

Ŝ11 =

∫
d11x

√
−ĝ

{
R̂− 1

48
F 2

[4] +
2

(12)4
F[4] ∧ F[4] ∧ A[3]

}
(5.2.10)

one can find the ten dimensional action, for example

S10 =

∫
d10x

√−g

{
R− 1

2
(∂µΦ) (∂µΦ)− 1

4
e−3Φ/2FµνFµν

− 1

48
e−Φ/2FµνρσFµνρσ − 1

4
eΦHµνρHµνρ

}
(5.2.11)

represents the action in the Einstein frame in ten dimensions (note F[2] =
dC[1]). Varying this action with respect to the RR and NSNS fields gives the
following equations of motion

δL
δgαβ

= 0 =

[
Rαβ − 1

2
gαβR

]
− 1

2

[
(∂αΦ) (∂βΦ)− 1

2
gαβ (∂γΦ) (∂γΦ)

]

−1

2
e−3Φ/2

[
FαγF γ

β − 1

4
gαβFγδFγδ

]

−eΦ

[
HαγδH γδ

β − 1

6
gαβHγδρHγδρ

]

−1

3
e−Φ/2

[
FαγδσF γδσ

β − 1

8
gαβFγδσρFγδσρ

]
(5.2.12)

δL
δA[3]

= 0 = ∇δ

(
e−Φ/2Fαβγδ

)
(5.2.13)

δL
δB[2]

= 0 = ∇γ

(
eΦHαβγ

)
(5.2.14)

δL
δC[1]

= 0 = ∇β

(
e−3Φ/2Fαβ

)
(5.2.15)

δL
δΦ

= 0 = ¤Φ +
1

24
e−Φ/2FαβγδFαβγδ

−1

3
eΦHαβγHαβγ +

3

8
e−3Φ/2FαβFαβ (5.2.16)
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Note of course that, as long as the ten dimensional metric and fields
satisfy the Einstein frame equations of motion, they also satisfy the string
frame EOM. Thus, since the string frame demonstrates more clearly the
relations between the D-branes in ten dimensions, I will use the string frame
reduction in the following sections, but will check the ten dimensional fields
versus the above EOM in the Einstein frame.

5.3 Supersymmetric Solutions

In [28, 29] several new supersymmetric M-brane solutions were found. Here,
due to space considerations, I will only demonstrate two such solutions - the
solution found by embedding two Taub-NUT metrics into the eight extra
dimensions space of an M2 brane, and the solution found by embedding a
Taub-NUT metric into the five extra dimensions space of an M5 brane. Other
possible solutions include embedding an Eguchi-Hanson metric, embedding
TN4 ⊗ Eguchi-Hanson, and embedding an Eguchi-Hanson ⊗ Eguchi-Hanson.

5.3.1 M2 Brane with TN4 ⊗ TN4 embedded

Several localized and supersymmetric M2 brane solutions are possible through
embedding Hyper-Kähler metrics into the eleven dimensional metric equa-
tions. The case of embedding one four dimensional Taub-NUT metric was
done by Cherkis and Hashimoto [27]. Here, I consider embedding two four
dimensional Taub-NUT metrics. The metric is then

ds2
11 = H(r1, r2)

−2/3
(−dt2 + dx2

1 + dx2
2

)
+ H(r1, r2)

1/3
(
ds2

tn1
+ ds2

tn2

)

Ftx1x2ri
= − 1

2H2

∂H

∂ri

(5.3.1)

where the TN metrics can be written in one of two forms:

ds2
tni

=
1

fi(ri)
[dΨi + 2ni cos(θi)dφi]

2 + fi(ri)dr2

+(r2
i − n2

i )
(
dθ2

i + sin2(θi)dφ2
i

)
(5.3.2)

fi(ri) =
ri + ni

ri − ni
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or

ds2
tni

=
(4ni)

2

f̃i(ri)

[
dψi +

1

2
cos(θi)dφi

]2

+f̃i(ri)
(
dr2

i + r2
i

(
dθ2

i + sin2(θi)dφ2
i

))
(5.3.3)

f̃i(ri) = 1 +
2ni

ri

One can go from (5.3.2) to (5.3.3) by taking Ψi → 4niψi, ri → ri − ni. The
form (5.3.2) is more useful for checking the supersymmetry of the solutions,
and (5.3.3) is more useful for the reduction of the solution down to ten
dimensions, as the period of ψi is 2π. (5.3.1) can be checked to solve the
eleven dimensional equations of motion (5.1.4). Thus, with (5.3.3) the ranges
of the coordinates are {ri ∈ [0,∞)}, {ψi, φi ∈ [0, 2π]} and {θi ∈ [0, π]}.

The metric (5.3.1) satisfies the eleven dimensional equations of motion if
the following differential equation for the Harmonic function is satisfies

0 = (r1 + 2n1)
∂H(r1, r2)

∂r2

+
r2(r1 + 2n1)

2

∂2H(r1, r2)

∂r2
2

+(r2 + 2n2)
∂H(r1, r2)

∂r1

+
r1(r2 + 2n2)

2

∂2H(r1, r2)

∂r2
1

(5.3.4)

This equation is separable, and a suitable choice for the harmonic function
is H(r1, r2) = 1 + QM2R1(r1)R2(r2). With this choice, as r1, r2 → ∞, the
harmonic function can be chosen to approach unity. Substitution of this
function into (5.3.4) gives two differential equations

0 = 2
dRi(ri)

dri

+ ri
d2Ri(ri)

dr2
i

± c2(ri + 2ni)Ri(ri) (5.3.5)

where each equation is set equal to either ±c2 so that they both sum to zero.
One of the equations will produce a complex solution of the form (in full)

R1(r1) =
C1

r1

WM

(
−in1c,

1

2
, 2icr1

)
+

C2

r1

WW

(
−in1c,

1

2
, 2icr1

)
(5.3.6)

= D1e
−icr1M (1 + icn1, 2, 2icr1)

+D2e
−icr1U (1 + icn1, 2, 2icr1) (5.3.7)

where WM,W are the Whittaker M, W functions, and M,U are the Kummer
M,U functions (see [67] for details). We need the part of the solution that is
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finite at r = 0, and undergoes damped oscillations and vanishes as r → ∞.
Thus, the constants C2 = D2 = 0. Similarly, the other differential equation
will produce a real (full) solution of

R2(r2) =
C3

r2

WM

(
−cn2,

1

2
, 2cr2

)
+

C4

r2

WW

(
−cn2,

1

2
, 2cr2

)
(5.3.8)

= D3e
−cr2M(1 + cn2, 2, 2cr2)

+D4e
−cr2U(1 + cn2, 2, 2cr2) (5.3.9)

Here again we want the solution that is finite at r = 0 and vanishes at r → 0,
so C3 = D3 = 0.

The most general solution is the product of the exponentially decaying
real solution and the damped oscillating complex solution, which must be
summed over all possible values of c,

H(r1, r2) (5.3.10)

= 1 + QM2

∫ ∞

0

dc f(c)e−icr1M (1 + icn1, 2, 2icr1) e−cr2U(1 + cn2, 2, 2cr2)

Here, the function f(c) is present because this solution must match the so-
lution in the near horizon limit. The metric of the transverse space in the
near horizon limit (ri ¿ ni) reduces to R4 ⊗R4, with

ds2 = dz2
1 + z2

1dΩ2
3 + dz2

2 + z2
2dΩ′2

3 (5.3.11)

(where z2
i = 8niri) and hence, near the horizons of the Taub-NUT spacetimes,

the metric function (5.3.10) should coincide with the solution for an M2-
brane with a flat transverse space - (1 + QM2/R

6), where R =
√

r2
1 + r2

2.
This means,

lim
ri¿ni

∫ ∞

0

dc f(c)e−icr1M (1 + icn1, 2, 2icr1) e−cr2U(1 + cn2, 2, 2cr2)

=
1

(z2
1 + z2

2)
3

Here one can use the limiting values on hypergeometric and confluent hyper-
geometric functions [67], this can be re-written

∫ ∞

0

dc f(c)
iI1

(
2ic
√

2n1r1

)

c

2K1

(
2c
√

2n2r2

)

cΓ(cn2)
=

√
2n1r1

√
2n2r2

512 (n1r1 + n2r2)
3 (5.3.12)
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Integrating the left-hand side with f(c) = −(ic5Γ(cn2)/64) gives the right-
hand side, so the complete harmonic metric function is

H(r1, r2) = 1 (5.3.13)

+ QM2

∫ ∞

0

dc
c5Γ(cn2)

64
e−icr1M (1 + icn1, 2, 2icr1) e−cr2U(1 + cn2, 2, 2cr2)

Note again that taking c → ic will simply switch the solutions R1 ↔ R2.

Supersymmetry

The supersymmetry of the solution must also be checked. Here, equation
(5.1.6) is used to generate eleven equations, that must be checked separately.
The veilbeins are given by

et̂ = H(r1, r2)
−1/3dt , ex̂i = H(r1, r2)

−1/3dxi

eψ̂i =
H(r1, r2)

1/6

F (ri)
[dψi + 2ni cos(θi)dφi]

er̂i = H(r1, r2)
1/6F (ri)dri

eθ̂i = H(r1, r2)
1/6

√
r2
i − n2

i dθi

eφ̂i = H(r1, r2)
1/6

√
r2
i − n2

i sin(θi)dφi

where I am currently using (5.3.2) for the Taub-NUT metric, and have defined
F 2(ri) ≡ F 2

i = f(ri). These veilbeins can be used in the Cartan algebra
(5.1.7) to calculate the spin-connection coefficients ωmab, and along with the
four-form field strengths and the use of the Clifford algebra, we get eleven
equations. The first four, from m = t, x1, x2;

0 =
Γt̂r̂1

6H3/2F1

∂H

∂r1

[
1 + Γt̂x̂1x̂2

]
ε +

Γt̂r̂2

6H3/2F2

∂H

∂r2

[
1 + Γt̂x̂1x̂2

]
ε (5.3.14)

0 =
Γr̂1x̂1

6H3/2F1

∂H

∂r1

[
1 + Γt̂x̂1x̂2

]
ε +

Γr̂2x̂1

6H3/2F2

∂H

∂r2

[
1 + Γt̂x̂1x̂2

]
ε (5.3.15)

0 =
Γr̂1x̂2

6H3/2F1

∂H

∂r1

[
1 + Γt̂x̂1x̂2

]
ε +

Γr̂2x̂2

6H3/2F2

∂H

∂r2

[
1 + Γt̂x̂1x̂2

]
ε (5.3.16)

These three equations are zero through the use of the projection operator
[
1 + Γt̂x̂1x̂2

]
ε = 0 (5.3.17)
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This projection operator will remove half of the supersymmetry.
The two equations from m = ri, i = 1, 2 require the Killing spinor to be

εH−1/6ε′, and give (for r1; for r2, let r1 ↔ r2)

0 = − 1

6H

∂H

∂r1

[
1 + Γt̂x̂1x̂2

]
ε +

F1Γ
r̂1r̂2

12HF2

∂H

∂r2

[
1 + Γt̂x̂1x̂2

]
ε (5.3.18)

This is again zero using (5.3.17). The final six equations are from m =
ψi, θi, φi (where i, j = 1, 2, i 6= j, and no sum over repeated indices)

0 =

{
∂ψi

ε− 1

2F 3
i

dFi

dri

Γψ̂ir̂iε +
ni

2F 2
i (r2

i − n2
i )

Γθ̂iφ̂iε

}
(5.3.19)

+
Γψ̂ir̂i

12HF 2
i

∂H

∂ri

[
1 + Γt̂x̂1x̂2

]
ε +

Γψ̂ir̂j

12HFiFj

∂H

∂rj

[
1 + Γt̂x̂1x̂2

]
ε

0 =

{
∂θi

ε− riΓ
r̂iθ̂i

2Fi

√
r2
i − n2

i

ε +
niΓ

ψ̂iφ̂i

2Fi

√
r2
i − n2

i

ε

}
(5.3.20)

−
√

r2
i − n2

i Γ
r̂iθ̂i

12HFi

∂H

∂ri

[
1 + Γt̂x̂1x̂2

]
ε−

√
r2
i − n2

i Γ
r̂j θ̂i

12HF2

∂H

∂rj

[
1 + Γt̂x̂1x̂2

]
ε

0 =

{
∂φi

ε− ni sin(θi)

2Fi

√
r2
i − n2

i

Γφ̂iθ̂iε− ri sin(θi)

2Fi

√
r2
i − n2

i

Γr̂iφ̂iε− cos(θi)

2
Γθ̂iφ̂iε

+
n2

i cos(θi)

F 2
i (r2

i − n2
i )

Γθ̂iφ̂iε− ni cos(θi)

F 3
i

dFi

dri

Γψ̂ir̂iε

}
(5.3.21)

+

{
ni cos(θi)

6HF 2
i

∂H

∂ri

Γψ̂ir̂i −
√

r2
i − n2

i sin(θi)

12HFi

∂H

∂ri

Γr̂iφ̂i

} [
1 + Γt̂x̂1x̂2

]
ε

+

{
ni cos(θi)

6HFiFj

∂H

∂rj

Γψ̂ir̂j −
√

r2
i − n2

i sin(θi)

12HFj

∂H

∂rj

Γr̂j φ̂i

} [
1 + Γt̂x̂1x̂2

]
ε

The projection operator (5.3.17) can again be used, and substituting in
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F1, F2, these reduce to

0 = ∂ψi
ε +

ni

2(ri + ni)2
Γψ̂ir̂iε +

ni

2(ri + ni)2
Γθ̂iφ̂iε (5.3.22)

0 = ∂θi
ε +

ri

2(ri + ni)
Γr̂iθ̂iε− ni

2(ri + ni)
Γψ̂iφ̂iε (5.3.23)

0 = ∂φi
ε− ni sin(θi)

2(ri + ni)
Γψ̂iθ̂iε− ri sin(θi)

2(ri + ni)
Γr̂iφ̂iε− cos(θi)

2
Γθ̂iφ̂iε

+
n2

i cos(θi)

(ri + ni)2
Γθ̂iφ̂iε +

n2
i cos(θi)

(ri + ni)2
Γψ̂ir̂iε (5.3.24)

These are solvable through a Lorentz rotation and using the projection op-
erators

Γψ̂1r̂1θ̂1φ̂1ε = ε (5.3.25)

Γψ̂2r̂2θ̂2φ̂2ε = ε (5.3.26)

This would suggest that the supersymmetry is reduced by a further quarter;
however, in eleven dimensions, (5.3.17) and (5.3.25) imply the third projec-
tion operator, and so the use of these two projection operators only reduces
the supersymmetry by a half. Since the use of these projection operators
makes (5.3.22) zero, ε 6= ε(ψ), and all that remains is the Lorentz transfor-
mation(s) to solve (5.3.23) and (5.3.24) (for i = 1, 2, again no sum). This
rotation is given by

ε = exp

{
−θi

2
Γψ̂iφ̂i

}
exp

{
φi

2
Γθ̂iφ̂i

}
ε̃ (5.3.27)

This transformation can be calculated from (5.3.23) and (5.3.24) by using
the Baker-Campbell-Hausdorff identity

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + . . . (5.3.28)

along with the following easily calculated identity

[
Γab, Γcd

]
= 2ηadΓbc + 2ηbcΓad − 2ηacΓbd − 2ηbdΓac (5.3.29)

Thus, with the use of the projection operators, we have reduced the total
preserved supersymmetry of the solution to 1/4.
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Kaluza-Klein Reduction

Now, dimensionally reducing the solution along one of the ψi directions us-
ing the ansatz (5.2.7) will reduce (5.3.1) to a type-IIA string theory in ten
dimensions. Since there are two Taub-NUT metrics, each with a ψi with a
period of 2π, we can compactify to ten dimensions using either of the ψi’s.
Since either choice will produce the same results (with the indexes’ (1 ↔ 2)
switched), I’ll compactify on ψ2. The radius of the circle as r →∞ with line

element R2
∞

[
dψ2 + 1

2
cos θ2dφ2

]2
is thus

R∞ = 4n2 (5.3.30)

The reduction gives the RR fields

C[1] = 2n2 cos(θ2)dφ2

A[3] =
1

H(r1, r2)
dt ∧ dx1 ∧ dx2 (5.3.31)

and the NSNS fields

Φ =
3

4
ln

(
H1/3

f̃2

)
(5.3.32)

Bµν = 0

with metric

ds2
10 = H−1/2f̃

−1/2
2

(−dt2 + dx2
1 + dx2

2

)
+ H1/2f̃

−1/2
2 ds2

TN1

+H1/2f̃
1/2
2

(
dr2

2 + r2
2

(
dθ2

2 + sin2(θ2)dφ2
2

))
(5.3.33)

This is a D2⊥D6(2) brane system1 with H(r1, r2) = (5.3.13). This solution
solves the ten dimensional EOM2.

Decoupling Limit

The dynamics of the D2 brane decouple from the bulk at low energies, and
the region close to the D6 branes corresponds to a range of energy scales
governed by the IR fixed point [69] (See also [45, 70]). In the IR region,

1D2⊥D6(2) means the D2 brane and the D6 brane intersect along 2 coordinates.
2The field Cn is what determines that this is a D6 brane - see [68], eq. (14).
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one can discuss the dependence on the number of branes. Here, in order to
obtain a reliable classical geometric description, the number of D2 branes,
N2, must be large.

The different phases of the theory can then be seen by varying the number
of D6 branes relative to N2. For N6 < N2, the theory is weakly coupled, and
eleven dimensional, with an AdS4× the orbifold S7/ZN6 geometry. Increasing
N6, one goes to a ten dimensional phase, where the geometry is now AdS4

fibred over a six dimensional compact base manifold X6. When N6 À N2,
we get a very highly curved ten dimensional geometry, where it is expected
that this means that there is a transition to a weakly coupled phase of the
gauge theory.

Note that the field theory on the D2 branes (extended in the x0 . . . x2

directions), in the absence of the D6 branes, is three dimensional N = 8
super Yang-Mills (SYM) theory, with U(N2) gauge group. When the D6
branes are added (extended along the x0 . . . x6 directions), one breaks half
the susy, meaning that there is now N = 4 susy on the D2 branes. This is
shown above by the required use of the first projection operator (5.3.17).

In the solution presented above, I am interested in the D2 branes localized
on the D6 branes. Note that as can be seen from the above reduction down
to ten dimensions, a set of N6 coinciding D6 branes corresponds to a Kaluza-
Klein monopole in the M-Theory, given by the C[1] field.

Thus, near the D2 brane (H À 1), the field theory limit is given by

g2
Y M2 = gs`

−1
s = fixed (5.3.34)

In the field theory limit, the gauge couplings in the bulk go to zero and so
the dynamics in the bulk decouple. The radial coordinates of the metric ri

are scaled so that
Ui =

ri

`2
s

(5.3.35)

are fixed (i = 1, 2). This will change the harmonic function for the D6 brane
to the following

f2(r2) =

(
1 +

2n2

r2

)
=

(
1 +

gs`s

2r2

)
=

(
1 +

gs

2`sU2

)

=

(
1 +

g2
Y M2N6

2U2

)
= f(U2) (5.3.36)

where I have used the asymptotic radius of the eleventh dimension R∞ =
4n2 = gs`s. I have also generalized to the case of N6 D6 branes.
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The D2 harmonic function (5.3.13) can be shown to scale as H(Y, U2) =
`−4
s h(Y, U2), with h(U1, U2) given by

h(TN)2(U1, U2) =
π2N2g

2
Y M2

2

∫ ∞

0

dP P 5Γ

(
g2

Y M2P

4

)
e−iPU1 · (5.3.37)

·M(1 + iPm1, 2, 2iPU1)e
−PU2U

(
1 +

g2
Y M2P

4
, 2, 2PU2

)

where I have rescaled n1 = m1`
2
s and c = P`−2

s , and the M2 brane charge has
been rewritten

QM2 = 32π2N2`
6
p = 32π2N2g

2
Y M2`

8
s (5.3.38)

Then, the supersymmetric metric in ten dimensions is given by inserting
(5.3.36), (5.3.37) into (5.3.33), (where the scaling n1 = m1`

2
s has to be used

in the ds2
TN1

metric)

ds2
10

`2
s

= h(U1, U2)
−1/2f(U2)

−1/2
(−dt2 + dx2

1 + dx2
2

)

+h(U1, U2)
1/2f(U2)

−1/2ds2
TN1

(5.3.39)

+h(U1, U2)
1/2f(U2)

1/2
(
dU2

2 + U2
2 (dθ2

2 + sin2(θ2)dφ2
2)

)

where note that there is only an overall factor of `2
s in this metric. This is

expected for a supergravity solution dual to a CFT.

5.3.2 M5 Brane with TN4 embedded

One can also embed the Taub-NUT solutions (5.3.2) or (5.3.3) into the metric
for an M5-brane in eleven dimensions. The metric will then be

ds2
M5 = H(y, r)−1/3

(−dt2 + dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5

)

+H(y, r)2/3
(
dy2 + ds2

TN

)
(5.3.40)

If (5.3.2) is used, then the four-form field strength has the non-zero compo-
nents

Fψθφy = −(r − n)2 sin(θ)

2

∂H

∂r
, Fψθφr =

(r2 − n2) sin(θ)

2

∂H

∂y
(5.3.41)

If instead one uses (5.3.3), the form of the field strength components is given
by

Fψθφy = 2nr2 sin(θ)
∂H

∂r
, Fψθφr = −2nr(r + 2n) sin(θ)

∂H

∂y
(5.3.42)
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Here, the metric (5.3.40) (with (5.3.3)) solves the eleven dimensional equa-
tions of motion if the harmonic function H(y, r) solves the differential equa-
tion

0 =
r

2(r + 2n)

∂2H

∂r2
+

1

r + 2n

∂H

∂r
+

1

2

∂2H

∂y2
(5.3.43)

This equation is separable - substituting in H(y, r) = 1 + QM5Y (y)R(r)
(where QM5 is the M5-brane charge), the differential equations to be solved
are

0 =
d2Y (y)

dy2
+ c2Y (y) (5.3.44)

0 = r
d2R(r)

dr2
+ 2

dR(r)

dr
− c2(r + 2n)R(r) (5.3.45)

The solutions to these two equations are (where note (5.3.45) is the same as
in the M2 case),

Y (y) = C1 cos(cy) + C2 sin(cy) (5.3.46)

R(r) = D1e
−crM(1 + cn, 2, 2cr) + D2e

−crU(1 + cn, 2, 2cr)(5.3.47)

As in the M2 case, we again require that the solution decay for large r, and
hence D1 = 0. Thus, the final solution for the harmonic function is again a
superposition

H(y, r) = 1 + QM5

∫ ∞

0

dc (f1(c) cos(cy) + f2(c) sin(cy)) e−crU(1 + cn, 2, 2cr)

(5.3.48)
Also as in the M2 case, the Taub-NUT metric becomes flat

ds2
TN = dz2 + z2dΩ2

3 (5.3.49)

Thus, H(y, r) must match the flat transverse-space solution

lim
z2¿8n2

QM5

∫ ∞

0

dc (f1(c) cos(cy) + f2(c) sin(cy)) e−crU(1 + cn, 2, 2cr)

= QM5

∫ ∞

0

dc (f1(c) cos(cy) + f2(c) sin(cy)) e−cr 2K1(2c
√

2nr)

cΓ(cn)
√

2nr

=
QM5

R3
(5.3.50)
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where R =
√

y2 + z2 =
√

y2 + 8nr. This requires that C2 = 0 in (5.3.46),

and gives f1(c) = c2Γ(cn)
2π

, and so the final solution is

H(y, r) = 1 + QM5

∫ ∞

0

c2Γ(cn)

2π
cos(cy)e−crU(1 + cn, 2, 2cr) (5.3.51)

Another solution is also possible here - one can let c → ip to change
the form of the differential equations (5.3.44) and (5.3.45). This will give a
second solution

H̃(y, r) = 1 +
QM5

2

∫ ∞

0

dpp2eiprM(1 + ipn, 2, 2ipr)e−py (5.3.52)

arrived at through exactly the same steps as (5.3.51).

Supersymmetry

The supersymmetry must again be checked. Using the (5.3.2) form for the
Taub-NUT metric, and hence (5.3.41), one again gets eleven equations that
must be solved for the Killing spinor. The equations for m = t,m = xi

(i = 1, . . . 5) are

0 =
Γt̂ŷ

12H3/2

∂H

∂y

[
1− Γŷψ̂r̂θ̂φ̂

]
ε +

Γt̂r̂

12H3/2F

∂H

∂r

[
1− Γŷψ̂r̂θ̂φ̂

]
ε(5.3.53)

0 = − Γx̂iŷ

12H3/2

∂H

∂y

[
1− Γŷψ̂r̂θ̂φ̂

]
ε− Γx̂ir̂

12H3/2F

∂H

∂r

[
1− Γŷψ̂r̂θ̂φ̂

]
ε(5.3.54)

where again I have taken F (r)2 = f(r). These two equations are solvable
using the projection operator

[
1− Γŷψ̂r̂θ̂φ̂

]
ε = 0 (5.3.55)

or, because we are in eleven dimensions, this can be re-written as

[
1− Γt̂x̂1x̂2x̂3x̂4x̂5

]
ε = 0 (5.3.56)

Thus, there is half of the supersymmetry remaining.
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After requiring the Killing spinor have the form ε = H−1/12ε′, the equa-
tions for m = y,m = r are

0 = − 1

12H

∂H

∂y

[
1− Γŷψ̂r̂θ̂φ̂

]
ε +

Γŷr̂

6HF

∂H

∂r

[
1− Γŷψ̂r̂θ̂φ̂

]
ε (5.3.57)

0 = − 1

12H

∂H

∂r

[
1− Γŷψ̂r̂θ̂φ̂

]
ε− FΓŷr̂

6H

∂H

∂y

[
1− Γŷψ̂r̂θ̂φ̂

]
ε (5.3.58)

These are zero due to (5.3.55). Finally, the equations for m = ψ, θ, φ take
the same form as in the M2 case above; (5.3.22), (5.3.23) and (5.3.24), and
through the use of the same projection operator

Γψ̂r̂θ̂φ̂ε = ε (5.3.59)

and the lorentz rotation

ε = exp

{
−θ

2
Γψ̂φ̂

}
exp

{
φ

2
Γθ̂φ̂

}
ε̃ (5.3.60)

these are again solvable. Thus, since two projection operators were needed
to solve the Killing spinor equations, 1/4 of the supersymmetry is preserved
by this M5 solution.

Kaluza Klein Reduction

This metric can also be reduced to ten dimensions. The radius of the circle
of compactification is again found from the line element R2

∞
[
dψ + 1

2
cos(θ)

]2

R∞ = 4n = gs`s (5.3.61)

using (5.3.3). The reduction to ten dimensions will give the NSNS dilaton as

Φ =
3

4
ln

{
H3/2

ν2f

}
(5.3.62)

The NSNS field strength from the NS5-brane that appears because of the
reduction is given by

H[3] =
Fθφyψ

4n
dθ ∧ dφ ∧ dy +

Fθφrψ

4n
dθ ∧ dφ ∧ dr (5.3.63)
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which gives the NSNS two-form field

B[2] = r2 cos(θ)
∂H

∂r
dy ∧ dφ + r(r + 2n) cos(θ)

∂H

∂y
dφ ∧ dr (5.3.64)

The RR fields are

C[1] = 2n cos(θ)dφ (5.3.65)

A[3] = 0 (5.3.66)

where C[1] is the field associated with the D6 brane. The metric in ten
dimensions is

ds2
10 =

1

ν

[
f−1/2

(−dt2 + dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5

)
+ Hf−1/2dy2

+Hf 1/2
(
dr2 + r2dΩ2

2

)]
(5.3.67)

It can be seen from the metric, as well as (5.3.64), (5.3.65), that this is a
NS5⊥D6(5) brane solution. This ten dimensional solution solves the equa-
tions of motion for ten dimensional supergravity.

Decoupling Limit

The dynamics of the type IIA NS5 branes found above in equation (5.3.67)
also decouple from the bulk at low energies. Here, near the NS5 brane
(H À 1), one is interested in the behaviour of the NS5-branes in the limit
where the string coupling vanishes,

gs → 0 , `s = fixed (5.3.68)

In these limits, in order to keep the radial coordinates fixed, they are rescaled
to

Y =
y

gs`2
s

, U =
r

gs`2
s

(5.3.69)
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This will cause the harmonic functions to become (where R∞ = 4n = gs`s is
also used)

f(r) = 1 +
2n

r
= 1 +

N6

2U`s

≡ f(U) (5.3.70)

HTN4(Y, U) ≈ QM5

∫
dc

c2Γ(cn)

2π
cos(cy)e−crU(1 + cn, 2, 2cr)

=
πN5

g2
s`

3
s

∫
dP P 2Γ

(
P

4`s

)
cos(PY )e−PUU

(
1 +

P

4`s

, 2, 2PU

)

=
h(Y, U)

g2
s

(5.3.71)

where I have generalized to the case of N5 NS5-branes and N6 D6-branes,
`p = g

1/3
s `s has been used to rewrite

QM5 = πN5`
3
p = πN5gs`

3
s (5.3.72)

and c has been rescaled so that c = Pg−1
s `−2

s . The decoupled metric is then
found by substituting in (5.3.70), (5.3.71) and the above limits into the metric
(5.3.67), to give

ds2
10 = f−1/2(U)

(−dt2 + dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5

)
(5.3.73)

+`2
s

[
h(Y, U)f−1/2(U)dY 2 + h(Y, U)f 1/2(U)

(
dU2 + U2dΩ2

2

)]

Though outside the scope of this thesis, it should be noted that in the
decoupling limit, the decoupled free theory on the NS5-branes should then
be a little string theory. A little string theory is a six dimensional, non-
gravitational theory, where modes on the 5-brane interact amongst them-
selves, decoupled from the bulk [71].

5.4 Non-Supersymmetric Solutions

There are quite a few solutions possible that don’t preserve any supersymme-
try. Embedding a six or eight dimensional Taub-NUT metric, or a four, six or
eight dimensional Taub-Bolt (TB) metric (or a TN4 and a TB4, or two TB4
metrics, or a TB4 with an Eguchi-Hanson metric) into an M2 brane metric
will give a solution to the eleven dimensional equations of motion, but will
not preserve any supersymmetry. Also, embedding a TB4 metric into the M5
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brane metric provides another non-supersymmetric example. The solution I
present below is the embedding of the eight dimensional Taub-NUT metric
into the transverse space of an M2 brane.

5.4.1 M2 Brane with TN8

The metric for an M2 brane with an eight dimensional Taub-NUT metric
background is given by

ds2 = H−2/3(r)
(−dt2 + dx2

1 + dx2
2

)
+ H1/3(r)ds2

tn8 (5.4.1)

Ftx1x2y = − 1

2H2

∂H

∂y
, Ftx1x2r = − 1

2H2

∂H

∂r

where

ds2
tn8 =

(8n)2

f(r)

[
dψ +

1

4
cos(θ1)dφ1 +

1

4
cos(θ2)dφ2 +

1

4
cos(θ3)dφ3

]2

+f(r)dr2 + r(r + 2n)
(
dΩ2

2(1) + dΩ2
2(2) + dΩ2

2(3)

)

f(r) =
5(r + 2n)3

r(r2 + 6nr + 10n2)
(5.4.2)

dΩ2
2(i) = dθ2

i + sin2(θi)dφ2
i

Note that with this form of the Taub-NUT metric, the minimum value of r
is zero. This metric is a solution to the eleven dimensional supergravity field
equations if the metric function H(r) satisfies the differential equation

0 = r(r2 + 6rn + 10n2)
d2H

dr2
+ 2(3r2 + 15rn + 20n2)

dH

dr
(5.4.3)

This has the analytic solution

H(r) =
1

30n2r3
− 3

100n3r2
+

13

500n4r
(5.4.4)

+
1

2500n5

(
12 ln

(
r2

r2 + 6nr + 10n2

)
− 7 tan−1

( r

n
+ 3

)
+

7π

2

)

The small r/large r behaviour of this solution is

lim
r→0

H(r) ∼ 1

r3

lim
r→∞

H(r) ∼ 1

r5
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Kaluza-Klein Reduction

Here, the reduction down to ten dimensions gives the NSNS fields

Φ =
3

4
ln

(
H1/3

f

)
(5.4.5)

Bαβ = 0

and RR fields

C[1] = 2n cos(θ1)dφ1 + 2n cos(θ2)dφ2 + 2n cos(θ3)dφ3 (5.4.6)

A[3] =
1

H
dt ∧ dx1 ∧ dx2 (5.4.7)

with the metric in ten dimensions given by

ds2
10 = H−1/2f−1/2

(−dt2 + dx2
1 + dx2

2

)
(5.4.8)

+H1/2f−1/2
(
fdr2 + r(r + 2n)

(
dΩ2

2(1) + dΩ2
2(2) + dΩ2

2(3)

))

This ten dimensional solution is a D2 brane localized at a point of the seven
dimensional background space.

Note that there is of course no extra D-brane for the D2 brane to decouple
from in this case.
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Chapter 6

Discussion and Closing

6.1 Review

The Taub-NUT metric has been shown to have several useful applications to
M-theory constructions. As I discussed in chapter 3, the Taub-NUT space-
time (in any d + 1 (even) dimension) possesses many features that render it
a non-trivial metric, such as its closed timelike curves and the quasi-regular
singularities. The metric also has the “NUT” charge that acts as a magnetic
type of mass, giving rise to Misner string singularities.

The Euclidean form of the metric gives rise to two separate solutions; the
NUT solution, when the fixed point set of ∂T is zero dimensional, and the
Bolt solution that exists when the fixed point set of ∂T is (d−1) dimensional.

The Taub-NUT metric has been shown to be a non-trivial test of both
the AdS/CFT and the dS/CFT conjectures, along with some interesting
consequences when one has a positive cosmological constant. Also, Taub-
NUT metrics provide new, localized brane solutions when embedded into
eleven dimensional supergravity. I recap these results now.

6.1.1 Taub-NUT-AdS

When a negative cosmological constant is added to the metric, the resulting
Taub-NUT-AdS metrics provide a non-trivial, successful test of the AdS/CFT
correspondence, that posits the relationship between a (d + 1) dimensional
AdS metric in the bulk and its field theory dual in d dimensions on the
boundary. There is consistency between the thermodynamic results I cal-
culated and the Nöether -charge approach, despite the a priori distinction
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between the two approaches (I show the specific six dimensional example in
section 4.2). Several of the results should be re-emphasized.

First, I was able to obtain a general formula for the action and entropy,
that applies to any even dimension. This allows an analysis of the TNAdS
spacetimes in general. For the NUT case in (d + 1) dimensions the thermo-
dynamics vary depending if one is in 4k or 4k + 2 dimensions (where k is a
positive integer). In 4k dimensions the entropy and specific heat will both
be positive inside a specific range,

`

√
(n− 3)

n(n− 1)
< N < `

√
(n− 3)

(n− 1)(n− 2)
(6.1.1)

(where (n = d + 1) here). Outside of this range, one or the other of the
entropy or specific heat becomes negative, and hence the solution is no longer
considered to be thermodynamically stable. In 4k + 2 dimensions, no such
range exists; the entropy or specific heat or both are always negative for a
given value of N/`. The Bolt case, on the other hand, always has a region of
thermodynamic stability, for both the upper and lower branch solutions.

Also, recall that the Nöether method involves the subtraction of results
from a background metric, in order to make all quantities well-defined. While
a Nöether result for general d + 1 dimensions was not obtained in [16], some
general trends were noticed that bear mentioning. Based on the results in
4, 6, 8 and 10 dimensions, the Nöether charge can be conjectured to be

Q =
(d− 1)(4π)(d−1)/2

8π
(mb −mn) = MBolt −MNUT (6.1.2)

for general d + 1 dimensions. From this, the entropy is calculated through
the first law, up to an overall constant. Again generalizing from the results
in 4 to 10 dimensions, the entropy can be conjectured to be

SQ =
4π

κ
(SBolt − SNUT) + c` (6.1.3)

where c` is a constant not depending on N , but it can depend on `.
The results of the calculation of the entropy from the counterterm ap-

proach give negative entropy, and in the case of the NUT solution this hap-
pens over quite a broad range, which is potentially troubling. However, the
subtraction of the NUT entropy from the Bolt entropy (6.1.3) will always
give a positive result.
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6.1.2 Taub-NUT-dS

Perhaps the most interesting of the results presented in this thesis are those
calculated from the de Sitter version of the Taub-NUT metric. Recall that
there are two conjectures that apply to asymptotically de Sitter spacetimes.
The first is the Bousso N-bound [19], which states that any asymptotically
dS spacetime will have an entropy no greater than the entropy π`2 of pure dS
with cosmological constant Λ = 3/`2 in (3 + 1) dimensions. The second is
the maximal mass conjecture, based in part upon the N-bound, by Balasub-
ramanian et. al. [21], and states that any asymptotically dS spacetime with
mass greater than dS has a cosmological singularity.

The Taub-NUT-dS metric provides a counter-example to both of these
conjectures for certain ranges of the NUT charge n (or N = in, depending on
which approach one uses), though some of the solutions originally calculated
in [20] have since been shown by Mann and Stelea [44] to be invalid. Specif-
ically, it was shown that there is in fact no NUT solution analogous to the
NUT solution found in the AdS case. The NUT solution at r = N is in fact
not the largest root of the metric in the NUT case, and hence isn’t a valid
solution. The fact that the entropy and conserved mass at r = N satisfy the
first law can be supposed to be a consequence of the fact that the dS-NUT
solution is the analytic continuation ` → i` of the AdS-NUT solution.

Also, the two lower branch bolt solutions found through either the C-
approach or the R-approach are not the largest roots of the lower branches.
There exist two roots of the metric function such that the lower branch
radius lies between these two. Similar to the NUT case, the fact that the
lower branch C- and R-approach solutions solve the first law is a consequence
of the fact that they can be found through analytic continuations of the lower
branch TNAdS case.

Finally, it was also shown by Mann and Stelea [44] that the C-approach
and R-approach quantities are in fact exactly the same, and are simply ana-
lytic continuations of one another.

Despite these new findings, the surviving thermodynamic properties found
from the Taub-NUT-dS solution provide successful counter-examples to the
two asymptotically dS conjectures, as shown in section 4.3. Also note that,
as in the AdS case, the thermodynamic behaviour of the solutions in 4k di-
mensions are qualitatively similar to each other, and the behaviour of the
solutions in 4k + 2 are also similar to each other.

The reason for the violation of the N-bound by the TNdS spacetime is due
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to the presence of the Misner string. In any asymptotically dS spacetime, the
usual entropy/area law S = A/4 is respected. However, the Misner string
gives an extra contribution to the entropy of the TNdS spacetime [14], and
it is this extra contribution that violates the N-bound. In the R-approach,
for example, and in four dimensions, the N-bound is violated for almost all
values of n, except near the maximal value nmax = 0.5941`. Note that the
specific heat is only positive for 0.2886751346` < n < 0.5`, and hence the
TNdS metric (R-approach), though it violates the N-bound over a broad
range of n, is only thermodynamically stable for n outside of these values.

Again taking the R-approach as an example, the maximal mass conjecture
is violated for all values of the NUT charge as it can be seen (figure 4.3.1)
that the conserved mass M+

R is always positive.

6.1.3 M-Branes

The embedding of Taub-NUT metrics into eleven dimensional supergravity,
with either an existing M2 or M5 brane present, provides new brane solu-
tions, some of which preserve some supersymmetry, and others completely
breaking supersymmetry. Though I have not presented all of the solutions
found in [28, 29], the results are in appendix C, and include combinations of
embeddings of the Taub-NUT metric in four dimensions, the four dimensional
Eguchi-Hanson metric, and for the M2 branes, higher dimensional Taub-NUT
metrics, though some of the metric function solutions are numerical.

With the M2 branes, the common feature found in all of the cases is that
the brane function is found to be a combination of an exponentially decaying
“radial” function and a damped oscillating one; for example, see equation
(5.3.10) in the case of embedding two TN4 metrics. The radial parts of
these metric functions will diverge near the brane core, and will vanish as ri

approaches infinity.
By reducing these solutions down to ten dimensions, one gets a variety

of fully localized Type IIA string theory D2⊥D6 systems. In all cases in-
volving combinations of the Taub-NUT metric or the Eguchi-Hanson - both
of which have self-dual Riemann curvature - these solutions preserve 1/4 of
the supersymmetry. In all of the other cases, involving the four dimensional
Taub-Bolt metric, or higher dimensional Taub-NUT or Taub-Bolt metrics,
the M-brane and resulting D-brane systems are not supersymmetric. It is in-
teresting to note, however, that even in these non-supersymmetric cases, the
metric functions found display the same behaviour as their supersymmetric
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counterparts.
The metric functions for the M5 brane solutions also display the ex-

ponential decay and damped oscillation combinations. Here, however, the
reduction down to ten dimensions gives rise to localized NS5⊥D6 brane in-
tersections. Again the radial function vanishes far from the M5 brane and
diverges near the brane core. The M5 and NS5⊥D6 configurations found
from embedding the Taub-NUT or Eguchi-Hanson metrics preserve 1/4 of
the supersymmetry; again, though the Taub-Bolt embedding preserves none
of the supersymmetry, the general structure of the brane is the same as in
the supersymmetric cases.

6.2 Closing

In the preceding thesis, I have attempted to provide justification for the
use of Taub-NUT spacetimes in testing M-theory applications such as the
(A)dS/CFT conjectures, as well as expanding our knowledge of supergravity
brane solutions in an attempt to better understand the as yet unknown M-
theory itself. There are, as ever, directions for future work suggested by the
material left out of this work.

It would be interesting to perform an off-shell calculation of the Taub-
NUT-AdS results using both the counterterm approach from the AdS/CFT
as well as the Nöether charge approach, and compare the results so computed.
Also, the use of only the first term of the counterterm action to calculate
the general formula for the action in d + 1 dimensions, though I believe
fully justified, could do with a more rigorous mathematical proof. It would
be interesting to see if one could show that the finite contribution to any
asymptotically AdS spacetime’s action comes only from these first few terms.

As for the dS/CFT, besides the points just noted for the Taub-NUT-
AdS calculations that would also apply, it should be emphasized that the
calculations of the thermodynamic properties here were due to an extension of
the path-integral formulation to regions outside of the cosmological horizon.
This extension was used to justify the Gibbs-Duhem relation S = βM − Icl

in an asymptotically de Sitter spacetime. This involved evaluating the path-
integral between two histories or time-lines, as opposed to the evaluation
between two surfaces as in AdS spacetimes. The justification of the Gibbs-
Duhem relation is accomplished here through thermodynamic arguments, as
in section 2.4, but a more rigorous proof of this dS path-integral remains an
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open problem for future work; the arguments for this approach should be
taken as suggestive evidence, but not fact, until such a proof is presented.

Also, the maximal mass conjecture is just a conjecture - no proof of it has
yet been presented. Before further tests or counterexamples are presented, it
would be instructive to provide a definite proof of the conjecture, as well as
a hard definition of the singularities meant by “cosmological” singularities.

New brane solutions should also be quite easily calculable based on an ex-
tension of the work presented here. For example, more non-supersymmetric
solutions in the form of embedding higher dimensional Eguchi-Hanson met-
rics should certainly be possible. Another consideration that should be taken
into account, though it has been pointed out to me that it would be quite
difficult to do in eleven dimensional supergravity, should be to include the
fermions in a brane solution instead of setting the VEV’s of the fermion
fields to zero. Such a solution, were it possible to find, would be a far more
complete solution to the eleven dimensional equations of motion.

Finally, an exploration of the little string theory found in the decoupling
limit of the NS5-branes of the reduced M5-brane solutions would also be
interesting, in both the type IIA theory and the dual type IIB theory.
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Appendix A

Derivation of Laws of Black
Hole Thermodynamics

Note that the results derived here are drawn from [33], [34] and [39], though
most of the mathematical steps will be shown.

A.1 Surface Gravity

As mentioned in the main text, section 2.1.1, κ is calculated on the horizon of
an arbitrary, stationary black hole. Since the horizon of a black hole is a null
hypersurface, and the Killing vector χα is normal to the horizon, χαχα = 0.
This implies (χγχγ);α is also normal to the horizon, and thus there exists a
function κ such that

(χγχγ)
;α = −2κχα (A.1.1)

Recall that the Lie derivative of a tensor Aαβ with respect to a vector uν is
given by

LuA
αβ = Aαβ

;γu
γ − Aγβuα

;γ − Aαγuβ
γ (A.1.2)

So, take the Lie derivative of (A.1.1),

−2χαLχκ− 2κ
{
χα

;βχβ − χα
;βχβ

}
= Lχ

[
χγ;αχγ + χγχ ;α

γ

]

−2χαLχκ = 2Lχ [χγ;αχγ]

−χαLχκ = 0

Lχκ = 0 (A.1.3)

where the last line follows because χα 6= 0.
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Now, note that (A.1.1) can be rewritten as

κχα = χα;γχ
γ = −χγ;αχα (A.1.4)

and recall the geodesic equation

uα
;βuβ = κuα (A.1.5)

For κ 6= 0, (A.1.5) is the non-affine parameterization. Thus, κ is a measure
of the failure of the Killing parameter v to agree with the affine parameter λ
along null geodesic generators of the horizon, where the Killing parameter v
is defined by

χαv;α = 1 (A.1.6)

If we now define
kα = e−κvχα (A.1.7)

then

kβkα
;β = e−2κv

{
χβχα

;β − χαχβκ;βv − χαχβκv;β

}

= e−2κv {κχα − χα(Lχκ)v − χακ}
kβkα

;β = 0 (A.1.8)

where the second equality follows from using the Lie derivative of a scalar
(κ), (A.1.4) and (A.1.6). This means kα is the affinely parameterized tangent
to the null geodesic generators of the horizon. So, on the horizon, the relation
between λ and v is, for κ 6= 0,

λ ∝ eκv (A.1.9)

Now, recall that, by the Frobenius theorem ([33], pg. 435), a necessary
and sufficient condition that ξα be hypersurface-orthogonal is that ξα satisfy

0 = ξ[α∇βξγ] (A.1.10)

Since, on the horizon of the black hole, χα is hypersurface-orthogonal, we
then have (on the horizon)

0 = χ[α∇βχγ]

0 = 2χα∇βχγ + 2χγ∇αχβ − 2χβ∇αχc

∴ χγ∇αχβ = −2χ[α∇β]χγ (A.1.11)
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If (A.1.11) is now contracted with ∇αχβ, we get

(∇αχβ)χγ(∇αχβ) = −2χ[α∇β]χγ(∇αχβ) = −2(∇αχβ)χα(∇βχγ)

χγ(∇αχβ)(∇αχβ) = −2κχβ(∇βχγ) (by (A.1.4))

χγ(∇αχβ)(∇αχβ) = −2κ2χγ (by (A.1.4))

and thus

κ2 = −1

2
(∇αχβ)(∇αχβ) (A.1.12)

which is (2.1.3).

A.2 Zeroth Law

The Zeroth Law of black hole thermodynamics is that this surface gravity κ
is constant over the surface of the horizon. This can be shown as follows (see
also [33, 34]).

εαβγδχδ is tangent to the horizon, since χγ(ε
αβγδχδ) = 0. Thus, εαβγδχδ∇γ ≡

χ[δ∇γ] can be applied to any equation holding on the horizon.
Also, for any Killing field, the relation

∇α∇βξγ = −R δ
βγα ξδ (A.2.1)

is true. Thus, apply χ[δ∇γ] to (A.1.4);

χαχ[δ∇γ]κ︸ ︷︷ ︸
b′

+ κχ[δ∇γ]χα︸ ︷︷ ︸
a′

= (χ[δ∇γ]χ
β)∇βχα + χβχ[δ∇γ]∇βχα

= (χ[δ∇γ]χ
β)∇βχα︸ ︷︷ ︸

a

+ χβR σ
αβ[γ χδ]χσ︸ ︷︷ ︸

b

(A.2.2)

But, a can be written

a = (χ[δ∇γ]χ
β)∇βχα = −1

2
(χβ∇δχγ)(∇βχα) (by (A.1.11))

= −1

2
κχα∇δχc (by (A.1.4))

= κχ[δ∇γ]χα (by (A.1.11))

= a′ (A.2.3)
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and so (A.2.2) becomes

χαχ[δ∇γ]κ = χβR σ
αβ[γ χδ]χσ (A.2.4)

Applying χ[δ∇σ] to (A.1.11) gives

(χ[δ∇σ]χγ)∇αχβ︸ ︷︷ ︸
A

+ χγ(χ[δ∇σ]∇αχβ)︸ ︷︷ ︸
B

= −2(χ[δ∇σ]χ[α)∇β]χγ︸ ︷︷ ︸
A′

− 2(χ[δ∇σ]∇[βχ|c|)χα]︸ ︷︷ ︸
B′

Here, A will cancel A′ after repeated use of (A.1.11), and using (A.2.1),

−χγR
ρ

αβ[σ χδ]χρ = 2χ[αR ρ
β]γ[σ χδ]χρ (A.2.5)

Next, multiplying this by gγσ, and contracting over γ, σ, the LHS will vanish,
and after some more algebra,

−χ[αR ρ
β] χδχρ = χ[αR ρ

β]γδ χγχρ (A.2.6)

Note that the RHS of (A.2.4) is equal to the RHS of (A.2.6), and so we can
equate the LHS’s, to give

χ[δ∇γ]κ = −χ[δR
ρ

γ] χρ (A.2.7)

Now, from the Raychaudhuri equation (see eq’s (9.2.32), (9.2.33) in [33]) on
the horizon,

0 = Rαβkαkβ (A.2.8)

and along with the Einstein equations, this implies Tα
βχβχα = 0. Thus,

−Tα
βχβ must point in the direction of χα, or

0 = χ[γTα]βχβ

Thus, again using Einstein’s equations, the RHS of (A.2.7) is zero, and so

χ[δ∇γ]κ = 0 (A.2.9)

showing that κ is indeed a constant over the horizon of the black hole.
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A.3 First Law

Before going into the derivation, some equations are needed. First, Ray-
chaudhuri’s equation1 is given by

dθ

dv
= κθ − 8πTαβχαχβ (A.3.1)

where quadratic terms have been neglected (and recall the definitions of κ
and χα from sections A.1, A.2, and equation (2.1.2)). θ is the fractional rate
of change in the cross-sectional area,

θ =
1

dS

d(dS)

dv
(A.3.2)

Also, the differential surface element is given by

dΣα = −χαdS dv (A.3.3)

So, consider a quasi-static transformation of a black hole from a state
with mass M , angular momentum J and surface area A to a state M + δM ,
J + δJ and A + δA. In other words, suppose an initially stationary black
hole is perturbed by a small quantity of matter given by the infinitesimal
stress-tensor. Thus, the change in the mass and angular momentum will be
given by2

δM = −
∫

H

T α
βξβdΣα (A.3.4)

δJ =

∫

H

T α
βψβdΣα (A.3.5)

where integration is over the event horizon H, we want first order in Tαβ,
and recall χα = ξα + ΩHψα. Thus,

(A.3.4)− ΩH(A.3.5) = δM − ΩHδJ

δM − ΩHδJ = −
∫

dv

∮

H
dSTαβχαχβ (A.3.6)

1See for example [33], pg. 218 or [34], chpt. 5.
2See [34].
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Substituting in (A.3.1), this becomes

δM − ΩHδJ = − 1

8π

∫
dv

∮

H

(
dθ

dv
− κθ

)
dS

= − 1

8π

∮

H
θdS

∣∣∣∣∣

v=∞

v=−∞
+

κ

8π

∫
dv

∮

H
θdS (A.3.7)

Here, however, the first term on the right is zero, since the black hole is
stationary before and after the perturbation (∴ θ(v = ±∞) = 0). So,

δM − ΩHδJ = +
κ

8π

∫
dv

∮

H

(
1

dS

d(dS)

dv

)
dS =

κ

8π

∮

H
dS

∣∣∣∣∣

v=∞

v=−∞

=
κ

8π
δA

∴ δM =
κ

8π
δA + ΩHδJ (A.3.8)

which is the First Law of black hole thermodynamics (2.1.4).

A.4 Third Law

A more formal definition of the Third Law (again due to Israel [39]) is
“In a strongly future asymptotically predictable black hole spacetime, there

is a continuous process in which S(τ) contains trapped surfaces for all τ < τ1,
but none for τ > τ1. Then the weak energy condition is necessarily violated
in a neighbourhood of the apparent horizon on S(τ1).”

The proof depends on the following Lemma:
If S0 is a trapped two surface, and is extended to a three cylinder Σ that is
foliated by two-sections S(τ), with the following properties;

(i) The extension of S0 is semi-rigid (i.e. Lie transport along the normal to
S(τ) preserves elements of the two-area).

(ii) Σ is regular

(iii) The weak energy condition, Tαβuαuβ ≥ 0 holds on Σ.

Then, Σ is everywhere spacelike, and thus all subsequent two-sections of S(τ)
are trapped.
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So, if S0 is one of the outermost trapped surfaces S(τ1 − ε), and S0 is
extended semi-rigidly to the future (i) with (iii) assumed to hold, then not
all subsequent two-sections S(τ) are trapped, and we get a contradiction.

A.5 Calculation of period β of a Black Hole

Here I wish to demonstrate the calculation of the result (2.1.11) for the period
of the Euclidean section of a black hole. For a general Euclideanized metric,

ds2 = G(r)dτ 2 +
dr2

F (r)
+ dΣ2 ; τ = it (A.5.1)

where dΣ is the spherical part of the metric. If F (r) and G(r) have the same
zeroes at r = a, then this can be re-written

ds2 = (r − a)g(r)dτ 2 +
dr2

(r − a)f(r)
+ dΣ2 (A.5.2)

with F (r) expanded as

F (r)|r=a ≈ F (a) + (r − a)F ′(a) + . . .

= 0 + (r − a) [f(r) + (r − a)f ′(r)]r=a + . . .

≈ (r − a)f(a) (A.5.3)

Next, define a new radial coordinate

ρ =

∫
dr√

(r − a)f(a)
=

2
√

(r − a)√
f(a)

∴ (r − a) =
ρ2f(a)

4

So, G(r) can be similarly expanded

G(r)|r=a ≈ (r − a)g(a) (A.5.4)

=
ρ2f(a)g(a)

4
(A.5.5)

Substituting these into the metric gives,

ds2 ≈ ρ2f(a)g(a)

4
dτ 2 + dρ2 + dΣ2 (A.5.6)
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and letting θ =

√
f(a)g(a)

2
τ ,

ds2 = ρ2dθ2 + dρ2

︸ ︷︷ ︸
S1

+dΣ2 (A.5.7)

The first two terms here are S1, and θ has a period of 2π. Thus, τ must have
a period

β =
4π√

|f(a)g(a)|| =
4π√

|F ′(a)G′(a)| (A.5.8)

If we have that G(r) = F (r), we recover the standard form of the period,

β =
4π

|F ′(a)| (A.5.9)

or equation (2.1.11).
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Appendix B

Manifolds and Forms

B.1 Cartan Algebra

Here I wish to introduce the Cartan algebra, which uses the language of
differential forms to calculate GR quantities such as the Riemann curvature
tensor, Ricci Tensor, etc., and allows one to do so more easily than using
tensor notation, at least for metrics with a lot of symmetries. This is useful
in chapter 5 for calculating the preserved supersymmetry of the M-brane
solutions, as well as in chapter 3 for double-checking calculations (see below).

The operators {∂/∂x} at x = p form a basis for the tangent space Tp(M)
of a manifold M at a point p ∈ M (see [72]). The cotangent space T ∗

p (M) of
a manifold at p ∈ M is the dual vector space to the tangent space. The basis
vectors of the cotangent space are {dx}. The inner product is then given by

〈
∂/∂xi, dxj

〉
= δi

j (B.1.1)

We define one forms ea (where here a, b, . . . are tangent space indices, and
µ, ν, . . . are coordinate indices - note for later, if coordinates are specified,
hatted indices t̂, x̂, . . . will be tangent space indices, and non-hatted will be
coordinate indices)

ea = ea
µdxµ (B.1.2)

which takes the coordinate basis dxµ of T ∗
x (M) into an orthonormal basis of

T ∗
x (M) (note ea is not necessarily an exact 1-form). The metric

ds2 = gµν(x)dxµdxν = ηabe
aeb (B.1.3)
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is decomposed into these vierbeins or tetrads ea
µ(x)

gµν = ηabe
a
µe

b
ν (B.1.4)

where ηab is (usually) a flat Minkowski or Euclidean metric. The inverse of
ea

µ is defined by

E µ
a = ηabg

µνeb
ν (B.1.5)

and ea
µ, E µ

a are used to inter-convert tangent and coordinate indices where
necessary. E µ

a is thus a transformation from the basis ∂/∂xµ of Tx(M) to
the orthonormal basis of Tx(M)

Ea = E µ
a

∂

∂xµ
(B.1.6)

We can now introduce the affine spin connection one-form ωa
b, and write

Cartan’s structure equations [72]

dea + ωa
b ∧ eb = dea + ωa

bce
b ∧ ec ≡ T a (B.1.7)

Ra
b = dωa

b + ωa
c ∧ ωc

b =
1

2
Ra

bcde
c ∧ ed (B.1.8)

where T a is called the torsion 2-form, and Ra
b is the curvature 2-form. The

Riemann tensor is then

Rµ
ναβ = Ra

bcdE
µ

a eb
νe

c
αed

β (B.1.9)

In GR, the Levi-Civita connection is determined by two conditions, which
affect ωab in an analogous way; the conditions are (i) metricity: ωab = −ωba

(from gµν;α = 0), and (ii) no torsion: T a = 0.
One can calculate the spin connections by observation, though there is a

procedure for calculating the spin connections. The procedure is as follows:
express (B.1.7) as

dea = ga
bce

b ∧ ec (B.1.10)

where ga
bc = −ga

cb, and then one can show that the spin coefficients can be
calculated via

ωa
bc =

1

2

[
ga

bc + gb
ca − gc

ab

]
(B.1.11)

(note that for a = c,

ωa
ba =

1

2

[
ga

ba + gb
aa − gc

ab

]
= ga

ba (B.1.12)
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Also note that ωa
bc is anti-symmetric on the a, b indices, not the b, c indices).

This will then give the spin connections (up to a sign) as

ωa
b = ωa

bce
c (B.1.13)

I say up to a sign as I have found that one must substitute (B.1.13) back
into (B.1.7) to make sure that the sign of the calculated ωa

b is correct.
As a concrete example (both to demonstrate the above and for my own

education), I will now use the above method to calculate the curvature of
four-dimensional Taub-NUT space, also done (slightly differently) in [57].
Again taking the metric in the form (3.2.1). Take the covariant basis vectors
to be

et̂ = F (r)

[
dt + 4n sin2

(
θ

2

)
dφ

]
(B.1.14)

er̂ = F−1(r)dr (B.1.15)

eθ̂ = (r2 + n2)1/2dθ (B.1.16)

eφ̂ = (r2 + n2)1/2 sin(θ)dφ (B.1.17)

This will give

det̂ = F ′dr ∧
[
dt + 4nF sin2

(
θ

2

)
dφ

]
+ 4n sin

(
θ

2

)
cos

(
θ

2

)
dθ ∧ dφ

= F ′er̂ ∧ et̂ +
2nF

(r2 + n2)
eθ̂ ∧ eφ̂ (B.1.18)

From (B.1.11) and (B.1.12) this gives

ωt̂
r̂t̂ = F ′ → ωt̂

r̂ = F ′et̂ (B.1.19)

gt̂
θ̂φ̂

=
2nF

(r2 + n2)
(B.1.20)

Similarly, the other three basis vectors can be differentiated to give

der̂ = F ′dr ∧ dr = 0

deθ̂ =
rF

(r2 + n2)
er̂ ∧ eθ̂

deφ̂ =
rF

(r2 + n2)
er̂ ∧ eφ̂ +

cos(θ)

(r2 + n2)1/2 sin(θ)
eθ̂ ∧ eφ̂
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(B.1.11), (B.1.12), (B.1.20) and the above relations then combine to give

ωt̂
r̂t̂ = F ′ (B.1.21)

ωt̂
θ̂φ̂

=
nF

(r2 + n2)
(B.1.22)

ωθ̂
φ̂t̂

= − nF

(r2 + n2)
(B.1.23)

ωφ̂

t̂θ̂
=

nF

(r2 + n2)
(B.1.24)

ωθ̂
r̂θ̂

=
rF

(r2 + n2)
(B.1.25)

ωφ̂

r̂φ̂
=

rF

(r2 + n2)
(B.1.26)

ωφ̂

θ̂φ̂
=

cos(θ)

(r2 + n2)1/2 sin(θ)
(B.1.27)

Note, though, upon inserting (B.1.24) back into (B.1.7) and comparing with
(B.1.19), one finds that the sign of (B.1.24) should be negative. Similarly,
the sign of (B.1.23) should be positive. (Also note here, ηab = [−1, 1, 1, 1],

and so ωφ̂

t̂θ̂
= +ωt̂

φ̂θ̂
). With these corrections, the spin connections are:

ωt̂
r̂ = F ′et̂

ωt̂
θ̂

=
nF

(r2 + n2)
eφ̂

ωt̂
φ̂

= − nF

(r2 + n2)
eθ̂

ωr̂
θ̂

= − rF

(r2 + n2)
eθ̂ (B.1.28)

ωr̂
φ̂

= − rF

(r2 + n2)
eφ̂

ωθ̂
φ̂

=
nF

(r2 + n2)
et̂ − cos(θ)

(r2 + n2)1/2 sin(θ)
eφ̂

The components of the curvature two-form can then be calculated from
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(B.1.8). For example,

Rt̂
r̂ = dωt̂

r̂ + ωt̂
c ∧ ωc

r̂

= −2

[
(F 2)′′

4

]
et̂ ∧ er̂ + 2

[
n(F 2)′

2(r2 + n2)
− rnF 2

(r2 + n2)2

]
eθ̂ ∧ eφ̂

= −2Aet̂ ∧ er̂ + 2Deθ̂ ∧ eφ̂ (B.1.29)

Similarly, the other components are

Rt̂
θ̂

= −Cet̂ ∧ eθ̂ + Der̂ ∧ eφ̂ (B.1.30)

Rt̂
φ̂

= −Der̂ ∧ eθ̂ − Cet̂ ∧ eφ̂ (B.1.31)

Rr̂
θ̂

= −Cer̂ ∧ eθ̂ + Det̂ ∧ eφ̂ (B.1.32)

Rr̂
φ̂

= −Cer̂ ∧ eφ̂ −Det̂ ∧ eθ̂ (B.1.33)

Rθ̂
φ̂

= −2Det̂ ∧ er̂ + 2Beθ̂ ∧ eφ̂ (B.1.34)

where (as in [57])

A =
(F 2)′′

4
(B.1.35)

B =
1

2

[
1

(r2 + n2)
+

4n2F 2

(r2 + n2)2
− F 2

(r2 + n2)

]
(B.1.36)

C =
r(F 2)′

2(r2 + n2)
+

n2F 2

(r2 + n2)2
(B.1.37)

D =
n(F 2)′

2(r2 + n2)
− rnF 2

(r2 + n2)2
(B.1.38)

Now, the curvature 4-forms can be read off from (B.1.29) - (B.1.34) using
(B.1.8):

Rt̂
r̂t̂r̂ = −4A , Rt̂

θ̂t̂θ̂
= −2C , Rt̂

φ̂t̂φ̂
= −2C

Rr̂
θ̂r̂θ̂

= −2C , Rr̂
φ̂r̂φ̂

= −2C , Rθ̂
φ̂θ̂φ̂

= +4B (B.1.39)

Rt̂
r̂θ̂φ̂

= 4D , Rθ̂
φ̂t̂r̂

= −4D

Rt̂
θ̂r̂φ̂

= 2D , Rr̂
φ̂t̂θ̂

= −2D

Rt̂
φ̂r̂θ̂

= −2D , Rr̂
θ̂t̂φ̂

= 2D
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(Note in (B.1.39) that the last three lines were read off directly from (B.1.29)
- (B.1.34), but do show the correct (anti-)symmetries). It is sufficient to show
zero curvature in the Taub-NUT metric to calculate the curvature 0-form,
given by:

R = Rab
ab

= 16 [A + B − 2C] (B.1.40)

and upon substituting in F (r), this is indeed shown to be zero.
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Appendix C

M-brane solution summary

Presented here, without calculation, are all of the M-brane solutions found
in [28, 29]. I have divided them into M2 branes and M5 branes, and also by
supersymmetric/non-supersymmetric, and have excluded the M2 TN4⊗TN4,
TN8 and the M5 TN4 solutions already presented in chapter 5. Note that all
of the solutions can be reduced down to ten dimensions (not done here).

All of these solutions can be found using the steps shown for the M2 and
M5 branes presented in chapter 5.

C.1 M2 Branes

The general form of the metric for an M2 brane in eleven dimensional super-
gravity is

ds2
11 = H(r1, r2)

−2/3
(−dt2 + dx2

1 + dx2
2

)

+H(r1, r2)
1/3

(
ds2

1(r1) + ds2
2(r2)

)
(C.1.1)

Atx1x2 =
1

H(r1, r2)
dt ∧ dx1 ∧ dx2

where ds2
i (ri) are four or higher dimensional metrics that depend on some

radii ri, and in my case can be some combination of flat space, TN4, TB4,
TN6, TB6, TN8, TB8, and Eguchi-Hanson.
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C.1.1 Supersymmetric Metrics

TN4

The TN4 metric was originally embedded into an M2 brane configuration by
Cherkis and Hashimoto [27]. The embedded metrics are

ds2
1 = f̃4(r)(dr2 + r2dΩ2

2) +
(4n)2

f̃4(r)

(
dψ +

1

2
cos(θ)dφ

)2

(C.1.2)

ds2
2 = dy2 + y2dΩ2

3 (C.1.3)

f̃4(r) = 1 +
2n

r
(C.1.4)

The metric function can be found from solving the differential equation aris-
ing from the eleven dimensional supergravity equations of motion (5.1.4),
(5.1.5). This differential equation is separable, giving two differential equa-
tions;

0 = 2
∂R(r)

∂r
+ r

∂2R(r)

∂r2
− c2(r + 2n)R(r) (C.1.5)

0 =
∂2Y (y)

∂y2
+

3

y

∂Y (y)

∂y
+ c2Y (y) (C.1.6)

Solving both of these gives the metric function for the M2 brane

HTN4(y, r) = 1 + QM2

∫ ∞

0

dc
(cy)2J1(cy)

4π2y3
Rc(r) (C.1.7)

where

Rc(r) =
π2c

16
Γ(cn)

WW (−cn, 1/2, 2cr)

r

=
π2c2

8
Γ(cn)e−crU(1 + cn, 2, 2cr) (C.1.8)

and J1(py) is the Bessel function that solves (C.1.6). Here, WW is the
Whittaker-Watson function, related to the Kummer U-function or conflu-
ent hypergeometric function U .

Another solution, not discussed in [27], can be found by taking c = ic,
giving

H̃TN4(y, r) = 1 +
QM2

16

∫ ∞

0

dc c4e−icrG(1 + icn, 2, 2icr)
K1(cy)

y
(C.1.9)
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where G is a hypergeometric function, finite at r = 0 and undergoing damped
oscillations, vanishing at r = ∞. The function K1(cy) is the modified Bessel
function, diverging at y = 0 and vanishing at y = ∞.

4d Eguchi-Hanson

The four dimensional Eguchi-Hanson metric is another self-dual, asymptot-
ically flat metric that, when embedded into eleven dimensions, will give a
localized brane solution. The embedded metrics are thus

ds2
1 =

r2

4g(r)
(dψ + cos(θ)dφ)2 + g(r)dr2 +

r2

4
dΩ2

2 (C.1.10)

ds2
2 = dy2 + y2dΩ2

3 (C.1.11)

g4(r) =

(
1− a4

r4

)−1

(C.1.12)

The metric function, again found from solving the differential equation arising
from the eleven dimensional supergravity equations of motion was found to
be

HEH4(y, r) = 1 + QM2

∫ ∞

0

dc

(
c4

8

)
Rc(r)

J1(cy)

y
(C.1.13)

where in this case, Rc(r) is a solution to the differential equation

0 =
(r4 − a4)

r4

d2Rc(r)

dr2
+

(3r4 + a4)

r5

dRc(r)

dr
− c2Rc(r) (C.1.14)

and must be solved for numerically, and J1 is again the solution to (C.1.6).
For large r, the solution of this equation that vanishes at infinity is K1(cr)/r.
J1(py) is of course the Bessel function.

Another solution can be found by taking c = ic in (C.1.6), (C.1.14), giving

H̃EH4(y, r) = 1 + QM2

∫ ∞

0

dc

(
c4

8

)
R̃c(r)

K1(cy)

y
(C.1.15)

with R̃c(r) is a damped oscillating function.
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Eguchi-Hanson ⊗ Eguchi-Hanson

Here, one embeds two Eguchi-Hanson metrics, so that

ds2
i =

r2
i

4g(ri)
(dψi + cos(θi)dφi)

2 + g(ri)dr2
i +

r2
i

4
dΩ2

2(i) (C.1.16)

g4(ri) =

(
1− a4

i

r4
i

)−1

(C.1.17)

The metric function of the M-brane is given by

H(EH)2(r1, r2) = 1 + QM2

∫ ∞

0

dc

(
c5

8

)
R1c(r1)R2c(r2) (C.1.18)

The functions Ric are solutions to the equation (C.1.14) with either ±c2

multiplying the last Rc in (C.1.14). Here, switching c → ic simply switches
R1c, R2c.

TN4 ⊗ EH4

The final supersymmetric M2 brane configuration involves embedding a four
dimensional Taub-NUT metric (C.1.2) (denote ψ, r, θ, φ = ψ1, r1, θ1, φ1) and
the Eguchi-Hanson metric (C.1.16) (denote ψ, r, θ, φ = ψ2, r2, θ2, φ2). The
first metric function of the M-brane is

HA(r1, r2) = 1+QM2

∫ ∞

0

dc
c5

16
Γ(cn1)e

−cr1U(1+n1c, 2, 2cr1)R2(r2) (C.1.19)

found by solving (C.1.5) and (C.1.14) (again (C.1.14) is solved numerically).
The second solution, taking c → ic, is given by

HB(r1, r2) = 1 + QM2

∫ ∞

0

dc
c5

8
e−icr1G(1 + in1c, 2, 2icr1)R1(r2) (C.1.20)
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C.1.2 Non-supersymmetric Metrics

Embedding TB4 metric

The embedded metrics in this case are

ds2
1 =

16n2

f(r)

[
dψ +

1

2
cos(θ)dφ

]2

+ f(r)dr2 + r(r + 2n)dΩ2
2(C.1.21)

ds2
2 = dy2 + y2dΩ2

3 (C.1.22)

f(r) =
2r(r + 2n)

(r − n)(2r + n)
(C.1.23)

The differential equation separates into (C.1.6) and

0 = (2r2 − n2 − rn)R′′ + (4r − n)R′ − 2rc2(r + 2n)R (C.1.24)

and (C.1.24) must be solved numerically. The metric function here is

HTB4(y, r) = 1 + QM2

∫ ∞

0

dc p(c)Rc(r)
J1(cy)

y
(C.1.25)

Here, p(c) cannot be solved for exactly. However, by dimensional analysis,
p(c) = p0c

4, with p0 a constant that can be absorbed into QM2. The be-
haviour of Rc(r) is qualitatively the same as the Rc(r) in the Taub-NUT case
(both diverge at the brane location, and vanish at infinity), the behaviour
here is the same as the TN4 case shown above.

The second solution, taking c → ic, is

H̃TB4 = 1 + QM2

∫ ∞

0

dc p̃(c)R̃c(r)
K1(cy)

y
(C.1.26)

where R̃c(r) is a damped, oscillating function. Again through dimensional
analysis, p̃(c) = p̃0c

4.

Embedding TN6 and TB6

The Taub-NUT and Taub-Bolt metrics in six dimensions can be re-written
so that they differ by a plus/minus sign. Thus, the embedded metrics here
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are

ds2
1 = ds2

TN6± = g6±(r)dr2 +
36n2

g6±(r)

[
dΨ +

1

3
cos(θ1)dφ1 +

1

3
cos(θ2)dφ2

]2

r(r ± 2n)
(
dθ2

1 + sin2(θ1)dφ2
1 + dθ2

2 + sin2(θ2)dφ2
2

)
(C.1.27)

ds2
2 = dy2 + y2dα2 (C.1.28)

g6±(r) =
3(r ± 2n)2

r(r ± 4n)
(C.1.29)

and the coordinate r belongs to [0,∞) for the NUT solution and to [4n,∞)
for the Bolt.

The Y (y) function is ∼ J0(qy), and the R(r) differential equation is

0 = (t2 − 4n2)R′′
±(t) + 4(t± n)R′

±(t)− 3q2t2R±(t) (C.1.30)

after a coordinate change t = r±2n. This must again be solved numerically.
The most general solutions are then

HTN6±(y, r) = 1 + QM2

∫ ∞

0

dc s±(c)Rc±(r)J0(cy) (C.1.31)

where s±(c) = s0±c5. The second set of solutions, again found by taking
c → ic, is

H̃TN6±(y, r) = 1 + QM2

∫ ∞

0

dc s̃±(c)R̃c±(r)K0(cy) (C.1.32)

Embedding TN8 and TB8

The embedded metrics here are

ds2
1 = ds2

TN8
=

64n2

f(r)

[
dΨ +

1

4
cos(θ1)dφ1 +

1

4
cos(θ2)dφ2 +

1

4
cos(θ3)dφ3

]2

f(r)dr2 + r(r + 2n)
(
dΩ2

2(1) + dΩ2
2(2) + dΩ2

2(3)

)
(C.1.33)

dΩ2(i) = dθ2
i + sin2(θi)dφ2

i (C.1.34)

ds2
2 = 0 (C.1.35)

fN(r) =
5(r + 2n)3

r(r2 + 6nr + 10n2)
(C.1.36)

fB(r) =
5r3(r + 2n)3

r6 + 6nr5 + 10n2r4 − 2997
4

n5(r + n)
(C.1.37)

144



where r belongs to [0,∞) for the NUT solution and to [3n,∞) for the Bolt.
The NUT case is done in section 5.4. The Bolt solution must satisfy the

following differential equation

0 =
[
4r6 + 24nr5 + 40n2r4 − 2997n5(r + n)

]
H ′′

+(24r5 + 120nr4 + 160n2r3 − 2997n5)H ′ (C.1.38)

which has the solution (found using the Maple software)

H =

∫
dr̃

(16875n5 + 13500r̃n4 + 4800r̃2n3 + 940r̃3n2 + 96r̃4n + 4r̃5)r̃
(C.1.39)

where r → r̃ − 3n so that the Bolt is at r̃ = 0.

C.2 M5 Branes

The general form of an M5 brane metric in eleven dimensions is given by

ds2
11 = H(y, r)−1/3

(−dt2 + dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5

)

+H(y, r)2/3
(
dy2 + ds2

4(r)
)

(C.2.1)

Fm1...m4 =
α

2
εm1...m5∂

m5H (C.2.2)

where ds2
4(r) is a four-dimensional (Euclideanized) metric in spherical coor-

dinates, and α = ±1 corresponds to the M5 brane being an M5/anti-M5
brane, respectively. The case of ds2

4(r) being the Taub-NUT metric is done
in section 5.3.2. Below, I show (without proof) the solutions for embedding
an Eguchi-Hanson metric and a Taub-Bolt metric.

C.2.1 Supersymmetric Metric - EH4

The embedded metric here is the Eguchi-Hanson metric, given by

ds2
4 =

r2

4g(r)
(dψ + cos(θ)dφ)2 + g(r)dr2 +

r2

4
dΩ2

2 (C.2.3)

g4(r) =

(
1− a4

r4

)−1

(C.2.4)
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The differential equations that must be solved, coming from the supergravity
equations of motion which are separable, are

0 =
d2Y (y)

dy2
+ c2Y (y) (C.2.5)

0 = r(r4 − a4)
d2R(r)

dr2
+ (3r4 + a4)

dR(r)

dr
− c2r5R(r) (C.2.6)

The general solution to the Y (y) equation is given by

Y (y) = C1 cos(cy) + C2 sin(cy) (C.2.7)

The solution for R(r) does not have an explicit solution; the power series
solution near r = a is given by

R(r) =
(
C̃1 ln

(r

a
− 1

)) [
1 +

c2a2

4

(r

a
− 1

)
+

c2a2

8

(r

a
− 1

)2

+
c4a4

64

(r

a
− 1

)2

+ · · ·
]

+ C̃2

[
−1 + c2a2

2

(r

a
− 1

)

−1 + c2a2

8

(r

a
− 1

)2

− 3c4a4

64

(r

a
− 1

)2

+ · · ·
]

+

+O((r − a)3) (C.2.8)

and the solution of interest logarithmically diverges at r = a.
The most general solution for the metric function is then

HEH(y, r) = 1 +
QM5

π

∫ ∞

0

dc
(
2c2 cos(cy)Rc(y)

)
(C.2.9)

By taking c → ic̃, a second solution is

H̃EH(y, r) = 1 + QM5

∫ ∞

0

dc̃ f̃(c̃)e−c̃yRc̃(r) (C.2.10)

where Rc̃(r) is the solution of (C.2.6) with c → ic̃.

C.2.2 Non-supersymmetric Metric - TB4

The embedded metric here is

ds2
4 =

(4n)2

f(r)

[
dψ +

1

2
cos(θ)dφ

]2

+ f(r)dr2 + r(r + 2n)dΩ2
2 (C.2.11)

f(r) =
2r(r + 2n)

(r − n)(2r + n)
(C.2.12)
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The separated differential equations are

0 =
d2Y (y)

dy2
+ c2Y (y) (C.2.13)

0 = (r − n)(2r + n)
d2R(r)

dr2
+ (4r − n)

dR(r)

dr
−2c2r(r + 2n)R(r) (C.2.14)

The Y (y) equation has the same solution (C.2.7). The R(r) equation doesn’t
have an explicit solution - a power series solution near the origin yields two
solutions, one with a logarithmic divergence at r = n. The metric function
has the general solution

HTB4(y, r) = 1 + QM5

∫ ∞

0

dc p(c) cos(cy)Rc(r) (C.2.15)

where p(c) = p0c
2 by dimensional analysis. The second solution is

H̃TB4(y, r) = 1 + QM5

∫ ∞

0

dc̃ p̃(c̃)e−c̃yRc̃(r) (C.2.16)

where again p̃(c̃) = p̃0c̃
2.
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