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Abstract

Many practical decision models can be formulated as concave minimization problems.
Supply chain network design problems (SCNDP) that explicitly account for economies-of-
scale and/or risk pooling often lead to mathematical problems with a concave objective
and linear constraints. In this thesis, we propose new solution approaches for this class of
problems and use them to tackle new applications.

In the first part of the thesis, we propose two new solution methods for an impor-
tant class of mixed-integer concave minimization problems over a polytope that appear
frequently in SCNDP. The first is a Lagrangian decomposition approach that enables a
tight bound and a high quality solution to be obtained in a single iteration by providing
a closed-form expression for the best Lagrangian multipliers. The Lagrangian approach
is then embedded within a branch-and-bound framework. Extensive numerical testing,
including implementation on three SCNDP from the literature, demonstrates the validity
and efficiency of the proposed approach. The second method is a Benders approach that
is particularly effective when the number of concave terms is small. The concave terms
are isolated in a low-dimensional master problem that can be efficiently solved through
enumeration. The subproblem is a linear program that is solved to provide a Benders cut.
Branch-and-bound is then used to restore integrality if necessary. The Benders approach
is tested and benchmarked against commercial solvers and is found to outperform them in
many cases.

In the second part, we formulate and solve the problem of designing a supply chain
for chilled and frozen products. The cold supply chain design problem is formulated as a
mixed-integer concave minimization problem with dual objectives of minimizing the total
cost, including capacity, transportation, and inventory costs, and minimizing the global
warming impact that includes, in addition to the carbon emissions from energy usage, the
leakage of high global-warming-potential refrigerant gases. Demand is modeled as a general
distribution, whereas inventory is assumed managed using a known policy but without
explicit formulas for the inventory cost and maximum level functions. The Lagrangian
approach proposed in the first part is combined with a simulation-optimization approach
to tackle the problem. An important advantage of this approach is that it can be used with
different demand distributions and inventory policies under mild conditions. The solution
approach is verified through extensive numerical testing on two realistic case studies from
different industries, and some managerial insights are drawn.

In the third part, we propose a new mathematical model and a solution approach for
the SCNDP faced by a medical sterilization service provider serving a network of hospi-
tals. The sterilization network design problem is formulated as a mixed-integer concave
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minimization program that incorporates economies of scale and service level requirements
under stochastic demand conditions, with the objective of minimizing long-run capacity,
transportation, and inventory holding costs. To solve the problem, the resulting formula-
tion is transformed into a mixed-integer second-order cone programming problem with a
piecewise-linearized cost function. Based on a realistic case study, the proposed approach
was found to reach high quality solutions efficiently. The results reveal that significant cost
savings can be achieved by consolidating sterilization services as opposed to decentraliza-
tion due to better utilization of resources, economies of scale, and risk pooling.
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Chapter 1

Solution approaches for concave
minimization over a polytope

1.1 Introduction

Concave minimization is an important class of global optimization problems with many ap-
plications in production planning [$0], facility location [39], and network flow [59]. Concave
and quasi-concave terms in the objective function typically arise in models with economies
of scale or fixed charges, but can also result from transforming other types of problems
such as linear complementary [75], zero-one integer [$3], and bilinear programming [97].

The difficulty of solving concave minimization problems stems primarily from the fact
that local optima may not be globally optimal, and thus, applying efficient convex opti-
mization methods can not guarantee global optimality. Concave minimization problems
have been, in general, proved to be NP-hard, even the special case of minimizing a nega-
tive quadratic function over a hypercube [32]. Despite this worst-case performance, many
methods for concave minimization perform well in practice. The reader is referred to the
textbooks of Horst and Tuy [66] and Floudas [52] for a detailed account of global optimiza-
tion methods, and the review papers of Floudas and Gounaris [51] and Pardalos et al. [¢1]
for recent advances.

One of the most successful methods to solve global optimization problems is branch-
and-bound (B&B), in which the feasible set is partitioned into successively refined regions
through branching, while partitioned regions are eliminated if they are proven to be in-
feasible or suboptimal. As expected, B&B methods differ primarily in two aspects: the



partitioning technique and the bounding scheme. Partitioning techniques include: conical
partitioning [101], simplicial partitioning [6] and rectangular partitioning [15]. Rectangu-
lar partitioning is particularly suitable for separable problems since the convex envelope is
easy to compute over a rectangular set. Bounding schemes include linear underestimation
[48],]92], [87], [12], Lagrangian relaxation [17], [19], [10], [I 1] and outer approximation [(2],
[22], among others.

Most modern global optimization approaches combine B&B with cutting planes, do-
main reduction and outer approximation techniques to enhance their performance [95].
One of the most successful approaches proposed for both continuous and discrete global
optimization problems is the polyhedral branch-and-cut approach that exploits convexity
in order to generate polyhedral cutting planes and relaxations for multivariate nonconvex
problems. This approach is the basis of the commercial solver Baron [91]. Another widely
used B&B-based mixed-integer global optimization solver is Couenne (Convex Over- and
Under-ENvelopes for Non-linear Estimation), which implements linearization, bound re-
duction, and branching methods within a spacial B&B framework [18].

In this chapter, we focus on problems having concave cost functions defined over linear
combinations of the decision variables and with a polyhedral feasible region. In section
1.2.1 we propose a Lagrangian approach to solve problems of this class. We use Lagrangian
decomposition, a variant of Lagrangian relaxation that duplicates certain variables to sep-
arate the feasible set; and then relaxes the linking constraints [78]. Lagrangian decom-
position was applied to decompose large-scale concave minimization problems in [69] and
[70]. However, we use it in a different manner to isolate the nonconvex terms in the objec-
tive function so that the problem is decomposed into a linear objective subproblem over
the original constraints and a number of single-variable easily-solvable concave minimiza-
tion subproblems. Surprisingly, for this decomposition we could provide a closed-form
expression for the optimal Lagrangian multipliers, allowing the direct calculation of the
Lagrangian bound without resorting to classical iterative methods such as subgradient or
cutting plane methods. In addition, the solution of the first subproblem is feasible to the
original problem, providing a feasible solution and an upper bound. This direct calculation
of the multipliers is not common in general Lagrangian approaches and is a special feature
of the decomposition we apply. Therefore, after solving the subproblems only once, a fea-
sible solution and a Lagrangian bound are obtained. In most cases, the feasible solution is
of high quality. In cases where it is not, a branch-and-bound algorithm is utilized to close
the optimality gap.

Concave minimization problems in supply chain network design are of particular interest
as they provide a wealth of models that fit the framework we study. While classical
supply chain design models have predominantly linear costs, some have concave objective



functions. Concave costs often result from economies of scale with respect to capacity of
the facilities [35], [39], [92] or transportation between facilities [13], and from combining
location and inventory decisions [37], [25]. Inventory cost is generally known to be concave
in the demand served, whereas safety stock cost is concave due to the risk-pooling effect
when demand is stochastic [45]. In section 1.3, we implement the proposed Lagrangian
approach to solve three supply chain design problems from the literature: the production-
transportation problem [71], the plant location and technology acquisition problem [35]
and the location-inventory problem [37]. For each problem, extensive numerical testing is
conducted to verify its validity and efficiency.

A new Benders approach is proposed in section 1.4, for the same class of problems, that
is particularly effective when the number of concave terms in the objective function is small.
The Benders subproblem is linear integer while the master problem is a low-dimensional
concave minimization problem with continuous variables that can be solved by enumera-
tion. The Benders approach is embedded within a classical B&B algorithm to obtain an
integer solution. The approach is tested using different functions and benchmarked against
the state-of-the-art commercial solvers Baron and Couenne.

The main contributions of this chapter are:

1. A novel Lagrangian approach for an important class for concave minimization prob-
lems with linear constraints the appears frequently in supply chain design models.
The distinctive advantage of the approach is that the optimal Lagrangian multi-
pliers are reachable using closed-form expressions, enabling the Lagrangian bound
and a high quality feasible solution to be obtained in a single step. The proposed
Lagrangian approach is then embedded in a branch-and-bound algorithm to close
the optimality gap. Numerical testing, including three practical supply chain de-
sign problems from the literature, reveals the validity and efficiency of the proposed
approach.

2. A Benders approach for concave minimization problems that shifts the objective
function concavity to a low-dimensional master problem that is solved using iterative
enumeration. The approach is particularly suitable for problems with a small number
of concave terms in the objective function. Numerical testing shows that the proposed
approach outperforms some state-of-the-art commercial solvers.



1.2 A Lagrangian approach for concave minimization

1.2.1 Lagrangian decomposition

In this section we propose a Lagrangian decomposition approach to solve the concave
minimization problem

. T (AT
[Pl:  min cx+;fz(dzﬂf),

where X is a polyhedral set that is assumed bounded, ¢,d € R™, f(x) are concave over X,
and zp € Z, Vke K C{1,2,...,n}.

We begin by introducing the auxiliary variables y; = d? x, so P can be written as

min ¢’z + Z i),
i=1

st. y=diz, i=1,...,m, (1.1)
Yi < i <Y,
r € X,
where y; and y; are obtained by solving ;Iél)f(l dF'z and max d¥x which correspond to extreme
points of X. Since X is assumed bounded, both y, and y; are finite. Applying Lagrangian
relaxation on (1.1) with multipliers A\;,7 = 1,...,m leads to m + 1 subproblems:

[SP1]: min (c+ Z Nid;) and [SP2;]: min fi(y;) — Ay,
i=1
s.t. xeX. st v, <y <7

SP1 has a linear objective and is solved either as an LP or MIP, whereas SP2; are single-
variable concave minimization problems whose solutions are at one of the two extreme
points y; or ¥, i.e., the solution of SP2;, i = 1,...,m is min {fl(gﬁ) — Ny, fi(Wi) — )\zE}
The solution of SP1, on the other hand, is

m
min (¢ + E Nd Pz,
h=1,....H -
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where {1,..., H} is the index set of the vertices of X if SP1 is LP and of the feasible
solutions to SP1 if it is MIP. Therefore, the Lagrangian bound is given by

LR(A) = minH(cT + Z Nid] )z" + Z min (fi(y:) — iy, (%) — A
i—1 i1

h=1,...,

The Lagrangian dual problem is max LR(A). Its linear programming reformulation, known

as the dual master problem, is:
[DMP]: max 6 + Z 0;,
i=1

s.t. HO—ZdiTxh/\igcTa:h, h=1,... H,
i=1
0 + 7N < fi(Wh), i=1,...,m.

This problem is usually solved using a cutting plane method. Its dual, MP, is the Dantzig-
Wolfe master problem, which is solved by column generation:

H m m
[MP]: min Z Tty + Z filyi) Bi + Z i@
h=1 i=1 i=1

H
s.t. Zah = 1,
h=1

Bi+v=1, i=1,...,m,
H

YilBi + Yivi = Z(diT.iEh)Oéh, 1=1,...,m,
h=1

an, Bi, v > 0.

Surprisingly and unprecedentedly, we are able to give a closed-form expression for the
optimal Lagrangian multipliers. The following proposition provides the details.

Proposition 1 The optimal multipliers \* are given by

o F) S,

1=1,...,m.
Yi —Yi



Proof: First, let us solve the subpmblems for Xy = 1,....,m. Let the solution of
SP1, mln(c + 52" N dD)x, be 2"

i=1""% "

The solution of SP2; is
fi@) — Nwi, fily) — Ay

min v:)
( zfz yz yzfz y_) yzfz(%) - &fz(@))
min —
Yi —Yi

vifi(yi) — yzfz(yz)
Yi—Yi

Thus, the Lagrangian lower bound corresponding to A} is

B (c +Z’\*dT e +Zy1fz yy zzfl(yz) 12)

Second, let us consider the relaxed dual master problem RDMP corresponding to H =

{h*}:
[RDMP]: max b+ Y _0;

m

st. Gy — Z dra N < ot (1.3)
i=1
and let us check whether the solution (A\; = X, 00 = (" +>_ 1, Ard!)zh", 6, = M}

is feasible to RDMP. By substituting in (1.3), (1.4) and (1.5), all these constraints are
found to be satisfied as equalities. Lety; = d¥z"". The objective function value of RDMP
corresponding to the proposed solution is

V[RDMP] = (e +Z NdT)a zm:F yzfz(yz)

=1

— CTJ?h +Z <fz yz fz Yi ) +Zy1fz i yzf7,<yz)
= +Zfz zy’ b +Zfl

yz.



To prove the optimality of the proposed solution, we resort to the dual of RDMP, the
restricted master problem

[RMP]: min 2" o + > fily)Bi+ Y f(@i)
=1 i=1

st. ap =1, (1.6)
/BZ+7Z:17 7::17...,m
yilli + Ui = d} 2" o, i=1,...,m (1.7)
an, Bi,7i 2 0.

By substituting the value of o from (1.6) in (1.7), RMP can be decomposed into m
subproblems, each having a single-point feasible set that can be found by simultaneously
solving the two equations B; +; = 1 and y;5; +Yii = dFz"" . Thus, the solution of RMP
18

Yi — Y
B = —/——
Yi — Vi
Yi — Y
0 e — )
Yi — Y;

which are nonnegative. Thus,

Vi) + [i(Wi) = :
yz_& ; yz_&

)

V[RMP] = "z" + Z fily

By strong duality, since V[RDMP| = v[RMP], the proposed solution is optimal to
RDMP. Furthermore, LB(X*) < v[DMP]. According to (1.2), LB(\*) = v[RDM P],
therefore, vV[RDMP] = v[DMP] = LB(X\*), the Lagrangian bound. Thus, \* are optimal.
|

Next, we note that " € X and so it is feasible to P. Its corresponding objective
m
'z + 3 fi(y;) is an upper bound. The difference between this upper bound and the

Lagrangiafn bound is given by

5 = CTZEh* +Zfz(yz C +zfz yz §z<yz)dT> ZEfz(y_;_):%fz(E)
N~ (e e YT Y — 4
= 3 (n00) B G~ e %) (18)
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which quantifies how far 2" is from the optimal.

Corollary 1 If yf =y; or yi;, Vi, " is optimal to P.
Proof: By substituting in (1.8), we get the desired result. [ |

Corollary 2 The optimality gap (5) is approzimately proportional to fi'(y:).
Proof: Rearranging (1.8), we get

5= - o — ), (19)

i=1
where p; = % is the slope of the line segment connecting the points (yi, fi(yi))

(yi, fi(y:)) and (3, fi(Wi)) (see Fig.1.1). Let f] and f!' be the first and second derivatives
of fi. By using the first three terms of the Taylor series expansion, f;(y¥) and f;(7;) can
be approrimated as:

and (y7, fi(y))), and m; = w is the slope of the line segment connecting the points

R~ )+ O — A + 50— ) F (),

)~ )+ - ) + 5~ 5 ).

Thus,
pi = W ~ fi(yi) + 5(.% —vi)fi (i),
fl<E) - Z(%) ! I, 1"
T = W ~ filys) + 5(% —yi) fi (yi).

which implies that

>
&

=) (100 + 507 — A7) 2000+ 0 - W/ )

1

7

(y;K _&)2(3/1* _E)fz”(&) (1.10)

M-

=1

Therefore, the gap is (approximately) linearly proportional to the second derivative of the
concave functions. |



fy) A

fy)
I
f(y*) |
I
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Figure 1.1: Ilustration of Corollary 2
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When f/(y;), ¥i = 1,...,mis constant (i.e., f; is a quadratic function), the gap formula

(1.10) is exact. In this case, it is easy to show that the gap is maximum at the midpoint
1 N (77 —ay. )2

between y; and 7;, with a maximum value of >, \M|

A final observation from (1.8) is that the optimality gap is a non-increasing function

of (¥ —y). Thus, one way to reduce, and eventually close, this gap is by successively

tightening the feasible range of the auxiliary variables y;. A branch-and-bound algorithm

that partitions the feasible region in this fashion is proposed in the next section for that

purpose.

1.2.2 Branch-and-bound

To close the optimality gap, we embed the Lagrangian decomposition in a Falk and Soland’s
[18] type branch-and-bound algorithm. Although the original problem P in z; is non-
separable, the substitution ¥ = d’z enables us to tackle it using the aforementioned al-
gorithm. Branching is performed around the optimal solution of SP1 using the auxiliary
variables y;, © = 1,...,m. At any node, upon solving SP1 we get the vector z* and cal-
culate y* = dTx*. The variables y; ,i = 1,...,m are classified to two sets: extreme when
y: = y; or y;, and non-extreme otherwise. If all the variables are extreme, the gap is guar-
anteed to close according to corollary 1, otherwise, a non extreme variable y; is selected
for branching. In one child node, we add the oblique cut d%Tx < yi to SPl and y; < yf
to SP2;, and in the other child node, we add df'z > y; to SP1 and y; > y7 to SP2; and
solve using the Lagrangian approach. In every node, an upper bound is obtained from the
feasible solution of SP1 and the incumbent is updated if a better upper bound is found.

In any node, one of the following three outcomes is possible:

1. The gap is closed, in which case this branch is fathomed.

2. The gap is not closed, but the lower bound is higher than the incumbent, implying
that further branching will not lead to better feasible solutions, so the branch is
fathomed.

3. The gap is not closed, but the lower bound is lower than the incumbent. In this case,
we continue branching using a non-extreme variable as described earlier.

Branching continues until all branches are fathomed. Falk and Soland have shown that,

when the feasible region is a polyhedron, this branch-and-bound algorithm is complete in
the sense that it finds the optimal solution of P after solving a finite number of nodes [18].

10



Let My, s € S be the partitioning subsets of the feasible region. For each subset (i.e., node)

we can get a lower and an upper bound using the Lagrangian approach, denoted L£(Mj)

and U(Mj), respectively. Then, £ = mig} L(My), U = miglbl(Ms) are the overall bounds,
sE s€

respectively. If at any iteration £ = U, the branch-and-bound algorithm terminates.

To illustrate the branch-and-bound algorithm, let’s consider the following example:

min — 95% — $g — 21129 — 921 — 29

st. reX ={r:20x1+2,<6; 0< 21 <2; 0< 29 <4}

The objective function is equivalent to min —9z; — x5 — (21 + x2)?, implying that ¢ =
[-9,—1], d = [1,1], f(y) = —y* The example is displayed in figure 1.2. The extreme
points of the feasible set are {(0,0),(0,4),(1,4),(2,2),(2,0)}. The bounds y and 7 are

obtained by solving ml)r(; d'z and max d’z, respectively, so y = 0 and 7 = 5.
e e -

At the root node, y = 0, ¥y = 5, \* = % = —5, and the subproblems solved are:
SP1: min —14x, -6y, v € X, and SP2: min 5y—y?, s.t. 0 <y < 5. The solutions are
Tsp = (2,2), v[SP1] = —40, v[SP2] =0, y* = 4. This gives a lower bound (LB) of —40
and a feasible solution (2, 2) of value —36 (the incumbent). As LB+ incumbent, we branch
around (2,2) by forcing dfz = z; + 2o <y* =4 innode 1, and d¥z = 2y + 29 > y* =4 in
node 2.

In Node 1, y = 0, ¥y = 4, \* = % = —4, and the subproblems solved are:

SP1: min —132; — 529, © € X; = {z :2 € X, 21 +xy < 4}, and SP2: min 4y —
y?, s.t. 0 < y < 4. The solutions are 55, = (2,2), v[SP1] = =36, v[SP2] =0, y* = 4.
This gives a lower bound (LB) of —36 and a feasible solution (2,2) of value —36, so the

incumbent remains unchanged. As LB=incumbent, the node is fathomed.

In Node 2, y = 4,7 = 5, \* = % = —9, and the subproblems solved are:
SP1: min —18x; — 102y, z € Xy = {x : z € X, 21 + 22 > 4}, and SP2: min 9y —
y?, s.t. 4 <y < 5. The solutions are: z%p, = (1,4), v[SP1] = =58, v[SP2] = 20, y* = 5.
This gives a lower bound (LB) of —38 and a feasible solution (1,4) with value —38, so the
new incumbent equals —38. As LB=incumbent, the node is fathomed. So, z} = (1,4),

v[P] = —38.

In Fig. 1.2, the areas X; and X5 correspond to the feasible regions of the subproblems
in nodes 1 and 2, respectively. The curve is the contour line of -38, the optimal value of

P.

This example, albeit trivial, sheds light on the functionality of the branch-and-bound
algorithm. Moving from one partitioning level to the next splits the feasible region be-
tween the two child nodes, while keeping the optimal solution of the parent node in both.
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'9X1'X2'(X1+X2)2 = '38

Branching
constraint
y=X+X,=4

0,0 (2,0 Xy

Figure 1.2: Hlustrative example of the branch-and-bound algorithm
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Table 1.1: Test functions for the Lagrangian approach from [67]

function type function form
1 o1+ 36— sl
]:

2 =3 Faj|In (H\Z%%\)
j=1 j=1

3 —exp(| z i /n?))

J

Furthermore, changing the bounds on y; increases the Lagrangian multiplier in one child
node and decreases it in the other, so the objective changes in each node.

1.2.3 Computational results

To evaluate the performance of the proposed approach, we test on several benchmark
instances from the literature. The codes are written in Matlab R2013b and the LP/MIP
subproblems are solved using CPLE X 12.51. All experiments are performed using an Intel
Core i7T — 3635QM 2.4 GHz CPU machine. When the B&B is required, we implement a
depth-first search strategy. If there is more than one non-extreme variable, the one having
value closer to the midpoint between y; and g; is selected for branching.

We first test on the concave functions from [65] depicted in Table 1.1. To ensure
feasibility of the instances, we constructed the polytopes X = {z : Az < b} containing the
feasible points as follows: the elements of A are uniformly distributed random numbers in
the interval [0, n]. The right-hand side column vector is generated as b = A% + s, where 2
is a vector of size n with elements selected randomly from a uniform distribution between
0 and 10, whereas s is vector of size m of uniformly distributed random numbers from
the interval [0,1]. We generated instances of four sizes ranging between (10 x 10) and
(100 x 100). Two types of problems were considered: problems with continuous variables
and problems with discrete variables. In both cases, we set 0 < z; <10, j =1,...,n.
For each combination of objective function type, instance size, and type of variables, 100
random instances were generated and solved. Table 1.2 summarizes the results. CPU times
are in seconds.

The optimality gap is closed without need for branching in all instances except one.

13



Table 1.2: Results for the Lagrangian approach test problems from [(5)]

Continuous Discrete
function size Gap (%) CPU (sec.) Gap (%) CPU (sec.)
type m Xn | mean max Imean max | mean ~max  Imean max
1 10x10 - - 0.00 0.01 - - 0.12 0.33
2 10x10 - - 0.00 0.02 - - 0.10 0.16
3 10x10 - - 0.00 0.03 - - 0.29 1.19
1 20x20 - - 0.00 0.02 - - 0.28 0.52
2 20x20 - - 0.00 0.03 - - 0.20 0.34
3 20x20 - - 0.01 0.03 - - 1.06 2.66
1 50x50 - - 0.00 0.02 - - 15.33 44.44
2 50x 50 - - 0.00 0.02 - - 2.65 10.56
3 50x50 - - 0.01 0.03 - - 7.65 15.20
1 100100 - - 0.02 0.08 - - 532.58 3115.94
2 100100 - - 0.01 0.03 - 0.15%  81.62  185.72
3 100x100 - - 0.02 0.05 - - 471.83 2183.13

In this 100-variables MIP instance with a concave function of type 2, a single branching
step is required to improve both the Lagrangian lower bound and the upper bound and
to close the gap. The computational time required to solve this instance to optimality is
160.05 seconds compared with an average of 80.62 seconds before branching for instances
of the same size and objective function type. The computational time for LP instances is
extremely small even for the largest instances tested. On the other hand, the computational
time for MIP instances grows exponentially with the problem size, which is expected. For
small instances (10 x 10 and 20 x 20) function type 3 seems to take longer to solve, followed
by type 1, then type 2. For larger instances, function type 1 takes the longest to solve,
followed by type 3, then type 2.

We then test on difficult instances from [53] that have several concave terms as well as
a linear term in the objective function. Table 1.3 displays the results. The column ‘Best
solution’ presents the best solution found in [53], whereas ‘LB’, ‘UB’, ‘Gap’, ‘CPU’, and

‘Nodes’ correspond to the Lagrangian bound, the objective function value corresponding
to the feasible solution obtained, the optimality gap corresponding to LB and UB, the
computational time in seconds, before and after branching, and the number of nodes tested,
respectively.

In all the instances, branching is required to close the optimality gap. However, the
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Table 1.3: Results for the Lagrangian approach test problems from [53]

Prob. # Best Before branching After branching
solution LB UB Gap CPU UB CPU Nodes
2.5 -268.01 -269.08  -268.01  0.40% 0.03 | -268.01 0.02 7
2.7-1 -394.75 -475.52  -375.79 20.97% 0.02 | -394.75 0.51 1077
2.7-11 -884.75 -965.52  -865.79 10.33% 0.02 | -884.75 0.51 1077
2.7-111 -8695.01 | -10310.47 -8315.77 19.35% 0.02 | -8695.01 0.45 1079
2.7- IV -754.75 -835.52  -735.79 11.94% 0.02 | -754.75 0.42 1077
2.8 15639 14439 16431 13.80% 0.02 15639 0.23 177
4.5 -11.96 -13.55 -13.40  1.07% 0.01 -13.40 0.03 3

optimal solution was reached in less than 1 second in all cases. For problem 4.5, an optimal
solution, superior to the one reported in [53], was reached.

1.3 Applications to supply chain design problems

1.3.1 The production-transportation problem

The production-transportation problem was first addressed in [71]. In this problem, the
aim is to find the optimal production and transportation quantities from M factories to N
warehouses. Due to economies-of-scale, the production cost at factory i is concave and non-
decreasing in the number of units produced, captured by function f;(.), ¢ = 1,...,m. The
cost of shipping a unit from factory 7 to warehouse j is ¢;;. Each warehouse has a demand
of b; and each factory has a production capacity of w; such that ) jen bj < Y ien Wi- We
consider two variants of the problem: multiple sourcing and single sourcing. The multiple
sourcing problem is formulated as follows:

IMSPTP|: min Z Cijﬂl?z‘j—l-Zfi(ZfUz’j)

(i,5)€eA ieEM  jEN
s.t. Z.’L‘Z’j = bj, ] € N,
ieM
liﬁzxzjﬂui, i€ M,
JEN
[L'ijzo, iEM,jGN,
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where z;; is the quantity shipped from factory i to warehouse j.

As per the proposed Lagrangian approach, the variables y;, ¢ € M are introduced to
denote the total production of each factory and the constraints y; = > jen Tij are relaxed
using the optimal Lagrangian multipliers \; = W Therefore, the production trans-
portation problem is decomposed into a linear subproblem in x and M single variable

concave subproblem in y;, ¢ € M.

In the production-transportation problem with single sourcing, the binary variables x;;
take value 1 if warehouse j is served by factory ¢ and 0 otherwise. So the problem is
formulated as:

[SSPTP] min Z Cijbjxij + Z f,(z bjxij)

(i,7)€A ieM JjeEN
s.t. ZCL’Z‘J':L jEN,
€M
ZZSZb].CEUSU,Z, iEM,
JEN
IijE{O,l}, 1€ M, j € N.

For the single sourcing variant of the problem the new variables denoting the total
production of each factory are defined as y; = ZjeN bjxij, © € M. The Lagrangian
decomposition is performed exactly as was done for the multiple sourcing problem. The
resulting SP1 is an integer programming problem with (M x N) binary variables.

Following [71], the concave production functions are defined as f;(y;) = B,/¥i, for
f uniformly random in [10,20]. The test problems were generated in the same manner
described in the previous reference as follows: ¢;; are random numbers between 0 and 1, u;
are all set to 200, and b; are set to the round-off value of (>, ,, u;)/M for a = 0.6, 0.75
and 0.9. The sizes of (M, N) range from (5,25) to (10,50).

Table 1.4 depicts the results for the production-transportation instances tested with
both multiple and single sourcing. The columns show the optimality gap at the root node
(Gap), the computational time in seconds for the root node (CPUO), the total computa-
tional time in seconds (CPU) and the number of nodes tested (Nodes) until the gap is
closed. For each instance size, the upper row shows the average values for 10 randomly
generated instances, whereas the lower row shows the maximum values.

For the multiple sourcing problem, the results obtained show that the proposed La-
grangian approach is capable of reaching the optimal solutions in an average of 2.86 sec-
onds for the tested instances, with a maximum of less than 36 seconds for the most difficult
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Table 1.4: Results for the production-transportation problem

MxN « Multiple sourcing Single sourcing
Gap CPUO CPU Nodes | Gap CPUO CPU Nodes
5x25 060 9.62 0.01 0.35 497 9.54  0.02 1.79 271
(11.25) (0.02) (0.66) (833) |[(11.49) (0.06) (3.73) (585)
0.75] 473 0.01 0.09 117 4.97  0.04 1.44 230
(5.57) (0.03) (0.17) (233) | (5.64) (0.25) (2.59) (427)
0.90] 1.66 0.00 0.03 34 1.68  0.01 0.35 63
(2.06) (0.03) (0.08) (105) | (1.90) (0.03) (0.45) (63)
5x50 0.60] 921 0.01 0.86 870 9.17 0.01 6.04 688
(11.01) (0.03) (1.89) (1,941) [(11.03) (0.03) (13.38) (1,521)
0.75] 5.06 0.00 0.29 278 5.11  0.02 4.17 453
(5.99) (0.00) (0.55) (578) | (5.63) (0.03) (6.65) (755)
0.90] 1.84 0.00 0.08 72 1.82  0.01 1.04 120

(2.09) (0.03) (0.22) (191) |(2.10) (0.05) (2.39)  (291)
10x 25 0.60| 9.43 0.00 243 2935 | 886 0.01 2205 2321
(12.96) (0.02) (5.41) (6,513) |(12.66) (0.03) (40.78)  (4,423)
075 4.78 001 061 707 | 528 0.02 27.92 3,042
(6.88) (0.03) (3.06) (3,625) | (7.04) (0.05) (53.88)  (5,815)
090 1.67 000 007 73 Infeasible

(2.56) (0.01) (0.23) (215)
10 x 50 0.60| 10.53 0.00 20.43 15,645 | 11.64 0.02 573.93 37,788
(12.65) (0.03) (34.48) (27,089)|(12.88) (0.03) (1,710.85) (112,077)
0.75| 6.14 0.00 7.84 5604 | 637 002 45551 30,389
(6.58) (0.03) (35.47) (25,029)| (7.06) (0.05) (1,495.77) (98,739)
090 229 000 126 908 | 217 001 2337 2,047
(2.70) (0.02) (7.27) (5,227) | (2.41) (0.03) (24.59) (2,047
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instance. The computational time is largely influenced by the parameter «, the ratio be-
tween total demand and total capacity. When « is closer to one, the branch-and-bound
algorithm tests fewer nodes and terminates faster. For example, in the 5 x 25 instances,
an average of 34 nodes are needed for o = 0.9, compared to 117 and 497 nodes when «
is 0.75 and 0.6, respectively. For the single sourcing instances where all the variables are
binary, the average computational time per node is large compared to the corresponding
multiple sourcing instances, leading to larger computational times. However, the average
computational time for the most difficult instance of size (10 x 50) with o = 0.6 is less than
10 minutes, a very reasonable time for this difficult design problem. On the other hand,
the computational time when the ratio of demand to capacity is high (i.e., « = 0.9) is
very attractive, not exceeding 25 seconds. The infeasibility of the (10 x 25) single-sourcing
instances with a = 0.9 is due to the fact that, with these parameters, the demand of
each warehouse is 72 units, thus it is not possible to assign more than 2 warehouses to a
factory with a capacity of 200 units. Therefore, there is no feasible partitioning of the 25
warehouses that respects the capacity constraints of the 10 factories.

The computational results underline the excellent performance of the proposed ap-
proach for solving the production-transportation problem, especially when the subproblem
is linear (as in the case with multiple sourcing) and when the total demand is close to the
total supply of the system (as in the case when o = 0.9. Even with the more difficult sin-
gle sourcing version of the problem, the approach performs quite well even for the largest
tested instance, except for those with a low demand-to-supply ratio.

1.3.2 The plant location and technology acquisition problem

The plant location and technology acquisition problem introduced in [35] is a single-echelon,
multi-product, production-distribution problem. We adhere here to the notations used in
the original paper. Let [ = {i : i = 1,....m}, J ={j :j=1,...,n}, P = {p:
p = 1,...,r} be index sets of potential plant locations, customer zones, and products,
respectively. Each product p can be produced using a number of disjoint technologies
indexed by h, € H,, where the site-specific technology cost functions f ;(.) are affine
or concave. Since each facility selects a technology for each product that minimizes its
production cost based on capacity to be built, the production cost can be represented by
the single piecewise concave function f;,(.) = ] ei}{ll {fn,i()}, V(i,p). Let F; be the fixed

cost of opening plant i, Cj;, be the total cost of serving the entire demand of customer

J for product p from plant i, and Dj, be the demand of customer j for product p. The
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following variables are used:

Y; : binary variable for opening plaint 7;
Zijp - fraction of demand from customer j for product p supplied from plant 7.
With this, the problem is formulated as

[P]: min > FYi+> > fi (Z Djpxz‘jp) +D ) Ciipry

el i€l peP JjeJ icl jeJ peP

st Y wy =1 V(ip), (1.11)

i€l
0 S xijp S )/ia v(zvjap% (112)
Y; €{0,1}, Vi (1.13)

The objective function represents the sum of the fixed costs, variable capacity acquisi-
tion and operating costs, and shipping costs. The first constraint ensures that the entire
demand is served, whereas the second constraint stipulates that facilities can serve demand
only if they are opened. Dasci and Verter [35] propose a progressive piecewise linear un-
derestimation technique to obtain an iteratively improving lower bound. They show that
subproblems can be formulated as two-echelon uncapacitated facility location problems.
Branch-and-bound is used to solve the subproblems where a dual-ascent procedure is ap-
plied on the LP-relaxation to obtain a lower bound, and a heuristic is used to obtain a
feasible solution and an upper bound.

Obviously, the difficulty of the problem stems primarily from the piecewise concave
terms in the objective function. If these terms are eliminated, the model is reduced to a
multiple-product uncapacitated facility location problem (UFLP). Note that single assign-
ment is guaranteed because of the uncapacitated nature of the problem, i.e., x;;, € {0, 1}.
Despite being NP-complete, UFLPs are well-studied and several algorithms have been
developed to solve them efficiently [105]. To apply the proposed Lagrangian approach, we
first introduce the variables

Qip = Y DjpTijp, (i, p).
jeJ

and relax this equality with multipliers p;, to get the multiple-product UFLP subproblem

[SP1]: min Z EY; + Z Z Z(Miijp + Cijp)Tijp

iel icl jeJ peP

st (1.11) — (1.13),
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and mr single-variable concave minimization subproblems

[SP2ip]: min  fi, (Qip) — pipQip
Qip < Qip < @z’p'

According to Proposition 1, the optimal multipliers are given by:

* f’bp(@ ) fZP(Q )
/vbip_ @ .

- Q,

—ip

(1.14)

Thus, the best Lagrangian bound is

szflp Q pr (@zp)

ZFY*+ZZZM1P JP+CZJP zJp+ZZ Q Q. )

el i€l jeJ peP iel peP —ip

where Y;* and z7;, are the solution of SP1 when p;;, = uj,. The Lagrangian approach is

embedded in a branch-and-bound algorithm.

We test on a classical data set from the literature to measure its performance in terms
of computational time and solution quality. The solution method was coded in Matlab
and solved using CPLEX 12.3 on a machine with a 3./ GHz Intel Core i-7 4770 processor.

Following [35], we base our instances on a capacitated warehouse location problem from
the OR-Library [17] called cap71. The base case parameters are set identical to those of
problem set 2b in [35], whereas these parameters are changed in subsequent instances to

test the sensitivity of the approach to variability and nonlinearity.

All tested instances are of size (m,n) = (16,50). The number of products is changed
between 1 and 5. Five technologies are assumed for each product. The technology costs,
as a function of the acquired capacity, take the form f, ;(.) = a + b(.)°. The values
of these parameters in the base case are depicted in Table 1.5. Each plant has a fixed
cost of $75,000. For the base case, demand and shipping cost parameters are uniformly
distributed with endpoints 20% below and above the cap71 parameters. Furthermore, two
more scenarios are tested: 1) Higher variability: endpoints for the uniformly distributed
demand and shipping costs are 40% below and above the original values; and 2) Higher
nonlinearity: the exponents ¢ are multiplied by 0.9 for all technologies to represent stronger
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Table 1.5: Cost parameters of the plant location and technology acquisition problem

Function Ji,i (1) fa,i(1) f3,i(2) Ja,i(1) f5,i(0)

a 0 0 0 0 [4000,5000]
b [4550]  [2.5,3.5]  [22,28] 12,18] [1.5,2.5]
[0.65,0.70] 1 [0.72,0.77]  [0.79,0.84] 1

economies of scale, whereas fixed and shipment costs are set to 50% of their original values
to maintain their relative percentage of the total cost. For each set of parameters, 10
random instances are solved. A depth-first search strategy is implemented for the branch-
and-bound algorithm.

To benchmark the proposed approach, we compare its results with those obtained
from a piecewise linearization, a classical generic approach to solve concave minimization
problems. We linearize the functions fi, (Qip) using piecewise segments linking the points

{( 0), ( i fin(Q; )) , ( g 1i(Q; )) . ( w,fzp )} and special ordered sets of type
(SOSQ) [16]. We can write @y and the approxunated functions F;,(Q;p) as:

Qip = szp ip) V(Z,p)

zp QZP Z wzpflp zp ( )

bg:u

v(i, p)

r=0

and {wlp, Wiy - - ,wg,} are special ordered sets of type 2. The number of equally-spaced
breakpoints, R + 1, is increased incrementally until the sought relative optimality gap is
reached in all instances.

Table 1.6 shows the computational results. The columns entitled ‘gap-node(0’ and ‘cpu-
node(0’ show the relative optimality gaps and the computational times in seconds at the
root node, 1.e., before branching. The computational times required to reach an e-optimal
solution (e = 0.02) are shown in the columns titled ‘cpu-B&B’. The last column shows the
computational times of the piecewise linearization approach. For each metric, the mean,
minimum and maximum values are reported.

As can be seen, without branching, the proposed approach is able to reach solutions
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Table 1.6: Results for the plant location and technology acquisition problem

r ‘ gap-node0 (%) ‘Cpu—nodeO (sec.)‘

cpu-B&B (sec.)

cpu-PWL (sec.)

‘mean min max‘mean min max‘ mean min max‘ mean min max
Base case
1| 1.58 0.87 2.03| 0.01 0.01 0.01 0.01 0.01 0.03 0.34 0.03 0.92
21 2.29 1.90 3.20| 0.050.01 0.26 0.26 0.01 1.57 1.50 0.33 2.67
31 3.33 2.71 3.87| 0.07 0.02 0.24 2.72 0.61 5.70 15.11 4.79 23.81
4| 3.85 3.45 4.51| 0.08 0.03 0.29 32.87 10.63 67.05 100.78 32.62 300.43
5| 4.34 3.94 4.92| 0.10 0.04 0.21| 500.85 10.92 1,061.90| 2,357.06 401.98 7,587.65
Higher variability
1| 2.09 1.58 2.32| 0.01 0.01 0.01 0.05 0.01 0.26 0.46 0.12 1.67
2| 3.18 2.68 4.45| 0.04 0.01 0.17 0.41 0.09 0.80 1.91 0.81 2.65
3] 3.89 3.35 4.48| 0.02 0.02 0.03 6.30 1.29 16.84 21.71 6.82 32.04
4] 4.31 4.00 4.50| 0.13 0.03 0.31] 379.61 31.20 882.91 H&7.14 72.42 1,468.87
5| 4.69 4.34 5.13| 0.17 0.14 0.18|2,366.40 761.69 3,288.30(13,850.97 1,373.90 39,133.30
Higher nonlinearity
1/ 1.93 0.64 2.62| 0.01 0.01 0.01 0.02 0.01 0.03 0.52 0.03 1.92
21 2.65 1.96 3.51| 0.02 0.02 0.02 0.13 0.02 0.39 1.09 0.27 1.76
3| 3.71 2.96 4.44| 0.05 0.02 0.22 3.18  0.29 9.24 10.36 5.07 26.19
4| 5.74 4.12 7.74| 0.50 0.03 1.12] 109.70 40.48 296.39 315.37 65.08 526.36
5 4.72 4.30 5.00] 0.13 0.05 0.23|1,227.48 285.13 2,980.92| 6,010.28 798.48 17,137.49
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within 6% of the optimal in less than 0.5 second on average. As anticipated, initial opti-
mality gap and computational time increase as the problem size increases. Compared to
the base case, the initial optimality gap slightly increases for higher variability or nonlin-
earity. However, there is a significant increase in the computational time, especially when
the variability of the parameters increases, implying that the approach is quite sensitive
to the problem parameters. The substantial growth in the computational time for the
highly nonlinear instances compared to the base case ones is explained by the need for
more branching nodes to reach the threshold gap.

Finally, the Lagrangian heuristic combined with B&B performs significantly better than
the classical piecewise linear approximation in terms of computational time, especially
for difficult instances. For example, the average computational time ratio between the
two approaches for the 4-product, highly nonlinear instances is 1.55, and increases to
5.85 for similar 5-product instances. Nonetheless, the proposed heuristic is slower than
other algorithms developed specifically for the problem under consideration, including the
algorithm proposed by Dasci and Verter [35]. But unlike the latter, our proposed algorithm
is applicable to a broader class of problems.

1.3.3 The location-inventory problem

For the location-inventory problem, we use the same notation as in [37], where a set
I={i|i=1,2,...,m} of retailers are facing independent normally-distributed daily
demand for a single commodity with mean p; and variance o?. There is also a set J = {7 |
j =1,2,...,n} of potential distribution center (DC) locations, each having fixed set-up
cost f;. Each retailer has to be assigned to a DC. The unit shipment cost between DC j
and retailer ¢ is d;;. The working inventory and safety stock are managed at the DC level,
so that each retailer retains a minimal level of inventory and DC’s hold enough safety
stock for a type-1 service level a. There is a fixed order cost Fj, a fixed and a per-unit
shipment cost from the single supplier to each DC, g; and a;, respectively. Once an order
is placed, there is a lead time L before it arrives to the DC’s, and each unit has an annual
holding cost h. The goal is to decide on the number and location of DC’s to open, retailer
allocation to them, the level of safety stock to maintain and the frequency of reordering at
the DC’s, in order to minimize the total location, shipment, working inventory, and safety
stock costs. Note that potential DC locations could be selected at the retailers, i.e., a
subset of the retailers are upgraded to act as storage/distribution centers.
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Daskin et al. [37] formulated the problems as:

min Z ijj—FZCZinij—i-Kj Z/ubiy;j‘i‘@ 6.12}/;] (1'15)
jeJ el el el

sty V=1, Viel, (1.16)
JjeJ
Vi < Xj, Viel,VjeJ  (1.17)
X; €40,1}, Vj € J, (1.18)
Yi; € {0,1}, Viel,VjedJ (1.19)

where X; = 1if a DC is opened at candidate location j, and Y;; = 1 if retailer 7 is served by
the DC located at j. The problem parameter are calculated using the following formulas:

dij = Bxpi(di;+aj),
K = \/20hx(F; + Bg,).
© = 0bOhz,,

62 = Lo?.

2 K3

where y denotes the number of days in a year, whereas § and 6 are weights on the trans-
portation and inventory cost components.

The four terms in the objective function correspond to the location, shipment, working
inventory, and safety stock costs, respectively. For a detailed derivation refer to [37]. The
model has two sets of constraints: (1.16) assigns each retailer to exactly one DC, while
(1.17) stipulates that a DC must be opened before any retailers can be assigned to it.

The nonlinearity of the last two terms in (1.15) increases the complexity of the problem.
When the holding cost (h) is negligible, or when the demand is deterministic and the fixed
order and shipment costs (F; and g;) are very small compared to the transportation costs,
the problem can be approximated by the traditional UFL problem. However, when the
inventory costs are large, this approximation may lead to a solution far from the optimal.

The leading solution approaches to solve the problem rely on Lagrangian relaxation,
where constraints (1.16) are relaxed and constraints (1.17) appear in the nonlinear sub-
problem. Daskin et al. [37] solved a special case of the problem when the variance-to-mean
ratio is the same for all retailers using a sorting algorithm. Shen et al. reformulated the
problem as a set covering model and devised a column generation approach to solve the
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same special case. Later, the general case of the pricing subproblem (i.e., where two con-
cave terms appear in the subproblem) was solved in [90] and [39] through a set partitioning
algorithm that utilizes VC-dimensions to limit the search space. Recently, Atamturk et al.
[14] reformulated this problem as a conic quadratic mixed-integer problem. They Strength-
ened the formulation using valid inequalities to improve the computational results.

We use the Lagrangian approach proposed earlier to solve the problem. First, we define
the new variables P; and Q; , such that P; = > 1;Yi;, and Q; = Y 62V

el el
[P] : min Z{ijj—I—Zdij}/ij—f-Kj\/Pj—i—@\/Qj} (120)
jeJ iel
s.t. (1.16) — (1.19)
Py =" mYy, vj € J, (1.21)
iel
— Z‘A’?Yw’ Vj e J, (1.22)
iel
i€l
0<Q; <> 67, Vje J,.
iel

And then relax (1.21) and (1.22) with Lagrangian multipliers 6; and \;, respectively. The
resulting subproblems are:

[SP1]: min Z {fJX +Z i — 0jft; — )Y;J}

jeJ i€l
sty V=1 Viel,
jeJ
Y < Xj, Viel,VjeJ,
X; €{0,1}, Vj e J,
Yi; € {0,1}, VieI,VjeJ,
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which is an UFL problem. The first concave term appears in the second subproblem:
sP2: min > {K;V/P+ 6P}
j€d
st. 0<SP <> Vj e J,

i€l

which is decomposed to n subproblems, each with a single variable P;:

[SPZJ] . min Kj\/ PJ + (Sjpj
st. 0P <)
iel

As the objective function is concave, one of the extreme points is optimal, i.e., P; =0
(none of the retailers are assigned to the DC) or P; = ) p; (all retailers are assigned to

i€l
the DC), depending on the values of K and ;.
Likewise, the second concave term appears in the third subproblem:
[SP3] : min Z {@\/Qj + )\ij}
jeJ
st. 0<Q;<> 67, Vjel,

il

which is also decomposed to n subproblems, each with a single variable @Q);:

[SP3;] : min  ©./Q; + A\;Q;
st 0<Q; <> 67
icl

Again, one of the extreme points @); = 0 or @Q); = z;&f is optimal. Thus, the best
i€
Lagrangian bound resulting from this relaxation is:

LB* = max {V[Spl] + Z <V[SP2J~] + V[SPSj]) }

jeJ
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where v[SP1] is the optimal objective value of SP1, v[SP2;] = min (0, K; /> p; + ;> i)
iel iel
and v[SP3;] = min (0,0 /> 62+ \;>.67). According to Proposition 1, the best La-
icl icl
grangian multipliers can be calculated using the closed-form expressions:

5= K; (1.23)
‘/Z/M
el
oo O (1.24)

Since the solution of SP1* (Yj and 7”) is feasible to the original problem, we can
assess its quality by comparing its corresponding objective:

Z= Z ijj + Z Jijvij + K Z ,ui?ij +6 oY
JjeJ iel iel iel

to the Lagrangian lower bound:

i1
LR= 304 1%+ 30 (dy+ 2 + Vi
JEJ 1€l Z,LL’L 262
i€l

el

The difference (Z — LR) provides an upper bound on the optimality gap:

Z ,uz zg 2 5-12?13
0< Z < Z ’uz . iel Z &2Yw il )
o > 07

jeJ i€l i€l
i€l

The solution X Yzy is optimal if the right-hand-side is zero, which is the case when all
retailers are as:51gned to a single DC ( there exists j € J such that V;; = 1 Vi € I),
a situation that happens when the transportation costs are small compared to the fixed
setup costs and the saving from risk pooling. If more than one DC is opened, the gap may
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theoretically persist. However, experiments have shown that in many cases with multiple
DCs opened, the gap is entirely closed without branching, especially when the inventory
costs are relatively small (i.e., K; and © are small).

In order to narrow the gap, we use a simple, single-layer branch-and-bound algorithm.
Branching is done based on fixing the number of open DCs to p = 1,...,n. We generate
n branches, where the branching constraint:

2 X;=p

jedJ

is added to SP1. We also know that in the optimal solution, at least one retailer must be
assigned to each opened DC. So if p DCs are to be opened, any single DC can not serve
more than (m — p + 1) retailers. This is enforced by adding the following constraints:

m—p+1

k=1

to [SP2;] and [SP3,], where jy1) and of;) are the k' largest demand mean and k' largest
demand variance, respectively.

The proposed approach was tested on several datasets to measure its performance in
terms of computational and solution quality. The solution method was coded in Matlab and
solved using CPLEX 12.3 on a 2.26 GHz Intel Xeon E5607 processor machine. First, the
approach was tested on two classical datasets from the literature: an 88 node dataset repre-
senting the major U.S. metropolitan centers from [36], and a 150 node dataset representing
the largest 150 cities in the Continental U.S from [37]. We used the same parameters and
weights (6 and () used in [37] for comparability. Tables 1.7 and 1.8 show the results for
the two datasets. The columns display the weights # and 6, the optimal objective function
value, the computational time reported in [37] (CPUp) and [11] (CPU,), the Lagrangian
lower bound (LB), the upper bound (UB) based on the best feasible solution found, the
gap between the feasible solution and the lower bound (Gapl), the gap relative to the
optimal solution (Gap2), and the computational time in seconds (CPU), both before and
after branching.

According to the table, the quality of the lower bound depends largely on the weights 3
and 6. For the 88 node dataset, the relative optimality gap ‘Gapl’ ranges between 3.76%
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and 106.62% with an average of 24.28% before branching, and between 3.76% and 75.73%
with an average of 20.24% after branching. For the 150 node dataset, ‘Gapl’ ranges between
8.08% and 88.89% with an average of 24.61% before branching and between 7.98% and
72.09% with an average of 21.81% after branching. Notably, the optimality gap is quite
narrow except for the cases where the cost of inventory is large relative to the cost of
transportation (i.e., very high 6/ ratios). This is expected since the terms relaxed in
the objective function are those associated with the inventory costs. Second, although the
optimality gap is not closed, the upper bound ‘UB’ after branching is always very close, if
not identical, to the optimal solution. The optimal solution was found in 11 out of 14 cases
for the 88 node dataset and in 9 out of 11 cases for the 150 node dataset. The rest of the
solutions are less than 0.2% from the optimal. Third, although the partial B&B algorithm
led to a marginal improvement in the lower bound, the improvement in the upper bound
was enough to close the optimality gap in all cases. Therefore, the global optima in all cases
is reached, though without proof of optimality. For the 88 node dataset, ‘Gap2’ ranges
between 0 and 17.09% with an average of 2.73% before branching, and between 0 and
0.18% with an average of 0.02% after branching. For the 150 node dataset, ‘Gap2’ ranges
between 0 and 9% with an average of 1.55% before branching, and between 0 and 0.03%
with an average of 0.01% after branching. Last, the computational time before branching
is very small, averaging 0.25 seconds for the 88 node dataset and 0.8 seconds for the 150
nodes dataset. Even with the partial B&B step, the average execution time is 37.45 and
199.83 seconds for the 88 and 150 node datasets, respectively.

Next, the algorithm was tested on larger instances. New datasets of 500 and 1000
nodes representing the largest cities and towns in the U.S. according to the 2010 census
were generated [258]. As in [37], the demand mean and variance were obtained by dividing
the population by 1000 and rounding the result to the nearest integer. We set the holding
cost to 1, z, = 1.96, a; = 5, ¢g; = 10, and F; = 10 for all ¢+ € I. The fixed facility
location costs were set uniformly to 100, whereas the scalars L and y were both set to 1.
The CPU time limit was set to 10,000 seconds. The cost factors were selected so that 6
ranges between 0.01 and 1 whereas the ratio 6/ is varied between 1 and 100. Since the
optimal solutions for these new instances are not known, we compare the feasible solution
from the Lagrangian approach with a lower bound obtained through a piecewise linear
approximation of the objective function. The results are shown in Tables 1.9 and 1.10.

For the piecewise linearization approach, the tables display the optimal value of the
approximated problem (LB1), which constitutes a lower bound on the original problem,
the upper bound (UB1) obtained by plugging the optimal solution of the approximated
problem in the original problem, the relative optimality gap (Gap3 = (UB1-LB1)/LB1),
and the computational time (CPU1) in seconds. For the Lagrangian approach, the tables
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Table 1.11: Cost breakdown for the location-inventory problem (500 and 1000 node
datasets)

Weights 500 node dataset 1000 node dataset

IE] 0 |Loc.% Trans.% WI% SS% |Loc.% Trans.% WI% SS%
0.01 0.01| 52.61 42.15 5.03 0.22| 45.85  49.41 4.54 0.20
0.006 0.01| 49.97  44.00 5.78 0.25| 44.40  49.95 541 0.24
0.001 0.01| 46.66  44.38 8.58 0.38| 41.71 49.63 8.30 0.36
0.0005 0.01| 46.59 4290 10.07 0.44| 46.66  42.52 10.36 0.45
0.0001 0.01| 39.68  45.72 13.99 0.61| 38.51 46.57 14.30 0.63
0.05 0.05| 45.22  46.83 7.26 0.69| 43.81 48.98 6.58 0.63
0.005 0.05| 46.20  40.68 11.96 1.17| 41.25  46.41 11.24 1.10
0.0005 0.05| 40.79  37.57 19.71 1.93| 40.70  37.10 20.22 1.98
0.1 0.1 | 37.31 53.81 7.84 1.04| 38.05 53.69 7.29 0.96
0.01 0.1 | 46.62  37.35 14.09 1.94| 41.08  44.27 12.88 1.78
0.001 0.1 | 38.26  36.40 22.25 3.08| 34.41 40.95 21.65 3.00
1.0 1.0 8.06  83.49 6.45 2.00| 12.02 78.09 T7.55 2.34
0.1 1.0 | 29.55 42,61 19.63 8.20| 30.58  43.15 1852 7.74
0.01 1.0 | 31.51 25.25 30.11 13.13| 28.56  30.78 28.31 12.35
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display the Lagrangian lower bound (LB2), the upper bound (UB2) based on the feasible
solution, the relative optimality gap (Gapl = (UB2-LB2)/LB2), the relative gap between
the feasible solution obtained from the Lagrangian approach and the solution of the piece-
wise linearization (Gap4 = (UB2-LB1)/LB1), the computational time (CPU2) in seconds
, and the number of opened facilities (# of DCs). It is clear that, when compared to the
piecewise linearization, the proposed Lagrangian approach is superior in terms of compu-
tational time due to the much smaller sizes of problems to solve. While most instances
exceeded the CPU time limit of 10,000 seconds in the piecewise approximation approach,
the average computational time for the Lagrangian approach is 50.39 and 273.64 seconds
for the 500 and 1000 node datasets, respectively. Moreover, while the linear approximation
approach often leads to a better lower bound, the Lagrangian approach was able to reach
better feasible solutions in all cases. As the value of ‘Gap4’ is always greater than the
real optimality gap for the Lagrangian approach, all feasible solutions obtained from it are
within 21% of the optimal for the highest ratios of 6 to 3. But as shown in Tables 1.7 and
1.8, these solutions may in fact be very close to the optimal.

Table 1.11 outlines the contribution of each cost component in the total cost of the
best solutions obtained. For each of the newly tested 500- and 1000- node instances, the
columns titled ‘Loc.’, ‘Trans.”, ‘WI’ and ‘SS’ depict the ratios of the fixed location cost, the
transportation cost, the working inventory cost, and the safety stock cost respectively to the
total cost under different weights 5 and 6. The relative importance of each cost component
varies widely depending on the selection of the cost weights. Again, it is obvious that as the
nonlinear inventory components become more dominant, the computational time increases
and the bound quality deteriorates.

The number of opened DCs is greatly affected by the contribution of different cost
components as we change the cost weights 6 and 8. As anticipated, more DCs are opened
when the cost of transportation is high compared to the inventory-related costs to reduce
the shipment distances, whereas more retailers are served by each DC to take advantage
of the concave inventory cost functions when the inventory costs are relatively large. For
a constant 6/ ratio, more DCs are opened when the transportation and inventory costs
are large compared to the fixed setup costs. These results agree with those noticed in [37].

Finally, to demonstrate the capability of the proposed approach to handle the general
version of the problem we test on 500 and 1000 node instances with demand mean and
variance that are not correlated across the retailers. All the problem parameters are set
identical to the instances tested earlier (i.e., Tables 1.9 and 1.10) except the demand
variance which is set as ¢? = 2.rand,.u;, where rand; are uniformly distributed pseudo-
random numbers over (0, 1). Comparison of the results presented in Table 1.12 with those
in Tables 1.9 and 1.10 shows no significant differences in solution quality or computational
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time between the general case instances and their corresponding special case instances
where p1 and o2 are set equal. These results signify the generic nature of the approach and
its ability to solve problems with several concave terms in the objective functions.

Through the aforementioned computational tests, we found that the proposed approach
was able to reach high quality solutions for instances of the location-inventory problem
from the literature efficiently and, unlike the classical solution approaches, could handle
the general case (i.e., uncorrelated demand mean and variance) of the problem. We were
also able to solve new extremely large instances of up-to 1000 nodes to near-optimality in
less than 5 minutes in average.

1.4 A Benders approach for concave minimization

1.4.1 Benders decomposition

Benders decomposition is a classical approach that is well-suited for a specific class of
problems, namely problems with ‘complicating variables’ [20]. Had these variables been
temporarily fixed, the resulting subproblem(s) would have been much easier to solve than
the original problem. The idea is to use the dual solution of the subproblems obtained
in every iteration to generate a cut that is added to a master problem. When solved,
the master problem provides new ‘trial” values for the complicating variables and a lower
bound, whereas an upper bound and a new cut are obtained from the subproblem(s). The
algorithm iterates between the master problem and the subproblem(s) until the upper and
the lower bounds coincide, in which case the solution is declared optimal.

While the classical Benders decomposition was originally devised for mixed-integer pro-
gramming problems (where fixing the integer variables renders the subproblem linear), the
idea has been extended to other classes of problems. Geoffrion [50] has studied the case
when the subproblems are concave for any value of the complicating variables and de-
veloped a method known as ‘Generalized Benders decomposition’ to generate valid cuts.
On the other hand, when the subproblem is an integer program (meaning that the strong
duality theory cannot be applied to obtain dual variables), the ‘Logic-based Benders De-
composition” approach proposed by Hooker [63] can be used to generate ‘logical’ cuts from
the integer subproblem directly.

In this section, we propose a Benders approach for solving P that is particularly effective
when m < n, i.e., the number of concave terms in the objective function is much smaller
than the number of variables. This situation is not uncommon in practice. Consider,
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for instance, a complete digraph that has n nodes and n(n — 1) arcs. If the flow in arcs
carries a linear cost per unit whereas nodes enjoy economies of scale, the number of concave
terms in the cost function is much smaller than the number of linear terms for practical size
problems. Another example is the subproblem resulting from relaxing the single assignment
constraint in the inventory-location problem [37] which has only two concave terms (or one
if the variance to mean demand ratio is the same for all retailers).

To present the approach, let us consider the (0-1) concave minimization problem

[P]: min o+ Zf,(dZTx)
i=1
st. Az >b
xz € {0,1}"

where ¢, d; € R", f; are real concave functions over the feasible set, and m < n. Let
y; = dl'z. Benders decomposition is applied by fixing y to § = [#;] to get a (0-1) subproblem
in x. Then we relax the integrality constraint to get the linear Benders subproblem

[BSP]: min 'z

st. Az >b (u)
Fe=j ()
Ex>e (w) (1.25)
xz > 0.

Note that (1.25) are box constraints on x, i.e., v <= 1. We use them later for branching
purposes by fixing the elements of E and e to force x; to 0 or 1. We proceed by taking the
dual of BSP to get the dual subproblem

[DSP]: max bu+gv+elw
st. ATu+dv+ETw<e
u,w >0

Let H? and H" be the index sets of extreme points and extreme rays of the set
{(u,v,w) : ATu+ dv+ ETw < ¢, u,w > 0}. By introducing the variables § = v[BSP] =
v|[DSP| = fl;n%x(bTuh + yTov" + eTw"), the Benders master problem is

cHP
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[BMP]:  min 0+ Z fi(i)

s.t. 0 — oy > bTul + T Vh € H? (1.26)
— vy > 0" +eTw" Vhe H (1.27)
Y, SYi ST Viem (1.28)

It is not practical to generate the constraints corresponding to all extreme points and
rays and include them in BMP at once. So we start with a subset of constraints which
includes only (1.28) and solve a relaxed version of the master problem RBMP in every
iteration to obtain a new set of y values that are sent back to BSP. A Benders optimality
cuts (1.26) is generated and appended to BMP every time a feasible subproblem solution is
obtained. If a subproblems turns out to be infeasible (or, equivalently, its dual subproblem
is unbounded), a Benders feasibility cut (1.27) is generated and appended instead, where

the extreme ray (v", u" w") is obtained by solving the auxiliary subproblem

[ASP]: max 0
s.t. ATu+dv+ ETw <0
Vu+glv+elw=1
u,w >0

This approach shifts the nonlinearity of the objective function to the relaxed master
problem, which has fewer variables and constraints than the original problem. Since BMP
is a concave minimization problem, it has a global optimum at an extreme point of its
feasible polytope. Therefore, it can be solved by evaluating the objective value at all
vertices. The problem is of dimension m + 1, so vertices result from the intersection of
m + 1 linearly independent hyperplanes. The optimal vertex at any iteration is found by
enumerating possible combinations of m + 1 binding constraints at a time. Since only a
single cut is added in every iteration, it is sufficient to use the new cut with combinations
of m old cuts to generate all the new vertices. The newly found vertices are tested for
feasibility with respect to the old constrains. Likewise, the old vertices carried forward
from the previous iteration are filtered using the new cut. The set of feasible vertices are
then evaluated to find the relaxed Master problem’s optimal solution (#,y) and a lower
bound. Although this approach is equivalent to complete enumeration, only a few extreme
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Table 1.13: Test functions for the Benders approach

function form

2/3
flr)= =30z + (Z;;l(\/} + \%)@) increasing
fo(x) = (ZJ L Jxj — (ZJ 1\/_96]) )/1000 decreasing

fs(x) = —(n/10) 30, 2; + nsin (%) increasing then decreasing

points are generated and tested at every iteration. It has proven to be pretty efficient in
practice.

Since RBMP is a relaxation of BMP, which is in turn is a reformulation of P, its
solution provides a lower bound on the optimal solution of P. On the other hand, the
solution of BSP is feasible to P, so v[BSP] + > .., fi(9;) provides an upper bound on
the optimal solution of P. The master and the subproblem are solved iteratively until the
gap between the upper and lower bounds is sufficiently small. Upon solving the linearly
relaxed subproblem, if some of x variables are fractional, branch-and-bound is used.

1.4.2 Numerical testing

To evaluate the proposed Benders approach, we test on instances with a single concave
term in the objective function. Three concave functions of different forms over linear
combinations of (0-1) variables are used for testing. The functions are depicted in Table
1.13. The polytopes X = {z : Az < b} containing the feasible points are generated
as follows: the elements of A are uniformly distributed random numbers in the interval
[0,n]. The right-hand side column vector is generated as b = A% + s, where Z and s are
vectors of size n and m, respectively, of uniformly distributed random numbers from the
interval |0, 1[. We generated instances of two sizes: (25 x 25) and (50 x 50), where the first
figure represents the number of constraints and the second the number of variables. Five
instances are solved for each size/function combination. To benchmark the performance
of the proposed approach, we compare to the state-of-the-art global optimization solvers
Couenne and Baron on NEOS server [2].
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Table 1.14: Results for the Benders approach

. : Benders approach Couenne Baron
ins fun size . .
obj cpu nodes obj cpu
1 1 25 x 25 -1.198 1.28 155 -1.198 1.42 -1.198  0.17
2 1 25 x 25 -2.160 0.41 41 -2.160 1.18 -2.160 1.10
3 1 25 x 25 -1.249 2.20 273 -1.249 1.64 -1.249  0.09
4 1 25 x 25 -1.276 1.83 227 -1.276 2.17 -1.276  0.37
5 1 25 x 25 -1.302 1.38 151 -1.302 2.21 -1.302  0.25
1 2 25 x 25 -2.006 5.12 1721 -2.006 1.07 2.006 0.45
2 2 25 x 25 -3.580 3.62 1.281 -3.580 1.15 -3.580 0.46
3 2 25 x 25 -2.413 1.40 445 -2.413 0.89 -2.413  0.42
4 2 25 x 25 -2.965 1.91 685 -2.965 0.64 -2.965 0.24
5 2 25 x 25 -2.643 5.95 2109 -2.643 0.81 -2.643 0.34
1 3 25 x 25 -12.417  0.18 21 -12.417 12.22 - -
2 3 25 x 25 -23.199  13.38 2423 -23.199 10.58 - -
3 3 25 x 25 -12.611  0.05 3 -12.611 29.81 - -
4 3 25 x 25 -15.737  7.13 1079 -15.737 36.53 - -
5 3 25 x 25 -12.711 9.81 1075 12.711 47.57 - -
1 1 50 x 50 -3.812 1177 685 -3.812 2,298.28 | -3.812 0.89
2 1 50 x 50 -3.183  10.68 675 -3.183  5,151.51 | -3.183 0.70
3 1 50 x 50 -3.609 4.60 259 -3.609  3,166.23 | -3.609 0.19
4 1 50 x 50 -3.576  10.94 625 -3.567  3,171.26 | -3.567 0.62
5 1 50 x 50 -3.204 6.84 383 -3.204  3,463.33 | -3.204 0.65
1 2 50 x 50 -19.778  124.55 26217 | -19.778 14.36 | -19.778 2.63
2 2 50 x 50 -19.523  57.29 10819 | -19.523 11.49 | -19.523 3.06
3 2 50 x 50 -19.431  223.77 48305 | -19.431 8.34 -19.431 0.84
4 2 50 x 50 -18.157  147.42 27245 | -18.157 37.61 | -18.157 8.92
5 2 50 x 50 | -16,475" 10,000 114,697 | -17.965 34.06 | -17.965 9.08
1 3 50 x 50 -84.797  65.67 3,121 |-84.104" 10,000 - -
2 3 50 x 50 | -80.635" 10,000 109,336 | -79.759" 10,000 - -
3 3 50 x 50 -82.329 105.33 4935 | -81.474" 10,000 - -
4 3 50 x 50 -81.958 115.25 4703 | -80.863" 10,000 - -
5 3 50 x 50 S77.704  313.18 15541 | -77.143" 10,000 - -

T suboptimal solution
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The results are depicted in Table 1.14. The columns ins, fun, and size present the the
instance number, the objective function type (according to Table 1.13), and the instance
size (m x n), respectively. For each of the three solution methods we provide the compu-
tational time in seconds (cpu) and the best objective value reached (0bj). For the Benders
approach we also provide the number of nodes in the B&B tree (nodes).

The proposed Benders approach was able to solve 28 out of the 30 tested instances to
proven optimality in the cut-off time of 10,000 seconds. The computational time varies
widely between the instances depending on their size and objective function type. In
absolute terms, the Benders approach performed well with the smaller instances and with
function 1 (the increasing function). The average computational times for the smaller
(25 x 25) instances are 1.42, 3.6 and 6.11 seconds for the three function types, respectively.
The average computational time for the larger (50 x 50) instances with function 1 is 8.97
seconds. The larger instances with functions 2 and 3 took significantly longer times to
solve, where one instance of each function type could not be solved to optimality.

When compared with the two commercial solvers Couenne and Baron one has to keep
in mind that the instances were solved on servers with very different characteristics. There-
fore, the computational times reported should be used with caution and considered indica-
tive only. When the computational time is reported as 10,000 seconds, it means that the
solver was not able to find the optimal solution within the cut-off time. From the tests
conducted, it seems that Baron has a wide performance edge over both Couenne and our
Benders approach, with a serious drawback of its inability to handle the sine function
even in a period where it is purely concave. For the smaller instances, Couenne has, on
average, a performance comparable to our approach for the increasing function and a bet-
ter performance for the decreasing function. However, for the sine function, our approach
substantially outperformed Couenne with a computational time ratio of approximately 2:9.
For the larger (50 x 50) instances, our approach exhibited impressive performance com-
pared to Couenne with the first and third functions, but lagged behind with the second. In
fact, our approach is the only one that could solve the larger instances with a sine function
to proven optimality in 4 out of the 5 tested instances. In comparison, Couenne reached
suboptimal solutions in all tested instances with optimality gaps ranging between 18.3%
and 21.2%.

In general, the performance of the Benders approach is quite encouraging, given that
the approach could be enhanced further, e.g., by adding cuts. The approach has to be
tested on larger instances and with multiple concave terms to assess its effectiveness.
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1.5 Conclusions

In this chapter, we presented two new approaches for solving an important class of concave
minimization problems over a polytope that appears frequently in supply chain design
models. Furthermore, we demonstrated the application of the first on three supply chain
network design models from the literature.

The first approach is a Lagrangian decomposition approach embedded in a branch-
and-bound algorithm to solve problems with concave terms over linear combinations of the
decision variables in their objective functions. The problem is decomposed into a linear-
objective subproblem over the same feasible set and a set of easily-solvable single-variable
concave minimization problems. The first subproblem is solved using efficient LP/MIP
commercial solvers. A closed-form expression for the optimal Lagrangian multipliers is
provided, enabling the calculation of the Lagrangian bound in a single iteration. Since the
solution of the linear-objective subproblem is feasible to the original problem, an upper
bound is obtained immediately. The approach is then embedded in a B&B algorithm where
the Lagrangian lower bound and the feasible solution are used for bounding and branching.
The approach is tested on problems from the literature and is shown to perform quite well
on problems with different concave functions and feasible regions, including continuous
and discrete. The Lagrangian approach could be extended to handle different forms of
nonlinearity such as quasi-concave functions, as long as the second subproblem yields
solutions at the boundaries.

The proposed Lagrangian approach is then used to tackle the production-transportation
problem, the plant location and technology acquisition problem, and the location-inventory
problem. The results are compared with those obtained using other algorithms, highlight-
ing the ability of the Lagrangian approach to handle a wide array of practical problems
effectively.

Finally, we propose a new Benders approach to tackle concave minimization problems
over a polytope, when the number of concave terms in the objective function is much
smaller than the number of constraints. Our approach is different from the classical Benders
decomposition in that the subproblem is integer and the master problem is concave with
continuous variables. To overcome the integrality issue, we solve the linear relaxation of
the subproblem and then use B&B to restore integrality. The master problem is solved
through enumerating the feasible region vertices iteratively. The approach is tested on
random instances using different objective functions and was found to outperform some
of the well-known commercial solvers, especially when nonlinear convex relaxations of the
functions are not readily available in the solver (as the case of trigonometric functions).
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Chapter 2

Cold supply chain design: a
simulation-optimization approach

2.1 Introduction

! Global warming has become a pressing issue in the last few decades, particularly with the
plethora of recent scientific research providing strong evidence for its existence and showing

its severe negative effects [93]. Currently, specialists concur that the radioactive forcing
attributed to the anthropogenic greenhouse gas (GHG) emissions is the main cause of the
global warming phenomenon [6]. Thus, many endeavors have been made by governments,

organizations and firms around the world to reduce the emissions of GHG.

In many industries, supply chain operations are a significant source of GHG emissions.
It was estimated that more than three quarters of the GHG emissions associated with
many industrial sectors are attributed to supply chain activities [67]. Companies have
devoted considerable attention to reduce the environmental footprint of their supply chains,
aiming to achieve their sustainability commitments, mitigate risk on their brand value, and
satisfy their environmentally-conscious customers [3]. Nowadays, several global companies
including IBM, Johnson&Johnson and PepsiCo require their suppliers to report or control
their GHG emissions, whereas other companies are taking steps to control their supply
chain emissions. For example, Wal-Mart has recently announced that it is on track to
reduce GHG emissions from its supply chain by 18 million metric tons by 2015 [1].

!Some material in this chapter has been accepted for publication in: A. Saif, S. Elhedhli, Cold supply
chain design with environmental considerations: A simulation-optimization approach, European Journal
of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.10.056.
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In cold supply chains, products must be stored and transported at low temperatures
near or below the freezing mark. This necessitates the use of refrigerated warehouses and
trucks that consume large quantities of energy for refrigeration. Higher energy consump-
tion is associated with higher carbon dioxide (CO2) emissions in power generation facilities.
Furthermore, refrigeration systems utilize large quantities of HydroFluoroCarbon (HFC)
gases that have high global warming potential (GWP) and very long lifetime in the atmo-
sphere. Regular and catastrophic leakage of HFC gases from cold supply chain constitutes
a significant components of the global warming impact. Therefore, these gases must be
taken into account when determining the best design and operations of cold supply chains.

In this chapter, we study the cold supply chain design problem and provide a mathe-
matical model to represent its economic and environmental effects. The problem is formu-
lated as a concave mixed-integer programming problem, where the objective is to minimize
the expected total cost of the supply chain, including capacity, transportation and inven-
tory costs, in addition to costs associated with the global warming impact due to GHG
emissions. We consider the environmental effects of both CO2 emissions due to energy
consumption and leakage of refrigerant gas in warehouses and vehicles.

To solve the model, we propose a novel Lagrangian approach embedded in a branch-
and-bound framework. Unlike classical Lagrangian relaxation approaches that use iterative
methods such as subgradient optimization or cutting plane methods, we are able to provide
a closed-form expression for the best Lagrangian multipliers, so we get the Lagrangian
bound in a single iteration. Since the solution of the main subproblem is feasible to the
original problem, we also get an upper bound immediately. A branch-and-bound algorithm
is used to close the optimality gap. The proposed approach requires the evaluation of the
inventory cost and the maximum inventory level at the branching points. Since we address
the case of general demand pattern and inventory policy where explicit formulas for the
inventory functions are rarely available, we resort to a simulation-optimization algorithm
to estimate these functions. Discrete-event simulation is embedded into a bisection search
algorithm to find the best control parameters of the inventory system.

The main contributions of this chapter are:

1. A new mathematical formulation for the cold supply chain design problem with dual
objectives of minimizing the total cost and the global warming impacts, including
those associated with the usage of refrigerant gases. The proposed formulation takes
into consideration economies-of-scale and bases the warehouse capacity on the physi-
cal inventory holding requirements, leading to a mixed integer concave minimization
problem.
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2. A novel solution approach for the cold supply chain design problem that combines
the Lagrangian decomposition proposed developed in section 1.2 with a simulation-
optimization algorithm in a branch-and-bound framework. The proposed solution
approach can handle the case of general demand distribution and inventory policy
when the inventory functions cannot be expressed explicitly. The computational
performance of the proposed approach is tested on a hypothetical case under a wide
range of scenarios.

3. Important managerial insights are drawn from testing the proposed approach on two
realistic case studies from different industries. The tradeoffs between the economic
and environmental considerations and between the different cost components in each
case are studied. It has been shown that significant reductions in the global warming
impact of cold supply chains can been achieved at a small marginal increase in the
cost.

2.2 Literature review

2.2.1 Supply chain design with environmental considerations

Until the last decade, little attention was given to the environmental impact of supply
chains. As noted by Current et al. [34], only a few supply chain network design papers
have included environmental metrics in their objective functions. Furthermore, these were
ad hoc models designed for specific applications and not generic ones. However, with the
escalating pressure from both governments and consumers to reduce the environmental
footprint, the interest in designing green supply chains has risen sharply in the last decade.
Several aspects of green supply chains were considered in the literature, including reverse
supply chains, green manufacturing and remanufacturing, and environmentally-conscious
lot-sizing.

Incorporating environmental aspects in supply chain design necessarily entails a trade-
off between economic and environmental objectives. However, as shown by Benjaafar et
al. [21], by making minor operational changes, it is possible to achieve vast reductions in
the environmental footprint of supply chains without significantly increasing the cost. A
variety of supply chain design models that incorporated GHG emission minimization as an
objective have appeared recently in the literature; each was based on certain assumptions
and has a specific focus. Ramudhin et al. [31] proposed a green supply chain design
model that integrates carbon trading considerations but assumed that facility locations
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and sizes are known in advance. Conversely, Diabat and Simchi-Levi [38] considered a
similar carbon-capped supply chain design problem that treats the manufacturing and
storage capacity of the manufacturers as variables, but does not account for the possibility
of carbon trading. Harris et al. [01] considered a multi-objective variant of the traditional
uncapacitated facility location problem with economic and environmental objectives and
implemented an evolutionary algorithm to find a set of non-dominated solutions. Bin and
Jun [20] presented a nonlinear MIP model for a green supply chain design, showing the
positive economic and environmental effects of implementing e-commerce on the supply
chain operations. A more detailed and sophisticated multi-objective model that embeds
life-cycle assessment (LCA) concepts within the supply chain design process is presented
by Bojarski et al. [27]. The strategic decisions addressed in the model are facility location,
processing technology selection and production/distribution planning. Trade-offs between
the total cost and the environment influence are thoroughly studied by Wang et al. [107],
who applied a normalized normal constraint method to find a set of evenly distributed
Pareto optimal solutions and studied their sensitivity to the problem parameters. The
closed-loop supply chain design framework proposed by Chaabane et al. [30] combined
multiple aspects from the previous references, including LCA and emission trading. Their
MIP model takes into account the economic and environmental costs of manufacturing,
distribution, warehousing and recycling activities. For a recent survey on location models
within a supply chain environment, the reader is referred to [76].

Within the current literature, three observations are worth mentioning. First, most
of the models address the strategic location-allocation decisions in isolation from tactical
ones such as inventory and routing decisions; Therefore they fail to exploit the significant
potential savings in economic and environmental costs that can be achieved by considering
the two levels of decisions simultaneously. Second, with very few exceptions (e.g., [13]),
the literature has assumed that the environmental impact of the supply chain is linearly
proportional to its scale. A more accurate and realistic approach is to consider economies of
scale inherent in supply chain operations, leading to non-linear models. A final critique of
the supply chain design models that consider emissions is that they have a narrow focus on
CO2 as the only GHG that deserves attention, ignoring the strong global warning impact
of other GHGs. This impact is especially important in cold supply chains that use large
quantities of refrigerant gases, which are known to have very high GWP. Although including
refrigerant gases beside CO2 in the emissions minimization objective function does not
fundamentally change its general form, it significantly increases its magnitude and alters
its specific mathematical form, leading to different results and managerial implications.

In the remainder of this chapter, we incorporate these three features into a mathe-
matical model that combines strategic location-allocation and tactical inventory decisions,
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takes into consideration the nonlinearities resulting from both economies of scale and the
risk pooling effect, and incorporates the global warming impact of other GHGs beside
CO2. We also propose an approach that combines Lagrangian decomposition, simulation-
optimization approach to solve the resulting model.

2.2.2 Simulation-optimization methods for supply chain design
problems

Combining simulation and optimization methods to solve stochastic problems is an in-
creasingly popular approach. While mathematical programming/optimization methods
can handle a large number of variables efficiently and rigourously, simulation methods are
favorable in dealing with realistic complex, stochastic, and dynamic systems when it is
extremely difficult (or even impossible) to depict complex relationships between the com-
ponents of a system explicitly.

In the context of supply chain network design problems, simulation and optimization
methods were combined through two main approaches:

e Optimization and simulation models are used iteratively to tune the parameters of
each other. [78] used this approach to solve a deterministic supply chain planning
and scheduling problem that entails minimizing the production, transportation, and
inventory holding costs subject to capacity and inventory balance constraints. Inde-
pendent optimization and simulation models were developed for the problem, then
the two models were linked through a set of variables/parameters, by which some
outputs of the optimization models are used as inputs for the simulation model, and
vice-versa. Iterating between the two models continue until the total cost in both
converge. Similar approaches were pursued by [13], [35], [72], and [10], among others,
to solve a supply chain network design problems.

e The problem is decomposed to two subproblems, where one is tackled through op-
timization and the other through simulation. This approach is often used when it
is difficult to tackle the problem directly through optimization due to specific model
attributes (e.g., stochastic parameters, unknown function, etc.). Jung et al. [68] used
this approach to solve stochastic supply chain planning and scheduling problem.

The approach we present in this work belongs to the second class. Lagrangian decom-
position is used to isolate the stochastic and non-linear terms in the objective function so
they can be estimated independently through simulation, whereas the remaining part is
solved as a deterministic MIP.
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2.3 Effect of refrigerant gases in cold supply chains

The Kyoto protocol requires countries to commit to specific reductions in the emissions of
six types of GHG. Although CO2, among them, contributes the most to global warming
due to the vast quantities of its emissions resulting from fossil fuel use, other gases play an
important role and may become a dominant factor in global warming in the near future.
In particular, concentrations of many of the fluorine-containing GHGs (HFCs, PFCs, SF6)
increased by a factor of 1.3 to 4.3 between 1998 and 2005, and their total radiative forcing is
rapidly increasing by roughly 10% per year [93]. The global warming impact of a greenhouse
gas is determined by two factors: its concentration in the atmosphere and its GWP, defined
as the ratio of the time-integrated radiative forcing from the instantaneous release of 1 kg of
this specific gas to that from the release of 1 kg of carbon dioxide. Despite the fact that the
concentrations of these gases in the atmosphere are low compared to those of CO2, many
of them have very high GWP. For example, HFC-134a, a haloalkane refrigerant commonly
used in domestic refrigerators and automobile air conditioners, has a GWP of 3830 over
20 years. Although the concentration of HFC-134a in 2005 was only about 10~7 of that of
carbon dioxide, this concentration has increased by 349% between 1998 and 2005 compared
to an increase of only 13% of the carbon dioxide concentration during the same period.
Velders [101] estimated that if the objectives of reducing CO2 emissions are accomplished
but nothing is done about HFCs, they will be responsible for between 28% and 45% of
carbon-equivalent emissions by 2050. Even if no action is taken on CO2, HFCs will still
be responsible for between 10% and 20% of carbon-equivalent emissions by 2050.

Among different applications, air conditioning (domestic and automotive) and refriger-
ation (domestic, industrial, commercial and transport) use, by far, the largest quantities of
HFC gases. Food processing, cold storage and transportation applications contain about
two thirds of the total HFC quantities used in refrigeration applications and generate about
the same percentage of HFC emissions [7]. Therefore, incorporating the contribution of
refrigerant gases while calculating the total global warming impact is particulary impor-
tant for firms using these gases extensively. For instance, it has been estimated that, in an
environment with an average energy mix, the refrigerant emissions represent about 60% of
the total emissions of GHG resulting from refrigeration system operation in the commercial
sector, whereas the rest is indirect emissions caused by power production [7]. Since most
of the refrigerant emissions take place in the transportation and warehousing stages, it is
crucial to incorporate the greenhouse impact of refrigerant gases in the logistics/supply
chain design models developed, to minimize or control the environmental damage caused
by these firms.
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2.4 Cost and global warming effect of cold storage
warehouses

The set-up and operational costs of conventional (non-chilled) warehouses are known to
exhibit strong economies of scale, and thus were modeled as concave functions of their
volumetric capacity [19]. However, classical capacitated facility location models assumed
that the capacities of potential warehouses are determined exogenously and known a priori,
such that these capacities only impose limits on demand quantities (i.e., throughput)

handled by warehouses [105]. Even when the warehouse capacity was considered a variable
to be determined by the program, it was linked directly to the throughput via a linear
[55] or a concave function [77], and was not based on the actual physical stock holding

requirements. This treatment of the warehouse capacity is justifiable for conventional
warehouses as the capacity cost is usually modest. However, upon adding the cost of the
refrigeration system to the capacity cost in cold supply chains, the latter substantially
increases, and consequently, the throughput-based sizing approach may not be suitable
for determining the optimal capacity accurately. Therefore, in our model we use a novel
approach to determine the warehouse capacity based on the actual storage requirements
dictated by the demand pattern, inventory policy, and customer service requirements.

It is easy to show that the cost and global warming impacts of the refrigeration system
are also concave functions of the warehouse volumetric capacity. First, there are economies
of scale with respect to the equipment sizes required to serve a certain cooling load. Many
refrigeration system components, such as motors, compressors, condensers, values, and
control units, cost less per unit size as they grow larger. Moreover, the mechanical, elec-
trical, and thermal efficiencies of the refrigeration system components are usually higher
for larger sizes, thereby reducing their energy consumption per unit of refrigeration load
served. Second, The relationship between the volumetric capacity of a cold store and its
refrigeration load is concave. This relationship results from two major heat load compo-
nents that increase sub-proportionally with the cold store volume, namely the external
heat and the infiltration loads. The external heat load is approximately proportional to
the surface area of the cold store, whereas the number of air changes in a cold store has
an inverse relationship with its volume [5].

The amount of refrigerant gas leakage is usually estimated as a percentage of the amount
of the refrigerant charged (i.e., refrigerant bank) [7]. The amount of refrigerant required
per ton of refrigeration is a constant referred to as the ‘net refrigeration effect’ for each
refrigerant type [00], implying that the leakage quantity is proportional to the cooling
capacity of the system. Again, this leads to the conclusion that the leakage quantity is a
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concave function of the volumetric capacity of the warehouse.

The two environmental effects of the refrigeration system can be combined in a single
metric known as the total equivalent warming impact (TEWI), defined as the sum of the
direct equivalent (chemical emissions) and the indirect (energy use) global warming effects

[51].

2.5 Model formulation

Let us define indices i =1,....m, j=1,....n, k=1,...,pand [ = 1,...,q, correspond-
ing to retailers/customers, potential warehouse locations, production plants and products,
respectively. Each plant has sufficient capacity to satisfy the total demand, so plant ca-
pacity is not an issue. This infinite capacity assumption is not restrictive and can be easily
relaxed by adding a plant capacity constraint that has no effect on the solution approach.
The number, location and size of warehouses to open is not known in advance. There is a
fixed annual cost a; for opening a warehouse at location j. In addition, there is a volume-
dependent capacity cost represented by a concave function f;(.) to capture economies of
scale. Products are shipped from plants to open warehouses in bulk quantities using single-
type long-haul trucks, so c;ji, the cost of shipping one unit of product [ from plant £ to
warehouse j, is constant. Each unit of product [ has volume u;. To ensure better cus-
tomer service, each retailer is assigned to a single warehouse for serving its requirements
of all products. No restrictions are placed on the demand pattern of retailers, 7.e., time
and composition of orders can follow any probability distribution. However, we assume
that the planner can characterize this distribution with reasonable accuracy. Let d;; be
the expected annual demand of product [ from retailer i. Ordered products are shipped
to customers using trucks of different types, depending on order size and distance, so the
transportation cost is not linearly proportional to the number of units shipped. However,
since the demand distribution of each customer is known, 7;;, the annual cost of serving
customer ¢ from warehouse j, can be estimated. Finally, warehouses implement an inven-
tory policy that aims to minimize the total inventory cost, including: ordering, holding,
and backordering or lost sales costs. Upon knowing the inventory policy in each warehouse,
we can construct its total inventory cost function ¢;(.) and the maximum inventory level
function s;;(.) for every product; both are functions of the total demand served by the
warehouse. The maximum inventory level depends on the inventory policy implemented
by warehouses. For example, if a warehouse uses a base-stock policy or an (s, S) policy, it
is equal to the order-up-to level (R or S, respectively); whereas for reorder point (@, R) or
(R, nQ) policies, that maximum is equal to @) + R, and so on.
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To model the problem, we introduce the following variables:
x;; © binary variable takes value 1 if retailer ¢ is assigned to warchouse j.
Yjr: units of product [ shipped from plant & to warehouse j.
zj @ binary variable takes value 1 if a warehouse is opened in location j.

The expected total annual cost of the system includes: warehouse capacity cost (fixed
and size-dependent), transshipment cost between plants and warehouses, and between
warehouses and retailers, and inventory costs (i.e., ordering, holding, and backordering or
lost sales cost), which can be formulated as:

Z a;zj + Z Z Z CikiYjkl + Z Z T3 %ij

7=1 k=1 I=1 7j=1 =1

n Z Z £ (Z d,m]> + Z f; (Z ;i (Z dzl%) )

=1 [=1

Likewise, the global warming effect of the system is the result of GHG emissions through
the shipment of units between plants and warehouses, and between warehouses and retail-
ers, and GHG emissions corresponding to the warehousing of products. The schematic
diagram in Fig.2.1 illustrates the different cost and GHG emission components.

Let eCO2;j; be the average CO2 emissions corresponding to the shipment of one unit
of product [ between plant k and warehouse j and eHFCjy be the average HFC gas
leakage per unit of product [ shipped between plant k and warehouse j. The combined
global warming effect of both emitted gases is quantified using the principle of equivalence
between the emission of a unit of HFC and GW Py rc units of CO2, where GW Py ¢ is the
GWP of HFC described earlier. Thus, e, the CO2-equivalent amount of GHGs emitted
for shipping a unit between a plant and a warehouse is calculated as:

ejkl = GWPHFC.eHFCjkl + 600231451

Likewise, 0;;, the annual CO2-equivalent emissions for serving retailer ¢ from warehouse
J, bj, the annual fixed CO2-equivalent emissions from warehouse j, and the concave function
g;j(.), the annual CO2-equivalent emissions from a warehouse as a function of its volume,
can be found in the same way. Thus the total CO2-equivalent emissions of the system can
be expressed mathematically as:

TE = Z bz + Z Z Z ey + Z Z 0iij + Z 9 (Z s (Z du%) )

=1 k=1 [=1 7=1 =1
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Let w be the weight assigned to the emissions minimization objective, which can be the
price of carbon emissions in the context of a carbon trading scheme. Thus, to simultane-
ously minimize the total cost and the total CO2-equivalent emissions the objective function
is: TC +w.TE. With that, the problem is formulated as:

[P]:  min Zajzj + ZZZCJM%M + erwxw + Zztﬂ <Zdl$w> (2.1)

=1 k=1 l=1 7j=1 i=1 7j=1 Il=1
+ E [ <E WS (E dil%j))
j=1 =1 =1

st Y wy =1, Vi, (2.2)
j=1

p m
Z Yjkl = Z dilxija Vi, 1, (2-3)
k=1 i=1

i < zj, Vi, j, (2.4)
Tij, Zj € {07 1}7 Vi7j> Yjkl Z 07 V], k? la (25)

where £;(.) = f;()+wg;(.), ér = cjr+wejn, Tij = 1o +woj, and a; = a;+wb;. The first
constraint ensures that every retailer is assigned to exactly one warehouse. The second
constraint represents the quantity balance for every warehouse and product. Whereas the
last constraint stipulates that a retailer can not be assigned to a warehouse unless it is open.
This model resembles the single-echelon, multi-commodity supply chain design problem in
[88], which also considered economies of scale within the supply chain using a concave term
in the cost function. A similar problem structure is also analyzed in the more recent work
of Berman, Krass, and Menezes [21] on inventory location problems.

In order to find r;; and o;;, the annual cost and carbon-equivalent emissions for serving
retailer ¢+ by warehouse j, we assume that each retailer is served individually, i.e., a truck is
sent to a single retailer to fulfill its order. This is a reasonable assumption when the order
frequency is low (i.e., it is quite unlikely to have several adjacent retailers ordering at the
same day), when the shipment sizes are large, or when the retailers are widely dispersed.
Let V = {1,...,v} be the set of different vehicle types that can be used to ship products
between warehouses and retailers. Upon knowing the distribution of demand from each
retailer, we can determine the expected annual number of shipments using a specific type
of trucks:

E(N,) = E(N).Pr(U,- 1<ZNZU1<U) vEVj

=1
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Retailers Warehouses Plants
i=1,...m j=1,...n k=1,...p
- Capacity cost -
Transportation cost Transportation cost
(warehouse to retailer) (plant to warehouse)

Inventory cost

Transportation emissions Capacity Transportation emissions
(warehouse to retailer) emissions (plant to warehouse)

Products I=1,...q
Vehicle types v=1,..,V (between warehouses and retailers)

Figure 2.1: Components of the total cost and GHG emissions of the cold supply chain

where N, is the number of shipments using truck type v, U, and U,_; are the volumetric
capacity of truck types v and its next smaller type v — 1, N; is the number of units shipped
of product /, and 1,ey;, is an indicator function taking value 1 if this truck types belong to
the set V;; of trucks that can be used between ¢ and j, since some truck types (e.g., electric
trucks) can be used only within a certain travel range.

2.6 Solution method

2.6.1 Lagrangian decomposition

The solution methodology is build on the assumption that the last two terms in the ob-
jective function of P are concave functions. We discuss the validity of this assumption
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in section 2.6.3. Let us define the new auxiliary variables Q; = > 1 wsj (3o, duij).
Thus, P can be written as:

min Za]zj + ZZZc]klyjkz + ZZTULUU + Zztﬂ (Zd Zx”> Zf (Qj)

k=1j=1[=1 j=11i=1 j=11=1
5.6, (2.2)—(2.5),

q m
Qj = Zulsjl (Z diﬂ'ij) , V7, (2.6)
=1 =1
q m
0<Q; < ZUZSjl <Z dz’l) ) vj. (2.7)
=1 =1

Since sj;(.) is a non-decreasing function in the total demand (}_;", dyjzi;), Q; reaches its upper
bound when all the demand is served by a single warchouse, i.e., Q; = Y 7_; ws; (O, du)-
Upon relaxing (2.6) with multipliers A\;, j =1,...,n, we get the subproblem

[SPO]: min Z%Z’g‘f‘zzzcgkly]kl ZZ?’ W+Zztﬂ (deajw>
J=1 =1
q

k=1j=11=1 7j=11=1

n

+ij (@) +Z)‘ Zulsﬂ (Zd”xw) _Z)‘ij
j=1 = =1

st (2.2—25), (2.7).

Next, we introduce the auxiliary variables Pj; = > dyx;j, so SPO can be written as

min Za]z] + Z Z chkly]kl + Z eraz” + Z Ztﬂ jl

kljlll 7j=11i=1 Jj=11=1

+Zf] Qj) +Z)\ Zulsjl jt) Z)\ Qj
7=1 =1

s.t. (2.2—2.5),( ),

Py = Zdilxij, Vi, 1, (2.8)

0< Py <) da, v, 1, (2.9)
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By relaxing (2.8) with multipliers 115, we get the subproblem

[SP00]: min Zajzj + Z ZZCJ’“WJ’CZ + Z ZTUCL‘U + Z Zt]l it)

k=1j=11=1 jlll 7j=11=1

+ij @;) +Z)\ Zuzsjl 1) Z)\ Q;
7j=1 =1
+ Z Z it Z diwij — Z Z 50 Py

j=li=1 =1 j=11=1
st (2.2—-25),(2.7),(2.9).

With that, SP00 can be decomposed into n(q + 1) + 1 subproblems. The first is an integer
programming problem in the original variables

n P n q n.om
[SP1]: min Z}%@+§:§:§:@M%m+§:§:(E:Mﬂz+noxw

j=1 k=1 j=1 I=1 j=1i=1
st (2.2) = (2.5).

The second set of subproblems are n single variable concave minimization problems in Q;

[SP2;]: min f](Qj) - \Q;

st. 0<Q; <Q; (2.10)
where QJ S wsi (00 dy). As the objective function is concave, one of the extreme points
is optimal, i.e., Q7 = 0 or Q].

The third set of subproblems are nq single variable concave minimization problems in P
[SP3j] : min  t(P) + Ajwsj(Pi) — Py
0< Pl < P v]v la

where P]l = > ", dy. Again, the optimal solution exists at one of the extreme points, i.e.,

Pj*l =0 or P]l Thus, the best Lagrangian bound resulting from this relaxation is obtained by
solving the Lagrangian dual problem:

n n q

LB* = max { v[SP1] + Zv [SP2;] + Z Zv SP3ji]

>\?
" =1 j=11=1
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where v[SP1] is the optimal solution of [SP1], v[SP2;] = min(0, f; (@Q;) — XQ;), v[SP3;] =
min(0, ¢ (ﬁjl) + Ajusj (le) — wjiPj;). Furthermore, let H be the index set of the feasible
solutions of SP1:

H=d{h: ? =1 Zyjkl Zdllngvxz] SZ],JZ'Z], 7 6 {0 1} y]kl >0 Vi jvk
7j=1

The Lagrangian dual problem can be reformulated as a linear programming problem by intro-
ducing the variables:

n o m q
<Z a2 + Z Z Zcﬂklyjkl + Z Z Zuyldzz + 7ij) )

k=1 j=1 I=1 J=1i=1 1=1
5 = min (07 £ (@) = @), v,
t35; = min (0, til (Pﬂ) + Ajws; (Pﬂ) — ,ujlﬁjl), V7, 1.

Therefore, the dual master problem is

[DMP]: Inzzx 01 + Z O + Z Z 631

=1 1=1

s.t. 01 — ZZM]lZdl$ZJ<Z(I]Z] +Zzzcjkly]kl+22rm T Vh € H,
I=1j=1 =1 k=1j=1 =1 j=1 i=1

(2.11)
02 + \iQ; < £i(@Qy), Vi, (2.12)
0351 — Njwsji(Pj1) + pj P < tj(Pji), Vi1, (2.13)
B < 0, Vi, (2.14)
O3t < 0, vj, L. (2.15)
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Its dual, the Dantzig-Wolfe master problem is:

n p n q n o m
[M'P} min Z Zde?-FZZZéjkly;}kl—l—ZZﬁjx?j Qp

heH | j=1 k=1 j=1 I=1 j=1i=1

n n q
) FH@)B+ DD P
j=1 j=11=1
s.t. Z ap =1

heH
0<8;<1 vJ,
0<7vyu<1 Vi, 1,
q m
Q8 = Y wsi(Y_da)yi =0, v,
=1 i=1
m m
D divii— DY dualion =0, Vi, 1,
i=1 heH i—1
ap > 0, Vh e H.

Obviously, its impractical to consider all feasible solutions of SP1 in the index set H to
generate constraints in the dual master problem DMP, since the number of these constraints is
very large. Instead, a classical cutting plane algorithm starts with a subset of feasible solutions
to generate a relaxed dual master problem RDMP that is solved to get a set of Lagrangian
multipliers (\; and pj) and an upper bound. These multipliers are then used to solve the
subproblems and get a lower bound. The index set H is updated and a new constraint is added
to RDMP, which is then solved again to get new multipliers. This process continues until the
upper and lower bounds coincide, in which case the Lagrangian bound is reached. In the problem
under consideration, however, we are able to find the best Lagrangian bound directly.

In the next proposition, we provide a closed-form expression for the optimal multipliers in
the general case, i.e., (QJ < Qj < Q;) and (Pj; < Py < Pj), so we can use it to devise a
branch-and-bound algorithm in the upcoming section. To get a lower bound on P, we just need
to set Qj and Pj; to 0.

Proposition 2 The optimal multipliers are given by

A, = — , J=1...,n

Q]' o Qj
B tjl(ﬁﬂ) — tjl(le) + )\;ful<3jl(ﬁjl) - Sjl(le))
Hat = P, —P,

_]l

j=1...,n,l=1,...,q.

Y
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Proof: First, let us solve the subproblems for A;, j =1,....,n and pj, j = 1,...,n,1
1,...,q. Let h* € H be the index of the optimal solution of SP1.

The solution of SP2; is:

visP2,] = min (f(Q) - X0, f@,) - X@,

([ 5Q)Q; - [i(@)Q, f;(Q)0; - [,(@)e,
m( -9  Q-g )
(@)@, - /@)Q,

<l
©

And the solution of SP3;; is:

[SPB = min (tjl —|— S UZSJZ(P ) — ,u;lﬁﬂ,t]l(Pﬂ) + W ulS]l(F ) [lele)

:mmC — ta(Pa) Py & Xjualo (P P = 5P Py)
Py—Py
ta(L; DPji — ti(P; )P+ )\jul(sﬂ(ﬁjl)fﬂ — gjl(ﬁﬂ)ﬂjl)>
Py — Py
ti(Py) P — tj(P) Py 4 Nw(s(Py) P — su(Pj) Pjy)
) P~ Pj '

Thus, the Lagrangian lower bound corresponding to the proposed multipliers is:

LB\, p") = ZCLJ j* + Zzzcﬂcl%m + ZZ Zﬂgzdzl + Fij)@

=1 j=1 =1 j=1 i=1 I=1
@) - ,@,)Q,
Z )
.\ n itﬂ(ﬂjl)ﬁjl — tj(Pjt) Py + Nwi(su(P ) P — s(Pja )le%2.16)
. Py — P

Second, let us consider the relaxed dual master problem RDMP corresponding to H =
{h*}:
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[RDMP]: max {91 + Z 0; + Z Z eg,ﬂ}

7j=1 [=1

=1 j=1 i=1 j=1 k=1 j=1 I=1 j=1 i=1
(2.17)
62] + )\]Qy S f](@g)? VJ, (218)
02] + /\]Q S f](Qj>7 VJ, (2 19)
O350 — Njwsi(Pi) + P < ty(P), Vil (2:20)
Osj1 — Njwsj(Py) + pa Ly < tu(Pj), Vil (2.21)
and let us check whether the solution
)‘j - )\;,
it = :u;l’
n m q
0 = Za] ]* Z chkly%z + Z( tiidit +fij)$£3*,
k=1 j=1 i=1 j=1 i=1 [=1
) fj( Q,)Q; — [;(Q; )Q
0j = —
be — ti(P; )F (F DPy + Nou(s(Py) Py — s(Pj)Py)
351 = =
le - le

is feasible to RDMP. By substituting in (2.17)-(2.21), all these constraints are found
to be satisfied as equalities. The objective function value of RDMP corresponding to the
proposed solution is

V[RDMP] = Z a2l + Z Z Z Cilfia T Z Z (Z fidi + sz)

Jj=1 k=1 j=1 I=1 j=1 i=1 =
n f](Q])Q] - fy(Q;)Qj
' ; Q=g

P Yy 1(Py)Pji — ta(Pi) Py + Nwi(s5(Py)Pj — siu(Pj)Py;)
Py-P '

Eal))
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To prove the optimality of the proposed solution, we resort to the dual of RDMP, the
restricted master problem

RAP): min {Z BSOS et + 303 }

k=1 j=1 l=1 Jj=1 =1
n q
+Zf]( ﬁlj—i_ij ﬁ2]+zzt]l 71]["‘ Zztﬂ 4751 "}/Qﬂ
Jj=1 j=1 1=1 j=1 1=1
s.t.aps =1, (2.22)
B+ Baj =1 Vj, (2.23)
Yt + 2 =1 Vi, 1, (2.24)
q q
QB + QP25 — Z wsi(Pi)yg — Y wsi(Py)ya; = 05, (2.25)
I=1
Pavij+ Py — Z dyzly e = 0, Vi1, (2.26)

By substituting the value of aj from (2.22) in (2.26) and solving (2.24) and (2.206)

simultaneously, we get:

Zm dzlw - B

Y = ]l,
Pﬂ - P
o Py—>", d”x
Y251 = ?ﬂ — le

And by solving (2.23) and (2.25) simultaneously, we get:

Sy wsi(Pi)vi + Yoty wisi(Py)yen — Q.

By = _ <
] Qj - Qj

Bo;i = Gj — Z?:l ulsjl(F 1)7131 2?21 ulSjl(le)”)/Qﬂ
J J Qj
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Thus,

V[RMP]

ZG’J Z; +Z chkly]kl+zzrlj
k= =1

1 =1 Jj=1 =1
ol wsp (P + 2oty wisi(Pjy)yas — QJ
Zf;(@ )
Qj B Qj
Q; — Yoy wisu(Pa) v — Yoi—y wis(Py)vas
ZL(Q )= 0 -0
J —j
L — Z dll.CC — Zm dzll'h*
SO Py = +Zztﬂ )=
j=1 I=1 Py—L j=1 I=1 - PJl_le
>+ ZZ%%& +2 D Tyl
j=1 k=1 j=1 I=1 j=1 =1
z": i(Q,)Q; — 1;(@)Q,
j=1 Jj Qj
n fi(@) - Q) (& _ g
P — wsi (P + Y wsin(Py) v
j=1 Qj _Qj =1 =1
"= (P Py — ZZ (L (Py) = tju(Py)) Yoy dul;
j=1 1=1 Pﬂ_— 3111 PJZ_le
n p n q
)DUIEIES 3595 IV 9 Srtres
J=1 k=1 j7=1 I=1 7=1 =1
fj(Q )Q; — f;(Q; )Q
]:1 Q; — Q.

sit(Pj1))

I

PJl_PJl j=1 I=1 PJl_le

ti(Pj) ]l_t]l(P]l)P K (t(Py) — ta(Pyy)) Yoy daalts
Z +ZZ

Now(sju(Pj) Pyt — s(Pji)Pjy) Ny Yo daxlls (s(Pyr) —
+ Z Z

jlll
1 I=1

= P =Py =1 1=1 Pj—Py
Zajz]h + Z chkly]kl + Z Z Wydip + 7ij)x
k=1 j=1 i=1 j=1 i=1 I=1
i fj(Q )Q; — fg(Q )Q 69
j—l @j _Qj
Z (L) Py — t]l(ﬁjl)ﬂﬂi‘ )\;ful(sﬂ(ﬂjl)Fﬂ — sﬂ(ﬁjl)ﬂjl)'
j=1 =1 le _le



By strong duality, since V[RDMP| = v[RMP], the proposed solution is optimal to
RDMP. Furthermore, LB(N*,u*) < v[DMP]. According to (2.16), LB(\*,u*) =
V[RDMP], therefore, VIRDMP| = v[DMP] = LB(\*, i*), the Lagrangian bound. Thus,
A and p* are optimal. [

Next, we note that (2", y"", 2""), the optimal solution of SP1(x= uy, is also feasible to
P as both problems have the same feasible set. Its corresponding objective

Zaaj*+ZZZw%u+ZZw%+ZZ%Z +fo

k=1 j=1 I=1 7j=1 =1 7j=1 [1=1

where P = > d,la: and Q5 = > wsy (Zlil dil:vzhj*), is an upper bound. The
difference between this upper bound and the Lagrangian bound is given by

~

£Q,)Q; - /@)@,
5 E;tﬂ +Zf] Z; ;)
- Ajuy [s;0(P;;)(Pj — P;) + sju(P; 1) (P — Py)l)
21; Pi— By |

- Gt(P) (P = Pyy) + ta(Pa) (P — Pyy)
>0, —3 P,

j=1 i=1 VU

which provides an upper limit on the optimality gap.

Corollary 3 If Q; = @ or Q‘, (2™, Y™, 2" is optimal to P.

Proof: Let us first note that the gap can be decomposed by j such that 6 = ZJ 105,
and
£(@)Q; — [;(@,)Q.
0; = Ztﬂ ) + fj ) — =
Qj o Qj
B Zq: N [s;1(Py)(Pju — Ph) + si(Pj) (P, — Py)])
=1 Pj—Py
Zq: tir(P) (P — fiﬁ) +tu(P) (P — le). (2.27)
=1 Pj — le
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Also note that since @j = Yy wsp(Py), Q5 = Q; if and only if P = Py, VI. By
substituting in (2.27), we get

6 = Y tau(Pu) + £5(Q;) — '_j—A ANt

Q- Q. 7
P

Likewise, since Qj = > wsp(Py), Q = Qj if and only if P;; = P, Vl. By substituting
in (2.27), we get

Q, /@) - ;@)
= — )\;Q, =0
QJ B Qj -
Thus, 6 = 0 and optimality is proven. [ |

Based on this corollary , if the optimal solution of SP1 is to open a single warehouse,
the optimality gap is guaranteed to close in the root node (i.e., without branching). More
importantly, this corollary helps us to devise an efficient branch-and-bound algorithm as
described in the next section.

2.6.2 Branch-and-bound

To close the optimality gap, we embed the Lagrangian decomposition in a branch-and-
bound algorithm similar to the one explained in section 1.2.2. For completeness, we present
it here again. Branching is performed around the optimal solution of SP1 using the
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auxiliary variables @);, 7 = 1,...,n. At any node, upon solving SP1 we get the vector
z* and calculate Q. The variables Q7 ;i = 1,...,n are classified to two sets: extreme
when Q7 = Qj or @j, and non-extreme otherwise. If all the variables are extreme, the

gap is guaranteed to close according to corollary 3, otherwise, a non extreme variable Q;

is selected for branching. In one child node, we set Q; = Q;f and P = Pg*z’ VI, and add

the constraints > ", dux;; > Pj*l, VI to SP1; And in the other child node, we set Q_j = Q;f.
and 7 = P]*l, VI, and add the constraints >, dux; < P]*l, VIl to SP1. In each node
we obtain a lower bound using the Lagrangian approach. Furthermore, an upper bound is
obtained from the feasible solution of SP1 and the incumbent is updated if a better upper
bound is found. Let M;, s € S be the partitioning subsets of the feasible region. For each
subset (i.e., node) we can get a lower and an upper bound using the Lagrangian approach,

denoted L(Mj) and U (M), respectively. Then, £ = miél L(M,), U= mi;lU(Ms) are the
s€ s€

overall bounds, respectively. If at any iteration £ = U, the branch-and-bound algorithm
terminates.

2.6.3 Concavity of the inventory functions

The proposed approach is valid only when the inventory functions are concave. Concav-
ity of the total inventory cost function (¢;) is assured for inventory policies with explicit
formulas such as the EOQ. Other than these special cases, little has been reported in the
literature about the nature of the cost function. This issue, however, is closely related to
the topic of warehouse consolidation which was studied extensively. The effect of increasing
the demand served by a certain warehouse is equivalent to consolidating it with an identical
warehouse that serves the additional demand. The cost effect of warehouse consolidation
was first studied by Eppen [15], who concluded that cost saving is achieved when demand
from different sources is managed in a centralized manner. In particular, he showed that
when demand is independent and normally distributed, inventory cost can be represented
as a square root function in a multi-echelon newsvendor problem. Teo et al. [90] studied
the (r, Q) systems and noted that consolidation leads to lower total inventory cost if the
demands are 7.7.d., or when they follow independent but possibly nonidentical Poisson pro-
cesses. Although they showed also that, for a general demand distribution, consolidation
can lead to higher inventory cost, this happens only under special conditions including
very different ordering cost and lead times across warehouses. Clearly, when considering
the cost function of a single warehouse, this case is irrelevant. Lim et al. [71] reached the
same conclusion for multi-echelon systems and noted that “consolidated systems are rarely
suboptimal”. Apart from analytical models, the functional form of the total inventory cost
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for the complex (s, S) inventory policy was approximated using regression methods for a
wide range of system parameters and demand distributions and was shown to be concave
in the demand served [12]. Numerical results presented in other studies have shown that
the inventory cost is concave, although that was not explicitly reported.

When it comes to the maximum inventory level function (sj), it is even more difficult
to ascertain its concavity with respect to the demand in the general case. Since most
inventory policies are simplifications of the (s,.S) policy, we focus our attention on this
policy. Ehrhardt [11] and Schneider et al. [306] have used regression analysis to derive
power approximations of the (s,.S) policy under a wide range of conditions. The regression
models developed suggest that both s and (S — s) are concave functions of the demand
rate, implying that the maximum inventory level S is also a concave function.

While the results discussed above do not lead to a definite conclusion that inventory
functions are concave in the general case, they provide a strong indication. Note that, since
the maximum inventory cost function s;(P;) is embedded within the concave function
fj(Qj), the nested function may still be concave in Pj; even if sj; are slightly convex. To
further validate the concavity of the inventory functions, we estimated their values using
simulation and observed the results.

2.6.4 Special cases with known inventory functions

In the proposed Lagrangian/B&B approach, we need to determine the value of inventory
functions sj and t;; at the extreme points encountered. In special cases, these functions
are explicitly given by closed-form expressions, thus their values can be easily determined.

Let us, for example, consider the case when the demand of retailers is deterministic
and uniform, meaning that, for each retailer, both order size and time between orders are
constant. In this case, the classical EOQ model is suitable for managing the inventory
at the warehouses. While the model assumes continuous demand, it provides closed form
expressions that tightly approximate the maximum inventory level and the total inven-
tory cost functions when the demand is discrete. Let h, b and K be the holding cost
($3/unit/day), the shortage penalty ($/unit/day) and the fixed ordering cost ($/order),
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respectively; Thus:

. 2KP; [b+h
* h *
Y = b—i——h‘Qﬂ (2.29)
si(Pu) = @y — By (2.30)
KPy  hQj By
ta(Py) = —++—X—hBj+-2-(b+h) (2.31)
Since HLh < 1, s;; is concave in the demand served. Furthermore, it is easy to show that

tj; is also concave when h,b > 0, which is always the case. Therefore this problem can be
solved directly using the proposed Lagrangian approach.

Likewise, for some special cases of stochastic inventory models, closed form expressions
are available for sj; and ¢;. For example, when demand follows a Poisson distribution and
inventory at warehouses is managed using a base-stock policy with continuous review, zero
ordering cost and fixed lead time (L), these functions can be approximated as:

si(Pu) = Rj = Pyl + zpypn\/ Pl
tiu(Pp) = (b+h)\/PiLo(zo/04n))

where 2;/(5+) is the parameter corresponding to area of b/(b+h) under the standard normal
distribution curve. Obviously, these assumptions are quite restrictive so we need other
approaches to evaluate the maximum inventory level and the inventory cost functions in
the general case. In the next subsection, we implement a simulation-optimization approach
for this purpose.

2.6.5 Simulation-optimization algorithm

In most realistic situations there are no closed-form expressions for the inventory functions
sj; and tj;, but they can be estimated at specific points using discrete-event simulation.
A reasonable assumption is that each warehouse selects the control parameters of the in-
ventory policy (i.e., reorder point, ordering frequency, order quantity, etc.) to achieve
the minimum inventory cost. Thus, the simulation runs are embedded in a heuristic op-
timization routine to find the optimal control parameters. We refer to this process as
the ‘simulation-optimization’ algorithm. In what follows, we address the case when the

67



inventory at warehouses is managed using the (r,nQ)) inventory policy. It is important to
notice, though, that this is just a representative example for the application of simulation-
optimization algorithms within the proposed framework, and that other inventory policies
can be handled similarly.

The (r,nQ) policy is suitable when products are ordered and shipped in batches (e.g.,
pallets or full-truck-loads). This is a periodic review policy in which a reorder level 7 is set
such that an order of size n@ is placed whenever the inventory position falls to or below 7.
@ is a pre-specified quantity that represents the batch size, whereas n is the smallest integer
that restores the inventory position above r, i.e., between r + 1 and r + ). Our interest in
the (r,n@Q) policy is stimulated by both theoretical and practical reasons. On one hand,
it has been shown that the (r,n@) policy gives results that are nearly as good as those
obtained from the (s, S) policy, which is proven to be optimal under modest assumptions
[106]. On the other hand, this policy seems suitable for the problem under consideration in
which shipping between plants and warehouses is carried out in bulk quantities using long-
haul trucks, meaning that the batch size can, intuitively, be set equal to the full capacity
of a truck. In fact, when the transportation cost is taken into account, the (r,nQ) policy
might lead to better results than the (s,.S) policy due to the higher utilization of trucks.

It is known that the total inventory cost function is convex in the reorder level [108].
Therefore, we propose a bisection search algorithm to find the optimal reorder level. We
start with two values of the reorder level r; and r9 such that 7y +1 < r* and r, > r*. We
set r3 = L%J and estimate the total inventory cost at r3 and r3 + 1 using simulation.
If t(r3) > t(rs + 1), r3 becomes r; for the next iteration, otherwise, it becomes ry. The
updated values of 1 and ry are used to obtain a new midpoint r3, and the process continues
until ro = r; + 1, at which point the algorithm terminates and reports r* = rs.

Bisection search algorithm
Select integers 1 < 79 such that t(ry + 1) < ¢(ry) and t(ro + 1) > t(r2)
while r; —r; > 1 do

o= 4]
if t(’l"g + 1) < t(Tg) then
rg — T
else
r3 — T2
end if
end while
rog — 1"
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Obviously, the algorithm is guaranteed to reach the global optimal solution when the
cost function is unimodal convex, which is true for the actual cost function. However,
since the inventory cost is estimated based on a finite sample size (i.e., a number of simu-
lated days), the resulting cost function is just an estimator of the population (i.e., infinite
horizon) cost function and sampling error is inevitable. If this sampling error is large, the
estimated function may become multimodal and the algorithm may get stuck in a local
optimum. One way to overcome this issue is to increase the sample size to reduce sampling
error. Also, common random numbers (CRN) can be used when searching for the optimal
reorder level. This technique is shown to reduce the variance of the estimate [57], thereby
minimizing the likelihood of premature termination of the algorithm. Both ways are used
to improve the bisection search algorithm

Figure 2.2 presents a flowchart that illustrates the solution method including the La-
grangian decomposition, the branch-and-bound and the simulation-optimization stages.

2.7 Numerical Testing

We test the proposed cold supply chain design approach on three data sets. The first two
are realistic cases from different industries, with the aim of studying the trade-offs between
the economic and the environmental effects in cold supply chains. The first is drawn from
the bulk-volume, low-margin processed meat industry, and the second deals with a supply
chain network for medical vaccines, a niche product characterized by its low-volume and
high-value. We also test the computational performance of the algorithm on a third set of
hypothetical instances of different sizes and parameters. Testing is performed on a work-
station with Intel Core-i7 processor of the 4th generation and 8 GB of RAM. The approach,
including the simulation-optimization algorithm, is coded in Matlab2013b and the mixed
integer subproblem is solved using CPLEX12.5. Simulation runs are conducted in parallel
using the parallel computing toolbox in Matlab with a maximum of 4 simultaneous threads.

2.7.1 Case I: Maple Leaf Foods

Maple Leaf Foods (MLF) is the largest producer of prepared meats in Canada with revenues
of over $3 billion in 2014. The company has recently embarked on an ambitious plan
to restructure its supply chain that involves the consolidation of plants and distribution
centers (DCs), aiming to achieve significant savings in operational cost and environmental
impact. MLF has a strong commitment towards sustainability as demonstrated by its
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environmental sustainability program that has GHG emissions reduction as one of its
pillars [1].

The proposed approach is used to design MLF’s cold supply chain in the Canadian
province of Ontario. In particular, we consider the demand originating from the province’s
20 largest cities. MLF has two plants in Ontario: one in Brampton that produces sausage
(P;) and meat snacks (FP2), and another in Hamilton that specializes in wieners (P3) and
deli products (Py). In the absence of real data, the demand is estimated as the product of
the population of each city, the average consumption per capita of each product, and the
company market share, and was verified using the revenue data of the company obtained
from its annual report. This case data is collected from a variety of public sources, including
industry reports and governmental statistics. The daily demand of each product is assumed
to have a Poisson distribution with the rates shown in Table 2.1. Every demand node is
also a candidate location for a DC.

Products are shipped from plants to DCs in 40’ (feet) refrigerated (reefer) containers
loaded on conventional (diesel operated) long-haul trucks. For shipping products from DCs
to retailers, both 40" and 20’ reefer containers are used, depending on the quantity shipped.
The 20" containers can be used with one of two types of smaller trucks: conventional or
electric. The latter are used for shipment distances of 100 km or less. The cost and GHG
emissions per km for a long-haul truck with a fully loaded 40’ reefer container are $2 and
6.3 kg, respectively. The number of units of each product for a 40’ container, alongside
the holding and backordering costs per day, are shown in Table 2.2. The annual cost and
global warming impact of shipping products between DCs and retailers is calculated based
on the distance, the frequency of shipments, and the type of trucks used. Table 2.3 shows
the annual cost (the upper row, in thousands of dollars) and the annual CO2-equivalent
emissions (the lower row, in metric tonnes) for each DC-retailer pair.

Annual capacity cost of each DC has two components: a fixed cost of $55,000 and a
volume-dependent cost that follows the function f;(Q;) = 1.281Q% in thousand dollars.
Each DC has base annual GHG emissions of 112 tonnes of CO2-equivalent emissions and
volume-dependent GHG emissions that follow the function g;(Q;) = 11.1Q9 tonnes of
CO2-equivalent emissions. To reach these functions, the cost and emissions of real cold
stores of different sizes are calculated using a bottom-up approach, starting with the cool-
ing load requirements to estimate the equipment size, cost, and energy consumption. Then,
assuming that the size-dependent cost and emissions follow functions of the form (; Qf % re-
gression techniques are implemented to estimate the coefficients 5, and (5. This regression
model is found to provide a good approximation of the relationship between both the DC
variable cost and emissions and its size. Each warehouse manages its inventory indepen-
dently using the (7, nQ) inventory policy, where @ is the capacity of a 40" reefer container.
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Table 2.1: Average daily demand in the MLF case

1 Clty P1 P2 Pg P4
1 Toronto 686 262 706 961
2 Ottawa 232 88 238 325
3 Mississauga 187 71 193 262
4 Brampton 138 52 141 193
5 Hamilton 137 52 140 191
6 London 9 37 99 135
7  Markham 79 30 82 111
8 Vaughan 76 29 78 106
9 Kitchener 58 22 59 81
10 Windsor 55 21 BT T8
11 Burlington 46 18 48 65
12 Sudbery 4216 43 59
13 Oshawa 39 15 41 55
14 Barrie 36 14 37 50
15 St. Catharines 34 13 35 48
16 Cambridge 33 13 34 4r
17  Kingston 32 12 33 45
18  Guelph 32 12 33 45
19 Thunder Bay 28 11 29 40
20 Waterloo 26 10 27 37

Table 2.2: Product characteristics in the MLF case

Product P1 P2 P3 P4
Number of products per truckload 1240 1240 1116 1340
Unit holding cost ($/day) 0.046 0.034 0.034 0.040
Unit backordering cost ($/day) 1 1 1 1
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Whenever an order is placed, a fixed cost of $100 is incurred and the order arrives after 2
days. In our simulation model, the sequence at which events occur in DCs is as follows:
first, ordered products arrive from the plants and added to the inventory-on-hand, then
demand from retailers is realized. If the cumulative demand is less than or equal to the
inventory-on-hand, it is satisfied immediately, otherwise, the shortage is carried forward to
the next day. At the end of the day, the inventory position is evaluated and, if needed, an
order is placed to replenish the inventory.

We test for various values of w, the weight assigned to the GHG emissions minimization
objective, in order to investigate the cost-emissions trade-off. w is changed between 0
(minimizing the cost only) and 6. The results are depicted in Table 2.4. The ‘Solution’
column shows the optimal solution obtained: the opened DCs outside the parenthesis; and
for each opened DC, inside the parenthesis, its cold storage area in cubic meters, followed
(after the semicolon) by the retailers assigned to it. Each DC is found to serve the retailer
in its location. The columns ‘TC’ and ‘TE’ show the total cost in thousand dollars, and
the total GHG emissions in metric tonnes of CO2-equivalent.

It is clear from these results that as w is increased, fewer DCs are opened. This obser-
vation is explained by two factors: First, it seems that emissions have stronger economies
of scale than cost due to the high fixed emissions for DCs, which implies higher demand
consolidation. Second, once emissions are penalized, there is a stronger incentive to assign
close-by retailers to opened DCs in order to utilize electric trucks for shipping. The second
factor explains the alternative optimal solution obtained with the same cost but with lower
emissions when w is increased from 0 to 0.1. We also notice that the gross storage area
of the DCs decreases as fewer DCs are opened due to the well-known risk pooling effect.
The primary trade-off in this case is between capacity and transportation cost, whereas the
inventory cost is comparatively insignificant because of the low-cost nature of the products.

The trade-off between cost and emissions is illustrated in Fig. 2.3, which shows the
Pareto frontier curve. We notice that when one objective is optimized, the other does
not deteriorate sharply. For example, when minimizing only the cost by setting w to 0,
the emissions level is merely 14.2% higher than when w is set to 6, at which case the
emissions minimization objective is dominant. Likewise, the cost increases only by 10.7%
when the focus is shifted from minimizing cost to minimizing emissions. It is even possible
to decrease the quantity of emissions with no increase in cost by assigning a small weight,
1.e., w = 0.1, to emissions in the objective function. This weak trade-off between cost and
emissions agrees with the result reported in [21].

Figure 2.4 shows a breakdown of the different components in the combined objective
function. Note that as w increases, the inventory component decreases dramatically be-
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Table 2.4: Optimal solutions for the MLF case

w  Solution TC TE
0.0 1(1056;7,13,17),2(346),4(553;3,8,14),5(595;6,9,11,15,16,18,20),10(280),12(285;19) 2927 12825
0.1 1(1108;7,13,14,17),2(346), (436,3,8),5(595;6,9,11,15,16,18,20),10(280),12(285;19) 2927 12693
0.2 1(1108;7,13,14,17),2(346),4(436;3,8),5(595;6,9,11,15,16,18,20),10(280),12(285;19) 2927 12693
0.3 1(1765;3,4,7,8,13,14,17),2(346),5(627;6,9,10,11,15,16,18,20),12(285;19) 2972 12227
0.4 1(1056;7,13,17),2(346);3(890;3,5,8,11,12,14,15,19),16(330;6,9,10,18,20) 3021 11812
0.5 1(1056;7,13,17),2(346);3(890;3,5,8,11,12,14,15,19),16(330;6,9,10,18,20) 3021 11812
0.6 1(1056;7,13,17),2(346);3(890;3,5,8,11,12,14,15,19),16(330;6,9,10,18,20) 3021 11812
0.7 2(346),3(2057;1,4,5,7,8,11,12,13,14,15,17,19),16(330;6,9,10,16,18,20) 3096 11297
0.8 2(346),3(2057;1,4,5,7,8,11,12,13,14,15,17,19),16(330;6,9,10,16,18,20) 3096 11297
0.9 2(346),3(2057;1,4,5,7,8,11,12,13,14,15,17,19),16(330;6,9,10,16,18,20) 3096 11297
1.0 2(346),3(2057;1,4,5,7,8,11,12,13,14,15,17,19),16(330;6,9,10,16,18,20) 3096 11297
2.0 2(346 ) (1985,1,4 7,8,9,12,13,14,16,17,18,19 20) (380 6,10,11,15) 3119 11249
3.0 3(2834;1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20) 3241 11231
6.0 3(2834;1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20) 3241 11231

cause, unlike the other components, inventory does not directly contribute to the supply
chain emissions. Surprisingly, the contribution of the transportation component to the
total cost decreases slightly as the environmental objective weight is increased, which can
be attributed to the increased use of the less polluting, yet more expensive, electric trucks.

The computational performance of the algorithm is reasonable for a simulation-optimization
approach. The computational time ranges between 2082 and 9290 seconds, with an average
of 4271 seconds for the tested instances.

2.7.2 Case II: A cold supply chain network for vaccines in On-
tario

In this case we use our approach to design a cold supply chain for publicly-funded vaccines
in Ontario. We use the same network of Case I (i.e., the 20 largest cities in the province)
and focus on the 13 vaccines having annual demand of more than 100,000 doses, which
represent about 96% of the total number of non-flu vaccine doses delivered. Flu vaccine is
excluded because it is highly seasonal and has different logistical considerations.

Vaccines are small volume, high margin products that are extremely sensitive to the am-
bient temperature and have to be maintained under tight temperature control to preserve
their efficacy. Vaccine packages are shipped in bulk quantities from two local manufacturing
facilities (Sanofi Pasteur facility in Toronto and GlazoSmithKline facility in Mississauga)
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Table 2.5: Distance between cities in the vaccination network case

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 450 30 40 70 190 30 40 110 370 60 390 60 100 110 100 260 90 1390 110
2 430 440 480 630 370 420 500 800 470 490 360 410 520 490 170 490 1500 510
3 20 50 170 50 40 80 350 40 390 80 100 90 70 280 70 1370 90
4 60 170 50 30 80 340 50 390 90 90 110 70 300 50 1390 80
b} 130 100 80 70 310 20 440 130 150 60 50 330 50 1440 70
6
7
8

210 190 110 190 140 530 240 260 180 100 440 120 1370 110
20 120 380 90 380 50 90 140 110 250 100 1380 120
100 370 70 360 60 70 130 100 270 90 1360 110

9 290 70 460 150 150 120 20 350 30 1460 10
10 320 720 420 430 360 280 620 300 1270 290
11 430 120 140 60 50 320 60 1430 80
12 380 290 480 450 580 440 1010 450
13 140 170 140 210 140 1430 160
14 190 160 340 130 1290 160
15 100 370 110 1490 130
16 340 20 1450 30
17 340 1630 360
18 1450 30
19 1460

to DCs, and then to local dispensaries in each city, before they are dispatched to vacci-
nation centers upon request. Demand for vaccines is quite predictable and fairly uniform,
thus it makes sense to use a simple inventory management policy like the EOQ with backo-
rdering in DCs. Vaccines are shipped to demand points at constant (e.g., weekly) intervals
using small refrigerated vans. Thus, the annual cost and emissions for serving a dispensary
from a DC is proportional to the distance between them, with coefficients $78/km and
142 kgCO2/km, respectively. As with the first case, the demand points are the candidate
locations for DCs. The distance matrix is shown in Table 2.5.

The closed form expressions for the maximum inventory level s; (2.30) and the total
inventory cost ¢;; (2.31) functions in the classical EOQ with backordering policy are used di-
rectly without need for simulation. While the cost per vaccine dose varies widely, we assume
equal annual holding and backordering costs for all vaccine types of $250/package/year,
where a package consists of 100 doses. The ordering cost is set to $200/order, and the
shipping cost and GHG emissions between suppliers and DCs equal $0.04/km/package
and 0.08 kgCO2/km/package, respectively. The annual demand for vaccines is estimated
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Table 2.6: Annual demand for vaccines in the vaccination network case

Type/City 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
DTaP-IPV-Hib 1073 362 293 215 213 150 124 118 90 87 72 66 62 56 54 52 50 50 44 41
HB 453 153 124 91 90 63 52 50 38 37 30 28 26 23 23 22 21 21 19 17
HPV4 243 82 67 49 49 34 28 27 20 20 17 15 14 13 12 12 11 11 10 9
Men-C-ACWY 225 76 61 45 45 32 26 25 19 19 15 14 13 12 11 11 11 11 9 9
Men-C-C 296 100 81 59 59 41 34 33 25 24 20 18 17 15 15 14 14 14 12 11
MMR 552 186 150 111 110 77 64 61 47 45 37 34 37 29 28 27 26 26 23 21
Pneu-C-13 854 288 233 171 170 120 99 94 72 69 57 52 49 44 43 41 40 30 35 33
Pneu-P-23 389 132 106 78 77 55 45 42 33 31 27 24 22 20 20 19 18 18 16 15
Rot-1 470 159 128 94 93 66 54 52 40 38 32 29 27 24 24 23 22 22 19 18
Td 602 203 164 121 120 84 70 66 51 49 41 37 35 31 30 29 28 28 25 23
Tdap 1271 429 347 255 253 178 148 140 107 103 86 78 73 66 64 62 60 59 52 49
Tdap-IPV 275 93 75 55 55 38 32 30 23 22 19 17 16 14 14 13 13 13 11 11
Var 710 240 194 142 141 99 82 78 60 57 48 43 41 37 36 34 33 33 29 27

from [9] based on the population of each city and is depicted in Table 2.6. Since the size
of products is very small, the storage volume, and consequently the variable capacity cost
of DCs, is negligible. The annual cost and GHG emissions of a DC are considered fixed at
$9000 and 3000 kgCO2, respectively, regardless of its capacity.

As in Case I, we test using different values of w, ranging between 0 (pure cost minimiza-
tion) and 50 (dominant emissions minimization objective). The results are shown in Table
2.11. In the column titled ‘Solution’ we report the opened DCs and the retailers assigned
to them inside the parenthesis, whereas the columns ‘TC’” and ‘TE’ show the total cost (in
$) and the total GHG emissions (in kgCO2), respectively. The computational time ranges
between 19 and 1331 seconds with a mean of 528 seconds.

It is interesting to notice that, contrary to Case I, the primary trade-off in this case
is between transportation and inventory costs, whereas the role of the capacity cost is
comparatively marginal. When w is small, the risk-pooling effect related to the inventory
cost is dominant and hence demand consolidation is beneficial and fewer DCs are opened.
When w is increased, the effect of the inventory cost diminishes (since inventory does not
have an environmental impact) and the transportation cost becomes dominant, calling for
more DCs to be opened.

The trade-off between the two objectives, cost and emissions minimization, is illustrated
in Fig. 2.5 that shows the Pareto frontier curve. It can be noticed, as in Case I, that a
substantial reduction in GHG emissions can be achieved without significantly increasing
the cost. For example, 25% reduction in the GHG emissions can be achieved with only 3%
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Table 2.7: Optimal solutions for the vaccination network case

w  Solution TC TE
0.0 3(1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20),19 353870 384380
0.1 3(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,20),12,19 354952 346190

(
0.2 3(1,2,4,5,6,7,8,9,10,11,13,14,15,16,18,20),12,17,19 359282 316652
05 3(1,2,4,5,6,7,8,9,11,13,14,15,16,18,20),10,12,17,19 366824 286752
1.0 3(1,2,4,5,7,8,11,13,14,15),10,12,16(6,9,18,20),17,19 391722 260572
2.0 3(1,2,4,5,7,8,11,13,14,15),10,12,16(6,9,18,20),17,19 391722 260572
50 3(1,2,4,5,7,8,11),10,12,13,14,15,16(6,9,18,20),17,19 444461 239054
10.0 3(1,4,5,11),6,7(2,8),9(16,18,20),10,12,13,14,15,17,19 506731 230582

20.0 3(1,4,5,11),6,7(2,8),9(20),10,12,13,14,15,16(18),17,19 525954 228757
50.0 1,3(4,5),6,7(2,8),9(20),10,11,12,13,14,15,16(18),17,19 590188 226413

increase in cost by setting w to 0.5 instead of 0. However, the cost of emissions reduction
increases exponentially beyond this point.

Figure 2.6 shows the breakdown of the different components in the combined objective
function. The inventory cost contribution is high initially due to high value of the products.
When w is increased, the inventory cost increases as an absolute value as more DCs are
opened and the risk-pooling advantage is lost. However, it decreases as a ratio of the total
objective value when the other cost components (transportation and capacity) increase at
a faster pace thanks to the environmental penalty imposed.

2.7.3 Case III: A hypothetical case

To verify the simulation model and evaluate the computational performance of the ap-
proach, we construct a hypothetical case study on the same network of Case I but with
different model parameters. Two facilities in London and Kingston produce two types of
products to satisfy the demand in the 10 or 20 largest cities in Table 2.8. Products are
shipped in bulk quantities from the production facilities to warehouses, where they are
stored and then distributed to retailers in the demand nodes. Every demand node is also
a candidate location for locating a warehouse.

Two subcases are considered: stochastic and deterministic demand. In the stochastic
case, orders from retailers follow a binomial distribution, 7.e., each retailer at a given day
makes an order with a probability p; which is constant and independent across days. When
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Table 2.8: Demand parameters in the hypothetical case

i City Pop; Di Vil Vi
1 Toronto 2615 1/3 10 16
2 Ottawa 83 1/5 6 9
3 Mississauga 713 1/6 6 9
4 Brampton 524 1/8 6 8
5 Hamilton 520 1/8 6 8
6 London 366 1/10 5 7
7 Markham 302 1/11 4 7
8 Vaughan 288 1/11 4 6
9 Kitchener 220 1/14 4 6
10 Windsor 211 1/14 4 6
11 Burlington 176 1/16 4 6
12 Sudbery 160 1/17 4 5
13 Oshawa 150 1/18 4 5
14 Barrie 136 1/19 3 5
15 St. Catharines 131 1/19 3 5
16 Cambridge 127 1/20 3 5
17  Kingston 123 1/20 3 5
18  Guelph 122 1/20 3 5
19 Thunder Bay 108 1/22 3 5
20  Waterloo 100 1/23 3 5

an order is made, the number of units ordered of product [ is a random variable that follows
a Poisson distribution with rate ;. In the deterministic case, an order is placed by retailer
i every 1/p; days and consists of vy units of each product. In both cases, the annual
demand of product [ by retailer i is (p;v;x), where y is the number of business days in
a year, assumed here to be 300 days. We generate the demand data as follows: using
Pop;, the population of city ¢ in thousands according to the 2012 census, we set the order

. . Pop;
+2/3. Average order size is calculated as: v; = | 72|, where
LE)OO/Pop W &upi

&1 = 750 and & = 500. This selection of the parameters ensures that the average order
size and the average inter-arrival time of orders are both integers while the correlations
between the population and the annual demand are very high, exceeding 0.999 for both

products. Table 2.8 depicts the demand parameters.

probability: p; =

Products are shipped from plants to warehouses in long-haul trucks of capacity 90m?
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Table 2.9: Truck characteristics in the hypothetical case

Truck type 1 2 3
Fuel type Diesel Diesel Electricity
Capacity (m?) 90 30 30
Shipment range (km) unlimited unlimited 100
Cost ($/km) 1.5 0.7 1
CO2-equivalent emissions (g/km) 1100 800 0

that cost $1.5/km. A unit of product 1 and product 2 occupies 3m?® and 1m?, respectively.
Products are shipped from warehouses to retailers in 2 types of conventional trucks with
capacities of 30 and 90m?, and one type of electric truck of 30m? capacity that can be
used for shipment distances of 100 km or less. Based on the demand parameters presented
in Table 2.8, the probability of a shipment size of 0 or > 90m? is very small, so these
possibilities are ruled out in our calculations. Table 2.9 presents the characteristics of each
type of truck.

We use two weight factors w,. and w; to change the contribution of the capacity and
inventory costs, respectively, relative to the transportation cost in the objective function.
Both the capacity and inventory cost weights are changed between 1 and 4. Annual ca-
pacity cost of the warehouses has two components: a fixed cost of $2000w,, and a volume-
dependent cost that follows the function f;(Q;) = 50w.Q;™" . Each warehouse has a base
annual CO2-equivalent emissions of 50w, metric tonne and a volume-dependent emissions
that follow the function g;(Q;) = 2w.Q;™ tonne of CO2-equivalent emissions. For the
base case scenario, the exponents exp; and exps are set to 0.8 and 2/3, respectively. Each
warehouse manages its inventory independently. Whenever an order is placed, a fixed cost
of $20w; is incurred, whereas the holding cost is $0.2w; /day and $0.1w;/day and the back-
ordering (shortage) cost is $0.5w;/day and $0.2w;/day for a unit of inventory of product
1 and 2, respectively. There is a lead time of 2 days for shipping orders from plants to
warehouses.

First, we consider the case when demand is deterministic and inventory is managed
using an EOQ policy with backordering. Formulas (2.28-2.31) are used to get an approxi-
mate solution under the assumption of continuous and constant demand (i.e., ”sawtooth”
inventory pattern), then simulation-optimization is implemented to evaluate the the max-
imum inventory level s;; and the total inventory cost ¢ functions and solve the problem
under the more realistic assumption of discrete demand (i.e., stepwise inventory pattern).
That was done primarily to validate the simulation model by comparing the results of the

79



Table 2.10: Results for the EOQ policy in the hypothetical case

w. W Simplified Actual
© "] Optimal CPU Nodes Facilities | Optimal CPU Nodes Facilities
1 1 96,765 134 2019 23,6,19 | 106,319 1,472 1,459 1,2,6,19
1 2| 104,222 192 2923  2,3,6,19 | 114,741 1,436 1,467 1,2,6,19
1 4] 118,457 184 2929 23,6,19 | 130,076 1,335 1,427 2,11
2 1| 118,073 19 509  1,2,6,19 | 126,427 231 241 2,11
2 2] 124,950 17 567 2,11,19 | 132,636 230 239 2,11
2 4] 136,975 17 457 2,11,19 | 144,271 232 233 3
4 11| 144,074 2 59 3| 145,445 29 25 3
4 2| 148,367 2 51 3| 150,215 33 29 3
4 4| 156,955 1 49 3| 159,754 31 27 3

two methods, but also to quantify the effect of relaxing the smooth demand assumption.
When using simulation to evaluate the inventory function, we calculate the Economic Or-
der Quantity using (2.28), whereas the reorder level is found by conducting simulation
runs with numerous levels and selecting the one that results in the lowest inventory cost.
The maximum inventory level and the total inventory cost are found at the optimal reorder
point. In this round of experiments, we focus on the 20-node case only. All tested instances
were solved to optimality.

The columns ‘Optimal’, ‘CPU’; ‘Iter’ and ‘Facilities’ depict the optimal solution, the
computational time in seconds, the number of B&B nodes, and the opened facilities, re-
spectively.

It is clear that as the weight of the capacity and inventory cost components increase,
the number of opened warehouses decreases to take advantage of economies of scale. The
number of warehouses drops from 4 warehouses when a weight of 1 is used for both cost
components to a single warehouse when these weights are increased to 4. Capacity cost
can increase as a result of higher land, construction or equipment cost, but also as a result
of higher electricity cost, especially in hot and humid climates and with frozen products
(as opposed to chilled ones) when the power consumption of the refrigeration system is
relatively high. On the other hand, inventory holding cost increases proportionally with the
value of the products stocked. For high value products, the cost of inventory holding and
backordering may constitute a sizable proportion of the total cost of the supply chain. We
also notice significant differences in the total cost between the simplified and the actual
cases. Most of the cost difference is attributed to the additional capacity required to
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accommodate the increased maximum inventory level in warehouses. There is also a cost
difference due to unequal inventory holding and backordering costs.

By comparing the computational time between the simplified and the actual cases,
one can conclude that most of it is spent on evaluating the inventory functions using the
simulation-optimization algorithm. It is also noticed that the number of B&B nodes and
the computational time decreased significantly with the increase in capacity cost, whereas
the effect of the inventory cost on the computational burden did not show a clear trend.
This observation can be explained by the fact that when the capacity cost is dominant,
fewer warehouses are opened and thus less simulation runs are needed. In all tested cased,
the computational time did not exceed 25 minutes, which is acceptable for this design
problem. This includes the time required to calculate the problem parameters from the
raw data.

Next, we test for the case when inventory is managed using an (r, nQ) inventory policy
where @ is the full-truck load (i.e., 90m?) of the product. The problem is solved for the
stochastic demand case using the simulation-optimization algorithm. In addition to the
base case scenario, three other scenarios are tested:

e Zero emissions cost where the cost of emissions is entirely disregarded. The purpose
is to evaluate the effect of including (or excluding) the environmental considerations
when selecting the supply chain configuration and operational plan.

e Strong economies of scale where the exponents exp; and exps are halved to represent
steeper diminishing marginal cost and emissions functions. This is important since
the extent of which economies of scale takes into effect varies widely from a technology
and/or situation to another.

e Extended lead time where the lead time (L) is doubled to investigate the effect of
delay in shipping products to warehouses. This delay can be a result of the production
policy implemented by the suppliers (e.g., order-to-produce or batch production) or
to logistical inefficiencies (e.g., congestion).

For each scenario and cost weights set, 10 randomly generated instances are tested to
obtain a 95% confidence interval for the true mean of the system cost. The results are
presented in Table 2.11. We also include the capacity of each warehouse opened between
the brackets after its number in the ‘Facilities’ column. Since the warehouse capacity
obtained varies from a simulation run to another, we report the highest capacity obtained
or the upper limit of the 99% confidence interval rounded to the next integer, whichever
is higher.
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Table 2.11: Results for the (r,nQ) policy in the hypothetical case

10 nodes 20 nodes
We Wi Optimal CPU Nodes Facilities Optimal CPU Nodes Facilities
Base case
1 1| 75,3494+138 39 59 2(180),3(192),6(180) | 109,913+113 930 997 2(180),3(210),6(180)
1 2| 83,5614+220 46 71 2(180),3(198),6(180) | 118,614+183 963 1,076 2(180),3(201),6(180)
1 4| 99,1114381 69 111 2(180),5(214) | 135,358+303 897 1,069 2(180),3(232)
2 1| 93,095+338 17 24 2(180),3(226) | 130,3344+251 90 133 2(180),11(228)
2 2| 99,398+261 16 21 2(180),3(214) | 137,2224316 84 124 2(180),3(228)
2 4(112,347+482 17 24 2(180),3(214) | 151,113+473 88 118 2(180),3(228)
4 1]118,113+263 8 8 3(222) | 156,812+£453 16 23 3(250)
4 2(122,922+346 9 9 3(225) | 152,172+524 17 23 3(247)
4 4(132,256+£275 9 10 3(222) | 172,478+254 17 26 3(244)
Zero emissions cost
1 1 67,903+70 78 111 2(180),3(192),6(180) | 99,942+169 2,059 2,071 2(180),3(210),6(180),19(180)
1 2 76,1071+95 76 112 2(180),3(192),6(180) | 110,471+178 2,043 2,395 2(180),3(198),6(180)
1 4| 92,521+172 111 177 2(180),3(192),6(180) | 127,756+320 2,593 2,985 2(180),3(201),6(180)
2 1| 83,622+143 24 35 2(180),3(198),6(180) | 117,572+123 218 294 2(180),3(201),6(180)
2 2| 91,714+200 35 54 2(180),3(210) | 126,147+116 229 304 2(180),3(198),6(180)
2 4(102,633+671 40 64 2(180),3(210) | 140,173+384 256 351 2(180),3(232)
4 1(104,513+185 13 17 2(180),3(210) | 140,007+259 66 85 2(180),3(228)
4 2(110,928+222 14 19 2(180),3(210) | 147,905+334 64 85 2(180),3(228)
4 4]120,943+265 10 13 3(222) | 160,874+380 63 83 3(247)
Strong economies of scale
1 1 63,670+£86 36 51 2(180),3(195),6(180) | 94,408+£189 662 635 2(180),3(210),6(180),19(180)
1 2| 71,786+170 31 45 2(180),3(195),6(180) | 104,845+119 771 819 2(180),3(201),6(180),19(180)
1 4| 87,9544+356 45 65 2(180),3(195),6(180) | 124,187+303 900 1,068 2(180),3(201),6(180)
2 1| 74,614+123 16 20 2(180),3(198),6(180) | 108,970+41 47 51 2(180),3(198),6(180)
2 2| 82,783+242 16 21 2(180),3(198),6(180) | 117,819+157 63 78 2(180),3(210),6(180)
2 4| 98,740+505 24 37 2(180),3(198),6(180) | 134,957+279 107 149 2(180),5(226)
4 1| 74,614+123 15 20 2(180),3(198),6(180) | 127,742+107 17 18 2(180),3(228)
4 2| 97,894+125 8 7 2(180),3(211),6(180) | 134,706+108 20 24 2(180),3(223)
4 4110,661+287 9 9 2(180),3(211) | 148,669+425 23 30 2(180),3(232)
Extended lead time
1 1| 76,585+156 47 72 2(180),3(249),6(180) | 111,350+£105 442 508 2(180),3(273),6(183)
1 2| 85,152+187 54 85 2(180),3(249),6(180) | 120,479+£208 477 549 2(180),3(261),6(192)
1 4| 99,9114220 60 94 2(180),3(286) | 138,233+379 375 512 2(180),3(316)
2 1| 96,046+370 19 28 2(180),3(300) | 133,2394+319 93 125 2(180),3(318)
2 2(102,785+393 18 27 2(180),3(300) | 140,6704+261 97 134 2(180),3(316)
2 4]116,363+407 19 29 2(180),3(295) | 155,184+308 84 117 2(180),3(316)
4 1]124,358+471 8 8 3(318) | 164,106+£228 20 25 3(399)
4 2(129,473+486 9 9 3(318) | 169,348+404 17 23 3(338)
4 4139,793+569 9 10 3(318) | 180,670+£515 18 25 3(339)
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First we look at the base-case results. As with the EOQ case, the number of opened
warchouses decreases when the inventory and capacity costs increase, and both the com-
putational time and the number of tested nodes have inverse relations with the weight
assigned to the capacity cost. Furthermore, we note that the total cost in the (r,nQ)
policy case is slightly higher than that of the corresponding EOQ case. There are two
reasons for this difference: first, when the shipment quantity is deterministic, smaller, less
expensive trucks are used for all shipments between warehouses and retailers except the
retailer in Toronto which requires a large truck for handling its demand. On the other
hand, the shipment size in the stochastic demand case varies widely, which necessitates
the use of the Large trucks more frequently. Second, the order quantity in the (r, n@)) pol-
icy is pre-determined exogenously, whereas it is optimized in the EOQ policy. We should
remember, however, that the shipment cost per unit between production plants and ware-
houses is assumed constant based on full capacity utilization of trucks, which is true for
the (r,n@Q) case but not the EOQ case. If the less-than-perfect truck utilization is taken
into consideration, the EOQ policy might result in significantly higher total cost.

The computational time and the number of nodes ratios between the 20 nodes and the
corresponding 10 nodes cases vary between around 2 and 20, depending on the cost weights.
When the weights are small, more warehouses are opened and simulated, significantly
increasing the computational time. However, for the base-case instances, the mean time
did not exceed 1000 second for the smallest weights. It is interesting to note the variability
of warehouse selection when the weights are changed.

For the free emissions scenario, we note that more warehouses are opened compared to
the bases case. This is expected since the exponent of the cost function is selected smaller
than that of the emission function, implying weaker economies of scale, and consequently
less demand pooling. With the emission cost is neglected, one would expect more usage
of less expensive conventional trucks that can travel longer distance, which leads to a
more demand assignment concentration and less opened warehouses. However, the effect
of this factor seems minimal. With the removal of emissions cost, the contribution of the
‘stochastic’ variable capacity cost decreases compared to the ‘deterministic’ transportation
and fixed costs, leading to less variability in the results as shown in the narrower confidence
intervals. Also, with the more warehouses opened comes higher computational time and
larger number of nodes as explained earlier.

When the capacity cost and emissions functions exhibit stronger economies of scale, one
would expect higher concentration of demand and less warehouses to open. Surprisingly,
the opposite happened in our experiments. This can be explained by fact that when the
exponents of the capacity cost and emission function are reduced beyond a certain level, the
variable capacity cost becomes very small (approaching 1 as the exponent goes to 0) and the
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contribution of the capacity cost diminishes compared to the transportation costs. As the
transportation costs become dominant, it is better to open more warehouses to minimize
the total cost. It is important to note that the warehouse capacity is always equal to or
greater than 180, the size of two full-truck-loads so it can accommodate shipments of the
two products if they arrive at the same day.

Finally, when the lead time is doubled, we notice a remarkable increase in the capacity
of warehouses, especially those serving high demand like the warehouse in node 3 (Mis-
sissauga). The reorder level at these warehouses is set quite high so they can serve most
of the stochastic demand during the lead time. As a result, the inventory cost increased
significantly compared to the base case and, consequently, the variability of the total cost
increased.

2.8 Conclusions

In this chapter, we developed a new mathematical model for designing cold supply chains
with environmental considerations and proposed a novel approach to solve it efficiently.
The model links the different components of the design problem by minimizing the ca-
pacity, inventory, and transportation costs simultaneously while accounting for realistic
considerations such as stochastic demand, the inventory policy used in warehouses, and
economies of scale inherent in different aspects of the system. Our model differs from the
traditional green supply chain models found in the literature in three main aspects:

1. It considers the entire global warming impact of the cold supply chain, including the
effect of refrigerant gas leakage in addition to the CO2 emissions related to energy
consumption.

2. It does not stipulate any restrictive assumptions regarding the demand pattern or
inventory policy implemented at warehouses except concavity of the inventory func-
tions.

3. It bases the determination of the warehouse capacity on the actual storage require-
ments as determined by the inventory policy and not on the throughput.

The solution approach combines the efficiency of optimization methods with the ac-
curacy of simulation methods. We were able to provide a closed-form expression for the
best Lagrangian multipliers so that the Lagrangian bound is obtained in a single iteration
alongside a feasible solution. Lagrangian decomposition is embedded in a B&B framework
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to close the optimality gap. When the inventory functions cannot be expressed explic-
itly in the mathematical model, a simulation-optimization algorithm is used within the
Lagrangian approach to estimate these functions at the branching points.

The proposed approach was tested on two realistic cases representing industries with
different logistical characteristics and a set of hypothetical instances for testing the compu-
tational performance. The results show that it is possible to substantially reduce the global
warming effect of cold supply chains with a small increase, and sometimes with virtually
no increase, in cost. Furthermore, we shed light on how the contribution of the differ-
ent cost components affect the design of the cold supply chain. The managerial insights
drawn from these results enable the decision-makers to identify and target the primary
cost and emissions drivers in their supply chain networks. Also, through these tests, the
proposed approach is shown to be versatile and can be tailored to suit many real life situ-
ations including different demand patterns, inventory policies, transportation modes, and
operational constraints.
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Figure 2.2: The solution method for the cold supply chain design problem
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Chapter 3

Sterilization network design

3.1 Introduction

The cost of health care in developed nations is increasing rapidly. In Canada, for instance,
public health care expenditures in dollar terms grew by 7.0% per year during the 10-year
period from 2000 to 2010, while as a percentage of GDP it increased from 9.2% to 11.9%
[33]. Population aging, high costs of new technologies, and the high salaries of health care
professionals, among other factors, are behind this sharp growth in expenditures. Hospital
costs represented 32.5% of the total health care spending in 2010, making it the largest
cost component [33].

This unsustainable trend has urged health care administrators to look for new ways to
cut costs through more efficient operations and better organization of services. Pooling
of hospital resources to take advantage of economies of scale and scope was identified as
a promising alternative to cut health care costs while maintaining high quality services
[103]. Resource pooling is fostered by a growing tendency of many hospitals to organize
themselves in networks to exploit synergies and cost saving opportunities [73]. Several
types of hospital operations are candidates for pooling, including: procurement of medical
supplies [16], sourcing and transfusion of donated blood [79], purchasing of pharmaceutical
products [29], and sterilization of medical devices [99].

Compared to other core areas of health care management, sterilization logistics have
received little attention from the OR community. However, the last decade has witnessed a
growing interest in this topic as the magnitude of sterilization costs became more apparent.
Van de Klundert et al. [102] estimated the investments in medical sterilization equipment
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to exceed 500 million Euros in the Netherlands alone. In a recent market research report it
was estimated that the global sterilization equipment and disinfectants market was valued
at USD 5.13 billion at 2012, and is expected to grow by an average of 8.5% annually during
the forecast period 2013-2019 [100].

Besides the possibility for self-organizing the sterilization services within a network of
hospitals, these services can be outsourced to a third party. Nowadays, many hospitals and
hospital networks opt to contract with external sterilization service providers for various
reasons, including: freeing scarce hospital space, regaining focus on their core business,
and achieving higher operational standards. This trend is underway in Europe since 2001
when Sterience, currently a subsidiary of Dalkia, opened its first sterilization center in
the outskirts of the French city Lyon. In 2011, SteriPro, a Canadian subsidiary of Dalkia
opened a sterilization center in Mississauga, Ontario to serve hospitals in the Greater
Toronto Area (GTA). The number of hospitals served by SteriPro is growing steadily and,
like its sister company in France, will have to open more sterilization centers to serve the
growing demand [91].

In this chapter, we address the location, capacity and allocation problem faced by an
entity providing sterilization services to hospitals in centralized facilities. This entity can
be directed by a hospital network or a third-party company like SteriPro. The sterilization
service provider aims to minimize its long-term total cost while ensuring high service level
for its clients by determining the number of sterilization centers (SCs) to open, their
location and size, the assignment of hospitals to them, the quantity of resources (equipment
and personnel) to deploy, and the quantity of reusable medical devices (RMDs) to stock.
Total cost includes set-up cost of SCs, both fixed and size-dependent, transportation cost
between SCs and hospitals, holding costs of RMD stocks, and the annual cost of equipment
and personnel.

Early work related to sterilization services organization includes the paper of El-Shafei
[14], who proposed an exact procedure to solve location problems and used it to determine
the optimal location of a central sterilization department in a hospital. Fineman and
Kapadia [50] used inventory theory to determine the stock requirements of RMDs in a
hospital under the assumption of constant demand. They broke the total RMD stock
requirements into two components: processing stock to replenish used items through the
processing cycle, and replacement stock to replace worn, lost, or damaged items. The
replacement stock was further divided into working and safety stocks. Through their
analysis, they ranked the level of supply requirement of RMDs according to their use
frequency and prepackaging requirements.

The problem of sterilization logistics within a hospital was tackled by Van de Klundert
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et al. [102]. They first formulated the location-transportation problem as a deterministic
mixed integer program, which was shown to represent a special case of the fixed charge
network flow problem, and used a dynamic programming algorithm to solve it. Then, they
extended their model to deal with dynamic, nondeterministic demand by comparing four
operational policies in a simulation environment using different scenarios. Finally, they
considered the problem of optimizing the composition of the RMD ‘nets’ and showed that
it is strongly NP-complete. Tlahig et al. [98] developed a two-step iterative approach to
decide whether to perform the sterilization services centrally or within each wing of the
hospital under constant demand and cost assumptions. In the first step, the optimum
configuration that minimizes the sterilization activity cost was determined, whereas in
the second step the size of SC(s) was optimized. The proposed approach can not guar-
antee global optimality since the location-allocation and capacity problems were tackled
separately.

In the previous references, the focus was on optimizing the sterilization logistics within
a single hospital. As with many logistical applications, it is often beneficial to group clients
and assign them to centralized hubs. Collective organization of the sterilization functions
in multiple hospitals was first studied by Tlahig et al. [99]. They considered a group of
hospitals that has to decide between distributed and centralized sterilization functions.
An assumption was made that either all the hospitals are assigned to a single SC or
each hospital performs its sterilization functions internally. The problem was formulated
as a deterministic multi-period mixed-integer program that aims to minimize the sum
of sterilization fixed and variable costs, transportation, transfer and storage costs. The
problem was solved using a commercial solver after adding valid cuts. Due to the large
number of variables and constraints in the proposed model and the use of a general-
purpose solver, the approach is practical only for networks of few hospitals. Furthermore,
the model assumptions are quite restrictive and some of them are unrealistic, especially
the deterministic demand assumption.

We propose an alternative approach to that presented in [99] for designing a sterilization
network to serve a set of hospitals. Unlike [99], we do not stipulate that all hospitals
must have the same choice between performing sterilization functions internally or using
a centralized SC. Furthermore, we tackle the more realistic case of stochastic demand
with a threshold service level requirement and incorporate economies of scale for facilities
through a concave capacity cost function. Our model is simpler, has a much smaller
number of variables and constraints, and avoids some of the restrictive assumptions and
simplifications of [99]. The new formulation leads to a mixed-integer concave minimization
problem with linear and concave constraints. To solve this problem, we first reformulate it
as a mixed-integer second-order cone programming problem and approximate the concave
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cost function using piecewise-linear functions. This reformulation enables us to solve large
instances efficiently using powerful commercial solvers like CPLEX. The proposed approach
is tested on a realistic case study under different scenarios and organization schemes. The
results reveal that it is possible to achieve significant cost savings by consolidating the
sterilization functions in specialized centers as opposed to the current decentralized scheme
in which each hospital performs its sterilization functions independently. We also study the
contribution of and the trade-offs between the main cost components of the sterilization
network and the sources of cost savings in each scenario and organization scheme. It has
been shown that ample cost savings can be achieved even when the capacity cost is entirely
neglected due to the better utilization of resources and the risk-pooling effect. Both the
methodology and the managerial insights drawn from the test case are of great interest to
sterilization service providers.

The main contributions of this chapter are:

1. A new mathematical formulation for the sterilization network design that minimizes
the capacity, transportation, resources and inventory-holding costs under a stochas-
tic demand assumption, and that considers economies-of-scale and the risk-pooling
effect.

2. A solution strategy that transforms the resulting mixed-integer concave minimization
problem with concave constrains into a mixed-integer second-order cone program that
can be solved easily using commercial solvers.

3. A comparison between different organization schemes of the sterilization services
under different scenarios that shed light on the advantages and limitations of service
consolidation and identify the main cost drivers in each scheme.

3.2 The sterilization cycle

A detailed description of a typical sterilization cycle in a hospital is provided in [102]; so
here we present it briefly. Sterilized RMDs are placed in stocks (also called nets) such
that each net contains the instruments needed for a certain operation. Just before the
operation, nets are moved from the clean storage area in carts to the operating rooms.
After the operation, all the instruments in the net are considered contaminated regardless
of whether they are used or not, and are collected in the contaminated storage area. Next,
they are moved in batches to the SC, whether internal or external.
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Figure 3.1: The Sterilization cycle
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The following description of the sterilization cycle within a SC is based on the process
flow at SteriPro Mississauga facility as outlined in [91], which is considered a standard
procedure.

1. Carts of used RMD arrive from hospitals in trucks, where they are unloaded, scanned
and staged in the appropriate receiving queues.

2. Carts are sent to the decontamination and sorting area where cases from the transport
carts are unloaded, sorted and precleaned.

3. RMDs are sent to the manual washing stations, where they are manually washed or
given ultrasonic washing, depending on the sterilization instructions, before they are
placed back on the wash carts and passed to the automatic washer queue.

4. Wash carts are unloaded onto the Air Glide System (the conveyor) to enter the
washers for a specified wash cycle, automatically determined by wash cart contents.

5. Trays are removed from the clean wash carts and distributed to the assembly tables
based on hospital and surgery type.

6. Nets are assembled according to on-screen instructions and complete nets are sent
down the roller line towards the autoclaves.

7. After being sterilized in the autoclaves, nets are let stand for the required cool down
period.

8. Sterilized nets are placed into the transport carts and moved to the outbound shipping
area, where they are staged and loaded into the outbound shipping trucks.

Figure (3.1) illustrates the complete sterilization cycle.

Realistically, as estimated in [91], RMDs processing in the SC takes about ten hours.
If the transportation and usage times are added, a full cycle typically takes more than half
a day. Thus, it is reasonable to assume that the RMD can be used only once every day.
This means that a sufficient RMD stock must be held to meet the demand of one day with
high probability.

Sterilization is a costly process that requires both specialized equipment and highly
trained manpower. The most expensive equipment in the SC are the autoclaves and the
washing machines. Automation of the washing and sterilization processes and the usage of
conveyor systems to move RMD trays have reduced the number of workers required in the
SC. However, there is still need for manpower to perform the unloading, manual washing,
inspection and loading tasks.
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3.3 Problem description

Consider a sterilization facility providing sterilization services to a group of hospitals.
Different types of medical operations are performed in the hospitals, and each operation
requires certain instruments, usually grouped in nets. It is often the case that nets are
composed so that they are useable for a range of medical operations, not just a specific
type. On the other hand, an operation may require more that one net. Thus, hereinafter
we use nets as the unit of demand. Operations are of two types: planned and unplanned.
For planned operations, the quantity required of each type of nets can be determined with
certainty before the cycle (e.g., day) begins. For unplanned operations, each hospital has
to keep adequate quantities of nets such that it can fulfill the demand with very high
reliability.

When choosing between centralized and distributed sterilization functions there is an
underlying trade-off between transportation and capacity/process costs. On the one hand,
the fewer the number of SCs, the higher the cost of transporting RMDs to and from
hospitals. On the other hand, centralization results in the following cost savings:

1. Better utilization of resources: it is often the case that the sterilization equipment
and personnel are underutilized due to the limited demand in a single hospital. Thus,
it is possible to use the same resources to serve other hospitals as well.

2. Less resources required due to risk pooling: in a variable demand environment, the
quantity of equipment and personnel is determined such that they can serve the
maximum demand expected with a certain probability. When combining the demand
of two or more hospitals, unless their demands are perfectly correlated, the maximum
demand of them combined is lower than the sum of their maximum demands. Thus,
fewer resources are needed.

3. Lower capacity cost due to economies of scale: larger premises usually cost less per
unit capacity due to a variety of reasons, including: the more organization flexibility,
the higher energy efficiency, and the sharing of overheads. Furthermore, quantity
discounts for the acquisition and maintenance of sterilization equipment, the pro-
curement of supplies, and the training of manpower can lead to significant savings.

4. Lower inventory cost due to risk pooling: If RMD stock is kept at the SCs and
dispatched to hospitals as needed, less devices are needed than when hospitals keep
their own inventory for the same reason explained in point 2.
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While cost saving due to better utilization of resources is considered in [99], potential
savings related to risk pooling and economies of scale are disregarded. Note that for
savings from the last source to be realized, SCs should act as storage and distribution
centers for RMDs in addition to their primary function of medical sterilization. Pooling
has, repeatedly, been shown to reduce the demand variability, and consequently, the need
for larger safety stocks [15], [31], [32]. This is particularly true for situations with moderate
demand variability [23], as often the case for the demand of RMDs in hospitals. However,
hospital managements might be reluctant to give up control over their stocks of RMDs
without significant gains. The status quo is that each hospital keeps and manages its
own stock of RMDs independently. However, they might opt to pool their stocks if the
cost saving achievable by this shift outweighs the operational concerns like ownership and
availability. It is still unclear whether the cost saving due to inventory pooling is sufficient
to justify this shift in management practices.

We address the problem faced by the sterilization services provider when serving a
group of spatially dispersed hospitals such that neither the transportation cost nor the
service-related costs are dominant. In other words, it is not clear whether a centralized
or a distributed sterilization system is better. In addition to classical trade-off between
transportation and setup costs encountered in fixed-charge facility location models, we
incorporate the effects of risk pooling and economies of scale, both favoring centralized
schemes, in our study. In particular, we compare three schemes for managing the steriliza-
tion services:

1. Distributed service and RMD stock: each hospital undertakes the sterilization func-
tions and holds its own RMD stock internally without need for any kind of coordi-
nation.

2. Centralized service and distributed RMD stock: sterilization functions can be per-
formed by external centers but RMD stock is held and managed in-house.

3. Centralized service and RMD stock: SCs undertake the RMD stock holding and
managing functions in addition to the sterilization functions.

3.4 Model formulation

The mathematical model is based on the centralized service and RMD stock scheme. Nec-
essary modifications to suit it for the first two schemes are discussed later. Let ¢ € I,
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j € J,p€ P, r € R be the indices of hospitals, potential SC locations, RMD net types,
sterilization resources (equipment and human), respectively. To formulate the problem,
the following variables are introduced:

T binary variable that takes value 1 if a SC is
opened in location j;

Yij binary variable that takes value 1 if hospital ¢
is assigned to SC j;

Zjp stock of RMD nets of type p held in SC j;

Sjr units of resource r deployed in SC j.

The objective is to minimize the long-run total cost of the sterilization network, includ-
ing: set-up cost for SCs, the cost of transporting instruments between hospitals and SCs,
RMDs holding cost in SCs, and the cost of equipment and human resources required to
perform the sterilization services. Set-up cost has two components: a fixed cost ¢; and a
variable, size-dependent cost. In calculating the size of a sterilization center we consider
the area A; required for resources and RMD stocks: A; = 3" _pupzjp + >, UrSjr, Where
u, and v, are the areas required for a unit of RMD net of type p and a unit of resource
of type r, respectively, according to operating codes. We assume a concave variable cost
function f; (A;) that accounts for economies of scale.

Each hospital is served by a single SC. If the SC is in the hospital itself, no transporta-
tion cost is incurred. If the hospital is served by an external SC, a vehicle ships RMD nets
from the SC to the hospital in the morning and returns the contaminated instruments at
the end of the day. We assume that all shipments are direct without routing between hos-
pitals. The annual cost of serving hospital ¢ by SC j is d;;, which depends on the distance
and the type of vehicle used.

The daily demand for net type p originating from hospital ¢ is an independent random
variable that is assumed to follow a normal distribution with mean p;, and variance o},
Therefore, the daily demand of net type p observed by the SC j is also normally distributed
with mean )., fipys; and variance )., afpyl-j. The stock of RMD nets held at each SC
must satisfy, in full, the daily demand of the hospitals assigned to it with a certain threshold
probability 7 (i.e., the ‘fill rate’). Hence, the stock of RMD net type p held at SC j equals

at least Y,/ fap¥ij + /D ;e 00 Yij, where a = ®71(7), the inverse standard Normal CDF

function corresponding to the fill rate 7. Even when the demand of individual hospitals
is not normally distributed, according to the Central Limit Theorem, the consolidated
demand can be reasonably approximated using a normal distribution.
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Notice that the stock level decision zj, depends on the location-assignment decisions
only in the last scheme, namely when RMD stocks are managed at the SC level rather
than the hospital level. Whereas when stock at each hospital is managed autonomously,
the quantity of RMD nets held at each hospital can be determined exogenously. Let h,
denotes the holding cost of a unit of RMD net type p for one year, thus the inventory cost
at SC jis > _phpzjp.

We assume that the transitional costs incurred to shift from the status quo to the new
configuration are negligible compared to the steady-state costs, so they are disregarded.
We also do not include the costs related to the storage of RMDs near the operating rooms
and their movements within the hospitals as these costs will be incurred regardless of the
network configuration. Furthermore, since the number of instruments to be sterilized is
given and independent of the network configuration, we do not include the direct cost of
sterilization which includes power, water and chemical agents in our model. However, the
indirect costs of equipment and manpower must be included since these costs depend on
the network configuration. Let C, be the daily unit capacity of resource r, g, be the
quantity of resource r required to process a unit of RMD net p and e, be the annualized
cost of a unit of resource r. Each SC must have adequate resources to process its entire
RMD stock of the hospitals assigned to it in one day.

peEP

With that, the sterilization network design problem formulation is given by

[SNDP] min Z C;Tj + Z fj (AJ) + Z Z dijyij + Z Z hpsz + Z Z €rSjr

jeJ JjeJ jedJ el jeJ peP jeJ reR
jedJ
szyij ViEI,jEJ (32)
A= Zupsz + Zvrsjr Vield (3.3)
peEP reR
Zip > Zulpyw +a Zagpyij VJ S J,p e P
el el
(3.4)
ZQprsz < Crsjr ViedreRr
peP

zj, vy € {0,1}, 55, >0, integer, z;,, A; >0

The first constraint assigns each hospital to exactly one SC. Constraint (3.2) ensures
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that this assignment is possible only if the SC is opened. Total SC area and RMD stock
level are given by (3.3) and (3.4). Inequality (3.5) sets the minimum resources require-
ments at each SC. The terms of the objective function represent the fixed and variable
(size-dependent) capacity, transportation, inventory holding, annualized resources costs,
respectively. This formulation results in a concave mixed-integer program with linear and
concave constraints. In the next section an approach is devised to solve the problem.

3.5 Solution method

Although the Lagrangian approach proposed in section 1.2 can be used to decompose the
problem in order to deal with the concave terms in the objective function, the resulting
subproblem is a mixed-integer problem with concave constraints that is difficult to solve.
Since the subproblem has to be solved many times (i.e., in every branching node), this
inevitably leads to an excessive computational burden. Instead, we propose an alterna-
tive solution strategy for this problem that requires a larger mixed-integer second-order
cone programming problem to be solved once to get a near optimal solution tractably.
We start by approximating the concave variable capacity cost using a classical piecewise
linearization. We linearize the functions f; (A;) using piecewise segments linking the points

{0.0, (45, £5(4D) . (A2 £(4D) ... (A7 £(4D)) }

and special ordered sets of type 2 (SOS2) [16]. We can write A; and the approximated
functions Fj;(A;) as:
T
A = wiAl Vj € J, (3.7)
=0
T;
Fi(4;) = Zwﬁfj(Az), VjeJ, (3.8)
=0
7
> wh=1, Vi e J. (3.9)
=0
and {wg, wy, ... ,ijj} are SOS2 variables. Note that we assumed, without loss of gener-

ality, that AY = f;(AY) =
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Next, we introduce the variable Z;, = 2z, — > ./ lip¥ij- By substituting in (3.4), and
noting that, since y;; is binary, y;; = yfj, the stock level constraint can be written as

a Zawyl] <z VjieJpeP, (3.10)

el

which is a second-order cone constraint. With that, we get the reformulated problem

T;
[RSNDP]: min Z cjrj + Z Z w; f;(AY) + Z Z dijyii+ Z Z hyzjp + Z Z €rSjr

jeJ jEJ t=0 jeJ iel jeJ peP jeJ reR
jed
Z tht Z UpZjp + Z Uy S Vield
peP reR
Z%ym_ z, VjeJpeP
el
> Gz < Crsje VieJreR
pEP
Ejpzzip—ZMz‘pyij VjiedJpeP
icl
Tj
> wh=1 VjieJ
t=0

z;,yi; € {0,1}, sj, >0, integer, sz,w§- >0, {w?,w;, o ,ijj} SOS2.

which is a mixed-integer second-order cone programming (MISOCP) problem that can
be solved directly using commercial solvers. The solution algorithms for MISOCP problems
have improved significantly in the last decade, and they are now capable of handling large
problem easily. For example, Atamturk [15] has reported solving instances of the location-
inventory problem (sec. 1.3.3) with 300 conic constraints and 22,650 integer variables
after reformulating them as MISOCP in CPU times ranging between 7 and 260 seconds,
depending on the problem parameters.
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Table 3.1: RMD net characteristics in the SND problem
p average demand per surgery up, ¢ Iy

1 1.50 0.25 100
2 1.25 0.30 120
3 1.00 0.30 150
4 0.75 0.35 180
5 0.50 0.35 200

Table 3.2: Sterilization resources in the SND problem

r C, er Uy

1 20 3000 8
2 30 6000 6
3 100 30,000 15

3.6 Numerical testing

To study the inherent trade-offs in the sterilization network design problem and validate
our approach, we implement it to design a sterilization network for the public hospitals in
southwestern Ontario, Canada, i.e., Local Health Integration Networks (LHINs) # 1,2,3
and 4 [3]. Since most hospitals do not keep records of their usage of RMDs, we could
not entirely base our model on real data. However, real and hypothetical estimated data
are mingled to come up with a realistic set of model parameters that emulates a typical
sterilization system.

We include only the 20 hospitals of Group A (General/teaching hospitals) and Group
B (General hospitals with more than 100 beds) in the region under consideration. Other
groups of hospitals (e.g., rehabilitation, psychiatric, and chronic diseases hospitals) have
minimal demand of RMDs. Out of the 508,238 surgeries performed in Ontario in 2012-
2013, the estimated number of surgeries in every hospital is assumed proportional to its
size (measured in the number of beds). There assumed to be 5 types of RMD nets, each
having its expected demand per surgery, size (which is also equal to resources usage) and
holding cost depicted in Table 3.1. Three resources are considered: automatic washing
machines, sterilizers (autoclaves), and manpower, with the capacity, unit cost, and area
required of each resource unit depicted in Table 3.2.

A single type of vehicles is used to ship RMD nets daily between hospitals and SCs.
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Table 3.3: Estimated number of surgeries per year in the SND problem

7 hospital name surgeries
1 Hamilton Health Sciences Corp. 32,070
2 London Health Sciences Centre 26,003
3 Niagara Health System 14,283
4 St. Mary’s General Hospital 13,321
5 Windsor Regional Hospital 11,730
6 Guelph General Hospital 6,446
7 Bluewater Health 5,786
8 Brant Community Healthcare 4,295
9 Joseph Brant Hospital 4177
10 Chatham-Kent Health Alliance 4,069
11 Grey Bruce Health Services 3,598
12 Cambridge Memorial Hospital 3,500
13 St. Thomas-Elgin General Hospital 2,801
14  Woodstock General Hospital 2,427
15 Stratford General Hospital 2,173

Thus, the shipping cost is assumed proportional to the distance, with a coefficient of
$500/km /year. We combined the demand of hospitals if the distance between them is less
than 10 km, so we ended-up with 15 demand points only. The candidate locations for SCs
are the demand points themselves. Table 3.4 shows the driving distance between demand
points in km. There is an annual fixed cost of $10,000 for each opened SC, whereas the
annual size-dependent cost is calculated using the function $500A%%, where A is the total
SC area in m?. The number of surgeries per year for each demand point is shown in Table
3.3.

The fill rate, 7 (which is also type I service level), is set to 0.99, meaning that with
probability 99% each SC is able to fill the RMD demand originating from the hospitals
assigned to it in full. The demand variance in the base case is set equal to half of the mean
demand. The number of breakpoints in the piecewise linearization is increased incremen-
tally until the relative optimality gap becomes less than 0.001. The test problem has 285
integer variables, 375 continuous variables, 370 linear constraints, 75 conical constraints,
and 15 SOS2 sets. Testing is performed on a workstation with Intel Core-i7 processor
of the 4th generation and 8 GB of RAM. The problem is coded on Matlab2013b and the
MISOCP problem is solved using CPLEX12.6.
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Table 3.4: Distance between demand points in the SND problem
2 3 4 5 6 7 8 9 10 11 12 13 14 15

~.

1 120 55 75 300 57 220 44 26 228 199 47 116 79 107
2 180 103 188 118 113 85 138 127 197 99 29 48 66
3 123 359 107 279 103 53 287 255 101 195 135 180
4 283 26 203 34 72 216 118 22 119 56 45
) 298 150 264 317 105 403 278 184 231 252
6 219 49 56 232 134 25 135 72 72
7 185 238 45 255 199 115 153 139
8 62 193 181 22 101 35 69
9 250 204 50 153 93 112
10 308 207 114 161 182
11 166 234 178 152
12 116 53 59
13 69 90
14 38

The results are shown in Table 3.5. The column entitled ‘solution’ presents the best
solution obtained. Opened SCs are shown outside the parenthesis, followed by the size of
the SC, the required resources, and the hospitals assigned to it, respectively, inside the
parenthesis and separated by semicolons. The total cost, in dollars, corresponding to this
solution is shown in the column ‘TC’. The last column show the computational time in
seconds.

In addition to the base case (scenario 1), we test on different scenarios to study the effect
of changing the problem parameters. Scenarios 2 and 3 pertain to strong and no economies
of scale, attained by changing the exponent of the size-dependent capacity cost function
to 0.6 and 1, respectively. Scenario 4 is based on the premise that the capacity cost is
negligible (i.e., set to zero), a case realized when the hospitals have surplus areas to install
sterilization facilities. Scenario 5 is when the RMD demand is assumed deterministic, 7.e.,
O’Z-zp = 0, an extreme case for low-variability demand. Finally, Scenario 6 represents demand
with a Poisson distribution, which can be tightly approximated using a normal distribution
with 07, = pip, Vie I, pe P.

By comparing the results of scenarios 1, 2 and 3, one can see that changing the exponent
of the size-dependent capacity cost, an indicator of the extent of economies of scale, has
not led to a change in the solution. As the exponent decreases, the effect of economies
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of scale becomes stronger, supposedly leading to more centralization. However, with the
smaller exponent the magnitude of the capacity cost becomes smaller as well, favoring a less
consolidated structure, which balances-off the economies of scale effect. When the capacity
cost is neglected altogether in scenario 4, the number of opened SCs doubled. Still, not
all hospitals opened their own SCs, proving that there is value for demand consolidation
even with free capacity due to the risk pooling effect and the better utilization of resources
explained earlier.

The effect of demand variability is observed from scenarios 5 and 6. The opened SCs
and the assignment of hospitals to them remains unchanged when the demand variance is
doubled. However, the safety stock of RMDs is increased to meet the higher demand vari-
ability, leading to higher inventory, capacity and resources costs as well. On the other hand,
the solution obtained when the demand is assumed deterministic has the same number of
opened SCs as the base case but with different opened SCs and assignments. Moreover, as
expected, the stock level decreased, and consequently the total cost is significantly lower
than the base case. The cost difference between the two scenarios can be thought of as
‘the cost of uncertainty’.

We note that the computational time varies tremendously between the different scenar-
ios, ranging between 3 seconds and about 2 hours. It is clear that as the non-linearity of the
problem increases it becomes harder to solve. For larger problems one can add valid cuts
suitable for MISOCP problems such as polymatroids [15] to enhance the computational
performance.

Next, we take a closer look at the cost breakdown in scenarios 1 and 4 to spot the
sources of cost saving explained in section 3.3 across the three organization schemes. Fig-
ure 3.2 illustrates the cost breakdown in scenario 1. It can be noticed that a saving of
19.1% can be achieved by shifting from a decentralized sterilization functions scheme to
a partially centralized one (i.e., scheme 2). This saving is primarily due to the lower ca-
pacity and resources costs outweighing the additional transportation cost. An additional
1.8% cost saving is achievable if the SCs maintain centralized RMD stocks due to the risk-
pooling effect. Health care administrators might consider this saving trivial against the
inconveniences related to losing their control over the RMD stocks, or they might opt for
the fully centralized scheme 3 to take advantage of it.

When the capacity cost is assumed negligible in scenario 4, one would expect that the
value of consolidation mostly diminishes. Surprisingly, as seen in Fig. 3.3, there is still
ample room for saving amounting to 13.8% of the original (scheme 1) total cost. This
saving is attributed merely to the better utilization of the resources, especially the human
resources, in the partially-centralized scheme 2. As with the first scenario, an additional
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Figure 3.2: Cost breakdown for the base case scenario in the SND problem
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Figure 3.3: Cost breakdown for the zero capacity cost scenario in the SND problem
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1.5% cost saving is realized from risk-pooling if scheme 3 is selected.

3.7 Conclusions

In this chapter, we present a new approach that can be used by a medical sterilization
service provider to determine the optimal configuration of its network. This includes the
number, location, and size of the SCs to open, the assignment of hospitals to them, the
human and machinery resources and the stock of RMDs to be held in every SC. Our
model aims to minimize the long-run total cost of the network while taking into account
economies of scale, the risk pooling effect, and the stochastic nature of demand. The
problem formulation results is a mixed-integer concave minimization problem with concave
constraints. We transform the concave constraints into second-order cone constraints and
use piecewise linearization to linearize the concave cost function, turning the problem into
a mixed-integer second-order cone program that is solved using a commercial solver.

We used our approach to compare three schemes, ranging from a fully decentralized
structure to a fully consolidated one where SCs not only preform the centralization services
centrally, but they also administer the RMD stock for the hospitals. The proposed steriliza-
tion network design approach is implemented on a realistic case study from southwestern
Ontario. The results obtained highlight the trade-offs embedded in the network design
process and demonstrate the cost saving the can be achieved through centralization. It has
been shown that significant saving is accomplished by pooling the sterilization function,
whereas centralizing the inventory holding function results in a small cost saving that has
to be weighed against other operational and legal considerations.
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Conclusions and future directions

Economies of scale and risk pooling are inherent features in many application problems,
often leading to concave minimization problems over a polyhedron. In this thesis, we focus
on this class of problems both from an algorithmic and an application perspective. The
contributions are two-fold.

On the one hand, we proposed new solution approaches for an important class of prob-
lems that frequently appears in supply chain design models, namely, minimizing a set of
concave functions defined over affine combinations of continuous or integer decision vari-
ables with linear constraints. The first is a Lagrangian decomposition approach that allows
the best Lagrangian multiplies to be calculated directly from the problem parameters, en-
abling the best Lagrangian bound and a high quality solution to be obtained in a single
iteration. The second is a Benders approach that is well-suited for problems with a few
concave variables. The concave terms are isolated in a low-dimensional master problem
that can be solved efficiently through iterative enumeration.

On the other hand, we developed novel supply chain network design models for two im-
portant applications: cold supply chains and medical sterilization networks. These models
incorporate more real-life requirements and less restrictive assumptions than those used in
classical models. For the cold supply chain design problem, we proposed a hybrid solution
method that combines the Lagrangian approach we presented earlier with a simulation-
optimization approach to address the case of generic demand distribution and inventory
policy. For the sterilization network design problem we reformulated the resulting mixed-
integer concave minimization problem with concave constraints into a piecewise-linearized
mixed integer problem with cone constraints that can be solved efficiently. For both prob-
lems, we tested on realistic case studies and drawn important managerial insights.

Moving forward, we would like to augment the solution approaches proposed in this
thesis and to tackle more applications with them. The Benders approach proposed in
Chapter 1 is a promising alternative that we want to investigate further. We are going to
test it on problems with multiple concave terms to assess its performance. Moreover, we
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will try to implement a Logic-based Benders approach to generate Benders cuts from the
integer subproblem directly instead of using its linear relaxation within a B&B framework.
Logic-based Benders was shown to outperform classical Benders decomposition for mixed-

integer linear problems [63], and we want to see if the same holds for mixed-integer concave
minimization problem.
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