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SUBMODULAR FUNCTIONS, GRAPHS AND INTEGER POLYHEDRA

Abstract

This thesis is a study of the faces of certain combinatorially-
defined polyhedra. In particular, we examine the vertices and facets
of these polyhedra.

Chapter 2 contains the essential mathematical background in
polyhedral theory, 1inear programming and graph theory. We also discuss
the existence of an integer-valued optimum solution to a Tinear program.
This is essential for determining that the vertices of certain polyhedra
are integer-valued, and for establishing related combinatorial min-max
relations.

Chapter 4 deals with polymatroids. We discuss the relationship
between (integral) polymatroids contained ianE and (integer-valued)
nonnegative, nondecreasing, submodular functions, called Bo-funcfions,
of‘LE, the family of all subsets of E. We prove that the vertices of
the intersection of two integral polymatroids are integer-valued.

We also characterize the facefs of the'intersection of two polymatroids
in terms of the two Bo-functions defining these polymatroids. For any
polymatroid P = RE with corresponding B -function fy:lp >R and for all
nonempty T < E the sets {x ¢ P:x(T) = fP(T)} and {x ¢ P:x(E) = fF(E),
x(T) = fP(T)} are faces of P. We determine the dimension of these faces
in terms of fp.

Chapter 3 is the ajplication of the results of Chapter 4 to

the polymatroid aspects of matroid theory. We characterize the vertices
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and the facets of the intersection of two matroid polyhedra, We use
the characterization of the facets of this intersection to derive a
graph theoretic description of the facets of the polyhedron associated
with branchings in a graph.

In Chapter 5 we discuss certain polyhedra which can be
associated with strong k-covers and strong k-matchings of an acyclic
graph. By proving the existence of integervvalued optimum solutions
to particular primal-dual pairs of linear programs we are able to demon-
strate certain combinatorial min-max relations.

Chapter 6 is a unification of the polyhedra described in
Chapters 4 and 5, We give a combinatorial definition of a class of
poliyhedra which fnc]udes polymatroid intersection and the polyhedra
associated with strong k-covers and strong k-matchings of an acycTﬁc
graph. We establish the existence of integer-valued optimum solutions to
certain dual Tinear programs and thereby draw conclusions concerning
the integrality of the Qertices of particular po]yhedré within this claés.
The applications include establishing the integrality of the vertices |
of the intersectibn of two integral polymatroids and the integrality of
the vertices 6f strong k-cover and strong k-matching polyhedra,

Chapter 7 is a discussion of the facets of polyhéddra defined -
in Chapter 6 and we obtain a description of the facets of a subclass of
these polyhedra which includes é description of the facets of the
intersection of two polymatroids and the facets of strong k-cover

and strong k-matching polyhedra.
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CHAPTER 1

INTRODUCTION

1.1.1 In this. thesis we study polyhedra which can be associated
with -certain combinatorial structures. In particular, we study the

faces of these poiyhedra.

1.1.2 The vertices of a polyhedron P are its faces of dimension zero.
An important property of vertices of a polyhedron P is that if P contains
a vertex and the linear objective function ¢-x has a maximum over X e P

then that maximum is realized by a vertex of P. Therefore

1.1.3 If P contains a vertex then the maximum of c.x over X & P is

equal to the maximum of c.x over the set of vertices of P. Also,

1.1.4 xo e P is a vertex of P if and only if there exists a linear
objective'function co-x such that x0 is the unijque member of P maximizing
CO'X-

1.1.5 Frequént]y'we will be détermining that the vertices of P are

integer—valuéd. Every polyhedron can be defined as the solution set of
a linear system Ax < b, for some matrix A and some vector b. We denote
the solution set of any Tinear system Ax < b by P<A,b>. Given a linear
.system Ax < b and a Tinear objective fqnction c.-x consider the Tinear

program

1.1.6 maximize c-x where x satisfies Ax < b,
If the vertices of P<A,b> are integer-valued then, by (1.1.3), the

linear program (1.1.6) has an integer-valued optimum solution for altl
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linear objective functions c-x such that (1.1.6) has an optimum solution.
Conversely, suppose {1.1.6) has an integer-valued optimum solution for
all Tlinear objective functions CeX such that (1.1.6) has an optimum
solhtion. Suppose x0 is a vertex of P<A,b>. By (1.1.4), there exists

a linear objective function co-x such that xo is the unique member of
P<A,b> maximizing co-x. Therefore, xo is integer-valued. We will often
prove that the vertices of P<A,b> are jnteger-valued by showing that
(1.1.6) has an integer-valued optimum solution for all linear objective

functions c-x such that (1.1.6) has an optimum solution.

1.1.7 A useful sufficient condition for the vertices of P<A,b> to be
integer-valued is that b is integer-valued and the dual Tinear program
.of (1.1.6) has an integer-valued optimum solution for every integer-
valued ¢ such that (1.1.6) has an optimum solution. We make frequent
use of this cdndition to prove that the vertices of P<A,b> are integer-

valued.

1.1.8 If the vertices of P<A,b> are integer-valued and the dual
11néar program of (1.1.6) has an integer-valued optimum sotution for some
Tinear objective function c.x then, by the Strong L.P. Duality Theorem,
the maximum‘of C:X suﬁject to AXx < b, x integer-valued is equal to the
optimum value of the dual Tinear program subject to integer-valued dual
feasible solutions. We establish certain combinatorial minimax theorems
by proving that the vertices of a certain polyhedron are integer-valued
and that a certain dual linear program has an integer-valued optimum

solution,
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1.1.9 Chapter 6 presents a class of combinatorially-defined poly-
hedra. Among the applications of these polyhedra are results about
polymatroids and polyhedra associated with strong k-covers and strong

k-matchings.

1.1.10 Chapter 3 motivates the discussion of polymatroids in Chapter 4
by outlining the polymatroid aspects of matroid theory. The major
reference for these chapters is the work of Edmonds [E3]. Indeed, the
inspiration for most of the research presented here has its roofg in

that paper. We prove many of the results given in [E3].

1.1.11 An independence system M = (E,¥ ) is a set E together with

nonempty family # of 1ndependént subsets of E such that if Yec Z.e%-
then Y ¢ ¥ . For any set S ¢ E we can define the rank of S, r(S),in M
to be the maximum cardinality of an independent subset of S, anq'a
basis of § is an independent subset of S having cardinality r(S); A
matroid is an independence system such that for a]I.S‘g E everyﬁhaximal

independent subset of S is a basis of S.

1.1.12 A polyideal is a compact subset P of RE such that if x' e P and
0 < xp < x! then xU € P, For any vector a elRE we define the rank

E(xe:e e E} over x ¢ P, x < a,

1

of a,r(a), in P to be the maximum of x(E)
and a P-basis of a to be a vector x of P, x < a, having x(E) = r(a).
A polymatroid is a polyideal such that for all a eIRE every maximal

vector x € P .such that x £ a is a P-basis of a.
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1.1.13  Let L. be the family of subsets of E. Let K- =Ll.-{oJ. For

E
any function f:KE + R Jet P(KE,f) be the solution set of the linear

“system.

1.1.14 Xq > 0 for all e ¢ E
x{S) < f(S) for all S K¢,

m

where x(S) Z(xe:e e S).

1.1.15 The rank function r-:LE + R of a matroid is nondecreasing,

() = 0 and r(Y n 2)+r(Y u Z) = r(Y)#r(Z) for all ¥,Z < E;5 f.e. v i
submodular on L. Call any function f:LE + R which is nondecreasing,
submodular and such that flo) =0 a Bc-function. In Chapter 4 we prove
that if f:L +R is a Bo-function then P(KE,f) is a polymatroid and if f
is also integer-valued then P(KE,f) is also an integral polymatroid; i.e.
for all integer-valued a eiRE every maximal integer-valued vector

X € P(KE,f) such that x < a is a P-basis of a. Conversely, if P E]RE

is an (integral) polymatroid then there is an associated (integer-valued)
B, -function foile + 1R such that P = P(KE,fP). This correspondence
between Bo-functions and polymatroids is fundamental to the study of

polymatroids (cf. [E3]).

1.1.16 In Chapter 3 we derive a construction of matroids from the
construction of integral polymatroids from integer-valued Bo—functions
and demonstrate that particular independence systems are matroids. For
example, if for any indexed family {Qj:j e E'} on E we Tet ¥ be the
family of subsets J ¢ E' such that {Qj:j ¢ J} has a transversal then

M= (E,%) is a matroid (cf. [E3]1).
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1.1.17 An important property of integer-valued Bo-functions f is.
that the vertices of P(KE,f) are integer-valued. In particular, where
f ig the rank function of a matroid M = (E,3 ), the vertices of P(KE,f)
are {0,1)-valued; i.e. the vertices of P(Kk,f) are the vectors of the
‘indebendent sets of M. Therefore, a linear system defining P(M),

the convex hull of vectors of independent sets of M, is (1.1.14).

1.1.88. Let f,,f, : L >R be two Bo-functions. For any linear

'|!
objective function c-x consider the linear program

1.1.19 maximize c.x where x elRE satisfies

X =0 for all e e E

e
X(S) < f](S)

for all S ¢ KE.
x(S) = fz(s)

We prove that if c is integer-valued then the dual Tinear program of
(1.1.19) has an’” integer-valued optimum solution. If f] and f2 are
integer-valued then, by {(1.1.7), the vertices of P(KE’fT) n P(KE,fz)

are integer-valued (cf. [E3]). In Chapter 3 we discuss the case‘when Ty
and f2 are the rank functions of matroids M1 = (E,?1) and Mz = (E,ﬁz)
.respectiveiy on E. Here the vertices of P(KE,f1) n P(KE’fz) correspond

to subsets of E which are independent in M1 and in Mo .

1.1.20 Let G = (V,E) be an'acyclic connected graph. A directed
coboundary of G is a nonempty subset of edges D = 6(S) for some S c V
such that 6(5) = ¢.
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For any positive integer k let Pk(G) be the solution set of the

‘linear system

1.1.21 0= Xq <1 for all e ¢ E

x(D) 2 k for all directed coboundaries D of G.
and let Pk(G) be the solution set of the linear system

1.01.22 0<x <1 forallect

x(D) = k for all directed coboundaries D of G.

A main result is that the vertices of each of these polyhedra are integer-
valued; i.e. they are (0,1)-va1ued. The vertices of PR(G) correspond

to strong k-covers; i.e, subsets of edges which meet every directed

‘coboundary of G at least k times. The vertices of Pkﬁe) correspond

to strong k-matchings, i.e. subsets of edges which contain at most k

edges of each directed coboundary.

1.1.23 We prové that for any integer-vaiued c the dual linear programs of
minimize c.x where x ¢ RE satisfies (1.1.21)
~and

maximize c.x where X eIRE satisfies (1.1.22)

each have integer-valued optimum solutions whenever an optimum solution
éxists. From this and the Strong L.P. Duality Theorem we are able to
deduce certain combinatorial minmax relations, including theorems

of Lucchesi and Younger [L2] on strong T-covers and of Vidyasankar

and Younger [V1] on strong 1-matchings.
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1.1.24 Chapter 6 is a unijfication of polymatroids, the strong k-cover
polyhedron Pk(G) and the strong‘k—matching polyhedron Pk(G). Given
a graph 6 = (V,E), let F be a family of subsets of V such that if

YoZeF,YnZ#dandYuv Z#VthenYnZandYu Ze F. Let f:F >R

K

be a submoduiar function of F. let K,Lc E, a e R" and d elRL. Finally,

let P be set of solutions to the linear system

Xa

~1.1.25 Xo 2 de for all e e L

x(8(S)})-x(8(S)) = £(S) for all S ¢ F.

1A

ag for all e € K

In section 6.2 we prove that for all integer-valued ¢ the dual linear

program of
maximize c.x where x satisfies (1.1.25)

has an integer-valued optimum solution whenever an optiﬁum solution
exists. If f is integer-valued, a, is an integer for all e ¢ K, dé is
an integer for all e.e . and P has a vertex then, by (1.1.7), the
vertices of P are integer-Qalued. éy making appropriate choices of the
gréph G, the family F, the function f, the subsets K, L < E and the

vectors a ¢ RS, d e R

we are able to deduce from this many of the key
results of Chapters 3, 4 and 5. For example, we can show fha# the
verticés bf'P(KE,f]) n P(KE,fz) are integer-valued for any two integer-
valued Bo-functions and that for any acyclic graph G the vertices of

Pk(G) and Pk(G) are all integer-valued.
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1.1.26 Another important aspect of polyhedral theory js the study of
the facets of a polyhedron P. The facets of P are fhe faces of P

which have dimension one less than the dimension of P. In the case that
P is of "full dimension” the facets of P correspond to the unique‘(up to
multiplication by a positive constant) minimal set of Tinear inequalities
' required to define P. Hence, characterizing the facets of a full
dimensional polyhedron P is equivalent to characterizing the unique mini-

mal linear system defining P.

1.1.27 P(KE,f) is defined by the linear system (1.1.14). For each

T e K
Py = {x ¢ P(KE,f):x(T) = f(T)}

is a face of P(KE,f). In section 4.4 ve determine the dimension of P;

in terms of f, whenever f is a Bo-function for LE‘ T is said to be.

f-nonseparable if there is no subset S e KT-{T} such F(T) = f(S)+f(T-S).

There is a unique minimal partition {S:S e F} of T into nonempty subsets
such that f(T) = (f(S):S ¢ F}. Let e = |F|. Also, there is a unique
maximal set S ¢ E called the closure of T, c1{T), such that T ¢ S

~and f(T) = £(S). We show that

1.1.28  dim(P,) = [E[+T1-]e1(T) [ugdT).

In particular, when P(KE,f) is of full dimension, PT.is a facet of P(KE,f)
if and only if dim(PT) = |E|-1; i.e. if and only T = c1(T) and uf(T) =1
(T is f-closed and f-nonseparable). Therefore, we have a description

of the unique minimal subsystem of (1.1.14) defining P(KE,f); namely
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Xg 2 0 for all e ¢ E
x(T) < f(T) for all T ¢ Ke such that T is f-closed and

f-nonseparabie,

1.1.29 In section 3.4 we discuss dim(Py) where f is the rank
function of a matroid. We apply the formula (1.1.28) to the forest
matroid of a graph G = (V,E) (the independent sets are the edge sets
of forests of G) to obtain a‘graph theoretic description of dim(PT)
for Te ke
1.1.30 For each T ¢ KE,

HT =

= {x ¢ P(K ,f):x(E) = f(E),x(T) = (T} }

is a face of PE and of P(KE,f). When f is a Bo-function we determine
' dim(HT) in terms of f and therefore we can determine the facets of PE.
Section 3.4 also considers dim(HT) where f is the rank function of a
matroid M and we obtain a graph theoretic description of dim(HT)

for T e KE when M is the forest matroid of a graph.

1.1.31 Consider the po]yhedrdn P = P(KE?fl) n P(Kt,fz) for two
Bo-functions f1,f2:LE +IR. For each S < E we can let

f(S) = max{x(S):x ¢ P}. Clzarly P = P(KE,f) and P is defined by the
linear system (1.1.14). T e K. is f-closed if for all S c E such
that T < S we have £(S) > f(T). In section 4.5 we prove that if P is
of full dimension then for all T ¢ KT, PT is a facet of P if and only
if T is f-closed and f-nonseparable. This generalizes the

characterization of facets of P(KE,f) for a Bo-function f. In
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section 3.5 we consider the intersection of two matroids. As an
application of the theory we describe the facets of P(M), where M = (E, )

and ¥ is the family of matchings in a bipartite graph.

1.1.32 In section 3.6 we examine branchings in a graph. Given a
graph G = (V,E) for any S c V Tet &6(S) denote the edges e ¢ E with
tle) ¢ S, h(e) ¢ S. A branching of G is a forest B of G such that for
all v e V, [8(V)| s 1. If we let ? be the family of edge sets of
branchings then M = (E,?) is an independence system. Moreover, M is
the intersection of two matroids. Edmonds {E1] introduced branchings

and he demonstrated that a linear system defining P(M) is
1.1.33 xez()for' all ec E
x(8(v))
x(v(S))

1 for all v e ¥

A

A

[s|-1 for all S < K,

where v{S) is the set of edges having boﬁh ends in S. Let r:lp »IR be
the rank function of M. We éharacterize the r-closed and r-nonseparable
subsets of E, thereby determining the facets of P{M) and the unique
minimal subsystem of (1.1.33) which defines P(M).

1.1.34 We also discuss the facets of the polyhedra Pk(G) and Pk(G)
associated with an acyclic connected graph G = (V,E). Chapter 7
represents a partial Gnification of the characterization of facets
of P(KE,f]) n P(KE,fz), where f1,f2:LE + R are two Bo-functions and

the characterizations of the facets of P, (G) and PK(6). We are able to
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describe the facets of P, the solution set of (1.1.25), when we make
certain restrictions on the combinatorial description of P. However,
the class of these polyhedra for which we are able to describe the

facets does include P{K,fy) 0 P(Kp,f,), P (&) and pK ().

1.1.35 Chapter 2 is a presentation of the required basic background.

A standard reference on polyhedra is Stoer and Witzgall [s1]. Most
_useful for our studies has been the exposition on polyhedra contained in
Pu1ley51ank [P1]. Chapter 2 also contains a‘review of linear programming.

For a therough treatment see Dantzig [Dp1].
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CHAPTER 2
FOUNDATIONS
2.1 Notation and Set Theofy
2.1.1 We use the symbol "=" to denote "is defined to be"; "=" to denote

"is equal to"; "c" to denote “"is a subset of "; and "<" to denotei"is a
proper subset of". The empty éet is denoted by "¢".

2.1.2 The following definitions are all with respect to a fixed set X,
If Y < X then 'Y denotes the set X-Y. Subsets Y, Z of X are said to meet
ifYnZ#oandtocrossifYnZzo,Y¢Z, 24 VandYuZ#X.

2.1.3 By a family on set X we mean a set of distinct subsets of X.

Ly will denote the family of all subsets of X and Ky the family of all non-
empty subsets of X.__Where F is a family on X, F is a gg§§gg_fam11y means
-that for aIi'Y,Z e F we have Y n Z ='¢, YcZorZc¥;F isa crossing
family means that for any Y,Z ¢ F which cross we have Y nZ ¢ Fand Yu Z ¢ F;
F is a croSs-free family means'that no th elements of F cross.

2;1.4 We say that a fami1y Fon X is a partition of X if X-='u(S:S e F)
aﬁd YnZ=3¢ fof all distinct ¥Y,Z ¢ F. If F is a partition of X, S # ¢
for all1 S e F and |F| > 2 then we call F a'nontrivial partition of X.

2.1.5 If an expression involves a set consisting of a single element

X then we will usually omit the parentheses eﬁc1osing X.

2.1.6 "0" denotes the end or absence of a proof.

2.2 Linear Algebra

2.2.1 Let IR denote the set of real numbers and Z the set of integers,
For x ¢ IR we define the floor of x, ixl, to be max {y e Z:y = x} and the

'ceiling of x, I'x1, to be min{y ¢ Z:x s y}.



-2.2 -

2.2.2 For a finite set E IetIRE denote the set of vectors

{[xe:e € E]:xe elR for all e ¢ E}. For a vector x = [xe:e e E] elRE

and for e ¢ E, x_ is called a component of x. The vector ofiRE which is k

e
in every component for some k IR is also denoted by k, whenever there is
no ambiguity. Let s denote the set of vectors {[xe:e € E]:xe e U for all e e E}.

If x ¢ ZE then we say that x is integer-valued.

2.2.3 For X,y e RE we write x < y if Xo =Yg for all e e Eand x < ¥y
if Xa < Yq for all e ¢ E. CTear]yIRE is partially ordered by < and we

will use the term maximal vector with respect to this partial order. Llet

£

RE = (x ¢ RE:0 < x)

and

ZEE{X € Z;:O < X},

2.2.4 A set X_EIRE is linearly dependent if there exists a set

{Ax:x € X} of real numbers such that Xx # 0 for some x ¢ X and

Z(lxx:x e X) = 0. Otherwise, X is linearly independent. A basis of X is

a maximal linearly independent subset 6f X. The f0116wing theorem is
fﬁndamental‘to the study of 1inear algebra,
2.2.5 Theoren (seé Birkoff & MacLane [B2]})
For all X & IRE, |
(i) A11 bases of X have the same cardinality called the rank of X,
rank (X); |
(i) rank (X) < |E]. 0
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DxE

2.,2.6 Let D, £ be finite sets. If A ¢IR is the matrix

[ade ¢ R:d ¢ D,e « E] then for all S < D let A¢ denote the matrix

[ag,:d € S,e « E]. Similarly, if b = [by:d e D] ¢iRP and S < D then we
5

denote [bd:d e S] eR” by b Call {Aj:d e D} the rows of A and

<
{[a4,:d e D]:e ¢ E} the colums of A. Let I e PP denote the matrix

: [ade:d,e e D] where for all d,e ¢ D,

0ifd#e

a =
de 14if d = e.

2.2.7 Where E and E' are disjoint sets and A = [ade:d e Dye e E] elRDXE

and B = [by:d ¢ D,e e E'] ¢ RPE', [A,B] denotes the matrix
Dx(EuE"')

[cde:d eD,eec Eu E'] el where
(e ifeetk
“de " 1y ifeecE
de [ .

- 1
Similarly, 1f a = [agze ¢ E] ¢ RE and b = [byte  E'] ¢ R™ then [a,b]
EuE'

denotes the vector [ce:e e Eu E'] ¢eR where

ae‘1f e e b
€ be‘ifeeE'.
2.2.8 If X,y < RE then we let x+y denote Z(xeye:e‘e E)., If

X = [xe:e e E] ¢ IRE and A = [ade:d e D,e ¢ E] eIRDXE then we define the

product Ax to be the vector y = [yd:d e D] eIRD where ¥q = Ad-x for all d ¢ D.



-2.4 -

2.2.9 For A elRDxE we define the transpose of A to be the matrix

ExD ﬁhere a;d = A4a for all d e D, e ¢ E.

AT = [al4:e « Exd e D] <R
Let the rank of matrix A, rank (A), be the rank of {Ad:d e B}.

2,2.10  Theorem (see Birkhoff & MacLane [B2])
DxE

For all A € IR —, rank(A) = rank(AT). O

2.3 Linear Inequalities and Polyhedra

2.3.1 An excellent development of the theory of linear inequalities
and polyhedra which we wiTll require is in the thesis of Pulleyblank [P1]

and proofs of most of the following results can be found there.
DxE

2.3.2 Let D,E be finite sets, A ¢IR and b‘elRD. A linear system

is thé set of inequalities Ax < b and a polyhédron is the sdlutioﬁ set
of some Tinear system. -For a given linear system Ax < b_1etkl

P<A,b> = {x ¢ IRE
that A,D,E and b are as above.

2.3.3 The following theorem is of fundamental importance to linear

inequality theory and is. one of several equivalent forms of Farkas'

Lemma (cf. Stoer and Witzgall [S1], section }.4).

:Ax < b}, For the remainder of the chapter we will assume

2.3.4 Theorem Let Hc D and K < E, Exactly one of the following
holds. Either '
‘ . E ) . —
2.3.5 Therg_ex1sts X e IR™ such that Xz 0, Ax < bH and Agx = bp
or _ _
2.3.6 There exists y ¢ IRP such that Yy 2 0, Aly 2.0, AEy = 0 and bey < 0.

a
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2.3.7 For a1l S D let q{S) = {x ¢ P<A,b>iAcx = bs}. Clearly,.q(s)
is a polyhedron and is called a face of P<A,b>. q(S) is a proper face of
P<A,b> if q(S} = P<A,b>, |
2.3.8 Theorem (see [P1](2.1.5))

H< P<A;b> is a face of P<A,b> if and only if there exists ¢ sIRE
and a ¢ IR such that c-x = a for all x ¢ H and c+x < o for all X e P<A,b>-H.

0

2.3.9 It follows from(2,3.8)that the faces of P<A,b> depend only on
the polyhedron and not on the defining Tinear system.
2.3.10 We will assume that the zero vector is not a row or column of A.
~ For an& linear system Ax < b there is a unigue maximal set D0 < D such that

P<A,b>

q(DO). The subsystem A o* < b
X D
b, If P<A,b> # ¢ then we define the dimension of P = P<A,b> to be .

0 is called the equality system

of AX

1A

|E|-rank(A ) and denote this by dim(P). If P = ¢ then we define dim(P) = -1.
D

2.3.11 If dim(P) = |E| then we say that P is of full dimension. If

dim(P) = 0 then P is a vertex, P is said to be pointed if P has a face which

is a vertex. P is bounded_if there exist a,b eiRE such that a s x < b
for all x ¢ P. By the definition of dimension,P<A,b> is a vertex if and

only if rank (A 0) = |E]. Therefore
D

2.3.12 X e P<A,b> is a vertex of P<A,b> if and only if x is the unique
sojution to-ASx = bS for some S « D.

2.3.13 Llet A o* < b 4 be the equality system of Ax < b. We call
‘D D
X ¢ P<A,b> an interior point of P<A,b> if A X <b .
p-0¥  p-p°
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2.3.14 Proposition (see [P1] (2.1.9))

Every nonempty polyhedron contains an interior point. a

As a generalization of (2.3.12) we have

2.3.15 Proposition

Let H be a nonempty face of P<A,b>. Then H is a minimal nonempty
" face of P<A,b> if and only if H = {x ¢ R":Agx = bg}, where S is the maximal
subset of D such that B = q(S).
Proof Let H = {x‘eIRE:ASx =bgl. Forall Tes, {x e HiAgx = be} = H.
Therefore, H contains no proper nonempty faces.

Conversely, suppose that H is a minimal nonempty face of

P<A,b> and for some d ¢ D-S there exists x0 e {x e\RE:ASx = bs} such that -

Adxo > by. Let j « D-S be such the : ijo—bj is minimal over all d e D-S

such that Adxo > by- By (2.3.14), H has an interior point x! and ij] < bj'

For someca ¢ (0,1), x2 = ax0+(1-(ﬂx1 is such that Asxz = bS’ ijz = bj

(P Q(S u j) is a nonempty face of P<A,b> such-

1
Dx 0* But then H

that H' < H; a contradiction. -

and A

2.3.16 Theorem Every minimal nonempty face of P<A,b> has the same

dimension.

2

- Proof Suppose that for two minimal nonempty faces HI,H of P<A,b>

1

we have dim(H1) z,dim(Hz). Let D ,D2 be the unique maximal subsets of D

such that H! = q(D1), HE = q(Dz). Then rank{A ]) > rank (A 2). Let d ¢ p!
D D
be such that Ad is not spanned by {Aj:j € Dz}. Since Adx < bd for all

X € P<A,b>, there is no X eIRi such that A oX = b 93 Adx = bd+1. 'Thereforé,
2 D D '

b ud

by (2.3.4), there exists y e R such that ATZ y=0,y#0.

D-ud
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Since H2 = {x eIRE:A ok = b 2}, we must have Yy # 0. But then A 2
D D D

spaﬁs Ags a contradiction. O

2.3.17 Corollary If polyhedron P is pointed then every nonempty

face of P is pointed. a

2.3.18 Theorem (see [P1] (2.4.2})

If P is a nonempty bounded polyhedron then P is pointed.

2.3.19 If-P is a pointed polyhedron and ¢ « RE is such that cex
has an upper bound over x e P then, by (2.3.8), this upper bound is
achieved by the elements of a nonempty face of P, Therefore, by
(2.3.17),

2.3.20 Theorem If P is a pointed polyhedron and c-x has an upper
bound over x e P then there is a vertex of P which maximizes c-x over

X e P. U

2.3.21 Theorem (see [P1] (2.4.1))

x0 e P is a vertex of P if and only if there is some ¢ eIRE

0

such that x~ is the unique member of P maximizing c+x over X ¢ P.

2.3.22 A set X gIRE is affinely dependent if there exists‘a set

{szx ¢ X} such that Ay ? 0 for some X ¢ X, Z(Ax:x e X) = 0 and

Z(Axx:x ¢ X) = 0. Otherwise, X is affinely independent. Clearly X is
affinely independent. if and only if {[x,1]:x e X} is Tinearly
independent. Therefore, by (2.2.5), all maximal affinely independent
subsets of X have the same cardinality, called the affine rank of X,

and any X glRE has affine rank at most |E|+1.

B



2.3.23  Theorem (see [P1] (2.2.14")

The dimension of P is one less than the affine rank of P, a

2.3.24 If dim(P) = k =2 1 and H is a face of P with dim{H) = k-1
then H is a facet of P. As a corollary to (2.3.23) we have

2.3.25 Corollary IfH is a proper face of P and dim(P) = k then H
is a facet of P if and only if H contains k affinely independent

vectors. il

2.3.26 We will be making use of the fb]]owing construction of a set of
affinely independent vectors. Let E, E' be disjoint sets,

o™l <msklcREand L= {21 sm<2cRE . For1s<msk

12y

Tet ¥ = [xm,z1] eIREUEIand for 2 sm< & let 3" = [x],zm] elREUE'_

A

2.3.27' Theorem If K and L are each affinely independent sets of
vectors then R = {X":1 <m < k} u {(Z™2 < m< 2} is a set of k+2-1

affinely independent vectors,

Proof Suppose {am:1 <mz< k} and {Bm:Z < m< 2} are real numbers
such that .
z(umim:1 <ms k) + z(smim:z <m<g) =0
and
Z(aﬁ:] <ms k) + Z(Bm:Z <sms &) =0,
Let &] = z(em:z <m=s &), Then Z(um:1 <ms k)+6a1 = 0 and

(a]+&])x] + z(amxmzz <mzs< k) =0,

Since K is affinely independent, a]+&] = 0 and Uy = Og = oov = Oy = 0.
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Let By = Z(qﬁzi < m

1A

k). Then é] = o; and

—

A

ml —
az + z(gmz 2 <mzg R) =0,

Since a;+a; = 0 and L is affinely 1ndepehdgnt, a; = By = B3 = ...=By = 0.

Therefore, R is affinely independent. Clearly [R]| = k+&-1. 0

2.3.28 For any S = D the linear system Asx < bS is said to be
essential for defining P<A,b> if P<A,b> # P<Az,Dg>; otherwise, Acx < bg

is nonessentiat for defining P<A,b>. In other words,-Asx < bS is

nonessential for defining P<A,b> if and only if for all x e P<A§,b§>

we have Asx < bS‘

2.3.29  Theorem (see [P1] (2.3.25))
If d ¢ D is not in the equality set of Ax < b and Ajx < by

is essential for defining P<A,b> then q(d) is a facet of P<A,b>. a

2.3.30 For each d ¢ D let

p(d) = {j « D:Aj'= o:Ad,bj = ab for some o eIR, o > 0},

In the case that P is of full dimension, {2.3.29) can be strengthened to
2.3.31 Theorem (see [P1] (2.3.30})
If P = P<A,b> is of full dimension then for all d ¢ D,
A < . . . . e ,
p(d)x < bp(d) is essential for defining P if and only if q(d) is a
facet of P. o



-2.10 -

2.3.32  Let (x3:j ¢ J} = RE be a finite set of vectors. We say that

X eIRE is a convex combination of {xJ:j ¢ J} if there exist {Aj:j e d}

such that Aj >0 for all j ¢ J, Z(Aj:j ed) =1and x = Z(ijJ:j e d).
The convex hull of {x3:j ¢ J} is the set of vectors oftRE which are

convex combinations of {x%:j e J} and is denoted by conv({xJ:j ¢ J}).

2.3.33 Theorem (see [P1] (2.4.10))
If P is a bounded polyhedron then P is the convex hull of its

set of vertices. : a

2.3.34 Theorem If H _c;lRE is a finite set of vectors then conv(H} is

a bounded polyhedron and the vertices of conv(H) are elements of H.

Proof See Stoer and Witzgall [S1], Theorem 2.11.4. 0

2.4 Linear Programming

2.4  Let D,E be finite sets, He D, K= E, A e R7E, b c R,
and ¢ elRE. A (ppimal) linear progfam is a problem of the form
2.4.2 maximize c+X where X eIRE satisfies

2.4.5 Xy 2 0

2.4.4 AHX < bH

2.4.5 A = h

2.4.6 The dual linear program of (2.4.2) is the linear program
2.4.7 minimize b+y where y elRD satisfies

2.4.8 Yy 2 0
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iv

T
2.4.9 AKy Cy

2.4.10 Aﬁy

1

CR.
2.4.11 A vector x ¢ R satisfying (2.4.3)-(2.4.5) is called a

feasible {primal) solution and a vector y ¢ RP satisfying (2.4.8)-(2.4.10)

is called a feasible dual solution. A feasible primal solution which

maximizes cex over all feasible primal solutions is called an

optimum (primal) solution.to (2.4.2) and an optimum dual solution is

defined analogously. If x0 is an optimum solution to {2.4.2) then c-x0

is called the optimum value of (2.4.2). We have the following relationship

between a feasible primal solution and a feasible dual solution.

2.4.12 Weak L.P. Duality Theorem For any feasible primal solution X

and any feasible dual solution y we have c-X < bey.

Proof Since x satisfies (2.4.3)-(2.4.5) and y satisfies (2.4.8)-(2.4.10)
we have

2.4.13 0

A

T T R
(AK.V"CK) 'XK + (AK.Y"'CK) XK.

-+

(bH-AHX)-yH'+ (bﬁ-Aﬁx)-yH

bey - CeX. D

2.4.14 Corollary If xO is a feasible primal solution and yo is a

feasible dual solution such that c-x0 = b-yU then xO is an optimum primal

solution and yo is an optimum dual solution. il
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The following theorem is basic to linear programming.

2.4.15 Strong L.P, Duality Theorem If there exists a feasible primal

solution x] and an upper bound o such that c<x < o for all feasible
primal solutions x theén there exists a feasible primal solution xO

and a feasible dual solution yo such that c-xO = b-yo.

Proof Suppose there is no X eIRE and y elRD satisfying (2.4.3)-
(2.4.5), (2.4.8)-(2.4.10) and b-y < c*x. Then, by part (2.3.5) of

(2.3.4), there exists x* elRE, * eIRD and z ¢ IR such that

xﬁ =0

yﬁ =20

z20

-AHx* + sz =0
| AEy* - z¢g 2 0
-Agx* - zbg = 0

Agy* - zcp = 0

bey* - c*x* < 0.

If z = 0 then Aly* 2 0 and we have 0 < (ATy*)ox! = (AX')ey* 5 boy*
and so cex* > 0. But if we let xO = x] + Bx* for any 8 > 0 then xg >0,

AHxO = AHx1 + BAHx* < AHx] 4 bH, AHXO = AHX] = bg-and c-x0 = c-x1+8c-x*,

"Since cex* > 0 we can choose B sufficiently large so that c-x0 >0 3 a

contradiction.
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0

If z > 0 then let x° = gia‘yo E.ng xo is a feasible

Z

0

O s a feasible dual solution such that bey9 < c-x’;

primal solution and y
contradicting the Weak L.P. Duality Theorem.
Hence there exists a feasible primal solution x0 and a feasible

0

dual solution yO such that c-x" 2 b-yo and so, by the Weak L.P. Duality

Theorem, we have e-xo = b-yo. g

2.4.16 There are many results which are equivalent to the strong L.P.
Duality Theorem and it is possible to derive our variant of Farkas'
Lemma (2.3.4) from the Strong L.P. Duality Theorem (cf. Dantzig [D1]
Theorem 6, p.137).

2.4.17 Corollary A feasible primal solution x? is an optimum primal

0

solution if and only if there exists a feasible dual soTution y~ such

-that c-xo =‘b-y0. 0

2.4.18 Suppose P<A,b> is nonempty. Then for all d € D the Tinear
system Ap(d)x < bp(d) is nonessential for defining P<A,b> if and only

if the Tinear program
maximize Ad-x where x eIRE satisfies AETHTX < bBTaTn
has an optimum value and the optimum value is less than or equal to bd.

Therefore, as a corollary to the Strong L.P. Duality Theorem, we have

2.4.19  Corollary Let P = {x ¢ RF:x = 0,Ax < b}. Then for all
d e D the Tinear system Ap(d)x < bp(d) is nonessential for defining

P if and oniy if the optimum value of the Tinear program



-2.14 -

2.4.20 minimize bey where y ¢ RY satisfies y=0, Yo(d) = 0,
ATy = Ad

is Yess than or equal to bd' d

The following theorem is an important consequence of the Strong

L.P. Duality Theorem.

2.4.21 Complementary Slackness Theorem A feasible solution x0 to

(2.4.2) and a feasible solution yo to (2.4.7) are optfmum if and only if

0

2,422 For all e ¢ K, X 7.0 -

> 0 imptlies Ae-y = Cas

z:4.23  For all d ¢ H, yg > 0 implies Ad.x0= by-

Proof By the Strong L.P. Duality Theorem, x°

0 0. C-x0 = b.yo

and yo are optimum if

and only if e.x" = by if and only if the inequality

. (2.4.13) is an equation, i.e.
0 0 0, .0
2.4.24 0= (A;y ~e )%y + (bApx”) vy

But (2.4.24) holds if and only if each factor in each term of (2.4.24)

0 0 0

and y

is zero. Therefore x0 and y- are optimum if and only if X

satisfy (2.4.22) and (2.4.23). O

2.4.25 © We remark that in proving the sufficiency of (2.4.22) and (2.4.23)
we are using only the corollary (2.4.14) of the Weak L.P. Duality Theorem.
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2.5 Totally Unimodular Matrices and Integer-Valued Optimum Solutions
to a Linear Program

The following result is well-known.

DXE 2nd b « RP

2.5.1 Theorem If A ¢lR are rational-valued and the
Tinear program (2.4.2) has an optimum solution then (2.4.2) has a rational-
valued optimum solution. |

0 be an optimum solution to (2.4.2) and o = c-xo. Let

Proof Let x
A'x < b' represeﬁt the linear system (2.4.3)-(2.3.5). (Clearly, the
equation Adx = bd for d € H can be represented by Adx < bd and -Adx < ~bd).
By (2.3.8), L = {x e P<A',b'>:c*x = o} is a nonempty face of P<A',b'>,

Let H be a minimal nonempty face of L. Thén, by (2.3.15), there is a
submatrix A of A’ and a subvector bg of b*' such that H = {x eIRE:ASx = bgl.
Since AS and bs are rational-valued, there is a rational-valued vector

x! ¢ H and since cox! = O, x! is an optimum solution to (2.4.2}. 0O

The corresponding integer-valued statement of (2.5.1) is of
course false. However, we have the following powerful relationship
between the existence of integér-va1ued optimum solutions to primal and
dual linear programs.

2.5.2 “Theorem Let b ¢ 2 and P, the polyhedron of feasible solutions
to (2.4.2), be pofnted. If the dual Tinear program (2.4.7) has an integer-
valued optimum solution for every c ¢ ZE such that (2.4.7) has an optimum
solution then the vertices of P are integer-valued.

0 be a vertex of P and suppose that for some j ¢ E, xg is

E 0

Proof Let x

not an integer. By (2.3.21), there exists c0 ¢ IR" such that x~ is the

only optimum solution to (2.4,2) when ¢ = co. In fact, we can choose
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c0 € ZE. We can also multiply cO by a sufficiently large positive integer

o so that 0 is the only optimum solution to (2.4.2) when c = ¢!

¢! is defined by

oc
12
C =
€ oc

By hypothesis, (2.4.7) has integer-valued optimum solutions yo and y]
1

, where

ife#]

#1 ife=j .

oo Do

for ¢ = cO and ¢ = ¢ respectively. By the Strong L.P. Duality Theorem,

b.yo = aco.xo and b-y1 = aCO.XG + xg. But, since b, yo and y] are

integer-valued, both aco-xo and aco-xo + xg must be integers; a

contradiction. H

2.5.3 If P is pointed and (2.4.2) has an optimum solution then, by
(2.3.20), {2.4.2) has an optimum solution which is a vertex of P. By

0 eIRE such that xo is

(2.3.21), for every vertex x0 ¢ P there exists ¢
the only optimum solution to (2.4.2) when ¢ = cO. Therefore, (2.5.2)

is equivalent to

2.5.4 Let b € ZD and P, the polyhedron of feasible solutions to
(2.4.2), be pointed. If the dual linear program {2.4.7) has an integer-
valued optimuh solution for all c « 7F such that (2.4.7) has an optimum
so]ufion then for all ¢ etRE such that the primal linear program (2.4.2)
has an optimum solution, (2.4.2) has an integer-valued optimum solution.

We will be making frequent use of (2.5.2). Indeed, (2.5.2)
is one of the main tools of the thesis. (2.5.2) was proved by Hoffman [H5]

for {(0,1)-matrices A and we have generalized his proof.
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2.5.6 We will be discussing several properties of matrices A elRDXE

which involve the evaluation of determinants. However, these properties
will be invariant under permutations of rows and cotumns of A. Hence
when det(A), the determinant of A, is to be evaluated we may assunel
that D = {1,2,...,|D]} and E = {1,2,...,]E|}.

DxE

2.5.7 The matrix A ¢ R is said to be totally unimodular if for

every square submatrix B of A we have det(B) ¢ {0,1,-1}. The following
properties of totally unimodular matrices are consequences of properties

of determinants.

2.5.8 A is totally unimodular if and only if AT is totally unimodular.

2.5.9 A is totally unimodular if and only if every submatrix of A

is totally unimoduiar.

2.5.10 A e« R™F is totally unimodular if and only if [A,I;] is totally

unimodular,

2.5,11 Let B be obtained from A by multiplying a row of A by -1.

Then A is totally unimodular if and only if B is totally unimodular.

2.5.12 Let [B,ID] be obtained from A by a sequence of elementary
row operations. If A is totally unimodular then [B’ID] is totally

unimodular.

2.5.13 To see (2.5.10), suppose A is totally unimodular and B is any
submatrix of [A,ID]. We can expand det(B) by the columns of B which
are also subcolumns of Iy and we have det(B) = xdet(B') for some

square submatrix B' of A. Therefore, det(B) ¢ {0,1,-1} and (2.5.10)

follows.
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2.5.14 To see (2.5.12), let C be a square submatrix of [B,ID]. We
can adjoin columns of ID to C to obtain a submatrixrc'of [B,ID] of
side |D| such that det(C) = det(C'). Let A' be the submatrix of A
whose columns are indexed by the same set as C'. Then C'is obtained
from A" by a sequence of elementary row operations and
det(C') = xdet(A') e {0,1,-11.

The relationship between totally unimodular matrices and the
existence of integer-valued optimum solutions to a 1inear program
was pointed out by Hoffman and Kruskal [H6].

DxE

2.5.15 Theorem If A e R is totally unimodular, b ¢ Zp and P<A,b>

is pointed then the vertices of P<A,b> are 1ﬁteger—va1ued.

Proof By (2.3.12) any vertex x of P<A,b> is the unique solution to
the system Asx = bS for some S c D, We may assume that AS is a square
submatrix of A and, when we use Cramer's Rule to solve for x , we see

- that,since bS is integer-valued, x is integer-valued. 0

- 2.5.16  Corollary IfA e R2E is totally unimodular, b e 7 and (2.4.2)

has an optimum solution then (2.4.2) has an integer-valued optimum solution.

Proof Let xo be an optimum solution to (2.4.2) and consider the Tlinear
program -
2.5.17 maximize c.x where x éIRE satisfies (2.4.3)-(2.3.5) and

2.5.18 -Lng < x, < ng1 for all e ¢ E.
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If we represent the linear system of (2.4.3)-(2.4.5) and (2.5.18) as
A'x = b' and Tet P = P<A}b'> then cleariy P is bounded. Therefore,
by (2.3.18) and (2.3.20), there is a vertex x)

solution to (2.5.17) and hence to (2.4.2). By (2.5.8)-{2.5.11) A' is

of P which is an optimum

totally unimodular and, since b' is integer-valued, x].is integer-valued

by (2.5.15). 0
2.6 Graphs

2.6.1 A graph G = (V,E) is a finite set V of nodes and a finite set
E of edges such that V o E = ¢ and every edge e ¢ E has a tail t{e) « V
and a head h(e) ¢ V. We denote the node set of G by V(G) and the edge
set of G by E(G). The above object is more commonly called a directed
kgraph {cf. Hardry [H3]). If for some edge e ¢ E we have f(e) = h(e)
then e is called a loop and if G haé no Toops then G is said to be
loopless.

2.6.2 A graph H is said to be a subgraph of G if V(H) < V(G),

E(H) < E(G) and for every e ¢ E(H) the tail and head of e in H are the
same as the taf] and head réspective]y of e in G. H is a spanning
subgraph of G if V(H) = V(G). Where S is a set of subgraphs of G, He S

is a maximal subcraph of G in S if there is no K € S such that E(H) « E(K}.

2.6.3 For any S = V Tet &(S) = {e ¢« E:t{e) ¢ S,h(e) ¢ S};

v(S} = {e e E:t(e) ¢ S,h(e) « S} and G[S] denote the subgraph of G

induced by S, where G[S] = (S,v{S)). For any T c E let &(T) denote the

subgraph of G spanned by T, where %(G(T)) = {t(e):e ¢ T} u {h{e):e e T}

and E(G(T))

T.
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2.6.4 A path m in G = (V,E) from vo_to v, s a sequence

(vo,e],v],...,vn_],en,vn) such that (i) v. ¢ V and v, ¢ vy for all
i, € 10,1,...,n}, 1 # J and (i1) e; e y({v;_{,v;}) for all

i € {1,2,...,n}. Such a path is a directed path if (ii1) h(ei) = vy
" for all i.e {1,2,...,n}. G is connected if for all v,w ¢ V there is
a path in G from v to w, A component of G is a maximal connected

subgraph of G. Let pO(G) denote the number of components of G.

2.6.5 G is strongly connected if for all v,w ¢ V there is a directed

path in G from v to w.

2.6.6 Node v ¢ V is a cutnode of G if G[V-v] has more components
than G. A block H of G is a maximal cdnnected subgraph of G such that
H contains no cutnodes, no loops and |V(H)[ = 2 or such that H is a Toop.

Let R(G) denote the number of blocks of G.

2.6.7 A polygon Q of G is a sequence (VO’GT’VI""’Vn-]’en’Vn = VO)
such that (i) v, < V and v; # vy for all i,j ¢ {0,1,...,n}, 1 #J

except vy = v, and (i) e; € y{{vy_qv43) for all i e {1,2,...,nh

n
Such a polygon is a directed polygon if. (iii) h(ei) = v, for all

_ ie {1,2,...,n}., Clearly, there is no loss in meaning if we refer to a
subgraph of G as being a polygon. A forest is a graph which contains no
polygons and a tree is a connected forest. G is acyclic if G contains

no directed polygons. The following results are well-known,

2.6.8 G = (V,E) is a forest if and only if |y(S)| = |S]|-1 for all

5 e K, and G is a tree if and only if G is a forest and |V| = |E[+1.



-2.21 -

2.6.9 If G_= (V,E} is a nontrivial forest then there are at least

two nodes v € V such that |[§(v}| + |6(v}] = 1.
2.6.10 G is connected if and only if G contains a spanning tree.

2.6.11 There are large classes of totally unimodular matrices which can
be obtained from graphs. Given a graph G = {V,E) and a subset S = V we

define the coboundary vector of S, cv(S) = [cv(S)e:e e E], by

-1 if e ¢ &(8)
cv(S)E = 1 if e ¢ §(S)
0 otherwise

The matrix A ¢ RVE

with rows [cv(v):v ¢ V] is called the {incidence)
matrix of G. The following theorem is a special case of a theorem in

Heller and Thomkins [H4].

2.6,12 Theorem For any graph G = (V,E) the_matri# of G is totally

unimodular,

Proof Let A be the matrix of G and let B be an m x m submatrix

of A. We prove by induction on m that det(B) ¢ {0,1,-1}, this

obviously being the cas: when m = 1. Now assume that every (m-1) x (m-])

submatrix B' of A has d:terminant O, T or -1. If a colum of B is

then det(B) = 0. If every co1umn of B has two nonzero components then,

since each column of B sums to 0, det(B) = 0. Finally, if B has a

column with exactly one nonzero canponent then when we expaﬁd det(B)

by that column we obtain det(B) = tdet(B') where‘B' is an (m-1} x (m-1)

submatrix of A. Hence, by our induction hypothesis, det{B) « {0,1,-1}.
O
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DxE DxE’

2.6.13 Cordllary If A e and B ¢ R have the property that
all components of each row of A and B are zero except possibly one

component being equal to one then [A,B] is totally unimodular.'

Proof It is easy to see that [-A,B]T is a submatrix of the matrix
of a graph. Therefore, by (2.5.7)-{2.5.11) and (2.6.12), [A,B] is

totally unimodular. a

2.6.14 Let T = (V,E) be a tree. For a given edge e ¢ E the node
v ¢ V is said to be above e if the unique path in T from v to t(e)

contains e. Othe~wise, v is below e. Let

1l

(v ¢ V:v is above e}

afe)

w(e)

[y e V:v is below el.

2.6.15 Theorem Let T = (V,E') be a spanning tree of G = (V,E).

Then the matrix A « RE'¥E with rows [ch(w(e)):e e E'] is totally
unimodular.
Proof Since ch(w(e)) = —ch(u(e)) for all ¢ e E', multiplying a row

of A by -1 is equivalent to reversing the edge of E' corresponding to
that row ahd, by (2.5.11), the resulting matrix is totally unimodular

if and only if A is totally unimodular. Since T is a tree, we can multiply
appropriate rows of A by -1 and assume-that for every node v ¢ V,

[8(v) n E'| <1, Therefore,
2.6.16 For every edge e ¢ E',

cvglwle)) = evg(tle)) + Zf{evplw(i)):d € E',h(]) = tle)).



-2.23 -

Z{|8(v) n E1):v e V) = [E*| = |V}-1, so there is exactly one

n

node w ¢ V such that - 8{w) n E' =¢. Let A' have rows [ch(v):v e V-w].
A'is a submatrix of the matrix of G. Hence, by (2.5.9) and (2.6.12}, A’
is totally unimodular. By (2.6.16), A can be obtained from A’ by

a sequence of additions of one row to another. For any two edges
e,jeE,et s(alj)) and e ¢ 8{w(j)) if and only if e = j. Therefore,
the columns of A indexed by E' form an identity submatrix of A having

side |E'|. Therefore, by (2.5.12), A is totally unimodular. O
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CHAPTER 3

MATROIDS
In this chapter we summarize many results concerning matroids.
Most of these results are direct consequences of a more general theory

of polymatroids and we leave their proofs for Chapter 4.

3.1 Independence Systems and Matroids

3.1.1  An independence system M = (E,3) is a finite set E and a non-

empty family F on E of sets called inggpendent setS'bf M such that if

YcZeP then Y e?. Forall Sc E the rank of S, r(S), is the
maximum cardinality of an independent subset of S and an independent
subset of S of maximum cardinality is called a basis of S.

3.1.2 A matroid (on E) is an independente system M= (E,3}) such that
for all S g E every maximal independent subset of S is a basis of S.

" That is, every independent subset of S can be extended to a basis of S.

3.1.3 Clearly, the runk function r:LE +IR of an independence system

M = (E,3) satisfies the Following:

3.1.4 If Yo 7 cE then r(Y) = r(Z); i.e. r is nondecreasing on LE'

3.1.5 If Y,Z c E then r(Yu Z) < r(Y) + r(Z); i.e. r is subadditive

We have the following important characterization of matroids:
3.1.6 ~ Proposition An independence system M = (E,3) with rank function
: r-:LE +R is a matroid if and only if for all Y,Z < E we have

r{YnZ)+r{YuZ)<relY)+r({Z); i.e. r is submodular on Le.
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Proof Suppose M is a matroid and let Y,Z c E. Let J, be a basis of

Y n Z and extend J0 to a basis J] of Yu Z. Then

P(Y 0 Z) +r(YuZ) = | + 13

|3y n (Y a )| + [ n (Y )|

1]

|J]'n Y| + |J1 n Z|

A

r(Y) + r(Z).

Conversely, suppose that M = (E,3) is an independence system
with rank function r and suppose that for some S ¢ E, J is a makimal
independent subsets of S such that |J| < r(S). Note that for all maximal

independent subsets A of S and any e ¢ S-A we have r(Au e) = |A].

So Tet S, be a maximal subset of S such that J ¢ S and r(SO) = |4J].

Then S-d # ¢ and, since r(S) > |J], S-Sy # ¢. Let e ¢ S-5, and let S

be a maximal subset of S such that Ju e = 3 and r(S]) = |J]. Then
r{Sgu S) > [9] = r(Sg) + r(sy)-r(Sy n S;)s

hence r is not submodular. O

3.1.7 There are many independence systems which are matroids. One

of the most general constructions of matroids is as follows. For any
lattice L with minimum element m Tet LO = L-{m}. (Clearly KE = Lg.)

A function f:L IR is said to be o-function if

3.1.8 f(a) > 0 forall ae L',
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3.1.9 For all a,be LO such that a A b # m we have
fla Ao b) + f(a v b) < f(a) + f(b);
i.e. f is submodular on.LU.

Note that the conditions for a o-function are independent of
f(m) and f(m) can assume any value,
3.1.10 l.et L be any family on E containing E and ¢ such that if

Y,Z e L thenYnZe L. Then L is a lattice, called a closure system on E,

YnZandYvZzn(Sel:Y,ZcS).

when we define Y A Z

3.1.11 Theorem Let L be a closure system on E and let f:L -R

be an integer-valued o-function of L. Then

F={3cE:|dn S| < f(S) forall Se LO} is the family of independent
sets of ﬁ matroid M = (E,3). For all T c E the rank of T in M is given by

r(T) = min{Z (f(S):S ¢ F)+|T-u(S:S ¢ F)|:F c L

Proof See (4.1.710). (3.1.11) is a special case of {4.1.4) which will

be proved in Chapter 4, a

3.1.12 For any Tattice L with minimum element m, a function f:L =R
is a B-function if f is a o-function which satisfies
3.1.13 For all a,b e LO such that a < b we have f(a) < f(b); i.e.

f is. nondecreasing on LO, and

3.1.14 For all a,b ¢ L9 we have f{a v b) < f(a) + f(b); i.e. f is

subadditive on L,
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3.1.15 We remark that if f:L = IR is a nondecreasing o-function such
that f(m) = 0 and f(a A b) + f{a v b) < f(a) + f(b) for all a,b ¢ L
then f is subadditive on L and therefore a 8-function. A B-function f

of a lattice L with minimum element m is called a Bo—function if f(m) = 0.

3.1.16 Corollary Let L be a closure system on E and fet f:L +IR
be an integerfva]ued Bo~function of L. Then
F= {3 c E:|dn S| < F(S) for all S ¢ L} is the family of independent

sets of a matroid M = (E,;3). For all T c E the rank of T in M is given by
r(T) = min{f{U) +|T-U|:U ¢ L}.

Proof By (3.1.11), M = (E,& is a matroid. Suppose that for T ¢ E,
F c L is such that r(T) = $(f(S):S e F}+ |T-u(S:S ¢ F)|. Let U = v($:$ ¢ F).

By the submodularily of f and since f(¢) = O,
r(T) < f(U) +|T-U|. The corollary now folTows. | 0

3.1.17 I f is a By-function of Ly then for any J c E, [J o S| < £(S)
for all S ¢ E if and only if |A] < f(A) for all A c J. Furthermore, if

for some T < E, U c E is such that r(T) = f(U)+|T-U| then, because f is

nondecreasing, r(T) < f(T n'U) + |T-U|. Therefore, we may assume that
U< T and we have '

3.1.18 Corollapy Let f be an integer-valued Bo-function of LE‘ Then
K,

matroid M = (E,F) and for all T c E the rank of T in M is given by

{J c E:|A| < f(A) for all A c J} is the family of independent sets of a

1

r(T) = min{f{U) + [T-U|:U ¢ T}. 0
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3.1.19 If f:LE +IR is an integer-valued Bo~function of LE such that
f({e}) =0 or 1 for all e ¢ E then for all T ¢ E and for all U c T

we have
FU) + |T-U] = F(U) + E(F( {e}) e e T-U) = f(T).

Therefore, the rank function r:LE +IR of the matroid constructed by
(3.1.18) is identical to f. If J 3 then |J| = r{J) = f(J)., IfdcE

and |J] = f(J) then for any A = J we have
|A| = |3] - |9-A] s f(J)- f(J A) < f(A).
Mence J ¢ F if and only if J c E and |J| = f(J). Thus, by (3.1.6),

(3.1.20) Corollary A function filp +IR, is the rank function of a

matroid if and only if f is an integer-valued Bo-function such that

f({e}) =0 or 1 for all e e E. 0

Thus we see that every matroid appears as an instance of (3.1.11).
What is of interest is that (3.1.11) can be used to demonstrate that
certain independence systems which are ot obviously matroids are indeed
matroids. ,
(3.1.21) As a first application of (3.1.11) Tet G = (V,E) be a graph
and let L be the family of sets S < E such that S = y(T) for some T ¢ K.
‘Clearly E and ¢ are elements L. For all T,U c V we have
v(T a U) = v(T) n y(U). Therefore, L is a closure system on E and for

0

all S e L° there is a unique minimal subset TS e Ky namely V(G(J)),

0

such that S = y(Tg). For all S e L Tet f(S) = [Tgl=1. Let -fl¢) = -

For all R,S ¢ L we have
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f(RAS) + f(RvS)

IA

ITR n TS|-1 + |TR U TS|-1

[Tl -1 +|Tgf-1

f(R) + f(S).

Hence f is a o-function of L. By (3.1.11),
#= {0 c E:|d ny(S)| < |S[-1 for all S e Ky} is the family of independent
sets of a matroid. Thereforé, by (2.6.8), the edge-sets of forests of &

are the independent sets of a matroid M{G), called the forest matroid -

of G. If r:LE +IR is the rank function of M(G) then it is easy to verify
that for all T c E there is a forest B of G(T) such that

E(B)] = [V(G(T))|-B(6(T)). (Recall that p,(8(T)) is the number of
components of G(T)). Hence r(T) = |V(G(T))|-pO(G(T)). If the components
of G(T) are Gy 5Gps. sl then, by (3.1.11),

A
A

r(T) Z(f(YG(V(Gi)))11 < i< k)

Z(|V(G1)|-I:1 < i < k)

V(G(T))]-pg(G(T)) .
Therefore, for all1 T < E,
3.1.22 v(T) = [V(G(T)} -py(a(T)).

3.1.23 Theorem Let f:LE +IR be a BO-fUnction and for all j ¢ E' Tlet
Q; be a subset of E. For all Sc E' let U(S) = U(Qj:j e S). Then
f'(s)

n

f{U(S)) for all ScE' is a Bo-function of LE"
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Proof Clearly, f'(S) = 0 for all Sc E'. If ScTgcE; then

V(S) < U(T) and £'(S) < f'(T). For all S,T c E' we have
UGS nT)cU(S) nU(T) and U(Su T) = U(S) v U(T) and so

FU(S n T))4+F(U(S v T))
F(U(S) n U(T))+F(U(S) v U(T))
F(U(S))+F(U(T))

fr{S)+F* (T).

F'(SAT)H'(Su T)

It

1A

1A

Therefore f' is a Bo—functioh of L, by (3.1115). 0

3.1.24 A transversal of an indexed family {Qj:j e J} of ndt necessari]y
distinct subsets of E is a set {ej;j e J} of distinct elements of E

such that ej € Qj for all j ¢ J.

3.1.25 Theorem For any finite indexed family {Qj:j e E'} on E the
sets J ¢ E' such that {Qj:j e J} has a transversal is the set of
independent sets of a matroid M = (E',¥) on E'. The rank of T ¢ E'

in matroid M is given by '

3,1.26  v(T) = min{| U(S)|+|T-S|:S = T}.

Proof  For all S o E let £(5) = |S|. Then, where £'(S) = |U(S)| for:
a11 ScE', f':LE. +IR is an integef~va1ued Bo-function by (3.1.23).

Ifwe let F= {JcE':|A| < |U(A)| for all A ¢ J} then, by (3.1.18),

M= (E',3) is a matroid with rank function.r where for all T c E',

min {JU{S)|+|T-S|:S < E'}
min {|U(S)]+|T-S]:S = T}.

r(T)
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By Hall's Theorem [H1], {Qj:j e J} has a transversal if and only if
|S| < |U(S)| for all S c J. Therefore, |

Y= {0 c E':{Qj:j e J} has a transversall}, 0

3.1.27 A matroid of the form described by (3.1.25) is called a

transversal matroid.

As a final example of an application of (3.1.11) we have the
following:
3.1.28 Theorem Let {Mi = (E,Eki):i e I} be a family of matroids on E

with rank functions {fizi e I} and let

3 = {Jc E:|A| < Z(ri(A):i e 1) for all A < J}.

Then M = (E, ) is a matroid with rank function r, where for all Te E
3.1.29 r(T) = min{E(ri(S):i e 1) + ]T-S|:S < T},

Proof This theorem fq]lbws irmediately from (3.1.38) where for all

S c E we let £(S) = E(ri(s):i € I).' Clear]y'f:LE +JR is an integer-valued

Bo-function and the theorem holds. a

" The matroid M = (E,3) of (3.1.28) is called the sum of
M1 e 1D Edmonds [E2] proved that for all J c E we have [A] < Z(ri(A):i‘e I)
for all A < J if and only if J can be partitioned into possibly empty

sets {J;:1 I such that J; €3, for all i ¢ I. Therefore

3.1.30  Theorem Llet {M; = (E,f}i)} be a family of matroids on E with
rank functions {r,:i ¢ 1} and Tet
I 4 E_{J < E:J can be partitioned into sets {J, 63}1:1 e I}
Then M = (E,TF) is a matroid on E with rank fuﬁction r given by (3.1.29). i
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3.2 Matroid Polyhedra

3.2.1 There is a natural polyhedron which ome can associate with any
independente system M = (E,3). For all S c E the vector of S, xS,

is defined by
Xz = {ﬁ ifees
0 ifed¢s

for all e ¢ E. Let P(M) = conv({x?:3 <F}). By (2.3.34), P(M) is a

11

polyhedron,
3.2.2 For any family F ¢ KE and any function f:F +5R% let

P(F.f) = {x < RE:x(S) < F(S) for all S < FJ.

3.2.3 If rilg +[R is the rank function of an independence system
M= (E,7) and J ¢ 3 then for all S & Kc, xJ(S) =13 n S| < r(S).
Therefore, . '

3.2.4 P(M) < P(KE,r).

3.2.5 Progbsition If rilg +R is the rank function of an independence
system M = (E,f}) then for all J ¢, xJ is a vertex of P(KE,r).

Proof For any J ¢ %, xJ is the uniqueAsoiution to the system of
equations |
Xg = r({e}) for all e ¢ J
Xg = 0 for all e & J.
| J

Thereforé, by (2.3.12), x" is a vertex of P(KE,r). 0
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J is a vertex of P(KE,r) and

3.2.6 Since for every J ¢33, X
x) ¢ P(M), P(M) = P(K;,r)iimplies the following:
3.2.7 Proposition If r':LE +JR is the rank function of an independence

system M = (E,}) then for all J 2 ) is a vertex of P(M). 0
3.2.8 In general P(K;,r) will have many more vertices than P(M).
However, in the case of matroids we have

3.2.9 Theorem If r:LE +JR is the rank function of a matroid M = (E, %)
then P(M) = P(KE,r).

Proof See (4.2,13). (3.2.9) is a special case of (4.2.12), 0
©3.2.10 For any independence system M = {E,3) and any c < RE we can
consider the combinatorial problem:

3.2.11 maximize c(J) over J ¢ F .
In section 4.2 we will show that the following algorithm solves (3.2,11),

whenever M is a matroid (see 4.2.10),

3.2.12 Matroid Greedy Algorithm Starting with J = ¢, at each step

augment J by finding an element § ¢ J with 3drgest positive weight cj

among those elements e ¥ J such that J u e ¢JF and adding j to J. Stop -

when there are no more positive weight elements e ¢ J such that Ju e 3.

3.2.13  Not only does the Matroid Greedy Algorithm solve (3.2.11)

for a matroid M = (E, ), the optimum solution J ¢ F to (3.2.11) it

J

produces is such that x“ is an optimum solution to the linear program:
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3.2.14 maximize c.x where x elRE satisfies

X, 20 forall e e E

x(S) < r(S} for all S ¢ Ke>

where r:LE +IR is the rank function of M. Therefore, by (2.3.21), the
vertices of P(KE,r) must be the vectors of sets J «F ard P(KE,r) < P(M).
By (3.2.4), P(M) = P(KE,r). This is precisely the technique we will use

in section 4.2 to prove (3.2.9).

3.8.15 The Greedy Algorithm is well-defined for any independence
system M = (E,3) but it will not in general solve (3.2.11). Note that
matroids are precisely those independence systems for which the Greedy

Algorithm works for all (0,1)-vectors c e IRE.

3.3 Matroid Intersection

3.3.1 Let My = (E,2}1) and M, = (E,Efz) be two independence systems
on Eand M = (E, D) where ¥ = {J e E:J E?‘-[ n':'}z}. M is called the

intersection of M] and M2 and is denoted by M] n M2' We will be studying

the case where M].and'M2 are matroids on E.

(3.2.9) is remarkable in that there are very few classes of
independence systems M = (E,3) with rank function r for which it is
known that P(M) = P(KE,r).A It is even more remarkabde that (3.2.9)

can be extended to include the intersection of two matroids.

3.3.2 Theorem If ryoraile +1R are the rank functions of matroids

My = (E,E}]) and M, = (E,S'z) respectively then
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P(M, n M,) = P(M,) n P(M,) = P(K,T)

where r:LE +JR is the rank function of M1 n MZ' Equivalently,

3.3.3 The vertices of P(KE,r1) n P(KE,ra) are integer-valued, i.e.
'mevamwsxdfm‘deﬁ1nﬁr

Proof (3.3.2) is a special case of (4.3.8), which we prove later.

| 0
3.3.4 As we outlined in the previous section, one mefhod of proving
(3.3.2) wouid be to'disp1ay, for each ¢ ;IRE, an optimum solution to

the linear program

3.3.5 maximize c-x where X eIRF satisfies
Xg % 0
x{S) = rl(S) for all S e K¢

x(S) = rZ(S) for all S ¢ KR

which is the vector xJ of some set J ef}] r»gé. This is the method
“used by Edmonds [E4] to prove (3.3.2).-

3.3.6 An alternate approach is the following. The dual linear

program of (3.3.5) is

2 Ke

3.3.7 minimize rlyy1-+'r2-y where y1,y2 e R =~ satisfy

y; >0 for all S e K¢, 1 = 1,2
y1(KE,e)+y2(KE,8) 2 ¢, foralle ek,

F

where for any family F on E, function f:F +R,yeR ande ¢ E,
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fey = E(f(S)yS:S e F)

and

y(F,e) = E(yS:e e SeF).

If we could show that (3.3.7) has an integer-valued optimum solution for
all ¢ ¢ ZE then (3.3.2) would follow from (2.5.2).
It is not necessarily true that the vertices of the set of

feasible solutions to (3.3.7) are integer-valued. However,

3.3.8 Theorem If ¢ ¢ ZE then (3.3.7) always has an integer-valued

optimum soiution.

Proof (3.3.8) will follow from (4.3.4). a

3.3.9 By (3.3.3) and (2.3.20), for all ¢ « RE the combinatorial

problem
3.3.10  maximize c(J) over J eFy 03,

J is an optimum solution to

J

always has an optimum solution J such that x
(3.3.5) and (3.3.5) always has an optimum solution X" for some

J e:}1 ”2}2' Therefore, by (3.3.8) and the Strong L.P. Duality Thoerem, .

3.3.11 Theorem If rl,rZ:LE #JR are the rank functions of matroids

M] = (E,?}1) and M2 = (E,T}Z) respectively and ¢ ¢ ZE then
max{c(d) :J 63-1 n 3’2}

= min{r]-y]+r2-y2:[y],y2] is a nonnegative integer-valued

vector such that y](KE,e)+y2(KE,e) 2 ¢y for all e ¢ E}, O
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3.3.12 1f ¢ = 1 then (3.3.8) implies we can always find a (0,1)-valued
optimum solution [y1,y2] to (3.3.7). Since r is subadditive we can let

1 pe defined by

q {‘1 AF S =u(T e Keiyp = 1)
L=

0 otherwise

y

for all S e K¢ and [yl,yz] is also an optimum solution to (3.3.7). Hence

we may assume that there is at most one set S e KE such that y; =1

and at most one set T ¢ KE such thét y% =1, Since r and ro are non-
decreasing, we may assume that SnT=¢. Since r](¢) = r2(¢) = (0, we

have

3.3.13 Theorem If r1,r2:LE +|R are the rank functions of matroids
M, = (E,E}]) and M, = (E,E}Z) respectively and rily >R is the rank function
of M1 n M2 then

r{E) =,max{|J|:J Egﬁ r132} = mih{r1(s)+r2(§):s'g E}. 0

3.3.14 Given a graph G = (V,E) and S ¢ E let t(s) = {t(e):e ¢ S} and

h(S) = {h(e):e e S} 6 is said to be bipartite if there exists a partition

y = V] vV, such that t(E) c Vs and h(E) < Voo
V1 and V2 are.called the parts of G and are unique if every

component of G has at least one edge.

3.3.15 Given a bipartite graph G = {V,E) with parts V, and V,, let
E}] = {J c E:[d nd{v}| s1 forallve Vl}' Clearly M, = (E,3—1) is
an independence system with rank function r where for all S c E,

r](S) = |t(S)|. Therefore M1 = (E,ﬂw) is a matroid, Similarly, if we
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let 2}2 = {JcE:|dné(V)][s1 forallve Vz} then M, = (E,f}z) is a
matroid with rank function r, where for all S c E, r2(S) = ih(S)[.
The independent sets of M1 n Mz are called the matchings of G

and M

n M2 is called the matching independence system of G.

1

As a particular instance of (3.3.13) we have Konig's Theorem.

3.3.16 Theorem For any bipartite graph G = (V,E) the maximum
;ardina]ity of a matching in G is equal to the minimum cardinality of a

set T ¢ V such that every edge of E meets a node of T.

- Proof Let the parts of G be V, and V,. Let M, = (E;Bd) and
M, = (E,E}Z) be the matroids defined in (3.3.15). Then, by (3.3.13),

max{|J]:0 eFq nFy}
= min{r](S) + r2(§):S c E}
= min{|t(S)| + |h(S)]:S c E}

= min{|T1| + |T21:T1g VisT, c V, and for all e < E,
t(e) ¢ T, or hie) ¢ TZ}' 3]

3.4 Faces of Matroid Polyhedra

3.4.1 The linear system
3.4.2 Xg Z 0 for all e ¢ k
x{S) < r(S) for all S ¢ Ke |
which defines P(KE,r) for an 1ndEpendence.system M= (E,%) with rank
function r is very large and it is reasonable to ask for a minimal linear

system defining P(KE,r). If we assume that P(KE,r) is of full dimension
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then, by (2.3.31), characterizing a minimal linear system defining
P(KE,r) is equivalent to characterizing the facets of P(KE,r).

3.4.3 By (3.2.4), P(M) < P(KE,r). Therefore, dim{P(M)} < dim(P(KE,r)).
In fact, dim(P(M)) = dim(P(KE,r)).

3.4.4 Suppqse fdr S,T < E we have r(S) = r(T) = 0. Then, since r

is nonnegative and subadditive, we have
0<r(SuT)s r(S) +r(T)=0.

Therefore there is a unique maximal set U ¢ E-such that r(U) = 0. Call

In

U the kernel of M.

3.4.5 Proposition Let rilc ~R be the rank function of an indepen-
dence system M = (E,¥% ). Let U c E be the kernel of M. Then
dim(P(M)) = dim(P(KE,r)) =:|E|-|U|.
Proof Let 3 ¢ U. The 1nequa11ty xj < 0 is satisfied by all x « P(KE,r)
and so xj < 0 is in the equality .system of the linear system (3.4.2)
defining P(KE,r). The vectors {x{j}:j ¢ U} are 1linearly independent.
Therefore, by definition (2.3.10) of dimension, dim(P(KE,r)) < |E|~{Y].
For each j ¢ U, x{j} is a vertex of P(M), by (3.2.7).
Therefore, |
{x{j}:j ¢ Ul v {0}
is a set of JE - U|+1 affinely independent vectors of P(M). Hence, by
(2.3.23), dim(P(M)) = |E]-|U]. Hence,
[E|-]U] =< dim(P(M)) < dim(P(Kc,r)) < |E|-|U]

and the proposition follows. 0
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3.4.6 The kernel of M is the empty set if and only if r{{e}) =1

for all e ¢ £E. Therefore, by (3.4.5), we have

3.4.7 Proposition Let M = (E,%#) be an independence system with rank
function r. Then P(M) and P(KE,r) are of full dimension if and only if
r({e}) = 1 for all e ¢ E. O

3.4.8 For each j e E the inequality xj > 0 is satisfied by alil
x ¢ P(M) and by all x ¢ P(KE,r). Therefore,

Qj = {xe P(M):xj = 0}
is a face of P(M) and
Rj = {X ¢ P(KE,r):xj = 0}

is a face of P(KE,r).

3.4.9 It is easily seen that Qj < Rj. If r({j}) = 05 i.e. j is

an element of the kernel of M, then clearly Qj = P(M) and Rj = P(KE,r).

3.4.10 Proposition Let r:LE + R be the rank function of an independence
system M = (E,¥ ) and U be the kernel of M. Then for all J ¢ U,'Qj is
a facet of P(M) and‘Rj is a facet of P(KE,r).

Proof By definition (2.3.24) of facet and by (3.4.5), Qj is a
facet of P(M) if and only if dim(Qj) = |E|-|U]-1 and Rj is a facet of
P(Kg,r) if and only if dim(Rj) = |E]-jt]-1. The proof that

dim(Qj) = dim(Rj) = |E|-|U]-1 is essentially the same as the proof
that dim(P(M)) = dim(P{K.,r)) = [E[-[U].
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For all g e Uu j, xg < 0 is in the equality system of the

Tinear system

Xa >0 for all eet
xj <0
x(S) < £(S) for all S e K¢

which defines Rj. Therefore, dim(Rj) < |E]-JU]-1.

For each g ¢ U u j,x{g} is an element of Qj, Therefore

x19 g ¢ U 33 0 {0}

is a set of |E|-|U| affinely independent vectors of Qj' By {2.3.23),

d1m(Qj) > |E|-|U}-1. Since Qj < Rj, d1m(Qj) < d1m(Rj). Hence,

|E|-[u|-1 = dim(Qj) < dim(Rj) < |El-|U]-T. 0

3.4.11 For each j ¢ U the-facet Qj of P(M} might be called a
"trivial facet" of P(M) and there has been a great deal of research
directed towards determining the yenaiﬁing'"nontriyial"‘facets of P(M)
(see, for example, [B1], [H2] and [W1]). For the remainder of this
section we will be restricting ourselves to the study of P(M), where M

is a matroid.

3.4;12 Let r:LE +1R be the rank function of an independence system

M= (E,3). An r-separation of T e K; is a partition F of T into non-

empty sets such that r(T) = 2(r(S):S e F). If T has a nontrivial
r-separation then we say that T is r-sepatable; otherwise, T is

r-nonseparable. An r-separation F of T is minimal if each S ¢ F is

r-nonseparable.
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344,13 Proposition If r:LE +IR is the rank function of a matroid

then every T ¢ KE has a unique minimal r-separation.

Proof (3.4.13) is a special case of (4.4.14), which we prove later.

0
3.4.14 Let T < E is r-closed if for all e ¢ T we have r(Tu e) > r(T).

We assert (see (4.4.16)) that if M is a matroid then there is a unique
maximal set S ¢ E, called the closure of T, c1(T),such that T ¢ S,
and r(T) = r(S). Where F is the unique minimal r-separation of T let

“r(T) = |F| and
A(T) = |E|+|T|—ur(T)~|c1(T)|.

3.4.15 Theorem Let r:ilc =R be the rank function of a matroid M = (E,F ).
Then for all T e K, dim{P;) = A(T), where Py = {x e P(M):x(T) = r(T)}.

Proof (3.4.15) is a special case of (4.4.17), since P(M) = P(KE,P).
| U

3.4.16 Corol]érx Let r:LE + IR be the rank function of a matroid

.M = (E,% ) such that P(M) is of full dimension. Then for all T e K,

© Py 1s a facet of P(M) if and only if T is r-closed and r-nonseparable.

Proof Since P(M) is of full dimension, Py js a facet of P(M) if and
only if dim(P;) = |E|-1. By (3.4.15), dim(P;) = |[E|-1 if and only if
“r(T) =1 and c1(T) = T ; i.e. if and only if T is r-closed and r- -

nonsepafab]e.- 0



- 3.20 -

3.4.17 Let G = (V,E) be a Toopless graph and M be the forest matroid
of G. Then there is a simpTe-graph theoretic description of A(T) for

all T e KE; namely,

A(TY = |E|+|T]-8(6(T))-Julyg(V(6;)):1 < i = k),

where the components of G(T) are G],Gz,...,Gk. We first require the

following results.

3.4.18 Lemma Let M be the forest matroid of a graph G = (V,E).
Let r:Lg +R be the rank function of M. Then u (E) = g(€) and if the

blocks of G are Gl'GZ""’GB(G) then the minimal r-separation of E is
{E(8;),E(6y) . - sE(Gg g))-

Proof If the edge e is a loop of G then {e} must be a set in the
minimal r-separation of E since r({e}) = 0. Therefore, we may assume

that G is loopless. If G, is a component of G then {E(GO),E—E(Go)}

0
is clearly an r-separation of E. Therefore, we may assume that G is
connected.

The proof is by induction on B(G). Suppose B(G)} = 1, but
for some T ¢ KE-{E} we have r{E) = r(T)+r(T). Let G1’62""’Gk be
the components of G(T) gnd H]’HZ""’Hm be those of &{T)..

Since B(G) = 1, each of V(G]),V(Gz),...;v(ﬁk) must contafn at least

V(G(T)) n V(G(T)). Because V(6;) n v(ej) = ¢

two nodes of W

v

for i 4], |W| = 2k. Similarly, |[W| = 2m and so |W| = k+m. However,

by (3.1.22},
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IV(G(T)) n V(&(T))|
IV (&(T)) |+ [V(G(T))-|V]
(T )k (T) +m-r(E) -1

=
1} 1 1

il

k+m-1; -

a contradiction, Therefore “r(E) = B(G) and E is r-nonseparable,
1f B(G) = 2 then assume as our induction hypothesis that the
theorem holds for all graphs with less than B(G) blocks. It is easy to

. show that

3.4.19 If g{(G) = 2 then for some block, say Gy, of & the graph
G' = G(E-E(G])) is connected and [V(G1) n V(6')| = 1. Furthermore,

the b]OCkS Of G' are GZ’G3"'.,GB(G).

By our induction hypothesis,'{E(Gz),E(G3),...,E(GB(G))} is
the minimal r-separation of E(G'). By (3.1.22),

1

r(€) = [V[-1 = [V(6)|+|V(6")]-2 = r(E(G)))+r(E(G")).

Therefore, {E(Gj),E(G')} is an r-separation of E(G). Since S(Gl) =1,
E(Gl) is r-nonseparable. Hence {E(G1),E(Gz),...,E(GB(G))} is the

minimal r-separation of E and the theorem holds by induction. t

3.4.20 Lemma Let r-:LE +IR be the rank function of the forest matroid
‘M(G) of a loopless graph G = (V,E). For all T e Kes if the components
of G(T) are G]’GZ"“’Gk then

c1(T) = U(YG(V(Gi)):1 < i< k).
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Proof Let e & T. If h(e) ¢ V(G;) for i = 1,2,...,k then, by (3.1.22),

r(Tu e) = r(T)+1. Similarly, if tle) & V(Gi) for i = 1,2,...,k then
r(T u e) = r(T)+1 and if t(e) e V(Gi), hie) ¢ V(GJ.) for some i # j then
p(Tu e) = r(T)+1. If tle),h(e) ¢ V(Gi) for some i = 1,2,...,k then,

by (3.1.22), r(Tu e) = r(T). Hence, e ¢ c1(T) if and only if e € YG(Gi)

for some 1 = 1,25...,k and the Temma follows. ad

By {3.4.18) and (3.4.20) we have

3.4.21 Theorem If r:LE +[R is the rank function of the forest matroid"
of a Toopless graph G = (V,E), T e K¢ and the componentsof G(T) are
61,G2,...,Gk then

AT) = |E|+|T|-|u(YG(V(Gi)):1 < i < k)]-8(G(T)).

T is r-closed and r-nohseparab]e if and only if T = y(S) for some S c V

such that B(G[S]) = 1. 0

3.4.22. Let rilp +R be the rank function of a matroid M = {E,¥ ) and

consider the face Py = {x ¢ P(M):x{E) = r(E)} of P(M). If x0 elRE

is a vertex of PE then x0 is a vertex of P(M) such that xO(E) = r{E).
xo must be the vector of a basis of E. For each T e KF ]et

H {x e PE:x(T) = r(T)}.

1H

I
Then HT is a face of PE and we can determine dim(HT) in terms of r.

3.4.23 For any matroid M = (E,%) and T c E let B be a basis of T.

let $'={JcT:0uBe¥}. ClearlyMxTs= (E, 3') is an independence

systemon T. M x T is called the contfaction of M to T,
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3.4.24 Proposition Let M = (E,3) be a matroid with rank function r.
For al1 T < E, M x T is a matroid and ¥' is independent of the choice
of basis B of T. Furthermore, for all S c T the rank of S in

M x T,(rx T)(S) is equal to r(Su T)-r(T).

Proof Suppose that for some J ¢ T and two basis B and B' of T we
have Ju B e3' but Ju B'-¢ ¥'. Then Ju B is a basis of Ju T but
J u B' properly contains a maximal independent subset of Ju f, which
is impossible. Therefore. <3' is independent of the choice of B.

Let S T and let J be a max%mal (M x T)-independent subset
of S. Then for any basis'B of T, Ju B ¢ ¥ . Furthermore, J v B must
be a basis of Su T. Therefore |J] = {3 v B|-|Bf = r(Su T)-r(T) and

all maximal (M x T)-independent subsets of S have the same cardinality.

Hence the proposition holds. g

Contractions of matroids can be used to describe the dimension

3.4.25  Theorem Let r:Lp +IR be the rank function of a matroid M = (E,F).
Then for all T « KE-{E},
(7).

dim(ir) = [E|-u.(T)-ng

Proof  (3.4.25) is a special case (4.4.24). N

3.4.26 I1f M is the forest matroid of a graph 6 = (V,E) then for all
T c E there does exist a graph such that M x T is the forest matroid

of that graph., For Tc Elet Gx T, G contracted to T, be obtained from

& by successively deleting the edges of T and identifying their heads
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and tails. It is easy to verify that the 6rder in which the elements

of T are deleted does not alter G x T.

3.4.27 Proposition lLet G = (V,E) be a graph and T < E. Then

M(G) x T = M{(G x T).

In

Proof 1t is sufficient to prove the result when T = E-e for e ¢ E.
Llet $ < T. It is easy to verify that, where r:LE +IR is the rank function

of M(G) and r':Ly >R is the rank function of M(G x T), we have, by

(3.1.22),
e(5) = V(G x T(S))[-po(G % T(S))
= |v(a(s u e))|-py(G(S v e))-L[v{a{e))|-py(E(e))]
= r(Su e)-re). ' |
_The.proposition now follows from (3.4.24). O

By (3.4.18), (3.4.25) and (3.4.27) we have

_3.4.28 Theorem Let r':LE -+ [R be_the,rank function of the forest
matroid of a graph G = (V,E). Then for all T ¢ KE#{E}.

dim{Hy) = [E}-B(G(T))-B(6 x 1. 0

3.5 Faces of Matroid Intersection Polyhedra

3.5.1 Let M] = (E,Sd) and M2 = (E, 32) be two matroids on E with
rank functions ry and r, respectively of L. In section 3.3 we stated
that where r:LE + R is the rank function of M = M1 n M2 wa have

P(M) = P(KE,r) (see (3.3.2)). A Tlinear system defining P(M) is
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3.5.2 X, 2 0 forall e E
x(S) = r(S) for al1 S ¢ Kg -

As in the previous section, we can characterize the sets T e KE such

that Py = {x ¢ P(M):x(T) = r(T)} is a facet of P(M).

3.5.3 Theorem Let r:LE +|R be the rank function of M = M1 n MZ’
where M, = (E,"J']) and M, = (E,‘&'Z) are matroids on E. Let P(M) be
of full dimension. Then for all T ¢ KE’ PT is a facet of P{M) if and

only if T is r-closed and r-nonseparable.

Proof Since P(M) = P(KE,r), (3.5.3) is a special case of (4.5.5). )

3.5.4 - As an exémp]e of (3.5.3) consider the matching independence
system M = (E,¥) of a bipartite graph G = (V,E) with parts V; and V,.
If rilg >R is the rank function of M then, by (3.3.16), for some

Ty eV and T, < v, such that E = 6(T]) u S(Té) we have

Ty 1+[T, = r(E)

Br(8())tv € THE(rE(@) v € Ty)

1A

A

1T, [T, |
Therefore, if T ¢ KE is r-nonéeparable then T = &(v) for some vV e V]

or T = &(v) for some v ¢ V. ‘Let

1

Wy = v e Vys[8(v)] = 2 or [s(v-n(s(n))] = T3
and

= {v e V,:|8(9)] = 2 or [8(t(8(V))] = 13.

~N
I
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3.5.5 Theorem Let rilp +1R be the rank function of the matching
independence system of a bipartite graph G = (V,E) with parts Vy and Vz.'
Then T € KE is r-closed and r-nonseparable if and only if T = &(v) for

some v e w] or T = &(v) for some v ¢ wz.

Proof Suppose T = &§(v) for v e W . Since r(T) = 1, T is r-nonseparable.
For any edge e ¢ T, t{e) # v and for some edge j ¢ T, h(e) # h(j).
Therefore, {e,j} is a matching of G and r(Tu e) = r(T)+1. Therefore, T
is r-closed. Similarly, if T = 6(v) for some v e W, then T is w-closed
and r-nonseparable. |
Conversely, suppose T is r-closed and r-nonseparable. Then
T = §(v) for some v ¢ vy or T = 8(v) for some veV, IfTs= 8{v) for
some Vv € V1 - w] then T ¢ S(ETT))aaﬁd t is not r-closed; a contradiction.

Similarly, if T = 6(v) for some v V, then v ¢ W,. 0

By (3.5.3),

3.5.6 ° _Corollary Let r':LE +IR be the rank function of the matching
1ndependence system of a bipartite graph G = (V,E} with parts Vi and V2.
Then for al1 T e K¢, Py is a facet of P(M), if and only if T = &(v) for

some v e Wy or T = §(V) for some v e U,. 0

We remark that (3,6.6) is a very simple instance of a more
general theory of matching polyhedra for arbitrary graphs and we refer

the reader to Pulleyblank [P1].
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3.6 Branchings

-3.6.1 For any graph G = (V,E) a branching of G is a forest B of

G such that for all v e V, |8(V) n E(B)] < 1. If we let

F={J¢e E:J is the edge set of a branching of G} then we can describe
the independence system M = (E,% ) as the fntersecfion of two matroids

M, = (E,31) and M, = (E,‘&'z) on E. In particular, let M, = M(G),

the forest matroid of G, and M, = (E,'?z), where

F,2 ¢ E:|8(v) n J] <1 for all v ¢ V}. As was the case for matching
independence systems, M2 is a matroid. Clearly, M = M] n M2 and we can
apply the results of sections 3.3 and 3.5. M is called the branéhihg

independence system of G.

3.6.2 In this section, we develop a graph theoretic description of
those sets T ¢ KE which are r-closed and r-nonseparable where r:LE -+ IR

is the rank function of the branching independence system M = (E,¥F ) of a
loopless graph G = (V,E). If G is loopless then, by (3.4.7), P(M)

is of full dimension. Therefore, by (3.5.3), characterizfng the sets
which are r-closed and r-nonseparable is equivalent to characterizing

the nontrivial facets of P(M).

3.6.3 If a branching B of G is a tree then, since |V(B}| = |E(B)|+
and |E(B) n 6}V)| <1 for all v ¢ V(B), there must be exactly one node
r.e Y(B) such that‘E(B) n 8{(r) = ¢ and r is called the root of B. B is

said to be rooted at r. It is easy to check that

3.6.4 If B is a branching rooted at r then for all v ¢ V(B) there

is a unique directed path in B from r to v.
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3,6.5 ~ Lemma For a graph G = (V,E) the following are equivalent:

3.6.6 G is strongly connected (i.e, for all v,w ¢ V there is a

directed path in G from v to w).
3.6.7 For all S ¢ K;-{V}, 8(S) # ¢.

3.6.8 For every r ¢ V there exists a spanning branching of G rooted

at r.

Proof (3.6.6) implies (3.6.7). Suppose G is strongly connected.

If for some § e KV-{V} we have 8(S) = ¢ then there can be no.directed
path in G from a node of S to a node of S; a contradiction.

(3.6.7) implies (3.6.8). Suppose §(S) # ¢ for all S e Ky-1V}
but for some r ¢ V there is no spanning branching of G rooted at r.
Let B be a maximal branchihg of G rooted at r. Since B is maximal,
s(V(B)) = ¢. But V(B) e.KV-{V}; a cpnﬁradiction. .

(3.6.8) impiies (3.6.6). Supposé (3.6.8) holds and let
VW é V. If B is a spanning‘branching‘of G rooted at v then, by‘(3.6.4),
there is a directed path in G from v ﬁo w. Therefore, G is strongly

connected. a

3.6.9 Lerma A connected graph G = (V,E) is strongly connected if

and only if every block of G is strongly connected.

Proof The proof is by induction on R(G), the result obviously being
true when B(G) = 1. Suppose B(G) = 2 and the blocks of G are 61’62""’66(5)'
As our iﬁduction hypothesis we assume that the Temma is true for all

connected graphs with 8(6)-1 blocks. Since G is connected there is,
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by (3.4.19), a block, say Gy, of G such that G' G(E-E(G1)) is connected,

=

the blocks of G' are GZ’GB""'GB(G) and |V(G1) v(Gg')| = 1. Let
V(Gi) n V(G') = {ul.

Suppose G is strongly connected and let v,w be distinct nodes
of V{(G'). If mis a directed path in G from v to w then, since the nodes
of m are distinct, we must have V(m) ¢ V(G'). Therefore, G' is strongly
connected. By the induction hypothesis each of GZ’GS""’GB(G) is
strongly connected, Similarly, G] is strongly connected. '

Suppose each of G1’GZ""’GB(G) is strong]y connected. By the
induction hypothesis G' is strongly connected. For v e V(G1) and w ¢ V{(G')
fet g be a directed path in G1 from v to u and Ty be a directed path in

G' from u to w. Then (ﬂ1,ﬂ2) is a directed path in G from v to w._ Similarly,

there is a directed path in G from w to v, so G is strongly connected. a

3.6.10 Lemma Let réLE +IR be the rank function of the branching
independence system of a graph G = (V,E). If E is r-nonseparable then

either E = &(V) for some v « V or G is strongly connected and B(G) = 1.

Egggi Suppose E is r-nonseparable, for all v e V, E# §(v) and G ¥s not
strongly connected. By (3.6.5), there is a set S ¢ KV—{V} such that §(S) = ¢.
G must be connected, so 6(S5) # ¢. Let e e 6(3) and T = §(h{e)). Since
E#8(RTEN), T# 6. Let By be a branching of G(T). Let

B = (V(B1) u {t(e),h(e}}, E(B1) u e}, We claim that B is a branching of

G. Clearly, |E{B) n §{V)|

A

1 for all v e V. If B contains a polygon Q

then because |E(Q) n &(V)|

1A

1 for all v e V(Q), Q must be a directed polygon.
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We must also have e ¢ E(Q). But then there is a directed path in G
from h(e) to t{e), which is impossible since h(e) ¢ S and t(e) « . |
In particular, where E(B]) is a basis of T we have r(E) = |E(B)| = r{T)+r(T).
Thus E is r-separable; a contradiction.

Hence, if E is r-nonseparable then either E = 6(?) for some
v eVorGis strongly connected. Suppose G is strongly connected.
Let the blocks of G he G]’GZ""’GB(G) and B be a spanning branching of G.
For each i = 1,2,...,8(G), B, = (V(B} n VfGi),E(B) n E(Gi)) is a branching.
Moreover, |E(8.)| = ]V(Gi)| -1, so By is a spanning branching of &, for.

i=1,2,...,8(G). Since E(Gi) n E(Gj) =¢ for i # j we have.

r(E) = JE(B)|
= Z(|E(B;}]:1 s i < 8(6))
= 2(r(E(6;)) 11 < i < 8(6))
If B(B) = 2 then E js reseparable, The lemma follows. 0

3.6.11 - Given a graph G = (V,E) let

{v e V: if |£{(6(V))]= 1 then for all e ¢ E we have t(e) # v

U=
W={sc KV:|S| > 2, G[S] is strongly connected and B(G[S]) = 1}.

3.6.12 Theorem Let r':LE +IR be the rank function of the branching
independence system of a loopless graph G = (V,E) and let T ¢ KE' Then T
is r-closed and r-nonseparable if and only if T = §(v) for some v ¢ U or

T = yv{(S) for some S ¢ W.
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Proof - 1Suppose T e KE is r-closed and r-nonseparable. Clearly G(T)
must be connected. If T ¢ 8{¥) for some v ¢ V then, since r(T) = r(s(v}) =1
and T is v-closed, T = 6(v). If |t(T}| =1 and for some ec E we have
t(e) = v and h{e) = t(T). Then r{(Tu e) =1 and T is not r-closed; a
contradiction.

If T # 6(V) for any v e U then, by (3.6.10), G(T) is strongly
connected and B(G(T)) = 1. Hence, by (3.6.5), r(T) = [V(&(T))|-1. If
e ¢ v(V(G(T)))-T then r(T u e) = IV(G(T))|-1.= r(T). Thus r(Tu e) = r(T);
a contradiction. Therefore T = y(V(G(T)})} and V(G(T)) « W.

Conversely, suppose T = §(v) for some v ¢ U. Then r(T) =1
and clearly T is r-nonseparable. Let j e T. If |t(T)| = 2 then for
some e ¢ T, t{e) # h(j) andi{e,j} is the edge-set of a branching. If
|t(T)| = 1 then since v e U, for any e ¢ T either t(e) # h(j) or h(e) # £(j)
and {e,j} is the edge-set of a branching. Therefore, r(Tu j) 22 for
all j e T and T is r-closed.

Suppose T = y(S) for some S ¢ W. Let j e T. If h{(j) ¢ S then
for any branching B of G(T), E(B) v j is the edge set of a branching of
G so r(Tu §) = r(T)¥1. If h{j) e S then t(3j) ¢ S. Since G[S] is
strongly conneéted there is a spanning branching B of G[S] rooted at h(j)
and E(B) u j is again the edge set of a branching of G and r{Tu j) = r(T)H1. .
Therefore, T is r-ciosed.

Suppose that for some R « KT?{T} we have r(T)} = r(R}+r{T-R).
Let the components of G(R) be G]’GZ""’Gk and those of G(T-R) be
H]’HZ""’Hm' Since B(G(T)) = 1, each of V(GT)’V(GZ)""’G(Gk) must
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contain at least two nodes of X = V(G(R)) n V(G{T-R)). Because
V(G;) n V(Gj) =¢ for i #J, |X| 2 2k. Similarly, |X| = 2m and so

3.6.13 [V(G(R)) n V(G(T-R))| = k+m,

We claim thaf every component of G(R) is stfongly connected.
To see th{s, suppose that G] is not strongly connected. Then there exists
a nonempty subseﬁ Vi of V(G1) such that V(G])-VT # ¢ and 661(V1) = ¢.
let e ¢ 661(W(G1)-V1) and B be a spanning branching of G[ST rooted at h(e).
We claim that J = (E(B) n E(Gl)) U e is the edge set of a branching of G.
Clearly, |Jd n 6G1(5)1 <1 for all v e V(G). IfJ contains the edge set
of a directed polygon Q then e ¢ E(Q). But then there is a directed
path in G from h(e) to t(e) which is impossible since hie) « vy and
tle) e V(G1) -V, Hence, J is the edge set of a branching of G, and so

r(T) = |E(B)]
= |E(B) n R|+|E(B) n (T-R}|
= (|E(B) n E(Gi)|:1‘ < i< k) + |E(B} o (T-R}|,
<

Z(r(E(Gi):1 << k)+ r(T-R)

1]

r(R) + r{T-R};

a contradiction. Similarly, every component of G(T-R) is strongly
connected. This means that r{R)} = |V(G(R))|-k and_r(T—R) = [V(6(T-R))|-m.

Hence,

[V(6(R)) 0 V(G(T-R)}| [V(G(R)) |+]V(G(T-R)) | -[V(6(T))]

r(R)+k+r(T-R)+m-r(T)-1

k+m-1.
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But this contradicts (3.6.13) and so T is r-nonseparable. f

By (3.9.5) we have

3.6.14 Corollary Let r:LE +[R be the rank function of the braaching

"

jndependence system M of a loopless graph G (V,E). Let T e KE'

Then P &(v) for some v e U or

I
T = y(S) for some S ¢ W. 0

is a facet of P(M) if and only if T
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.CHAPTER 4
~ POLYMATROIDS
In this chapter we will generalize many of the resuits of

. Chapter 3 and prove those of Chapter 3 which are referred to this

chapter.

4.1 Po1ymatr6ids and Submodular Functions
4.1.1 We can translate the definitions of independence system and

matroid into the language of vectors. A polyideal P is a compact

subset of[RE such that if x] e Pand 0 < x0 < x1 then x0 e P. For all vectors

a eIRE the rank of a, r{a), is the maximum of x(E) over x ¢ P, x'< a.
A vector x e P, X < a, which maximizes x(E) is called a P-basis of a.

4.1.2 A polymatroid is a polyideal P EIRE such that for all a elRE

every maximal vector x ¢ P such that x < a is a P-basis of a. In other words,

0

for all a eJRE and for any xo ¢ P such that x° < a there exists a P-basis

x! of a such that x0 < x! ‘and we ‘say that x0

x1 of a. A polymatroid P EIRE is said to be integral if for all a e ZE

can be extended to a P-basis

every maximal integer-valued vector x ¢ P such that x < a is a P-basis

of a.

4.1.3 N We have the following generd] construction of polymatroids.
Recall that for any Tlattice L a function f:L +R is a o-function if

0

f(a) 2 0 for all a e L9 and £ is submodular on L. Also recall that

P(L0,F) = {x < RE:x(5) < £(5) for a1l S e LU},

4.1.4 ° Theorem Let L be a closure system on E and f:L ~IR be a

- o-function. Then P(Lo,f) is a polymatroid, For all a etRE,
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4,1.5 r(a) = min{fey + a-z:[y,z] is a (0,1)-vector satisfying
y(LO,e) 2z, 271 for all e ¢ E},

where y(LO,e) = Z(ys:e € Se LO). If f(S) is an integer for all § « .0
then P(Lo,f} is an integral polymatroid.

~To prove (4.1.4) we first require a lemma.

4.1.6 Lemma Let L be a closure system on E and f:L IR be a o-
function. If Y,Z ¢ L are such that Y a Z‘# ¢ and X € P(Lo,f) is such
that x(Y) = £(Y) and x(Z) = £(Z) then x(Y A Z) = £(Y A Z) and
x(YvZ)=+~(YvI).

Proof We have x(Y A Z) + x(Y.v Z) < f(Y A Z) + f(Y v Z)
< F(Y) + £(2)
= x{Y) + x(Z)

x(YnZ)+x(Yu Z)
*(Y AZ) + x(Y v 7).

1A

Therefore, the above inequalities must be equations and the jemma follows.
. O
Proof of {(4.1.4) Since P(Lo,f) is a polyhedron and E ¢ LO, P(Lo,fl is

closed and bounded. Clearly P(LO,f) is a polyideal. Let a eIRE and let

xo'élRE be a maximal vector of P(Lo,f) such that xo < a. Let

g0 0

{e ¢ E:xe 0

< ae}. For each e ¢ Eorthere exists .a set Se e L such

that xO(Se) = f(Se) (otherwise, x0 would not be a maximal vector of

0

P(L",f) Tess than or équal to a). If we assume that for each e ¢ EO J

is a maximal such set then, by (4.1. 6) the family of distinct sets of

{Je:e € EO},_call it F, is a family of pairwise disjoint sets and

E0 cu(S:SeF)= J, Because xO is maximal, xg = a, for all e ¢ J.
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r{a) is the optimum value of the linear program:

4.1.7 maximize 1-x where X e|RE satisfies
0 < Xg S g for all e ¢ E
X(s) = £(s) for a1l s « 0.
The dual 1inear program of (4.1.7) is
| L0 E
4.1.8 minimize f-y + a-z where y ¢ R~ and z ¢ R™ satisfy

Yg 2 0 for all S ¢ L0
z, = 0 for all e ¢ E

y(Lo,e) +z 21 for all e ¢ E,

Let [yo,zo] be defined by

0 1 for all S e F
yeo =
3 0 for all S ¢ L0

{: 1 for alle & J
20 =

-F

e 0 for all e ¢ J.
[yo,zo] is a feasible solution to (4.1.8) and, since F is a partition

of J,

xO(E) Z(xO(S):S e.F)'+ Z(xg:e ¢ J)
z(f(S):S ; F)+ a(J)

0, 5.0

{]

1]

fey
Therefore, by Corollary (2.4.14) to the Weak L.P. Duality Theorem, x0
is an optimum solution to (4.1.7), i.e. a P-basis of a, and [yo,zo] is

an optimum solution to (4.1.8). Thus (4.1.5) holds.
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Suppose f(S) is an integer for all S e LO. Let a « IE and

0

xo be a maximal integer-valued vector of P(Lo,f) such that x a.

Let EO = {e e E:xg < ae}. Since'xo and a are integer-valued, for each
e ¢ EO there exists a set S, « L% such that xO(Se) = f(S). Now precisely
the same argument as above holds and x2(E) = r(a). O

4,1.9 Let P EIRE be an integral polymatroid. Let a eIRE be a

(0,1)-vector, i.e. the vector of some set S ¢ E. Then, by definition,

every maximal (0,1)-vector x of P such that x < a has the same sum

x(E) = r(a). Hence, if we let &= {J ¢ E:x? ¢ P} then M = (E,T)

is a matroid and for all T < E the rank of T in M is equal to the rank

of QT in P,

4,1.10 Let L be a closure system on E and f:L -~ IR be a o-function

such that f(S) is an integer for all S ¢ LO. By (4.1.4), P(Lo,f) is

an integral polymatroid. By (4.1.9), & = {J ¢ E:xY e P(Lo,f)} is the

family of independent sets of a matroid.M = (E,F). But, by definition

0

of P{Lo,f), xY € P(Lo,f) if and only if for all S ¢ L~ we have .

)(s) = |0 n S| < #(S). Therefore, = {Jc E:|d n S| = £(S) for al15 e LO3,
By (4.1.4) and‘(4.1.9), the rank of T ¢ E in M is equal to

\

4,1.11 min{f-y+xJ-z:[y,z] is a (0,1)-vector satisfying

y(LU,e) +z, 21 for all e ¢ E}.
We can always choose an optimum solution [yo,zo] to (4.1.11) so that
zg = 0 for all e ¢ E such that yO(LU,e) 2 1. Then xJ-zo is equal to

|T-u(S:S e F)|, where F = {S ¢ Lo:yg = 1}.

Therefore, the rank of Tc E
in M is equal to min{Z{f(S):S ¢ F) + |T-u(S:S e F)|:F ¢ LO}. This is

precisely (3.1.11).
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4.1.12 As a converse to (4.1.4) we will show how any polymatroid

P gIRE induces a Bo-function fP:LE +R; & Bo-function being a function

f:ilg >R such that f(¢) = 0, f is nondecreasing on Lp

and f is submodular on LE'

4.1.13 For any two vectors a,b elRE Tet

= 1 . E
aAabs [m1n{ae,be}.e e E]eR

and

avhbsz [max{ae,be}:e e E] elRE.

Under this meet and join,lRE is a lattice with minimum element O.

4.1.14 Let r:RE -+ R be the rank function of a polyideal P EIRE.
if a,b eIRE are such that a < b then clearly for any P-basis x of a

we have x < b, Therefore r(a) = x{E) < r(b) and r is nondecreasing on

E

IR+. Let x be a P-basis of a v b. Then

r{a v b) = x(E) = (x a a)(E) + (x o b)(E) < v(a) + r(b),

so r(d v b) < r(a) + r(b) and r is subadditive oniRE.

E

4.1.15 Lema If P cR.

is a polymatroid then for all a,b e[RE,
r(a » b)+r(a v b) = r(a) + r(b), i.e. r is submodular onIRE.

0 0 1

Proof Let x° be a P-basis of a A b and extend x~ to a P-basis x

of a vb. Then

1

O(E) + x1(E)

1 A (@A B)E) + (x) A (a v B)E)
(xV A a)(E) + (X! A b)(E)

r{a) + r(b). 0

r(a A b) + r{a v b)

A
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4.1.16  For a polyideal P cIR- and S < E Tlet
fP(S).E max{x(S):x ¢ P}.

X e P is an fp*basis of S if x(§) = fP(S) and Xg = 0 for all e ¢ S.

In~

For a ¢ RE and S c E let a|S « RE be the vector with compeonents

{aeifees
0 ife ¢ S.

4,1.17 Let P EIRE be a polymatroid and S ¢ E. Let a eIRE be such

[

(als),

that x < a for all x ¢ P. Then fP(S) = r(a|S) and X0 ¢ P is a P-basis
of a|S if and only if xO is an fp-basis of S. Therefore, if xo e P

s such that xg = 0 for all e & S then x0 can be extended to an fp-basis
xllof S.

4,1.18 Theorem Let P glRE be a polymatroid. Then fP:LE >R is a B,-

function and P = P(KEzfp).

Proof Clearly fP is nonnegative and nondecreasing on LE' By (4.1.15),
fp is submodular on LE and, since fp(¢) =0, fP must be a Bo-function
of L '

E ,
For all X « P and S ¢ E, x(S) < fP(S). Therefore, P < P(KE,fP).

Suppose there exists some a elRE such that a P(KE,fP)-P. Let x0 be

0 0

{e ¢ E:ke

a P-basis of a which maximizes |E0| where E
0

< ae}. Let
b = %{x0+a). Then x° must be a P-basis of b and every P-basis of b is

a P-basis of a.
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Then
xX(£9) < b(E) < a(e9) < fP(EO).

Therefore, xglEO is not an fP-basis of EV and we can extend x0|E0 to an

fp-basis ! of E9. But then(xl A m(EO) >[x0 A &(EO) and xolE0 is not

2

a P-basis of b[EO. Extend xO]E0 to a P-basis x~ of blE0 and then extend

2 3

x“ to a P-basis X~ of b. Then

SEY = 2% XO(EY).

Since x3(E) = xO(E) there must exist e ¢ E-£0 such that xg < xg.

However, because xZ < 2y, We have a contradiction to the maximality

of |E0

. Hence, P(KE,fP) c P and the theorem follows. g

It is not necessarily true that every polyideal is a polyhedron.
However, since P(KE,f) is a polyhedron, we have as a corollary to (4.1.18)
4.1.19 Corollary Every polymatroid is a polyhedron. a
4,1.20 By (4.1.4) and (4.1.18) we see that for every g-function
f:L + IR of a closure system L on E there exists a Bo-function f':LE + R

such that P(Lo,f) = P(KE?f'). Hence, we will usually be restricting

ourselves to Bo-functions of LE'

4.1.21 It is not necessarily true that for any o-function f:LE + 1R

we have

fP(KE,'F) (S) = f(S) for all S ¢ KE,

where, by definition (4.1.16),



fP(KE,f)(S) = max{x(8):x e P(K:,f)}.

1
W

For example, let E = {d,e}, f(¢) = 0, f(d) = f(e) = 1 and F(E)

Then f is a o-function of L, but fP(KE,f)(E) = 2. However,

n
m

4.,1.22 Theorem If f:LE +1R is a Bo—function then for all S ¢

we have
fP(KE,f) (S) = f(S) .

Proof Let Sc E and a eIRE be such that x < a for all x ¢ P. Let

b = a|S. As we observed in (4.1.17), f (S) is equal to the rank
. P (K., f)

of b in P(K,f). By (4.1.4),

Tk, 1 S 2

4.1.23  min{f-y + bez:[y,z] is a (0,1)-vector satisfying
y(KE,e) tz, 2 1 for all e ¢ E}.

Let [yD,zo] be an optimum solution to (4.1.23). Let

-
11

= {S ¢ KE:yg = 1}. Because f is subadditive,

F(u(s:S ¢ F)) s B(F(S):S e F) = FoyP,

Therefore, we may assume that there is at most one set T g E such that

y? = 1. Because f is nondecreasing and be =0 for all e ¢ S we may

0_

assume that T < S and Zg = 1 for all e ¢ S.
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Suppose ¥ is an P(KE,f)-basis of b. If zg = 1 for some
e ¢ S then, by the Complementary Slackness Theorem, xg = be; a

contradiction. Therefore T = S and f (s) = f(S). 0
, - P(Kg,f)

Thus there is a one-to-one correspondence between polymatroids

contained 1nIRE and Bo-functions f:LE -+ IR,

4.1.24 Corollary If f],fZ:LE +IR are two Bo-functions and
P(KE,f]) = P(KE,fz) then f1(S) = fz(S) for all S c E. 0

4.2 The Polymatroid Greedy Algorithm

4.2.1 For'any Bo-function f:LE + R and any c elRE consider the

linear program
4.2.2 maximize c+x where X eiRE satisfies
Xg > 0 for ali e ¢ E

x(S) s f(S) for all S ¢ Ke -

Note that when ¥ is the rank function of a matroid, (4.2.2) is the linear
program (3.2.14) which we claimed was solved by the Matroid Greedy
Algorithm. We claim that the following algorithm is a generé]ization of

" the Matroid Greedy Algorithm and that this algorithm solves (4.2.2).

4.,2.3 Polymatroid Greedy Algorithm Let the elements of E be ordered

{€4,655...} SO thatc, 2¢, 2...2¢c, >0zc¢ >,.. For
127227 ey e, ey e ]

each i ¢ {1,2,....k} let Ai u(ej:1 < jsi). Let xo elRE be defined by

i
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xe1 = f(A])

x0

e; = f(Ai)-f(Ai_1)_f0r all i e {2,3,...,k}
X0 =0 for all 1 2 kHl,

4.2.4  We prove that for i e {1,2,...,k} ve have x|A; ¢ P = P(K.,f)
by induction. Clearly xolA1 ¢ P. Now assume xolAi ¢ P and consider
x0|A

41- Let S B If eqyy ¢ S then, since ><O|:'1\,I e P,

B1A ) (8) = (P1R(S) < £(s),

If e;,q € S then

(CA ) (8) = IR (S) + £(AL,q) - F(Ay)

1A

f(A_i nS) + f(A'i uS) - f(Ai)

IA

f(S).

Therefore, x0|A1+1 e P and, by induction, xO = xOIAk e P and x0 is
a feasible solution to (4.2.2).

0

4,2.5 In order to prove that x~ is an optimum solution to (4.2.2)

it is sufficient, by corollary (2.4.14) tb the Weak L.P. Duality Theorem,

to produce a feasible solution yo to the dual linear program of (4.2.2)

0 0, where the dual linear program of (4.2.2) is

' K
4.2.6  minimize f.y where y ¢ R E satisfies

such that c.x~ = f.y

Y 2 0 for all S ¢ KE

y(KE,e) 2 ¢y for all e ¢ E.
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€

4.2.7  Dual Polymatroid Greedy Algorithm Define y° ¢ R © by

0 _ . _

¥Ypa = C. -C for all i ¢ {1,2,...,k-1}
Aj 7 ey e
0 _

Yp = C
A 8

yg = 0 for all other S ¢ KE.

4,2.8 For a1l i ¢ {1,2,...,k},

0 .

y (Kghey) = E(ygj:l <j=<k)= e,

and for all ie {k+1,ks2,...,[E|}, y2(Kg,e) = 0. Therefore, y° is a

feasible solution to (4.2.6). Furthermore,

0

1l
|
—
-+
——
T=
—
—
(2]
1
L)

fey i1 <4 < k-1) + f(Ak)c

&k

il

z(f(Ai)cei:]

[FAY

i< k) - 2(f(A; {)e, 12 <4 5 K)
: : 1

£(A) + S((F(A)-F(A, ;))e, 12 5 1 5 k)
1

c1x0.

0

Therefore, x0 and y- are indeed optimum primal and dual solutions

respectively.

4.2.9 Note that the Dual Polymatroid Greedy Algorithm produces an

0

optimum solution y~ to (4.2.6) with the property that the family F of

sets S ¢ KE such that yg > 0 is a nested family.
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4,2,10 Nheﬁ f is the rank function of a matroid M = (E,T) then the
Polymatroid Greedy Algorithm produces an optimum solution x0 to (4.2.2)
which is (OQf)-va]ued, i.e. the vector of some set J ¢ 3 . Therefore,
the Matroid Greedy A1gofithm is a sbecia1‘case of the Polymatroid Greedy
Algorithm and does produce an optimum solution to (3.2.11), as we asserted
.in (3.2.10). '

By the constrﬁction of x0 and yo given by thé Polymatroid and

Dual Polymatroid Greedy Algorithms we have proved

4,2.11 Theorem Let f:Lp +R be a Bo—fuhction and ¢ eIRE. If £(S)
is an integer for all S c E then (4.2.2) always has an integer-valued
optimum solution. If c ¢ ZE then (4.2.6) always has an integer-valued

optimum solution. - (N

By'(2.3.21), for every vertex X0 e P(KE,f)‘there‘exists a
vecfor c elRE such that xo'is the uniqqe optimum solution to (4.2.2).
Therefore, by (4.2.11), |
4.2.12  Theorem If filg R is a Bo-function. such that f(S) is an
linteger %dr all Slg E then the vertices of P(KE,f) are,jntegék—Valued.

. | | - | \ . - g ‘
4.2.13  In the special case that f is the rank function of a matroid
M= (E,F), (4.2.12) imp]ieé that the vertices of P(KE;fw aré (0,1);‘.
vactors, i.e. the vectors of sets J ¢ 3. This is precisely the state-

ment of (3.2.9).
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4;3 Polymatroid Intersection

4.3.1 Given B,-functions f],fZ:LE +IR and ¢ eIRE consider the

Tinear program

4.3.,2 maximize c-x where X eIRE satisfies
xe 20 forall e ¢t

x(S) < f,(S) '
for all S ¢ KE.
x(§) < fé(S)

The dual linear program of (4.3.2) is

K
£.3.3  minimize f-y' + f,e)° where y' /% ¢ R E satisfy

y; >0 for all S e Ko, i =1,2

i 2
y (KE,e) +y (KE,e) > ¢, for all e ¢ E.

4.3.4 Theorem For any two Bo—functions f1,f2:LE +IR and for all
C e ZE the linear program {(4.3.3) always has an integef—va]ued optimum

solution.

Proof Let [y1,y2] be an optimum solution to (4.3.3) and for i = 1,2
and e ¢ E let c; e yi(KE;e). Then, as we observed in (4.2.9), the

Dual Polymatroid Greedy Algorithm produces an optimum solution &i to
the linear program

i i Ke

minimize fi-y where y < IR "~ satisfies
y’(KE,e) > c; for all e ¢ E

with the property that the family F! of sets S « KE~such that §; > 0

is a'nested family.
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Consider the linear program

K

2 where y],yzle R E satisfy

4.3.5 minimize fl-y1 + fz-y
yl= 0 forall Se kg, i =122
4.3.6 { yl<o0forailsSe KE-F‘, i=1,2
1,1 0,2
-y (F ,e)+y (F ,e) = Ca for all e ¢ E.

Any feasible solution to (4.3;5) is a feasible solution to (4.3.3) and,
since [91,52] §s an optimum solution to (4.3.3) and a feasible solution
to (4.3.5), every optimum solution to (4,3.5) must be an optimum

solution to {4.3.3).

4.3.7 The matrix A with rows [x>:S e F', i = 1,2] is totally

unimodular.
Any square submatrix B of A is of the form [xS:S € Hi, i=1,2]

2 of E'. We can

for some subset E' of E and nested families H1 H
iteratively subtract the row of a minimal set S « H €rom the rows of
other sets of H containing S to obtain a matrix C.of the form

[x3:5 e Ki, 1 =1,2] for two families Kl Kk2

of pairwise disjoint
subsets of E' such that det(B) = #det(C). By (2.6.13), det(C) ¢ {0,1,-1}
and so A is totally unimodular.

If we represent the Tlinear system (4.3.6) as A'x < b for an
appropriate choice of At and b then, by (2.5.8)-(2.5.11) and (4.3.7),
A! is totally unimodular. Therefore, since ¢ is 1nteger-va1ued, (4.3.5)

and hence (4.3.3) has an integer-valued optimum solution by (2.5.16).
O
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From (2.5.2) it follows that

4,3.8 Corollary If f1,f2:LE +{R are two integer-valued Bo+functions
then the vertﬁces'of P(KE’fl) n P(KE’fZ) are integer-valued. 0

4.3.9 If f],fZ:LE + R are the rank functions of two matroids
My = (E.3;) and M, = (E,F,) then, by (4.3.8), the vertices of
P(KE,f]) n P(KE’fz) are integer-valued, i.e. the vectors of sets
JeFn 1}2. This is the statement of (3.3.3). (3.3.8) is a special

case of {4.3.4).

4,3,10 If for two Bo-functions f],fZ:LE + R we let

f{S) = max{x(S):x e P(KE’fI) n P(KE,fz)}

for all S c E then clearly P(KE,f1) n P(KE,fé)= P(KE,f). Call f the
rank function of P(KE,f]) n P(KE,fz).

4.3.11 Theorem If f1,f2:LE + iR are two B-functions and f:LE + 1R
is the rank function of P(KE,f]) n P(KE,fZ) then for all1 T c E,

f(T) = min{f (s) + f,(T-5):S < T},

Proof By (4.3.4),

f(T) = min{fl-y]+f2-y2:[y],y2] is a (0,1)-vector satisfying
2(KE,e) > 1 for all e e T}.

Since f] and f2 are subadditive we may assume that y} = 1 for at most

1.
y (Kg,e)ty

one Y ¢ KE and y% = 1 for at most one Z ¢ KE‘ Also, since f1 and fz
are nondecreasing, we may assume that Yo Z=9¢ and T =Y u 7.

Therefore, Y = T-Z and the theorem follows. 0
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4,3.12 ‘Thetrem Let f1,f2:LE -+ IR be two Bo—functions and f:LE -+ R
be the rank function of P(KE,f]) n P(KE’fz)' For all ¢ elRE the
linear program (4.3.3) has an integer-valued optimum solution if and

only if the linear program

4.3.13 minimize f.y where y eiRE satisfies

Yg 2 0 for all S ¢ KE
y(KE,e) > ¢ for all e ¢ E

- has an integer-valued optimum solution,

Proof The dual linear program of (4.3. 3) is (4.3.2). Therefore,
-by the Strong L.P. Dda]ity Theorem, the optimum value of (4.3.3)

is max{c*X:X ¢ P(KE,f]) n P(KE,fz)}. The dual linear program of
(4.3.13) is

4.3.14 maximize c-wihere b e]RE satisfies
Xg 2 0 for all e ¢ E

x(s) < £(S) for all S e K.

Again, by the Strong L.P. Duality Theorem, the optimum value of (4.3.13)
is max{cﬁx:x e‘P(KE,f)}. Since P(KE,f1) n P(KE,fz) = P(KE,f), the
optimum value of (4.3.3) is equal to the optimum vaiue of (4.3.13).

Let [§1,§2] be an integer-valued optimum solution to (4.3.3).

- K
Let y ¢ R E be defined by

yp = &} + &% , forall T e K.

Clearly y is an integer-valued feasible solution to (4.3.13). By (4.3.11),
£(T) = min{f,($)+f,(T-8):5 < T} for a1l T ¢ E. Therefore,

f(T) < min{f](T),fz(T)} for all T < E and
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= B(F(MIFTHE1T « Ke)

-+
.

ber
|

AN

= 2
B(F, (N7 + F(TYT € Kg)
1

f-l -y 4+ 'Fzr_\-{z,

‘Therefore, y must be an optimum solution to i4.3.13).

Conversely, let y be an integer-valued optimum solution to
(4.3.13). By (4.3.11), for each T ¢ Kp we can fix Tg < T so that
£(T) = £,(Tg) + Fp(T-Tg).  Let [7',5°] be defined by

=l - oo .o -
ys = Z(‘yT.S = TS, T € KE)
w2 — (T .G =
7 = £(7piS = T-TgT < Kg)

Then [§1,§2] is an integer-valued feasible solution to {4.3.3). Since

1

£y * fz.yz = .y, [&1,92] is an optimum solution to (4.3.3). 0

4.3.15  Note that according to the pro6f of (4.3.12) if (4.3.3) has
an (integer-valued) optimum solution [&1,§2] such that for some T e Kg,
9} = y% = 0 then (4.3.13) has an (integer-valued) optimum solution .

such that 9T = 0.

4.3.16  Corollary Let f:L >R be the rank function of P(Kg,fy) n P(Kg,fp)
for two Bo-functidns f]’fZ:LE +{R. Then for all c ¢ ZF the Tinear program

(4.3.13) has an integer-valued optimum solution.

Proof By (4.3.4), (4.3.3) has an integer-valued optimum solution.
Therefore, by (4.3.12), (4.3.13) has an integer-valued optimum solution.
O
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4.4 Faces of Polymatroids

4.4.1 For any function 'F:LE ~+ IR consider the polyhedron P(KE,f).

For any T ¢ KE let

(x e P(Ke,F):x(T) = (D)),

1

and

Ry

1

{x e PE:x(T) = £(T)}.
By definition (2.3.7), P and Hy are faces of P(KE,f).

4.4,2 . " Suppose f is a Bo-function of Lg. By (4.1.22), for 311 T e K¢
every f-basis x0 of T is such that xO(T) = f(T). Therefore, P; is
nonempty. As we noted in (4.1.17), any f-basis of T can be extended

to an f-basis of E. Therefore, HT is also nonempty. Clearly HE = PE.
In this section we will determine the dimension of the faces Py and He

in terms of f. In particular, we determine the facets of P(KE,f).

4.4,3 Proposition For any function filp + Ry, P(KE,f) is of full
dimension if and only if f(S) > 0 for all 5« KE.
Proof Suppose f(S) = 0 for some S e K. Then for all x ¢ P(KE,f),
x(S) = 0 and, by definition, dim(P(KE,f)) < |EJ|.

Conversely, if (S} > 0 for all S ¢ K then there exists a>0

such that for all e ¢ E the vector ax{E} is an element of P(KE,f).

Therefore

{ux{e}:e e E} u {0}
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is a set of |E| +1 affinely independent vectors of P(KE,f). Thus, by
(2.3.23), dim(P(K,F)) = [E]. O
4.4.4 Given a fuﬁétion f:LE +IR, a set T e KE is f-separable if

there exists a set S e_KT—{T} such that f(S)+f(T-S) < f(T); otherwise,

T is f-nonseparable. T is f-closed if for all S ¢ E sdch that T < S

we have f(T) < f(S).

4.4.5 Proposition Let P(KE,f) be of full dimension and let T € KE.
If Py is a facet of P(KE,f) then T is f-closed and f-nonseparable.

Proof By (2.3.31), Pr is a facet of-P(KE,f) if and only if x(T) < £(T)
is essential for defining P(KE,f). Suppose T is not f-closed, i.e.
there exists S c¢ E such that T < S and f(T} = f(S). Then for all
X € P(KE,f) we have x(T) < x(5) < £(S) < f(T) and x(T) < f(T) is not
essential for defining P(KE;f). |

Suppose T is f-separable, i.e. there exists
S e Ky - {1} such that f(S)+f(T-S) =< f(T). Then for all x e P(KE,f)
we have x(T) = x(S)+x(T-S) = F(S)+f(T-S) = F(T) and x(T) < £(T) is
nonessential for defining P(KE,f). 0
4.4.6 Notice that if fil. +R, is subadditive and T e K¢ then
for all S ¢ T such that f(S) + f(T-8) < £(T) we have ¥(S) + f(T-S) = £(T).
If f is nondecreasing and TAc S < E are such that f(S) < f(T) then for
all e ¢ S-T, f(Tu e) = f(T).

In the caée that f:LE +IR is a Bo-function we can strengthen

(4.4.5) to
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4.4.% Theorem Let f:LE +IR be a Bo—function such that
P(K,f) is of full dimension. For all T e K, Py is a facet of

P(Ké,f) if and only if T is f-closed and f-nonseparable.

Proof If P is a facet of P(KE,f) then, by (4.4.5), T is f-closed
and f-nonseparable. Suppose T is f-closed and f-nonseparable but PT

not a facet of P(KE,f), i.e. dim(PT) < |E|-2. A Tinear system defining

PT is
Xog 2 0 for all e ¢ E
4.4.8 ¢ x(S) < f(S) for all S e K
x(T) = F(T).

If dim(PT) < |E|~2 then, by definition (2.3.10) of dimension, there
exists e ¢ E such that the inequality X % 0 is in the equality system
of (4.4.8) or there exists S ¢ K-{T} such that x(S) s f(S) is in the
equality system of (4.4.8). |

Let 0 be an f-basis of T. Then, as we observed in (4.4.2),

xo € PT. For e ¢ T extend xO to an f-basis xI of Tu e. x1'e PT and,

2

since T is f—c1osed, x] > 0. ForeeT let x“ be an f-basis of {e}

e

and extend x2 to a f-basis x3 of T. x3 e Pr and, since P(KE,f) is of

full dimension, xg > 0, Therefore, for all e ¢ E there exists x « Py

such that x, > 0 and so x, = 0 cannot be in the equality system of (4.4.8).
Let S ¢ KE-{T} and suppose x(S} = f(S) for all x ¢ PT.- In

particutar, x2(S) = £(S). By (4.1.15), x(S n T) = (S n T) and
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QSuT)=fSuT), IfFTasSuTthen f(T) = xT) =x%(Suv T) = f(Su T)

and T is not f-closed; a contradiction.' Therefore, S < T. Let x4 be

4 5 5

an f-basis of T-S and extend x' to an f-basis X~ of T. Then x” e P

T
and, since xs(S) = f(S),

£(T) = x2(T) = x3(S) + x3(T-S) = £(S) + £(T-5).

Buf then T is f-separabie; a contradiction. Therefore, for all S ¢ KE-{T}
the inequality x(S) < f(S) cannot be in the equality system of (4.4.8)

which contradicts our supposition. 0

4.4.9  When P(K.,f) is of full dimension and Py is a facet of
P(Ke,F) we know, by definition (2.3.24) of facet, that dim(P;) = [E|-1.
Therefore, (4.4.7) describes dim(PT) whenever P(KE,f) is of full
dimension and T is f-closed and f-nonseparable. We will use (4.4.7)

to determine the dimension of the face PT for any T ¢ KE'

4.4.10 Given a function f:LE +|R an f-éeparation of T e KE is a

partition F of T into nonempty sets such that f(T) = T{f(S):S e F).

4,4.11 Proposition If f:LE -+ IR is a subadditive function and F is
an f-separation of E then for all F' ¢ F, F' is an f-separation of

u(S:S e F'); i.e. Fu(SES € F')) = (f(S):S e F').
Proof It is sufficient to prove that for all1 T ¢ F,

f(u(S:S e F-{T}) = z(f(S):S e F-{T}).
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Buf

Flu(s:S e F-(TH) + £(T) 2 £(E)
= Z(f(S}:S ¢ F)
= Z(f(S):S e F-{T})+f(T)
> Flu(S:S ¢ F-{T})+F(T).
Hence equality holds everywhere and the lemma follows. 1l

4,412 Proposition Let f:LE +|R be a Bo-function. If f(E) = f(T)+f(?)
for some T c E then for all S c E, £(S) = f(S n T)+F(S n .

Proof W& have the following:

£(E) = F(T) + £(T)

£(SaT)+ flSuT) - f(S)+f(SnT)+F(Su T) - £(5)
[F(snT) +£(SnT) - F(S)]+ £(Sv T) + F(SuT) - F(S)
F(Su T) + F{Su T) - F(S)

'3

[\

\"3

f(E).
Therefore, £(S) = (S n T) + f(S n T). 0

4.4.13 For any subadditive function f:LE +~Rand T e KE’ an f-separation
F of T is minimal if each S ¢ F 1is f-nonseparable. Suppose F is an f-
separation of T ¢ KE and foh some R e F there exists U e KRﬂ{R} such

that f(R) = f(U)+F(R-U). Then (F-{R}) U {U,R-U} is an f-separation

of T since F(T) = Z(£(S):S ¢ F~{R})+f(U)+f(R-U). Therefore every T e‘KE

has a minimal f-separation.
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4,4,14 Theorem If f:LE +[R is a Bo-function then every T e KE has

a unique minimal f-separation.

Proof = It is sufficient to prove that E has a unique minimal f-separa-
tion. Suppose F and H are two distinct f-separations of E. Since F
and ‘H are distinct partitions of E there exist S ¢ F and T ¢ H such that
SnT#¢andS#T. Wemayassume S ¢ T. Then S n T+ 9. By
(3.4.11), f(E) = F(T)+f(T). By (4.4.12), £(s) = F(SaT) + (S nT). But

then S is f-separable; contradicting the minimality of F. 0

4.4.15 Prqgosition Let f:l¢ - 1{R be a Bo-function and let T < E be
cuch that F(E) = F(T)+€(T). Then for all x < RS, x is an f-basis of E

if and only if x|T is an f-basis of T and xlf is an f-basis of T.

Proof Let x be an f-basis of E. Then

n

FIE) = x(E) = x(T)+F(T) < F(T)+F(T) = F(E)..

Therefore, x(T) = f(T) and x(T) = f(T). Hence, x|{T is an
¢-basis of T and x|T. is an f-basis of T.
Conversely, suppose x|T is an f-basis of T and x|f is an f-

basis of T. By (4.4.12), for any S c E we have

x(S) = x(S n T)+x(S n T)

(x]T)(S n T)+HX|T)(S n T)

1A

F{S n T)+f(S n T)
f(S).
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Therefore, X ¢ P(KE,f). Since .

KE) = &|T)T) + WITNE) = £(1) + £() = £(E),

x is an f-basis of E. g

4.,4.16 Proposition Let f:LE + IR be a Bogfunction and let T < E.
Then there is a unique maximal subset S ¢ E such that T ¢ S and
£(T) = f(S).
Proof Suppose Y,Z c E are such that T c ¥, T < Z and f(T) = £{Y) = f(Z).
Then
£(T) s f(Y v I)

F(Y) + £(2) - (Y n Z)

A A

1A

£1Y) + £(2) - £(T)

i}

F(T).
Therefore, f(T) = f(Yuv Z) and S = u(Y < E:T < Y,f(T) = £(Y)) is the
unique maximal set such that T c S and f(T) = f(5). 0

4.4.17 For any Bo-funption f:l_.E +1R and any T ¢ E call the unique
maximal subset S c E such that T c S and £(T) = f(S) the closure of T,
¢1(T). By (4.4.14), T has a unique minimal f-separation FL Let
uf(T) denote |F|, the number of subsets in the minimal f-separation of

T. Let

MT) = [E] + |T] - [e1(T)] - uglT)

4.4.18 Theorem Let f:LE +JR be a Bo-function. Then for all T € KE’
dim(PT) = A(T).
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Proof Let F be a minimal f-separation of T. We first show

dim(PT) < A(T). Let x ¢ PT' By (4.4.15), x(S) = f(S) for all S e F.
For each e ¢ ¢1(T)-T, x(Tu e) = f(T) = f(Tu e). Now a defining

linear system for PT is

Xg Z 0 for all e ¢ E

4.4,19 x{S)
x(T)

1A

f(S) for all S ¢ KE
f(T).

v

Hence, for each S ¢ F the inequality x(S) < f(S) is in the equality system
of (4.4.19) and for each e c1(T)-T the inequality x(Tu e) = f(T v e) is
in the equality system of (4.4.19). The vectors'{xS:S e Fl u {xTue:e e ¢{T)-T}

are linearly independent. Therefore, by definition (2.3.10) of dimension,
dim{P) < [E|-|F|-]c1(T)-T| = aA(T).

{S ¢ F:f(S) » 0.

We next show dim(PT) >A(T). Let F'
Then S ¢ F-F'.if and only if S = {e} for some e ¢ T such that
f({e}) = 0. Forall Se F', P(KS,fIS) giRS is of full dimension, by
(4.4.3). Each S ¢ F' must be f-nonseparable. Therefore, by (4.4.7),
for all S ¢ F}, {x e'P(Ks,fls):x(S) = f(S)} is a facet of P(Ks,f|S).
By (2.3.25) there exist |S| affinely independent vectors

E:1

™ e R <m < |S|}

such that

4.4.20 x>*™ is an f-basis of S for 1 <m < [S].
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Let x! ¢ RF be defined by

: {: il ifecSeF!
_ e
Xe=

0 otherwise

By (4.4.15), x) is an f-basis of T.

S

For each S e F' and for 2 < m = |S] Tet X M he defined by

xg’1_if e e U e F'-{S}
S,m _} ,S,m
PO Xa if e € S

0 otherwise

Again, by (4.4.15), °™ is an f-basis of T.

Clearly x! is an f-basis of c1(T). For each j ¢ c1(T) extend
x! to an f-basis xj of Tu j. Since f{Tu j) > f(T), we must have
x> 0. S(T) = x1(T) = £(T), so xI ¢« Py for all § & cI(T). Let

= o B>Ms e F',2<ms |S]) o xdig & c1{T)}.

By (2.3.27), K is a set of affinely independent vectors contained in Py.

" Therefore, by (2.3.23),

[\

dim(P;) | K] -1

!

£(|5]-1:S ¢ F')+|E-cUT)]
£(15]-1:5 € F)+E[-[c1(T)]
E1+]T]-up(T)-]eT(T)]
A(T). 0
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4.4.21 Let f:LE +R be any function and T c E be a fixed set. Let

the function f x T:L >R, the contraction of f to T, be defined.
by | |

(f x D) = £(T v U)-F(T),
for all U c T,

4.4,22 Theorem Let f: LE +IR be a B -function and let T < E. Then
fox Tilg +IR is a B, -funct1on and for all xo elRE, X e P(KT,f x T)
if and only if for all x e P((K flT) the vector [x S ] is an

element of P(KE,f).

Proof Clearly {f x T{¢} = 0. If f is nondecreasing on Lg then f x T

must be nondecreaéing on LT' For all Y,Z =« T we have

1l

(Fx T 0 D)+(F x THY u 2) = #(F v (¥ 0 2)-FTF(T 0 (¥ 0 2)-F(D)

F{(T u Y)n(T u Z))+f((f v Yu(T v Z))-2f(?}

]

F(T u Y)+F(T u Z)-2F(T)
(f x T)(Y)+ (f x T)Z).

1A

Therefore, by (3.1.15), fxT isa Bb-function of Lt
Suppose O e P(K ,f x T) and L P(K=,f|T). Then for all
Sck,
0x0,x11(s) = x2(5 n T2 (S 0 T)
(f x T)(S n TI+F(S n T)

1A

£((sa T)u T)-F(T)+F(Sn T)

IA

F{S).
0.1
Hence [x ,X ] € P(KE,f).
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Conversely, suppose x® ¢ BT and for all L P(Kf,flf) we

1

have [xo,x]] € P(KE,f). Then, in particular, when x' is a basis of

a|T we have

O T v w)=x' (D)
£(T u U)-F(T)

xO(U)

13

(f x T)(U)

for all U ¢ KT' Therefore; xo € P(KT,f x T) and the theorem is proved.
0

4.4.23 We remark that since f x T is a Boufunctjon of LT for any
Bd-function f:ilp >R and for any T ¢ E, for al1 U = T there exists
O ¢ p(Keuf x T) such that x2(U) = (f x T)(U), by (4.1.22).

We now use contractions of a Bo-fun;tion f:LE +IR to determine
the dimension of H. = {x e P(KE,f):x(E) = f(E), x(T) = f(T)}} for all
Te KE-{T}. The methods used are similar to those used to determine
dim(P).
444.24  Theorem Let f:Lp ~IR be a Bo-function and let T e KE#{E}.

Then dim(Hp) = [E|-ne(T)-ue g (T).

Proof Let F be the minimal f-separation of T and F' be the minimal
(f x T)-separation of T. By (4.4.15), for all1 S ¢ F and for all x e He
we have x(S) = f(S).

By (4.4.11).,for all S e F',

f(E)-F(T)

n

(F x T)(T)

(f x T)(S)+(F x T)(T-9)

£(T u S)-F(T)+F(S)-F(T).



- 4,29 -

Therefore, F{T)+f(E) = f(T v $)+f(S) and for all x e Hy,

(T u $)}+x(8) < F(T u $)+f(S)
f(T)+f(E)

A

x(T)+x(E)
(T u $)+x(5).

i

Thus, x(Tu §) = f(Tu §) for all S e F' and for all x ¢ HT.

A linear system which defines HT is

Xq Z 0 for all e ¢ E

7 x(S) = f(S) for all S ¢ KE
4.4.25
x(E) = f(E)
x(T) = £(T).

For each § ¢ F the inequality x(S) < £(S) is in the equality system of
(4.4.25) and for each S ¢ F' the inequality x(T u §) < f(Tu S) is in the
equality system of (4.4,25). The set of vectors {xS:S e Fl u {xTUS:S e F'}

is linearly independent. Therefore, by definition (2.3.10) of dimension,
aim(Hp) s [E-[F1=1F'] = [E[-ue(T) g5 (T).

We now show dim(Hy) = |E|-u%(T)-quT(T). Consider the face .
Py = 1x e P(Kp.f[T)ex(T) = £(T)} of P(Ky,FIT) <R, By (4.4.18),
dim(P]) = lTleuf(T). By (2.3.23), there exist lTl-uf(T)+1 affinely
independent vectors x™:1 < m < |T|-u(T)+1} of P;. Similarly, there

exist |T|—u¥xf(f)+1 affinely independent vectors {z™:1 < m s |T|-ufxT(T)+1}
of P, = {x e P(K,f x T)ix(T) = (F x THT)I.
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For 1 <ms [T[-ug(T)+1 Tet X" = ™21, By (4.4.22),

X ¢ P(K.,f). Furthermore,

x™T) = £(T)

It

()
and - |

ME) = xM(T)Hz! (T) = F(T)H(F x TH(T) = F(E).

Theréfore, X HT'

= WL -m _ p,1 M -l
|T]-ufxT(T)+1 let z© = [x',2']. As above, z" « Hy.

For 2 <m=
By (2.3.27),
Kz M1 sms [ ThuT} o 272 = m < [Tl (D43

is a set of |E|—uf(T)—quT(f)+1 affinely independent vectors of H.
Therefore, by {2.3.23), '

dim(H) = |E]-uf(T)-ufxT(f). 0

4.4.26 Corollary Let f:LE +|R be a Bo~function such that P(KE,f)
is of full dimension and et T ¢ KE-{E}. If P is a facet of P(KE,f)
then Hy is a facet of P if and only if T is f-nonseparable and T is

(f x T)-nonseparable,
‘Proof  Since dim(P;) = |E|-1, Hy is a facet of Pp if and only if
dim(HT) = |E|-2. By (4.4.24),'dim(HT) = |E|-2 if and only if uf(T) =1
and ufxf(’f) =1, d
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4.4.27 Suppose P(KE,f) is of full dimension and for T ¢ K., Py is
" a facet of P(Kg,f). Then, since dim(P;) = |E|-1, the only inequalities
of the linear system (4.4.19) defining PT which can be in the equality

system of (4.4.19) are x(T) < £(T) and x(T) = f(T).

5.4.28  Suppose dim(H) = |E[-2 for T e Ke-{E}. The inequalities
x(T) < F(T), x(T) = £(T), x{E) < F{E) and x(E) = f(E) are in the equality
system of (4.4.25). For all S ¢ KE—{T,?,E} the vectors {xs,xT,iE}

are linearly independent. Therefore, by the definition (2.3.10)

of dimension, the only other possible inequalities in the equality system
of (4.4.25) are x(T) < £(T) or, in the case thatl|T| = [E]-1, x, = 0,
where Tu e = E. If x{(T) < f(T) is in the equality system of (4.4.25)

then for a11lx € HT we have
FIE) = x(E) = x(T) + x(}) = £(T) + £(T)

and {T,T} is an f-separation of E. If Xg % 0 is in the equality system
of (4.4.25), where Tu e = E, then for all x ¢ Hy,
£(E) = x(E) = x(T) + x,. = (T)
and T is not f-closed.
4.4.29  For each j « E Tet
Nj = {X ¢ PE:XJ. = 0}.

- Then Nj is a face of Pp. If f({j}) = O then Nj = P If E-j is

f-closed then for all X € P(KE,f) such that xj = 0 we have
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W(E) = x(E-j) = F(E-§) < F(E)

and Nj = ¢. Finally, if E-J is not f-closed then for all X e Nj we have
x(E-j) = x(E) = f(E-J)
and Ny = Hp_;. Since Heery3 ({31 = T, we have

dim(Nj) = |E|-uf(Efj)-1, '

by (4.4.24).

4.5 Faces of Polymatroid Intersection

4.5.1 Let f f2:LE +IR be two Bo—functions. Recall that in (4.3.10)

. 1’
we defined the rank function of P(K,fy) n P(Kg.f,) . fily + R, by

F(T) = max{x(T):x « P(KE,f1) n P(KE,fZ)}.
A Tinear system defining P(KE,f1) n P(KE’fz) = P(KE,f) is

xe > 0 for all e ¢ E

x(S) s f(S) for all S e K.
4.,5.2 In this section we determine the sets T e KE such that

Py Er{x € P(KE,f):x(T) = f(T)}

is a facet of P(KE,f). ¥ (4.4.5), if Pris a facet of P(KE,f) then T
" must be f-closed and f-nonseparable. We intend to show the converse;

i.e, if PT is not a facet of P(KE,f) then T is not f-closed or T is

f-separable.
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4.5.3 Lemma Let f:LE +IRE be nondecreasing subadditive function.
Let P(K,f) be of full dimension. If for T ¢ kg, Py is not a facet

of P(KE,f) and the linear program

: K
4.5.4  minimize f.y where y ¢ R E satisfies

Yg 2 0 for all S e K¢
Y1 <0
y(KE,e) >71 for all eeT

has an integer-valued optimum solution then T js not f-closed or T is
not f-separable.
Proof Since P(KE,f) is of full dimension, P; is a facet of P(KE,f)
if and only if the inequality x(T) = f(T) is essential for defining
P(KE,f), by (2.3.31). By (2.4.19), x(T) < f(T) is nonessential for
defining P(KE,f) if and only if the optimum value of (4.,5.4) is f(T).
Therefore, if PT is not a facet of P(KE,f) then the optimum value of
(4,5.4) is f(T).

Let yo e Z E be an optimum solution to (4.5.4). Then yD must

{SekK :yg = 1}. Then

Al

be (0,1)-valued. let F £

(1) = £y0 = B(F(S):S < F).

let U = u(S:S ¢ F), If T c U then, by the subadditivity of f,
£(T) = f(U) and T is not f-closed, If T =1U then, since f is non-
decreasing, we may assume that F is a nontrivial partition of T. Since

£(T) = T(f(S):S e F}, T is f-separable, g
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2'Llp

be the rank function of P(KE,f1) n P(KE,fz). Let P(KE,f) be of full

4.5.5 Theorem Let f],f + IR be two Bo-functions and let f:LE -+ R
dimension. Then for all T e K¢, Pr is a facet of P(KE,f) if and only if

T is f-closed and f-nonseparable.

Proof As we observed in (4.5.3), all we need show is that if P; is
not a facet of P(KE,f) then T is not f-closed or T is f-separable.
Suppose that Py is not a facet of P(KE,f). Then, since
P(KE,f) is of full dimension, the inequality x(T) = f(T) is nonessential
for defining P(KE,f), by (2.3.29). Therefore, the inequalities x(T) = f1(T)
and x{T) = fZ(T) together are nonessential for defining P(KE,f]) n P(KE,fz),
By (2.4.19), the optimum value of the Tinear program
K

E

4.5.6  minimize f -y + £,%y° where yl2 ¢ R E satisfy

yiz0forallsekg, 11,2
2
.Y}=.VT=0

y' (Kg.e) + Y (Kg,€) > 1 for all e e T

is equal to f(T). We now show that (4.5.6) has an integer-valued optimum
solution. Then, as we noted in (4.3.15), (4.5.4) has an integer-va1ded
optimum solution. From (4.5.3) we can then deduce that T is not f-closed
or T is f-separable. |

By (2.5.1), (4.5.6) has a rational-valued optimum solution

[y],yz]. Apply the following transformation:
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4.5.7  Starting with j = 2, suppose Y,Z e K-, Y nZ #¢,Y ¢ Z, 74
and

0 < y% < y%

For each S ¢ KE define yg+] by

v+ Fifse{fnz, Yui)

. L
WA= - ifsenn

yg otherwise

It is easy to check that [y],y3+1] is a feasible solution to
the linear program

K
E satisfy

4.5.8 minimize f]-y1 + fz-yz where y],yz e R
ys = 0 for all S e K, § = 1,2

y](KE,e)+y2(KE,e) >1 for all e e T,

By the submodularity of f,,
.- fz.y‘]+y‘,]f[f2(Y n Z)+f,(Y u Z)-f,(Y)-F,y(Z)]
PR |
Therefore [y],yj+1] is an optimum solution to (4.5.8). (We may have

i+
y% 1.

-4
~n
g
1)

1A

> 0, in which case [y1,yj+]] is not an optimum solution to (4.5.6).)

Let o be a common denominator of'{yézs € KE}. Let W = ay2

and for each vector yj+] constructe | according to (4.5.7) Tet
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wj+] = uyj+]. Then wj+1 € ZE, since yj+1 = 0. Since 1-yj+] = 1-yj,

+
we have 1-w3+1 = 1-wJ). There can be only a finite number of distinct

vectors w ¢ ZE having the same sum 1.w. Therefore, there can be only a
finite number of distinct vectors in the sequences {yz,ys,...,yJ,yJ T,

Since
(viT]s]?:s e k) = 2(yd|si®:s e KE)+y‘3[]YnZ|2+lYuZ|2—|Y|2-|Z|2]
> 2(#d18]%:5 e k)
the sequence has only finitely many terms.
Thus there exists an optimum solution [y1,§2] to (4.5.8) with
the property that for all Y,Z e K; such that §$ > 0 and §% > 0 we

have YnZ=¢ or YcZorZcY, i.e. the family F2 of sets S ¢ KE

such that yg > 0 is a nested family. Similarly, there is an optimum

T of

‘solution [y LY ] to (4.5.8) with the property that the family F
sets S e K¢ such that &i > 0 is a nested family.

By the construction of [&1,52], for i =1 or i =2 there is a .

set S ¢ K -{T} such that &é > 0. Since f1-§1‘+ fz-i2 = f(T} we must have
B=yl+ y$ 1. Let [§',5%1 be defined by
-
¥
. T§E‘ PFS AT
yg =
0 ifS=T

for all S e Kes 1 = 1,2, For all e ¢ T we have
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.y (KE,e +.Y (KE,e) ‘|—B{y E,e)+y KE,e) -]

\%

T:E'(]'B)
= 1.

Therefore [§],§2] is a feasible solution to (4.5.6). Moreover,

~1

firy + fz ——[f ¥ +’r‘2 §° - 8f(M)]

T%E{f(T)—sf(T)]

"

F(T).
Hence [§1,§2] is an optimum solution to (4.5.6).
Let F, = F'~{T} for i = 1,2 (i.e. Fy = {Se Kg:9g > O1).

Consider the linear program

2

4,5,9 minimize f1-y]+f2.y where [y],yz] satisfies

yi20 forallsekKg, i=12
2.5.10 { yl &0 Forall S e Ke-(F;}, i =1.2

y](F1,e)+y2(F2,e) >1 for all e e T.
Any feasible solution to (4.5.9) is a feasible solution to (4.5.6).
Since [§],§2] is an optimum solution to (4.5.6) and a feasible solution

to (4.5.9), every optimum solution to (4.5.9) must be an optimum solution

o {(4.5.6).
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If we represent the linear system of (4.5.10) as Ax < b
for an appropriate choice of A and b then, since F, and F, are nested
families, A is totally unimodular, by (4.3.7). Therefore, by (2.5.16),
there exists an integer-valued (and hence (0,1)-valued) optimum solution -

[?‘,“2] to (4.5.9) and hence to (4.5.6). O

4.5.11 Proposition Let filLp »R be the rank function of P(KE’fI) n P(KE,fz)
for two Bo-functions f1,f2:LE +R, Then T ¢ KE is f-separable if and

only if there exist S ¢ KT-{T}, i=1lor2andj=1o0r2 such that

f(T) = fi(s) + fj(T-S).

Proof IfSeK,i=T1or2andj=1o0r2 are such that

f(T) = fi(S) + fj(T—S), then we have

F(T) = £(5) + £,(T-5) = £(s) + F(T-5) > F(T)

and T is f-separable.

Conversely, suppose T is f-separable and S € KT is such that
£(T) = f(s) + f(T-S). Let S] < § be such that f(S) = fl(sl) + f2(5—51)
and let S, < T-S be such that f(T-S) = fl(Sz) + £,((T-5}-S,).  Then

£(S) + f(T-S) |

f](s1) + f2(5e51) + f1(52) +‘f2((T-S);SZ)
f1(51 U 52) + 1"2(T—(S-I U 52))

£(T).

£(T)

1

v

\%

Hence f(T) = f](S1 u Sé) + fz(T-(§1 u 52))' If Sy u Sy e KT-{T} then
we are done. Therefore, we may assume that S1 U 82 = T, This implies

that $; = S and S, = T-S. Therefore f(T)= f](s) + fI(T-S). 0
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4.5.12  Theorem Let f f,:Lg > R be two 8 -functions such that for

1° E
allece E, fT(e) > 0 and fz(e) > 0. Llet filp >R be the rank function
of P(KE,f1) n P(KE,fZ). Then for all T ¢ KE, T is f-closed and f-

nonseparable if and only if there is no Se KT-{T}, i=%lor2andj-=1

- or 2 such that f(T) fi(S) + fj(T-S) and T is fk-c]osed for each k = 1

£, (T).

1l

" or 2 such that f(T)

Proof Suppose'T is f-closed and f-nonseparable. By (4.5.11),
there is no S ¢ KT-{T}, i=1lor2and j=1or 2 such that f(T)
f(T) = fi(S) + fj(T-S). Let f(T) = fk(T) for k =1 or 2. Then for
all j&¢T,

£ (T 3) 2 £(Tu 3) > £(T) = £ (T),

so T is fk—c1osed.

Conversely, suppose T is not f-closed or T is f-separable.
If T is f-separable then, by (4.5.11), there exists S e Kp-{T}, i =1 or
2 and j =1 or 2 such that f(T) = fi(S) + fj(T-S). If T is not f-closed
then forsome e ¢ T we have f(Tu e) = f(T). Let U = T u e be such that
-'f(T u e) = f1(U) + fz((T v e)-U). We may assume thét e ¢ U and then

F(T) = £(Tu e) = £{U)+F,((T u e)-U) = F;{U-e)+fy(T-(U-e)) = F(T).

Let S = U-e. If S =¢ then U = {e} and
£(T) = (&) + Fp(T) > £(T);

which is impossible. If S =T thenU=Tu e and
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F(T) = £,(Tu e) = (7).

Therefore, T is not f]-c1osed. Finally, if S e Ke-{T} then
£(T) = £,(S) + ,(T-5). 0

4.5.13  Corollary Let f;,fy:lg + IR be two B -functions and let f:LE +IR
be the rank function of P(KE,fl)'n P(Kzofy). Let P(KE,f) be of full
dimension. Then for all T e KE’ PT is facet of P(KE,f) if and only if
there is no S e K-{T} such that £(T) = f;(S) + f,(T-5) and Pl is a

facet of P(KE’fi) for each i = 1 or 2 such that f(T) = fi(T), wheve

Pl = ix e P(Kg,Fy)ix(T) = £5(D)1.

Proof By (4.4.3), P(Kg,f) is of full dimension if and only if f,(e) >0
and f,(e) > 0 for all e ¢ E. By (4.5.5), P1 is a facet of P(K,f) if

and only if T is f-closed and f-nonseparable. By (4.4.5), for i =1 or 2,
?} is a facet of P(KE’fi) if and only if T is fi-closed and fi-nonseparab1e.

The corollary now follows from (4.5.12). O
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4.6 Polymatroid Partition

4.6.1 In this section we generalize the sum of matroids
described in section 3.1 to a sum of polymatroids. For any

E let

family {P,:icI} of subsets of R
E(Piz{el)s {Z(Xi:iel);xiepi for all i<1I1}. N

4.6.2 Theorem Let T be a finite set and for each iel

et fi be a Bo-function. Let Pi = P(KE’fi)' Then for

udRE we have UGZ(ﬁi:isI) if and only if u(S) sE(fi(S):icS)

for all ScE. Furthermore, if P, is an integral polymatroid

for all i1 and ueZ(P.:icl) is integer-valued then there

.i

exists {x':i-I} such that x' P_in-ZE for all icI and

u = Z(xizicl).

Proof Let P E(Pizipl). Let

o i pIXE i | .
Q1 = {xesR+ X' (S) < fi(S) for all SEKE, for all i-11},
: _ i pIxE | L
0, = {x,eRy .E(xe.1_I) < u, for all ecE}.

It is easy to check that Q1 and 02 are polymatroids. For
any x « Qq n 0, we have 1-x < u(E). Furthermore, u P if

and only if the optimum value of

4.6.3 max {l+x:x « 0, n 02}'

1

is u{E), since any vector x « 0y n 0, such that 1.x = u{E)
corresponds to a set {x' « Pi:i = 1} of vectors such that

u = I({x':i - 1). A defining linear system for 01 n 02 is



- 4.42 -

x; 2 0 for all e ¢ E and for atl i ¢ 1

ii(S) < fi(S) for all S ¢ K. and for all i e I

E
E(x;:i e 1) < Uy for all e ¢ E.

By (4.3.11) and the Strong L.P. Duality Theorem, the

optimum value of (4.6.3) is u(E) if and only if the -optimum

value of
4.6.,4 min {(171.(8,1):5_i c E,i - I) + u(T):S_i u T-= E
for all e r E}
is u(EF).
We can choose an optimum solufion {S? c E:i « I} and
10 to (4.6.4) so that 70 = a(sD:i ¢ I). since f, is

nondecreasing, we may assume that S? = Sg

Theréfbre, the optimﬁm value of (4.6.4) is u{E) if and only

for all i,j ¢ I.

if for all S ¢« K. we have

£

u(S) < B{F(S):i ¢ 1),

If {Pi:i < I} are integral polymatroids and u ¢ P is
integer-valued then, by (4.3.8) and (2.3.20), we can choose
an optimum solution to (4.6.3) to be integer-valued, and
~ this corfesponds to integer-valued {xi € Pi:i e I} such that

U= Z(x'iioe 1), n



- 4.43 -

4.6.5 We see from (4.6.2) that a Tinear system defining

T(P,:i1 ¢ 1) is

Xe = 0 for all e « E

x{S} < E(fi(s):i = 1) for all S « KE.
For all S c E let f(S) = Z(fi(s):i e I). Clearly f is

a Bo-function of LE. By {(4.1.4) we have

+R be a 8 -function for all

4.6.6 Theorem lLet f.:lL o

E

i ¢ I and let Pi E P(KE’fi)' Then P E(Pi:i e I) is a

polymatroid and P = P(Ké,f), where f(S) = Z(f.(S):i ¢ I)

for all S ¢ E. If P. is an integral polymatroid for all

ie 1 then P is an ihtegra1 pb]ymatroid. If, in addition,

U e P is integer-valued then there exists {x':i ¢ I} such

that xi € P_i n WE for all i ¢ I and u = E(xi:i e I). 0

4.6.7 Suppose that {Mi'= (E,31):i F‘I} is a collection

of matroids on E with rank functions {ri:i e I}, Let

p = E(P(Mi):i €1). By'(4.6.6),.P is an integral polymatroid.
By (4.1.9), '

J

F = {J < E:x" ¢ P}

is the family of independent.sets of a matroid M = (E,%).
Agéin by (4.6.6), for any J < E, xJe P if and only if there
exist integer-#alued, i.e. (0,1)-valued, {xi e P(Mi):i e I}
such that xY = Z(xi:i e 1). Thus J ¢F if and only if there
exists a partition {Ji e 91:1 e I} of J into possibly empty

sets. This proves (3.1.30).
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4,7 Polymatroid Translation

4.7.1 The followina construction of polymatroids is
analagous to the contraction of a matroid M = (E,3) to

J for some J ¢ ¥ (recall that we discussed matroid contraction
in (3.4.23)). For any S ¢ RE-let s, = {x - S:x 2 0}.

E

For a polymatroid P ¢ R™ and a vector k - P, the translation

of P by k is the polyhedron (P - k),.

4.7.2 Proposition Let f:L+R be the rank function of a

polymatroid P and let kK ¢ P. Then for all k ¢ P, P' = (P-k),
is a polymatroid. If P is an integral polymatroid and k « P
is integer-valued then P' is an integral polymatroid. For

all S ¢ E, f,,(S) = min {F(T) - K(T):S < T}.

Proof Clearly a definina linear system for P - k is

Xq > -ke for all e = E

x(S) = f(S) - k(S) for all S « KE'

Let g(S) = £(S) - k(S) for all S ¢ E. Clearly a is a

H1

submodular function of L. Since K « P, q(S) = 0 for all
S ¢ E. Thus g is a ofunction of'LE. A defining linear

system for (P - k)+ is

Xa z 0 for all e ~ E

x(S) < a(S) for all S e Ke.
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By (4.1.4), P' is a.polymatroid'and for all S ¢ E we have
fp.(S) = min {f(T) - k(T):S ¢ T}. Furthermore, if f is
integer-valued and k « P is inteaser-valued then g is an
integer-valued a-function.and, by (4.1.4), P' is an inteqral

polymatroid.

Polvmatroid partition and polymatroid translation
can be combined to give the followinag construction of

polymatroids.

4.7.3 © Theorem Let Pis Ppc RE be two nolymatroids.
Let W = {X « Pz:x(E) = r{(E)}. Then for all k. - W,

1 - - . : I = -
P = (P1 + U k), is a polymatroid and P (P1 + P2 k)+.
For all S ¢ E, '
4.7.4 Fou(S) = min{f (T) + F,(T) - k(T):S ¢ T}.
Furthermore, if Pi and P2 are integral polymatroids and
k -« ZE then P' is’'an intearal polymatroid.
Proof By (4.6.2) and {(4.7.2), (P1 + P2 - k)+ is a polymatroid.
Therefore it is sufficient to prove that P' = (Py + Py = k).
Clearly P' ¢ (P1 P, - k),. Llet x « (P1 P, - k),
Then there exist x1 € Pl’ x2 € P2.such that x = x1 + x2 - k.
Since x > 0, we have xl + x2 2 k. Since k is a Pz—basis
of x1 + XZ} any Pz;basis of xl + x2 is an element of W.
Extend x2 to a Pz-basis x3 of xl + xz. Then x3 ~ W and
x4 = x1 + x2 - x3 ¢ Pl' Therefore x « (P1 + W - k)+._ Qo
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4.8 HNetwork Polvmatroids

4.8.1 Throughout this section we let G = (V,E) be an
loopless araph, let A be the matrix of G and a e RE. Let

v

Y = {y e R":Ax = y for some Xx ¢ RE such that 0 < x < a}.

The following is a well-known result from network flow

theory (see, for example, Ford and fulkerson {F11).

4.8.,2 Theorem For any yo € RV, y e Y if and only if>

yo(v) = 0 and yO(S) < a(s(S)) for all S ¢ V. Furthermore,
if y0 e v s intéger-valued and a « ?E
: y

then there exists

0

integer-valued x ¢« R~ .such that Ax = and 0 £ x s a. 0

4.8.3 It follows from (4.8.2) that a linear system
defining Y is
y(S) < é(a(S)) for all § « K

y(v) = 0.

v

It is easily seen that the function a(s):LV+m is a

submodular function of LV' let k ¢ RV.

a(5(S)) + k(S) for S g V

It is also easy

to check that if we define f(S)

then f is-a sﬁbmodu]ar function of Ly- We can choose k to
be a sufficiently laroe vector.so that f is aeo-function of
a(s{v ))). Then,
by (4.14), P(Kv,f) is a polymatroid and ¥ = W - Kk, where

I

LV (For example, for each v ¢ V let kV

W= {x « p(kv,f):x(s') = f(E)}.
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4.8.4 If we let the polymatroid P(Kv,f) of (4.8.3)
be the polymatroid P2-0f (4.7.3) then, by (4.7.3) and
(4.8.2), we have the following application of the previous,

polymatroid constructions.

4.,8.5 Theorem (Woodall [W21) Let G = (V5E) be a graph

and Tet A be the matrix of 6. Let a < RE. Let Py s R}

be a polymatroid with rank function fl:LV+R. Let

E

p' such that

{y ¢ Rz: there exists t e Pl’ X ¢ R

0 < x < a-and t + Ax = y}
Then P' is a polymatroid and for ali S < V,
4.8.6 fP;(S) = min {fI(T) + a(8(T)):S ¢ T}.

Fufthermore, if a ¢ ?E and P is an integral polymatroid
then P' is an integral ponmatro1d For all integer-valued
Yy € P' there exists an 1nteqer va1ued t e Pl’ X € Z such

that 0 < x < a and t + Ax = y. O



CHAPTER 5

STRONG k-COVERS and STRONG k-MATCHINGS

5.1 Strong k-Covers

5.1.1 Let G = (V,E) be a graph. D e K; is a directed cohoundary
if D = &(S) for some S < V such that 5(S) = 4. For any positive integer

k,J < E is a strong k-cover if |d n D| = k for every directed coboundary

D. Lucchesi and Younger [L2] have shown the following result concerning

strong 1-covers.

5.1.2 Theorem For any graph G the minimum cardinality of a strong
1-cover of G is equal to the maximum number of pairwise disjoint directed

coboundaries. -

5.1.3 Let D(G) = {S c V:8(S) is a directed coboundary}. By the

Strong L.P. Duality Theorem we have

Y

5.1.4 min{1-x:X € ZE,X(S(S)) > 1 for all S ¢ D(G)}

=

I\

5.1.5  min{l-x:x e RE,x(8(5)) 2 1 for a1l S < D(6)}

5.1.6 max{1-y:y eiRE(G),E(yS:e e §(5),5 e D(G)) < 1 for all e ¢ E} |

2

5.1.7 max{ley:y e ZE(G),E(yS:e e §(5),5 ¢ D(G)) s 1 for all e « E}.

Any optimum solution to (5.1.4) must be (0,1)}-valued and therefore
the vector of a strong l1-cover. Any feasible solution to (5.1.7)

must be the vector of a family F c D(G) such that &(S) n §(T) = ¢ for
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all S,T ¢ F. Therefore the optimum value of (5.1.7) is the maximum
number of pairwise edge-disjoint'directed coboundaries, By (5.1.2),
any optimum solution to (5.1.4) is an optimum solution to (5.1.5) and
aﬁy optimum solution to (5.1.7) is an optimum solution to (5.1.6).
Equivalently,

5.1.8  Both linear programs (5.1.5) and (5.1.6) have integer- -

valued optimum solutions.
5.1.9 More generally, let ¢ eIRE and consider the linear program

5.1.10 minimize ce.x where x elRE satisfies

Xg % 0 for all e e E

x(8(S)) = 1 for all S ¢ D(G).
If cj < 0 for some j ¢ E then we can always find a feasible solution X
to (5.1.10) such that X5 is arbitrarily Targe, and so (5.1.10) is
unbounded. Therefore, we may assume c eIRE. " The dual Tinear program of
(5.1.10) is

D(G)

5.1.11 maximize 1-y where y ¢ R satisfies
Yg 2 0 for all S e D(G)

Z(yS:e e 8(S),S ¢ D(G)) = Co for all e ¢ E.

Clearly 0 is a feasible solution to (5.1.11) and 1-y has an upper bound
for all ¢ eiRE. Therefore, by the Strong L.P. Duality Theorém, (5.1.11)

has an optimum solution. In the next chapter we will proVe the following
result.

5.1.12 Theorem For any graph G = (V,E) and for all ¢ é ZE, (5.1.11)

has an integer-valued optimum solution.
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Proof See (6.3.20) . [
tx e RE:x(8(5)) 2 1 for all S  D(G)}. Let

11

J be a minimal strong 1-cover of G. Then for each j ¢ J there is a set

Sj e D(G) such that J n D(G) = {j}. Therefore, xJ is the unique solution

to the system of linear equations

Xg = 0 for all e ¢ J
x(a(Sj)) =71 for all j ¢ d

J .
Thus x° is a vertex of PD(G) and we have

5.1.13 If ¢ E is a minimal strong 1-cover of G then xJ is a

vertex of PD(G)'

5.1.14 By (2.5.2) and (5.1.12), the vertices of PD(G) are integer-

0 E

. 0
be a vertex of PD(G)‘ By (2.3.21) there exists ¢ e R
0

valued. Let x
such that xO is the only optimum solution to (5.1.10). Therefore, x
must be (0,1)-valued and the vector of a minimal strong 1-cover of G.

Together with (5.1.13) this implies

5.1.15  Theorem For any graph G = (V,E), x ¢ RE is a vertex of Po(6)

if and only if x is the vector of a minimal strong 1-cover of G. O

5.1.16 By (2.3.20), for every c ¢ RE, (5.1.10) has an optimum solution
which is a vertex of PD(G)' Therefore, by (5.1.12), (5.1.15) and the

Strong L.P. Duality Theorem we have
5.1.17 Theorem Let G = (V,E) be a graph and ¢ elRE. Then

min{c(J):J is a strong 1-cover of G}

D(G)

+ :Z(yS:e e 8(S),S « D(G)) < Co for all e e E}.

max{Tey:y ¢ R
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Furthermore, if ¢ ¢ ZE then we can choose y e ZE(G). 0

Clearly when ¢ = 1 we have (5.1.2).

5.1.18 In order to generalize to k-covers we consider the fol Towing

Tinear program.
5.1.19 minimize c.x where X e}RE satisfies

X 0 for all e e E

e

Xe

x(8(S)) = k for all S « D(G).

v

A

1 for all e € E

Any integer-valued feasible solution to (5.1.19) must be the vector of

a strong k-cover of G. Notice that (5.1.19) has a feasible solution if

and only if k < |6(S)| for a1l S e D(G). Also, the polyhedron of feasible
solutions to (5.1.19) is bounded., Therefore, by the Strong L.P. Duality
Theorem, (5.1.19) always has an optimum solution whenever k < min{|8(S)]|:S D(G)

The dual linear program of (5.1.19) fis

5.1.20 maximize key = 1.z where y eIRE(G) and z eIRE satisfy

[\

¥s 0 for all S e« D{(G)

1\

Ze

E(ys:e e 8(S), S e D(G)) ~ Zg S Co for all e ¢ E.

0 for all e ¢ E.

Together with (5.1.12) we will prove

. 5.1.21 Theorem Let G = {V,E) be a graph and k be a positive integer
such that k < |8(S)| for all $ ¢ D(G). Then for all c e 7 the linear

program (5.1.20) has an integer-valued optimum solution.
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Proof See (6.3.21). 0

5.1.22 Let

Pk(G) = {x e!RE:xe <1 for all e ¢ E,x(8{(S)) =2 k for all S e D(G)}.

J

If J is a strong k-cover of G then x~ is the unique solution to the system

of linear equations

X 0 for all e ¢ J

e

X T for all e € 4

e

and must be a vertex of Pk(G). By (2.5.2) and (5.1.22), the vertices of
Pk(G) are integervvalued, i.e. the vectors of strong k-covers of G.

Hence,

5.1.23 Theorem Let G = (V,E) be a graph. Then x e RE is a vertex

of Pk(G) if and only if x is the véctor of a strong k-cover of G. g

By (5.1.21), (5.1.23) and the Strong L.P. Duality Theorem we

have
5.1.24 Theorem Let G = (V,E) be a graph and k be a.positive integer

such that k < |8(S)| for al1 S ¢ D(G). Then for all c e RE,

min{c(J):J is a strong k-cover of G}

max{k.y-1.z:y eIRE(G),Z eiRE satisfy

Z(ys:e e 8(S),S ¢ D(G))»ze

1A

Cq for all e ¢ E}.

cZ. O

N

Furthermore, if ¢ ¢ ZE then we can chbose Yy e ZE(G),
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When ¢ = 1, we have, as a corollary to (5.1.24),

5.1.25  Corollary If the graph G = (V,E)} has a strong k-gever for a
positive integer k then the minimum cardinality of a strong k-cover

of G 1s equal to

max{k.y-1-2:y ¢ ZE(G),Z € ZE satisfy
E(yS:e e 8{(S),S e D(G))-ze s 1 for all e ¢ E}.

O

5.2 Strong k-Matchings

5.2.1 Let G = (V,E) be a graph. For any positive integer k, a

strong k-matching of G is a subset J c E such that for every directed

coboundary D of G, |J n D| < k., We can treat strong k-matchings in

exactly the same manner as strong k-covers were in the previous section.

5.2.2 The integer-valued feasible solutions to the following linear

program are thé vectors of strong k-matchings of G.

5.2.3 lmaximize_c-x where x ¢ R satisfies
Xg 2 0 for all e ¢ E
Xq S 1 for all e ¢ E
x(8(s)) < k for a1l S ¢ D(8).

0

If ¢y < 0 for any j ¢ E then for any optimum solution x° to (5.2.3)

we have xg = 0. Hence we may assume that c eIRE. If j is in no directed
coboundary then clearly xg = 1 for any optimum solution xo to (5.2.3).
Therefore we may assume that every edge is contained in a directed

coboundary.
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5.2.4 Proposition Any edge of a graph G = (V,E) is an element of

either a directed polygon or a directed coboundary (but not both).

Proof Let e € E. It is easy to see that e cannot belong to both a
directed poiygon and a directed coboundary. Let
W= {v e V:there exists a directed path in G from h{(e) to v}.

If t(e) ¢ W then e is an element of a directed polygon and if t(e) ¢ W

then, since §(W) = ¢, §(W) is a directed coboundary containing e. O

Let j be an edge of G = (V,E) and G' = G x (E-j). It is easy

to verify the following:

5.2.5 If D is a directed coboundary of G' then D is a directed

coboundary of G.

5.2.6 If e € E-j is in a directed polygon of G then e is in a

directed polygon of G'.

5.2.7 If j is in a directed polygon of G and D is a directed co-

boundary of G then D is directed coboundary of G'.

5.2.8 Let T = {e ¢ E:e is an element of a directed polygon} . It follows
from (5.2.5)-(5.2.7) that G x T is acyclic and for ¢ eIRE any optimum

solution to the Tinear program

maximize c.x where x elRE satisfies

0 for all e ¢ E

>
v

T for all e e E

=
IA

X z1foralleceT

x(6(S)) s k for al1 S e D(G x T).
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is an optimum solution to (5.2.3). Therefore, we may assume that
G is acyclic.
The dua1'1inear program of (5.2.3) is

D(G)

5.2.9 minimize k-y + 1.z where y ¢ R and z eIRE satisfy

Yo 2 0 for all S e D{G)
z, 20 forallecE '

Z(ys:e e §{S),S « D(G)) + zg 2 ¢, for all e ¢ E.
In chapter 6 we will prove

5.2.10 Theorem Let G = (V,E) be an acyclic graph and k a positive

integer. Then for all ¢ ¢ ZE, (5.2.9) has an integer-valued optimum

solution,
Proof See (6.3.13). 0
5,211 Let

PK(G) = {x < RErx, < 1 for all e < E,
| x(s(S) = k for all S ¢ D(6)}.

Clearly Pk(G) is nonempty, bounded and pointed. By (2.5.2) and (5.2.10)
the vertices of Pk(G) are integer-valued, i.e. the ve:tors of strong

J 15 the

k-matchings of G. If J < E is a strong k-matching of G then x
unique solution to the linear system

0 for all e ¢ J

e -
1]

1 for alleed

]
]

and so xJ is a Qertex of Pk(G). Therefore
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- 5.2.12 Theorem Let G = (V,E) be an acyclic graph and k a positive
integer. Then x eIRE is a vertex of Pk(G) if and only if x is the

vertex of a strong k-matching of G. C

5.2.13  For any ¢ elRE, (5.2.3) has an optimum solution which is a
vertex of PX(G), by (2.3.20). Hence, by (5.2.10), (5.2.12) and the

Strong L.P. Duality Theorem, we have

5/2.14 Theorem Let G = (V,E) be an acyclic graph and k a positive

integer. Then for all ¢ eIRE,

max{c(J):J is a strong k-matching of G}

E

+ satisfy

min{k-y+l.2:y eIRE(G), z ¢R
Z(yS:e e 6(S),S e D(G)) + z, = €, for all e ¢ El.

E

Furthermore, if ¢ € Z~ then we can choose y ¢ IE(G),Z € EE. [

h.2.15 . an the case of k = 1 the constraints Xq < 1 for all e ¢ E are

implied by x(8(S)) < 1 for all S « D(G) and Xg 2 0 fof all e ¢ E. If

[yo,zo] is an optimum solution to (5.2.9) and z; > 0 for some j ¢ E

O

then we can let T be any element of D(G) such that j e 8(T) and define
[y',2'1 by

Beagifs=T
y] :
S~ 0 .
_ g ptherwise
and
g ife=13]
Z]E
€ zg otherwise.



It is easy to see that [yl,z1] must also be an optimum solution to

(5.2.9). Therefore, by (5.2.14), we have

5.2.16 Theorem Let G = (V,E) be an acyclic graph and ¢ eiRE. Then
max{c(J):J is a strong 1-matching of G}.

5.2.17 min{l-y:y eJRE(G) satisfies Z(ysze e 8(S),S ¢ D(G)) = Ca
for all e ¢ E}.

Furthermore, if c € ZE then we can choose y € ZE(G). O

For ¢ = 1, any optimum solution y to (5.2.17) is (0,1)-
valued and therefiére the vector of a family F c D(G) such that
E=u(6(S):S e F). Thus we obtain as a corollary to (5.2.16) a

result due to Vidyasankar and Younger [V1].

5.2.18 Corollary For an acyclic graph G = (V,E) the maximum
cardinal ity of a strong T-matching of G is equal to the minimum cardinality

of a family of directed coboundaries whose union is E. a
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5.3 Facets of Strong k-Cover and Strong k-Matching Polyhedra

In this section we describe the facets of the polyhedra
defined in sections 5.1 and 5.2. We shall see that the descriptions
of the facets of Pk(G), the polyhedron associated with the strong
k-matchings or a graph G, and of PD(G)’ a polyhedron associated with the
strong 1-covers of G, are actually a description of the facets of poly-

hedra we can associate with any family F on a set E.

5.3.1 To begin with we consider Pk(G), defined by the linear system
Xo Z 0 forallecetE
Xg S 1 for all e ¢ E

x(8(8)) < k for all S ¢ D(G).

More generally, let F be any family of nonempty subsets of E and Tet k

be a positive integer. Let Pk(F) be the solution set of the Tinear

system
xe =0 for all eeE
5.3.2 Xo S 1 for all e ek
s k for all S e F.

x(S)
Clearly Pk(G) is of this form, where F = {8(S):S ¢ D(G}}.

5.3.3 ° Proposition For any family F on E and for. any positive integer

k, Pk(F) is of full dimension.
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Proof For all j ¢ E we have x{j} ¢ Pk(F). Therefore
x5 ¢ Ep o f0)

is a set of |E|+1 affinely independent vectors of Pk(F). By (2.3.23),'

Pk(F) is of full dimehsion. 0

For each j ¢ E let Pj = {x ¢ Pk(F):xj = 0}, Then Pj is a face of Pk(F).

Moreover,
5.3.4 Proposition For all j € E, Pj is a facet of Pk(F).

Proof Since dim(Pk(F)) = |E|, it is sufficient to find [E| dffinely

independent vectors of Pj’ by (2.3.25).
190 £ 330 (0
is such a set of vectors. - ' t

For each j ¢ E Tet PJ = {x « Pk(F):xj = 1.
5.3.5 Proposition If k = 2 then for all j e £, P is a facet of
PK(F). .

Proof By (2.3.31), it is sufficient to prove that the inequality
xj < 1 is essential for defining Pk(F). The vector 2x{j} satisfies all
the inequalities of (5.3.2) except Xg < 1. Therefc:r'e,}(‘j < 1 is essential

for defining-Pk(G). O
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5.3.6 Consider P](F). We may assume that E = u(S$:S ¢ F), since we
can always consider single e1enenf sets as members of F without altering
Pk(F) for any k. Then a defining linear system for P](F) is
xezo forallieckE
5.3.7

x(S) < 1 for all S ¢ F,
since every j ¢ E is an element of some Sj ¢ F and the inequalities Xq 2 0
for all e e Sj-{j} and x(Sj) < 1 imply X; < 1. Therefore, the "nontrivial™

facets ‘of P](F).are of the form

11l

.Q} {x e PMF):x(T) = 1}

for sets T ¢ F.

5.3.8 Proposition For all1 T e F, Q} is a facet of P](F) if and only

if T is a maximal member of F.

Proof If T is not maximal then there is some S ¢ F such that T ¢ S.
The inequalities X, = 0 for all e € S-T and x{S) = 1 imply x(T) < 1 and
x(T) < 1 is nonessential for defining P](F); By (2.3.31), Q} is not a
facet of P](F).

Conversely, suppose T is a maximal member of F. If IT| =1
then let a = 2 and if |T| = 2 then let « E‘TT}:T“ Let x' = ox'.

‘For any S e F-{T} we have

x'(S) =alS n T| < a[|T]-1]1 =1
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Hence x' satisfies all the inequalities of (5.3.7) except x(T) = 1.
Thus x(T) < 1 is essential for defining P](F) and Q} is a facet of
pl(F), by (2.3.31). 0 ‘

Similarly, we can decide which of the sets

Q% = {x e Pk(F):x(T) = k}

v

are facets of PX(F) for k > 2. Clearly if |T| < k then Q$ = ¢.

5.3.9 Proposition If k = 2 then for all TeF, Q% is a facet of

PK(F) if and only if T is a maximal member of F and |T| > k.

Proof Suppose T is not a maximal member of F and S e F is such that
T < S. Then the inegualities Xg 2 0 for all e ¢ S-T and x(S) <k fmp]y
x(T) < k and x{(T) = k is nonessential for defihing Pk(F). By (2.3.31),
Q# is not a facet of Pk(F). If IT} = k then the inequalities x, <1
for all e e T imply x(T) < k and again Q¥ is not a fapet of Pk(F).

Conversely, suppose T is a maximal member of F and IT] > k.

Since [T|-12 k, x, <1 for all e ¢ E. Since T s a maximal member

of F, for all S € F-{T} we have

13

x'(8) = |S o T|Lpfrrd

A

[|T]-11[—%—]
1TI-1

= k.
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Since-
x(1) = [T
>k,
X' satisfies 311 the inequalities of (5.3.2) except x(T) < k. Therefore,

x(T) < k is essential for defining Pk(F). Since Pk(F) is of full
 dimension, QX is a facet of PX(F), by (2.3.31). 0

By (5.3.3), PK(F) is of full dimension. (5.3.4), (5.3.5), (5.3.8)
" and (5.3.9) characterize the facets of Pk(F). By (2.3.31) we have

5.3.10 - Proposition Let F be a family of nonempty subsets of E such

that E = u(5:S ¢ F). The unique minimal linear system defining P](F) is

Xq >0 forallecetE

x(S) < £(S) for all maximal members S of F.

The unique minimal Tinear system defining PX(F) for any integer k = 2 is

'xe > 0 for all e ¢ E
Xg S 1 for all e ¢ E
x(S) < k for all S ¢ F such that S is & maximal member of

Fand |S| > k. g

5.3.1 We have characterized the facets of Pk(G) by treating the
more general polyhedron Pk(F) for any family F on E. Similarly, we can

generalize a characterization of the facets of the polyhedron

Po(g) = X e RE:x(8(5)) = 1 for all S < D(G)}
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for'any graph G. More generally, for any family F of nénempty'subsets
. of E let PF denote the solution set of the linear system
X =0 for allecet

5.3.12
x{S) =1 for all S ¢ F.

-PD(G) is the solution set of (5.3.12) when F = {6(S):S « D{(G)3.

5.3.13 Proposition For any family F of nonempty subsets of E, PF is

of full dimension.

Proof It is easy to see that for all e ¢ E there exists X ¢ PF such
that Xo > 0. Similarly, for al1 S e F there exists X PF such that
x(S) > 1. Therefore, there are no inequalities in the equality sysfem

of (5.3.12) and, by definition, dim(PF) = |E|. [}

0} is a facet of

n

5.3.14  Proposition For all j < E, H; = {x ¢ PEiX;

P. if and only if {j} 4 F.

F
Proof If {j} ¢ F then Hj‘= ¢ since Xy 2 1 for all x e Pp. Conversely,
suppose {j}14F. Let x' be defined by

-1 ifes= j

111

xI
€ 2 otherwise .

x' satisfies all the inequalities of (5.3.12) except x, = 0. Therefore,
Xq 2 0 is essential for defining Pg and, by (2.3.31), Hj is a facet of

PF. 0
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5.3.15 Proposition For all T e F, QT = {x ¢ PF:x(T) =1} is a

facet of PF if and only if T is a minimal member of F.

Proof Sﬁppose T is not a minimal member of F and for S ¢ F we have

S < T then the inequalities Xg 2 0 for all e e T-S and Xx(S) =2 1 imply

x(T) = 1. Therefore, x(T) = 1 is nonessential for defining'PF and,

| by (2.3.31), Q; is not a facet of PF.

Conversely, suppose T is a minimal member of F. For all S ¢ F—{T}

we have

xT(S) = If nS|z1.

“Therefore, xT satisfies all the inequalities of (5.3.12) except x(T) = 1.
Hence x(T) = 1 is essential for defining PF. By (2.3.31), Qp is a_ facet

of P i}

-
By (2.3.31) and (5.3.13)-(5.3.15) we have

5.3.16 Proposition For any family F of nonempty subsets of E, the

unique minimal linear system defining Pp is

Xo 2 0 for all e € E such that {e} ¢ F

x(S) = 1 for all S such that S is a minimal member of F. 0

5.3.17 The ease with which we can describe the facets of Pk(G) and

p serves as a contrast to the rather involved methodé we used

D(G)
to determine the facets of th: intersection of two polymatroids. It
is also in constrast with the methods used to characterize the facets of

Pk(G), the solution set of the linear system
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v

X 0 for all e ¢ E

e

1A

X
e

x(§(S)) = k for all S  D(G).

1 for all e ¢ L

For any family F on E Tet Pk(F) be the solution set of the

linear system

Xq >0 for all e e E

5.3.18 { X,
x(S) = k for all SeF

v

1 for all e ¢ E

in

5.3.19 Proposition For any positive integer k and for any family F
on E, P (F) is of full dimension if and only if k < |S| for al1 S ¢ F.

Proof If k > |S| for some $ e F then clearly P (F) =¢. If
"k = |T] for T e F then for all e e T then inequality x, < 1 is in the
equality system of (5.3.18), and so dim(Pk(F))< |E].

Conversely, suppose k < |S] for all S e F. Then

oEUhs cB e m

is a set of |E|+] affinely independent vectors of Pk(F). By (2.3.23),

Pk(G) is of full dimension. o

For each j € E let RE = {x « P(F)ix; = OL.
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5.3.20 Proposition Let F be a family on E and k be a positive
integer such that Pk(F) is of full dimension. Then for all j < E, R?
is a facet of Pk(F) if and only if there is no T ¢ F such that j e T

cand |T| = k+l.

Proof A Tinear system defining R? is
Xq 0 for é]l eet

_ X, 20

5.3.21 J
Xg < 1 for allecet
x{S) = k for al11 S e F

Suppose T e F is such that jeT and IT| = k+1. If x; = 0

then x, 2 1 for all e « T-j and the inequality x, = 1 of (5.3.21) is in
the equality system of (5.3.21). Since X5 s 0 is also in the.equality
system of (5.3.21), din(RY) < |E[-2. Since Py(F) is of full dinension,

E'is not a facet of Pk(F).

R
Conversely, suppose there is no T ¢ F such that j « T and

|T{ = k#1. Then
oE-lodly ) B0 h

is a set of |E| affinely independent vectors of R?. Hence, by (2.3.23),
dim(R?) = |E]-1. Since‘Pk(F) is of full dimension, Rg'is a facet of

P, (F). 0

5.3.22 For any T ¢ F let L$ = {x ¢ Pk(F):x(T) = k}. We have thel

following characterization of when L} is a facet of P1(F).
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5.3.23  Proposition Let Py(F) be of full dimension. Then for ali

TekF, L} is a facet of'P](F) if and only if T is a minimal membey of F.

Proof The proof of (5.3.23) is identical to that of (5.3.15). 0

5.3.24 A characterization of when L$ js a facet of Pk(F) appears to

be difficult for the case k = 2,. It is certainly not true that for k = 2,
L# is a facet of Pk(F) if and only if T is minimal member of F, even
when F is the family of directed coboundaries of a graph G. As an

example of this, consider the following graph:

Let k = 2. The family of directed coboundaries of G contains {e,f,j},

{g,h,i} and {e,f,g,h}. Therefore T {e,f.,g,h} is a minimal directed

coboundary of G. However, we have

[\
™

X+ + X,
e X'F XJ

X + X + X.
g - "h i

v
%)

I
>
[\

H
—

X + x. +t x_ + > 7.
e xg Xy, 2
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Hence, x(T) = 2 is nonessential for defiﬁing PZ(G)' Since PZ(G)

is of full dimension, L%(T) is not a facet of PZ(G)’ by (2.3.31).

5:3.25  However, we do have a characterization of the sets T ¢ D(G)

such that LE(T)(G) is a facet of P,(G) for k > 2.

5.3.2 Theorem Let G = (V,E) be a connected graph and k be a positive
integer such that Pk(G) js of fui) dimension. Then for any T ¢ D(G),
LE(T) is a facet of Pk(G) if and only if there is no family F < D(G)-{T}
such that

2(|6(S) [k:S € F) + [8(T)u(8(S):S € F)| < |8(T)|-k.

Proof.  See (7.2.7). 0
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CHAPTER &

SUBMODULAR FUNCTIONS ON GRAPHS

In this chapter we ama]gamafe concepts of Chapters 3 and 4
into a common theory. We will show that many "integer-valued results"
of the previous chapters are special consequences of this theory;
by an "integer-valued result" we mean a result of the form "this linear
program has an integer-valued optimum solution” (cf.(4.3.4), (5.1.12)

and (5.2.10)).

‘6.1 A Class of Totally Unimodular Matrices

6.1.1 You may recall that in Chapter 4 we required the total unimodularity
of a particular matrix A (specifically we are referring to the proofs

of (4.3.4) and (4.5.5)). A was obtained from the matrix of a bipartite
graph by multiplying certain rows by -1. In this section we extend

the class of matrices of graphs to a larger class of tota]Ty unimodular
matrices. This class is also obtained from'graphs and a construetionl

is attributed to N. Robertson by Lovdsz [L1].

6.1.2 Given a tree T and a set V, a V-labelling of T is a function
2V = V(T). For S c V let 8(S) = {2(v):v ¢ S} and for'e e E(T) let
Ae) = v e Vialv) e wle)}.

6.1.3 Lemma: If % is a V-labelling of a tree T and S c V then either

there exist subtrees Ty,T, of T and a node v ¢ V(T) such that

6.1.4  V(T}) 0 V(T,) = (VHV(T)) v ¥(T,) = V(T).%(S) = V(T,) and
2(S) < V(Tz).- '
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or there exists an edge e ¢ E{T) such that

6.1.5 each of ale) n 2(S), ale) a £(3), wle) n &(S), wle) n &(S)

is nonempty.

Proof Let T;,T, be the unique minimal subtrees of T such that
2(8) g V(T]) and 2(5) < V(T5). If [V(Ty) n V(T4)| = 1 then we can
extend Ti and Té to subtrees T1 and T2 respectively for which (6.1.4)
holds.

If ]V(Ti) n V(Té)| = 2 then there is an edge e e-E(Ti) n E(Té).
But e < E(T]) if and only 1f ale) n 2(S) # ¢ and ale) 0 2(S) # ¢
and e « E(Té) if and only if ale) n 2(5) # ¢ and w(e) n 2(S) # 4. Hence

(6.1.5) holds for e, d

6.1.6 Lemma A family F of set V is a cross-free family if and only if

6.1.7 There exists a tree T and a V-labelling £ of T such that
F={xe)ee E(T)}.

Proof Suppose F is defined by (6.1.7) and let Y = Ale) and = A(3)
for distinct edges e,j e E(T). Let w be the path in T from h{e) to h(j).
There are four possibilities. If m contains neither t(e) nor t{j) then
YnZ-=¢. Ifmcontains t{e) but not t(j) then Z c Y. If m contains
t(j) but not t{e) then Y c Z. If w contains both t(e) and t(j) then
Yu Z=V., Hence F is a cross-free family of V.

we-prove that if F is a cross-free family then (6.1.7) holds
by induction on |F|. 1If F consists of just one set S then let T consist

of a single edge e and for each v ¢ V let
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L) t{e) ifvesS

1t

[hie) ifv¢s.

Clearly T and & satisfy (6.1.7). Now assume that |F| > 2 and (6.1.7)
holds for all cross-free families H with |H| < |F|. Let Se F and
consider the family H = F-{S}. By the induction hypothesis there exists
. a tree T and a V-Tabelling % of T such that H = {x(e}:e ¢ E(T)}.

If for some edge e ¢ E(T) each of ale) n 2(S), ofe) n 2(S),

w(e) n 2(S) and w(e) n 2(5) is nonempty then A(e) and S cross; a contra-
diction. Hence, by (6.1.3), there exist subtrees T-I and T2 of T and a
node v ¢ V(T) such that (6.1.4) holds. Let T' be the tree with

V(T') = (V(TY=Ivh) v vy, E(TY)
j 4 E(T) and for each e « E(T'),

E(T} u j where V1V d v,

t(e) if t(e) vande #j
t'{e) = V1 if t(e) =vand e ¢ E(T]), or e = j
\Vo if t(e) =vande ¢ E(Té)
h(e)-if h{e) # v and e # j
h'(e) ={v; if h(e) =vande e E(Ty)
Vo if h(e) = v and e € E(T,), ore = j.
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For w ¢ V let

L(w) if 2(w) # v
vandwe S

vand w¢ S.

2'(w) = vy if 2(w)

if 2(w)

Vo

It is easy to check that F,T' and &' satisfy (6.1.7). Therefore the

lemma holds. 0

6.1.8 Theorem If G = {V,E) is a graph and F is a cross-free family

Fxk

of V then the matrix A & R with rows [cv(S):S ¢ F] is totally

unimodular.

Proof By (6.1.6) there is a tree T and a V-Tabelling & of T such
that F = {A(e):e ¢ T}. Consider the graph H where V(H) = V(T);

E(H) = E(G) u E(T) and for all e ¢ E(G), tH(e) = E(tG(e)) and

hH(e) E'R(hG(e)). ‘T is a spanning tree of H and so, by (2.6.15), the
matrix B with rows [ch(w(e)):e ¢ E(T)] is totally unimodular. However,
for each e ¢ E(T), 8,(w(e)) = 6;(A(e)) u e and 8 (ale)) = 65(XTE)).
Hence, B = [A,I-] and, by (2.5.10), A is totally unimodular. O

6.2 Submodular Functions on Graphs

6.2.1 Given a connected graph G = (V,E) recall that D(G) is the
family of sets S ¢ V such that §(S) is a directed coboundary of G.

An important property of D(G) is that it is a crossing family of V; i.e.
ifS,TeD(G), SnT#¢dandSuT#VthenSnT,SuTe D(G). A proof
of this property of DB(G) is in the next section (see (6.3.12}).
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6.2.2 The important point about polymatroids was the submodularity
of the functions f:LE + R which determined polymatroids. Now we will

blend the concepts of submodular functions and croséing families.

6.2.3 Let 6 = (V,E) be a graph, F a crossing family on V and
f:F =R a submodular function. Let.a,d be vectors with possibly infinite

‘components., For a given vector ¢ eIRE consider the linear program

6.2.4 maximize c-Xx where x‘eIRE satisfies
Xo € 8y for all e c E
6.2.5 X, 2 d, forall ek

cv(S)'x < f(S) for all S ¢ F.

The dual linear program of 6.2.4 1is

E

6.2.6 ‘minimize f.y + a-z ~ d-w where y « RF and w,z € R- satisfy

ySEO‘fOY‘aH SefF

6.2.7 Wy sZg 2 0 for all e et

F(y,e)+ze-we = ¢, for all e e E,
where for any family Fon V, y <R ande e E
F(y,e) = E(ys:e e 6(S),S ¢ F)-Z(ysze e 8(5),Se F).
(We interpret the dual variable of an 1nfinite constraint as bejng_zero.)

6.2.8  We next show that if c ¢ 7 and (6.2.6) has an optimum solution
then (6.2.6) has an integer-valued optimum solution. We can represent

the Tinear system (6.2.7) by Ax < b for an appropriate choice of A and b.
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In general, A will not be totally unimodular. However, we cén manipulate
an optimum solution to (6.2.6) as we did in the proof of (4.5.5) to
obtain a linear program such that any optimum solution to this linear
program will be an optimum solution to (6.2.6). Moreover, the constraint
matrix of the new linear program will be totally unimodular, so it and'

(6.2.6) will have integer-valued optimum solutions.

6.2.9 Theoren If ¢ ¢ 7 and (6.2.6) has an optimum solution then

(6.2.6) has an integer-vallued optimum solution.

Proof]. If ¢ ¢ ZE and (6.2.6) has an optimum solution then, by (2.5.1),

(6.2.6) has a rational-valued optimum solution [yo,zo,wol.

6.2.10 Starting with j = 0, suppose Y,Z € F, Y and Z cross and

0 < y% < y%. Then, since F is a crossing family, Y nZ e Fand Y u Z € F,

For S € F define yg+1 by

yg + y$ ifSe {YnZ,YulZ}
eyl -y ifs e un
yg otherwise.
It is easy to check that F(yj+T,e) = F(yj,e) for all e ¢ E.
Therefore [yj+1,zogw0] is a feasible solution to (6.2.6). Furthermore,

f'-yj*'-i

foyd + PLE(Y 0 D+F(Y 0 2)-F(V)-F(2)]

f'.yJ ’

IA

1 This is a generalization of a method used by Lovasz [L1] to prove
(5.1.2) and of the method used in Chapter-4 to prove (4.3.4).
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by the submodularity of f. Hence [yJ+],zo,w0] must also be an optimum

solution to (6.2.6).
As in the proof of(4.5.5), let a be a common denominator of

0 0 J+

{yg:S e F}. Let u” = ay  and for each vector y constructed

according to (6.2.10) let uj+] = ayj+1. Since yj+] > 0, uj+] € ZF.

+
. 1.0, There can only be

Since 1-yJ+] = 1-yJ we have 1-u
a finite number of distinct vectors u e ZE having the same sum 1-u.
" Therefore, there can be only a finite number of distinct vectors in the

Seque.nce {yo sy1 N :yJ syJ+] ) .} . Since

Z(yJ+1|S|2:S e F) = 2(yl[sI%:s € PLIY o 212V v 2]
VR-1212T > Byd]s| s ),

the sequence has only finitely many- terms.
Therefore there is an optimum solution [yﬂ,z0 wo] to (6.2 6)
with the property that the family = {S ¢ Fiyg > 0} is a cross-free

family. [yE,zo,wo] is a feasible solution to the linear program

6.2.11 minimize f.y + a+z - d.w where y ¢ RF and w,z ¢ RE'satisfy

Yg 2 0 for all S ¢ F

we,ze 2 0 for all e ¢ E

6.2.12 9
Yg S 0 for all Se F - F

Fg(y,e) *z, - W, = g for all e ¢ E.
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Any feasible solution to (6.2.11) is a feasible solution to (6.2.6).
Since [yg,zq,wo] {s an optimum solution to (6.2.6), [yz,zo,wo] must be
an optimum solution to (6.2.11). Therefore, any optimum solution to
(6.2.11) is an optimum solution tﬁ (6.2.6).

Represent the Tinear system (6.2.12) by Ax < b for an appro-
priafe choices of A and b. Consider the submatrix A’ of A corrésponding'

to the constraints Fz(y,e) +z, =Wy = C for all e ¢ E; omitting the

e
columns corresponding to WosZy- 1t is easily seen that the columns

of A' are of the form [cv(S):S ¢ Fﬂ]. Since FR is a cross-free family,
Al fs totally unimodular, by (2.5.8) and (6.1.8). Therefore, by (2.5.8)-
(2.5.11), A is totally unimodular. By (2.5.16), (6.2.11) has an integer-

valued optimum solution [¥,Z,w]. Therefore, [¥,Z,W] is an integer-

valued optimum solution to (6.2.6). 0

In general, the polyhedron of feasible solutions to (6.2.4)

may not be pointed. However, in the case that it is we have, by (2.5.2),

6.2.13 Corollary If a,d e ZE, f is integer-valued and the polyhedron
P of feasible solutions to (6.2.4) is pointed then the vertices of P

are integer-valued,

6.2.14  Theorem If a,d ¢ ZE, f(S) is an integer for all S € F then
(6.2.4) has an integer-valued optimum solution for every ¢ eIRE such

that (6.2.4) has an optimum solution.
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0

Proof Let x” be an optimum solution to (6.2.4) and for each e ¢ E Tet
ag = rxgﬂ, dg = Lxgj. Clearly dg > d, and ag s a, for

all e e« E. For any‘c0 elRE consider the linear program

0 E

6.2.15 maximize ¢~ .x where x € R~ satisfies

0
e
0
e

cv(S)+x = f(S) for all S ¢ F.

xe_s a. for all e ¢ E

Xg z d for all e ¢ E

0 is an element of the polyhedron P of feasible solutions

Since X
to (6.2.15), P is nonempty and bounded. Therefore, by (2.3.18), P is
pointed. By (6.2.13), (6.2.15) has an integer-valued optimum solution

0 E

for every ¢ € R-. In particular, for c0 = ¢, (6.2.15) has an integer-

valued optimum solution x]. Clearly, any feasible solution to_(6.2.15)
is a feasible solution to (6.2.4). Since %0 is a feasible solution to

(6.2.15), x| must also be an optimum solution to (6.2.4). o

Combining (6,2.9), (6.2.14) and the Strong L.P. Duality

Theorem we have

6.2.16 Coroilary If a,d e ZE, C e ZE, f(S) is an integer for all

S € F and {6.2.4) has an optimum solution then

max{cC.X:X e Z£ x satisfies (6.2.5)}

+’

min{f-y + a.z - d-w:y e Zi.w,z € ZE,[y,z,w] satisfies (6.2.7)}.

0
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6.3 Applications

In this section we show how certain key results in the theory
of polymatroid intersection, strong k-covers and strong k-matchings
are consequences of results in the previous section. ‘We will indicate hbw
some of the linear programs we associated with polymatroid intersection,
strong k-covers and strong k-matchings are special instances of {6.2.4)

and thereby be able to apply (6.2.9).

Polymatroid Intersection

6.3.1 Recall that in section 4.3 we considered the Tinear program
‘6.3.2 maximize c.x where x e!RE satisfies
Xo 2 0 for altee E
6.3.3 x(S) < f](S) for all1 S K¢
6.3.4 x(S) = fz(S) for a1l S KE’

where f1,f2;LE + R are Bo-functions and ¢ eIRE (see (4.3.1)).

6.3.5 We now stiow how (6.3.2) is a special instance of (6.2.4). Let
E be the edge set of a loopless graph where each component of G isa

single edge together with its head and tail. For each S € KE let

S = {t(e):e ¢ S}, Sé = {t(e):e € E} v {h(e):e ¢ S}, f(51) = f](S) and
f(SZ) =z f2(S). Let F = {Sl:S e Ke} v (5,35 € Kel.
6.3.6 If for S,T e K we have S, n T # ¢ then S; n T, = (S n T)]

and S; u T = (S v T)] are elements of F. If S, u T, # V then
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S n T#¢andS, nT, = (S u T)2 and S, u T, = (S n T)2 are elements

of F. Since S] [ T2, F is a crossing family.
6.3.7 For S,T « K. we have
f(S] n T])+f(S] u T1) = f](S n T)+f](S u T)

f1(S)+f](T)
= f(S])+f(T])

1A

and

£(S, 0 TehH(S, u Tp) = F{S v T),)+F((S n T),)

= fz(S U T)+f2(S nT)

A

f2(8)+f2(T)

= £(S,)+5(T,).

Since 31'5 Tys f(s1 n T2)+f(51 u T2) = f(S])+f(T2). Therefore, f is a

submodular function of F.

6.3.8 Because 6(31) = S and G(V-S]) = ¢ for all S « K;, the inequality
x(S) < fT(S) is equivalent to cv(S1)-x < f(S1). Similarly, 6(52) =S

and 6(V-32) = ¢, and so the inequality x(S) < fz(S) is equivalent to
cv(Sz)-x < f(Sz). Therefore (6.3.2) is indeed a special case of (6.2.4),

Lo,

withd =0, a

n
1]

6.3.9 By (6.2.9), if c ¢ Z then the dual linear program of (6.3.2)
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o 1 2 1.2 K
6.3.10 minimize fI-y + f2.y where y ,¥~ e IR ~ satisfy

yi 20 for all S e Kg, 1=1,2
](K e) + 2(K e) 2 ¢ forallectE
.y E: .Y E: = e
always has an integer-valued optimum solution. This is the statement of
(4.3.4), an important resuit of Chapter 4.

6.3.11 - If f1(S) and fz(S) are integers for all S e K. then, by (6.2.13),

the vertices of the set of feasible solutions to (6.3.2), i.e. the vertices

of P(Kc,f1) 0 P(Kg.f,) are integer-valued. This is the statement of (4.3.8).

Strong k-Matchings

6.3.12 Recall that for any graph G = (V,E), D(G) was the family of
subsets S 'c V such that &(S) # ¢, §(S) = ¢. In the previous section we

asserted:

6.3.13 Proposition For any connected graph G = (V,E), D(G) is a

crossing family.

Proof Suppose S,T s‘V are such that S and T cross, &(S) = &(T) = ¢,

: 6(3) #¢and §(T) #¢. Ifec d(SnT) thene e §(S) or e ¢ 8(T),

which is impossible. Therefore, 8(S n T) = ¢. Similarly, &(S v T) = ¢.
Since G is connected, S n T # ¢ andS u T # V, both §(S n T) and (S uT)

are nonempty. Therefore, S nT,SuT e€F, a

6.3.14 If we let f(S) = k for all S e D(G) then clearly f is sub-
modular function of D(G). Since §(5) = ¢ for al1 S e D(G), the
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inequality x(8(S)) =< k is equivalent to cv(S)x < f(S). If we now let
a=z1l,d=0 then (6.2.4) becomes

6.3.15 maximize c-x where x € RE satisfies
0 < Xq < 1 for all e ¢ E

x(6(S)) = k for all S e D(G},

which is (5.2.3). The key result concerning strong k-matchings was that

if G 1s acyclic and k is a positive integer then

6.3.16 For all c ¢ 7 the dual Tlinear program of {6.3.15) has an
integer-valued optimum solution. (See (5.2.10)).
We may assume.w.T.o.g. that G is connected and then (6.3.16)

follows from (6.2.9).

Strong k-~covers

6.3.17  For any family F on set V let F = {5:5 ¢ F}.

6.3,18 Proposition If F is crossing family on V then F is a crossing
family on V.

Proof Suppose S,T ¢ F and S,T cross, Since SnT#¢,SuT#V.

Since SuT#V,SnT#¢. Hence, because F is a crossing family,we

have SnT=SuTeFandSuT=5nTeF. Therefore, $nT,SuTef

and F is a crossing family on V, O
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6.3.19 In studying strong k-covers of a graph G = (V,E) we may assume
w.l.0.g. that G is connected. One of the linear programs we associated

with strong 1-covers of G was:

6.3.20 minimize ¢.x where x eIRE satisfies
xe =0

x(8(S}) = 1 for all S « D(G),

where ¢ elRE. (See (5.1.10)).

6.3.21  Let F = {S c V:8(5) # ¢,8(S) = ¢}. Then F = D(G) and, by
(6.3.13) and (6.3.18), F is a crossing family on V. For-all S e F Tet
f(S) = -1. Cléar]y f:F ~IR is a submodular function. For all S € F,
the inequality x(8(5)) = 1 is equivalent to cv(S)-x < f(S). Therefore,
(6.3.20) is an instance of (6.2.4)., By (6.2.9), the dual linear program
of (6.3.20}:

maximize 1:y where y eIRD(G) satisfies

yg = 0 for all S e D(G)
Z(yS:e e 6(S),5 ¢ D(G))} < Cq
has an integer-valued optimum solution for all c € ZE. That is the

statement of (5.1.12).

6.3.22 In exactly the same manner one can show that for any positive

integer k the linear program
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6.3.23 minimize c.x where X elRE satisfies
0 < Xq <1 for all e e E

x(8(S}) = k for all S ¢ D(G)

is a special instance of (6.2.4). Therefore, by'(6.2.9); the dual linear
program of (6.3.23) has an integer-valued optimum solution for every

¢ « 7F, provided k < [8(S)| for all S ¢ D(6). This is (5.1.21),

Supermodular Functions on Graphs

6.3.24 For.any family F on set V a function f:F =R is said to be

supermodular if

F(Y nZ) + f(YuZ)=zf(Y)+ f(2)

" for all Y,Z ¢ F such that Y n Z, Y u Z ¢ F. Clearly, f is supermodular

of F if and only if-f is submodular function of F. We can treat

supermodular functions on graphs just as submodular functions on graphs in

the previous section.

6.3.25 Let G = {V,E) be a graph, F a crossing family on V and f:F >R
be a supermodular function. Let a,d e!RE with possibly infinite‘

components. For any C elRE consider the 1inear program

6.3.26 minimize c.x where X elRE satisfies

A

X

o Y for allee E

v

Xe

cv(S)x = f(S) for all S e F.

de for all e ¢ E
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6.3.27 We can translate (6.3.26) into an equivalent submodutar
version in the form of (6.2.4). Let F = {5:5 ¢ F}. By (6.3.13), Fis
also a crossing family of V. For any Sc V, cv(S) = -cv(S). Therefore,
for all S e F the inequality cv(S)-x 2 f(S) is equivalent to

—cv(§).x = £(S). If we let £*(S) = -f(S) for all S e F then for

all Y,Z ¢ F such that Y n Z, Yu Z e F we have

1]

FIUY n Z)+F"(Y u Z) (Y n Z)-f(Yu Z)
- = £(Fu I)-f(¥ n 1)
< -f(Y) - f(Z)

f'(Z).

+

= £1(V)

Hence, f' is a submodular function of F. For all S e F the inequality

cv(S):x = f(S) is equivalent to cv(S) x < £1(S) and (6.3.26) is equivalent

to

6.3.28 maximize ~-c-X where X eIRE satisfies

A

X
e

xe > de for all e ¢ £

cv(S).x < £'(S) for all S « F.

3y for all e ¢ E

Clearly (6.3.28) is a linear program in the form of (6.2.4). The dual

Tinear program of (6.3.26) is
6.3.29 maximize f+y - a:-z + d-w where y eIRF and w,z eIRE satisfy

¥Yg 2 0 for all Se F

WesZg =0 forall e e E

F(_y,e)-ze+we = ¢, for all e e E.
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By (6.2.9),

6.3.30 Theorem If c ¢ ZE and (6.3.29) has an optimum solution then
(6.3.29) has an integer-valued optimum solution. 0

By (6.2.14),

6.3.31 Theorem If a,d ¢ ZE (with possibly infinite components) and
£(S) is an integer for all S e F then (6.3.26) has an integer-valued
optimum solution for all c e RE such that (6.3,26) has an optimum

solution. 0

Network Flows

6.3.32 Let G = (V,E) bé a loopless graph, 2 eIRE, a e RV.

A feasible flow in G is a vector X « RE which satisfies

0 for all e ¢ E

W

Xe

6.3.33 xe < ae for all e « E

cv(v)-x - q, for all v e V.

Let P be the solution set of (6.3.33). We can describe P

using a submodular function of a cross-free family on V.

6.3.3¢ Let Fy = {{vliv ¢ V} and Fp = (V-{vlev e V.

For each {v} ¢ F1 tet f{{v})}

q, and for each Vv - {v}e F,
F

~y F It is easily seen

fet £(V - {v}) = -q,. LletF ) ”-

that F is a cross-free family and that f is a submodular

function of F. For any v e ¥V the inequalities

CV({V})'X < f{{v}) = q, and cv(V - {v})-x < f(V - {v}) = -q,

imply cv(v)-x = g,. Thus (6.3.33) is an instance of (6.2.4).
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CHAPTER 7

FACETS FOR SUBMODULAR FUNCTIONS ON GRAPHS

7.1 Some Facets for Submodular Functions on Graphs

7.1.1 Let G = (V,E) be a graph, F a crossing family on V¥ 'and f:F =R

E

a submodular function. Let a,d ¢ R™ with possibly infinite components.

For this section P will denote the set of solutions of the linear system

7.1.2 Xq

IA

a, for alle ¢ E

7.1.3 Xq

v

de for all e ¢ E
7.1.4 cv{S)-x < f(S) for all S ¢ F3

i.e. P is the set of feasible solutions to the Tinear program (6.2.4).
By placing some restrictions on the combinatorial description of P we

can determine the facets of P.

7.1.5 1f for some j ¢ E, aj is finite then

pd

{X e Pixj = aj}

is a face of P. It may be that for some S e F we have 8(S) = {j},
§(S) = {¢} and £(S)

a5 in which case the inequality cv(S)-x < f(S)

is equivalent to X, < a,. If we assume that there is no such S ¢ F then -

J J
we can determine whether or not P is a facet of P.

7.1.6 Theorem Let P, the set of solutions to (7.1.2)-(7.1.4),

be of full dimension. Let j ¢ E be such that aj is fihite. If there is

ne S ¢ F such that 6(S) = {j}, 6(S) = ¢ and £(s) = a; then P is a facet
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of P if and only if there is no integer-valued [y,z,w] satisfying

’ySZO for all S e F

Wy s z, >0 forallecet
7.1.7 « zj <0

L F(y,e)+ze-we =0 foralle#]

and
7.1.8 f;y + a.z - dew < ajz-
Proof "Suppose pd is a facet of P. Since there isno S ¢ F such

fl

¢ and f(S) =355 the inequality Xy < 2y is not

£(S) for any S ¢ F. Therefore, because P is of

that 6(S) = {j}, &(5)

I

equivalent to cv(S)'x

full dimension, the inequality X < 2y of (7.1.2) is essential for defining

P, by (2.3.31). By (2.4.19), there can be no ty,z,w] which satisfies

(7.1.7) and (7.1.8). | |
Conversely, suppose P is not a facet of P. By (2.3.29), |

Xy < 2 is nonessential for defining P. By (2.4.18) and the Strong L.P.

J N B
Duality Theorem, the optimum value of the linear program

7.1.9 . minimize f-y + a.z - d.w where [y,z,w] satisfies (7.1.7) "
is less than or equal to ae We now show that (7.1.9) has an integer-
valued optimum solution. By (2.5.1), (7.1.9)_has a rational-valued

optimum solution [yo,io,wo].
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7.1.10 . As in the proof of (6.2.9), we can find an optimum solution
[yk,zo,wo] with the property that the family F2 = {S e F:y% > 0} is

a cross-free family. Hence, by an argument similar to that outlined

in the proof of (6.2.9), (7.1.9) has an integer-valued optimum solution
[7,Z,w]. Since f.¥ + a-Z - d-w = a5 [¥.z,%] satisfies (7.1.7) and

(7.1.8). O

7.1.11 Similarly, if dj is finite for some j ¢ E then

I{x e P:x; = d.}

P.
J J J

is a face of P. We could imitate the proof of (7.1.6) to prove the

following, but we will apply (7.1.6) directly.

7.1.12 Theorem Let P, the set of solutions to (7.1.2}-(7.1.4) be of

full dimension. et j ¢ E be such that dj is finite. If there is no

1]

S < F such that 6(S) = ¢, 8(5) = {j} and (S} -dj then Pj'is a facet

of P if and only if there is no integer-valued [y,z,w] satisfying

¥g 2 0 for all SeF

we,ze >0 for all e e E

7013 ¢ w. <0
- ]

F(y,j) F Zj = ".[
F(y,e) + Z, - Wy = 0 for all e # j.
and '

7.1.14 f.y +az-d-ws -dj.



-7.4 ~

Proof let G be obtained from G by reversing the edge j. lLet

5,8 € IRE

Let P be th

X

X

e

e

e

be defined by

| ~do if e =]

3y otherwise

-8g ife=17]

de - gtherwise.

solution set of the linear system

~

de for all e ¢ E

'

A

ae for all e € E

cvg(s)Lx ¢ f(S) for all1 S e F.

Let gﬂRE‘+IRE be the linear transformation defined by

-x ife=]

(gtx), =1 °©

X, otherwise,

for all x ¢ RE and for all e ¢ E. It is étraightfnrward to verify that

g(P) = P. Since g is nonsingular, a set KlglRE is affinely independent if

and only if g(K) is affinely independent. Therefore, P contains k affinely

independent vectors if and only if P contains k affinely independent

vectors. Hence, by (2.3.23), dim{P) = d{m(a).

Consider PJ = {x e ﬁ:xj = gj}., Sinc

for all x « PJ and for all S e F,

e, = -dj, ch(S)-x = cvg(S)-g(X)

g(Pj) =_§J and, as above,

dim(Pj) = dim(PY). Therefore, Py is a facet of P if and only if PJ is a

facet of 5.
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Since P is of full dimension, P is of full dimension. Since
there is no S ¢ F such that GG(S) =6, GG(§) = {j} and f(S) = —dj, there
is no S e F such that 8(S) = {3}, 63(S) = ¢ and £(S) = a ;. By (7:1.6)
pJ is a facet of P if and only if there is no integer-valued [y,z,w]

satisfying

( Yg 2 0 for alt Se F

‘fe >0 for all e ¢ E

It
—T

0 for all e # ]

F(y,e)akzé-we
. ¥ I\IA ~ a./\ < /\.
! f-y + a:z w aJ,

- where F(y,e)é = Iygie e 6@(5),5 e F)}-Tygte « 66(5),3 e F).
For [y.,2,4] satisfying (7.1.15), let w',z' < RE be defined by

A

z_ ife=7]

w' = € ¢ J
€ ﬁe otherwise

W if e =j

z! = e ’
€ Zo otherwise.

Since for all y ¢ RF we have F(y,j)@ = —F(y,j)G and F(y;e)@ = F(y,e)G
for all e # j, there exists an integer-valued [y,z,w] satisfying (711.5)
if and oniy if there exists a corresponding integer-valued [y,z',w']

satisfying
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Yg 2 0 forallSefF
Wé,zé >0 forallecet

w: =0
J
F'(ysj) + 25 = -1
Fly,e) + zé - wé =0 for all e # j

f-y +a-z' -dw' = "dj'

The theorem now follows. B
7.1.16 For all T ¢ F let
‘ Q = (x e P:ev(T).x = £(T)}.

We are able to determine when QT is a facet of P only when we place

further restrictions on P. For any T e F let
Fr 2 {5« F:cv(S) = cv(T), f(S) = f(T)}.

7.1.17 Theorem Let G = (V,E) be a graph, F a crossing faﬁily on V,
fiF >R a.submodular function and a eIRE with possibly infinite components

such that
7.1.18  &8(S) = ¢ for all S ¢ F,
7.1.19  there are no Y,Z ¢ F which cross such that cv(Y) = cv(Z),

7.1.20 there isnoSeF, je E such that &(S) = {j} and f(S) = ay.

We further assume that dg = 0 for all e ¢ E. If P, the set of feasible
solutions to (7.1.2)-(7.1.4), is of full dimension then for al1 T e F,

0y s a facet of P if and only if there is no (0,1)-valued [y,zl] éatisfying
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=0 for ali S« F

=
w
/

Yg % 0 for all 5S¢ FT

7.1.21 0 for all e cE

N
[\

e
Fly,e) + Zy 2 1 for all e ¢ §(T)

and

7.1.22 foy +a-z < f(T).

7.1.23 Note If there exist S e F, j ¢ E such that 6(S) = {j} and f(S)

then the inequality X5 < aj is equivalent to cv(S)-x s f(S). Hence, we can

3

" stil11 determine whether or not QT is a facet of P by redefining a; =

Proof of (7.1.17) Suppose Q; is a facet of P. Since P is of full

dimension, the set of inequalities {ev(S)-x < f(S):S ¢ FT} of (7.1.4)
is essential for defining P, by (2.3.31). By (2.4.19) there tan-be no
[y,z] satisfying {7.1.21) and (7.1.22). |

'Conversely,.suppose Qr is nﬁt a facet of P. By (2.3.29),
{ev(S)-x = F(S):S « FT} is nonessential for defining P. By (2.4.19),

the optimum value of the 1inear program

7.1.24 minimiza f-y 4 a-z'ﬁhere [y,z] satisfies (7.1.21)

is less than or equal to f(T). We show that (7.1.24) has an ﬁnteger;
valued optimum solution. By (2.5.1), (7.1.24) has a rational-valued
optimum solution [yo,zo]. Apply the following transformation to [yo,zo].
(This is genera1izatioh'of the proof of the corresponding result for the

intersection of two potymatroids (4.5.5)).
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_ 7.1.25 Starting with j = 0, suppose Y,Z e F, Y and Z cross and

0 < y% < y%. Then, since F is a crossing'family, YnieFand YulZec ,

For S ¢ F define yg+] by
Yy ifSc aZyu 2}
itz vl -y if s e D)
yg otherwiée.
,20] is a feasible solution tp the linear program

7.1.26 minimize f.y + a.z where y isF; z elRE satisfy

0 for all S e F

[\

¥g

z 0 for all e ¢ E

e .
Fly.e)rz, = 1 forall e ¢ §(T).

v

By the submodularity of f, f-yj+] < f-yj. The dual }inear program of

(7.1.26) is

7.1.27 maximize cv(T}-x where: x elRE satisfies (7.1.2)-(7.1.4).

Since {cv(S).x < F(S):S « FT} is nonessential for defining P, the optimum .

value of (7.1.27) is equal to the optimum value of

7.1.28 maximize cv{1)*x where x elRE satisfies

W)

X 0 for all e e E

€

Xg < 8, for all e ¢ E

cv(S):-x < f(S) for all S ¢ F-Fr.
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The dual linear program of (7.1.28) is equivalent to (7.1.24). Therefore,
by the Strong L.P. Duality Theorem, the optimum value of (7.1.24) s
equal to the optimum value of (7.1.26). Hence [yj+],zo] must be an
optimum solution to (7.1.26). |

As in the proofs of (4.5.5) and (6.2.9), the sequence
{yo,y]g...,yj,yj+],... } constructed according to (7.1.25) has only
finitely many terms.

Therefore, (7.1.26) has an optimum solution [yg,zoj with the
property that the family Fg = {Se¢ F:yé > 0} is a cross-free family.
There may be some set S ¢ FT such that yg > 0, However, if for some set
R « F-FT we have yg > 0 then, since for any two Y,Z ¢ F which cross we
have cv (Y n‘Z) # cv(Yu Z), either Y n Z ¢ FrorYu Z¢ Fy. Hencé,

* for some set U ¢ F-F; we have y8+1 > 0. By induction on j, for some

R ¢ F-F, we have yé >0

T
Let B = Z(yézs e FT)‘ Since P is of full dimensiqn, we

. must have f(S) > 0 for al1 S ¢ F (compare (4.4.2)). Therefore,
' [
E(f(S)yS:S € F-FT) > 0.
If 8 = 1 then
0

foy® + avz = BE(T) + Z(F(SIYES € FoFp) + a2’ > £(T);

which is impossibie. Therefore, 0 < 8 = 1. Let §'eIRF be defined by
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1

Yo |
T-——il‘- 'lf S e F—FT

0 1if S e FT.
Let Z = g2 - For all e ¢ &§{T) we have

A ~ 1 2. 0
Fly,e) + z, = T?E{Z(yS‘e e 6(S),S ¢ F-FT)+Le]

§
7ogli-8)

v

= 1.

Q

Therefore, [¥,2] #s a fi-asible solution to (7.1.24). Moreover,

f.§+ ez = T}g[z(f(S)yézs € F—FT) + a-zo]

A

]
Tjg{f(T)-Bf(T)]
= (1),
Hence, [¥,7] satisfies (7.1.21) and (7.1.22).

The family F={Se F:)?S > 0} is.a cross-free family. By an

" argument analogous to that in the proof of (6.2.9), the Tinear program

7.1.29  minimize f-y + a+z where [y,z] satisfies

0 for all S e F

v

Ys
0 for all S ¢ Fuf

“
W
IA

N
WV

o _0 for all e e £

y(E,e) tz, > 1 for all e ¢ &(T).
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has an integer-valued optimum sclution [y, z]. Since [¥,Z] is a
feas1b1e solution to (7.1.29) we have f-y +az s f Y+ Az s < £(T)
and so [¥,Z] satisfies (7.1.21)-(7.1.22). [y,z] must be (0,1)-valued. 0

(7.1.6), {7.1.12) and {7.1.17) characterize the facets of only
a subclass of the polyhedra described by submodular functions on graphs.
In view of the nature of the facet characterizations we do have we

make the conjecture
7.1.30 Conjacture Let P, the set of solutions to (7.1.2)-(7.1.4)

be of full dimension. For all T e F, Qp = {x ¢ P:ev(T).x = f(T)} is a

facet of P if and only if there is no integer-valued Ly,z,w] satisfying

Yg 2 0 fpr all SeF

z »0forallectE

we’ e

yS < 0 for all S ¢ FT
Fly.e) + 2z, - w, = cv(T), for all e e E
and

foy + .z - dw = F(T),

7.2 Apphcatmnc

In this section we show how our character1zat1ons of the facets

of the intersection of two polymatroids and of Pk(G) are direct conse-

quences of (7.1.17).

Polymatroid Intersection

7.2.1 Let f

1277

P = P(KE,f]) n P KE,fZ) is of full dimension. In section 6.3 we saw how

P could be descr bed as the solution set of the linear system

f.:L- > IR be two B -functions such that




-7.12 -

xe = O_for all e ¢ E

cv(S).x <.f'(S) for all e ¢ E.

for an appropriate choice of graph G = {V,E), crossing family F on V

and submodular function f' of F. Recall that the graph G and family F

on V are such that 6(S) = ¢ for all S e F and for any Y,Z < F which
cross, cv(Y n Z) # cv(Y u Z) (see (6.3.5)-(6.3.8)). Therefore, (7.1.18)-
(7.1.20) are satiéfied and we can apply (7.1.17) to determine for which
sets S ¢ F the set Qg = {x e P:cv(S)-x = f'(S)}, i.e. for which sets
TeKandis= 1 or 2 the face {x e P:x(T} = fi(T)},is a facet of P.

7.2.2 Let f:L; +R be the rank function of P (for all S ¢ E,

f(S) = max{x(S):x e P} . Then P = P(KE,f). If P; = {x e P:x(T) = f(T)}

is a facet of P then, by (4.4.5), T is f-nonseparable and f-ciosed.

7.2.3 Conversely, suppose PT is not a facet of P. By (4.3.11),
(1) = £(8) + f,(T-S) for some S.c T. If S e Kp={T} then, by (4.5.11},
T is f-separable. Hence , we may assume f(T) = f](T).

Therefore, {x ¢ P:x(T) = f](T)} is not a facet of P and, by (7.1.17),

there exists an integer-ﬁa1ued vector y = [yT,yZ] satisfying

v

yg 0 for all S e Ky, i=10r2

7.2.4 | yl=y2=0
1 2,
y (KE’() +y ‘KE’E) > 1 for all ere T

725  fyt o fpf s £(T),
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and we may choose [yl,yz] to minimize f]-y1 + f2-y2 subject to
(7.2.4). By (4.5.3) and (4.5.4), T is not f-closed or T is f-separable.
We have proved (4.5.5), a characterization of the nontrivial facets of

P(Kg.f).

Strong k-Cover Polyhedra

7.2.6 Recall that in section 5.3 we asserted the following theorem

concerning Pk(G) (see (5.3.26)}.

7.2.7 Theorem Let G be a connected graph such that Pk(G) is of

full dimension. Then for any T ¢ D(G), Lg(T) = {X ¢ Pk(G):x(a(T)) k}

is a facet of P,.(G) 1f and only if there does not exist a family F ¢ D{(G)-{T}

In

such that
7.2.8 2(]8(5)]-k:S € F) < [8(T) n U(F)|-k,
where U(F) = u(8(S):S € F).

Proof Let £(S) = |8(S)|-k for all S e D(G). For Y,Z e D(G) such that
YnZ#¢andY ulZ#V we have

f(Y nZ) + f(Yu Z)

8]

I8(Y n Z)]-k + |8(Y v Z)}}-k
|8(V)|-k + [8(D)]-k

n

f(Y) + £(Z}.

Therefore f is submodular on D(G). Let P be the solution set of the

linear system

0 for all e ¢ E

>
[\

1 for all e ¢ E

~J
no
w
ka3

IA

cv(S)-x = f(S) for all S e D(G).
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Let g(x) = 1-x for all x elRE. Suppose X ¢ Pk(G)' Clearly
g(x) = 0 and g(x) = 1. For any S e D(G) we have
cv(S)-g(x) = cv(S)-{1-x) = |8(S)[-x(8(S)) = |8(S)]-k,

since x(6(S)) = k. Therefore g(Pk(G)) < P. Similarly P ¢ g(Pk(G))
Pk(G).

Since g is a nonsingular affine transformation, Pk(G) is of

and so g(Pk(G))

full dimension if and only if P is of full dimension. Consider the face

QT = {x e P:cv(T}.x = f(T)}. As above, g(L?) = Qq- Hence, L$ is a facet

of Pk(G) if and only if i 1s a facet of P (compare the proof of (7.1.12}).
Because 8(§) = ¢ for a1l S e D(&), cv(Y) # cv(Z) for all

Y,Z « D{G) which :ross, and |8(S}| =2 2_f0r all S e D(G), we can apply

(7.1.17). Hence QT is a facet of P if and only if there does not exist

(0,1)-valued y elRD(G) and z etRE satisfying

0 for all S « D(G)

S
[ %}
1\

¥y € 0
0 for all e ¢ E

~J
N
—
o
~N
hY

p(G){y,2) + z, 2 1 for all e e §(T)
£y + 1.z < £(T).

For any (0,1)-valued [yo,zo] satisfying (7.2.10) let

= {S ¢ D(G):yg = 1}. Clearly, we may assume that zg = 1 if and only if

-
11

e ¢ 8(T)-U(F). Then
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0

0+ 1.20 = £(]8(s)k:S & F)[¥ 8(T) - U(F}] -k

12N

18(T)] k.

Thus F satisfies (7.2.8). ‘
Conversely, suppose F ¢ D(G)-{T} satisfies (7.2.8). Then
tet y0 ¢ RO{®) e defined by

1T ifSeF

Ko

0 otherwise.

and zoe IRE be defined by

0 (1 if e e 6(T)-U(F)

? 0 otherwise.

It is easily verified that [yo,zo] satisfies (7.2.10). 0
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